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ABSTRACT
This thesis explores the field of Autonomous Vehicle (AV) sensor technolo-
gies and potential cyber-attacks on sensors. The research on AVs is increas-
ing tremendously, as the first vehicles are due to hit the road by 2020.
Unfortunately, the literature on cyber-attacks on AVs is limited and theo-
retical. The first part of this work addresses the available sensor technolo-
gies, including limitations, attacks and countermeasures. Examples of sen-
sor technologies include Laser Image Detection and Ranging (Lidar), Tire-
pressure Monitoring System (TPMS) and Global Navigation Satellite Sys-
tem (GNSS). In the second part of this thesis, practical attacks on the hard-
ware layer of Lidar and camera sensors will be demonstrated on actual
hardware (MobilEye C2-270 Advanced Driver Assistance System (ADAS)
and ibeo LUX 3 Lidar system). Camera-related attacks include blinding and
auto controls confusion attacks. The Lidar attacks include jamming, relay-
ing and spoofing attacks. The attacks are evaluated according to an external
attacker model with limited money and knowledge. The experiments are
proof-of-concept, and are conducted in a lab environment. It was found that
the MobilEye C2-270 is sensitive to low-cost near-infrared light sources, but
these light sources cannot blind it. However, a low-budget low-power vis-
ible lasers can. The Lidar was susceptible to jamming, relay and spoofing
attacks using low-cost hardware. Counterfeit signals can also influence the
tracking software. Three examples of the impact of the attacks on the appli-
cation level have also been shown, including an attack on sensor fusion. The
last section of this work discusses several countermeasures that can mitigate
or limit the demonstrated attacks.
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1 INTRODUCT ION

1.1 problem statement
When the first ‘World Wide Web’ server was put online in 1991 by Tim
Berners-Lee, he would certainly not have expected that Cybercrime would
be such an issue as it is today. The same was probably true, when the first
Autonomous Vehicle (AV) was invented back in the eighties, even before
the internet was invented. Initial research projects such as Stanford’s au-
tonomous line following robot named ‘Cart’ (1970), can be considered pre-
liminary work of current automated vehicles. It was not up to 1986 before
the first car, named ‘VaMoRs’, was driving autonomously on an actual street,
achieving speeds up to 96 km/h. This project was led by the German pio-
neer in driverless cars Ernst Dickmanns [27].

DARPA Grand
Challenge

Since the year 2000, more research has been carried out in the field of AVs,
with notably results such as Google’s Driverless Car (2010), VisLab’s BRAiVe
(2012) and the Mercedes’ S-class (2014). Before these cars existed, challenges
such as the Defense Advanced Research Projects Agency (DARPA) Grand
Challenge (2005), DARPA Urban Challenge (2007) and the Grand Coopera-
tive Driving Challenge (2011) had to gradually raise the bar.

There are many advantages of having self-driving vehicles, and the ap-
pear on the commercial market by 2020 [102, 35]. Disney’s cartoon ‘Magical
Highway’ (1958) has already visualized how the future will look like. Com-
fort is an obvious advantage, but in the current society, the practical advan-
tages of a AVs become clearer every day. Due to an increase of congestion
on the road (especially in The Netherlands), the productivity decreases and
money is wasted on fuel and time. Cooperative AVs enhance traffic flow.
With regard to road safety, smart vehicles are likely to decrease the number
of injuries and fatalities. A computer can be tremendously faster in many
tasks than humans will ever be.

Current research such as [16, 46, 4, 22, 72] focuses on the autonomous
technologies. Even if these autonomous technologies consider malicious in-
put, they lack on security and cyber-attacks as depicted in Figure 1

1. From
a security-by-design perspective this is wrong, because a decision made by
an AV is as good as the sensors can perceive. A faulty observation can lead
to dangerous situations.

1 It could be argued that tamper resistance is covered by ‘correctness’. Nevertheless, the author
believes this is not the case.
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introduction

Fig. 1: In the
problem state-
ment on external
sensing in this
presentation
from [72], tam-
pering is not
listed as a
problem source.

Initial thoughts on cyber-attacks on autonomous cars were raised by a
hacker with the name ‘Zoz’, during DEF CON 21 in 2013 [23]. The work of
Petit [112] can be considered the first to elaborate on potential cyber-attacks
on AVs in literature. In particular, these attacks have in common that they
can be mounted externally (thus no physical access to the car), on existing
sensors such as (stereo) camera vision, Global Navigation Satellite System
(GNSS), Laser Image Detection and Ranging (Lidar) and Radio Detection
and Ranging (Radar). However, both [23] and [112] are theoretical and have
not conducted experiments on existing hardware. There is a need for prac-
tical research regarding this topic, as attacks on sensors can eventually cost
lives.

1.2 research questions
Based on the problem statement, this study will address the following three
research questions. The overall objective of this work is to find out if sensors
can be influenced remotely, in such a way that the sensor either breaks or
reports invalid information with the intention to crash or stop a vehicle. A
survey on the sensors that are used in AVs will indicate which sensors are
of interest to this work.

1.2.1 What types of attack can be mounted?

The types of attack that can be mounted is part of survey on autonomous ve-
hicle technologies in Chapter 3.1. This chapter will point out which sensors
are of interest to attack.
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1.3 contributions

1.2.2 How likely are the attacks to happen and what are their conse-
quences?

A decision made by an AV is as good as the sensors can perceive. A faulty
observation can lead to dangerous situations that can eventually cost lives.
Therefore, the consequences of the attacks depend on the application. For
instance, if the lane-keeping application is attacked, it will have less conse-
quences than when the Collision Avoidance System (CAS) is attacked. The
latter is directly involved with preventing a crash when it happens.

1.2.3 What is the amount of effort that has to be put into the attacks, in
terms of time and money?

For the attacks that are mountable, it is interesting to know if they are so-
phisticated or not. If they are, the attacker may require a lot of time and
money to mount them.

1.3 contributions
Current literature on cyber-attacks is rather theoretical, such as [112] and
[84]. Other works such as [24] and [103] limit their works to in-vehicle sys-
tems and communication busses. This thesis will contribute the following
to literature.

awareness of the issue After an extensive literature study, the conclu-
sion is that there are many applications available that add autonomy
to an AV. Most of the applications use a camera system, such as lane-
keeping and traffic sign recognition. Other applications include Lidar
for range-finding and CAS. In most of the literature, malicious input
and threat models are not considered. This work raises the issue, in
particular for sensors that are commonly used in a AV at the time of
writing.

demonstration of attacks Several experiments that are concerned as
proof-of-concept attacks on Lidar and camera hardware, without any
prior knowledge of the systems. In addition, the influence of the at-
tacks on the application-level is demonstrated.

threat model An attacker model with attack scenarios that are likely to
happen. This threat model is based on an attacker with limited money
and limited time. It is debated that the attacks do not require expensive
hardware.

1.4 organization
The structure of the rest of this thesis is as follows. In Chapter 2, definitions
and backgrounds of AVs are established, together with a relevant attacker
model and likely attack scenarios. Chapter 3 introduces sensors that are
common for autonomous vehicles, including potential attacks. The experi-
ments are conducted in 4. The sensors that are of interest will be discussed
in here, including the experiments and results.
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To conclude the thesis, Chapter 5 discusses limits of this work and possi-
ble countermeasures to overcome the attacks on the sensors. Finally, Chapter
6 will end this work with a conclusion and a proposal for future work.
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2
DEF IN I T IONS AND
ATTACKER MODEL

The complexity of vehicles is increasing rapidly. Not only from a technolog-
ical point of view, but also from a societal point of view. In general, newer
vehicles are equipped with more sensors and newer technologies [42] than
their predecessors. Examples of these new technologies include Collision
Avoidance System (CAS), lane keeping and parking assist. These technolo-
gies help to make vehicles safer, but also help the driver by offloading tasks.
Depending on the tasks that can be offloaded to the vehicle, it can be called
an Autonomous Vehicle (AV). Section 2.1 will explore the degrees of au-
tomation.

A definition of cyber-attacks will be given in Section 2.2, including a com-
parison with traditional cyber-attacks. An attacker model will then follow in
Section 2.3, with a brief introduction of three frameworks for security mod-
eling. An attacker model defines the capabilities of what an adversary can
do and what it can not do. This is needed to reason properly about security
requirements.

At the end of this chapter, in Section 2.4, the attacker model is extended
with attack types and scenarios. This will be relevant for the rest of this
work.

2.1 degrees of automation
What can be considered an AV, depends on the technologies (and limita-
tions) that can offload a driver in controlling a vehicle. There are three major
frameworks for classifying the autonomy of vehicles. These frameworks es-
tablish a global definition of what can be considered a AV and what can not,
for instance for policy makers. The first is [15] by the German Bundesanstalt
für Straßenwesen (BASt), second is [97] by the American National Highway
Traffic Safety Administration (NHTSA) and last is [121]. All three frame-
works are ordered, and rank autonomy of vehicles from no-automation (no
tasks offloaded from a driver) to what can be considered a self-driving car
(all tasks offloaded from a driver).

Five degrees of
automation

In this work, the [97] classification is followed. The levels of automation
are presented below.

level 0 - no-automation The actions performed by the car are the result
of human actions, without any automation involved. This does not
imply that the car does not have any electronics on board (e.g. Drive-
by-wire or CAN bus).

level 1 - function-specific automation This type of automation char-
acterizes itself by the ‘shared authority’. The driver enables one sys-
tem, and shares control over the vehicle, but it continues monitoring
the vehicle and the environment. It could be called ‘hands-off, eyes-on’
driving. In case of troubles, the driver can overrule the application im-
mediately. Applications include Adaptive Cruise Control (ACC) and
lane-keeping. A car can have multiple function-specific features, but
in this case, the features work independently of each other.

5



definitions and attacker model

level 2 - combined function automation Same as above, but when
one or more systems are combined as one specific application. The
driver shares more authority with the individual systems. Compared
to the function-specific automation, this allows the driver to be physi-
cally disengaged from the vehicle, by not touching the steering wheels
or the pedals. However, the driver still can, and is expected to in case
of danger, overrule the controls.

level 3 - limited automation Multiple systems and applications take
over full control of the vehicle (including safety-critical functions), and
the driver is expected to take over control when the automated sys-
tems are incapable of control, or limited by geographical boundaries.
Current state of the art cars, such as the Google Driverless Car, are
examples of this category.

level 4 - full automation The vehicle is expected to have full control
over all functions. It is not expected to have a driver available at all
times during the trip. As of writing, no cars of this category are avail-
able, mostly due to legal reasons. This includes vehicles without a
‘steering wheel’.

In [112], another distinction is made between ‘autonomous automation’
and ‘cooperative automation’. While this work primarily discusses technolo-
gies classified as the first category, the definitions of both are presented be-
low for completeness.

autonomous automation In this type of automation, information about
the environment is fully gathered from on-board sensors, without any
active communication between other vehicles or infrastructure.

cooperative automation Vehicles communicate with each other and share
information about the environment. Communication is not limited be-
tween cars (Vehicle-to-Vehicle (V2V)), nor between cars and infrastruc-
ture (Vehicle-to-Infrastructure (V2I)).

Throughout this work, the term AV will correspond to a ‘Limited Automa-
tion’ or ‘Full Automation’ vehicle. These two levels are (the future, and are)
the most interesting ones when sensors can be remotely triggered to fail.

2.2 cyber-attacks

2.2.1 Definition

This thesis addresses cyber-attacks on AVs. Up to this point, no definition
of ‘cyber-attack’ was presented. Multiple definitions of ‘cyber-attack’ exist
in literature. These definitions typical address software and computer net-
works. For instance, [79] defines a cyber-attack as “deliberate actions to al-
ter, disrupt, deceive, degrade, or destroy computer systems or networks or
the information and/or programs resident in or transiting these systems or
networks.” Another definition by [57] defines a cyber-attack as “any action
taken to undermine the functions of a computer network for a political or na-
tional security purpose.” Although the definition states that a cyber-attack
has a political or national security purpose, their interpretation does state
that ‘any action’ can include “hacking, bombing, cutting, infecting, and so
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2.2 cyber-attacks

forth”, as long as the objectives attack the function of a computer network.
These definitions do not fit the particular goal of this work very well: using
a laser pointer to blind a camera sensor would be more closely related to
vandalism than to a cyber-attack.

Safety
requirements

It can be discussed that even the laser pointer attack is a cyber-attack
when it is used to influence the decision making software. As an exam-
ple: in [58], a case study identified several safety requirements for a proto-
type AV. The authors defined that “in cases where the GPS signal is lost
or jammed, the vehicle is able to continue to plan its path by taking mea-
surements from IMU in conjunction with other on-board sensors (such as
Lidar).” This means, that if an attacker can block or jam the Global Position-
ing System (GPS) signal, it can also control the AV by attacking on-board
sensors such as a Laser Image Detection and Ranging (Lidar). An attack can
be one that causes the sensor to operate outside operating characteristics,
thus violating safety requirements.

One way to extend the definition of a cyber-attack to cover the attacks
in this work, is by including ‘safety’ in the definition. This is a reasonable
modification, considering the attacker model. An attacker inevitably attacks
the safety controls of an AV with the intention to influence the decision
making software. This makes safety at least as important as security. For this
work, the definition of attack from [128] is modified to include safety: “An
assault on system security or safety that derives from an intelligent threat,
i.e., an intelligent act that is a deliberate attempt (especially in the sense of a
method or technique) to evade security services or safety controls and violate
the security or safety policy of a system.”

2.2.2 Types of attack

With a definition of cyber-attacks established, the following types of cyber-
attack have been identified in the context of AVs. This listing is based on the
ones presented in [128] and [117], and show how typical types of attack fit
in the context of AVs.

denial-of-service attacks In a denial-of-service attack, an attacker tries
to prevent the delivery of a service to legitimate users. In practice, a
certain service is flooded with many requests from fake users, in such
a way that legitimate users cannot be served in an orderly fashion. This
is not the only way to mount a denial-of-service attack. Other ways in-
clude crashing or compromising a service so it will be disabled. An
example that is analogous to AVs would be that a pedestrian detec-
tion system would fail to track a pedestrian because an attack put too
many mannequins aside of the road, in such a way it overloads the
tracking algorithm.

replay attacks A replay attack is an attack in which a message is recorded
and played back on another moment. If the message is badly pro-
tected (e.g. no timestamps, nonces or session tokens), it could result
in the same action triggered twice, even when encrypted. Analogous
to AVs, an example would be one where the Lidar signal is recorded
and played back on a later moment to inject false objects, even if the
underlying format of the signal is unknown to the attacker. To some
extent, this attack is similar to a replay attack, where the message is
not stored but transmitted directly.

7
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injection attacks With injection attacks, an attacker potentially knows
the format of a message. It then injects a message to trigger a certain
response. An example for AVs would be that a traffic recognition sys-
tem based on shapes would be triggered because an attacker put fake
traffic sign shapes on the side of the road.

modification attacks A modification attack captures a message from a
sender, alters it, and sends it to the original receiver. The same as
with a replay attack or injection attack, the attacker does not need to
understand the message format. Although the nature of such an attack
may imply such an attack happens real-time, it may even happen at
a later moment (e.g. message is stored). For an AV, an analog would
be a situation where a traffic sign is wrongly identified because it is
(slightly) modified.

2.3 attacker model
According to [124], “security is about Trade-offs, not Absolutes”. A com-
pany can invest in the security of a product, either in software or hard-
ware. However, if the risk for an attack is low and the cost is high, one
may decide to not invest in countermeasures. Therefore, there is need for a
framework to decide on the security requirements of a system. There are sev-
eral frameworks to do proper security modeling of a system. Representable
frameworks include attack trees [127], Failure Mode and Effect Analysis
(FMEA) [125] and Common Vulnerability Scoring System (CVSS) [101].

Attack trees are a top-down approach for security modeling, introduced
in the ’90s. It is a tree graph with an ultimate goal as root node. An example
of an attack tree is presented in Figure 2. To achieve this ultimate goal, a
path of several subgoals, represented by child nodes, should be achieved.
By default, the nodes in a tree are disjunct, but some nodes can be conjunct.
This is useful if several subgoals should be fulfilled before the parent sub-
goal is completed. Nodes can also be augmented with variables such as cost
and feasibility. According to [89], a major advantage of an attack tree is the
decomposition of goals, so it is easy to see which countermeasure will have
the biggest effect of advantage.
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Break Lidar

Damage sensor

 or 

Inject
signals

 or 

Acquire
hammer

Identy
sensor Jam

 or 

Spoof

 or 

Identify
signal

Acquire
laser

Generate
signal

Fig. 2: Example
of an attack tree.
The ultimate goal
is the root node.
The child nodes
have to be com-
pleted first.

FMEA is a much older framework, and dates back to the ’50s. It was used
by the United States Department of Defense to improve the reliability of
military equipment. It focuses more on failure modes of actual hardware.
As [125] shows, it can also be used for security requirements modeling. One
of the biggest advantages of FMEA, is its age. It is well adopted in the field
of engineering, for instance to guarantee product safety. As [132] mentions,
it is important to conduct an FMEA carefully, so it can be used, for example,
in court.

The last framework is CVSS. It focuses on three areas of interest (‘Base’,
‘Temporal’ and ‘Environmental’) to calculate a vulnerability score in the
range 0.0 (minor) - 10.0 (critical)1. CVSS is used for security modeling in
vehicles. For instance, in [103] the authors have focused on the topic of the
increasing number of software components in a car, including connectivity
with other cars, smartphones and more. They used CVSS to analyze the risk
involved, and came up with a rough damage figure that clearly calls for
action. Since CVSS is focused on software vulnerabilities, it is not a good
candidate for security modeling of AVs, in which attacks are not limited to
software only.

Attack trees, FMEA for security modeling and CVSS have in common that
they involve actors that want to misbehave (anti-goals), according to [32].
This is the opposite of risk analysis, where failure of a product is also an
important cause. It is therefore necessary to have a persona of these actors,
an attacker model. With an attacker model, one can reason if a problem is
critical or not. The attacker model should be realistic [106]. If it is modeled
too powerful, it is most likely that all security requirements are impossible
to fulfill. If it is modeled with not enough capabilities, it will be unrealistic.

A first category of attacker models are the formal methods. These models
assume certain formal properties, that can be checked with model checker
tools or proven with mathematics. An example of such an attacker model
is the Dolev-Yao threat model [28]. This model is used to prove the security
of cryptographic protocols. In this model, the attacker can replay, intercept

1 To give an idea of a major bug, the 2014 discovered ‘Heartbleed’ vulnerability was classified as
major [146]. Although it was big news, it only received a vulnerability score of 5.0 due to low
exploitability.
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and inject messages, using the cryptographic methods exposed by the pro-
tocol. The other category of attacker models are the more practical models.
They do not have formal properties and cannot be proven, but resemble a
persona (frequently used in Human-machine Interaction (HMI)) with spe-
cific attacker capabilities and properties. In [112], the following properties
are presented, which are adapted for this work:

internal versus external The internal attacker has physical access to
the vehicle. For example, it has direct access to the internal Controller
Area Network (CAN) bus. The external attacker does not have access
to the car, so only remote attacks can be mounted from a distance.

malicious versus rational A malicious attacker seeks no personal bene-
fits from the attacks, and aims to harm the vehicle and/or drivers. The
rational attacker seeks personal profit, and hence, is more predictable
in terms of attack means and attack target.

active versus passive The passive attacker can listen to communications
only. An active attacker can do the same, but it can also inject and
spoof false signals or block signals.

local versus extended A local attacker has limited locations to mount
an attack. An extended can mount (or extend) an attack over multiple
locations. For example, a local attack would be blinding the camera
at one spot, but spoofing the navigation system of a moving car for a
longer distance requires the attacker to follow the car.

intentional versus unintentional An intentional attacker mounts an
attacks on purpose, while the unintentional attacker generates signals
that have unintended side-effects. The unintentional attacker may not
even know he is attacking.

Additionally, the following three general properties are added to the at-
tacker model:

amount of time An attacker has either limited or unlimited time. With
limited time, it is assumed one or multiple steps in an attack are time
bounded, or lose interest after a certain amount of time time (e.g. brute
forcing keys or product evolution).

detectable versus undetectable A detectable attack(er) leaves clear
traces, such as damage due to installation. An undetectable attack is
hard to detect. Any goals reached are hard to trace back to an attack,
and may look like it was caused by other things.

amount of money The amount of money an attacker is willing to spend,
or can spend, to reach it is target goal.

The attacker model will be used to evaluate the attacks in Section 6.2. The
best description for an attacker that fits the purpose of this work, is a lim-
ited time and limited money attacker with the intention of actively disrupting
components undetectably and externally. The attacker is not limited to any
regulations that may apply, such as a transmitting license. This follows the
classification suggested by [112].Attacker model Time is chosen to be limited, because it is
assumed that new technologies will follow fast, thus old technologies will
eventually be superseded by better ones. Furthermore, it is assumed that
most of the time will be invested in preparing the attack. As an indication
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for the amount of time, this thesis will ‘prepare’ several attack on exist-
ing sensors in a time span of six months, without any prior knowledge. The
reason for choosing limited money, is because the goal of this work (and fur-
ther research) is to show that with inexpensive hardware (from sources like
eBay), attacks on existing sensors can be mounted. With unlimited money,
there are easier means of disabling hardware, or even destroy it. For in-
stance, take an Electromagnetic Pulse (EMP) cannon and integrate it in the
road. Each car that moves over will be disabled. Not to mention, as pointed
out in Section 3.1.4, hardware can get less expensive over time.

2.4 attack scenarios
There are many scenarios of how an attacker can mount an attack, depend-
ing on the sensors used. For this work, the following three scenarios have
been designed to discuss the likelihood of an attack.. Although more sce-
narios are possible, the scenarios below have in common that attacks can be
mounted while the target car is driving at high speed, as opposed to low-
speed activities such as parking. It is the goal of the attacker to either cause
as much damage as possible, such as crashing a car, or to force a car into
minimal risk condition, i.e. stopping it safely. If it can be put in minimal risk
condition, this implies that an AV can detect faulty sensors or tampering.

front/rear/side attack In a front/rear/side attack, the attacker mounts
the required hardware to mount an attack in another car. Depending
on the hardware, this can be installed without anyone else noticing.
The car is then used to drive in front of (or behind of, or next to) the
target car. When positioned, the attack is executed once or multiple
times. The advantage of this attack scenario is that it allows an attacker
to keep the same distance to the target AV for a longer period.

roadside attack A roadside attack is mounted stationary. In this scenario,
the attacker can mount the required hardware in objects on the side
of the road, such as the guard rail. The attack is not limited to one
installation point, but can be spread over multiple installation points,
potentially connected to each other (e.g. for replay attacks).

scenery attack In a scenery attack, the scene is changed by the attacker
in such a way the target AV is unable to perceive the original scene,
or perceives too much. For instance, extra traffic signs are placed, or
existing ones are modified to present the wrong information.

evil maid/evil mechanic attack Several attack surfaces evaluated in [24]
and [65] include full physical access to the vehicle. In [111], the term
‘Evil Mechanic’ was introduced as an extension of the ‘Evil Maid’ by
[120]. Such an attacker has short-term physical access to the car, e.g.
when it is parked or left for maintenance. A similar scenario is appli-
cable for this work: if the sensor can be influenced remotely from the
roadside, it can also be mounted on the vehicle. For instance, an at-
tacker can mount mount a jamming device on a (carrier) vehicle that
jams other cars without noticing.

All of the attack scenarios involve general-purpose locations. The attacker
does not need special access to a certain area, or similar.
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definitions and attacker model

High-speed/Low-
speed

A distinction is made between low-speed and high-speed situations. A
low-speed situation is considered to be less than 50 km/h or 13.8 m/s and
takes into account incoming traffic, pedestrians and more (e.g. city traffic).
A high-speed situation is one on the highway with a speed of approximately
130 km/h or 36.1 m/s. It does not account for incoming traffic and pedes-
trians. The reason for this distinction is that an attack in one situation does
not have to be effective in the other. For instance, in a city a vehicle has to
take care of not driving into pedestrians, whereas on a highway the vehicle
should make sure it does not crash.

In situations where an immediate action is required, it is assumed that a
AV needs (far) less time to decide on that action than the response than a hu-
man. On average, the response time of a human is one second. In addition,
it is assumed that a AV does not have a better braking system compared
to a traditional car. An AV cannot take more time to analyze a dangerous
situation before it responds to it, because AVs tend to be superior in making
a decision compared to humans. This is a trade-off in terms of safety and ro-
bustness. Taking more time adds more distance to the braking distance, but
will produce less false positives. Taking less time shortens the braking dis-
tance, at the cost of more false positives. In case of high-speed scenarios, it
is presumed that an AV will brake as soon as it decides it has to: every tenth
of a second adds approximately 3.33 meters to the total braking distance.
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3
AUTONOMOUS
VEH ICLE SENSORS

3.1 sensor technologies
A typical modern car is equipped with many sensors. In [42], fourteen types
of sensors are listed, which can be applied to ten different application fields.
Most of the sensors are only accessible to the internals of the vehicle. These
applications make sure the vehicle keeps running. Only a few of the appli-
cation types are involved with perception of the world. Sensor

perception
Perception is the

process of converting the physical environment into digital signals for fur-
ther processing, such as measuring forces or measuring distance. Table 1

lists the fourteen sensor types.

Tab. 1: Classification of vehicle sensors, according to [42].

Sensor Type Technologies Applications

Rotational Motion
Hall Effect,

Magnetoresistor,
Wiegand Effect

Engine Diagnostics

Pressure Piezoresistive, Capacitive
Vehicle, Engine

Diagnostics

Angular and
Linear Position

Potentiometer, Hall
Effect, Camera,

Magnetostrictive Pulse
Transit Time

Transmission,
Breaking, Steering

Temperature
Sillicon, Thermistor,

Resistive Temperature
Detector

Safety, Comport
and Convenience

Mass Air Flow Engine Control

Gas Exhaust Engine Diagnostics

Engine Knock Engine Control

Linear
Acceleration

Piezoresistive, Capacitive,
Resonant-beam, GPS

Navigation,
Security

Angular Rate Navigation

Solar, Twilight and
Glare

Comfort and
Convenience

Moisture/Rain
Comfort and
Convenience

Fuel/Fluid Level Breaking
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Tab. 1: Classification of vehicle sensors, according to [42] (continued).

Sensor Type Technologies Applications

Near-distance
Obstacle Detection

Ultrasound, Micro-wave
Radar, RF capacitance

Safety, Comfort
and Convenience

Far-distance
Obstacle Detection

Millimeter-wave Radar,
Lidar, Thermal Imaging,

Camera
Safety

Most of the sensors are connected to an internal communication network,
such as the Controller Area Network (CAN) bus [39] or the Drive-by-wire
bus [47, 43]. This makes these types of sensors interesting attack targets. De-
spite that, such attack vectors1 generally require physical access to the car,
which is out of the scope for the attacker model introduces in Section 2.3.
The work of [24] discusses external attacks, but their work is limited to gain-
ing entrance via exploitable input and output channels, such as Bluetooth,
keyless entry systems and wireless maintenance ports.

This chapter will introduce the most important sensors used in a typi-
cal Autonomous Vehicle (AV) that is described in research and in popular
publications. Their limits and attack vectors will also be discussed.

To prevent any confusion about the terms ‘sensors’ and ‘application’, in
the rest of this work, when referring to sensors, sensors that perceive the en-
vironment are meant. Applications refer to the practical uses of the sensors.
For example, Laser Image Detection and Ranging (Lidar) is a sensor, while
collision avoidance is an application.

3.1.1 Lidar

Lidar is a type of range-finding sensor. Briefly, it works by emitting a light
pulse and measure the time it takes to reflect off a distant surface, called
a ping. The time is a measure for the distance. Most speed measurement
devices, such as the ones used by the police, are based on this principle.

For completeness: Radio Detection and Ranging (Radar) and Sound Nav-
igation and Ranging (Sonar) are two other but similar methods of range-
finding. Radar uses microwave radio pulses while Sonar uses (ultra) sound
for pulses. The advantages of Lidar over Radar include the higher spatial

Spatial
resolution

resolution (10 cm versus 1 meter according to [87]), making it possible to
have better resolution images when used for scanning. Pedestrians can be
separated from cars at this resolution. Sonar is not a feasible technique.
For sound waves in air, the speed of sound is approximately 880,000 times
slower than the speed of light (at room temperature and atmospheric pres-
sure). However, the energy of Radar waves and Lidar pulses are quickly
absorbed by the water molecules, making them unusable for underwater
operations.

In The Netherlands, Lidar has the advantage of not requiring a transmit-
ting license for longer distances, as opposed to Radar. Short-distance Radar
for collision detection (up to approximately 40 meters) is permitted in vehi-
cles without a license [1].

1 An attack vector is a point to attack, for instance the CAN bus protocol.
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Measuring distance

To measure the distance, Equation 1 is used. c is the speed of light in a
vacuum (≈ 3 · 108m/s), n is the refraction index of the transferring medium
and t the time of flight. Without factor half, the output is the total distance
travelled back and forth.

d =
1

2
· c · t
n

(1)

When Lidar is mounted on a rotateable head, it can be used to generate
a two-dimensional or three-dimensional image of the world, by quickly ro-
tating the head. Figure 3 shows how this works. The resolution depends
on the number of steps per revolution. A typical system can do over 20,000

individual measurements per second [87].

Fig. 3: How
Lidar perceives
the world. Any
object in line of
sight will reflect
back to the Lidar.
Note that, in
practice, Lidar
uses invisible
light.

There are two ways of obtaining the speed of a remote object. The first
one uses range differentiation, where two distance measurements within
a known interval reveal the speed. The other approach uses the Doppler
effect. By using the Doppler effect, the shift of frequency due to movement
between sender and receiver, the speed of a remote object can be measured
with the Equation 2. T1 and T2 are the period of the reflected light. c is the
speed of light and n is the refraction index of the transferring medium.

v = (
T1
T2

− 1) · c
n

(2)

Applications

As mentioned above, Lidar is used for different applications. The most com-
mon ones are Adaptive Cruise Control (ACC), Collision Avoidance System
(CAS) and object recognition (in general).

ACCs systems are used in cars for many years. A typical ACC controls
the gas throttle, to slow down if a vehicle in front comes closer, or speed
up (to a desired speed) when there is room. The driver can still override the
acceleration if they like. According to [155], 90% of the traffic accidents are
the result of human error. ACC systems can help reduce this number, by
enlighten long and repetitive driving tasks. In the work of [151], no signif-
icant difference was found when comparing Lidar and Radar based ACC
systems.

The technology behind CAS is almost identical to the technology behind
ACC. The major difference is that a collision can occur at any time, and
the vehicle has limited braking power. If it is assumed that the reaction
speed of a human can be ignored (which could be true for a AV), a typical
vehicle driving 130 km/h would at least need 70 meters to stop. Therefore,
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a short-range radar system would be insufficient, because it perceives too
late. Volvo is an example of a vehicle manufacturer that have implemented
CAS [55]. It uses Lidar to track objects, fused together with camera imaging
to identify objects. In case of an approaching collision, it will automatically
hit the brakes.

With regard to current research, object recognition is another application
of interest. When a Lidar sensor is mounted on a rotatable mirror, it can be
used to provide vision in two or three dimensional view (see Figure 4). In
most cases, shorter range is preferred, but with higher angular resolution2.
For example, the commercially available Ibeo Lux HD [10] has an angular
resolution of 0.125 °. The device can classify cars and pedestrians. One way
to classify certain objects, is by using a depth map. For instance, a pedestrian
will appear as a small object on the depth map, while a car will appear
as a much bigger object. Combined with speed information and tracking
algorithms (such as a Particle Filter (PF), discussed in Section 3.2.2), objects
can be classified and tracked. Other object recognition applications include
terrain classification [75] and lane detection [135, 50].

Fig. 4: Three-
dimensional
view of a 360 °
Lidar. The color
represents the
height. Image
taken from [107].

Attacks

Unfortunately, there is no literature that describes an attack on Lidar directly.
Since Lidar is the preferred technique in speed measurement devices, jam-
mers are widely available on the (black) market. However, a Lidar can only
see things that are reflected by the signal. If the signal does not return (due
to absorption, transparent objects or range limits), it will assume there is
‘nothing’. For a 360 ° view, most of the world will be classified as ‘nothing’.

Reflective objects can confuse a laser beam. Objects that are far away could
be brought nearby, which is major problem for CASs. Also, some objects on
the road are reflective by design. Lane markings reflect some of the signal,
so it will be visible in the perceived image.

Wavelength of
laser

Lidar uses light of a specific wavelength, and different wavelengths yield
different results. In [122], different wavelengths were chosen and examined,
regarding reflective properties on car parts and absorption. Their work dis-
cussed that the atmospheric absorption is the primary factor for limiting the
allowable wavelengths for Lidar applications. Most of the light is attenuated
by water molecules in the air, depending on the wavelength. Lasers typically

2 Smallest angle between two objects at the same range that allows an observer to still distinguish
them.
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use a wavelength of 800 nm - 2800 nm (near-infrared band). But lasers with
a wavelength in the range of 700 - 1400 nm are not eye-safe3. This limits the
maximum transmission power. On the other hand, it was concluded that
lasers with a wavelength of 8100 nm (mid-infrared band) work fine, and
even allowed ten times more power than the 1560 nm wavelength laser. Un-
fortunately, the costs and size of the optics and lasers currently outweigh
the performance. From [6], it is known that, for geographical mapping from
planes, lasers of 1064 nm are used (near-infrared). In cases where water sur-
faces are mapped, lasers of 532 nm (green) are used, to minimize absorption
by the water.

Absorption of light due to rain or snow can reduce the remission rate dras-
tically. For example, the ibeo LUX 3 has a range up to 200 meters, but when
only 10% of the light reflects due to non-optimal weather conditions such
as rain or snow, its range drops to 50 meters [10]. Non-optimal weather con-
ditions are currently a major limitation for the Google Driverless Car [48].

Signal noiseIn an interview with an expert from DARE!!4, it was told that new tech-
nologies in cars cause problems with existing road infrastructure systems.
For instance, CAS and ACC applications using Lidar or Radar are causing
interference with older infrastructure systems. These systems were never
built to work with so many ‘noisy’ signals on the same frequencies. This will
become a bigger problem when every car will, eventually, be equipped with
Lidar. At DARE!!, they develop speed gun detectors and jammers, based on
Lidar. For this to work, their systems need to know which type of speed
gun is sending the signal, so they can send a pulse back before the next one
will arrive. Effectively, this means the speed gun will read a slower speed.
It is worth mentioning that ‘just jamming’ will work too, but the speed gun
will read that it was jammed (In The Netherlands, that is forbidden).

3.1.2 GNSS

This section will describe the currently available Global Navigation Satellite
System (GNSS). The main task of GNSSs is to provide localization and time
synchronization services.

Systems

There are multiple GNSS systems available. The most famous one is Global
Positioning System (GPS) (originally and officially called Navigation Satel-
lite Time And Ranging (NAVSTAR)), developed in 1973. Initially, GPS was
only available for the United States Department of Defense. Since 1983 it
has been accessible for civilian use, but it took until 1994 before the system
was ready actually ready for civilian use. The GPS network consists of 24

satellites, of which three are backup [74]. There are five operating frequen-
cies, of which two are relevant, the L1 and L2 code. All satellites operate on
the same frequencies, and use Code Division Multiple Access (CDMA) to
simultaneously access the bandwidth. Pseudorandom

Noise codes
The used codes are called the Pseudo-

random Noise (PRN) codes of 1023 bits, which uniquely identify the broad-
casting satellite. The GPS data is transmitted via the Coarse/Acquisition
(C/A) code. This is the unencrypted navigation data. The encrypted (mili-
tary) signal is called the Precision-code, also broadcasted by every satellite.

3 Near-infrared light does not trigger the blink reflex of an eye. That is why even low-power
near-infrared lasers are dangerous.

4 DARE!! is a company specialized in Electromagnetic compatibility (EMC) compliance testing.
See http://www.dare.nl for more information.
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It has it is own PRN codes, but it is in the order of 1012 bits long. When
locked onto the signal, the receiver will receive the Y code, which is the
encrypted signal with a unspecified W code. Only authorized users can de-
cipher this. In later GPS satellites, extra features are added. This included
the use of the L2 signal, a pilot signal for easier lock-on and forward error
correction.

Global Navigation Satellite System (GLONASS) it the the Russian alter-
native. Its development began in 1976, and had full coverage in 1995. But
due economic crisis during in the ’90s, the system’s coverage degenerated,
and it was not until 2011 full coverage was reached again [98]. There are 28

satellites in orbit [40], of which 24 are required for full constellation.
The European project Galileo and the Chinese project BeiDou are still

under active development. Galileo will be the first civil GNSS system, as
opposed what GPS and GLONASS are. It is a project executed by the Euro-
pean Space Agency (ESA), and permission was granted in 2003. Currently,
there are 4 satellites launched and operational, of the total 30 by 2019. Three
satellites are used as a backup system. China is working on their own GNSS
that is called BeiDou, also known as COMPASS. The idea was conceived
in the 1980s. By 2012, regional coverage was completed. Global coverage is
expected to be in service by 2020. In total, 35 satellites will be launched.

There are several methods of augmenting GNSS data, to get a better esti-
mate of the location. Three of these methods are Satellite-based Augmenta-
tion Systems (SBASs), Assisted-GPS and Differential-GPS. SBASs is the first
method. Such systems are commonly used in airplanes, for critical phases
such as the landing phase. They consist of a few satellites and many ground
stations. A SBAS only covers a certain GNSS for a specific area. The stan-
dardized systems are:

• North America — Wide Area Augmentation System (WAAS) to com-
plement GPS.

• Europe — European Geostationary Navigation Overlay Service (EG-
NOS) to complement GPS, GLONASS and Galileo.

• Russia — Wide-area System of Differential Corrections and Monitor-
ing (SDCM) to complement GLONASS.

• Japan — Multi-functional Satellite Augmentation System (MSAS) to
complement GPS.

Assisted-GPS is widely deployed on mobile phones. When a receiver is
searching for satellites, an almanac is consulted. The almanac, download-
able from the internet, tells the receiver which satellites are likely to be visi-
ble with respect to time and geographical area (e.g. per cell tower). With this
information it takes less time to scan the ether for available satellites, so a po-
sition can be obtained faster. Differential-GPS works different, and requires
two receivers. One receiver is fixed at a known position. The other is the
actual receiver. It is assumed that the GPS signal that hits both receivers is
attenuated the same way, resulting in position errors. Because the reference
receiver knows its exact position, it can work the triangulation equations
backwards, therefore calculating the error. This error is then transmitted to
the actual receiver, which in turn, can correct the error.
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Accuracy

For every GNSS, the accuracy is greatly dependent on and influenced by ex-
ternal factors [54, 76], presented below. These factors are not only applicable
to GNSS applications, but every other wireless transmission application.

propagation errors and space weather The satellites orbit around earth
at a height of approximate 20.000 km. At this height, signals can be af-
fected in many ways. When signals hit the earth, they have to pass
through the ionosphere (upper part of atmosphere). This layer is al-
ways hit by sunlight, and therefore ionized. These ionized particles
tend to slow down radio signals coming through. This slowing down
causes the satellite to look further away for the receiver. After the iono-
sphere, there is the troposphere. Here, the reflective index changes,
which has a small impact on the signals.

According to [76], ‘space weather’, greatly influenced by the sun, af-
fects signals too. Almost every day, the sun emits solar flares into
space. High-intense ones happen a few times per year (X-class solar
flares). During a flare, radio waves, X-rays and gamma-rays are swept
into space. These rays have little to no effect on the earth itself, but it
induces extra current in the satellites and ionizes particles in the at-
mosphere. The extra induced current can damage satellites, while the
ionized particles can attenuate signals.

multi-path effects Multi-path
Effects

GNSS requires exact timing in the order of nanosec-
onds to determine position. If satellite signal reaches earth, it can
reflect on buildings and other objects, causing an increase in travel
time. This influences the measurements. For stationary measurements,
this looks like if the measurement jumps between multiple points. Us-
ing good quality antennas can reduce multi-path effects. Alternatively,
avoid using satellites that have low elevation.

satellite position geometry With triangulation, a better fix is yielded
in case two satellites have a greater angle between them. It is called
Dilution of Precision when this is not the case. Figure 5 illustrates this.

receiver clock errors Again, a measurement is time-dependent. Clocks
that are off by a few parts can affect a measurement, since it might ad-
vertise a satellite to be closer or farther away.

satellite orbit errors Even though a satellite ‘floats’ 20.000 km above
the earth, it is a real challenge to keep it up there. Wrong heights
affects the time of flight of the signal.

visible satellites At least three satellites are required to yield a latitude
and longitude. A fourth one adds altitude. Having more visible satel-
lites allows the receiver to select the best visible ones, or to combine
measurements.
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Fig. 5: Dilution
of precision ex-
plained. The dots
are satellites, the
area is the es-
timated position.
Image simplified
from [152].

(a) Great angle and a small area of over-
lap: more accurate.

(b) Small angle and a big area of overlap:
less accurate.

The performance of GPS in terms of accuracy and signal acquiring in-
creased during its development. Both the military and civilian GPS signal
have the same accuracy, but the military signal has additional capabilities
that allow for ionospheric correction. This reduces radio degradation caused
by the atmosphere of the Earth [145].Selective

Availability
But before May 2000, GPS satellites had

‘Selective Availability’ turned on. With this technique, the U.S. Department
of Defense intentionally decreased the accuracy. Without this technique, the
worst case accuracy is 7.8 meters at 95% confidence level [143, 144]. With
this technique enabled, it is accuracy will be 100 meters. It is believed that
the next generation satellites (GPS-III) will not be equipped with Selective
Availability anymore [144]. GLONASS satellites, which have already been
launched, do not have Selective Availability on board [41].

A simple experiment was conducted to measure the accuracy of GPS. Us-
ing a Navilock NL-402U GPS receiver, over 88,000 recordings were collected
in a period of 24 hours, at a frequency of 4 Hz. The sensor was positioned
stationary, indoors on the second floor and directly in the front of a window
with clear line of sight to the sky. The weather was partially cloudy, during
the day, without rain. The results are plotted in Figure 6. Conversion from
longitude and latitude degrees to a distance relative to the center point (de-
termined with Google Earth), is calculated via the Haversine function [37].

Fig. 6: x-y plot
and histogram
of 88,828 GPS
position sampled
over a period of
24 hours, while
stationary.
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(b) Histogram of GPS errors. 95% of the recordings
have 11 m or less error

GLONASS has similar accuracy compared to GPS, but since GLONASS
orbits at a lower height, it has improved accuracy at higher latitude (towards
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north and south pole), according to [139]. Unfortunately, there is no data
available on BeiDou and Galileo.

To improve reliability, it is a good option to combine results of two or mul-
tiple sources. This improves accuracy, availability, but also integrity. Newer
GNSS receivers are designed to work with multiple systems at the same
time. In [99], it is shown that a combination of GPS and GLONASS have
more accuracy over GLONASS-only. The results, measured at a few differ-
ent Russian stations, are presented in Table 2.

Tab. 2: A comparison of the combined accuracy of GLONASS only and GPS. The
stations are located in Russia. Table modified from [99]. Lower is better.

Station
Error of navigation (p=0.95)

Latitude (m) Longitude (m) Altitude (m)
Single Combi Single Combi Single Combi

Bellinsgauzen 4.80 2.69 5.23 2.29 11.44 6.26

Gelendzhik 5.60 2.83 6.28 2.60 14.08 6.86

Irkutsk 6.35 3.08 6.39 2.86 10.52 5.98

Kamchatka 5.73 3.03 5.25 2.40 12.72 6.07

Navigation

For navigation applications such as turn-by-turn navigation, the accuracy
of GPS is sufficient. By fusing position data with acceleration data from an
Inertial Measurement Unit (IMU), the accuracy is within reasonable mar-
gins for navigation. Unfortunately, for AVs the accuracy is not high enough.

Lane-level
navigation

Besides position information, a vehicle needs to know where it drives on the
road, so called lane-level navigation (sub-meter accuracy).

According to [17], one way of achieving lane-level accuracy, is by using En-
hanced Maps (Emaps). An Emap is a standard map, augmented with more
information, such as road characteristics, traffic signs, lane definitions, road
markings, speed limits, curves and more [137]. The Google Driverless Cars
fuses Lidar and camera vision with Emaps for road scenery understanding.

According to [29], Emaps and regular maps can be classified as one of the
following three classes. They represent (but are not limited to) the amount
of detail that is represented in each map.

macro-scale Most regular maps are considered to be on macro level. At
this level, the roadway network consists of links (roads) and nodes
(e.g. intersections), mostly represented as series of polylines (including
shapes). Optionally, attributes can be associated with links and nodes,
such as road type, speed limit and the number of lanes. A typical
navigation system will try to find the shortest path between point A
and B. The order of magnitude for navigation accuracy is about 10

meters. Note that due to this error, the accuracy of nodes, links and
shape do not represent the ground truth [136].

meso-scale At meso scale, the vehicle operation is considered to be on
link-level. More features can be associated, such as multiple lanes (in
contrast to only the number of lanes), on/off ramps, etc. Navigation
at this level takes the lanes into account, so the order of magnitude for
the navigation accuracy will be around 3 meters.
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micro-scale Typically, this scale is used for specific tasks and does not
take navigation into account. It is not limited to GNSS applications, but
every system that can build up the environment (such as vision-based
systems). Examples include lane keeping, traffic sign recognition and
more. Sub-meter navigation accuracy is possible, with the right sensor
systems.

The research on Emaps is sparse. While the work of [29] is dated, the rea-
sons are still valid: the accuracy of GPS is somewhere between meso and
macro, and since macro scale navigation has sufficient features, no effort
is put into meso or micro navigation for commercial purposes (yet). How-
ever, as [136] mentions: this will slow down applications such as lane-level
navigation.

Detailed maps can reduce the position error. By knowing where road
segments are, a GNSS position reading can be corrected. In [14], a system
is proposed where an Emap enhanced the GPS position, with support of
vision. Figure 7 gives an overview of the algorithm.

Fig. 7: Sensor fu-
sion with Emap.
Image adapted
from [14].
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For a given position, the Geographical Information Systems (GISs) is
queried for the most probable road segments. The result is a set of con-
nected road arcs, which model the road segments stored in the Emap. Arcs
represent continuous lines, since this is what connects road segments. An
algorithm attempts to find the longest biarc to fit all the road segment data
points within a predefined error tolerance bound. The set of road arcs are
then used to initialize the multiple particle filter, which is used to track the
real road segments via the camera. The result of the tracking algorithm is
then used as a feedback for the GPS measurements.

The researches tested the system in the United Kingdom, and found that
the GPS error could be reduced to one meter, as long as the road is stored
in the Emap. The tracking and overlaying system works well for flat en-
vironment (Figure 8), thus the presence of vertical curvature-forming road
bumps and slopes increases the error. Furthermore, roundabouts and road
junctions break the system, making it, at the time of writing, unusable for
AVs.
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Fig. 8: Visual
overlay of algo-
rithm result over
camera images.
Images taken
from [14]

As with regular maps, Emaps should be up-to-date. On the meso-scale
level, more information is available, thus providing more information that
could change over time. The road map and its attributes change frequently,
and not all changes are the responsibility of one party. Therefore, these
changes should be incorporated in a map very quickly.

There are two important questions that arise from the problems. First, if
Emaps are used for navigation purposes, what should an AV do when it
encounters a (new) situation where Emaps lack information5, or provides
wrong information. Solutions could include downloading latest change sets
on-the-fly, or Vehicle-to-X (V2x) enabled infrastructures which provides al-
ternatives. Second, when the AV uses an Emap to validate it is micro scale
observations, downloading changes on the fly may not be sufficient. What
if the map suggest to take a certain off ramp, while the environment does
not find it. Should the car take the ramp? Or if the map tells the AV that a
speed limit applies, while traffic sign recognition says otherwise?

The work of [136] proposes a system to monitor the integrity of lane-level
positioning by using Emaps. As opposed to the set of arcs used by [14], the
road segments are modeled by clothoids. A clothoid has a generic shape,
and an algorithm finds the best parameters to model a road segment. The
algorithm outputs two parameters that indicate how much the current po-
sition can be trusted, based on a particle filtering system, combining GNSS
readings, odometer information and IMU values. The authors acknowledge
that, to achieve full integrity in navigation, efficient means for removing
GNSS outliers and mitigating multi-path effects are highly recommended.

Attacks

Besides the accuracy problems mentioned in the previous sections, there are
a few attacks possible on one or more GNSSs. Typically, an attack can jam

5 The Dutch Ministry of Transport introduced 14 new traffic signs in September 2014 [118], that
are applicable as of January 2015. This would require all Emaps to be updated in a time span
of four months.
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the signal, or it can spoof the signal. In literature, most attacks address GPS,
since it is the oldest system, with the biggest impact.

Transmission
power of GPS

A GPS signal is transmitted with approximately 27 watt (comparable to
a light bulb) of power. When the signal hits the earth, it signal strength
will be roughly 10−16W or −160dBW [26]. This is approximately six times
weaker than the background noise on earth, hence, PRN codes are used.
The receiver correlates the received signal with the PRN code, and it will
correlate very well if it matches. This process can be called a ‘mathematical
signal amplifier’, and that is a reason why satellites do not require high-
power transmitters [138]. If an attacker is in the possession of a GPS spoofer
or jammer, only a few milliwatts is enough to override the satellite signal
at reasonable distances. There have been incidents with devices that unin-
tentionally jammed the GPS signal, due to the lack of electronic shielding,
so called Continuous Wave Inference (CWI) (see Figure 9). Since the use
of GPS’ is not only limited to navigation, but for time synchronization too,
the loss of service due to a (unintentional) jammer could have drastically
impact (for instance, [141] mentions synchronization of the power grid or
high-frequency trading).

Fig. 9: CWI infer-
ence from a car
GPS jammer. The
color indicate the
transmit power.
Graph modified
from [20]. Time (µs)
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Because the GPS signal is so weak6, a GPS receiver ‘scans’ the frequency
band for potential satellites. It does this by using the PRN codes, to acquire
the C/A signal. Jamming the signal is relatively easy, if one emits counter-
feit signals on the right frequency. The receiver cannot lock on the right
signal. Even locked receivers can be forced to lock on the counterfeit sig-
nal, usually by gradually increasing the transmitting power, so the receiver
is ‘lifted’ from the locked signal [114]. Spoofing involves more work. It re-
quires more sophisticated hardware, because it has to trick the receiver to
follow the spoofed signal and provide the fake navigation data (remember
that triangulation with a GNSS requires at least three satellites, so an attack
has to spoof at least three satellite signals). Given the data from a spoofed
and real GPS receiver, there is no way to differentiate between the real and
spoofed signals.

Even the encrypted military signal can be attacked using jamming or
spoofing. If an attacker spoofs or emit counterfeit signals on the military
signal, a receiver may switch back to the unencrypted signal. Then, if the
attacker also controls this signal, it can still attack an encrypted receiver.

Another attack described in [26] uses high-power signals on the right
frequency that causes the Automatic Gain Correction (AGC) circuit in the

6 The same is true for other GNSS systems
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receivers to tune down the sensitivity. In this case, the weaker and real GNSS
signal will be too weak to pick up. This attack works well, because the
AGC circuit is one of the first parts to receive the signal, even before it is
processed.

One event showed that attacks mentioned above can happen. In 2013,
a radio navigation research team from The University of Texas managed
to spoof the GPS signal of a 80 million dollar yacht in the Mediterranean
Sea [142]. The yacht’s navigation relied on the civilian GPS signal, and the
attackers slowly overpowered the signal with a counterfeit signal. This way,
they managed to alter the direction of the yacht.

It is also possible to attack the software side of a GNSS receiver. Although
this will be a black-box attack, in [100], a few attacks have been tested,
such as the the ‘middle-of-the-earth attack’, ‘week number attack’ and ‘date-
desynchronization attack’. For all of these attacks, a special transceiver is
used, who can capture, modify and retransmit the signal in real-time. For
the first attack, the ‘semi-major axis7’ information of the satellite is set to
zero. In this case, the altitude calculations failed in some receivers, poten-
tially due to division by zero errors. Because most GPS receivers cache this
information, it will continue to crash, until the cache is cleared. The second
and third attack are quite similar, and involve triggering overflows due to
bogus data. Most receivers accepted invalid week numbers, which would
be a problem for time-critical applications. But receivers that store the time
in a Unix-timestamp, a 32-bit integer (which will roll over in 2038), crashed
when the timestamp was altered to exceed the maximum value.

Not only hard and software are susceptible to attacks. In [130], a social
type of attack is demonstrated, where researchers have shown that it is very
easy to fake traffic situations in Google Waze. Their attack exploited com-
mon traffic patterns such as traffic jams, and emulated the behavior on (vir-
tual) devices by influencing the GNSS data.

Countermeasures

Any countermeasure presented below have the goal to mitigate or detect
the attacks presented in the previous section. They do not fix the common
accuracy problems mentioned in Section 3.1.2.

In [150], a few relatively easy countermeasures are presented to detect
and overcome jamming and spoofing. The most easy one is keeping track
of the absolute signal strength, a so-called receiver autonomous integrity
monitoring system. Since GPS is very weak, it is relatively easy to transmit
a counterfeit signal that is a couple of magnitudes stronger. Additionally,
if the receiver measures the relative signal strength, any deviations could
be an indication of an adversary. It is worth noting that new technologies
allows an attacker to copy the signal (strength) in more detail. By using
these new technologies, integrity monitoring will fail to detect tampering.

Another option is to monitor the satellite identification codes. Spoofed
data may use invalid codes, or codes that are not plausible. Software can
identify spoofed data that use impossible codes. Also, the timing informa-
tion from real satellites is regular and predictable. Any deviation from this
timing can indicate tampering. Finally, a sanity check is suggested. By us-
ing a IMU, the received data can be ‘verified’: if the receiver did not move
according to the acceleration measured by the IMU, something is likely to
be wrong.

7 Consider this the height of the satellite, or the ‘larger radius’ of an ellipse.
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Another approach is to verify a signal with another signal. A first ap-
proach is demonstrated by [96], where an untrusted signal is correlated
with a known and secure signal. It needs two receivers, and the difference
between the signal phase8 is used to detect an adversary. The idea is that
the phase difference between two antennas can be calculated if the positions
are known, and that a real GNSS signal comes from the sky. So if antenna
A measures a certain phase of the C/A signal, it is possible to calculate
what antenna B should register. If this is not within a certain margin, an
adversary could be spoofing one of the antennas. A similar method can be
found in[114].Cross-correlation It introduces an alternative, by cross-correlating the military
signal of the defended receiver to the military signal of a secured receiver
on the same frequency. If the correlation is large enough, by an appropri-
ate statistical measure, then the null-hypothesis of no spoofing is accepted.
Otherwise, a spoofing alert is issued for the signal. The algorithm can detect
an attack in approximately 1.2 seconds. Both methods require two separate
antennas with a secure link between them. The secured antenna needs to
be thoroughly secured to guarantee authenticity, because it requires little
power to jam or spoof GPS over a large distance. This makes it less practical
for mobile applications such as AV.

In [20], a method of removing the inference signal is presented, called
‘Adaptive Notch Filtering’. This method, demonstrated in Figure 10, is based
on the cancellation principle. It has reduced computational requirements
and for its good performance in the presence of CWI and due to the fact
that commercial jammers produce a swept CWI. A notch filter, in contrast
to a band-pass filter, rejects a certain part of an input signal. In the work,
this method is extended by dynamically choosing what parts of the signal
should be muted or not, by looking at the characteristics of the jammed
signal.

Fig. 10: Adaptive
Notch Filtering
applied to CWI.
This is the same
image as in 9,
but then with
the algorithm
applied. Graph
modified from
[20].
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Navigation
Message

Authentication

The last countermeasure uses encryption to achieve Navigation Message
Authentication (NMA). With NMA, the authenticity of GNSS messages can
be verified, therefore knowing if the data is from a real satellite, or if it
spoofed. It can also be used, with some extensions to the current protocol, to
protect against replay attacks or security code estimation attacks, according
to [63]. Unfortunately, the current GPS protocol does not have support for
NMA. Via extensible civil navigation messages, it is possible to add NMA.
These messages are transmitted each six seconds, and can carry approxi-

8 The phase denotes the part of the sinusoidal wave that passed.
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mately 238 bits of payload. Because of this limited size, it is not possible
to pick any scheme for signing messages. In addition, verifying a signature
should be computational inexpensive, to support small and cheap receivers.
In [70], a hybrid ECDSA-TESLA scheme is proposed to periodically broad-
cast authenticated messages, which the receiver can use to authenticate the
satellite. Elliptic Curve Digital Signature Algorithm (ECDSA) ensures mes-
sage integrity. Timed Efficient Stream Loss-Tolerant Authentication (TESLA)
is used to improve the efficiency, because it is loss-tolerant. A new ECDSA
signature is sent periodically. In-between, it is updated with TESLA. This
lowers the overall computational cost, as a receiver has to verify less ECDSA
signatures. The time is used to protect against replay attacks. Other schemes
exists, but the proposed one is efficient in terms of payload size, link require-
ments and provided security.

Galileo will have NMA as a built-in feature, according to [108]. Although
the new GPS-III will have an ‘enhanced security architecture’, there is no
confirmation of what this will actually include [83].

3.1.3 Camera

A camera is an optical device that can perceive the world as a digital video
signal. It is frequently found in AVs for many applications. For example, it
is used to detect traffic signs or to understand road scenery. An AV uses this
to decide what to do next, and to understand what is not possible.

First, the two types of sensors are introduced. This is interesting, because
it shows the hardware limits that should be considered. Then the applica-
tions will be presented, concluding with some attacks.

CCD and CMOS

There are two types of image sensor, the Complementary Metal Oxide Semi-
conductor (CMOS) and the Charge-Coupled Device (CCD) sensor. Strictly
speaking a CMOS or CCD is an electrical component, and the actual sensor
consists of a grid of them (called pixels). The number of components (thus
pixels) refer to the megapixel count. Both sensor accumulate an electrical
charge proportional to the amount of light received (photon-to-electron con-
version), independent of color. The charge (a voltage) is then converted to
a digital signal by an analog-to-digital converter. The voltage limit and the
number of steps to represent a voltage as a digital value are a measure for
the maximal brightness. If too many photons are converted to electrons, the
voltage limit may be reached. This will then result in a white pixel.

To perceive individual colors, a pixel can consist of three individual sub-
pixels with color filters mounted on top. Alternatively, one can have three
times the sensor hardware, use a prism to separate colors and combine the
three separate images into one via software. The amount of converted pho-
tons is expressed as the Quantum Efficiency (QE) ratio:

QE =
electrons/sec

photons/sec
(3)

There are a few differences between CCD and CMOS, according to [80].
The most important differences are listed below.

noise A CCD tends to pick up less noise, because the sensor size can be
smaller and uses less components and circuitry.
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quality The CCD sensor works better in low-light conditions, because CCD
is more sensitive to light.

shutter CCD uses a global shutter, so it takes pictures at once. CMOS uses
a rolling shutter, one line at a time. A global shutter can cause lag in
moving pictures, but a rolling shutter causes deformed images such
as curved straight lines. This is a concern in military target acquisition
applications. Figure 11 shows why.

power consumption Power consumption is important for mobile devices.
Typically, a CMOS sensor uses less energy, because the circuitry to
convert the analog signal directly into digital signals, at the cost of
sensor size.

Fig. 11: The effect
of rolling shut-
ter. The blades
are deformed be-
cause each line
of pixels is sam-
ples at a later
time frame. Im-
age taken from
[153].

Image quality

For AV applications such as object detection and tracking, cameras provide
moving images. The image quality is affected by several factors and can
cause that objects will get unnoticed, or increase processing time, according
to [77].

In many cases, the camera can only be of limited size. For example, Vis-
Lab’s BRAiVE AV has ten cameras installed [22, 52], including ones in the
side mirrors. Better optical systems require more space, but can provide
sharper pictures, allow for worse light conditions and reduce glare. To show
the problem, a full-frame sensor of a professional Digital Single-lens Reflex
(DSLR) camera is typically 36x24 mm, the iPhone 5s camera sensor sensor
is 4.54x3.42 mm. This is 55 times smaller, but this does not reflect in the
number of megapixels (16+ versus 8), meaning the physical CMOS or CCD
sensor is smaller and receives less light in an iPhone 5s.

According to [72], there are also other problems with camera-based so-
lutions. Cameras need lenses and lenses can distort the image (e.g. fisheye
view or barrel distortion). This requires software correction of the images,
before they can be properly used. In setups that rely on multiple cameras
to provide vision, cameras tend to be calibrated regularly, to minimize the
distortion between cameras.

Multi-band
Images

In [67], multi-band images were used to further improve images quality
by capturing far-infrared images (700 nm - 1200 nm) together with normal
images (400 nm - 700 nm). The advantages of this, is that temperature is
included, because of the infrared light. In most cases, this allows for better
distinction of scene objects, which can be seen in Figure 12. This technique
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can help to perceive objects better when light is limited, such as during
the night. Nevertheless, for instance in [50] it was shown that Lidar outper-
formed camera vision significantly, for a certain lane detection algorithm
under bright and dark environments.

(a) Visible spectrum (b) Infrared spectrum

Fig. 12: Normal
capture com-
pared to far-
infrared capture.
Some details
are very well
visible in the far-
infrared image,
such as the traffic
sign, poles and
the roof. Image
taken from [67].

Even if the resulting image is of acceptable quality, there can be other
problems that can affect algorithms performance. In the next section, a few
applications will be discussed, where the performance greatly depends on
the image quality, such as lighting conditions and shadows.

Applications

There are many implementations that use the camera as their primary source
for a certain application (either detection, tracking or classification). The list
below lists a few of the application encountered in the literature. A few
applications are a conjunction of multiple sensor technologies, but mainly
focus on the camera.

• Lane detection [149, 25, 14]

• Horizon/vanishing point detection [73]

• Object detection and tracking (vehicles, pedestrians) [52, 38, 69, 82]

• Traffic sign recognition [13, 68, 93, 81]

• Headlight detection [158, 33]

• Terrain classification [116, 5, 67, 134]

Because the tremendous number of applications, this section does not
go into detail of each application9. Instead, a few common techniques are
discussed. Most applications share a common task: extract interesting re-
gions from an image (segmentation), extract features from these regions and
classify them with common classifiers such as AdaBoost classifiers [156] or
Support Vector Machines [105]. Segmentation is the most interesting step
regarding the topic of this work. This determines what will be considered
in the next steps. To find these interesting regions, several approaches are
possible.

The first one is color channel thresholding, frequently used for finding
traffic signs, lanes and headlights. By looking at different color channels
(e.g. red), interesting segments can be detected. According to [93], it is bet-
ter to use the hue, saturation and intensity for splitting colors, since it better

9 It is also not the intention of this work to go into application details.
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models the human eye. Figure 13 shows an example of this process. Be-
cause it may not be certain that the color is actual red, improvements to
this process include creating a gradient of colors before searching, so it is
known which colors are likely to be expected. This can account for worse
light conditions. In addition, looking for shapes or symmetry can also reveal
interesting area’s, with edge detection algorithms where a change in color
may denote an edge [67, 93].

Fig. 13: The
result of thresh-
olding an image,
looking for red
hues. Image
taken from [93]

In [68], a rather different approach is considered. They introduce a heat
map of places where traffic signs are expected. This idea is intuitive, because
traffic signs have a great chance to appear on the right or in the overhead.
This limits the chance of a traffic sign appearing in other regions of the
camera’s view.

A Motion-based approach is discussed in [38]. This approach defines
the differences between two successive images to detect regions that have
changed. These regions can then be classified as an object, for instance as a
car or pedestrian. This method is relatively simple, but is very sensitive to
background changes. Research is devoted to the dynamic modeling of the
scene background, to overcome this problem.

Haar-like features are another way of finding regions of interest. This
method is frequently used for (but not limited to) face detection algorithms.
As with other object detection algorithms, each pixel could be of interest,
so it requires many cycles to brute force search an image. Haar-like features
solve this problem by presenting ‘filter’ with increasing complexity. If a pixel
is not of interest, no further processing will be applied onto a pixel.

A feature describes a change in contrast of a group of pixels, as opposed
to the pixel intensity [154]. Some examples of Haar-like features are given
in Figure 14. An object-to-detect consists of a several of these of features,
also called a cascade Haar-like feature. For instance, a rectangle requires
several edge features. For each image, an integral image is calculated. An
integral image is an array of the sum of the pixels’ intensity values that are
located directly above the pixel at a certain location. With this representation
a cascade of features can be compared to the integral image, to see if the
cascade yield any matches. The details are outside of the scope of this work,
but the idea is to place Haar-like features on the grayscale image and see
where it ‘fits’. A feature is flexible, so it is easy to scale them and detect
objects of different sizes. If all features match, then the object is detected.
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Fig. 14: Common
Haar-like fea-
tures. A feature
represents a
change in con-
trast. Image
taken from [154].

Stereoscopic
Images

An interesting topic is the use of two cameras to provide three-dimensional
vision. With such a view, it is possible to see depth in images. The technique
requires two cameras on the same height. The two images will be combined,
whereas object closer to the camera will have a smaller shift between both
images. From this information, a depth map can be created. When calibrated
correctly, this map can be used for several other algorithms, such as range
detection. Because of the depth map, it is also possible to distinguish fore-
ground objects from the background. Figure 15 presents a simple setup of
stereoscopic imaging.

f
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O
ptical axis

X axis

uL uR

P

dR
dL

Left

Right

Fig. 15: A sim-
plified setup
of stereoscopic
camera vision
system with two
cameras. Point P
is a point in the
world, projected
by uL and uR on
the images.

In the figure f is the focal length. This can be calculated by placing an
object of known width in front of the camera. Then, the ratio between the
number of pixels of the width of the object, and the real width, is the focal
length. b is the distance between the cameras. dL and dR is the displacement
of the point uL and uR, which represent the same point P. To calculate the
depth of point P, one calculates the following [69]:

Z =
b · f

|dl − dr|
(4)

In 2014, VisLab s.r.l released a product called ‘3DV’, which uses two cam-
eras that can output a three-dimensional map of the world, and detect ob-
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jects. However, the system still has issues with adverse weather conditions,
especially snow.

Attacks

The first attack will physically attack the sensor. A CCD or CMOS sensor
can be (partially) destroyed with a laser10. Even a low-power laser can burn
the sensor at an instance, with irreversible damage. Low-power laser of less
than 5 mW are easy to find on the internet, or they can be harvested from
CD/DVD writers [91]. In a white paper published by [91], the following
experimental conclusions were drawn:

• A Class II laser of 1 mW was never able to permanently disable a
CCTV camera when at least 3 meters away from the lens.

• A green Class IIIa laser of 5 mW was able to disable a CCD-based
camera at 15 meters which resulted in a permanent white screen.

• A red Class IIIa laser of 5 mW was not able to disable a CCD-based
camera (see above) at 100 meters.

• Lasers in the Class IIIb power range (both red and green) are able to
destroy the CCD or CMOS sensors, resulting in white images.

• Outdoor applications would be realistically more vulnerable than in-
doors due to the simple nature of the risks associated with attempting
to disrupt/damage a camera system.

A military weapon called a ‘Dazzler’ is intended to (temporary) blind
camera vision (or human vision). This grade of hardware can operate up to
1000 m [8], and is not much bigger than a automatic rifle. Figure 16 shows
an example of such a weapon and how the beam looks like.

Fig. 16: An
example of a non-
lethal Dazzler
weapon and the
a beam. Images
taken from [2]
and [133]. (a) Example of a Dazzler, the ‘PHaSR‘. (b) Beam produced by a Dazzler.

According to [18], when a powerful laser hits the image sensor, it can re-
duce the quality of the silicon. This reduces the quality of the pixel’s charge
transfer property. When it reduces the quality, the pixel gets stuck, and may
be always on or off. If it gets destroyed, the signal cannot travel via neighbor
pixel anymore, since pixels are typically multiplexed (row/column wise). In
this case, it will destroy a complete row and column. Figure 17b shows this
as a vertical line. This attack does not require the camera to be powered on.
As long as the image sensor is exposed, this attack works.

10 A burn happens almost instantaneous. See http://vimeo.com/13450755 or http://vimeo.

com/56074271 for example footage of how DSLRs are damaged by laser shows.
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(a) The white spots are the results of laser burns. (b) Magnification of a black image,
with dead pixel row and stuck pix-
els.

Fig. 17: Laser
damaged CMOS
sensor. Images
taken from [18].

Another attack can be mounted on the auto exposure. While this attack
is not described in literature, cameras tend to normalize the lighting con-
ditions via an iterative process [147, 36, 71]. When light (e.g. sunlight) is
exposed on the image sensor, it will tune down it is sensitivity and expo-
sure to improve the image quality. Sometimes, this gives undesired effects,
in cases in which the auto exposures tunes down due to headlights at night.
This could hide information in the background, such as traffic signs, road
edges or pedestrians. The Google Driverless Car is susceptible to this prob-
lem [48]. Potentially, this can work with infrared light too. Infrared light
is invisible to the human eye, but most cameras are (highly) sensitive to it.
Even though cameras have infrared filters installed, they still pass a bit of
infrared light.

Considering the different applications presented, there are applications
that can be spoofed. For instance, traffic sign recognition can be spoofed
by placing traffic signs on places they should not be. This can also hap-
pen unintentionally, e.g. in bill boards. It is also possible to ‘hide’ them, by
surrounding traffic signs with other shapes or colors, to confuse shape or
color detection algorithms. Furthermore, lane detection could be confused
by painting additional lines on the road, or by using different colors. This
is already the case at road construction sites. Lastly, some applications have
limited capabilities. Object or pedestrian tracking is usually limited because
of computational power or resolution. It would be very easy to cause a de-
nial of service by presenting many objects that should be tracked.

In [56] and [30], the authors have experimented with fooling Haar-like
features for facial recognition. In the first, a rather artistic approach is taken,
where the authors came up with several hair coupes to prevent a face recog-
nition system based on Haar-like features to prevent working. The second
takes a similar approach, with modified glasses that emit infrared light on
places where the Haar-like features would normally match.

3.1.4 TPMS

A Tire-pressure Monitoring System (TPMS) is a small device equipped on
the valve of each tire, regularly providing information about the tire to the
car’s Electronic Control Unit (ECU). This information at least includes tire
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pressure, but can also includes temperature and acceleration. Since 2008,
new cars in the United States are required to be equipped with a TPMS
system, as mandated by the TREAD Act in 2007 [131]. A similar law exists
in Europe, that was adopted in 2012 [34].

Currently, there is no evidence of AVs incorporating tire pressure sensor
data in decisions making algorithms. This separates a TPMS from the other
sensors. but if future AVs should operate on their own, it is expected that
spoofing or jamming a TPMS can immobilize a car [24]. An AV would not be
smart to ignore a flat tire. Further more, the privacy issues are of a concern
too.

Hardware

A TPMS sensor is a sealed battery-powered device, that fits on the air nozzle
of each tire. Figure 18 shows an old one, collected from a garage. Typically,
the battery should last five to seven years [88]. There is no standardized
protocol, hence every car manufacturer has its own proprietary hardware
design and communication protocol. Most sensors work on the general pur-
pose 315 MHz, 433 MHz or 866 MHz frequency modulated using either
Frequency Shift Keying (FSK) or Amplitude Shift Keying (ASK). In addi-
tion, some sensors listen on a secondary frequency in the range of 125 KHz,
that allows them to be woken up from sleep mode, using a special device.
This is useful during installation and configuration, by an authorized dealer.
The sensor is required to broadcast its status each 60 to 90 seconds.

Usually, the range is limited and just enough for the car to pickup the
signal. But the researchers from [119] found out that a range of 40 meters is
possible with low-cost hardware.

Fig. 18: Front
and back of a
TPMS sensor
of the brand
Renault. The size
is approximately
6x3cm. The
cylinder on the
bottom side is
installed on top
of the tire valve.

(a) The unique identifier is shown above the CE sign.
The operating frequency is shown on the right.

(b) Inside the sensor, after removing the glue. The
coin cell battery sits below the printed circuit board
in the left.

Security and privacy

While the TREAD Act only mandated the use of TPMS systems, no require-
ments were specified regarding the security and privacy of these systems.
Researchers have argued about the safety and privacy concerns.

In [119], it was shown how easy it is to track and monitor cars equipped
with TPMSs. The authors have reversed engineered the protocol of two
brands of cars. Both cars used TPMS sensors that operated on the 315 MHz
or 433 MHz frequency.Software Defined

Radio
With the help of Software Defined Radio (SDR), they
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were capable to receive the messages broadcasted by the sensors. Eventu-
ally they deciphered the messages by looking at which parts of the message
were constant over time, and found out that the unique device identifiers
did not change over time for those two sensors. Three conclusions can be
drawn from their work. First, the immutable unique identifier of 32 bits,
bound to the sensor, does not change over time. This poses a privacy issue,
because cars can be tracked from a large distance, without the driver know-
ing it. In [119], it was calculated that it takes at least 110 SDRs to capture
one broadcasted message per 60 seconds, assuming a car drives at a speed
of 60 km/h. More sensitive antennas could drop the number of required
devices significantly. The second issue is the protocol they observed. Broad-
casted messages are not encrypted nor authenticated, so it was possible to
replay and spoof (impossible and invalid) messages, fooling the car the tires
were flat while they were not. At some point, the authors even managed to
damaged the ECU of one of the two cars, that had to be replaced eventu-
ally. Third and last, they pointed out that battery exhaustion attacks can be
conducted, by triggering the activation signal repeatedly. This even works
when the car is not driving.

For a long time, the ‘conclusive answer’ on why security and privacy
was not considered, was that hardware required to track was too expensive,
and an attack was thus not feasible. But recently, SDRs have become very
cheap, and can be bought for five 5 dollars on eBay. Furthermore, in [119],
a professional SDR was used that costs at least 1,000 dollars per radio. With
the cheaper alternative, the costs of the attack drops from 110,000 dollars to
only 550 dollars11. In 2012, Jared Boone presented a talk on a conference [19],
in which he showed an open source toolkit to extract unique identifiers from
broadcasted messages, received with cheap SDRs. His toolkit supports FSK
or ASK modulation, and includes several statistical analysis to inspect the
fields of a message (e.g. Cyclic Redundancy Check (CRC) calculation).

Countermeasures

Some countermeasures can be implemented to improve and secure TPMSs,
according to [119] and [19].

The first suggestion is to improve the ECU software. Clearly, the ECU
trusted readings that were spoofed (and even physically impossible). Even
plausibility checks would improve the design. Second improvement is the
data packet format. At least all fields that uniquely track a car should be
encrypted. The key should only be shared between the sensor and the ECU,
during installation time. In the two sensors [119] observed, no sequence
numbers were integrated. This made replay attacks possible. Last improve-
ment should prevent the abuse of the trigger signal to exhaust batteries. A
simple protocol could be implemented, where the ECU and the sensor share
a common counter. The ECU generates an one-time hash, and authenticates
itself with this hash to the sensor. This way, the sensor is not required to
power up it is transmitter, in case an attacker replays messages.

One physical issue that remains, is the limited form factor. Its size con-
strains the energy capacity. This limits the use of encryption, since that
would wear out the battery at a higher pace [60]. A solution over time could
include more energy efficient Microcontroller Units (MCUs) and higher ca-
pacity batteries.

11 110 devices times $5 low-cost SDRs versus 110 devices times $1000 professional SDRs.
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3.2 sensor fusion
In the considered literature of the previous chapter that address applica-
tions, sensor fusion algorithms are commonly used to combine and correct
data from multiple sensor in such a way that data quality can be improved to
yield better (verified) results. The two popular choices in works are Kalman
Filter (KF) and Particle Filter (PF).

Both data fusion algorithms will provide an answer to the question ‘How
to get accurate data from inaccurate data?’ As an intuitive example, consider
a car that accelerates forward, which one tries to localize. The acceleration
and position is measured, with error. The position error is bigger. The basic
idea behind sensor fusion is that if the acceleration sensor measures acceler-
ation in a certain direction, the position should be on the same line, and not
in another direction. If so, attach less weight to the position. After all, both
sensors have a certain error.Dead Reckoning In essence, this is how GNSS data is combined
with an IMU for inertial navigation, or with an odometric sensor for dead
reckoning.

The KF is presented first, then the PF. After the introduction and the math-
ematics, a brief introduction to attacks and countermeasures is presented.

3.2.1 Kalman Filter

Rudolf Emil Kálmán published the initial variant for the KF in the 1960s [66,
51]. Shortly after the publication, it has proven its use as part of the Lu-
minary 99 Lunary Module Guidance Computer during NASA’s Apollo 11

Space Program [51]. It is not only used in the field of robotics, but also in
fields such as meteorology [45] or stock exchange [94].

The KF is an optimal recursive discrete processing algorithm. Optimal,
since it only depends on the criteria chosen to evaluate the performance,
and recursive, since it does not require the previous data to be stored or re-
processed. It is also uni-modal, at any point in time, there is one estimation
available. This includes the advantage that it does not imposes huge mem-
ory space requirements, making it an efficient algorithm, even for devices
with memory constraints, e.g. MCUs. Discrete refers to the fact that it can
only predict for full iterations, not between iterations.

There are several other techniques for filtering (see Figure 19). One could
consider taking ten samples, and calculate the average sample. This will re-
duce outliers, or noise, but the problem is, that it takes valuable samples
away. In the case of GPS, with an interval of 10 Hz, the sensor output rate
is reduced to 1 Hz. For many automotive applications, this is not desirable.
Estimating the error on-line is not possible, because the actual error is un-
known during movement.
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(a) N-sample mean filter.
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(b) Rolling K-window filter.
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(c) Kalman filter.

Fig. 19: Several
examples of data
filters applied to
the same data
set of a random
simulation. In
each filter, the
true value is
not involved
in any of the
calculations, and
is only plotted to
give an idea of
the error. Note
the missing data
with N-sample
mean filtering,
since it takes
N samples to
determine the
first point, and
so on.

Generally speaking, the standard or discrete KF has four steps, spread
over two phases: a correction phase and a prediction phase. Figure 20 shows
these. The steps form a cycle, which is repeated indefinitely. In this ap-
pendix, the variable i refers to the iteration cycle. Thus, i+ 1 indicates the
next cycle, and so on.
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Fig. 20: The four
steps of a KF,
spread over two
phases.
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To understand the KF better, the equations below are applicable for a single-
variable KF. These equations do not include matrix operations. In the next
section, for a multi-variable filter, the equations below will be related to their
matrix equivalents.

Steps of Kalman
Filter

Equation 5 and 6 are the in the ‘project ahead’ step. In this step, the new
values of prediction of the estimate x and covariance P are determined. For
this explanation, they are assumed to be equal to the previous estimate and
covariance, plus the ‘process covariance’ Q. The estimate refers to the value
that is being estimated by the KF (xi in this case), while the prediction refers
to the variable that is being predicted during the process (x̂ and P̂), indicated
with a circumflex symbol ()̂.

x̂ = xi−1 (5)

P̂ = Pi−1 +Q (6)

In the ‘Kalman gain’ step, the gain is computed. The gain can be inter-
preted as measure of how much the predicted value will be corrected. R
denotes the measurement covariance.

K =
P̂

P̂+ R
(7)

The update measurement step involves the sensor measurement zi. Here
the Kalman gain is applied to the error between the estimation and the real-
world value, to correct the predicted value x̂. The output xi is the estimate,
and is an output of the system.

xi = x̂+K ∗ (zi − x̂) (8)

Finally, in the last step, the error covariance is updated for the next cycle.

Pi = (1−K) ∗ P̂ (9)
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Multi-variable system

A multi-variable system is more common to use, but are more complex. Typ-
ically, GPS with IMU dead reckoning uses a 6-variable KF, to estimate the X
and Y coordinates from position, acceleration and velocity data. The equa-
tions from the previous section are rewritten, to provide a general frame-
work for a KF. Where appropriate, equations are split to be more clear.

Equation 10 and 11 are a extension of Equation 5 and 6 in the ‘project
ahead’ step. In the single-variable system, x represents a single value, while
in this system, it is a vector. Furthermore, A is the state transition matrix,
and describes the transformation to apply to xi−1 and Pi−1. The single-
variable system did not represent A, but if it would, it would be equal to
the identity, since the prediction of the new estimate is directly related to the
old estimate. Bu is the force added to the prediction. A practical overview
of what these variables contain, will follow in the example.

x̂ = Axi−1 +Bui (10)

P̂ = APi−1A
T +Q (11)

For the Kalman gain, Equation 7 is translated to Equation 12. The matrix
H is the observation matrix. This matrix basically tells which measurements
should be considered in the current cycle. Note that is not possible to divide
a matrix by another, but it is possible to multiply with the inverse.

S = HP̂HT +R

K = P̂HTS−1
(12)

The real-world measurement is involved in the update measurement step,
by equation 13. Note that the new estimate always lies between the real-
world measurement and the previous estimate.

ỹ = zn −Hx̂

xi = x̂+Kỹ
(13)

And again, the error covariance is updated. I denotes the identity matrix.

Pi = (I−KH)P̂ (14)

Practical concerns

The KF assumes one can model the noise of various sensors and systems
into a covariance matrix. The better the noise is modeled, the better the
estimation will be. However, since the filter has to converge to a ‘good’ es-
timation first, one typically has to discard the first few samples [53]. Figure
19 illustrates this. Converging could lead to practical implications. For ex-
ample, take a GPS receiver at 10 Hz, filtered via a KF. Assuming that the
first 100 samples should be discarded, an additional time of 10 extra seconds
should be considered, before the system is ready.

3.2.2 Particle Filter

The initial version of the PF algorithm was presented in the ’50s, with several
improvements over the years. The first publication regarding the PF as it is
known today, is from Gordon et al. [49] in 1993. Not only is fusing sensor
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data a typical application of a PF, tracking object (in visual applications) is
a popular use too [110, 129].

Multi-modal A PF is a multi-modal filter. This means it can have multiple beliefs or
‘guesses’ for an estimated value. It is a recursive algorithm, but compared to
a KF, it is less advanced to implement. This comes at a cost: the algorithms
performance scales linear with the number of particles, and it is very likely
to require a powerful computing platform.

The typical flow of a PF is depicted in Figure 21. The output is not an
exact estimate, but a set of weighted particles. A common practice is to take
the weighted point average [140], resulting in a single point that represents
the cluster. However, it would be safer to say that this single point is the
current best belief of the estimate.

Fig. 21: A typi-
cal PF flow chart.
Note that the esti-
mation result is a
set of particles.

Generate particles

Resample

Initialization

MeasurementUpdate particles

Calculate measurement 
weight

Estimation

Bayesian Filtering

This section is based on the work of [129]. To be consistent with the previous
section, the i is used as iteration/time symbol, as opposed to k.

Bayesian
Inference

A PF estimates the posterior density of the state-space by using the ‘Recur-
sive Bayesian Estimation’ equations (also referred to as Bayesian Inference).
It uses a sampling method rather than any action methods (as with KF) to
avoid any issues with (non)linearity of data. The posterior probability of
estimate x (the hypothesis) is calculated given the observation z (the knowl-
edge). Equation 15 summarizes this, and figure 22 shows how the posterior
is affected by the prior and the likelihood.

Posterior =
Prior · Likelihood

Evidence
(15)

More formally, where x is the state and z is the measurement:

P(x|z) =
P(x)P(z|x)

P(z)
(16)
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Fig. 22: How
the posterior is
affected by the
prior and the
likelihood. If the
likelihood mean
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(or the prior
mean decrease),
the posterior
would follow the
likelihood more.
Displayed curves
are normal distri-
butions and are
examples.

The PF is based on a Hidden Markov Model (HMM), the future depends
on the past via the present. Basically, the past is completely ignored (or
hidden) and represented by the present. Of course, this assumes there is
some initial probability known to the system. As with the KF, the state of
the system on time i in a PF is most likely a matrix Xi.

P(Xi|X0, ...,Xi−1) = P(Xi|Xi−1) (17)

Furthermore, another part is the conditionally independence assumption
of observations, given the state. In statistics, when two variables are inde-
pendent, if and only if P(A∩B) = P(A) · P(B).

P(zk, zi, ..., zj|Xk) = P(zk|Xk)P(zi, ..., zj|Xk) (18)

What makes it recursive, is that for each correction iteration, the posterior
probability can be used as the the prior probability for the next iteration.
Intuitively, it is possible to get a better estimate (using new data), based
on previous estimations. As presented in figure 21, there are two major
steps. Equation 19 is the prediction step and 20 is the correction step. In the
equations below, zi is a measurement vector at time i, thus Zi:j =

[
zi, ..., zj

]
.

P(Xi|Z1:i−1) =
∫
P(Xi,Xi−1|Z1:i−1)dXi−1

=
∫
P(Xi|Xi−1,Z1:i−1)P(Xi−1|Z1:i−1)dXi−1

=
∫
P(Xi|Xi−1)P(Xi−1|Z1:i−1)dXi−1

(19)

P(Xi|Z1:i) =
P(Xi)P(Z1:i|Xi)

P(Z1:i)

=
P(Xi)P(zi,Z1:i|Xi)

P(zi,Z1:i−1)
(Split matrix)

=
P(Xi)P(zi|Xi,Z1:i−1)P(Z1:i−1|Xi)

P(zi|Z1:i−1)P(Z1i−1)
(Bayes Rules)

=
P(Xi)P(Zi|Z1:i−1,Xi)P(Xi|Z1:i−1)P(Z1:i−1)

P(Xi)P(zi|Z1:i−1)P(Z1i−1)
(Eq. 17 + 18)

=
P(zi|Xi)P(Xi|Z1:i−1)

P(zi|Z1:i−1)
(20)
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Particle Density
Function

In systems where (a part of) the underlying model is nonlinear or non-
Gaussian (e.g. nonlinear processes or rule-based processes), Equation 19,
which computes the Particle Density Function (PDF), cannot be solved due
to the integrals. When the state space is discrete, or when discretizing the
continuous variables, solving the integrals is possible. If not, it should be
approximated, and this is where the particles come in.

Particles

Since most PDFs cannot be calculated, they can be represented by a set of
weighted particles. The particles, represented as a vector xki , meaning the
kth particle (or sample) at time i (not to be confused with the state matrix
Xi). Each particle has an associated weight wk

i , and all weights should be
normalized to one (e.g.

∑N
k=1w

k
i = 1). The PDFs can be approximated as

follows:

P(xi|Z1:i) ≈
N∑

k=1

wk
i δ(x0:i − x

k
0:i) (21)

Since it is not possible to pick particles from P(·), the weights come from
another importance density function Q(·), from which it is possible to sam-
ple directly. Q(·) can be chosen freely, as long as Q(x) = 0 implies P(x) = 0.
For example, one could sample from a Gaussian or linear distribution.

wk
i ∝

P(xk0:i|Z1:i)

Q(xk0:i|Z1:i)
(22)

Resampling
Methods

The core part of the PF is the (re)sampling function. There are many dif-
ferent resampling methods [44, 61], including the ones below.

• Sequential Importance Sampling (SIS)

• Sequential Importance Resampling (SIR)

• Multinomial Resampling

• Stratified Resampling

• Systematic Resampling

• Residual Resampling

• Wheel Resampling

SIR is essentially the same as SIS, but includes resampling of the particles.
Resampling in general solves the degeneracy problem, where all-but-one of
the particles’ weight is zero. In other words, most particles cover unlikely
states. With resampling, this problem can be solved, because a new set of
particles (with replacement) is created for each iteration, in essence respawn-
ing particles.

The are several resampling methods to choose from in the literature, but
this is out of the scope in this work. The steps of the ‘Resampling Wheel’
method are presented below. This method is non-deterministic [140]. A cir-
cle is divided in N slices, where each slice is as wide as its weight. The
perimeter is the sum of all weights. The algorithm starts at a random se-
lected edge, and traverses the perimeter a random selected weight. It then
adds the particle (with replacement) where it stopped traversing to the new
set particles.
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1. Calculate the maximum weight of the set particles wi.

2. Pick a random particle index m

3. Initialize a new list empty list.

4. For each n = 0..N:

a) Pick β = 2 · random() ·wi,max

b) As long as β > wn
i , calculate β = β − wn

i , and m = m + 1

(mod N)

c) Add particle with index m to the new list of particles.

5. Post-process the new set of particles, e.g. calculate a weighted average
position.

To give an idea how the complete PF works, Figure 23 represents the clas-
sical robot localization problem in an one-dimensional world, with multi-
nominal resampling. The robot can sense doors, but does not know it is
location yet. The robot is presented in green, and has sensors to determine
the location (with some error) of the orange doors. The black bars are parti-
cles at a position with some weight. The likelihood P(z|x) is represented by
the continuous curves, and the particles weight wk

i are the black lines, and
change in proportion to the likelihood.

(a) Particles (black bars) are spread uniformly over the state space. It represents the
PDF.

(b) Robot observes two doors. The PF is multi-modal, so there could be multiple
observations and beliefs.

(c) After resampling, less-likely particles are likely to make room for very-likely par-
ticles. Weights are redistributed. Note the three dense clusters of particles.
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(d) Robot moves to the right, and so do all the particles. The three clusters move
along. The movement may introduce more noise.

(e) Robot makes another observation, and the particle weight is changed again.

(f) Particles are resampled. The dense cluster of particles show with high belief
where the robot is located.

Fig. 23: PF
applied to a
classical example
of localizing a
robot. The figure
is based on the
one in [44], with
intermediate
steps c and d
added for clarity.

(g) Robot moves again. Since there are no observations, the particles will account for
noise added by each movement. The cluster will spread until another observation is
made.

Practical concerns

The number of particles, represented by N, determines the quality of the
PDF. Having many particles will result in a better resemblance of the PDF
for the given state space, at the cost of extra computations. If N→∞, the PF
will converge to the true PDF. In practice, one will just try different values
for N, until it yields acceptable results. It is very unlikely to see PFs with
less than 50 particles.

Markov Property According to [31], a PF assumes that the Markov Property holds. This is
the stateless property of a stochastic process. The belief in the next posterior
is affected only by the likelihood and the current prior. A random walk
with the restriction of visiting the same route twice is one that violates the
assumption. Another example is given by [126]. In this example, an urn with
two red balls and one green ball is given. Each day, a ball is drawn, without
putting it back. If one knows a red ball is drawn today, the chance a red
ball will be drawn tomorrow is 50 percent, because the only options left are
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P(r, r,g) and P(g, r, r). However, if one knows yesterday’s and today’s balls
are red, it is 100 percent certain that tomorrow’s ball will be green. This is
where the Markov Property contradicts, since the probability distribution of
tomorrow is not only affected by today’s outcome, but also by yesterday’s
outcome.

Depending on the implementation of the PF, ambiguity can be a problem,
as discussed above. Figure 24 demonstrates the issue. A measurement vec-
tor can be ambiguous if its reading can be projected on multiple (or infinite)
locations in the defined world, as is the case in the left figure. In the right
figure, with three beacons, a triangle can be constructed that fixes the coor-
dinates of the object. It depends on the situation how many beacons are a
minimum. Clearly, in the cannonball case study (see Appendix A.2), three
beacons that form a triangle is a minimum, but this assumes the cannonball
can measure the distance to the three beacons at all times. This assumption
may not hold in practice, e.g. radio-transmitting beacons that are not in
range.

(a) Two beacons (b) Three beacons

Fig. 24: With two
beacons (orange)
on the same
plane, a PF mea-
surements can
be ambiguous
(yellow). It is
not until a third
beacon is added
that makes the
measurements
unambiguous.

3.2.3 Attacks

Although sensor fusion algorithms are meant to improve the reliability of
sensor data, it does not protect against attacks, drift or faulty sensors12.
From an attacker point of view, its goal should be to maximize the amount
of uncertainty in the sensor fusion algorithm. For this to be effective, an
understanding of the algorithms is required.

In [157], the authors describe three attack strategies for the KFs and its
different variants. It assumes that an attacker has some means of injecting
fake observations into the sensor.

maximum magnitude-based attack The attacker tends to achieve the max-
imum deviation of original observation z, without passing a threshold
for anomaly detection.

wave-based attack When observing zi, the reverse value of zi−1, is con-
tinuously injected.

positive or negative deviation attack The attacker tends to achieve
the maximum (or minimum) deviation of original observation z, along
with the direction of increase (or decrease). It is comparable to drift.

12 Drift and faulty sensors as result of technical failure stay out of the scope for this work.
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The above attack strategies require the attacker to know about the sen-
sors it is attacking. For instance, it needs to know which thresholds apply
without triggering anomaly detection.

According to [23], another method of defeating sensor fusion, is by mak-
ing sure sensor updates do not occur.Drifting For instance, an GPS sensor fused
with IMU will eventually drift off, when the GPS signal is jammed.

3.2.4 Countermeasures

There are two types of countermeasures: correcting countermeasures and
detecting countermeasures. The first type detect issues, and corrects it. It
can tolerate up to a certain amount of noise. The second type does not
have the ability to correct issues, but can detect issues. It is worth noting
that countermeasures are domain specific, thus a detailed explanation the
methods is out of the scope of this work.

According to [64], a first line of defense is a plausibility check. In their
work, based on ‘Marzullo Sensor Fusion’. For all sensors, confidence inter-
vals are constructed from sensor specifications as provided by the manufac-
turer. Therefore, it is assumed that the majority of the sensor observations
stay within their confidence interval. A disadvantage of this method is that
it only works for sensors who perceive the same physical variable, not where
multiple sensors complement each other.

[157] presents two countermeasures to the KF-based attacks. The first
method is an enhanced unscented KF technique. The idea is that the Kalman
Gain K (see Section 3.2.1) decreases when the deviation between the esti-
mate x and the observation z increases. Due to this, a new observation will
have a smaller effect on the next estimation. The second method is based on
statistical Cumulative Sum (CUSUM) change detection, where an on-line
non-parametric algorithm basically keeps summing the observations, and
if it exceeds a certain threshold, it gives a warning. It assumes that ‘aver-
age’ value is more or less constant. A similar statistical anomaly detection
method is introduced by [86], where an innovation variance testing detector
(χ2-based) is combined with an Euclidean distance detector.
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4

ATTACK ING
AUTONOMOUS
VEH ICLE SENSORS

The previous chapter provided an evaluation of the sensors used in a typical
Autonomous Vehicle (AV) [16, 46, 4, 22, 72].

The decision to pick Laser Image Detection and Ranging (Lidar) and cam-
era sensors is threefold. First, the literature makes extensive use of the cam-
era as a source of information, while at the same time Lidar is upcoming.
Second, the use of sensors such as Radio Detection and Ranging (Radar),
Tire-pressure Monitoring System (TPMS) and even Global Navigation Satel-
lite System (GNSS) require a license for operation, because they emit radio
waves or can be attacked by radio waves. Third, camera and Lidar can be
used in a lab environment for controlled experiments, without being inte-
grated in an actual vehicle.

This work uses a top-down approach. All of the experiments that will
be conducted, are the result of the evaluation of the attack vectors on the
sensors studied in Chapter 3. Multiple experiments are conducted to test
a wider range of attacks, with the intention to provide a proof-of-concept.
While this list of experiments is not exhaustive, the experiments that were
conducted for this work, are selected on the criteria below:

• The experiment can be conducted in a lab environment.

• A clear output can be registered, based on an input action.

• Required hardware can be acquired with ease.

It is important to note that the devices-under-test are considered black
boxes, of which the hardware layer is attacked. Even though the technical
specifications and datasheets are available, the exact internal workings are
not documented. No internal signals will be used and no detailed informa-
tion on the hardware is assumed to be known. With respect to the attacker
model, this is a valid assumption. Because of the limited money and lim-
ited time, the attacker cannot reverse engineer all systems in the world, and
can only apply generally used techniques. The attacker is aware of what the
hardware is supposed to do, but is not aware of how it works internally. By
trying enough inputs and analyzing the outputs, it is possible to infer the
internal workings [109].

In Section 4.1, the methodology and results on camera systems will be
presented. Section 4.2 will do the same for Lidar. The results will also be
presented in this chapter. However, the analysis and implications will be
discussed in Chapter 5. In this chapter, the following experiments will be
conducted:

• Testing the MobilEye C2-270 for light sensitivity (Section 4.1.2)

• Blinding the MobilEye C2-270 (Section 4.1.3)

• Confusing the MobilEye C2-270 auto controls (Section 4.1.4)

• Understanding the ibeo LUX 3 (Section 4.2.2)
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• Jamming the ibeo LUX 3 (Section 4.2.3)

• Relay attack on the ibeo LUX 3 (Section 4.2.4)

• Spoofing the ibeo LUX 3 (Section 4.2.5)

A lot of hardware was used during the experiments. To make this chapter
more readable, detailed descriptions including part numbers, technical spec-
ification and figures are available in Appendix D. In addition, Appendix B
presents a spectrometry of all the light sources used in this chapter.

4.1 camera
This section describes all the experiments conducted on the camera system.
The camera system used is the MobilEye C2-270, and is borrowed from V-
Tron B.V. in Deventer for testing. It is an Advanced Driver Assistance System
(ADAS) that can the assist the driver in four tasks:

• Headway monitoring and warnings. Sounds the alarm in case a colli-
sion is approaching.

• Pedestrian collision warning. Sound the alarm when a pedestrian is
approaching.

• Lane departure warning. Notifies driver of lane changes without sig-
naling.

• Intelligent headlight control. Automatically dim the headlights in the
dark, when oncoming traffic is detected.

This system is based on a camera only, which is installed on the wind-
shield, under the rear view mirror (see Figure 25). It is noteworthy that this
system is not sold specifically for full vehicle automation, but for function-
specific vehicle automation [92]1.

Fig. 25: MobilEye
C2-270 installed
(on the wind-
shield) in the
autonomous car
of the Dutch Au-
tomated Vehicle
Initiative (DAVI).
Photo courtesy
of DAVI.

1 See Section 2.1 for a definition of the different degrees of automation.

48



4.1 camera

4.1.1 Calibrating the hardware

The MobilEye C2-270 is a camera system that needs to be calibrated, in or-
der to make accurate estimations of distances and that it knows where the
car signals originate from. The camera would normally be installed on the
windshield (facing forwards) under the rear-view mirror, but for the experi-
ments conducted, it was not necessary to have it installed in a actual vehicle,
nor having accurate distance measurements2.

During the calibration process, several parameters can be configured. The
following parameters are important for the experiments. In practice, the
setup parameters would be a combination of a car and truck.

height of the camera The system should know at what height the cam-
era is mounted. For this setup, a height of of 1.30 meter was specified.

distance to front bumper The distance between the camera and the
front bumper, covering the hood. Since it is impractical in a lab sce-
nario to ‘simulate’ a hood, this setting was set to minimal value of
0.1 meter.

height of the hood Given a camera image, the system needs to know
which part of the image to ignore because of the hood. Because there
is no hood involved, this setting was set to zero (full image).

width of the car For lane keeping assistance, it is required to know the
width of the car. For this setup, a width of 2 meters was specified.

sensitivity settings The sensitivity of the alerts can be configured, e.g.
at what distance the alarm should be triggered. For this experiment,
the default values were used, as defined in the alerts configuration
manual.

In order to finish one of the last steps of the calibration process, the exter-
nal car signals had to be configured. These signals provide speed informa-
tion, turn signals state and break state. For example, the MobilEye C2-270

will warn the driver when it detects a lane change without the turn signals
turned on. Furthermore, some features are only available above (or below)
a certain speed. At first, the Controller Area Network (CAN) bus was at-
tempted because it used only a three wires. It turned out to be harder to
use because protocol messages had to be reversed engineered from an ac-
tual car. Luckily, the MobilEye C2-270 has support for legacy signals. All
signals are represented by a high-low signal, except the speed signal which
is represented by a tachometer pulse signal.

Since the device is used in a lab session, the signals have been imitated by
a simulator. This self-designed simulator consists of a hardware piece and
a software piece. The software directly controls the inputs (CAN bus only)
and outputs (CAN bus and legacy) of the simulator. For example, a com-
plete video can be augmented with signal information (speed changes, turn
signals), so an experiment can be repeated multiple times in a lab environ-
ment under the same conditions. The figures below show both components
of the simulator.

As far as the documentation describes, there is no direct output of the
camera image. However, the software does include a tool to retrieve the live
camera image via the EyeCan box, at a lower resolution than the maximal

2 For this research, it is sufficient to blind or hide objects.
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resolution. Unfortunately, this tool, shown in Figure 26, does not yield more
information about objects it tracks or more.

Fig. 26: MobilEye
C2-270 SeeQ
Camera Calibra-
tion Tester. All
images from the
MobilEye C2-270

camera in this re-
port are extracted
from screenshots
such as the one
below.

4.1.2 Testing sensitivity

The goal of this experiment, is to find out which light source the MobilEye C2-270

is most sensitive to.
Spectral

sensitivity
Light consists of photons, and photons are of a certain wavelength. The

human eye will respond to light between approximately 390 nm and 780 nm.
Cameras have a different sensitivity range, depending on the sensor tech-
nique and lens filtering system. Figure 27 shows how sensitive Comple-
mentary Metal Oxide Semiconductor (CMOS) and Charge-Coupled Device
(CCD) sensors are compared to the human eye. Furthermore, an eye (or cam-
era) is not equally sensitive to each wavelength3. Camera sensors are much
more sensitive to near-infrared light (approximately 800 nm to 2800 nm),
if not filtered by a filter inside the lens. This is useful, because any near-
infrared light available, will help to see better in the dark.

3 According to [148], the human eye is most sensitive to 430 nm (blue), 540 nm (green) and 575

nm (red). Green is the most sensitive color to the eye.
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Fig. 27: Spectral
sensitivity of the
human eye, a
CMOS sensor
and a CCD sen-
sor. The values
are typical and
relative. Cameras
are much more
sensitive to near-
infrared light.
Graph data taken
from [113].

In this experiment, several light sources will be emitting light directly into
the MobilEye C2-270 camera, at a fixed distance. The image sensor inside is
a CMOS sensor. At the beginning, the off-state image will be recorded, then
the on-state image. In the on-state, the light source will emit at the maximum
rated power, according to the datasheet for that light source. The response
of the camera will be recorded, to see which light source has most influence
on the image. Because it is unknown if this camera has any filtering inside
the lens system, a modified webcam without any filtering will be used as a
reference.

To analyze the results, a tonal distribution for each image is created, as
suggested by [21]. A tonal distribution is a histogram that shows the distri-
bution of the color values. For this work, the grey levels are used, ranging
from 0 to 255. The value lowest is black, the highest value is white. Further-
more, [21] also lists several methods of comparing images and histograms.
For this work, the correlation value (Equation 23) is chosen to calculate sim-
ilarity between the tonal distributions. The correlation value will only tell
how similar one tonal distribution is to another tonal distribution. There-
fore, it is only relevant in comparing images that have been captured in the
same setup under the same circumstances. Tonal

distribution
A low correlation value indicates

that that two tonal distributions are less similar, therefore the two images
are less similar. In the presented setup, this can only be the effect of a light
source influencing the image sensor.

d(H1,H2) =

∑
I(H1(I) − H̄1)(H2(I) − H̄2)√∑

I(H1(I) − H̄1)2
∑

I(H2(I) − H̄2)2
(23)

As it turns out, there are numerous LEDs that emit visible light on the
market, but the number of near-infrared emitting LEDs is small. It was hard
to find the same LEDs that have an identical viewing angle, maximal current
and intensity, but with another wavelength. In total five near-infrared light
sources were tested for their influence on the MobilEye C2-270 camera.

1. Osram SFH4550 IR 850 nm LED
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2. Osram SFH4258 IR 860 nm LED

3. Ledsee IR 875 nm LED

4. Honeywell SEP8705-3 880 nm LED

5. Ledsee IR 940 nm LED

All of these light sources have a relatively small viewing angle4 (between
3 - 15 °). Refer to Appendix B for a spectrometry experiment, in which
the different light sources have been tested for overlapping wavelengths. In
addition to the selected LEDs above, the following light sources have also
been selected. Two of them are lasers and one is a matrix of 5x5 940 nm
LEDs (same as used above). The matrix has individual LED mounts that can
be tilted horizontal and vertical. This makes it possible to combine multiple
LEDs to focus the light beam on one smaller spot. This matrix was self-
designed and printed with a 3D printer.

1. Ledsee 650 nm diode point laser

2. Osram SPL-PL90 905 nm diode laser

3. IR 940 nm 5x5 LED matrix

Inverse-square
Law

Light is scalable: more light means more photons and more photons will
induce more electrons in the image sensors (Quantum Efficiency (QE)). To
increase the amount of light, more LEDs should be added. The amount of
LEDs to add can be approximated with the ‘Inverse-square Law‘, shown in
Equation 24. I is the intensity and d is the distance.

I ∝ 1

d2
(24)

This law assumes that the light source is point-light source (e.g. a light
bulb). The opposite of a point-source is a laser, since a non-divergent laser
will have the same intensity beam independent of the distance. The details
are out of scope for this work, but if it is assumed that an LED falls in
between. The inverse-square law can still be used to calculate an upper limit.
In practice, less LEDs will be needed, depending on the viewing angle. To
have the same intensity at twice the distance (denoted by d), four times
more light is required, as shown in Figure 28.

4 The viewing angle is defined as the angle where half of the brightness from the center is
measured.
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Fig. 28: Inverse-
square law of
light sources.
As the distance
increases, the
number of light
sources required
to have the same
power grows
exponentially.

Based on Figure 28, an upper limit for the costs can be estimated, if the
experiment would be repeated at larger distances. The prices are presented
in Table 3

5. Do note that these costs do not involve cheaper alternatives or
similar products. For comparison, the costs of the light sources in Section
4.1.3 are also included.

Tab. 3: Costs of the light sources (in dollars) by extending the 50 cm experiments.
Prices converted from Euros to Dollars, including VAT. Lower costs is better.

Light source Unit Price ($) Units
Price ($)

0.50 m 1.0 m 5 m

850 nm LED 0.50 4 2.00 8.00 200.00

860 nm LED 1.10 3 3.30 13.20 330.00

875 nm LED 0.22 4 0.88 3.52 88.00

880 nm LED 0.92 4 3.68 14.72 368.00

940 nm LED 0.06 4 0.24 0.96 24.00

650 nm laser 4.27 1 4.27 4.27 4.27

905 nm laser 43.25 1 43.25 43.25 43.25

940 nm 5x5

LED matrix
0.06 25 1.50 6.00 150.00

365 nm spot 26.31 1 26.31 105.24 2631.00

White spot 58.53 1 58.53 234.12 5853.00

850 nm spot 8.61 1 8.61 34.44 861.00

For this experiment, the setup as shown in Figure 29 was designed. A
distance of 50 cm was chosen as a trade-off between the number of LEDs
and noticeable influence on the image. The environmental light intensity in
the lab was measured with the Tenma 72-6693 light intensity meter at ap-
proximately 800 lx6. A checkerboard pattern was chosen as a background.

5 Prices are as of writing. Where applicable, volume discount is applied. It does not include the
extra costs such as shipping, related electronics etc. The exact part numbers can be found in
Appendix D. Sources considered: eBay, AliExpress, Farnell, RS-Components and Mouser.

6 On a cloudy day, the outside light intensity is approximately 1000 - 2000 lx.
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A checkerboard pattern produces an average tonal distribution and the
MobilEye C2-270 uses that to control the auto controls, according to the
datasheet [7].

Fig. 29: Setup
of light sen-
sitivity setup.
A is the light
source, B is the
MobilEye C2-270

and C is a
checkerboard
patterned
background.

C A B
d

(a) Schematic setup. (b) Actual setup.

All of the resulting output images can be found in Appendix C.1, due to
the high number of images. The three most-interesting images are shown
below.

Every group consists of six images of a certain light source. Images (a)
and (b) were captured by the MobilEye C2-270, images (d) and (e) were
captured by the reference camera. Both images were taken on the same
moment, after both cameras were adapted to the new light conditions. Two
tonal distributions were added in images (c) and (f). Blue corresponds to the
off-state, red to the on-state. The tonal distributions present the distribution
of the number of pixels per grayscale value, with a total of 256 bins. All
images are 320 x 240 pixels, and all tonal distributions have the same domain
and range.

Figure 30, 31 and 32 are three notably results. Figure 30 shows a clear
shift in tonal distribution from the visible light 650 nm laser, as denoted by
the red peak. The complete background is invisible. In Figure 31 and 32,
the near-infrared 850 nm and 860 nm light sources have little effect on the
MobilEye C2-270, but have influence on the reference camera. Nonetheless,
the MobilEye C2-270 is sensitive to near-infrared light. This conforms to the
CMOS spectrum of Figure 27.
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(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 30: 650 nm laser @ 50 cm. Blue is off-state, red is on-state.

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 31: 850 nm LED @ 50 cm. Blue is off-state, red is on-state.
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(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 32: 860 nm LED @ 50 cm. Blue is off-state, red is on-state.

The results are summarized in the Table 4 below. It presents the correla-
tion between the off-state (blue) and on-state (red) tonal distributions per
light source. A high value indicates more similarity between two images,
whereas a low value indicates less similarity. Therefore, lower values are
more interesting.

Tab. 4: Correlation of tonal distributions between off-on observations. Lower corre-
lation values indicate less similarity between observations. Lower is better.

Light source Visible Light Distance
MobilEye

C2-270
Webcam

850 nm LED no 50 cm 0.783 0.898

860 nm LED no 50 cm 0.777 0.855

875 nm LED no 50 cm 0.979 0.857

880 nm LED no 50 cm 0.994 0.824

940 nm LED no 50 cm 0.995 0.847

650 nm laser yes 50 cm 0.152 0.038

905 nm laser no 50 cm 0.995 0.847

940 nm 5x5

LED matrix
no 50 cm 0.941 0.753

The best results have been achieved using a 650 nm laser (0.152). Accord-
ing to Table 3, this is the most cost-effective approach. The second-best op-
tion is the 850 nm near-infrared LED. The costs are a higher than the 940 nm
5x5 matrix, but the effect is more noticeable (0.941 versus 0.783). Although
the laser is the most effective, it is also the most noticeable, especially in
the dark. The near-infrared light sources are easier to aim, since they have a
wider viewing angle.
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4.1.3 Blinding the camera

From the previous section, it is clear what type of light source the MobilEye C2-270

is most sensitive to. In this experiment, similar to [30], the goal is to blind
the camera image fully or partially, by emitting light into the camera. This
type of attack does what the military weapon (the ‘Dazzler’) is intended to
do, as mentioned in Section 3.1.3.

Blinding occurs when the camera is not able to tune the auto exposure or
gain down anymore. In this case, the light cannot be dimmed, which results
in an overexposed image. A common technique is to maintain an average
luminosity based on a histogram, according to [36]. Figure 33 shows an
example of three images from the MobilEye C2-270 with different lighting
conditions. In the first subfigure, a high-intensity light source has just been
turned off. In the second subfigure, it stabilized to the new light source (iPad
screen) and in the last subfigure, the screen is turned off. In both the first
and second image, there is no contrast with the background.

(a) After light source turned off. (b) After adapting to iPad image. (c) After iPad image turned off.

Fig. 33: The
effects of auto
controls. Three
images from the
MobilEye C2-270

after different
lighting condi-
tions. It takes at
least two seconds
to fully adapt to
new conditions.

Three variables have been identified that have influence on the output of
this experiment. The first variable is the environmental light. If the camera
is positioned in a bright environment, the auto controls are adapted for that
particular environment. In bright environments more light is required to
raise above the environmental light. The second variable is the light source,
and the last variable is the distance between the light source and the camera.

The results from the near-infrared sensitivity test show that 650 nm laser
is the most effective. However, from the list of near-infrared light sources,
the 850 nm LED is the most effective, with 940 nm LED matrix as runner-up.
The set of light sources used in the previous section have a small viewing
angle, limited to approximately 5 - 15 °. Although this is much wider as a
laser beam, it is still hard to emit light into a camera throughout a roadside
or scenery attack.

To scale up this experiment, the following light sources have been tested
to blind a camera. The LED spots have more power a viewing angle of
40 degree due to the enclosure. The ultraviolet spot is added to this list, to
test situations in which direct sun light is involved. The white spot is added
to the test set because it covers a broader spectrum of colors (daylight) in the
visible spectrum. It produces three peaks in the spectrum with wavelengths
of 450 nm, 550 nm and 610 nm.

1. IR 940 nm 5x5 LED matrix

2. IR 850 nm LED spot

3. UV 365 nm LED spot

4. White LED spot
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In Figure 34, the setup is presented. It looks similar to Figure 29, but
in this case, four distances (50 cm, 100 cm, 150 cm and 200cm) have been
tested, at several output powers (0 percent, 50 percent and 100 percent of
nominal current rating7) in a dark (0 lx) and light (250 lx) environment. The
background is a black curtain. This will make sure the MobilEye C2-270

will be most sensitive to the light source. In practice, this will be similar to a
night time scenario. Similar to the previous experiment, the webcam is as a
reference camera, because as shown in the previous experiment, this camera
does not block near-infrared light.

Fig. 34: Setup
of the blinding
experiment. The
light source A is
positioned at sev-
eral distances in
front of camera
B. C is a black
background.

CAB
d

A...

(a) Schematic setup. (b) Actual setup.

Three images from the result set are shown below to show the output.
The tonal distributions show how many pixels have a certain tonal value.
In Figure 35, it can be noted that the light source affects the amount of
black tones in the image. The details in the background much are harder to
see. The same effect can be seen in the webcam images of Figure 36, but in
these images, the MobilEye C2-270 is almost not affected by the light source.
Figure 37 shows that, in dark, the effect of the light source is almost not
noticeable.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 35: White Spot in light @ 50 cm. Blue is 0%, green is 50%, red is 100%.

7 The light intensity of a LED is linear with the current through it.
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(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 36: 850 nm Spot in light @ 50 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 37: 940 nm 5x5 LED Matrix in dark @ 200 cm. Blue is 0%, green is 50%, red is 100%.

Analogous to the results of the previous experiments, the results are pre-
sented and interpreted the same way. The raw images can be found in Ap-
pendix C.2. The correlation values are presented in Table 5 below. The corre-
lation values between the 0% - 50% and 0% - 100% image are presented, to
see if the amount of power influences outcome. A high value indicates more
similarity between two images, whereas a low value indicates less similarity.
Therefore, lower values are more interesting.
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Tab. 5: Correlation between 0% - 50% and 0% - 100% power observations. Lower correlation values indicate less similarity between observations. Lower is better.

0% and 50% power 0% and 100% power

Light source Visible Light Setting Distance MobilEye C2-270 Webcam MobilEye C2-270 Webcam

365 nm LED spot yes dark 50 cm 0.437 0.601 0.084 0.208

365 nm LED spot yes dark 100 cm 0.860 0.955 0.524 0.816

365 nm LED spot yes dark 150 cm 0.993 0.987 0.858 0.946

365 nm LED spot yes dark 200 cm 0.691 0.992 0.758 0.995

365 nm LED spot yes light 50 cm 0.992 0.215 0.985 0.096

365 nm LED spot yes light 100 cm 0.999 0.693 0.998 0.616

365 nm LED spot yes light 150 cm 0.999 0.991 0.998 0.848

365 nm LED spot yes light 200 cm 0.998 0.994 0.996 0.986

White LED spot yes dark 50 cm 0.098 0.607 0.109 0.599

White LED spot yes dark 100 cm 0.120 0.301 0.118 0.822

White LED spot yes dark 150 cm 0.280 0.438 0.230 0.288

White LED spot yes dark 200 cm 0.748 0.803 0.323 0.522

White LED spot yes light 50 cm 0.492 0.119 0.400 0.113

White LED spot yes light 100 cm 0.901 0.251 0.777 0.165

White LED spot yes light 150 cm 0.946 0.520 0.941 0.357

White LED spot yes light 200 cm 0.924 0.677 0.927 0.513

850 nm LED spot no dark 50 cm 0.173 0.802 0.165 0.838

60



4.1
cam

era

Tab. 5: Correlation between 0% - 50% and 0% - 100% power observations. Lower correlation values indicate less similarity between observations. Lower is better
(continued).

0% and 50% power 0% and 100% power

Light source Visible Light Setting Distance MobilEye C2-270 Webcam MobilEye C2-270 Webcam

850 nm LED spot no dark 100 cm 0.716 0.138 0.779 0.114

850 nm LED spot no dark 150 cm 0.966 0.589 0.796 0.848

850 nm LED spot no dark 200 cm 0.971 -0.044 0.911 0.819

850 nm LED spot no light 50 cm 0.989 0.040 0.977 0.037

850 nm LED spot no light 100 cm 0.996 0.071 0.997 0.039

850 nm LED spot no light 150 cm 0.997 0.437 0.996 0.135

850 nm LED spot no light 200 cm 0.996 0.565 0.997 0.352

940 nm 5x5 LED matrix no dark 50 cm 0.161 0.764 0.613 0.592

940 nm 5x5 LED matrix no dark 100 cm 0.727 -0.006 0.096 0.915

940 nm 5x5 LED matrix no dark 150 cm 0.970 0.039 0.086 0.927

940 nm 5x5 LED matrix no dark 200 cm 0.994 0.153 0.069 0.959

940 nm 5x5 LED matrix no light 50 cm 0.985 0.401 0.832 0.255

940 nm 5x5 LED matrix no light 100 cm 0.998 0.125 0.951 0.127

940 nm 5x5 LED matrix no light 150 cm 0.994 0.459 0.969 0.108

940 nm 5x5 LED matrix no light 200 cm 0.999 0.730 0.986 0.179
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The results in the MobilEye C2-270 columns show that the correlation
value increases as the distance increased. The environmental light has influ-
ence on the results, as the correlation values in light conditions are all in the
range of 0.95 - 1.0, except for the white LED spot. At 100 percent power in
dark, the 365 nm LED spot has the least influence, followed by the IR 850

nm 5x5 LED Matrix and White LED spot. The IR 940 nm 5x5 LED Matrix
has the most influence, but this may be caused by the fact that these LEDs
have a smaller viewing angle, and bundle their power. At 100 percent in
light conditions, the White LED spot is the winner.

Two of the MobilEye C2-270 deviate. At 200 cm in dark, the 365 nm LED
spot, a correlation of 0.691 in the 0% - 50% correlation, it performs better
than 0.993 at 150 cm. The other value is the 940 nm 5x5 LED Matrix at 50 cm
in dark. The 0% - 100% correlation value is 0.613, while at a greater distance
(thus less light), the correlation value is 0.096. There is no explanation for
the first outlier. The images and histogram do not show any anomalies. One
explanation for the second outlier is that at a distance of 50 cm, the auto
controls have not been fully adjusted. The individual LEDs are clearly vis-
ible. At 100 cm, the light is more concentrated, from the camera point of
view. The webcam results are quite in line in the visible spectrum, but there
are some outliers. It is believed that these outliers have also been caused
by sensor faults. For instance, the tonal distribution of 850 nm spot in dark
@ 50 cm shows that at 50%, the image has more white tones compared to
the 100% image. For some reason, emitting more light into the image sensor
caused the webcam to observe more grey values.

In dark situations, the 940 nm 5x5 LED matrix is the most effective. As Ta-
ble 3 show, the 940 nm LEDs are by far the cheapest of all the light sources
used in this experiment. Although this experiment did not succeed to fully
blind the image using near-infrared light sources, these light sources can be
used to blind objects. For instance, by mounting several LEDs on a vehicle
that should normally be recognized, the MobilEye C2-270 cannot recognize
them anymore. This fits the scenery modification scenario. In general, blind-
ing a camera will work best from a front/rear/side attack, since the light
sources should be positioned carefully to emit the most light into the image
sensor.

4.1.4 Confusing the auto controls

According to the datasheet [7] of the MobilEye C2-270 camera sensor, it is
equipped with auto exposure control and auto gain control. It is undocu-
mented if both auto controls are enabled, but for optimal image quality in
darker environments, it is presumed to be. Auto exposure control will deter-
mine the shutter speed for each frame, while auto gain control can amplify
the electron charges from the image sensors after exposing it to light8. Ac-
cording to the datasheet, both controls measure the current scene luminosity
and desired output luminosity by accumulating a histogram of pixel values.
This value is then used to calculate the desired exposure and gain value.
Both controls need some time before they are stable, because it is an itera-
tive control process. For the images in Figure 33, it took up to two seconds.
On the other hand, having a too fast of a loop control makes the image very
unstable in terms of brightness.

Unfortunately, this attack could not be attempted on the MobilEye C2-
270, because there was no way of accessing the full video stream at a decent

8 Refer to Section 3.1.3 for more information.
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frame rate. The only video stream that was available, had a rate of less than
approximately five frames per second. This is too low to see what happens
in intermediate frames. It is believed that this attack applies to the MobilEye
C2-270, as some influence was observed in a similar setting while capturing
Figure 33.

To show the potential of this attack, the webcam was used instead, with
the only limitation that it does not have an auto exposure method. This we-
bcam can output at 30 frames per second at 320 x 240 pixels, but it turned
out that frames were dropped9 while the camera was auto controlling the
gain. Fortunately, this demonstrates the potential of such an attack: it tem-
porary ‘blinds’ the output. For this experiment, the setup was the same as
the previous setup, explained in Figure 34. Compared to the previous exper-
iment, this experiment does not focus on ‘hiding’ an object from the camera
by blinding it, but on influencing the auto controls in the period before the
image recovers and stabilizes. The longer it takes to stabilize to the new en-
vironmental conditions, the longer the car is vulnerable to objects it cannot
detect. This attack distinguishes itself from situations like driving out of a
tunnel, because in that case, the camera can more gradually adapts to the
new conditions.

All of the light sources of the previous experiment were re-used, with the
addition of the 650 nm laser (only at 50 cm due to safety regulations). For
each take, a video was recorded. Each take starts in a ‘starting condition’.
Then, the light source is turned on to full power in one shot, and the video
is stopped when the camera has adapted to the new light source, for as far
as possible. It is assumed, that when the light source is turned on, the cam-
era needs some time to adjust to the new lighting conditions, and recover
the image. In this period, the camera is vulnerable because it cannot per-
ceive any relevant information. To analyze each video, a tonal distribution
is created for each frame, after which each consecutive tonal distribution is
correlated with the first one (the ‘starting condition’). The time between the
first drop in correlation, and the first rise (if applicable) is measured, and
denotes the vulnerable period.

Figure 38, 39 and 40 are three examples that are interesting and useful to
explain the different results. Figure 38 is an example where the light does
not have any influence on the image. Therefore, there is no clear vulnerable
period to measure. Figure 39 has two levels10. It is not until approximately
four seconds before the camera starts to adjust, but it does not recover. Fig-
ure 40 shows two clear levels, after which it starts recovering the image.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 38: 365 nm spot in light @ 100 cm. Green line is time of start, red line is time of stop.

9 This means that the camera was unable to send new images.
10 The frame rate drops, possibly because the sensor cannot adjust the auto controls and keep up

30 FPS. Therefore, the same image is outputted for several frames.
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(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 39: White spot in light @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 40: 940 nm 5x5 LED matrix in dark @ 100 cm. Green line is time of start, red line is time of stop.

The results are presented in Table 6. The raw images can be found in
Appendix C.3. The of the vulnerable period is measured in seconds. The
correlation score is the lowest score calculated over all frames. A high value
indicates more similarity between two images, whereas a low value indi-
cates less similarity. Therefore, lower values are more interesting, and indi-
cate how much the image was blinded.
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Tab. 6: Blinding times (in seconds) and the lowest correlation values. Longer times indicate longer blindness, lower correlation values indicate less similarity. Higher
times is better, lower correlation values is better.

Light source Visible Light Setting Distance Blinding Time (s) Minimal Correlation

365 nm LED spot yes dark 50 cm 0.67 0.201

365 nm LED spot yes dark 100 cm 0.63 0.706

365 nm LED spot yes dark 150 cm — 0.969

365 nm LED spot yes dark 200 cm — 0.981

365 nm LED spot yes light 50 cm 0.97 0.504

365 nm LED spot yes light 100 cm — 0.921

365 nm LED spot yes light 150 cm — 0.945

365 nm LED spot yes light 200 cm — 0.939

White LED spot yes dark 50 cm 1.67 0.116

White LED spot yes dark 100 cm 1.33 0.409

White LED spot yes dark 150 cm 0.43 0.470

White LED spot yes dark 200 cm 0.77 0.551

White LED spot yes light 50 cm 0.37 0.076

White LED spot yes light 100 cm 0.40 0.079

White LED spot yes light 150 cm 0.73 0.367

White LED spot yes light 200 cm 0.37 0.474

650 nm laser yes dark 50 cm ∞ -0.100

650 nm laser yes light 100 cm ∞ -0.011
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Tab. 6: Blinding times (in seconds) and the lowest correlation values. Longer times indicate longer blindness, lower correlation values indicate less similarity. Higher
times is better, lower correlation values is better (continued).

Light source Visible Light Setting Distance Blinding Time (s) Minimal Correlation

850 nm LED spot no dark 50 cm 4.67 -0.017

850 nm LED spot no dark 100 cm 2.97 -0.001

850 nm LED spot no dark 150 cm — -0.035

850 nm LED spot no dark 200 cm 4.30 -0.064

850 nm LED spot no light 50 cm 5.50 -0.033

850 nm LED spot no light 100 cm 1.67 -0.021

850 nm LED spot no light 150 cm 2.67 0.0267

850 nm LED spot no light 200 cm 5.00 0.1229

940 nm 5x5 LED matrix no dark 50 cm 5.30 -0.012

940 nm 5x5 LED matrix no dark 100 cm 5.47 -0.014

940 nm 5x5 LED matrix no dark 150 cm 1.67 -0.017

940 nm 5x5 LED matrix no dark 200 cm 4.67 -0.017

940 nm 5x5 LED matrix no light 50 cm 6.00 -0.016

940 nm 5x5 LED matrix no light 100 cm 3.17 -0.041

940 nm 5x5 LED matrix no light 150 cm 4.33 -0.022

940 nm 5x5 LED matrix no light 200 cm 1.33 -0.027
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In line with the results of Section 4.1.3, the environmental light has influ-
ence on the results. The 365 nm LED spot has the least influence, as it cannot
blind the camera nor let it drop frames. In this experiment, the 650 nm laser
was also tested. The results show that the camera does not recover from the
intense beam, therefore the blinding time is infinity.

The 650 nm laser has the most influence, but is much harder to aim a
beam at a moving image sensor. The beam is only approximately 1.5 mm
wide. Furthermore, it is a visible light source. The 940 nm 5x5 LED matrix
has the most influence, for the same reason as the previous section. The light
can be much better aimed at the camera than the laser beam can.

4.2 lidar
This section is dedicated to the experiments with the ibeo LUX 3 Lidar. The
required hardware is borrowed from Ibeo Automotive Systems GmbH in
Hamburg. It is a four-layer laser-based ranging system, mounted on a rotat-
ing head to provide view up to 110 °. The maximal range is up to 200 meters,
depending on the weather conditions. The four layers refer to the number
of scanning rays. Each layer is slightly tilted with respect to the road, so the
Lidar can operate on uneven roads (e.g. ones with bumps, hills, etc.). Even
though it is a multi-layer Lidar, it cannot provide a three-dimensional view,
but only four layers of two-dimensional planes.

The ibeo LUX 3 contains an embedded object tracking system that can
track the objects listed below [11].

• Car

• Truck

• Bike

• Pedestrian

• Unknown small

• Unknown big

• Not classified

The maximum number of objects that can be tracked is 65. It uses a
Kalman Filter (KF) for tracking objects. Each object, when detected, will
be augmented with an object identification number for tracking purposes
and lifetime information.

4.2.1 Interfacing the hardware

The ibeo LUX 3 consists of two devices. The first device is the Lidar itself.
The other device is the connection box, that functions as a gateway between
the Lidar and computer. This device would normally be mounted in (or on)
the bumper of a vehicle, but in the lab it was mounted on a drivable table.
Figure 41 shows this setup.
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Fig. 41: Typical
test setup of
the ibeo LUX 3.
The Lidar is the
box on the table
on the left. It is
connected via the
grey control box
to the notebook.
The setup is
battery powered.

To interface the Lidar with the computer, the accompanying software
called ‘Ibeo Laser Viewer Premium’ was used. It can be connected via Ether-
net and provides a real-time representation of what the Lidar registers. Each
measurement is drawn on circular grid as a point with a color. The software
can also record the data for later use. Figure 42 shows a screenshot of the
main window of the software.

The device parameters can also be changed from within the software. The
default settings were used, which include a constant angular resolution. For
the display settings, only valid pulses are shown. A valid point is one which
passes the pre-processing stage that normally filters out dirt, ground and
clutter.

Fig. 42:
Screenshot of
the Ibeo Laser
View Premium
software. The
dots represent
the laser reflec-
tions. In this
case a scan of
a hallway was
made.
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Each of the four layers is represented by a color (red, green, blue and
yellow). Furthermore, it supports up to three echoes. For example: a laser
beam hits a window. Part of the light is reflected and triggers a measure-
ment. This is the first echo. Most of the light will travel through the window,
and reflect off a rain drop. This triggers a second echo. The last bit of light
will be reflected by the actual object, triggering the third echo. The layer to
color mapping is shown in Table 7.

Tab. 7: Layer to color mapping, as used by the ILV Premium software.

Layer Color Echo 1 Echo 2 Echo 3

4

(Highest)
Yellow

3 Green

2 Blue
1

(Lowest)
Red

4.2.2 Understanding the Lidar

A brief description of how Lidar works, has been presented in Section 3.1.1.
In short, Lidar emits a near-infrared light pulse and measures the time of
flight to the calculate distance to an object. This experiment should reverse
engineer how the ibeo LUX 3 Lidar system works. In particular, the next
four questions:

• Can the ibeo LUX 3 laser beams be visualized?

• How accurate is the ibeo LUX 3?

• How does it respond to surfaces like glass and a mirror?

• Does the ibeo LUX 3 implement any countermeasures against jam-
ming/spoofing?

The last question addresses the possibility that some sort of countermea-
sure is implemented against jamming or spoofing attacks. As discussed in
3.1.1, it assumed that the Lidar rotates and emits a pulse each scan step. It
is unclear if this pulse pattern is constant, can be identified and if it carries
information.

The first sub-experiment conducted, answered the first question if Li-
dar could be visualized. From the datasheet [10], it was known that the
ibeo LUX 3 uses eye-safe 905 nm infrared light for their light pulses. As it
turns out, this wavelength is a de facto standard, as many other Lidar-based
products use the same wavelength [78, 85], including police speed measure-
ment devices [95]. The spectrometry experiment in Appendix B has verified
that the emitted light by the Lidar is of the specified wavelength.

From the experiments in Section 4.1.2, it is known that the emitted wave-
length can be captured with camera that is sensitive to infrared light. So, in
a setup similar to the light sensitivity experiments (see Figure 29), the Lidar
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output was visualized for different scan frequencies, using a Basler acA2040-
25gmNIR high-speed near-infrared camera. The results are presented in Fig-
ure 43.

Fig. 43: Lidar pat-
tern visualized at
a scan frequency
of 12.5 Hz, 25 Hz
and 50 Hz. All
images are of the
same size and
same distance.

(a) 12.5 Hz (b) 25 Hz (c) 50 Hz

The figure shows what the Lidar pattern looks like. In Figure 43c, the dis-
tance between two lines increased. According to the operating manual [12],
the distance increases as the angular resolution drops at a higher scan fre-
quency.

Question number two can be answered from the above figure as well.
According to the manual, the angular resolution of Lidar depends on the
scan speed. The minimal constant angular resolution is 0.25 ° at 12.5 Hz or
25 Hz, and 0.5 ° at 50 Hz. The problem is that the Lidar pulse pattern is not
continuous. Instead, it probes at specific positions. This is demonstrated in
Figure 44, where each line is one laser beam. If object A and B are of the
same size, B will not be noticed because no beam hits it. In practice, each
laser beam diverges a bit: a beam is narrow in the beginning and wide at
the end.

Fig. 44:
Resolution of
Lidar. Object
A and B are of
same physical
size. In practice,
the beams would
not go through
A, but they
are shown for
demonstration
purpose.

A

B20m
40m

60m

To verify the angular resolution, the number of lines in Figure 43c are
counted. In total, 42 lines were projected on a surface that is 59.4 cm wide.
This image is taken at a distance of 50.0 cm of the Lidar. According to
the manual, the angular resolution is measured between the lines, thus the
width of the gap. The width of one line, including the gap is 1.41 cm. The
width of the gap is susceptible to interpretation, since the line fades out.
By changing the brightness to lowest and maximal setting (in Adobe Pho-
toshop), it was found that the gap is between 0.73 cm and 0.96 cm wide.
Figure 45 represents this.
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1.41 cm 1.41 cm 0.96 cm0.73 cm

Fig. 45:
Measuring
the angular
resolution at a
distance of 50 cm.
This image is a
magnification of
Figure 43c. Half
of the image has
maximal bright-
ness, the other
half has minimal
brightness.

Note how the lines are not perfectly straight in Figure 45. The bottom half
corresponds to the two lower layers and the top half to the two top layers.
With this information, the angular resolution can be calculated via Equation
25.

α = tan−1(
Opposite

Adjacent
)

αworst = tan−1(
0.96 cm
50.0 cm

) = 1.10 °

αbest = tan−1(
0.73 cm
50.0 cm

) = 0.84 °

(25)

In the best case, the angular resolution is almost 1.7x larger than the spec-
ified 0.5 °. To achieve this angular resolution, the width of the gap should
be 0.43 cm11.

It is now possible to calculate how big an object should be at a specific
distance, to not get noticed with certainty12. Equation 26 shows this. In other
words, from a Lidar point of view, the object should be within the gap.
For instance, at 20 meter the object must be smaller than 0.29 meter. This
number exceeds the calculated 0.088 meter in the operating manual (same
distance). At a distance of 100 meter, the width of the gap is 1.47 meter.

Opposite = tan(αbest) ·Adjacent = tan(0.84) · 20 m = 0.29 m (26)

Lidar pulses are highly absorbed by rain or snow. If only 10 percent of
the light reflects off a surface, the range drops to only 50 meter13, accord-
ing to the specifications. Other surfaces can also attenuate the amount of
light that reflects, according to [122]. The ibeo LUX 3 can detect up to three
echoes. An echo occurs when the original pulse is received more than once.

11 Page 3-13 of the operating manual shows two different angular resolutions, where 0.125 ° is
the minimal resolution for 12.5 Hz. Therefore, these calculations assume 0.5 ° is the minimal
resolution for 50 Hz, as mentioned on page 3-9.

12 Or the opposite, to get noted. This will be explained in the spoofing attack.
13 In a high-speed scenario, a Lidar provides only a bit more than ‘one second of vision’.
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In the ILV software, it is shown by a less bright color. It is interesting to see
what happens if a light pulse reflects off a mirror or a glass, and if these
observations are still processed in the tracking algorithm.

The second sub-experiment is represented by Figure 46. As can be seen,
the object-to-detect is positioned behind the Lidar itself.

Fig. 46: Setup of
the Lidar mirror
experiment. The
ibeo LUX 3 is
represented by
A, B is an IR-
sensitive camera,
C is a mirror
and D is a flat
surface.

B
A

D

C

(a) Schematic setup. (b) Actual setup.

In Figure 47, the image captured by the near-infrared camera is shown.
The Lidar representation is shown in Figure 47. The Lidar observes a sur-
face in the front, while it is actually positioned in the back. The reflection
shows up in the representation at approximately twice the distance: the
distance from the Lidar to the mirror plus the distance from the mirror to
the surface. The flat surface is detected as the second echo. The embedded
tracking software does not detect the mirror.

Fig. 47: Result
of Lidar mirror
experiment as
captured by the
near-infrared
camera. The mir-
ror is positioned
in the center.
The lines on the
flat surface are
visible in the
mirror, but with
less intensity.
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Fig. 48: Result
of Lidar mir-
ror experiment.
The mirror is
detected in the
second echo at
approximately
3 meters.

In the third sub-experiment, the Lidar is positioned directly in front of
a glass window. The goal is to see how the Lidar reacts to this situation,
specifically if the tracking algorithm ignores echoes or not. This is important,
as an echo could also be the result of reflection off a rain drop. As the Lidar
records, a pedestrian walks on the other side of the glass. A setup is depicted
in Figure 49. The result is observed.

A

B C

(a) Schematic setup. (b) Actual setup.

Fig. 49: Setup
of Lidar glass
experiment. The
ibeo LUX 3 is
represented by A,
the glass window
by B and the
pedestrian by C.

The Lidar representation is shown in Figure 50. In this figure, the pedes-
trians are detected and marked by ‘Ped’: once when walking up and once
when walking down. The glass window is not shown in the representation
because the distance to the glass falls within the minimal operating range
of the Lidar (0.30 m). However, the reflections are of the second echo. This
result shows that, if used in practice, it will also detect object of the second
echo, through glass other transparent objects such as rain.
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Fig. 50: Result of
the Lidar glass
experiment. The
pedestrians are
detected through
the glass and
marked as ‘Ped’.

The sub-experiments have also led to an answer on the last question, if
the ibeo LUX 3 implements any mechanism to prevent or detect jamming
or spoofing attacks. From the way the pulse signals are visualized with the
high-speed camera, it does not indicate any protection mechanism is incor-
porated. The high-speed videos recorded for this experiment show a con-
stant on-off pattern on the exact same position and with the same intensity,
for each scan. There does not seem to be any channel to carry information:

• Varying the intensity is not possible, since that would influence the
range.

• Changing the width between pulses would create horizontal gaps

• Making the pulse lines longer would create vertical gaps.

This section has shown how to visualize the Lidar signals. It was cal-
culated if the resolution is as specified and tested how different materials
(glass and mirror) influence the representation. The next section will use
these results to jam and spoof signals.

4.2.3 Jamming the signal

In this experiment, the goal is to jam the signal. For this experiment to
succeed, it is necessary to emit similar light pulses of the same wavelength
and timing as the ibeo LUX 3 Lidar does.

Transceivers The previous experiment has shown that the ibeo LUX 3 uses light with a
wavelength of 905 nm. This means that if a photodetector is used that is sen-
sitive to this wavelength, it is possible to receive the signal. An anonymous
company sponsored three transceivers. The transceivers contain a voltage
amplification circuit to boost the photodetector output. The emitting laser
is an Osram SPL-PL90, which costs 43.25 dollar (see Table 3). According to
the datasheet [104], applications for this laser diode include range finding,
with a range up to 100 meter. The receiving photodetector is an Osram SFH-
213, which costs 0.65 dollar. The spectrometry experiment in Appendix B
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verified that the laser emits light of the right wavelength. The output of
the transceiver is a voltage signal that corresponds to the intensity of the
pulse. An oscilloscope can be directly attached to visualize the signal. To
emit a pulse, a high voltage should be connected to the input wire of the
transceiver.

To test if the Lidar pulses could be visualized by the oscilloscope, the
setup in Figure 51 was used. The distance between the Lidar and the wall
is approximately 1 meter. The oscilloscope is not required to mount the
jamming attack. It is only used to identify the signal characteristics14.

A

B

C

(a) Schematic setup. (b) Actual setup.

Fig. 51: Setup of
Lidar patterns vi-
sualization. The
Lidar is repre-
sented by A, the
two transceiver
devices by B an
C.

In figure 52, the oscilloscope output is visualized. The pink channel corre-
sponds to transceiver B. At 5 ms/div15, the pink signal repeats each 20 ms,
which is equal to 50 Hz. This matches the configured scan frequency. As
explained in Section 4.2.2, the width of one pulse is small. At a distance
of 1 meter, multiple pulses (for different scan steps) hit the sensors. There-
fore, the width of the pulse in 52 does not represent one pulse, but includes
multiple other pulses. If this attack would have been conducted on a large
distance, this effect is less noticeable. For instance, at 20 m and 50 Hz, the
gap between each pulse was calculated to be 0.29 m wide.

14 An attacker could also have found the characteristics online. It is a matter of time before a
database exists with all the relevant specification.

15 Milliseconds per division. This corresponds to the width of one cell in the grid, measured in
time.
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Fig. 52:
Visualization
of three Lidar
pulses. The
width of the
pulse plus the
gap equals the
scan frequency.

After connecting transceiver C to the oscilloscope, the rotation of the Lidar
could be visualized in Figure 53. The burst on the yellow channel happens
approximately 5.5 ms later (note that the scale has changed to 1 ms/div).
The transceiver is still sensitive to scattered light, as a small amount of light
is still detected on the pink channel after the burst finished. This can be
related to reflections in the lab.
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Fig. 53:
Visualization
of one Lidar
pulses measured
by two distant
transceivers. The
gap is propor-
tional to the
distance between
both transceivers.

With the information of 52 and 53, it is possible to start jamming by trans-
mitting a similar signal. The signal should have the same characteristics as
the original signal. This can be achieved by generating a pulsed signal of
the right frequency and pulse width. One of the transceiver’s input is con-
nected to the output of the Philips PM 5715 pulse generator. This is a device
that can generate a square-wave pulse signal with variable width, period
and frequency. The setup is presented in 54. There is no feedback from the
Lidar to the pulse generator, thus the pulse generator keeps generating a
counterfeit signal indefinitely.

A B

P1

(a) Schematic setup. (b) Actual setup.

Fig. 54: Setup
of a Lidar jam-
ming attack. The
ibeo LUX 3 is
represented by A,
the transceiver by
B and the pulse
generator by P1.

In Figure 55 the oscilloscope output is shown. It is zoomed into one of
the repeating bursts. The yellow channel is connected to the transceiver’s
output, and represents the original signal. The blue channel is connected to
the output of the pulse generator, and represents the signal that is jammed
back. A simplified representation of the signals is shown in Figure 56. In the
figure, the frequency of the counterfeit signal is slightly too high. Therefore,
the signal is not in sync with the original signal.
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Fig. 55: Lidar
jamming signal
visualized on the
oscilloscope. The
yellow channel
is the original
signal, the blue
channel is the
generated coun-
terfeit signal.

The frequency of the original Lidar pulse signal on the yellow channel
is measured at approximately 30 kHz. The pulse width is measured at ap-
proximately 100 ns. The distance between each pulse is the same over time.
It is worth mentioning that the transceivers are fast enough to receive and
transmit on these speeds. The smallest pulse width that can be generated by
the transceivers is 1 ns.

Fig. 56:
Simplified
representation
of the signals
shown in Figure
61, and how they
relate over time.
The pulse width
and pulse period
are the two vari-
ables that can be
controlled.

Pulse period

Original signal

Counterfeit signal

Pulse width Time
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Fig. 57: Result of
Lidar jamming at-
tack. All points
are fake, except
for the ones less
than two meters.
A few points ap-
pear outside the
operating range
of 200 meter.

The ibeo LUX 3 does receive and process the counterfeit signal, as shown
in Figure 57. Therefore, this experiment succeeded. The effect is only visible
as the second echo, but as shown in Section 4.2.2, the ibeo LUX 3 will also
track objects of the second echo. During the experiments it was noted that
the transceiver has a lot of influence, regardless of the position. According
to the datasheet of the laser of the transceiver, the beam produced has an
viewing angle of approximately 9 °, which is a lot bigger than the angular
resolution of the Lidar.

The pulse generator is not required for a jamming attack. At a pulse width
of 100 ns, it can be easily replaces by a low-cost Microcontroller Unit (MCU)
with a minimal speed of 10 MHz. All of the hardware that is required can
be fitted in a small battery-powered device, making the attack compact and
less detectable. The most expensive part is the laser diode, which costs 43.25

dollar. This attack can be mounted in a front/rear/side attack or a roadside
attack. A battery-powered device can also be mounted on a vehicle by an
evil mechanic.

The next section will attempt to relay a signal from one position to another
position.

4.2.4 Relaying the signal

In the previous section, the Lidar was only jammed by generating a coun-
terfeit but similar signal into the field-of-view. This experiment will shown
that it is possible to relay the original signal from another position. There
are many possibilities with this attack. One example would include to show
it is possible to receive a signal from one side, and emit it from the other
side. Another example would include the possibility to relay a signal from
a Lidar system to completely different Lidar system.

To relay the signals, the two transceivers are used again. The signal re-
ceived by the first transceiver will be directly fed into to the second transceiver
by connecting the output to the input wire, as shown in Figure 58. In the
setup, both transceivers are positioned one meter away from each other, but
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they do not have to be at the same physical position for a relay attack. Figure
59 shows the representation.Fig. 58: Setup

of a Lidar re-
lay attack. The
ibeo LUX 3 is
represented
by A, the two
transceivers by
B and C. The
dashed lines are
Lidar signals, the
dotted line is a
communication
channel between
B and C.

A

B

C

(a) Schematic setup. (b) Actual setup (rear attack).

Fig. 59: Result of
Lidar relay attack.
Light pulses are
received from the
left, and relayed
from the right.
The Lidar does
not detect this.

The setup in Figure 58 also performs well if the transceivers are positioned
behind the ibeo LUX 3. Since the Lidar signals reflect in the distance, some
of the reflected light that travels back will also travel past the ibeo LUX 3.
If a transceiver receives it over there, the same signals can be retransmitted
from another location. Therefore, a direct line of sight is not required to
perform a relay attack with these transceivers.

A relay attack is most likely to happen in a roadside attack. An attacker
may receive Lidar signals from vehicle at one location and relay them to an-
other vehicle from a completely different location. The attacker only needs
two transceivers. No other hardware is required, as the output of one transceiver
is connected to the input of the other.

4.2.5 Spoofing the signal

In this section, the jamming attack is extended. So far, the only signals in-
jected are generated pulses that try to resemble the original signal. This
experiment will use the original signal as a trigger point to to actively spoof
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the ibeo LUX 3, with the intention to re(p)lay objects and control their posi-
tion.

Light travels with a speed of approximately 3 · 105 km/s, or 1 meter every
3.33 ns. With a maximum range of 200 meters for the ibeo LUX 3, the signal
travels this distance back and forth in approximately 1.33 · 10−6 s, or 1.33 µs.
This means that the Lidar should listen for at least 1.33 µs for incoming
reflections. To successfully inject signals into the Lidar, the counterfeit signal
should arrive within this window. The earlier the Lidar receives the signal,
the closer it will be to the Lidar. Therefore, if the attacker delays the original
signal before it relays it, it can control the position of the objects. Do note that
if, for instance, the attacker is at 200 meters, the attack window is smaller
since the first 200 meters have already been travelled by the pulse.

A counterfeit signal is generated via external control logic, consisting of
two pulse generators. The output of the transceiver is connected to the trig-
ger input of the HP 8011A pulse generator. This pulse generator has the
option to delay a signal. As soon as this pulse generator is triggered, it will
delay the output. The output of this pulse generator is connected to the in-
put of the second pulse generator a Philips PM 5715. A fixed number of
square-wave pulses can be generated as soon as it is triggered. The output
of this pulse generator is then connected back to the input of the transceiver.
to the trigger input of the first generator. Figure 60 summarizes this setup.

The delay, number of pulses, number of copies, pulse width and pulse
period are the variables that can be controlled. As soon as one pulse triggers
the control logic, a similar signal is generated of a fixed number of pulses.
By tuning the pulse width and pulse period of a signal using an oscilloscope,
the counterfeit signal can resemble the original one.

A B

P2P1

(a) Schematic setup. (b) Actual setup.

Fig. 60: Setup
of a Lidar re-
lay attack. The
ibeo LUX 3 is
represented by A,
the transceiver by
B and the control
logic by P1 and
P2 (not shown in
actual setup). P1

is triggered by
the Lidar signal,
which controls
P2.

In Figure 61, a capture of the oscilloscope is shown. The pink channel
represents the actual Lidar signal, the green line is the trigger line and the
blue line is the generated signal. As soon as the transceiver receives the
Lidar signal, the delay is added by the first pulse generator, After the delay,
the green channel becomes high. In this period, the second pulse generator
will generate a fixed number of pulses, similar to the ones discussed in the
jamming attack. This is shown on the blue channel. This process repeats as
long as the green channel is triggered, which controls the number of copies.
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Fig. 61: Result
of the Lidar
injection attack.
Pink channel is
the actual Lidar
signal, green is
the trigger signal
and blue is the
spoofed signal.

The introduced delay is not visible in 61, as the timebase is orders of
magnitudes bigger than the delay itself (nanoseconds versus milliseconds).
A schematic overview of one burst is presented in Figure 62. It shows how
the trigger delay and the number of copies affect the counterfeit signal.

Fig. 62:
Simplified
representation
of the signals
shown in Figure
61, and how
they relate over
time. The delay,
number of copies
and number of
pulses are the
variables that can
be controlled.

Number of 
pulses

Original signal

Delay output

Counterfeit signal

Number of copies

Time

Delay

On the Lidar representation, this looks as Figure 63. The points shown
are of the second echo. They resemble a copy of the wall shown at approxi-
mately 1 meter. By tuning the delay variable, it is possible to make the wall
appear closer or further away, until the signal falls outside of the attack
window.
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Fig. 63: Result of
the Lidar spoof-
ing attack. The in-
jected points re-
semble a copy of
the actual wall at
1 meter.

The first pulse generator can be configured to output multiple pulses
when it is triggered. Therefore, it is possible to inject multiple counterfeit
pulses in a sequence. By increasing the frequency of the signal on the green
channel in Figure 61, multiple pulses on the blue channel can be generated.
Figure 64 shows the result, where multiple copies of the wall are shown at
regular spaced intervals. The first copy of the wall is of the second echo, the
others are a mix of the second and third echo, until it fades out.

Fig. 64: Result of
the Lidar spoof-
ing attack. The
points shown are
multiple copies
of the wall at
1 meter.

Although it is shown that a wall can be positioned
In the beginning of this section it was mentioned that the ibeo LUX 3 asso-

ciates an object number with detected objects. During the experimentation,
it was noted that the ibeo LUX 3 classifies the walls as ‘Unknown big’ (and
sometimes even as a ‘Car’). It was not able to keep track of the objects, as
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the identification number changed rapidly. This is demonstrated by Figure
65. This figure uses the same data set as Figure 64), but this time with track-
ing turned on, as denoted by the rectangles around it. In less than 0.46 s,
the second wall is identified as three new objects. This indicates that the
ibeo LUX 3 classifies the same spoofed object as a new object, therefore it is
unable to follow the movement over time.

Fig. 65: Tracking
the second wall
over time. A new
color represents
a new object. For
clearance, the
tracking boxes
for the other
objects are not
shown.

(a) t = 10.37 s, ID = 21 (b) t = 10.59 s, ID = 65 (c) t = 10.83 s, ID = 242

Both attacks in visualized in Figure 63 and 64 do not happen close to
zero meter, but far beyond. In none of the experiments, it was possible to
generate points close to the Lidar, e.g. within 5 meter. For instance, in 64 it
was possible to inject a reflection of the wall at approximately 40 meter. In
low-speed situations, this is not a problem, as an AV (and even a human)
has enough time to decide on an action. For high-speed situations this is
major problem, as it takes approximately one seconds to travel 40 meter,
leaving almost no time to brake or maneuver.

Figure 66 relates timing to the success of the jamming and spoofing at-
tacks. In most of the attacks demonstrated, the counterfeit pulse is received
by the Lidar after the first echo is received (the original pulse). This makes a
point appear further away, as the Lidar thinks it travelled a longer distance.
It can also happen that the counterfeit pulse is received in the gap, after the
1.33 µs attack window. In this case, it will not be noticed. According to Fig-
ure 52, this gap can be as long as 20 ms, which is several magnitudes larger
than the attack window.

Fig. 66: Lidar
attack window.
The arrows indi-
cate what would
happen if the
attacker’s pulse
hits the Lidar at
that time.

Attack window
(one scan step)

0 s 1.33 µs X ms

Silent window 
(gap)

Actual
Reflection

(First Echo)

Injected
Reflection

(Second Echo)

Undetected 
Injected

Reflection

Time

Hardware and
Cable delay

There are two important causes that are are responsible for this issue. The
first cause is related to the pulse generators used. These pulse generators
are analog devices and can only be controlled by rotating knobs. It is very
hard to tune a knob to the exact right setting. Another issue is caused by
the speed of the circuitry. When the pulse generator is triggered by an input
signal, the hardware inside adds a bit of delay before an output signal is
generated. A digital pulse generator that has a keypad as input can solve
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the issue partially, but using dedicated hardware with low switching timing
overhead can reduce the delays even more. This could be realized with an
Field-Programmable Gate Array (FPGA) or a Digital Signal Processor (DSP).
The second cause is the length of the cables. In the setups presented, the av-
erage cable length was five meter. According to [62], the speed of an electric
signal is approximately two-thirds the speeds of light, which means that ev-
ery meter adds approximately 6.66 ns of delay. By reducing the cable length,
this issue can be lessened.

The relay attack in Section 4.2.4 directly connected the output of one
transceiver to the input of the other. No additional delay was introduced.
The closest result achieved was 20 meter, while the original object was lo-
cated at 1 meter. Therefore, the counterfeit signal arrived at least 64 ns after
the original reflection16. The average cable length of five meter accounts for
33.3 ns. The rest is introduced by the transceiver circuits.

Dedicated hardware or shorter cables will not an attacker to inject a pulse
signal before the original signal is received. The moment the hardware de-
cides to emit a counterfeit pulse is triggered when the original pulse hits the
transceiver. If all delays are omitted, it would be possible to send a pulse
back that arrives at the same time. However, it is possible to synchronize
to the pulse timing and calculate the next attack window. This means that
when pulse N is detected, the counterfeit pulse will be fired so it arrives in
the window of N+ 1. The delay parameter in this section tried to achieve
the same effect. A general purpose MCU of less than 20 dollar is sufficient
for synchronizing on nanosecond scale.

An attacker can mount this attack in a front/rear/side attack or a roadside
attack. It requires at least one transceiver. Hardware is required to synchro-
nize to the Lidar signal of the target car and to emit a counterfeit signal that
can be controlled. This attack is more sophisticated because small variations
in timing or delay can have a big impact on the location of the spoofed ob-
jects. Nonetheless, the hardware that is required can be low-cost. Because it
is assumed that other Lidar systems will use the same wavelength and tech-
nologies (see Section 4.2.2), this attack may directly work on other systems.

4.3 conclusions
This section will conclude the key results of this chapter.

Two attacks have been performed on the camera. The first was a blind-
ing attack (Section 4.1.3). From the results, it can be concluded that the the
White LED spot has the most influence in bright environments. The 940 nm
5x5 LED matrix works best and is much cheaper to scale, according to 3.
The auto controls confusion experiment (Section 4.1.4) could not be demon-
strated on the MobilEye C2-270, but the effects have been demonstrated on
the reference camera. The 650 nm laser ensured that the image did not re-
cover, so that is the most effective option at the cost of detectability. The
940 nm 5x5 LED matrix is the runner up.

Attacks on the MobilEye C2-270 can be mounted from different attack
scenarios. The best option would be from a front/rear/side attack, as this
gives the attacker the most time to direct a light source into a camera. While
the MobilEye C2-270 is not sensitive enough to fully blind the camera us-
ing near-infrared light, it can still detect it, and allows an attacker to either

16 Refer to Section4.2.5 for more information on these calculations.
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blind objects that should be detected, or inject new objects (e.g. matrix traf-
fic signs). Confusing the auto controls is limited to front/rear/side attack,
because it assumes that the attacker continuously switches the light on and
off. This is not possible if the attacker is not dynamic.

Three attacks have been demonstrated on the ibeo LUX 3 Lidar system.
The first was a jamming attack (Section 4.2.3) using a continuously gen-
erated pulse signal that resembles the original signal. The second attack
showed that the Lidar is sensitive to relay attacks (Section 4.2.4), even from
behind. The last attack was the spoofing attack (Section 4.2.5), where an
original observation was spoofed, including multiple copies.

The jamming and relay attacks are less sophisticated than the spoofing
attack. The jamming and spoofing attack need at least one transceiver (ap-
proximately 44 dollar), while the relay attack requires two. The range for
emitting a counterfeit signal is approximately 100 meter, although the gap
between the scan steps is approximately 1.47 meter at this distance. There-
fore, multiple photodetectors will be required. Section 4.2.2 showed this.
All of the attacks can be mounted from the roadside. Spoofing and jamming
can also be mounted from front/rear/side attack. Because the hardware for
a jamming attack can be very compact, it can be battery powered and even
installed by an evil mechanic on another vehicle. If an attacker designs one
attack and shares the blueprints (e.g. via internet), the only thing another
attacker has to do is acquire the hardware connect the wires.
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5 D ISCUSS ION

5.1 impact on application level
The attacks that have been demonstrated in the previous chapter are di-
rected at the hardware layer. This section discuss the impact of the attacks
on the application layer briefly. The application level involves processing the
sensor data, for instance cleaning the data, classifying the data and fusing
the data with other sensors. The processing steps for the MobilEye C2-270

and the ibeo LUX 3 are not documented. However, it is interesting to see
how the application level processes malicious input and if it can detect ma-
licious input. The impact on camera systems, Laser Image Detection and
Ranging (Lidar) systems and sensor fusion will be discussed.

The videos that have been recorded for this section, including others from
the experiments in Chapter 4, can be found at http://goo.gl/SVkvor. The
videos are annotated.

5.1.1 Camera

In the first experiment, an iPad is put in front of the MobilEye C2-270 cam-
era. The objective is to show that the Collision Avoidance System (CAS) fails
to work when the camera is blinded. The MobilEye C2-270 is connected to
a simulator, that is setup to report a speed of 130 km/h1. A video is played
with footage from a dashboard camera, as if the MobilEye C2-270 was in-
stalled in an actual car. First, it is shown in 67a-c what would happen with-
out any tampering, then a laser pointer is turned on, with the intention to
blind the camera in Figure 68b-d. Instead, the display is blank when it is
tampered with. This attack is repeated in Figure 68, to show that this attack
is reproducible for different videos.

In all figures, the display is positioned in the lower-left corner. When it
detects an approach collision, it will notify the by user sounding an alarm
and showing the time-to-impact (in seconds). Although the 650 nm Laser
pointer2 is mounted close to the camera to optimize success level, it does
show the potential of this attack. Even for short periods of blinding, the
camera can be blinded and have troubles detecting the approaching vehicle.
For both attempts, the MobilEye C2-270 does not detect the malicious input
nor signal the driver.

1 At least 40 km/h is needed to trigger collision warnings.
2 The same laser pointer from earlier experiments.
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Fig. 67: MobilEye
live blinding
experiment. Four
frames of the
same sample, in
which the laser
is turned on and
off.

(a) (b)

(c) (d)

Fig. 68: Second
MobilEye live
blinding ex-
periment. Four
frames of the
same sample, in
which the laser
is turned on and
off.

(a) (b)

(c) (d)

5.1.2 Lidar

The ibeo LUX 3 contains an embedded tracking system. The tracking sys-
tem can group points and classify them as a car, truck, bike, pedestrian
or unidentified object. It can also track objects over time. This allows the
ibeo LUX 3 to determine an object’s direction. It was demonstrated in Sec-
tion 4.2 that the Lidar is sensitive to counterfeit pulses generated by an ad-
versary. Furthermore, it was possible to control the distance where objects
appeared, by varying the delay of the trigger signal for the second pulse
generator.

The frames below are almost sequential, and show how the position of
the objects reverses immediately. While this is no hard job for the tracking
software, it can potentially confuse the decision system of an Autonomous
Vehicle (AV).
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(a) (b)

Fig. 69: ibeo LUX
3 live experi-
ment. The objects
change direction
(the lines), as
instructed by the
attacker.

Furthermore, there is a limit on the number of objects that can be tracked
by the ibeo LUX 3. By introducing noise or more sophisticated objects, a
denial-of-service attack can be mounted on the Lidar, by introducing a large
number of noise or spoofed objects. Real objects that should have been de-
tected can than be missed. Extra tracking will also cost more cycles.

5.1.3 Sensor fusion

Sensor fusion was introduced back in Section 3.2.2, and introduced the
Kalman Filter (KF) and Particle Filter (PF). Both algorithms take sensor data
as measurement input from one or more sensors. The output of a sensor
fusion algorithm is a new state, e.g. where the algorithm thinks an object is.
In literature, the PF is generally used for tracking objects, whereas the KF
is frequently used for fusing Global Positioning System (GPS) with Inertial
Measurement Unit (IMU) sensor data.

Figure 70, 71 and 72 below are based on the cannonball tracking case
study in Appendix A.2. In this case study, where the cannonball can mea-
sure the distance to three beacons, the trajectory of the cannonball is tracked
with a PF. Do note that the figures presented in this section are a base on
simulations only, and are not based on the internals of the ibeo LUX 3

3.
In Figure 70, the beacons (colored dots) change position clockwise every

iteration step. Therefore, the cannonball will observe more measurement
noise. This attack is similar to the ‘Wave-based attack’ mentioned in Section
3.2.3, where the measurement is reversed continuously.

3 The ibeo LUX 3 does not use a PF but a KF, according to [11].
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Fig. 70: Spoofing
the PF with
alternating the
beacons. The
colored dots
represent the
beacons, which
change clockwise
each iteration
step.
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In Figure 71, three beacons move from the right side (orange) to the left
side (red). Initially, the cannonball moves up. From a cannonball point of
view, the beacons are moving towards the cannonball. Therefore it assumes
that it is moving in the right direction (upwards).

This situation resembles the Lidar spoofing setup from Section 4.2.5. In
there, it was explained how an attacker could change the position of coun-
terfeit wall by varying the delay. If the cannonball is replaced with a AV
and the three beacons with a wall, the attack explained what happens if the
attacker makes the AV believe that the wall is approaching.
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Fig. 71: Spoofing
the PF with
moving beacons.
The colored dots
represent the
beacons, which
gradually moved
from left to right.

In Figure 72, the beacons have been relocated three times, in a horizontal
way. The first time is denoted by the orange beacon (the other two are out
of range of the plot), the second time by the red color and the third time by
the blue color. The shape does follow the true path, but due to ambiguity
(see Section 3.2.2), it first moves to the left and then recovers.
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Fig. 72: Spoofing
the PF with
random beacons.
The colored dots
represent the bea-
cons, which have
been randomly
positioned in a
vertical line.
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5.2 countermeasures
Some countermeasures can be applied to mitigate or reduce the attacks as
demonstrated. It is worth noting that these countermeasures have been es-
tablished from knowledge gained during the experiments and not tested in
during the experiments. The main focus is tampering detection (or to limit
tampering), not fault detection, e.g. if the sensor still performs as specified.

Do note that no internal knowledge of the system is known. It may there-
fore be that some countermeasures have already been applied. In that case,
the countermeasure should be considered a design recommendation for
other systems.

5.2.1 Camera

Up to a certain limit, it is possible to protect cameras from being tampered
with. There is a trade-off between protecting the camera from tampering,
sensitivity, image quality, camera size and price. Most of the countermea-
sures require the camera to be modified. This not only raises the costs, but
will also cost more space. For instance, in [52], cameras have been integrated
in the side mirrors, a place where space is limited.

Redundancy

By using multiple cameras it is harder for an attacker to blind all of the
cameras at the same time. The experiments have shown that using a 5 mW
laser is the most effective way to temporary blind a camera. Unfortunately,
due to the small beam width this attack was only limited to a singe image
sensor at a time. At a distance of 50 cm, the width of a focused beam was
measured at approximately 1.5 mm. The size of the MobilEye C2-270 lens
was measured at approximately 5 mm.
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By introducing multiple cameras that perceive the same image (or at least
overlap), the attacker has to put more effort into the attack to blind both
cameras at the same time. This does require more space to fit the cameras
and a pair of cameras need to be carefully calibrated so the overlapping im-
age is not misaligned. Software should blend the separate images together.
As long as the cameras have a static position with respect to each other, the
parameters for blending the images together have to be setup only once.
Other challenges of this countermeasure include synchronized capturing
and maintaining the same exposure [9]. Introducing extra cameras will not
create new attack vectors, as it only extends vision.

Introducing extra cameras may not protect from military grade weapons
such as a ‘Dazzler’ (see Section 3.1.3). According to [8], the width of these
laser beams can be configured up to 12 cm, at the expense of output power
on the same area and range. This makes it a lot easier for an adversary to
aim at a camera sensor, even if the camera sensors would be a lot bigger (e.g.
more area to blind). If multiple cameras are used to complement each other,
then it is also possible that the ‘Dazzler’ will hit several camera sensors at
the same time (see Figure 16).

Optics and materials

Integrating a removable near-infrared-cut filter, a technique that is available
to security cameras, can filter near-infrared light on request. The filter can
be applied by switching an electromagnet. During day time, the filter is
applied to yield a better image. During night time the filter is removed to
make use of infrared light for night vision. When the filter is applied, it will
also block infrared light sources, hence this countermeasure is only effective
against during day time.

To improve this countermeasure, the filter could also be applied when
the camera decides it is needed, for instance when it is jammed (see next
countermeasure), or when the auto controls cannot be optimized for the
bright lighting conditions anymore. In this case, it is assumed that jamming
the sensor is already in progress. This may introduce a new attack vector,
as an attacker may repeatedly attack the auto controls(as demonstrated in
Section 4.1.4) to let the camera apply the filter or remove it. Depending on
the quality of an near-infrared-cut filter, the camera may be damaged.

Another option is to use photochromic lenses. These types of lenses can
change color to filter out specific types of light. An example includes glasses
with darkening lenses in sunlight. The type of lenses (or coating on the
lenses) will determine the type of light it will filter. According to [159],
vanadium-doped zinc telluride (ZnTe:V) is a material that can filter light
with a wavelength of 630 nm - 1300 nm. High-intensity beams will make the
material more opaque, therefore filter more. The advantage of these type of
materials is that they do not affect the image in low-light conditions.

Spectral analysis

This countermeasures will only help to detect a jamming attack and is simi-
lar to the spectrometry experiment in Appendix B.

A spectrometer such as the AvaSpec-2048 USB that is used in this work,
uses a dispersive element such as a prism. A prism will decompose an in-
coming light beam into several beams per color, because the refraction in-
dex is wavelength dependent. By positioning an image sensor such as a
Charge-Coupled Device (CCD) or Complementary Metal Oxide Semicon-
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ductor (CMOS) to receive this beam, the wavelengths and intensity can be
measured.

The light sources used in this work have a characteristic wavelength. For
instance the red laser has a steep peak at 650 nm. Since environmental light
has influence on the amount of light needed to blind a camera, it is assumed
that it needs at least the same intensity to be visible to the camera. There-
fore, if the light spectrum is observed over time, it can be possible to detect
whether an attacker is pointing a light source into a camera.

To perceive a camera image and do a spectral analysis at the same time,
the incoming light should be split with a beam splitter. A beam splitter is
an optical device that splits an incoming beam. One part will pass-through,
while the other part will reflect off. Both beams will have a lower intensity,
which may be undesired for the camera system.

A schematic overview of the proposed setup is presented in Figure 73.

Fig. 73:
Schematic setup
of a spectral
analysis setup.
The camera is
represented by A,
the spectrometer
by B, the beam
splitter by C and
the prism by
D. The arrows
indicate light
beams.

A

B D

C

Image channel separation

This approach is similar to some camera applications to find objects, as
discussed in Section 3.1.3. The MobilEye C2-270 is a Red/Clear camera [7].
The resulting image is a two-channel image only. The red channel is most
sensitive to near-infrared light, so if that channel is jammed, it can use the
other channel to filter the near-infrared light. The same approach works by
extending it to a multi-band channel camera, such as explained in Section
3.1.3. This countermeasure can help to restore some detail of the image, but
will not recover the full image. However, this countermeasure can be imple-
mented in software efficiently, thus requires no extra space in a camera.
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(a) All channels (b) Red channel

(c) Green channel (d) Blue channel

Fig. 74:
Illustration
of image channel
separation. The
same image
has been de-
composed into
several channels
with software. Al-
though the laser
overexposed the
image, the blue
channel image
still shows detail.

An attacker may decide to use several light sources to rapidly change
color. This renders the above countermeasure less effective, since all chan-
nels may be overexposed. Military grade examples of light sources that can
change rapidly are wavelength-agile laser [123].

5.2.2 Lidar

For the Lidar, the following countermeasures can prevent some of the at-
tacks from happening, or help to detect them. An expert in the field of
signal jamming4 was considered to validate the countermeasures.

The countermeasures below can be implemented in software5. A modi-
fication of the sensor hardware is not necessary to implement these coun-
termeasures, but the firmware can be changed to implement some of the
countermeasures proposed (at the expense of range or accuracy. However,
no information can be provided to indicate if the countermeasures are al-
ready implemented in the object tracking software of ibeo LUX 3, as the
sensor was only tested on raw data level.

Redundancy

The experiments have shown that it is possible to jam and spoof on the
ibeo LUX 3, that uses 905 nm wavelengths. According to [87] and [122], it
is possible to use different types of wavelengths for Lidar vision6. Although
some wavelengths have drawbacks in terms of range, combining multiple
wavelength Lidar makes it harder for the attacker to both signals at the same
time. According to [122], the costs for the required hardware will exceed the
budget for the attacker model considered for this work.

4 In particular, jamming speed measurement devices.
5 With the exception of redundancy, as it requires a completely different design and featureset.
6 Do note that the wavelengths should not overlap. For instance, using a 850 nm Lidar will still

influence the 905 nm Lidar.
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Another way of adding redundancy would be to use Vehicle-to-Vehicle
(V2V) communication7. If an attacker mounts a front/side/rear or roadside
attack, the chances are it will only affect a single vehicle. If other AVs share
their measurements, the attacked AV could compare the measurements with
what other vehicles observe. It is assumed that a comparison with other ve-
hicles requires the vehicle to detect tampering, ask other vehicles to share
their data, validate the data (e.g. an attacker may intentionally share incor-
rect data), compare it and decide on an action. This process may cost too
much time and utilize an expensive link between vehicles.

Random probing

There are two ways of achieving this. As shown in Section 4.2.2, the pattern
is repeated at a fixed interval. This interval depends on the scanning speed,
and thus the rotation of the mirror inside the ibeo LUX 3. Furthermore, the
attacker needs to synchronize on this interval, so it knows exactly when to
fire a pulse back. By varying this period non-predictably, it will be harder
for the attacker to synchronize on the original signal. This countermeasure
can be hard to implement and can be problematic for rotating Lidars. They
mostly require a constant rotation speed and need to know exactly at which
angle they fired a pulse. Varying the rotation speed can degrade the lifetime
of the device, as it can introduce damage to the system. However, slight
alternations may be sufficient, without affecting the lifetime too much.

Another option that takes less effort to implement, is to (non-)predictably8

skip certain pulses. This can be realized in the software that is controlling
the laser emission. When a pulse is skipped, it introduces an effect that is
similar to varying the scan speed. If the Lidar skips a pulse, it can still listen
for incoming pulses. If it notices a response, this may indicate an attacker is
tampering. It depends on the application whether this is acceptable or not.
However, at a scan frequency of 50 Hz, missing a few pulses will probably
not have much effect on the resolution, especially close range.

Both of these countermeasures can be implemented in software9 and are
effective to roadside attacks. A roadside attacker now has to synchronize
on the pulse train and synchronize on a (non-)deterministic code. If both
sequences are long, it can take several seconds, at which the target may
already passed the roadside attack. Any ‘misfire’ from an attacker lets the
Lidar know if an attacker is tampering with the signal.

Probe multiple times

This countermeasure is only effective against random jamming. If an at-
tacker is not in sync with the pulse signal generated by the Lidar, counter-
feit pulses will appear at random intervals in the attack window, as demon-
strated in Section 4.2.3. For instance, if the Lidar measures three times at a
the same position and it measures three different distances (e.g. 40 m, 10 m,
150 m), this measurement is likely to be invalid.

Probing multiple times does introduce three new problems. The first one
is that it decreases the scan frequency. Probing four times will effectively
convert a 50 Hz device Lidar into a 12.5 Hz device. Second, the measure-
ments should be corrected, to compensate for any movement of the vehicle
in between the measurements. This should not be a major limitation, since

7 This countermeasure will also work for camera-based system.
8 Embedded hardware may be limited to generate true random sequences.
9 Assuming the software can control the exact speed of the rotating mirror.
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most modern vehicles advertise the speed of the vehicle via the Controller
Area Network (CAN) bus. Lastly, the software should decide whether a mea-
surement should be marked as invalid or not. Removing any outliers up to a
certain limit will have a small impact on resolution, but at a close range, this
may not be a problem. Another option can be to average the measurements
using a rolling average or KF. This has been explained in Section 3.2.1.

This countermeasure can be implemented in software.

Shorten the pulse period

In Section 4.2.5 it was calculated that the ping period is approximately
1.33 µs, the time it takes for the light pulse to travel forth and back. This
gives the attacker an attack window of less than this period.

By lowering the ping period, the attacker has a smaller time frame to
mount an attack. Lowering this period will also lower the maximum range.
By halving the period to 0.66 µs, the range of the ibeo LUX 3 will decrease
to 100 meter. If this is an acceptable range, depends on the application. De-
pending on how the ping period is determined, this countermeasure may
require a change in hardware.

The effectiveness of this countermeasure depends on the type of attack.
For instance, in a front/rear/side attack, this countermeasure is typical less
effective, as the attacker is allowed to constantly move around, e.g. have
a jammer installed in the bumper and drive in front of the target. For a
roadside attack, this has more effect, as the maximal range decreases. It is
still effective, but only at shorter distances.

Increase tracking limits

A denial-of-service attack can be mounted on the Lidar by jamming or spoof-
ing a large number of objects. The limit of objects the ibeo LUX 3 can track
is 65. This number is a rather small number, especially if the Lidar would op-
erate in three-dimensional world. Adding support for more objects that can
be tracked will increase the computational overhead. However, as hardware
is getting faster and cheaper, it is only a matter of time.

5.3 limitations
There are limitations to every experiment, including the experiments in this
thesis. Some limitations are a direct result of the requirements that were
defined back in Chapter 4.

5.3.1 One sensor does not make it an AV

In all of the proof-of-concept experiments conducted in Chapter 4, all sen-
sors were tested separately. However, one sensor does not make a vehicle
an AV. In the literature, a typical AV [16, 46, 4, 22] uses a combination of
sensors, most notably a combination of Lidar, Global Navigation Satellite
System (GNSS) and camera.

It is worth noting that the attacks on the ibeo LUX 3 and MobilEye C2-270

were not detected by the systems. There was no signal to indicate if the
device noticed malicious input. This may be completely different for other
systems and implementations available on the market, but it is believed that
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fully automated vehicles that currently exist will also fail to detect malicious
input. GNSS is an example of a sensors that considers loss of signal (e.g. due
to jamming), and will then use IMU as ‘backup’. A similar alternative for
camera or Lidar was not found in the literature.

5.3.2 Proof-of-concepts only

All of experiments are a proof-of-concept only, so they are maximized to
achieve success. When the desired goal is reached, it is considered a positive
result.

The testing conditions are another limitation. Since all proof-of-concepts
experiments have been conducted in the lab, the results will only be valid
for these conditions. Conditions that affect performance include the amount
of environmental light (no sunlight conditions were tested), weather condi-
tions (rain, snow, fog) and of course range (limited due to lab size). Nonethe-
less, all of the experiments conducted are particular plausible scenarios, and
their outcomes show why that particular experiment should be further ex-
plored.

In practice, most experiments will be a lot harder to conduct. For instance,
it will be a lot harder to emit a laser beam into a camera if the target is
moving. Also, windshields may limit the effects of a light source, e.g. it
may diverge the beam. Computer vision and robotics may automate this
process and can do this more accurate. However, this will exceed the cost
the attacker model and may require more time than is defined.

Regarding the Lidar experiments, no range tests have been performed.
The laser part of the transceiver has a range up to 100 meter with a viewing
angle of 9 °. Therefore, it will be easy for an attacker to emit a laser beam
at a large distance on a moving vehicle, which is the only part required for
a jamming attack. But for relay and in particular spoofing attacks, receiv-
ing the original signal is more important. As larger distances between the
attacker and its target, the gap between the Lidar pulses will also increase,
as proven by Section 4.2.2. At a distance of 100 meter, the gap between two
sequential Lidar pulses is approximately 1.47 meter. Since a photodetector
has an aperture of only 5 mm, it is very likely pulses will not be detected.
5.3.3 Experiment limitations

The attacks presented in this work address both camera and Lidar sys-
tems and are not limited to a single attack. From a black-box testing point-
of-view, this is a reasonable choice, since it is not clear what the effects will
be of an attack on a device. However, this limits the comprehensiveness of
the attacks.

In the camera experiments, different light sources have been used. These
light were the ones that were available on the market, and could be bought
for reasonable prices. As noted before, all light sources are all a tiny bit
different, in terms of viewing angle, output power, and emitted wavelength.
Therefore, it was not possible to conduct a survey, based on equal parame-
ters. Choices of the light sources for later experiments were solely based on
interpretation of the preceding results.

The results of the Lidar related experiments are sufficient, but they could
have been improved if more decent hardware was used to do pulse synchro-
nization and pulse generation. The pulse generators used during the setups
were the only two available that provided the required functionality of de-
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laying a signal and generating a fixed number of pulses. Configuration of
the parameters happens via turnable knobs, which is hard to tune precisely.

Lastly, most of the experiments combine several fields of studies. Most of
the attacks involve knowledge of electrical engineering (Lidar) or physics
(camera). The required knowledge to do the experiments was gained via
experts. Therefore, designing and testing attacks on such systems requires
multi-disciplinary knowledge.
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6
CONCLUS IONS AND
FUTURE WORK

6.1 summary
Chapter 1 introduces the context of this work. The problem statement intro-
duces the lack of research on malicious input on sensors. A decision by a
Autonomous Vehicle (AV) is as good as a sensor can perceive. Any form of
tampering that influences a sensor perception can therefore be catastrophi-
cally and cost lives.

In Chapter 2, the background on AVs was established, addressing top-
ics such as the levels of automation and attacker models. This work con-
sidered an attacker model that has limited money and limited time, that
intentionally wants to attack an AV without having access to the car’s in-
ternals. Possible attack scenarios have been established, including potential
attack scenarios such as a ‘Front/rear/side attacks’, ‘Roadside attacks’ and
‘Scenery attacks’.

Commonly used automotive vehicle sensors and applications have been
introduced in Chapter 3. A typical modern car has fourteen or more dif-
ferent sensors integrated, and this number will increase when AVs hit the
market. There have been several publications on AVs that are currently avail-
able for research [16, 46, 4, 22, 72]. Most of these vehicles use Laser Image
Detection and Ranging (Lidar) and camera sensors. Lidar is a laser-based
ranging system and camera vision plays an important role in many applica-
tions.

Potential attack scenarios and proof-of-concept attacks and have been dis-
cussed in Chapter 4, focusing on Lidar and camera systems. The MobilEye C2-270

Advanced Driver Assistance System (ADAS) was tested for light sensitivity,
auto exposure attacks and blinding attacks. It was found that it was sensitive
to near-infrared light, but not as sensitive as compared to a reference cam-
era without any near-infrared filtering. The MobilEye C2-270 was sensitive
to a 650 nm laser, but this is visible light source. The blinding attacks and
auto exposure attacks using near-infrared light did work on the MobilEye
C2-270, but it was not possible to fully blind the camera, which was possible
with the reference camera. The correlation value was calculated between the
tonal distributions of subsequent images. This metric was used to compare
the performance of the light sources in the different setups, with the addi-
tion of measuring the blinding time in the auto exposure attacks experiment.
The ibeo LUX 3 system was used for the attacks on a Lidar system. The ex-
periments have shown that it is susceptible to reflective materials, jamming
with a laser, relay attacks and spoofing attacks. All of the attacks have had
influence on the perception, as signals could be injected. In general, none of
the systems include tampering detection, as far as the experiments have con-
cluded. To receive the signal and emit a counterfeit one, transceivers were
used that were sensitive to light with a wavelength of 905 nm, and emit light
with the same wavelength.

The attacks have been demonstrated on the hardware layer. In Chapter
5, the implications of the attacks have been demonstrated on the applica-
tion layer, including a demonstration of what happens when an attack is di-
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rected a sensor fusion algorithm such as a Particle Filter (PF). Furthermore,
countermeasures and limitations of this work have also been discussed. A
particular countermeasure for camera-based systems is to add redundancy,
for the Lidar introducing unpredictability to the pulses will improve. The
major limitation to this work is that it was conducted small-scale in a lab
environment.

6.2 research questions
The research questions were introduced in Section 1.2. In this section, the
questions will be answered based on the attacker model and attack types of
Chapter 2, the survey on autonomous vehicle sensor in Chapter 3 and the
experiments conducted in Chapter 4.

The actual experiments have only been conducted on a Lidar and camera
system. Therefore, the answers will address these sensors only.

6.2.1 What types of attack can be mounted?

This work has demonstrated two attacks on the MobilEye C2-270 camera
system and three attacks on the ibeo LUX 3 Lidar system. It is discussed
that the list of attacks that have been demonstrated is not exhaustive.

The first attack on the MobilEye C2-270 was a blinding attack. In a blind-
ing attack, an attacker wants to prevent the camera from observing the en-
vironment, either fully or partially. Although it can use visible light, using
near-infrared light makes is less detectable for humans. The second attack in-
fluences the auto controls of a camera system. In order to optimize the light
conditions, image sensors can automatically tune the exposure and gain. By
influencing the controls, the camera adapts to a new situation that may not
be optimal for the current environment. Most auto controls have an itera-
tive tuning process, that takes time (can be in the order of seconds). Even if
this attack is mounted at regular intervals, the camera may not perceive the
scene for a longer period.

Three attacks have been demonstrated on the ibeo LUX 3 Lidar system.
The first was a jamming attack, in which a similar but counterfeit signal
was emitted in the direction of the ibeo LUX 3. This introduced a lot of noise.
The second attack showed that the Lidar is sensitive to relay attacks. Its own
signal could be received and emitted from another location in the direction
of the ibeo LUX 3, believing that it was emitted from the original position.
This attack was even possible from behind. Therefore, no line of sight is
required. The last attack was the spoofing attack, where an original signal
was spoofed. By controlling two parameters, the position of the counterfeit
object and the number of copies could be controlled.
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6.2.2 How likely are the attacks to happen and what are their conse-
quences?

The attacks that have been demonstrated could be conducted with hard-
ware that can be bought without any restrictions. This as opposed to at-
tacking sensors such as Global Navigation Satellite System (GNSS) or Radio
Detection and Ranging (Radar) that require a license for transmitting. That
said, the attacker model considered for this work in Section 2.3 is not limited
to any regulations that may apply, as it intentionally wants to either stop a
vehicle or crash it.

To establish the likelihood of the attacks that can be mounted on Lidar
and camera, four types of scenarios where attacks are plausible have been
defined in Section 2.4.
• Front/rear/side attack

• Roadside attack

• Scenery attack

• Evil maid/Evil mechanic attack

The first three attack scenarios have in common that they are remote and
do not require physical access to the car. The evil maid/evil mechanic re-
quires short-term access to the outside of the car, so it can mount the hard-
ware required for the attack onto a car. None of the attack scenarios require
special locations. In Section 2.4, a distinction was made between low-speed
and high-speed scenarios. For instance, a low-speed scenario happens in a
city center, that involves more interaction with the environment (pedestri-
ans, cyclists, vehicles). This as opposed to a high-speed scenarios, for in-
stance on the highway. From an attacker point of view, in both scenarios
a vehicle can cause damage to itself and/or the direct environment, poten-
tially causing injuries or fatalities.

The best option to mount attack on the MobilEye C2-270 would be from
a front/rear/side attack, as this gives the attacker the most time to di-
rect a light source into a camera. Confusing the auto controls is limited
to front/rear/side attack, because the attacker needs to emit a beam of light
into a image sensors. This is much harder if the attacker is not dynamic. If
the attacker can influence the camera, applications such as Collision Avoid-
ance System (CAS) have been shown to fail in detecting approaching vehi-
cles. While the MobilEye C2-270 is not sensitive enough to fully blind the
camera using near-infrared light, it is still sensitive to it. This allows an at-
tacker to either blind objects that should be detected, or spoof objects that
are invisible to the human eye (e.g. matrix traffic signs).

All of the attacks mounted on the ibeo LUX 3 can be mounted from the
roadside. Spoofing and jamming attacks can also be mounted from the
front/rear/side. Because the hardware for a jamming attack can be very
compact, it can even be installed by a evil mechanic. It has been demon-
strated that the Lidar will detect, classify and track objects that have been
spoofed. For CAS, the AV could be tricked into hitting the brakes by in-
troducing object spontaneously. Lastly, the tracking software has a limit on
the number of objects it can track. It is debated that spoofing or jamming
attacks could mount a denial-of-service attack by inserting a large number
of objects. This way, objects that really should be tracked could be missed.
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6.2.3 What is the amount of effort that has to be put into the attacks, in
terms of time and money?

The amount of time required can be split into attack preparation and
mounting the attack. Attack preparation depends on knowledge of the at-
tacker. This work has shown that it is possible to attack camera and Lidar
systems without prior knowledge of the systems, in a timespan of six month.
This includes reverse engineering the operation of the hardware. The time
required to mount an attack is negligible. With the right preparation, the at-
tacker can mount an attack from the mentioned scenarios that do not require
special access. This fits the definition of an attacker with limited time.

The attacker model also considered limited money. The attacks on the
MobilEye C2-270 have shown to work best with a 650 nm laser. Unfortu-
nately, this is a visible light source and this will be quickly detected by a
human. The second best option is the 940 nm near-infrared LEDs. While the
850 nm have been proven to be more effective on the image sensor, the costs
outweighs the effect by a factor eight. Combining multiple LEDs to form a
single beam has proven to be effective.

It is shown that the jamming and relay attacks are less sophisticated than
spoofing attacks. Jamming and relay attacks do no require synchroniza-
tion with the original signal. Therefore they are easier to mount. The most-
expensive part of the transceivers that have been used to jam and spoof the
signal, is an Osram SPL-PL90 laser diode. This laser diode costs 43.25 dollar.
The photodetector is an Osram SFH-213 and costs 0.65 dollar. Although the
experiments have made use of pulse generators and an oscilloscope, these
devices are not required to mount an attack. The pulse generators can be re-
placed with dedicated hardware such as a Field-Programmable Gate Array
(FPGA), Digital Signal Processor (DSP) or Microcontroller Unit (MCU). This
can make the attack battery powered and less detectable. This hardware
can be bought for less than 20 dollar. The range of the laser diodes is large
enough, therefore jamming attacks are the easiest to mount. If an attacker
designs one attack and shares it (e.g. via internet), the only thing another
attacker has to do is buy the hardware connect the wires. Spoofing attacks
will require the attacker to catch the signal, which may be problematic at a
distance of 100 meter. This is caused by the gap of 1.47 meter between scan
steps1.

The overall objective of this work was to find out if sensors can be in-
fluenced remotely, in such a way that the sensor either breaks or reports
invalid information, with the intention to crash or stop a vehicle. Based on
the achieved results, the conclusion is that Lidar and camera sensors can be
influenced in such a way that they report invalid information. If the vehicle
will crash is currently more likely than that it will stop. The latter assumes
that a sensors can detect malicious input, but both sensors did not sound an
alarm when they received malicious input.

6.3 future work
There are many things future experiments can improve upon this work.
With this work, the problem of the lack of sensor security is raised. At-
tacks have been demonstrated using representative hardware, but it would
be highly recommended to study the effect of these attacks on different hard-
ware. In particular, similar hardware is interesting with respect to black-box
testing. It can help expose knowledge on countermeasures that could not be

1 Refer to Section 4.2.2 for the calculations
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detected during this work. For instance, if a camera system with the same
image sensors as the MobilEye C2-270 shows it is sensitive to near-infrared
light, it is likely that the MobilEye C2-270 includes any light filtering in the
lens system.

6.3.1 Camera

Three additional camera-related attacks have not been studied in this work.
The first is using high-power lasers to damage image sensors and study the
feasibility and effects. It is interesting to know if an attacker can damage
an image sensor similar to a MobilEye C2-270 from a large distance. This
experiment was not possible due to lab safety regulations.

The second attack addresses hidden traffic sign, such as matrix boards
based on near-infrared lights. A human (driver) will not see this, but as
the experiments in Section 4.1 have shown, cameras will see this. It is be-
lieved that applications involving color thresholding or Haar-like classi-
fiers will detect these fake traffic signs, as explained in Section 3.1.3. The
MobilEye C2-270 does not include traffic sign recognition. Therefore, this at-
tack could not be tested. The last attack would ‘transform’ the image, such
as rotating it with mirrors [59] or stretching it with Fresnel lenses. Some cam-
era applications of Section 3.1.3 assume that objects of interest are located in
a specific region of the camera. By rotating or stretching, these assumptions
will not hold and the applications will fail to detect objects. This attack fits
best in the definition of an evil mechanic.

6.3.2 Lidar

There are several parts of the experiments that can be improved. In Section
4.2.5 hardware and cable delays were discussed. To lessen the effect, dedi-
cated designs consisting of hardware such as a FPGA, a DSP or a MCU can
add to the results of this thesis and make it possible to spoof and jam on
shorter ranges.

In the lab experiments, only one Lidar system was used. In practice, mul-
tiple Lidar systems will be used at the same time at the same location. This
will make synchronization harder if the transceiver pickup multiple signals.
A attacker has to distinguish between the origin of a signal. Future work
should investigate this issue.

The ibeo LUX 3 is a multi-layer Lidar that is not able to produce a three-
dimensional view. Although it is likely the same techniques apply to make
a three-dimensional image, there are no results on this.

The experiments have shown that it is possible to jam or spoof signals and
have shown what it requires, but have not managed to inject an object from
scratch. The only objects spoofed were copies of the ‘original’ observation.
Future work could be conducted on spoofing objects that, for instance, can
be loaded from a file. The spoofing attacks have indicated that it is possible
to influence a single scan point of the Lidar. Dedicated hardware will be
required that can control the laser at a decent pace. Because of the wide
viewing angle of the laser diode in the transceiver, it is believed that a single
laser is sufficient.
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6.3.3 Application level

In Section 5.1, three examples of the impact on application level have been
presented. These examples have not been thoroughly analyzed, because
the details on the internals of the MobilEye C2-270 and ibeo LUX 3 are un-
known. Furthermore, sensor fusion is a topic on its own.

Future work could look at anomaly detection using sensor fusion. For
instance, the Kalman Filter (KF) utilizes a mathematical model to validate
if a state change is plausible, e.g. how a Global Positioning System (GPS)
receiver can use Inertial Measurement Unit (IMU) data to conclude it has
not moved. Another interesting direction to consider is machine learning
algorithms, especially if machine learning algorithms can identify malicious
input, or if they can be influenced too.

6.3.4 Countermeasures

All of the countermeasures presented in Section 5.2 are also considered fu-
ture work. The experiments were only limited to performing the attacks,
therefore no time was invested in testing the countermeasures. The follow-
ing countermeasures have been proposed:

• Increase redundancy by adding cameras to overlap fully or partially.

• Limit the effects of high-intensity light sources on image sensors via
certain optics and materials.

• Detect jamming attacks on cameras via spectral analysis.

• Use multiple lasers with non-overlapping wavelengths to add redun-
dancy to the Lidar.

• Split image into separate channels to detect single-wavelength attacks.

• Introduce random probing to detect jamming attacks on Lidar.

• Probe multiple times with a Lidar to raise the confidence in a measure-
ment.

• Shorten the pulse period by limiting the maximum range of a Lidar.

• Increase the tracking limits of the Lidar.
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CASE STUDY

The Kalman Filter (KF) and Particle Filter (PF) have been discussed in Sec-
tion 3.2. To provide better understanding of the math that is involved, a case
study is presented in this appendix. In this case study, based on the intro-
duction of [90], both filters are applied to a cannon ball in flight. The KF
will ‘smooth’ its trajectory, while the PF is used to track it is trajectory.

To simulate a cannon ball in flight, a simplified kinematic model is used.
With this discrete model, presented in equation 27, the position x and y

of the cannon ball can be determined for every time step t. The constant
g = 9.81m/s2 represents the gravitational force on earth.

x(t) = x0 + V0xt

Vx(t) = V0x

y(t) = y0 + V0yt−
1

2
gt2

Vy(t) = V0y − gt

(27)

Note that this is a very simple model, and does not involve any other
forces that influence the cannon ball. If the model would involve the other
forces, it will be more accurate. But event a very simple model give pretty
good estimates, and therefore correct the measurement errors very well.

a.1 kalman filter
In this simulation, it is assumed that the cannon ball will have a position
sensor that can register is X and Y position at reasonable pace. The model
presented above is used, with the addition of noise to the X and Y position of
the ball. This results in differences in the actual position and the registered
position. The KF should reduce these difference as much as possible. In
figure 75, the model is plotted, together with the output of the KF.
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Fig. 75: The KF
applied to a
simulation of a
cannonball in
flight, with dif-
ferent values for
the measurement
error covariance
matrix R.
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The continuous kinetic model can be converted into the following discrete
matrix notation, which almost looks similar to equation 6. The time step is
indicated by ∆t, and is different from the iteration count, but they are related
(e.g. each iteration is exactly one second).

xi
Vxi
yi
Vyi

 =


xi−1 + Vxi−1∆t

Vxi−1

yi−1 + Vyi−1∆t

Vyi−1

+


0

0

−1
2g∆t

2

−g∆t

 (28)

Fully converted, it yields equation 13. The vector ui remains constant
in this model, but could hold different values for each iteration. From the
equation, it can be shown how xi and yi are based on Vxi and Vyi.

x̂ = Axi−1 + Bui
xi
Vxi
yi
Vyi

 =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 xi−1 +


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




0

0

−1
2g∆t

2

−g∆t

 (29)

With A, B and ui specified, the other three parameters can be defined.
The observation matrix H converts the measurements to the predicted state,
and can be used for ‘preprocessing’ the results. Since the measurement val-
ues map directly to the state, no conversion is required. This map can also
be used to ‘disable a sensor temporarily’, i.e. when a sensor reading is not
available. Matrix Q, will be the process error covariance. This could be the
error covariance due to the model not being completely accurate. Since the
equations are directly taken from the kinetic model, the matrix is completely
zero. Lastly, the measurement error covariance matrix R defines the mea-
surement error. For this case study, it is chosen arbitrary, but in practice,
it would be provided by the manufacturer of the sensor. As an alternative,
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a method such as Autocovariance Least-Squares (ALS) can be used to esti-
mate the covariance matrix [115, 3]. To give an example of the influence of
the covariance matrix R, see figure 75. Higher values allow more ‘flexibility’,
but increase the error.

H =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (30)

Q =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (31)

R =


0.2 0 0 0

0 0.2 0 0

0 0 0.2 0

0 0 0 0.2

 (32)

Before the first iteration, initial values should be provided. Matrix P0 is
the initial guess for the covariance of the state. It is outside the scope of
this work on how to determine the right values for P. The state vector x0
contains the initial values. Note that, y0 = 500, which is far from an accurate
estimation of the Y position. This is done on purpose, to show how quickly
the algorithm converges.

P0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (33)

x0 =


0

100 ∗ cos(π/4)
500

100 ∗ sin(π/4)

 (34)

With the definitions presented above, the KF is complete, and can be iter-
ated. Figure 75 shows the output of the filter, applied on the noisy measure-
ments.

a.2 particle filter
In this part of the case study, the PF is used to track the cannonball’s position.
The cannonball can sense it position to three ‘beacons’ in a two-dimensional
world: one at the start, one at the end, and one at the peak. The exact po-
sitions do not really matter (refer to Section 3.2.2). A measurement vector
does not only contain the distance to the three beacons, it will also include a
direction. While the direction of the cannonball and particles are not drawn
in the figures, they play an important role because the cannonball and parti-
cles move relative to the previous movement. Therefore, if an particle points
180 degrees the other way, it will move away from the cannonball.
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Figure 76 shows six graphs of several iterations. At i = 0, 1000 particles
are spread around in the predefined world, at random positions. These par-
ticles cluster very quick, as shown for i = 1, 4. As mentioned above, there
are only three ground beacons. This is not an ideal situation, because the
absolute distance to the three points, as observed by the cannonball, can be
ambiguous since the measurement can be projected onto the other side (‘in
the ground’). Section 3.2.2 illustrates this. While not drawn for i = 40, there
exists another cluster that is mirrored and therefore, the red dot (mean po-
sition) is not on the modeled trajectory. It is not until i = 80, 140 when the
other cluster dies out, and the mean position follows the trajectory. Impor-
tant to notice: due to the randomness of the particles and the resampling,
multiple runs of this simulation could lead to different results.

Fig. 76: Six iter-
ations of the PF
applied to track
the cannonball
in flight. The
red dot is the
weighted mean
position, the
green dot is the
actual position of
the cannonball.

(a) i = 0 (b) i = 1 (c) i = 4

(d) i = 40 (e) i = 80 (f) i = 140

The final tracked path is shown in Figure 77. It is a little less smooth
compared to the KF in Figure 75. This can be partially explained by the fact
that the mean position of all the particles is considered to be the estimated
position of the cannonball.
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Fig. 77: The PF
applied to track
a cannonball
in flight. The
orange dots are
the beacons on
the ground.
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B SPECTROMETRY

This appendix describes the spectrometry experiment. In this experiment,
the light sources used throughout this work have been tested for their wave-
lengths emitted. For the camera related experiments in Section 4.1, this ex-
periment helped to see if light sources overlapped, as a single LED does not
emit light of exactly one wavelength. Regarding the Laser Image Detection
and Ranging (Lidar) experiments in Section 4.2, it was needed to see if the
ibeo LUX 3 emitted on the same wavelength as the transceivers.

In addition, the AvaSpec-2048 USB spectrometer was used to generate a
spectrometry plot of the light sources. The same setup as in Section 4.1.2
(in particular Figure 29) was used, but the camera was replaced with a spec-
trometer1. In this plot, the Y-axis is measured in counts. This is the return
value of the analog-digital convert of the Charge-Coupled Device (CCD)
chip inside the spectrometer.

For all measurements, an integration time2 of 18 ms, 28 averages and 1

smoothing were chosen. These values do not really matter for a relative
measurement, as long as the same values are chosen for each measurement.
Furthermore, the same dark measurement was loaded before each measure-
ment, for calibration purposes.

1 Except for the 880 nm LED and the 905 nm laser. They were moved closer to yield an acceptable
amount of light

2 Comparable to shutter speed: higher values will accumulate more light
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Fig. 78: Spectrometry of the light sources mentioned above. Note that the 5x5 matrix is not included, since it uses the same LEDs as the normal 940 nm LEDs.
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The 905 nm laser yields a small number of counts, even though it is the
most powerful laser. This comes from the fact that it is a switched laser,
one that does not emit continuously. The 650 nm laser is continuously, and
yields a small spike on the graph. The small peaks at 450 nm, 550 nm and
625 nm are the reflections of the fluorescent light in the lab. They can be
ignored.
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C RESULTS OF CAMERA
EXPER IMENTS

c.1 testing sensitivity
Refer to Section 4.1.2 for an explanation and interpretation of the results.
In short, each group of six images consists of two images for the MobilEye
C2-270, two images for the reference webcam and two tonal distributions
(blue is off image, red is on image).

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 79: 850 nm LED @ 50 cm. Blue is off-state, red is on-state.
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results of camera experiments

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 80: 860 nm LED @ 50 cm. Blue is off-state, red is on-state.

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 81: 875 nm LED @ 50 cm. Blue is off-state, red is on-state.
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c.1 testing sensitivity

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 82: 880 nm LED @ 50 cm. Blue is off-state, red is on-state.

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 83: 940 nm LED @ 50 cm. Blue is off-state, red is on-state.
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results of camera experiments

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 84: 650 nm laser @ 50 cm. Blue is off-state, red is on-state.

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 85: 905 nm laser @ 50 cm. Blue is off-state, red is on-state.
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c.2 blinding the camera

(a) MobilEye - Off (b) MobilEye - On (c) Tonal distribution.

(d) Webcam - Off (e) Webcam - On (f) Tonal distribution.

Fig. 86: 940 nm 5x5 LED matrix @ 50 cm. Blue is off-state, red is on-state.

c.2 blinding the camera
Refer to Section 4.1.3 for an explanation and interpretation of the results. In
short, each group of eight images consists of three images for the MobilEye
C2-270, three images for the reference webcam and two tonal distributions
(blue is 0%, green is 50% and red is 100%).

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 87: 365 nm spot in dark @ 50 cm. Blue is 0%, green is 50%, red is 100%.
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results of camera experiments

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 88: 365 nm spot in dark @ 100 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 89: 365 nm spot in dark @ 150 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 90: 365 nm spot in dark @ 200 cm. Blue is 0%, green is 50%, red is 100%.
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c.2 blinding the camera

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 91: 365 nm spot in light @ 50 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 92: 365 nm spot in light @ 100 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 93: 365 nm spot in light @ 150 cm. Blue is 0%, green is 50%, red is 100%.
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results of camera experiments

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 94: 365 nm spot in light @ 200 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 95: White spot in dark @ 50 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 96: White spot in dark @ 100 cm. Blue is 0%, green is 50%, red is 100%.
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c.2 blinding the camera

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 97: White spot in dark @ 150 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 98: White spot in dark @ 200 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 99: White spot in light @ 50 cm. Blue is 0%, green is 50%, red is 100%.
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results of camera experiments

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 100: White spot in light @ 100 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 101: White spot in light @ 150 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 102: White spot in light @ 200 cm. Blue is 0%, green is 50%, red is 100%.
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c.2 blinding the camera

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 103: 850 nm spot in dark @ 50 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 104: 850 nm spot in dark @ 100 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 105: 850 nm spot in dark @ 150 cm. Blue is 0%, green is 50%, red is 100%.
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results of camera experiments

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 106: 850 nm spot in dark @ 200 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 107: 850 nm spot in light @ 50 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 108: 850 nm spot in light @ 100 cm. Blue is 0%, green is 50%, red is 100%.
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c.2 blinding the camera

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 109: 850 nm spot in light @ 150 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 110: 850 nm spot in light @ 200 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 111: 940 nm 5x5 LED matrix in dark @ 50 cm. Blue is 0%, green is 50%, red is 100%.
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results of camera experiments

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 112: 940 nm 5x5 LED matrix in dark @ 100 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 113: 940 nm 5x5 LED matrix in dark @ 150 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 114: 940 nm 5x5 LED matrix in dark @ 200 cm. Blue is 0%, green is 50%, red is 100%.
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c.2 blinding the camera

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 115: 940 nm 5x5 LED matrix in Light @ 50 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 116: 940 nm 5x5 LED matrix in Light @ 100 cm. Blue is 0%, green is 50%, red is 100%.

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 117: 940 nm 5x5 LED matrix in Light @ 150 cm. Blue is 0%, green is 50%, red is 100%.
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results of camera experiments

(a) MobilEye - 0%. (b) MobilEye - 50%. (c) MobilEye - 100%. (d) Tonal distribution.

(e) Webcam - 0%. (f) Webcam - 50%. (g) Webcam - 100%. (h) Tonal distribution.

Fig. 118: 940 nm 5x5 LED matrix in Light @ 200 cm. Blue is 0%, green is 50%, red is 100%.

c.3 confusing the auto controls
Refer to Section 4.1.4 for an explanation and interpretation of the results.
In short, each group of three images consists of two frames from the video,
the start frame and the least correlated frame. The graph is a correlation
over time, between the first frame and all subsequent frames. The blinding
interval is indicated between the two vertical bars.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 119: 365 nm spot in dark @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 120: 365 nm spot in dark @ 100 cm. Green line is time of start, red line is time of stop.
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c.3 confusing the auto controls

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 121: 365 nm spot in dark @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 122: 365 nm spot in dark @ 200 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 123: 365 nm spot in light @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 124: 365 nm spot in light @ 100 cm. Green line is time of start, red line is time of stop.
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results of camera experiments

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 125: 365 nm spot in light @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 126: 365 nm spot in light @ 200 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 127: White spot in dark @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 128: White spot in dark @ 100 cm. Green line is time of start, red line is time of stop.
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c.3 confusing the auto controls

(a) Start frame. (b) Lowest correlated frame.
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Fig. 129: White spot in dark @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 130: White spot in dark @ 200 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 131: White spot in light @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 132: White spot in light @ 100 cm. Green line is time of start, red line is time of stop.
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results of camera experiments

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 133: White spot in light @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 134: White spot in light @ 200 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 135: 650 nm Laser in dark @ 50cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 136: 650 nm Laser in Light @ 50cm. Green line is time of start, red line is time of stop.
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c.3 confusing the auto controls

(a) Start frame. (b) Lowest correlated frame.
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Fig. 137: 850 nm spot in dark @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 138: 850 nm spot in dark @ 100 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 139: 850 nm spot in dark @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 140: 850 nm spot in dark @ 200 cm. Green line is time of start, red line is time of stop.
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results of camera experiments

(a) Start frame. (b) Lowest correlated frame.
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Fig. 141: 850 nm spot in light @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 142: 850 nm spot in light @ 100 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 143: 850 nm spot in light @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 144: 850 nm spot in light @ 200 cm. Green line is time of start, red line is time of stop.
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c.3 confusing the auto controls

(a) Start frame. (b) Lowest correlated frame.
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Fig. 145: 940 nm 5x5 LED matrix in dark @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 146: 940 nm 5x5 LED matrix in dark @ 100 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 147: 940 nm 5x5 LED matrix in dark @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 148: 940 nm 5x5 LED matrix in dark @ 200 cm. Green line is time of start, red line is time of stop.
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results of camera experiments

(a) Start frame. (b) Lowest correlated frame.
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(c) Correlation over time.

Fig. 149: 940 nm 5x5 LED matrix in Light @ 50 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 150: 940 nm 5x5 LED matrix in Light @ 100 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 151: 940 nm 5x5 LED matrix in Light @ 150 cm. Green line is time of start, red line is time of stop.

(a) Start frame. (b) Lowest correlated frame.
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Fig. 152: 940 nm 5x5 LED matrix in Light @ 200 cm. Green line is time of start, red line is time of stop.
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D OVERV IEW OF
HARDWARE

This chapter lists all the hardware used during the experiments conducted
for this work.

d.1 mobileye c2-270

Fig. 153: Windshield Camera. This cam-
era is installed in a car directly under the
windshield. It is responsible for process-
ing the data. The camera is an Aptina
MT9V024 CMOS Red/Clear camera, ca-
pable of providing an image size of
752x480 at 60 FPS.

Fig. 154: Information Display. Informs
the driver about dangerous events, such
as incoming traffic or pedestrians.

Fig. 155: Connection Box. The camera,
display, power and car signals (CAN or
digital) are connected to this box.
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overview of hardware

Fig. 156: PC Connection box. This box is
required for configuring and calibrating
the MobilEye system. It is not included
in the package, and only meant for car
dealers.

Fig. 157: Custom built simulator. Signal
simulator to make the MobilEye C2-270

believe it was installed in a car. Supports
CAN signals and digital signals. This
simulator is connected to a PC via USB.

d.2 ibeo lux 3

Fig. 158: ibeo LUX 3 Lidar. Can measure
distance up to 200 m with a viewing an-
gle of 110 °. It has four layers and can
sense up to three echoes to see through
bad weather conditions. Scanning speeds
are 12.5 Hz, 25 Hz or 50 Hz. The angular
resolution is up to 1/8 ° horizontal, the
distance resolution is 4 cm.

Fig. 159: ibeo Tracking Box. Can track
dynamic objects such as pedestrians and
cars from Lidar data.
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d.3 light sources

Fig. 160: ibeo Box. Connects the Lidar to
the Ethernet bus or CAN bus.

d.3 light sources

d.3.1 Infrared

Fig. 161: Osram SFH4550 IR 850 nm LED.
Rated for 100 mA per LED. Viewing an-
gle ±3 °.

Fig. 162: Osram SFH4258 IR 860 nm LED.
Rated for 100 mA per LED. Viewing an-
gle ±15 °.

Fig. 163: Ledsee IR 875 nm LED. Rated
for 100 mA per LED. Viewing angle
±10 °.
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Fig. 164: Honeywell SEP8705-3 880 nm
LED. Rated for 50 mA per LED. Viewing
angle ±15 °.

Fig. 165: Ledsee IR 940 nm LED. Rated
for 20 mA per LED. Viewing angle ±15 °.

Fig. 166: Ledsee IR 940 nm 5x5 LED Ma-
trix. Each LED is rotatable in horizontal
and vertical direction for beam position-
ing. Rated for 20 mA per LED. Viewing
angle ±10 °.

d.3.2 Spots

Fig. 167: UV 365 nm LED spot with
diffuser. Inside is a LEDENGIN LZ1-
00U600 Rated for 5 W.
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d.3 light sources

Fig. 168: White LED spot with diffuser.
Inside is a CML INNOVATIVE TECH-
NOLOGIES ILL3A0001E. Rated for 3 W.
The color is cold-white with three peaks
in the spectrum at a wavelength of
450 nm, 550 nm and 610 nm.

Fig. 169: IR 850 nm LED spot with
diffuser. Inside is a LEDENGIN LZ1-
00R400. Rated for 2 W.

d.3.3 Lasers

Fig. 170: Picotronic LE650-5-3 650 nm
diode line laser with a focusable lens.
Maximal output is 5 mW.

Fig. 171: Ledsee 650 nm diode point laser
with a focusable lens. Maximal output is
5 mW.
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Fig. 172: Osram SPL-PL90 905 nm diode
laser and an Osram SFH-213 infrared
sensitive photodetector. Maximal output
is 25 W for 100 ns. The viewing angle is
9 °.

Fig. 173: Osram SPL-PL90 905 nm diode
laser and an Osram SFH-213 infrared
sensitive photodetector. Maximal output
is 25 W for 100 ns. This is the same
as above, but without the plastic enclo-
sure/filter.

d.4 cameras

Fig. 174: C-Cam BCI5-1394-M-40 with IR-
pass filter. Monochrome Firewire cam-
era with advanced controls over shutter
speed and exposure time. Maximal im-
age size is 1280x1024 at 25 FPS.

Fig. 175: Basler acA2040-25gm NIR.
Monochrome Ethernet Near-Infrared
camera with advanced controls over
shutter speed and exposure. Maximal
image size is 2048 x 2048 at 25 FPS.
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d.5 measurement tools

Fig. 176: Trust WB-3400T USB Com-
plementary Metal Oxide Semiconductor
(CMOS) webcam with IR-filter removed.
Used as reference camera for experi-
ment validation. Maximal image size is
640x480 pixels at 30 FPS.

d.5 measurement tools

Fig. 177: Tenma 72-6693 Lux Meter. Ca-
pable of measuring light intensity, as an
absolute value.

Fig. 178: AvaSpect-2048 USB Spectrome-
ter. Capable of measuring light between
200 nm and 1100 nm, producing relative
measurements.

Fig. 179: HP 8011A Pulse Generator. Can
generate square wave pulses of a certain
length. Can be externally triggered.
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Fig. 180: Philips PM 5715 Pulse Genera-
tor. Pulse generator with a delay function
(10 ns - 10 ms). Can be externally trig-
gered.

d.6 other

Fig. 181: Several custom made 3D-
printed mounts to hold the light sources
and lasers. Can be mounted on tripod.

Fig. 182: Several custom made 3D-
printed mounts to hold the light sources
and lasers. Can be mounted on tripod.
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d.6 other

Fig. 183: Test subject number one. His
name is Henk.
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ACRONYMS

ACC Adaptive Cruise Control. 5, 15, 17

ADAS Advanced Driver Assistance System. i, 48, 101

AGC Automatic Gain Correction. 24, 25

ALS Autocovariance Least-Squares. 109

ASK Amplitude Shift Keying. 34, 35

AV Autonomous Vehicle. i, 1–3, 5–9, 11, 12, 14, 15, 21–
23, 26–28, 34, 47, 84, 88, 90, 96, 97, 101, 103

BASt Bundesanstalt für Straßenwesen. 5

C/A Coarse/Acquisition. 17, 24, 26

CAN Controller Area Network. 10, 14, 49, 97

CAS Collision Avoidance System. 3, 5, 15–17, 87, 103

CCD Charge-Coupled Device. 27, 28, 32, 50, 51, 93, 113

CDMA Code Division Multiple Access. 17

CMOS Complementary Metal Oxide Semiconductor. vii,
27, 28, 32, 33, 50, 51, 54, 93, 141, 147

CRC Cyclic Redundancy Check. 35

CUSUM Cumulative Sum. 46

CVSS Common Vulnerability Scoring System. 8, 9

CWI Continuous Wave Inference. vii, 24, 26

DARPA Defense Advanced Research Projects Agency. 1

DAVI Dutch Automated Vehicle Initiative. 48

DSLR Digital Single-lens Reflex. 28, 32

DSP Digital Signal Processor. 85, 104, 105

ECDSA Elliptic Curve Digital Signature Algorithm. 27

ECU Electronic Control Unit. 33, 35

EGNOS European Geostationary Navigation Overlay Ser-
vice. 18

Emap Enhanced Map. vii, 21–23

EMC Electromagnetic compatibility. 17

EMP Electromagnetic Pulse. 11

ESA European Space Agency. 18

FMEA Failure Mode and Effect Analysis. 8, 9

FPGA Field-Programmable Gate Array. 85, 104, 105

FSK Frequency Shift Keying. 34, 35

GIS Geographical Information System. 22

GLONASS Global Navigation Satellite System. 18, 20, 21

GNSS Global Navigation Satellite System. i, vii, ix, 2, 17–
19, 21–26, 36, 47, 97, 98, 103

GPS Global Positioning System. vii, 7, 17, 18, 20–22, 24–
26, 36, 39, 46, 89, 106
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Acronyms

HMI Human-machine Interaction. 10

HMM Hidden Markov Model. 41

IMU Inertial Measurement Unit. 7, 21, 23, 25, 36, 39, 46,
89, 98, 106

KF Kalman Filter. vii, 36–41, 45, 46, 67, 89, 97, 106–110

Lidar Laser Image Detection and Ranging. i, iii, vii, viii,
2, 3, 7, 14–17, 21, 29, 47, 67–90, 95–99, 101–106, 113,
142, 143

MCU Microcontroller Unit. 35, 36, 79, 85, 104, 105

MSAS Multi-functional Satellite Augmentation System.
18

NAVSTAR Navigation Satellite Time And Ranging. 17

NHTSA National Highway Traffic Safety Administration. 5

NMA Navigation Message Authentication. 26, 27

PDF Particle Density Function. 42–44

PF Particle Filter. vii, viii, 16, 36, 39–45, 89–92, 102, 107,
109–111

PRN Pseudorandom Noise. 17, 18, 24

QE Quantum Efficiency. 27, 52

Radar Radio Detection and Ranging. 2, 14, 15, 17, 47, 103

SBAS Satellite-based Augmentation System. 18

SDCM Wide-area System of Differential Corrections and
Monitoring. 18

SDR Software Defined Radio. 34, 35

SIR Sequential Importance Resampling. 42

SIS Sequential Importance Sampling. 42

Sonar Sound Navigation and Ranging. 14

TESLA Timed Efficient Stream Loss-Tolerant Authentica-
tion. 27

TPMS Tire-pressure Monitoring System. i, vii, 33–35, 47

V2I Vehicle-to-Infrastructure. 6

V2V Vehicle-to-Vehicle. 6, 96

V2x Vehicle-to-X. 23

WAAS Wide Area Augmentation System. 18
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[54] D P Grubor, D M Šulić, and Vida Žigman. “Classification of X-ray so-
lar flares regarding their effects on the lower ionosphere electron den-
sity profile”. In: Annales Geophysicae. Vol. 26. 7. Copernicus GmbH.
2008, pp. 1731–1740 (cit. on p. 19).

[55] Kristen Hall-Geisler. How Automatic Braking Systems Work. 2014. url:
http : / / auto . howstuffworks . com / under - the - hood / trends -

innovations/automatic-braking-system.htm (visited on 09/23/2014)
(cit. on p. 16).

[56] A Harvey. CV Dazzle: Camouflage from Computer Vision’. 2012 (cit. on
p. 33).

[57] Oona A Hathaway et al. “The law of cyber-attack”. In: (2012) (cit. on
p. 6).

[58] Richard Hawkins et al. “Using a software safety argument pattern
catalogue: Two case studies”. In: Computer Safety, Reliability, and Secu-
rity. Springer, 2011, pp. 185–198 (cit. on p. 7).

[59] R Andrew Hicks and Christopher Croke. “Designing coupled free-
form surfaces.” In: Journal of the Optical Society of America. A, Optics,
image science, and vision 27 (2010), pp. 2132–2137. issn: 1084-7529. doi:
10.1364/JOSAA.27.002132 (cit. on p. 105).

[60] SA Hirani. “Energy consumption of encryption schemes in wireless
devices”. In: (2003). url: http://d-scholarship.pitt.edu/7620/
(cit. on p. 35).

[61] JD Hol, TB Schon, and F Gustafsson. “On resampling algorithms for
particle filters”. In: Nonlinear Statistical Signal . . . (2006). url: http:
//ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4378824

(cit. on p. 42).

[62] Paul Horowitz, Winfield Hill, and Thomas C Hayes. The art of elec-
tronics. Vol. 2. Cambridge university press Cambridge, 1989 (cit. on
p. 85).

[63] Todd E. Humphreys. “Detection Strategy for Cryptographic GNSS
Anti-Spoofing”. In: IEEE Transactions on Aerospace and Electronic Sys-
tems 49.2 (Apr. 2013), pp. 1073–1090. issn: 0018-9251. doi: 10.1109/
TAES.2013.6494400. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6494400 (cit. on p. 26).

157

http://gpsworld.com/a-comparison-of-lidar-and-camera-based-lane-detection-systems/
http://gpsworld.com/a-comparison-of-lidar-and-camera-based-lane-detection-systems/
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5466132
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5466132
http://www.ce.unipr.it/people/bertozzi/pap/cr/iav2010-braive.pdf
http://www.ce.unipr.it/people/bertozzi/pap/cr/iav2010-braive.pdf
https://www.youtube.com/watch?v=18TKA-YWhX0
https://www.youtube.com/watch?v=18TKA-YWhX0
http://auto.howstuffworks.com/under-the-hood/trends-innovations/automatic-braking-system.htm
http://auto.howstuffworks.com/under-the-hood/trends-innovations/automatic-braking-system.htm
http://dx.doi.org/10.1364/JOSAA.27.002132
http://d-scholarship.pitt.edu/7620/
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4378824
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4378824
http://dx.doi.org/10.1109/TAES.2013.6494400
http://dx.doi.org/10.1109/TAES.2013.6494400
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6494400
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6494400


bibliography

[64] Radoslav Ivanov, Miroslav Pajic, and Insup Lee. “Attack-resilient sen-
sor fusion”. In: Proceedings of the conference on Design, Automation &
Test in Europe. European Design and Automation Association. 2014,
p. 54 (cit. on p. 46).

[65] Imad Jawhar, Nader Mohamed, and Hafsa Usmani. “An Overview
of Inter-Vehicular Communication Systems, Protocols and Middle-
ware”. In: Journal of Networks 8.12 (Dec. 2013), pp. 2749–2761. issn:
1796-2056. doi: 10.4304/jnw.8.12.2749-2761. url: http://ojs.
academypublisher.com/index.php/jnw/article/view/9396 (cit.
on p. 11).

[66] RE Kalman. “A new approach to linear filtering and prediction prob-
lems”. In: Journal of basic Engineering 82.Series D (1960), pp. 35–45.
url: http://fluidsengineering.asmedigitalcollection.asme.
org/article.aspx?articleid=1430402 (cit. on p. 36).

[67] Yousun Kang et al. “Multiband Image Segmentation and Object Recog-
nition for Understanding Road Scenes”. In: IEEE Transactions on In-
telligent Transportation Systems 12.4 (Dec. 2011), pp. 1423–1433. issn:
1524-9050. doi: 10.1109/TITS.2011.2160539. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5959984 (cit. on
pp. 28–30).

[68] Robert Kastner and Thomas Michalke. “Attention-based traffic sign
recognition with an array of weak classifiers”. In: . . . (IV), 2010 IEEE
(June 2010), pp. 333–339. doi: 10.1109/IVS.2010.5548143. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5548143%20http://ieeexplore.ieee.org/xpls/abs%

5C_all.jsp?arnumber=5548143 (cit. on pp. 29, 30).

[69] CG Keller and Markus Enzweiler. “The benefits of dense stereo for
pedestrian detection”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 12.4 (2011), pp. 1096–1106. url: http://ieeexplore.
ieee.org/xpls/abs%5C_all.jsp?arnumber=5765690 (cit. on pp. 29,
31).

[70] Andrew J. Kerns, Kyle D. Wesson, and Todd E. Humphreys. “A
blueprint for civil GPS navigation message authentication”. In: 2014
IEEE/ION Position, Location and Navigation Symposium - PLANS 2014
(May 2014), pp. 262–269. doi: 10.1109/PLANS.2014.6851385. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6851385 (cit. on p. 27).

[71] B Ravi Kiran and G V N A Harsha Vardhan. “A Fast Auto Expo-
sure Algorithm for Industrial Applications Based on False-Position
Method”. In: Advances in Intelligent Systems and Computing 247

(2014). Ed. by Suresh Chandra Satapathy, Siba K Udgata, and Bhaben-
dra Narayan Biswal, pp. 509–515. doi: 10.1007/978-3-319-02931-3.
url: http://link.springer.com/10.1007/978-3-319-02931-3
(cit. on p. 33).

[72] Alois Knoll. Environmental Sensing and Data Processing. 2014 (cit. on
pp. 1, 2, 28, 47, 101).

[73] Hui Kong, SE Sarma, and Feng Tang. “Generalizing Laplacian of
Gaussian filters for vanishing-point detection”. In: IEEE Transactions
on Intelligent Transportation Systems 14.1 (2013), pp. 408–418. url: http:
//ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6313912

(cit. on p. 29).

158

http://dx.doi.org/10.4304/jnw.8.12.2749-2761
http://ojs.academypublisher.com/index.php/jnw/article/view/9396
http://ojs.academypublisher.com/index.php/jnw/article/view/9396
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://dx.doi.org/10.1109/TITS.2011.2160539
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5959984
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5959984
http://dx.doi.org/10.1109/IVS.2010.5548143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5548143%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5548143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5548143%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5548143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5548143%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5548143
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5765690
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5765690
http://dx.doi.org/10.1109/PLANS.2014.6851385
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6851385
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6851385
http://dx.doi.org/10.1007/978-3-319-02931-3
http://link.springer.com/10.1007/978-3-319-02931-3
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6313912
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6313912


bibliography

[74] Herbert J Kramer. Observation of the Earth and its Environment: Survey
of Missions and Sensors. Springer, 2002, p. 772 (cit. on p. 17).

[75] Stefan Laible et al. “3d lidar-and camera-based terrain classification
under different lighting conditions”. In: Autonomous Mobile Systems
. . . c (2012). url: http://link.springer.com/chapter/10.1007/
978-3-642-32217-4%5C_3 (cit. on p. 16).

[76] RB Langley. “GPS, the Ionosphere, and the Solar Maximum”. In: GPS
world (2000). url: http://gauss.gge.unb.ca/gpsworld/gpsworld.
july00.pdf (cit. on p. 19).

[77] JH Lim, Omer Tsimhoni, and Yili Liu. “Investigation of Driver Per-
formance With Night Vision and Pedestrian Detection Systems—Part
I: Empirical Study on Visual Clutter and Glance Behavior”. In: IEEE
Transactions on Intelligent Transportation Systems 11.3 (Sept. 2010), pp. 670–
677. issn: 1524-9050. doi: 10.1109/TITS.2010.2049843. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5477182 (cit. on p. 28).

[78] Kevin Lim et al. “LiDAR remote sensing of forest structure”. In:
Progress in Physical Geography 27 (2003), pp. 88–106. issn: 03091333.
doi: 10.1191/0309133303pp360ra (cit. on p. 69).

[79] Herbert S Lin, Kenneth W Dam, William A Owens, et al. Technology,
policy, law, and ethics regarding US acquisition and use of cyberattack ca-
pabilities. National Academies Press, 2009 (cit. on p. 6).

[80] Dave Litwiller. “CCD vs CMOS - Facts and Fiction”. In: January
(2001) (cit. on p. 27).

[81] Huaping Liu, Yulong Liu, and Fuchun Sun. “Traffic sign recognition
using group sparse coding”. In: Information Sciences (Jan. 2014), pp. 1–
15. issn: 00200255. doi: 10.1016/j.ins.2014.01.010. url: http:
//linkinghub.elsevier.com/retrieve/pii/S002002551400022X

(cit. on p. 29).

[82] DF Llorca and Vicente Milanés. “Autonomous Pedestrian Collision
Avoidance Using a Fuzzy Steering Controller”. In: IEEE Transactions
on Intelligent Transportation Systems 12.2 (2011), pp. 390–401. url: http:
//ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5715879

(cit. on p. 29).

[83] Lockheed Martin. GPS III: The Next Generation Global Positioning Sys-
tem. 2011. url: http://www.lockheedmartin.com/content/dam/
lockheed/data/space/documents/gps/GPSIII%5C_FactSheetFINAL1.

pdf (visited on 09/23/2014) (cit. on p. 27).

[84] George Loukas, Diane Gan, and Tuan Vuong. “A Review of Cyber
Threats and Defence Approaches in Emergency Management”. In:
Future Internet 5.2 (May 2013), pp. 205–236. issn: 1999-5903. doi: 10.
3390/fi5020205. url: http://www.mdpi.com/1999-5903/5/2/205/
(cit. on p. 3).

[85] J. L. Lovell et al. “Using airborne and ground-based ranging lidar to
measure canopy structure in Australian forests”. In: Canadian Journal
of Remote Sensing 29.5 (2003), pp. 607–622. issn: 07038992. doi: 10.
5589/m03-026 (cit. on p. 69).

159

http://link.springer.com/chapter/10.1007/978-3-642-32217-4%5C_3
http://link.springer.com/chapter/10.1007/978-3-642-32217-4%5C_3
http://gauss.gge.unb.ca/gpsworld/gpsworld.july00.pdf
http://gauss.gge.unb.ca/gpsworld/gpsworld.july00.pdf
http://dx.doi.org/10.1109/TITS.2010.2049843
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5477182
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5477182
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5477182
http://dx.doi.org/10.1191/0309133303pp360ra
http://dx.doi.org/10.1016/j.ins.2014.01.010
http://linkinghub.elsevier.com/retrieve/pii/S002002551400022X
http://linkinghub.elsevier.com/retrieve/pii/S002002551400022X
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5715879
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5715879
http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPSIII%5C_FactSheetFINAL1.pdf
http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPSIII%5C_FactSheetFINAL1.pdf
http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPSIII%5C_FactSheetFINAL1.pdf
http://dx.doi.org/10.3390/fi5020205
http://dx.doi.org/10.3390/fi5020205
http://www.mdpi.com/1999-5903/5/2/205/
http://dx.doi.org/10.5589/m03-026
http://dx.doi.org/10.5589/m03-026


bibliography

[86] Kebina Manandhar and Yao Liu. “Combating False Data Injection
Attacks in Smart Grid using Kalman Filter”. In: 2014 International
Conference on Computing, Networking and Communications (ICNC) (Feb.
2014), pp. 16–20. doi: 10.1109/ICCNC.2014.6785297. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6785297 (cit. on p. 46).

[87] Xuesong Mao and Daisuke Inoue. “Demonstration of In-Car Doppler
Laser Radar at 1.55 µm for Range and Speed Measurement”. In: IEEE
Transactions on Intelligent Transportation Systems 14.2 (2013), pp. 599–
607. url: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?
arnumber=6387600 (cit. on pp. 14, 15, 95).

[88] Katty McCarron. Battery exhaustion a looming issue with TPMS sen-
sor units. 2012. url: http : / / www . tirebusiness . com / article /

20120227 / ISSUE / 302279954 / battery - exhaustion - a - looming -

issue-with-tpms-sensor-units (visited on 08/14/2014) (cit. on
p. 34).

[89] James P McDermott. “Attack net penetration testing”. In: Proceedings
of the 2000 workshop on New security paradigms. ACM. 2001, pp. 15–21

(cit. on p. 8).

[90] Richard J Meinhold and Nozer D Singpurwalla. “Understanding the
Kalman filter”. In: The American Statistician 37.2 (1983), pp. 123–127

(cit. on p. 107).

[91] Rob Merchant. “Analysis of Laser Light Threat to CCTV”. In: (2012)
(cit. on p. 32).

[92] MobilEye. About MobilEye. 2014. url: http://www.mobileye.com/
about/ (visited on 12/15/2014) (cit. on p. 48).

[93] A Mogelmose. “Vision-based traffic sign detection and analysis for
intelligent driver assistance systems: Perspectives and survey”. In:
IEEE Transactions on Intelligent Transportation Systems 13.4 (2012), pp. 1484–
1497. url: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?
arnumber=6335478 (cit. on pp. 29, 30).

[94] BA Moghaddam, H Haleh, and S Ebrahimijam. “Forecasting Trend
and Stock Price with Adaptive Extended Kalman Filter Data Fusion.”
In: International Proceedings of Economics . . . 4 (2011), pp. 119–123. url:
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%

5C & q = intitle : Forecasting + Trend + and + Stock + Price + with +

Adaptive+Extended+Kalman+Filter+Data+Fusion%5C#0 (cit. on
p. 36).

[95] Mohammad Sohrab Hossan Monsi. Laser Radar for Precise Vehicle Ve-
locity Measurement. kassel university press GmbH, 2009 (cit. on p. 69).

[96] PY Montgomery, TE Humphreys, and BM Ledvina. “A multi-Antenna
Defense Receiver-Autonomous GPS Spoofing Detection”. In: Inside
GNSS (2009). url: http://scholar.google.com/scholar?hl=en%
5C & btnG = Search % 5C & q = intitle : A + multi - Antenna + Defense +

Receiver - Autonomous + GPS + Spoofing + Detection % 5C # 0 (cit. on
p. 26).

160

http://dx.doi.org/10.1109/ICCNC.2014.6785297
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6785297
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6785297
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6785297
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6387600
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6387600
http://www.tirebusiness.com/article/20120227/ISSUE/302279954/battery-exhaustion-a-looming-issue-with-tpms-sensor-units
http://www.tirebusiness.com/article/20120227/ISSUE/302279954/battery-exhaustion-a-looming-issue-with-tpms-sensor-units
http://www.tirebusiness.com/article/20120227/ISSUE/302279954/battery-exhaustion-a-looming-issue-with-tpms-sensor-units
http://www.mobileye.com/about/
http://www.mobileye.com/about/
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6335478
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6335478
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:Forecasting+Trend+and+Stock+Price+with+Adaptive+Extended+Kalman+Filter+Data+Fusion%5C#0
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:Forecasting+Trend+and+Stock+Price+with+Adaptive+Extended+Kalman+Filter+Data+Fusion%5C#0
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:Forecasting+Trend+and+Stock+Price+with+Adaptive+Extended+Kalman+Filter+Data+Fusion%5C#0
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:A+multi-Antenna+Defense+Receiver-Autonomous+GPS+Spoofing+Detection%5C#0
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:A+multi-Antenna+Defense+Receiver-Autonomous+GPS+Spoofing+Detection%5C#0
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:A+multi-Antenna+Defense+Receiver-Autonomous+GPS+Spoofing+Detection%5C#0


bibliography

[97] National Highway Traffic Safety Administration. U.S. Department of
Transportation Releases Policy on Automated Vehicle Development. 2013.
url: http : / / www . nhtsa . gov / About + NHTSA / Press + Releases /

U . S . +Department + of + Transportation + Releases + Policy + on +

Automated+Vehicle+Development (visited on 05/01/2014) (cit. on
p. 5).

[98] Navipedia. GLONASS Future and Evolutions. 2011. url: http://www.
navipedia . net / index . php / GLONASS % 5C _ Future % 5C _ and % 5C _

Evolutions (visited on 10/12/2014) (cit. on p. 18).

[99] Navipedia. GLONASS Performance. 2011. url: http://www.navipedia.
net / index . php / GLONASS % 5C _ Performances % 5C # GLONASS % 5C _

Accuracy%5C_Comparison (visited on 09/01/2014) (cit. on p. 21).

[100] Tyler Nighswander and Brent Ledvina. “GPS software attacks”. In:
Proceedings of the . . . (2012). url: http://dl.acm.org/citation.
cfm?id=2382245 (cit. on p. 25).

[101] NIST. NVD Common Vulnerability Scoring System Support v2. 2007.
url: http://nvd.nist.gov/cvss.cfm (visited on 08/26/2014) (cit.
on p. 8).

[102] Alan Ohnsman. Nissan Sets Goal of Introducing First Self-Driving Cars
by 2020. 2013. url: http://www.bloomberg.com/news/2013- 08-
27/nissan-sets-goal-of-bringing-first-self-driving-cars-

by-2020.html (visited on 04/23/2014) (cit. on p. 1).

[103] Hiro Onishi. “Paradigm change of vehicle cyber security”. In: Cy-
ber Conflict (CYCON), 2012 4th International . . . (2012). url: http :

//ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6243987

(cit. on pp. 3, 9).

[104] OSRAM. SPL PL90 Datasheet. 2014. url: http://www.osram-os.com/
Graphics/XPic8/00149644%5C_0.pdf/SPL%20PL90.pdf (visited on
02/15/2015) (cit. on p. 74).

[105] Edgar Osuna, Robert Freund, and Federico Girosi. “Training sup-
port vector machines: an application to face detection”. In: Computer
Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer
Society Conference on. IEEE. 1997, pp. 130–136 (cit. on p. 29).

[106] Andriy Panchenko and Lexi Pimenidis. “Towards practical attacker
classification for risk analysis in anonymous communication”. In:
Communications and Multimedia Security (2006). url: http://link.
springer.com/chapter/10.1007/11909033%5C_22 (cit. on p. 9).

[107] Gaurav Pandey, James R McBride, and Ryan M Eustice. “Ford cam-
pus vision and lidar data set”. In: The International Journal of Robotics
Research 30.13 (2011), pp. 1543–1552 (cit. on p. 16).

[108] Panagiotis Papadimitratos and A Jovanovic. “GNSS-based Position-
ing: Attacks and countermeasures”. In: . . . Conference, 2008. MILCOM
. . . iii (2008). url: http://ieeexplore.ieee.org/xpls/abs%5C_all.
jsp?arnumber=4753512 (cit. on p. 27).

[109] Ron Patton. Software testing. Sams Pub., 2006 (cit. on p. 47).

[110] P Perez, Jaco Vermaak, and Andrew Blake. “Data fusion for visual
tracking with particles”. In: Proceedings of the IEEE 92.3 (2004), pp. 1–
18. url: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?
arnumber=1271403 (cit. on p. 40).

161

http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+Automated+Vehicle+Development
http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+Automated+Vehicle+Development
http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+Automated+Vehicle+Development
http://www.navipedia.net/index.php/GLONASS%5C_Future%5C_and%5C_Evolutions
http://www.navipedia.net/index.php/GLONASS%5C_Future%5C_and%5C_Evolutions
http://www.navipedia.net/index.php/GLONASS%5C_Future%5C_and%5C_Evolutions
http://www.navipedia.net/index.php/GLONASS%5C_Performances%5C#GLONASS%5C_Accuracy%5C_Comparison
http://www.navipedia.net/index.php/GLONASS%5C_Performances%5C#GLONASS%5C_Accuracy%5C_Comparison
http://www.navipedia.net/index.php/GLONASS%5C_Performances%5C#GLONASS%5C_Accuracy%5C_Comparison
http://dl.acm.org/citation.cfm?id=2382245
http://dl.acm.org/citation.cfm?id=2382245
http://nvd.nist.gov/cvss.cfm
http://www.bloomberg.com/news/2013-08-27/nissan-sets-goal-of-bringing-first-self-driving-cars-by-2020.html
http://www.bloomberg.com/news/2013-08-27/nissan-sets-goal-of-bringing-first-self-driving-cars-by-2020.html
http://www.bloomberg.com/news/2013-08-27/nissan-sets-goal-of-bringing-first-self-driving-cars-by-2020.html
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6243987
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6243987
http://www.osram-os.com/Graphics/XPic8/00149644%5C_0.pdf/SPL%20PL90.pdf
http://www.osram-os.com/Graphics/XPic8/00149644%5C_0.pdf/SPL%20PL90.pdf
http://link.springer.com/chapter/10.1007/11909033%5C_22
http://link.springer.com/chapter/10.1007/11909033%5C_22
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4753512
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4753512
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1271403
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1271403


bibliography

[111] Jonathan Petit, Michael Feiri, and Frank Kargl. “Revisiting attacker
model for smart vehicles”. In: Wireless Vehicular Communications (WiVeC),
2014 IEEE 6th International Symposium on. IEEE. 2014, pp. 1–5 (cit. on
p. 11).

[112] Jonathan Petit and Steven E. Shladover. “Potential Cyberattacks on
Automated Vehicles”. In: IEEE Transactions on Intelligent Transporta-
tion Systems (2014) (cit. on pp. 2, 3, 6, 10).

[113] Walter Preiss. WP’s SloMo CCD and CMOS Sensor Info. 2014. url:
http://www.fen-net.de/walter.preiss/e/slomoinf.html (visited
on 12/18/2014) (cit. on p. 51).

[114] ML Psiaki and BW O’Hanlon. “GPS spoofing detection via dual-
receiver correlation of military signals”. In: IEEE Transactions on Aerospace
and Electronic Systems 49.4 (2013). url: http://ieeexplore.ieee.
org/xpls/abs%5C_all.jsp?arnumber=6621814 (cit. on pp. 24, 26).

[115] MR Rajamani and JB Rawlings. “Estimation of the Disturbance Struc-
ture from Data using Semidefinite Programming and Optimal Weight-
ing”. In: Automatica (2009). url: http://www.sciencedirect.com/
science/article/pii/S000510980800366X (cit. on p. 109).

[116] Duminda I B Randeniya, Sudeep Sarkar, and Manjriker Gunaratne.
“Vision–IMU Integration Using a Slow-Frame-Rate Monocular Vision
System in an Actual Roadway Setting”. In: IEEE Transactions on Intel-
ligent Transportation Systems 11.2 (June 2010), pp. 256–266. issn: 1524-
9050. doi: 10.1109/TITS.2009.2038276. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5373840 (cit. on
p. 29).

[117] Eric Rescorla and Brian Korver. “Guidelines for writing RFC text on
security considerations”. In: (2003) (cit. on p. 7).

[118] Rijksoverheid. Besluit van tot wijziging van het Reglement verkeersregel
en verkeerstekens 1990. Tech. rep. 2014 (cit. on p. 23).

[119] Ishtiaq Rouf et al. “Security and Privacy Vulnerabilities of In-car
Wireless Networks: A Tire Pressure Monitoring System Case Study”.
In: Proceedings of the 19th USENIX Conference on Security. USENIX Se-
curity’10. Berkeley, CA, USA: USENIX Association, 2010, p. 21. isbn:
888-7-6666-5555-4. url: http://dl.acm.org/citation.cfm?id=
1929820.1929848 (cit. on pp. 34, 35).

[120] Joanna Rutkowska and Alexander Tereshkin. “Evil maid goes after
TrueCrypt”. In: Invisible Things Lab’s Blog (2009) (cit. on p. 11).

[121] SAE International. “Taxonomy and Definitions for Terms Related to
On-Road Motor Vehicle Automated Driving Systems”. In: Surface Ve-
hicle Information Report J3016 (2014) (cit. on p. 5).

[122] A. Samman et al. “Potential use of near, mid and far infrared laser
diodes in automotive LIDAR applications”. In: Vehicular Technology
Conference 5 (2000), pp. 2084–2089. url: http://ieeexplore.ieee.
org/xpls/abs%5C_all.jsp?arnumber=883239 (cit. on pp. 16, 71, 95).

[123] Scott Sanders. “Wavelength-agile lasers”. In: Optics and photonics news
16.5 (2005), pp. 36–41 (cit. on p. 95).

[124] R. Sandhu. “Good-enough security”. In: IEEE Internet Computing 7

(2003). issn: 1089-7801. doi: 10.1109/MIC.2003.1167341 (cit. on
p. 8).

162

http://www.fen-net.de/walter.preiss/e/slomoinf.html
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6621814
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=6621814
http://www.sciencedirect.com/science/article/pii/S000510980800366X
http://www.sciencedirect.com/science/article/pii/S000510980800366X
http://dx.doi.org/10.1109/TITS.2009.2038276
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5373840
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5373840
http://dl.acm.org/citation.cfm?id=1929820.1929848
http://dl.acm.org/citation.cfm?id=1929820.1929848
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=883239
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=883239
http://dx.doi.org/10.1109/MIC.2003.1167341


bibliography

[125] Christoph Schmittner et al. “Security Application of Failure Mode
and Effect Analysis”. In: Computer Safety, Reliability, and Security (2014),
pp. 310–325 (cit. on pp. 8, 9).

[126] Byron Schmuland. Example of a stochastic process which does not have
the Markov property. 2011. url: http://math.stackexchange.com/a/
89414 (visited on 08/31/2014) (cit. on p. 44).

[127] Bruce Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999),
pp. 21–29 (cit. on p. 8).

[128] Robert Shirey. “RFC 2828: Internet security glossary”. In: The Internet
Society (2000) (cit. on p. 7).
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