15

Winter

A Reference Model Method to align the development
of one software system with multiple Hinterland
Container Terminals

Master Thesis BIT by Pim Dietz
Supervised by Dr. Klaas Sikkel and Prof. Dr. Jos van Hillegersberg

At the University of Twente.

UNIVERSITY OF TWENTE, & corano

Management summary

Cofano Software Solutions B.V. develops the Terminal Operating System (TOS) to
support the business processes of Hinterland Container Terminals (HCTs). The system
under development is to be implemented at multiple HCTs using the same codebase.
Therefore, Cofano needs to find a fit between the supported business processes of the
existing codebase and the adopting organisations. This raises the need to identify
commonality and variability between the customers’ business processes while dealing
with a growing organisation.

To that end, we developed a method that makes use of a reference model. A first version
of the reference model has been developed by both reverse engineering the assumptions
about the supported domain from the system as well as the development team’s mental
model of the supported domain. The model describes the assumed processes supported
by the TOS, thereby enabling the comparison with the actual business processes to find
a fit. The method is tailored to fit into the agile software development process of Cofano.

According to experts’ opinions, the method has merit in meeting Cofano’s arising needs
and even unforeseen advantages, such as the ability to make the added value of the
implicit knowledge explicit to the customer and to provide process optimisation as part
of its implementation process. There are, however, important challenges that may
impede the advantages of this method. Sharing knowledge with the competitor may be
an objection to cooperate in developing new variations for the system. In addition,
required capabilities in modelling skills and abstract thinking in using the method chunk
are stringent, changes to the codebase should be made with care as the existing
customer base may disagree, and changes proposed to the adopting organisation are
more easily said than done.

The most quantifiable advantage is estimated to be between 15-20% of the
implementation project’s resources in terms of programming and configuration
activities and is most likely to increase as more variations are added and the customer
base expands. Not including the other qualitative benefits in the equation, this implies
that at least 15% of an implementation project’s resources may be spent to maintain the
reference model and cope with its challenges and pitfalls before a break even point is
reached and further investment in the method no longer yields any advantages.

For its adoption at Cofano, a few workshops are recommended given the required
capabilities of the method’s users. Through these workshops, both the organisation’s
required capabilities in its use and the method itself further develop from the
experiences in these workshops. The learning experience by means of workshops
prevents confronting customer organisations with a suboptimal methodology.

As the method and the organisation’s capabilities require further development, it
requires investment in terms of time and effort at first before its benefits materialise. In
addition, the TOS’ variations and customer base are currently small but expected to
expand in the future. Both imply that the benefits of its adoption come with a delay.

Table of contents

1. INtrodUCHION i 5
1.1 Challenges for COfano ... s 6
1.2 ReSearch goal.... s s e e 7
1.3 Method ChUDNK . 8

2 Research qUESHIONS ... n s e nan 11

3 APPIOACK s ———————————————————————— 12

4 Product Model: a Reference model........oouinnmmmmmssss 13
05 T 0 o 1 U) 13

4.1.1 RefErenCe MOUELS ..ttt st st s s s s bbb s s 13
4.2 Building the reference model’s SKkeleton..........in i ———————— 16
4.2.1 The core process — the FOUNGA LI . seeesesssess s s s ssssssssesssssssesasesanes 16
4.3 Adding detailed domain descriptions to the process subdomainsc.ceesssinsenens 20
4.3.1 Order Entry process SUDAOMAIN. ... eereeneiseesneieeeseessesssesssesssesssesssessssesssssssesssssssasssssssesssesans 21
4.3.2 Transportation process domain in GENETraloeneneeneeneenseesseesesseessesssssssesssssssessesnes 28
4.3.3 Truck process SUDAOMAINcccureueereesieseeseiseesssisesssesssesssesssesssessse s s b sessssssesssssssesasesans 30
4.3.4 Shuttle Process SUDAOMAIN ... eureereereeseeseiseesseisessseessess s s bbb ssssesssssssesasesans 34
4.3.5 Barge Process SUDAOMAIN ... creueereeneesseeseiseessessesssesssesssesssesssessss bbb s ssssssssssesssssssesasesans 34
4.3.6 Gate CONLIOl SUDAOIMAIN. ... cuieecereeeseisreesseesseesse e sesssesssessssssse s ssse s bbb s s sns s saebas 34
4.3.7 TasSK SUDAOMAINS ...verierierieeeereeeect st ssse et s s s sss s bbb s s anbas 37
4.3.8 Track & Trace SUDAOMAIN .. cereeeeeereesseesseesseiseessesesssesssesssesssessssssse s s s ssssssesssssssesasesans 37
4.3.9 Reporting (SUPPOTTL) SUDAOIMNAIN ocuueeieuieereesreireeseesseeeseessesssesssesssessse s essssssssssssssssesssssssesssesans 37
4.3.10 INVOICING SUDAOIMAIN..cteuiuurerieeitseetseesreesseessessse b see st asess s s s es s bbb sesssns s baebas 38
4.3.11 ReUSE SUDAOMAIN wcurieurenrieeeeeeect st essebsee st sess s s s ss s bbb s s baebas 44
4.3.12 Replenishment SUDAOMAINcceueerienieseeseineeseisese s sssessse s s s s sessssssesssssssesasesans 44
4.3.13 Reporting (Depot) SUDAOMAIN ...ttt s sesssss s ssssesasesans 46
4.4 DeSign PrinCiPles.. i —————————————————— 46

5 Process model......——————————————— 48
5.1 AS IS s AR R RS 48
5.2 TO D@ i 49

5.2.1 Options for identified diffEreNCES ...ttt erse s sessssssesans 49
52,2 THE SPTINT coeuetreeereeeseeueesseesesseessesesessessesssesssess s s s e s bbb s R AR bbb st 50
5.2.3 FEEADACK ettt b bbb bt 50
5.2.4 A fit fOT CACH CUSTOIMIET c..euieeieeetreeeect ettt see s bbb sss s ss s bbb s 52

LI 1 1 1 () 1 53
L L] 1) (0 - U 53
LT 2 U 21 (L VL 54
6.3 Challenges and pitfallS......cociin s ——————————————— 56

6.3.1 Sharing knowledge with the COMPETITOT ...ttt seesess e 56
6.3.2 Required capabilities and SKill iN USEcucermienreennernneeneeiseesnetisessessseesessssssesssessessesssessssssesans 56
6.3.3 Organisational and SOftware Changes ... seesessseeans 58

7 GeneraliSation ... ——————————————_—— 59

£ T D EST 011 3) ¢ 60
8.1 HOW VErsus What ... s s ssssssssssssssss 60
8.2 Shared knowledge benefits realisation only when usedccccooceeimnssssnsnnsssssnnennsnnans 60
8.3 MaNtENANCE ..cvtiiismssss 60
8.4 Reference model’s PrecCiSion ... ————————————— 60

L T 00 s U L1 E o) o 62

9.1 Recommendations for adOPtioN......irsnnmsmsss s ——————— 63
10 Scientific CONIIDULION ... 65
11 FUture reSearch ... s sssssassrssssssens 66
FL] 0123 1 L 0. 69
W2] 0123 1 0 0. 5 71
2] 0= 1 o 0. G 73

1. Introduction
Cofano is a small software development company that targets roughly two markets. One
of those markets is the logistics industry. Its goal is to supply software to support their
main processes and gradually improve transparency throughout the network of actors
involved in the logistic chains. One of their main products for this market, the Terminal
Operating System (TOS) aims to do so by delivering the Software as a Service (SaaS)
application, standardising the processes it supports where possible and provide a few
alternatives to these processes to fit the idiosyncratic needs of a (few) particular
customer(s) through mass customisation (i.e. functionality can be enabled and disabled
by the user).

The logistics industry, however, is quite old fashioned when it comes to technology and
information sharing. As one of the owners of the Cofano put it: “We try to innovate with
the industry.” Indicating it is a conservative industry, which requires a lot of dialogue to
develop innovative software solutions and achieve acceptance of doing things differently
than before.

Roughly speaking, this dialogue has two facets. On the one hand, the dialogue has to
maintain a relationship with the customer. This is the commercial side of the dialogue
where it is up to the personal social experiences, social capital, sales techniques and/or
ability to convince the customer while managing expectations of the persons engaging in
these dialogues to maintain a healthy relationship. On the other hand, in order to
actually develop new solutions, the business of the customers needs to be analysed to
identify the needs of the new solutions and opportunities for (radical) improvements.

It is therefore not surprising that this dialogue with the customer is of high importance
to the success of Cofano in this market. Cofano has two owners. Currently, one of which
is mainly responsible for this dialogue in the logistics market; in other words, he is the
product owner. He has indicated that he does not wish to continue managing the
customer relationships in the future, certainly as the company and its clientele will
grow.

The process is observed to be unstructured; even at later stages in the relationship with
customers, the meetings with the customer resemble that of a brainstorm session and
product demonstration mash up, while the main business processes and information
flows to be supported remain unclear to the development team. This results in
seemingly even more changes in requirements, as the proposed solutions appear unfit
or not as optimal as expected, and consequently costly changes.

In the future, these processes will have a focus more on user acceptance, rather than
developing new solutions: Once the main products/solutions have been developed in
dialogue with the early adopters, it is to be seen how these will fit the needs of new
customers that have a similar business, assuming they have similar problems and
processes as the early adopters. The main innovations done with the early adopters
have to be accepted by other customers (albeit with some customisation or extensions
as is to be expected from any software implementation, but these are then available to
any other user as well and added to the mass customisation options).

In order to not only develop the new solutions with the early adopters, but also to
achieve acceptance of existing solutions, the businesses need to be analysed in order to
gain insight whether existing solutions will fit the needs of the new customer,
identifying idiosyncratic or new needs if any.

In essence, the dialogue with the customer is a ‘solution-developing-cycle’ comparable
to Wieringa’s design science cycle, where the problem context is analysed, or problem
investigation (Wieringa, 2012). It is the analysis of the problem context, in particular its
entities, relationships and events the system should ‘know’ about (i.e. the subject
domain (Wieringa, 2003)), and business processes the system should support, that will
be the focal point of this thesis for both the development of new solutions and the
acceptance of existing solutions.

1.1 Challenges for Cofano
The challenge for Cofano is to consistently conduct the problem context analysis by
multiple employees of Cofano in both of two scenarios:

In the first scenario, the main solutions are yet to be developed with early adopters,
which are to be used later by the rest of the industry. The business analysis will explore
the businesses of early adopters to ‘innovate with’. Therefore, the analyst needs to be
able to effectively identify needs and opportunities for radical improvements using the
technological capabilities and insights of Cofano. This phase is similar to the first two
steps in Steven G. Blank’s ‘Four Steps to Epiphany (Blank, 2006).

The second scenario is similar to the last two steps from Blank (2005). Solutions have
been developed with the early adopters and an analysis of the new customer’s problem
context is required. The analysis identifies whether the same solutions will fit that
organisation or idiosyncratic needs require customisation of the solutions. In addition,
the analysis of the new customers may give insight into new opportunities for
improvements that are applicable for other customers in the industry as well. For
instance, recently a new customer acquired by Cofano included a business aspect
unexplored yet by Cofano; an hinterland container terminal that also provides its
customers with the rail modality. This instance is expected to be a very important aspect
for many of Cofano’s future customers. It has given rise to the opportunity to develop
solutions that (radically) improve the performance of this business aspect as well.

Furthermore, the business analysis should fit into the agile software development
approach the developing team is currently slowly adopting. Cofano’s development team
is slowly adopting practices from Scrum. Part of which is the acquisition of feedback
about the proposed solutions after each short iteration called a ‘sprint’. The feedback
will refine the insights of the problem context for another iteration in developing fit
solutions.

With the future in mind, the business analysis method should be scalable for the future
growth of the organisation. More than one person will engage in dialogue with the
customers of Cofano. Cofano’s customers in the logistics industry can be divided into
types depending on their role in the logistics chain. Hinterland container terminals and
barge operators are examples of these types. The concept of Cofano is fitted in a SaaS

application with one single codebase per customer type where the ‘best solution fits
most’. There is a need to identify variability and commonality among business needs of
different customers of the same type. Sharing information within Cofano about the
problem contexts between product owners is key.

With the organisational growth also comes a more distributed character of the
development team; currently there is a development team in Sliedrecht and a smaller
team in Enschede. This aspect also calls for the need to effectively share information.
The distributed character is a known factor to negatively influencing coordination and
communication in distributed development teams. Effectively sharing the long term task
knowledge (i.e. the problem contexts) will implicitly improve coordination between
distributed development teams (Espinosa, Slaughter, Kraut, & Herbsleb, 2007).

In addition, required information to develop solutions is easily overlooked in an
unstructured setting where conversations spur in every direction. The business analysis
needs to effectively cover the required information while preserving the informal
charms of the dialogue.

In summary, meeting those challenges the business analysis needs to:

* Fit the agile approach of the development team (i.e. it fits the iterative and value
first approach of the development methodology).

* Part of the above but very important: Acquire feedback from the customer about
the proposed solutions to refine the insights of the problem context and hence
provide input for the development of a better solution.

* Be scalable for the future growth of the organisation (i.e. used by more than one
product owner, able to share information within the organisation and create
transactive group memory to support the distributed character of the
development team).

* Efficiently and effectively acquire information about the problem contexts (i.e.
entities, relationship, events and business processes).

* Support the identification of variability and commonality between problem
contexts of different customers.

* Preserve unstructured practices that promote innovation and relationship
building with the customer (it should support the dialogue, not lead it)

1.2 Research goal

The challenges for Cofano described above call for the development of a method chunk
that focuses on the business analysis, supplementing the main development process. A
method chunk is a made-to-measure development methodology element that can be
instantiated for more than one software development project (Rothengatter, 2012). As
the Hinterland Container Terminal (HCT) is the most prominent customer type that
currently gives rise to the challenges described, this project revolves around the
development of a method chunk for development projects with this customer type.

Therefore, given the method chunk as artefact to develop, the challenges described as
problem context and stakeholder goals, the research goal is formulated as:

To improve the acquisition of information about the problem context of HCTs,

by developing a method chunk,

such that the information about the problem context is structured, used and shared
throughout the organisation and best practice is applied to acquire that information,

in order to improve accuracy of the acquired information (effectiveness), acquire the
information in less iterations (efficiency), identify commonality and variability among
problem contexts and prepare Cofano for a growing organisation with more product
owners and customers.

Ultimately the improved information acquisition about the problem context should
result in a reduction of resources needed to develop suitable solutions by hitting the
target earlier throughout the iterations of development. Solutions will fit the target
organisations better due to the improved accuracy.

1.3 Method chunk

The concept of method chunks comes from the (Situational) Method Engineering
((S)ME) approach, which is an approach to select or configure the most applicable
methodology for a specific IS development project. SME is a reaction to the fact that each
project has its own idiosyncrasies and no traditional methodology can foresee all these
idiosyncrasies. In addition, traditional methodologies are often difficult to adapt to a
given situation (Harmsen, 1997). To that end, SME aims to develop a methodology that
is constructed from smaller components, called method fragments or method chunks.

As there is no consensus in literature on the distinction between fragments and chunks
(Agerfalk et al,, 2007), Rothengatter’s definitions will be adopted for this project
(Rothengatter, 2012). These definitions are:

A method fragment is an atomic methodology element, either product or process oriented.

A method chunk is a combination of at least two method fragments, one of which product
oriented and one process oriented.

<> Method

1. develops

Product < Process

Figure 1 - Composition of a method (adopted from Rolland, Prakash, & Benjamen, 1999)

In short, an overall methodology has two interdependent aspects consisting of products
and processes (Rolland et al., 1999)(see Figure 1). Therefore, a method chunk is a
combination of, at least, one product oriented fragment and one process oriented
fragment. In order to construct the method chunk, at least one of both is required.

There are two mainstream approaches to identify or construct a method fragment
(Rothengatter, 2012). The first one is to create method fragments by reverse
engineering existing methodologies. The second approach is to create method fragments
from scratch. However, the reverse engineering approach poses problems, as most
methodologies are not modularly built. Therefore, the fragments need to be created
from scratch.

The initial design of the method chunk consists of four stages (Rothengatter, 2012): (1)
the identification of the contingency variables; (2) the definition of the method chunk’s
scope; (3) selection of method fragments and assembly thereof into a method chunk;
and (4) implementation of the method chunk into the overall methodology.

However, the first step is based on contingency theory. Contingency theory suggests that
a number of variables influence the performance of information systems, where a better
fit between the variables design and use of the system imply a better performance of
that system and ultimately of the organisation (Weill & Olson, 1989). However, the
causal relation between IS performance and organizational performance is often
assumed (Rothengatter, 2012).

There is some criticism on this theory (Weill & Olson, 1989). The concepts of fit and
performance are often ill defined and performance measures are often reduced to one
single measure, making it difficult to apply. In addition, there are conflicting empirical
results from studies measuring similar constructs that implicates low correlations
between the variables. It is suggested that the relationship between the independent
variables on organisational performance are more complex than contingency theory
assumes (Schoonhoven, 1981).

In relation to this project, the theory poses difficulties to apply as it requires a
longitudinal study to relate the effect of the methodology on the performance of the IS
developed by Cofano and it will be near impossible to control for other variables.
Therefore, this project takes a more pragmatic approach and bases the argumentation
for the methodology chunk’s development on the analysis of the problem context
(Cofano itself in this case, not its customers) for it to affect. In other words, the method
chunk will be based on Cofano’s challenges as analysed and the assumptions made about
the effects the method chunk has in supporting the stakeholder goals as described in the
research goal. These effects will function as evaluation criteria throughout its
development.

Since fragments are either product oriented or process oriented both the process
model(s) and the product model(s) of the methodology have to be developed to
construct the method chunk. A product model describes the concepts, the relationships
between these concepts, and the constraints that the concepts have to satisfy in the
product resulting from the method. A process model describes how the corresponding
product is developed.

The second stage defines these models for our method chunk:

* Product model: Given the purpose of the method chunk, it needs to produce a
product containing the information about the problem context (Cofano’s
customers) that tells the development team what kind of solutions or variations
of those solutions to develop. Therefore, as product model for the chunk, a
framework needs to be developed that structures and identifies the required
information about the problem contexts to meet the knowledge sharing goal and
consequently the identification of commonality and variability goal.

* Process model: The method chunk needs a process model describing how it is
used in the overall development process of Cofano.

In the third stage, the actual models are constructed and combined after which, in the
last stage, the method chunk can be applied in the overall methodology.

10

2 Research questions

In order to develop the method chunk and its constituents, the following questions must
be answered. The main question is:

What is a suitable method chunk for analysing the problem contexts of HCTs in order to
identify their needs and priorities for software solutions?

In order to answer that question, a product model and the process model need to be
developed.

To develop the product model, we need to know what pieces of information about the
problem context are needed such that we can develop a product model that supports its
identification and documentation:
* Which pieces of information about the problem contexts can be identified that are
relevant for analysis?
* Whatis a suitable method for documenting the relevant pieces of information?

To develop the macro process, we need a process model that describes the use of the
product model in the overall development process of Cofano:
* Whatis a suitable process for applying the product oriented fragment in the overall
development process of Cofano?

11

3 Approach

Since the fragments and the chunk is developed from scratch, it is said that theory and
practice permits the initial identification of fragments and chunks (Rothengatter, 2012).
After which, the newly constructed fragments are evaluated by practitioners, refined
and evaluated in an iterative fashion. Therefore, this project follows a similar iterative
approach to develop the method chunk.

The first version of the product model is developed based on best practice from
literature. The different aspects of the current (early adopting) customers’ businesses
(HCTs) as seen by the software system are identified and structured in that framework.
As such, the reverse engineering of the system in conjunction with the mental models of
various software engineers and personal firsthand experience on the customers’
problem context form the input for the first version of the product model. Throughout
its development, the model is often subjected to feedback from fellow business analysts
whether it is able to identify the relevant information, describes it correctly and is able
to structure it parsimoniously.

Then, the process model for using the product model in the context of Cofano’s
development organisation is developed by analysing and extending its current
development process.

After that, the product model and the process model form a complete method chunk.
The method chunk is presented to a few likely end users of the chunk. Their input will
form input for an iteration before the chunk is validated through expert opinion.

The approach is depicted in Figure 2. Boxes with bold text indicate the deliverable of the
previous stage. All boxes in one stage function as input for the deliverable outputted by
that stage.

N
First hand experience
on problem contexts
~— @
Y
Best theoretical
practice
— @@
e N s N
Peer feedback/input
on product model > Product model ——
N / b - Version 1
(A N Method chunk (‘
Software engineer's Current development (product model and Version 2
mental models process process model) | Method chunk
§ Y, \ Y, o J N y,
e A e N e A e A
. . Peer feedback/input Peer feedback/input - Validated method
Reverse engineering Expert opinion
on process model on chunk chunk
N\ J N\ J N J N\ J
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Figure 2 - Approach stages based on deliverables and their input

12

4 Product Model: a Reference model

4.11n theory

The product of the method chunk needs to describe the required information about the
problem contexts for the development team to develop new solutions or variations on
existing solutions. Therefore, the product model only needs to acquire information
about the problem context describing that what is not (yet) supported by the system.
This chapter will look into reference models to lay the theoretical foundation for a
product model that effectively identifies those pieces of information.

4.1.1 Reference models

The products developed by Cofano are in many ways a modern version of an Enterprise
Resource Planning (ERP) system for actors in the logistics sector; it is meant to
automate the majority of their business processes, while it is being delivered as a service
and is connected to many other information systems in the sector (which include other
systems of Cofano providing services to parties in the logistics sector) to achieve as
much transparency in the logistics chain as possible.

Similar to the ‘solution-developing-cycle’ of Cofano, the implementation of an ERP
system involves a process of finding a fit between existing solutions (the generic
packages) and the organisation. If necessary, either the product can be customized for
the specific needs of the business or the business processes can be adapted to fit the
existing solution (Pajk, Indihar-Stemberger, & Kovaci¢, 2011; Soffer, Golany, & Dori,
2003). Although the latter is most preferred from Cofano’s perspective, it is not always
an option.

In this process, reference models (also called universal models, generic models or model
patterns) may be used to describe the solutions embodied in the system, which can then
be used to analyse customisations needed of the system or changes needed in the
processes in the problem context (i.e. adaptations of the customer’s practices) (Pajk et
al,, 2011).

Although there is no consensus about the definition of reference models, Peter Nes
(2007) captured their salient aspects. In general, a reference model is universal in a
certain domain, usually with a recommending character, such as when the model
describes best practices supported by the ERP system. From a reference model, a model
can be derived that is specific to a certain organisation. Derivatives are made from the
possible best practices in a reference model to design a ‘to be’ situation of an
organisation where an ERP system is implemented.

Therefore, as Soffer et al. (2003) put it, creating a reference model is a reverse
engineering effort: The starting point of a reference model are the existing solutions
imposed by the system and not the customer’s business. The reference model contains
the practices supported from which a configuration can be made for a particular
organisation.

At first, this may seem to be the opposite of what the product is required to describe;
namely the system and not the customer, while we need to describe the problem

13

context. However, the system is developed based on the problem contexts of early
adopters. A reference model of TOS is, therefore, a consolidation of those problem
contexts that it supports. In other words, the reference model describes the world
according to the system. It makes all assumptions about the problem context that are
part of its design explicit. This means that, in order to identify the required information
about the problem context of a customer, we simply have to compare the reference
model to the customer’s actual problem context and look for differences. Having a model
to discuss can prove to be a catalyst of establishing a solution (Svensson & Hvolby,
2012).

The identified differences can either be mitigated by the customer, changing its process
to one that is already supported by the system (the recommending character of the
reference model), or require the development team to develop a new solution or a
variation of an existing solution. After the development of a new solution or variation,
these can be added to the reference model for future reference. The process is shown in
Figure 3.

In effect, this can be a very efficient way of identifying the required information about
the problem context: This approach saves effort in creating a model of the problem
context in that it only focuses on the pieces of information needed. The development for
a fully detailed model of every problem context would become very labour-intensive.
This approach makes full use of the reusability advantage of reference models (Nes,
2007), where the reference model functions as a checklist and its derivatives as checked
off checklists. Therefore, the product model is the derivative of the reference model,
which describes differences identified.

Overall, the reference model approach described meets the following criteria of the
method chunk:
* The required information is efficiently identified by focusing on the differences
with the reference model that require documentation for the development team.
* The knowledge about the problem contexts is shared in the organisation in
twofold; the reference model describes the supported problem contexts and
functions as a central place to document what it supports, and derivatives
describe the idiosyncrasies for each customer’s problem context.

Therefore, the aim is to develop a reference model such that the creation of derivatives
becomes part of the method chunk.

14

Problem
contexts
early adopters \

TOS

Additional features added 10

Supported
Processes

described in

Reference
model

Variations
dentified

Variations
Identitied

Problem context Problem context

Changes made to

Changes made 10
Hepresented by

—

Inland Container Terminal B Inland Container Terminal A

alala AAA

Figure 3 - Using reference models for variation identification

On a side note, Deelstra, Sinnema et al. (2004) identified problems when using reference
models for addressing commonality and variability. As software systems grow, the
complexity and the amount of possible variation will grow with it, making it
unmanageable for the individual. Implicit properties describe the phenomenon of
dependencies of possible variations in system functionality supported by the product
that are undocumented and either unknown or known only by experts. Fortunately,
compared to ERP systems, TOS will not hold that many variations as these are kept to a
minimum.

Also note that normally reference models are used to create configurations of ERP
systems. The goal is merely to identify the need for new features as the configuring of
TOS is nowhere as complex as fully fletched ERP systems from one of the bigger well
known vendors.

15

4.2 Building the reference model’s skeleton

The reference model describes the processes supported by TOS, in essence describing
the ‘ideal’ problem context for the system to support. The ‘ideal’ problem context will
become more and more generic as the TOS supports more HCTs; supporting more HCTs
implies that the reference model becomes more universal in the domain of HCTs. Hence,

we will refer to this ‘ideal’ problem context as the Generic Hinterland Container
Terminal (GHCT).

The development of the high level skeleton takes inspiration from the simple, concise,
and building blocks based business model canvas from Osterwalder (Osterwalder &
Pigneur, 2009). To achieve a high level building blocks structure for the reference
model, a similar approach as Pajk et al. (2011) is adopted. The process of the GHCT at a
high level of abstraction will form the main skeleton for the reference model. Each step
in that high level process we call a process domain. These domains will function as
building blocks of the reference model, containing process subdomains with detailed
processes performed in that domain.

In this section the processes of Generic HCTs are explored as far that is currently
supported by TOS (or will be in the near future). This means that, as the reference model
is build throughout this section, it will include domains that are not yet supported by the
system or that there are domains that are not yet discovered. Unsupported domains are
not described in detail. Undiscovered domains and to be explored domains’ details are
to be added once they are explored.

To build the reference model in this chapter step by step, we will start from the most
generic fundamental process of the GHCT and work to the most detailed sub processes,
which will include details of data flows and relevant entities and relationships

4.2.1 The core process — the round trip

In its most distilled form, the GHCT arranges transport of shipping containers from or to
the customer, via the terminal, to or from a certain other location. Often, that ‘other
location’ is a deep sea terminal, where containers are loaded or unloaded on/from a
large sea container ship. Depending on whether the container comes from a foreign
country, unloaded on the deep sea terminal, transported to the GHCT and ultimately to
the customer or completely the other way around, the transportation is referred to as an
import or an export. However, in essence, the process remains the same; an import
merely implies the opposite process of an export. In rare cases the destination or origin
is not a deep sea terminal; the transportation of a container takes place from or to the
customer via the GHCT to or from another location. In general, the transportation
from/to a customer from/to another location is called a round trip.

4.2.1.1 The foundation

On a high level, the process can be divided into process domains. A process domain is a
set of processes, which together realise a step of the high level process. The high level
process described so far consists of the following process domains as shown in Figure 4.
The Customer process domain consists of all the processes handling customer
interaction. The processes in the Transportation Process area together realise the
transportation step. The processes in the Terminal Management process area together
realise all that is necessary to store a container for some time (examples are handling it

16

off and on a truck, stacking, connecting cooling containers to a power supply, weighing,
etc.)

We illustrate the control flow through these process domains with an example of a
round trip process. We will expand on this example in more detail as we add domains
and subdomains to the reference model:

The process starts at the customer process domain, where an order at the GHCT for
transportation is received and processed. Let’s assume that the order is an export
booking. The flow of the high level process now shifts to the transportation domain: an
empty container is transported from a depot of empty containers to the terminal. The
flow has now shifted to the Terminal Management process domain: the container is
stored (albeit possibly for a very short amount of time) on the terminal.

Once the container is loaded on a truck for transportation to the customer, the flow
shifts back to the Transportation process domain. The GHCT transports an empty
container to the customer’s specified location, loads it with goods and transports it back
to the GHCT. Here, the flow has shifted back to the Terminal Management domain. The
GHCT stores the container until it is transported to the deep sea terminal for export.

Once the terminal has loaded it on a truck, a barge or a train for transportation to the
deep sea terminal, the flow shifts back to the transportation domain. Once the container
is delivered at the deep sea terminal and the round trip has completed, the flow shifts
back to the Customer process domain, where the invoice for the completed round trip is
created and sent to the customer.

~ Y f B f A
Customer _ Terminal
Transportation Management
\ v " 7 - g

Figure 4 - Most elementary process domains for the reference model

Note that the process domains describe processes performed by the GHCT. Processes
performed by other parties are scoped out since these are not part of the scope of TOS.

4.2.1.2 Adding subdomains

The process domains in Figure 4 can, at a lower level, be divided into smaller
subdomains, which is also a collection of processes to achieve a certain step within the
process domain it is in. An extension of Figure 4 with subdomains is shown in Figure 5.

17

Customer [Transportation) f Terminal)
Management
Barge
Gate Control
Order entry
Container Handling
Truck
Storage
Train Gas Measurement
Invoicing
: Weighing
Shuttle* Damage Registration
Physical Inspection
\, J \, J \ J

*Variability: support is optional
Figure 5 - The most elementary process domains extended with process subdomains

The process domain of the customer, as we have seen in the round trip example, has two
process subdomains: That of Order Entry and that of Invoicing. The Transportation
process domain has a subdomain for each modality: Truck, Barge, Train and Shuttlel. As
soon as the container enters or leaves the terminal, the arrival or departure needs to be
registered for the administration of the inventory of stored containers on the terminal.
This process subdomain is called Gate Control. The handling of the containers by the
reach truck (i.e. stacking, loading, unloading, registration of its location) is all part of the
Container Handling process subdomain. Furthermore are there some miscellaneous
activities that are performed on the terminal during the stay of a container. These are all
separate process subdomains: Storage (the stay of the container itself), Damage
Registration, Physical Inspection, Gas Measurement and Weighing.

4.2.1.3 Process (sub)domains as building blocks

The process (sub)domains function as building blocks, such that derivatives can be
created from the reference model by assembly (Nes, 2007). Building process (sub)
domains can be used in, or left out of, a derivative of the reference model, depending on
whether the problem context has these process domains. For example, most HCTs do
not have rail as a modality option for transportation. In such case, the subdomain Train
could be left out entirely in the derivative.

In addition, it will be easy for the analyst to add completely new process domains in the
derivative if these are non-existent in the reference model. This is the case when an
unexplored process area is discovered and needs to be supported by TOS. For example,
say thus far we have never heard of the possibility that a container terminal could be a
depot for empty containers. We could simply add this process domain to our derived

L A shuttle is a truck meant for short distances only and has some restrictions. It
therefore has a separate process area

18

model and once this process domain is supported by TOS also added to the reference
model.

4.2.1.4 Adding the Depot process Domain

When a customer makes a booking at a deep sea carrier to export goods, it has to load
their freight into a container of that particular carrier. Normally this implies that the
GHCT has to retrieve a container from a depot holding containers for that specific
carrier. However, being a depot holds that the GHCT is allowed to hold empty equipment
for a certain amount of time before it has to be returned to the depot of the carrier,
which allows reuse of empty containers in that time period. Therefore, the Depot
process domain of the GHCT has a process subdomain for this reuse process.

In addition, the GHCT has to report so called daily moves to the carrier such that the
carrier knows exactly where their equipment is. Therefore, the depot has the reporting
process subdomain.

The model with the depot process and its constituting subdomains is shown in Figure 6.
Now, when a customer books for an export, instead of transporting first, the control flow
starts at the Depot domain looking for a reusable container and if that is the case, the
flow continues at the Terminal Management domain. This would imply, however, that an
arrow skips from the customer straight to the depot domain to indicate the control flow
of this case. However, for simplicity sake, this has been left out.

Customer | f Transportation) (Terminal) Depot
Management
Barge Reuse
—> — [catecontal | F5
Order entry
Container Handling
Truck
Storage Replenishment
Train Gas Measurement
Invoicing
Weighing
Shuttle* Damage Registration
| Physical Inspection
— — — —_—

*Variability: support is optional
Figure 6 - High level view of reference model with depot process domain

4.2.1.5 Adding the Support process Domain

In terms of porters value chain (Porter, 2008), so far the domains in the reference model
cover the primary activities of the GHCT. The GHCT too, has some supporting activities.
So far, only the need for visibility is identified. First, there is a need for aggregated data
reporting (such as a dashboard). Second, tracking and tracing is not part of the primary
process but is necessary for monitoring as well. Therefore, we add these two
subdomains to the model, as shown in Figure 7.

19

Customer [Transportation | Terminal Depot
Management
Barge Reuse
:>' :> Gate Control :>'
Order entry
Container Handling
Truck
Storage Replenishment
Train Gas Measurement
Invoicing
Weighing
Shuttle* Damage Registration
| Physical Inspection
\. v . v \ J/ . v
Support
Track & trace Reporting

*Variability: support is optional

Figure 7 - High level view of the complete reference model

Note however, that the focus of TOS lies at supporting the primary functions at the
moment and tracking and tracing (one of its selling points). Therefore, there are
currently no known processes in detail of reporting and it is expected that other
subdomains will be added to the support process domain.

4.3 Adding detailed domain descriptions to the process subdomains

Now that we have a high level skeleton, the details for each process subdomain can be
added. Note, however, that some domains are identified but not yet supported or even
analysed for its process (domain in red in the skeleton models). These are therefore not
covered by the reference model and thus not described in detail in this section.

For each (sub)domain, one or more of the following aspects are covered in detail:

* The process (by means of a process model and/or a short description)

* The data flows related to that process (possibly supported with pictures from
real life documents).

* An Entity Relationship Diagram (ERD). The ERD in the reference model will
simply be that what the system currently uses to describe the domain
(abstracting away implementation details), since this will help the analyst spot
whether it can describe the situation at any future customer (hence spotting
differences from prior adopters that are implicitly consolidated by the ERD). In
other words, the ERD diagrams are almost the same to that implemented in the
system, with very few implementation details omitted (i.e. internal identifiers) as
we want the reference model to reflect the assumptions made by the TOS.

¢ State diagrams. Sometimes the focal point of the domain is the events, and a
process model will not suffice. (For example, the Gate Control subdomain centres
around the registration of so called Gate In and Gate Out events at different
locations.)

20

The Business Process Modelling Notation (BPMN) (Weske, 2007) is used for the process
and data flows, as it supports to model both in one diagram. Data flow documents in the
diagram may refer to an example document from the domain or further documentation.
The ERD diagrams follow a notation similar to that proposed by Wieringa (2003) and
supplemented with a dictionary defining non self-explanatory entities and attributes.
The state transitions are described in Mealy diagrams (Wieringa, 2003).

4.3.1 Order Entry process subdomain

In essence, Order Entry is simply the task of registering the orders of a customer for the
transportation of containers, such that other processes can start working on the delivery
of that order (i.e. making the round trip happen). There exists a lexical entity (Wieringa,
2003) for each individual container that needs to be shipped, which we call
ContainerBooking.

There are, however, a few optional paths of this process that needs to be considered. A
ContainerBooking may be of three different types; import, export or export of which the
Carrierbooking (the booking details at the deep sea carrier by the customer) is
unknown. Depending on these three types, the information related to the
ContainerBooking may be entered at different times. These three different flows are
depicted in the process diagram in Figure 9.

After the initial insertion of the order details, the Actions to be executed to complete the
order are determined. The Actions represent the activities that have to take place to
complete the order. (See the description of the Transportation process domain in
general, paragraph 4.3.2, for a more elaborate explanation on Actions). Thereafter,
details can be added or changed, upon which the actions are determined again. This
cycle may repeat until all the Actions have been completed.

The focal point of the overall process of the GHCT is the ContainerBooking. As such, the
ContainerBooking goes through several states in its life cycle. The state diagram is
presented in Figure 8. (Note that it will help the reader to comprehend the description
that follows next, by reading the descriptions in the Transportation process domain,
paragraph 4.3.2, and the Invoicing subdomain, paragraph 4.3.10, first.)

Once the ContainerBooking is created, it is in the Draft state. As soon as the chain of
Actions is created, the ContainerBooking is in the Ready state: Ready to have its
TransportActions planned. If one or more TransportActions are planned, the Unplanned
state is entered. As soon as all TransportActions are planned, the Planned state is
entered. Once the Actions in the Action chain are completed, the ContainerBooking
transitions to the Finished state. From there, ContainerInvoiceltemGroups can be
created based on the ContainerBooking. Once all the InvoiceContainerGroups have been
placed on an invoice, the ContainerBooking enters the Invoiced state.

21

created/

Icreate chain of Actions,
plannedTransportActions = 0;

plan action
/plannedTransportActions++;

plan action
/plannedTransportActions++;

Unplanned

plannedTransportActions: rational number indication the amount
of transport actions in the actions chain that are planned

transportActions: rational number indicating the amount of
TransportActions in the actions chain in total

actionChainLength: a rational number describing the amount of
Actions in the chain.

currentActionindex: a rational number describing the current
Action in progress in the Action chain.

groups: a rational number describing the amount of generated
InvoiceContaineritemsGroups

invoicedGroups: a rational number desribing how many
InvoiceContaineritemsGroups have been placed in an Invoice

[plannedTransportActions == transportActions})/

[plannedTransportActions==0]/

Planned

-~

unplan transportaction/plannedTransportActions - -

(.

unplan transportaction
/plannedTransportActions - - ;

place InvoiceContainerltemsGroup on Invoice
finvoicedGroups++

[currentActionindex == actionChainLength
/groups=0, invoicedGroups=0;

generate InvoiceContaineritemsGroug

[invoicedGroups == groups && invoicedGroups > 0

lgroups++;
Finished
A
generate InvoiceContaineritemsGrour
lgroups++;
v
Invoiced

Figure 8 - State diagram of a ContainerBooking's lifecycl

22

-
VARIATIONS:
Ve ™ *Possible to enter only one versus one or more
Hegister at least:
- BockingType
- Seaship
- Deepsea Terminal
- Carrier
- Customer
(- Order reference ~
- Invoice reterence
- At least cne container
- Container number
Import - Sontamer Type Ada/change detalls
- Pin
- Unioad locations®
'{egnster at least: \
- Seaship
- \—/ - Deepsea terminal
o - Carrler |
o . . Customer Order delivered
Expo - Order reference _/ Determine Actions
X / - Invoice reference ’\x 10 be executed
- Cargo close
A - At least one container 4
: - Container Type
! - ContainerNumber
: - Load locations® Register at least:
: Unknown - _/ - Seaship
H - Deepsea terminal
E - Carrier
H Register at least: - Customer
: - Container Type - Order reference |/
] - Load locations® - Invoice reference
! Order - Cargo close
i Channels: : - At least one
i emalliax/excel : container
' : Carrier BOSKING |, containerNumber
: Channels:
™ emalifax
& o
3 - ~
o
:
“
3
o

Figure 9 - Order Entry process diagram

23

+ name

Port

Figure 10 - ERD of Order Entry subdomain

24

D Type
Seaship b
Carrier L.code
Fame L documentType
kname kcapacity 5
LvatRegistrationNumber rdepth T is of type A
LvatRegistrattonCountry Fmmsi
has containers for of merceNumber ‘ Lcallsign ShippingDocument
h Fimo
:‘paxone TerminalBooking + file (digital file)
booked at L fileName
remailAddress)
Lwebsite 1+ relerer;:e’ — imported/exported with
o l+invoiceReference
) kdeepseaCarrier: rue LbilOfLading J
paris from or amives at l+portDestination has
[+car n
LoadingLocation ocavggze
Location
L l+cargeOpenAllDay Customer
+building loseAlID:
+ longitude +door MI?:-’C enibay booked by Location*
+ latitude sroference (un)icaded at [+bool 'f'g‘vp‘el Lname
+ unio +loadingDate: Date 0.1 kphone '
+loadingDateAllDay: boolean 1. belongs 1o fetax > ‘::f"ca"’ nstance
kchamberOICommerceNumber convenience
1.0 kdebitNumber has many
Product h 4 belongs to [+ invoiceEmail
BargeableLocation 1 ContainerBooking L customerCode
kdescription
Lweight containerNumber
L undg (o Willcontain Liemperature
+pickupRelerence
rquantity gas ContainerType
is* a +fyco c
L Bl 1 [sventiation kisoCode
Depot Terminal Undg ~— LsealNo kdescription 1 ContainerTypeDisplayName
+documentNumber ——— s of——>pisHeavyduty [€—belongs to——{
sname Lname LunNo Ldocument Type kisReeler +displayName
LterminalCode khazardNo +remark Fheignt
Iy Ltype Lcollective L+pin der\glh
kclassification +depolDropetfOrPickupTime Lweight
kclassificationCode +currentActionindex
LpackingGroup + intendedForReuse
kvehicleTankCarriage
ktransportCategory
tbulk
kdescription reused from
LknotApplicable
LtransportForbidden
Hlabels
#ankCodes
ktankSpecialProvisions
Depot

The data related to the order is shown in the ERD diagram of the Order Entry process
subdomain shown in Figure 10. A short dictionary (Wieringa, 2003) is presented here
for the non-self-explanatory elements in the ERD:

4.3.1.1 Entities
ContainerBooking. Entity type name. The agreement between the customer and the
GHCT to transport one container.

TerminalBooking. Entity type name. The booking a customer has made at a deep sea
carrier to transport the container over international waters.

Carrier. Entity type name. The carrier that provides the international transport.

ContainerType. Entity type name. The type of the container, indicating dimensions and
certain features.

ContainerTypeDisplayName. Entity type name. The name a user (left out of scope) has
given to a ContainerType. (Most users will not use the ISO standard and prefer to use
their own naming.)

Depot. Entity type name. A Location where equipment for certain carriers are stored.

Terminal. Entity type name. A Location where there is either an HCT or a deep sea
terminal or a combination of both.

Undg. Entity type name. A hazardous material a Product could be, as defined by the
United Nations. Its characteristics are used to determine what regulations apply to
handling the Product.

ShippingDocument. Entity type name. A digital document accompanying the
TerminalBooking.

DocumentType. Entity type name. The type of a ShippingDocument.

4.3.1.2 Attributes
terminalCode (t:Terminal). Attribute. A shorthand identifying a terminal used in the
industry.

type (t:Terminal). Attribute. Type of the terminal, either hinterland, deep sea or both.
unlo (l:Location). Attribute. United Nations Code for Trade and Transport Locations
that assigns codes to locations used in trade and transport, such as deep sea terminals,
hinterland terminals and airports.

reference(ll:LoadingLocation). Attribute. The reference assigned to the (un)loading of
the container by the customer, such that the customer knows what to (un)load in/from

the container upon delivery.

undg (p:Product). Attribute. Is a four-digit number created by the United Nations
Development Group that identifies hazardous substances, and articles (such as

25

explosives, flammable liquids, toxic substances, etc.). When the undg is present, it
implies that the product is a hazardous material.

quantity (p:Product). Attribute. The amount of units the hazardous material is
packaged. When quantity is present, it implies that the hazardous material is of limited
quantity, meaning that it is packaged in such a small amount per packaging, different
regulations apply.

gas (c:ContainerBooking). Attribute. A Boolean that indicates that the container will
contain gas and a gas measurement is required while the container is on the GHCT
before further shipment.

fyco (c:ContainerBooking). Attribute. A Boolean that indicates that the container
requires physical inspection by a customs official while on the GHCT before further
transportation.

ventilation (c:ContainerBooking). Attribute. A Boolean that indicates that the
container will require to be ventilated while on the GHCT before further shipment.

sealNo (c:ContainerBooking). Attribute. The number of the security seal that seals the
doors of the loaded container. Security seals are mechanisms used to seal shipping
containers in a way that provides tamper evidence.

pin (c:ContainerBooking). Attribute. A container at the deep sea terminal is released
by means of a pin code.

depotDropoffOrPickupTime (c:ContainerBooking). Attribute. Date and time
indicating when the container should be dropped off/picked up at the depot related to c.

currentActionIndex (c:ContainerBooking). Attribute. Index of the first Action in the
chain of Actions that has not yet been completed. In other words, the index indicating
the Action that is currently in execution. (See ERD and dictionary of the Transportation
domain for an explanation on Actions and the Action chain.)

intendedForReuse (c:ContainerBooking). Attribute. Boolean value indicating whether
the container is allowed to be reused after import (i.e. the GHCT is allowed to detain the
container for an agreed amount of days before returning it to the depot in which time it
should be reused for another booking) or whether a container may be reused in case of
an export booking.

isoCode (ct: containerType). Attribute. Is an ISO 6346 code, that is an international
standard for the unique identification and marking of specifications of containers.

billOfLading (t:TerminalBooking). Attribute. A string of numbers and digits that refer
to a certain booking at a carrier.

reference (t:TerminalBooking). Attribute. The internal reference of the customer to t.

26

invoiceReference (t:TerminalBooking). Attribute. Reference to t that the customer
wishes the invoice of the GHCT uses to refer to t.

CargoOpen (t:TerminalBooking). Attribute. Start time and date of the time window
within which the container needs to be handed in or picked up at the deep sea terminal.

CargoClose(t:TerminalBooking). Attribute. End time and date of the time window
within which the container needs to be handed in or picked up at the deep sea terminal.

bookingType (t:TerminalBooking). Attribute. Type of the booking made at the carrier,
either importing a container or exporting a container overseas.

mmsi (ss:Seaship). Attribute. A Maritime Mobile Service Identity (MMSI) is a series of
nine digits which are sent in digital form over a radio frequency channel in order to

uniquely identify ship radio stations.

imo (ss:Seaship). Attribute. International Maritime Organization (IMO) numbers are a
unique reference for ships and for registered ship owners and management companies.

debitNumber (cs: Customer). Attribute. Internal number identifying a debtor in the
accounting system.

customerCode (cs: Customer). Attribute. Shorthand for the customer based on its
name.

unNo (un:Undg). Attribute. The unique identification number of the material as defined
by the United Nations.

hazardNo (un:Undg). Attribute. An identification code indicating the hazards of the
material (i.e. like poisonous or flammable).

collective (un:Undg). Attribute. A true or false value indicating if the category entails a
group of materials. When true, the chemical or technical name of the transported

material has to be added in addition to the information in the Undg entity.

classification (un:Undg). Attribute. The ADR class the material is placed in (i.e. 1 for
explosive materials, 2 for gasses, 3 for flammable materials, 7 for radioactive, etc.)

classificationCode (un:Undg). Attribute. The subclass of the ADR classification code.

packingGroup (un:Undg). Attribute. Its values either being I, II or III, the packingGroup
indicates certain quality requirements to the material’s packaging.

vehicleTankCarriage (un:Undg). Attribute. A code indicating the type of vehicle
required to transport the material.

transportCategory (un:Undg). Attribute. Also known as ‘tunnel code’. A code
indicating through which tunnels the material is not allowed to be transported.

27

bulk (un:Undg). Attribute. A special ‘'VV’ code referencing to certain regulations when
transporting the material in bulk.

notApplicable (un:Undg). This attribute’s meaning is unknown, it was part of the UN
hazardous materials table adopted for the Undg entity.

labels (un:Undg). Attribute. Numbers referring to certain models of labels required on
the packaging for transport.

tankCodes (un:Undg). Attribute. Alphanumerical codes referring to the least stringent
regulations regarding the tanks used for transport.

tankSpecialProvisions (un:Undg). Attribute. Alphanumerical codes referring to
additional regulations for the tanks used for transport.

code (dt:DocumentType). Attribute. A shorthand for the DocumentType.

documentType (dt:DocumentType). Attribute. A description of the DocumentType.

4.3.2 Transportation process domain in general

The transportation process domain consists of subdomains of different modalities.
However, every transportation subdomain process consists of roughly two stages. First
the transportation needs to be planned, then executed.

As a prerequisite, each transportation process can only start at the event that the end
time of the delivery window and the location is known (one of the details filled in at the
Order Entry process subdomain). Once a booking is registered and these required
details are registered, it is assumed that the transport from/to the GHCT from/to the
other location that is not the customer’s site will be executed by barge, which will start
the process in the Barge subdomain. Just like every other transportation subdomain
process, the barge subdomain process also allows to select a different modality, after
which the subdomain process of that domain starts.

In addition we defined one ERD for transportation domain as a whole, as the entities are
cohesive and are better understood together than apart. The ERD is shown in Figure 11.
The transportation of containers is described as a chain of Actions. Therefore the
Containerbooking entity has a list of Actions to be performed and an index of the current
Action indicating its state of where it is in the process. How a ContainerBooking
transitions between these states is described in the Gate Control subdomain.

A short dictionary (Wieringa, 2003) is presented here for the non-self-explanatory
elements in the ERD:

4.3.2.1 Entities
ActionCollection. Entity type name. The chain of actions that have to be executed to
complete the ContainerBooking or DepotBooking.

TransportAction. Entity type name. The act of transporting a container from one
Location to another.

28

StopoverAction. Entity type name. The Action of (shortly) storing the container and
possibly perform some Tasks. For example, the stop a container makes on the GHCT.
Then, the GHCT may perform Tasks, such as the VentilationTask and the StorageTask.
(See TerminalManagement ERD for more details.)

PreAction. Entity type name. The last Action performed in the logistics chain outside
and before the GHCT’s scope.

PostAction. Entity type name. The first Action performed in the logistics chain outside
and after the GHCT’s scope.

Trip. Entity type name. A Trip is an execution of a Line. Similar to a bus line, a certain
line planned for, and performed on, a certain time and date.

Lading. Entity type name. An object that is transported by the TransportAction. Its
attributes are based on the ContainerBooking or DepotBooking the TransportAction’s
ActionCollection belongs to.

4.3.2.2 Attributes
currentStepIndex (ac: ActionCollection). Attribute. Indicating which action in the ac is
currently in progress.

sta (ta:TransportAction). Attribute. Time of arrival of ta.
std (ta:TransportAction). Attribute. Time of departure of ta.

window (sa: StopoverAction). Attribute. Window of time indicating how long the
container will be at the location of the sa.

gateln (ta:TransportAction). Attribute. The actual time the container is unloaded from
the ship onto the GHCT.

gateOut (ta:TransportAction). Attribute. The actual time the container is loaded onto
the ship from the GHCT.

locked (tp:Trip). Attribute. A Boolean value indicating whether the planned
BargeActions to be transported by tp is changeable or not. If locked, the planning can no
longer change.

mmsi (s:Ship). Attribute. Same as mmsi of SeaShip (See Order Entry sub domain
dictionary).

eni (s:Ship). Attribute. An ENI number (European Number of Identification or European

Vessel Identification Number) is a unique, eight-digit registered identification number
for ships capable of navigating on hinterland European waters.

29

capacity (s:Ship). Attribute. Capacity of the loading bay of s, expressed in TUE-Z.

shuttle (tk:truck). Attribute. Boolean indicating whether the truck is a shuttle with
limitations or a normal truck.

4.3.3 Truck process subdomain

One of two cases starts the Truck process. The first is the transportation from and to the
customer’s site. [t is assumed that the transportation of containers for the (un)loading at
the customer’s site is done by truck. That requires two trips by truck to be planned, to
and from the customer to bring and retrieve the container. Second, the main transport
could be done by truck when barging does not meet the requirements of the planner. In
that case the planning stage of the barge process changes the modality of that transport
to be done by truck.

In theory, it is also possible to retrieve or bring empty containers from or to depots. In
practice, however, this is almost always done by barge.

The planning stage is a continuous process of planning and checking changing factors,
such as pickup windows (check ETD ok), delivery window (check ETA ok), the presence
of shipping documents and whether the container is at the pickup location. Based on
these changing factors, the planning is revisited, until it is time to actually execute the
transportation. In case of a main transport of an export round trip, the container has to
be ‘announced’ at the harbour 12 hours before the ETA at the deep sea terminal.

When starting the transport at the GHCT, the CMR3 waybill and the transport order is
printed for the trucker. The CMR is given to the trucker to be signed by the recipient, or,
vice versa; the GHCT must sign the CMR when receiving a container from a trucker. The
CMR documents must be hardcopies by law. An example CMR is shown in Appendix B.

The transport order is a note with details about the transportation itself (i.e. times and
locations) but in particular the customer’s reference. The reference is given to the
customer upon delivery of a container such that the customer knows from its own
administration what to do with it.

The process is shown in Figure 12.

2 Twenty-foot Equivalent Unit (TEU) is an inexact unit of cargo capacity often used to
describe the capacity of container ships and container terminals based on the volume of
one 20-foot-long (6.1 m) standard sized intermodal container.

3 The United Nations Convention on the Contract for the International Carriage of Goods
by Road

30

1

ContainerBooking* DepotBooking*** ActionCollection
currentStepindax
Location*
1 I 1
2
at
ends at stars at
% A i
BargeableLocation* Action
tafrom toffrom
[1 c
Depot* Terminal* Lading TransportAction]]
. ContainerType . sta StopoverAction PreAction PostAction
= BookingType = std -
1 - ContainerNumber L deliveryWindow [+ window - sta = std
depot for equipment - nettoWeight L pickupWindow [+ modality [+ modality
= carrier = gateln
= gateCOut
/\ 1
*See ERD of Order Entry domain for details @ Task**
**See ERD of Terminal Manag 1t domain for detail has tasks to be performed during >
***See ERD of Depot replenishment for details TruckTransportaction BargeTransportaction
TODO: Depot replenishment [+ departureTime sported on
pd; inerbooking in order entry ERD (no more currentActionindex) - tramsitTime
executed by
1
Truck Ship Trip
L name - name salled with [+ departure
= licenseNumber - mmsi < transitTime
L shuttle = eni 1 -+ locked
[capacity
- depth
tofrom
v ! l 1 l 2
Carrier* Carrier* Port*
= truckCarrier: true - bargeCarrier: true

Figure 11 - ERD of the Transportation domain

31

[Register at

Export booking
only

Choose truck
and
departure time

O

12 hours before ETA

'l Harbour [

Channels: %
EDIFACT

v

Harbour ™
(i.e. portbase)

Check:
- container at start location?
- customs documents present?

Channels:
Truck app/Phone/emailisms
combined with hardcopy

Inform trucker

of planning

planned
transportation
is due

import/
fetch from
customer's site/
fetch from depot

unload container

=|L Sign CMR H

’7

from truck
AT
channels: EI g
hardcop!
4 ' H container
= 6 ¥
RS
Q
-
o
X :
-
=
channels: | channels: |
hardcopy hardcopy .
Example: IZ] Example: g container
Appendix A | AppendixB |
& &
Print transport . load container
export/ > order | > Print CMA > onto truck

bring to
customer's site/
return to depot

Figure 12 - Truck transportation process

}_

location in range
of shuttle

departure time

~
Check:

- container at start location?
- ETA 0k?

LETD ok?

hoose other|
location not in range modality
of shuttle

or other reasons

Figure 13 - Shuttle transportation process

fetch from f
customer's site ¢
. unload container
'Ls'gn CMR > ™ rom truck
Channels: 4 ‘:"
Truck app/Phone/email/sms channels: H '
combined with hardcopy hardcopy E .
(see Appendix C for an example) ' ; container
N 6 ¥
4T
o
Inform trucker X s
of planning £
planned JaN
transportation channels: | channels: !
is due hardcopy < hardcopy <)
Example: IZI Example: E container
Appendix A AppendixB
& &
Print transport N load container
4’[order H Print CMR onto truck
bring to
customer's site

32

J Register at |

Export main transport
only

o

12 hours before ETA

Check:

Choose truck
and
departure time

- container at start location?
- customs documents present? (export only)

'l harbour J

Channels:
EDIFACT v

Harbour @
(i.e. portbase)

import/

Choose other
modality

Figure 14 - Barge transportation process

Channels:
Phone/email/sms

Send manifest
(inform of planning)

planned
transportation
is due

33

Channels:
email (excel)

export/
return to depot

fetch from depot

unload container
from barge

=}
o
3
2
o,
>
@
=2

Barge operatdi

container

load container

onto barge

4.3.4 Shuttle process subdomain

The Shuttle process is nearly the same as the Truck process, with the exception that it
cannot be used for the main transport. Therefore, the process can only be started for
loading or unloading containers at the customer’s site, given it is in the limited range of
the shuttle (may differ per terminal). The process does not include the registration of a
container delivery at the harbour as it is only for main transports of export round trips
to the deep sea terminal. Other jobs done by shuttle are executed ad hoc and not (yet)
inside the subject domain of TOS. The process is shown in Figure 13.

4.3.5 Barge process subdomain

The barging process is similar to the trucking process with the exception that it is only
able to perform main transports of round trips or retrieve/return containers from/to a
depot. Another difference is that the paperwork for the barge is not provided by GHCT,
but by the operator. The GHCT hands over the planning by means of a manifest in
advance, but unlike the truck process, no (hardcopy) documents have to be handed over.
The process is shown in Figure 14.

4.3.6 Gate Control subdomain

Gate Control is the registration of Gate In and Gate Out events. A Gate In event is when a
container enters a location and Gate Out when it leaves the location. For example when a
barge moors to the shore of the GHCT, than it is a Gate In event for each of the containers
it unloads onto the GHCT.

The registration of the Gate In and Gate Out events has two purposes. Firstly, it is used
to register where the containers are in the main process. For example, after a Gate In
event, we know that the container in question is on the GHCT’s terrain and the next
action for the process can be executed (for example another transport of some task on
the terminal). In other words, the currentStepIndex attribute of the ActionCollection
entity is changed to reflect the new state in the chain of Actions for a DepotBooking or
ContainerBooking.

Secondly, this information is also used to report the so called ‘daily moves’ to the carrier
in case the GHCT is also a Depot (see the Reporting process subdomain, paragraph
4.3.9).

As the focal point of Gate Control centres on events (Gate In, Gate Out) and states of
where in the main process the container is, this subdomain is described by means of a
state diagram of the ContainerBooking as shown in Figure 15. The states correspond
with the Actions in the ActionCollection with the exception of Reuse. (Reuse will be
explained in the Reuse subdomain in the Depot domain).

As the model does not completely adhere to a standard, since it is hard to describe
certain transitions otherwise, we will shortly walk through the diagram:

Once the booking is created, the currentActionIndex is 0. Then, there are two options:

e Ifthe ContainerBooking is meant to import goods, the Action Chain starts with a
PreAction of the deep sea carrier transporting it to the deep sea terminal. Once it
arrives, that will be a Gate In event at the deep sea terminal’s location ‘I': the
Action Chain’s current index is updated and the ContainerBooking is now at the
StopOverAction state at the deep sea terminal.

34

¢ Ifthe ContainerBooking is meant to export goods, the Action Chain can start at
the Depot where the empty container is to be retrieved and therefore transitions
to the StopOverAction state.

After the necessary transitions between the StopoverAction and the TransportAction
states, the chain of Actions can end in three states (note that the entity is never
destroyed, it just reaches the end of the chain):

* When the export booking is at the deep sea terminal awaiting further transport
by the deep sea carrier, which is called the PostAction state.

* When the empty container has been returned to the Depot, ending in the
StopOverAction state.

* When the empty container is reused, either still being at the previous customer’s
unloading location or at the GHCT itself (hence the guard that the Actions chain
current state has to be either 2 transitions away from reaching the end or 4), the
ContainerBooking may end up in the Reuse state.

35

PostAction Reused

reuse(container) A reuse(this)
[currentStepindex == [currentActionindex == actionChainLength-2 [(currentgtepllngex == am.iong:aintengt:-a I
&&this. TerminalBooking.bookingtype == export && currentStepindex =&:°"°“ ainLength-5)
&& this.intendedForReuse TerminalBooking.bookingtype == export)/
. this. TerminalBooking.bookin == import
&&container.intendedForReuse currentStepindex+-+; ik glype == imp
&&container.bookingtype == import this.intendedForReuse]
&&container.carrier == this.carrier]
Gate In (I)/ . . _ .
- /. . StopOverAction.Location =, ActionChainLength = currentStepindex;
StopOverAction.Location= currentLocation; - N currentSteplndex ++
<
» StopOverAction TransportAction
[TerminalBooking.bookingtype == export)/ >
StopOverAction.Location = Depot; [currentActionindex < actionChainLength-2]
create chain of Actions Gate Ouy
lcurrentStepindex = 0; Gate In (1)/ currentStepindex ++;
. created StopOverAction.Location = |,
/L currentStepindex++;
this: the ContainerBooking that is the focalpoint of this state diagram
[TerminalBooking.bookingtype == import)/ E&iLoceson
¢ glype == Imp actionChainLength: a natural number describing the amount of Actions in the chain.
> PreAction currentSteplndex: a natural number describing the current Action in progress in the Action chain.
container: a ContainerBooking
currentLocation: The current location of the ContainerBooking parameter in reuse().

Figure 15 - Mealy diagram Gate Control subdomain

36

4.3.7 Task subdomains

There are several tasks that may be performed by the GHCT while the container is on
the terrain awaiting further transport. So far, only a few have been identified for which
there is minimum support by the TOS; it supports merely the registration of the order at
the order entry, such that it is known that these tasks have to be performed during the
StopoverAction at the GHCT. The process of executing the tasks itself are not (yet)
supported by the TOS. They are, however, already part of the Entities and Relationships
of the system:

The tasks have to be performed as part of the StopoverAction at the GHCT, which is one
of the Actions in the chain of Actions to be performed for the order to be completed
successfully. For these subdomains taken together, we present the ERD diagram of this
relationship to the Action chain in Figure 16. The meaning of each task corresponds with
the meaning of the attributes in ContainerBooking that have the same name. At the time
of writing, the TOS currently has no functionality yet depending on these entities. Order
Entry is dependent on the attributes in ContainerBooking for registering the order of
tasks, not the Task entities presented here.

Once functional support has been added, the supported process is made explicit and can
be modelled for the Task subdomains.

4.3.8 Track & Trace subdomain
Currently, the system supports the lookup of two things:
1. The current state of the ContainerBooking in terms of its state in the Actions
chain described in the Gate Control.
2. The current position of a vehicle in transport (i.e. the current position of a
specific truck or barge)

There is no specific process to be defined that is supported by this functionality. It is an
analytical tool that gives insight into the process for many different purposes (even
purposes that are yet to be identified.)

4.3.9 Reporting (Support) subdomain

Currently there is just one report known to the system, which is the so called
Environment List (‘Milieulijst’ in Dutch). The GHCT handling hazardous materials is
required by law to present a list of all hazardous materials currently present on the
terminal. An example is present in Appendix C.

37

ActionCollection®

+ currentSteplndex
(repeated here for convenience)

*See the ERD of the transport domain for more details

[| |

Transportaction® StopoverAction* PreAction* PostAction*
1
Task
has tasxs to be performed during >
4+ description
DC

StorageTask

VentilationTask

GasCheckTask

FyCoTask

Figure 16 - ERD Tasks in the Action chain

4.3.10 Invoicing subdomain
After the services have been completed (sometimes even before), the GHCT creates an
Invoice for its customer.

We first present the Entities and Relationships in the domain since we will be using
these to explain the process. The ERD is shown in Figure 17.

38

*See Order Entry
subdomain for details

ContainerBooking*

Created based on

InvoiceContaineritemsGroup

Made for———— 3

Has debtor————

Customer®

Made for

Invoice

rinvoiceNumber
date

wdueDate
+HotalExVat
tHotalVat
HotalincVat
tHfixed

Has

InvoiceTariffitem

B

Applies
A 4

Tariff

tprice
Hcosts

InvoiceltemsGroup

kdescription
subtotal
HotalVat
invoiced

!
Has

Invoiceltem

description
Hvat
FvatAmount
tprice

Applies to

]

C Bl
RoundtripTariff SingletripTariff VentilationTariff
H-port Hport Hype
H-City H-City lsize
Htype Hype
+size Fsize
modality modality

Figure 17 - Invoicing ERD

The Entities and Attributes are explained in the dictionary:

4.3.10.1

Entities

Invoice. Entity type name. Invoice specifying payment due by the customer to the GHCT.
Consists of InvoiceltemsGroups.

InvoiceltemsGroup. Entity type name. A named group of Invoiceltems.

Invoiceltem. Entity type name. A description of a specific entry on the invoice together

with its price to be paid by the customer (or credited in case of a credit invoice).

InvoiceContainerltemsGroup. Entity type name. An InvoiceltemsGroup created by
applying Tariffs onto the ContainerBooking. Contains InvoiceTariffltems.

Tariff. Entity type name. A rule that is either applicable on a ContainerBooking or not.
When an InvoiceContainerltemsGroup has to be created for a ContainerBooking, all the
applicable Tariffs result in an InvoiceTariffltems each, placed in the

39

InvoiceContainerltemsGroup for that ContainerBooking. Tariffs can have limited
applicability to a particular customer (i.e. deals made with certain customers).

RoundtripTariff. Entity type name. A type of Tariff that is applicable when the
ContainerBooking is a roundtrip and is of the same type, size, modality and from/to the
same city and port as is specified in the RoundtripTariff.

SingletripTariff. Entity type name. A type of Tariff that is applicable when the
ContainerBooking is a singletrip (the container is not return or retrieved from a depot
but reused) and is of the same type, size, modality and from/to the same city and port as
is specified in the SingletripTariff.

VentilationTariff. Entity type name. A type of Tariff that is applicable when the
ContainerBooking has an order for ventilation (i.e. ventilation attribute in the
ContainerBooking is true) and is of the same type and size.

InvoiceTariffltem. Entity type name. An Invoiceltem that is created by applying a Tariff
and placed in an InvoiceContainerltemsGroup.

4.3.10.2 Attributes
invoiceNumber (i: Invoice). Attribute. A number uniquely identifying an invoice,
numbered sequentially after one another in the same year.

fixed (i: Invoice). Attribute. Boolean indicating whether the Invoice has been sent. If so,
the Invoice can no longer be changed.

subtotal (iig: InvoiceltemsGroup). Attribute. The sum of all price attributes of each
Invoiceltem in the InvoiceltemsGroup.

invoiced (iig: InvoiceltemsGroup). Attribute. Boolean indicating whether the
InvoiceltemsGroup has been put onto an Invoice (InvoiceltemsGroups can exist without
an Invoice.)

vat (ii: Invoiceltem). Attribute. A number expressing the percentage of VAT to apply on
the price multiplied by 100 (so ‘21’ for 21% vat).

price (ii: Invoiceltem). Attribute. A number expressing the price in Eurocents,
excluding vat.

costs (tf: Tariff). Attribute. The costs that are assumed to be made for a
ContainerBooking when the tariff is applicable for the ContainerBooking.

4.3.10.3 The process

There are two options when creating invoices. Either create a complete customized
invoice that is not based on ContainerBooking(s) (for example, when the GHCT lends a
reach truck for other purposes, or other exceptions), or compose an invoice from
InvoiceContainerltemsGroups, which are based on ContainerBookings.

40

In the first case, the Invoice consists of plain InvoiceltemsGroups and Invoiceltems.
However, in the second scenario, the Invoice consists of InvoiceContainerltemsGroups,
which have to be created based on Tariffs that are applicable for that particular
ContainerBooking and Customer.

After composing an Invoice from InvoiceContainerltemsGroups, the Invoice can be
customized (i.e. plain InvoiceltemsGroups and Invoiceltems can be added,
InvoiceContainerltemsGroups and InvoiceTariffltems can be edited.)

Once an InvoiceContainerltemsGroup has been created for a ContainerBooking, a new
correcting InvoiceContainerltemsGroup is created each time a ContainerBooking
changes, as those changes imply a different Tariff to be applied then before. (For
example, a credit Invoice may be issued when a container was reused, which implies a
SingletripTariff instead of a RoundtripTariff.) InvoiceContainerltemsGroup have to be
put onto an Invoice again. The process is shown in Figure 18.

41

Customer (i)

Custom
Invoice o
Customize invoice
Generate
InvoiceContainerGroups
Invoice for (groups of Invoiceltems)

ContainerBooking| based on ContainerBooking

Put selection of
InvoiceContainerGroups
on invoice

Customize invoice
(except customer)

Event start trigger:

ContainerBooking Generate
changed and there exist correcting
InvoicecontainerGroups InvoiceContainerGroups

for that based on changes

ContainerBooking

Figure 18 - Invoicing Process

42

Jay
[z Channels: email (PDF export) / post

SR

Send invoice
to customer

N—
N

Send invoice to
accounting system

[>7] Channels: CSV file via FTP
A4

Accountview

generate actionschain /loaded = (ContainerBooking.type == import);

loaded: boolean indicating whether the container is loaded or
empty

*Optional guard, depending on the agreement with the carrier

[StopOverAction.Location == GHCT]/ created [StopOverAction.Location = GHCTJ/
[I == ContainerBooking.LoadingLocation]
w A Gate In (1)/
== '
N [l == GHCT && !loaded*] Gate Out (l)/ queu event for reportungL e loaded = lloaded:
StopOverAction 4 Awa
atthe GICT [, y
J N

Figure 19 - CODECO reporting state diagram

[l==GHCT && l!loaded*] Gate In (l)/ queu event for reporting;

43

4.3.11 Reuse subdomain

When the GHCT is a depot holder for a carrier, it basically means that they have an
agreement with the carrier that they are allowed to retain an empty container for a
certain amount of days (usually 90 days, depending on the agreement) after it finished
an import round trip. The GHCT can use this time window to reuse the container for an
export round trip, effectively saving a trip to the depot of the carrier. If the time passes
without reusing the container, the container has to be returned to the depot after all.

This means that, a container of a ContainerBooking that is near the end of an import
round trip, but are not yet returned to the depot, is fit for reuse. By matching these
ContainerBookings with export ContainerBookings, both round trips are turned into so
called ‘single trips’ as the trip to the depot for both ContainerBookings are skipped. This
possibility is reflected in the state diagram of the Gate Control subdomain in Figure 15.

As you can see, a match depends on the following conditions:
* The export ContainerBooking’s ActionCollection’s currentStepIndex may not be
beyond the first step.
* Both the import and the export booking need to be intededForReuse (sometimes
the customer does not want a reused container for their export).
* The carrier of both bookings must match.

If a match is made (i.e. the conditions are met) the ContainerBooking in question starts
in the stopOverAction state with its location as the current location of the matched
import booking, which saves a trip to the Depot.

At the end of an import, the container of the ContainerBooking may be reused given that
itis not yet returned to the depot and it is allowed to be reused. This transition in the
state diagram brings the ContainerBooking in the Reused state.

Because the match may be made over a period of 90 days after unloading the container,
the customer has usually already been invoiced. This is a typical scenario where the
Action chain changes and a correcting InvoiceContainerltemsGroup is created in the
Invoicing domain.

In sum, reusing is a matching activity between ContainerBookings: When a match is
found between import bookings of which the container is not yet returned to the depot
and export bookings that are just created (and thus may start in the reuse state), both
ContainerBookings save a trip to the depot.

4.3.12 Replenishment subdomain

In agreement with the Carrier, the GHCT is also allowed to hold a stock of empty
containers under the same conditions as reusing them (i.e. holding them for 90 days and
match them with an export booking for use). Specifically for this purpose, a
DepotBooking can be created, which represents a trip to a Depot to retrieve one empty
container.

44

ContainerBooking*
*See Order Entry
subdomain's ERD for more
details
1 A
'reused' by
DepotBooking

+ ContainerType

Depot® 1 + ContainerNumber 1 Carrier*
< + pickupReference >
from + pickupTime _

+ reference (kan weg) from Carrier

+ remark

+ depotModalityType

Figure 20 - ERD of the DepotBooking for empty container stock replenishment

The DepotBooking is shown in the ERD for this subdomain in Figure 20. We supplement
it with a short dictionary:

DepotBooking. Entity type name. A booking to retrieve one empty container from a
Depot of a specific Carrier.

depotModalityType (db: DepotBooking). Attribute. The modality type used to
retrieve the empty container from the Depot (i.e. by truck or by barge).

Similar to reusing ContainerBookings, the DepotBooking is ‘reused’ once it is on the
terminal. In that case, the DepotBooking is ‘matched’ to an export ContainerBooking
exactly as described in the Reuse subdomain.

The entry process is a simplified version of the regular order entry depicted in Figure
21.Just like a normal ContainerBooking, after the initial creation of a DepotBooking the
chain of Actions (ActionCollection in the ERD of the Transportation domain) is created,
which are then to be planned by the normal planning processes.

Add/change details

Register at least: container arrived on terminal
- ContainerType

- Reference

- Carrier

- Depot

- pickupTime

- depotModality Type

Determine Actions
to be executed

Figure 21 - DepotBooking order entry process

45

4.3.13 Reporting (Depot) subdomain

Part of the depot holding agreement the GHCT may have with a carrier, is that the GHCT
has to report all movements of containers to their carrier. The reporting is based on the
Gate-in and Gate-out events at the GHCT. In other words, as soon as the container enters
or leaves the GHCT, that event has to be sent to the carrier. (For clarity, this excludes
events at other locations.) The events are reported to the carrier through so called
‘CODECO’ messages (UN, 2001). The frequency of these messages and whether the
carrier merely requires messages about empty containers may differ depending on the
agreement with the carrier.

To describe this behaviour, we add another state diagram since its focal point are the
Gate In and Gate Out events at the GHCT. The diagram is shown in Figure 19 and works
in conjunction with the state diagram of the Gate Control subdomain.

After a ContainerBooking has been created, the Action chain may start in either two
states in this diagram due to different starting possibilities (i.e. reuse, import, export, see
Gate Control state diagram): Either in the StopOverAction state at the GHCT or in
another Action state. As you can see, the event can only be queued for reporting to the
Carrier when the Gate Out or In event takes place at the GHCT.

An optional condition for queuing the Gate In or Out event is that the container is empty.
Whether this condition applies depends on the agreement with the carrier.

4.4 Design principles

In addition to the design principles explained while building the reference model
throughout the chapter, we summarise them here such that the reference model can be
reproduced.

On a high level:

¢ Start by building the skeleton based on the main business process in its most
elementary form and divide that process in a few crude domains; in this case we
take the placing of an order by a customer as starting point and the sending of an
invoice after delivery as end point in the process.

* After the skeleton is in place, go through the main process again and identify
subdomains, like order entry and invoicing in the customer domain in this case.

e This process of adding levels of details in the building blocks is continued until
each block (on whichever level) can be described with enough detail by means of
the different perspectives (i.e. process, data flows, entities and relationships, and
events).

When giving content to the domains:

* The model describes reality ‘according to the system’, but not the system itself.
The reference model’s domains, events and entities may correspond with the
system’s functional domains, events and data structure. In part, it should support
the domain properly. However, implementation details are irrelevant for the
reference model; all descriptions and models should be in terms of the actual
domain.

* Whatis described in a domain may cross its domain borders; this shows how it is
related to other domains and reflects the real world where no organisation can
exist with completely autonomous departments.

46

What is described should only reflect what is currently supported by the system;
no more no less. Otherwise the differences with reality cannot be identified. (The
reference model cannot describe what is planned to be supported, since that is
contingent on the outcome of its design and consequently the changes it imposes
on the organisation.)

One or more perspectives for each domain are chosen depending on the focal
points of that domain; process models for sequenced tasks and data flows, ERDs
for entities and relationships and state chart diagrams for events. Each domain
has at least a description, but not always a model; the description may refer to
models in other domains to prevent redundancy.

Domains with an * are optionally supported by configuration of the system.
Domains in red are identified but not yet explored.

Parts of models in red are part of the current design of the system but not yet
(fully) implemented. This is the only exception where future support may be
modelled as the design (and hence what is supported) are known.

47

5 Process model

As described in the previous chapter, the product model is the derivative of the
reference model. Such derivative is a description of the world according to the system
and differences identified. This combination gives us a description of the problem
context as far as we know it.

Therefore, the process of creating derivatives equals the process of finding differences.
In this chapter, the current development process aimed for at Cofano is described.
Thereafter, the process is augmented with the use of the reference model.

5.1As is

The process as is currently aimed* for is described in a dataflow diagram (Figure 22).
Overall the process contains practices obtained from Scrum (Rubin, 2012). The
customer tells about its domain and gives feedback about a previous iteration. Using this
input, the analyst (within the organisation often referred to as ‘lead developer’) forms a
mental model of the problem context and what needs to be supported. With this insight,
the analyst creates issues to resolve negative feedback or such that the product properly
supports the domain as the customer has explained it.

Feedback on
product and changes

Issues——>» Backlog

Identify issues

Domain stories

Issues

Customer(s) +
Business analyst

Proposed changes
at
customer domain
(implicit in demonstration)

Proposed Assigned issues with estimated effort
product

Code delta's Conduct
Sprint

Demonstrate
proposed solution

Codebase <

Figure 22 - Current development process at Cofano

The team works in sprints, of which the time span is variable but often 2 weeks. A sprint
planning is made by selecting a subset of the backlog’s issues that are to be resolved
during the sprint, assigning them to programmers and estimating their time to resolve.
[t is not unusual for the development team in Sliedrecht to have stand-up meetings.

4 Officially, this is the process that is aimed for. However, often this is not the case. In
example, often there is no sprint planning or the planning is (partly) ignored and issues
to be solved are picked up ad hoc from the backlog.

48

Throughout the sprint, changes to the code are committed to the codebase (“code
delta’s” In the diagram). Once in a while, usually after a sprint, the product is released
for feedback from the customer. It is either demonstrated or made available to the
customer to experiment with the product. Note that currently, changes to the domain
implied by the system are implicitly proposed to the customer.

5.2To be

In the ‘to be’ situation, the mental model of the problem contexts are made explicit by
use of the reference model. In addition, the reference model is kept up to date as part of
the development cycle. The overall process is described in the dataflow diagram shown
in Figure 23.

Feedback on product only

Differences to propose

Identify:
1. Difference to propose
2. Differences to support
3. Feedback on product

Differences
to support

Differences
to support

———
Differences log
———

Issues

Identify issues or

—
Backlog
hange proposals

Feedback on
product and changes

Issues
Domain stories

Customer(s) + Model Changed assumptions

Business analyst

—
Reference model
—

new assumptions

Update

Proposed changes
at
customer domain

(implicit in demonstration)

Proposed
product

Proposed changes to

Demonstrate

Differences to propose as
change at customer's domain

adopting organisation™

Code

reference
model

Code

roposed solution

Codebase
—

Code delta's

Assigned issues with
estimated efforts

Conduct
Sprint

Figure 23 - Development cycle with use of the reference model

The process starts with the customer’s input. The analyst again forms a mental model of
the problem context. The analyst compares this mental model to the reference model
and identifies the differences. Besides input about the problem context, feedback
exclusively about the product itself, which does not imply a difference in assumptions,
follows the traditional path. It is directly translated into issues.

5.2.1 Options for identified differences

For each difference, there are a few options: first the difference could be of such degree
that a change to the system must be made without question. This could be the case if a
certain subdomain is missing entirely, for example. Another option is to propose a
change to the problem context; perhaps the process assumed by the system is different
but not unworkable for the customer or even better than the current practice. Lastly, a
change to both the customer’s business and the system may be combined.

The analyst makes the differences and the fitting option explicit by documenting it in the
differences log. An example of the differences log is shown in Table 1. In case the
difference needs to be supported, the system must change. The analyst describes what
assumptions has to be different about the problem context. If a difference may be
resolved by proposing it to change at the customer’s domain, the ‘change at customer’
column is checked. If a combination is in order, the ‘to be’ situation of the problem

49

context is described as a difference with the reference model and the ‘change at
customer’ column is checked.

From the identified differences that need to be supported documented in the differences
log, the issues are created to develop that support. Issues created to support a particular
difference are documented at that difference in the differences log in the ‘issues’ column.

5.2.2 The sprint

The sprints are conducted as usual, with the slight addition once in a while (preferably
after each sprint), changes to the system should be reflected in the reference model. As
the system changes, the world according to the system changes as well. Therefore, the
reference model describing that world must change with it. Otherwise differences are no
longer identified correctly. Once the change in the system is reflected in the model, the
change can be indicated as ‘modelled’ in the differences log.

5.2.3 Feedback

Once the sprint is completed, the difference to propose as changes together with the
latest version of the software product form the proposed solution. The input of the
customer on this proposed solution forms input for the next development cycle.

Depending on that input, a change can be indicated as being fixed, meaning the customer
has agreed with the proposed solution. On the other hand, if the proposed solution is
rejected, the analyst can describe another difference in the differences log and indicate it
is the next iteration of a previously indicated difference. The result is a history of
identified differences and decisions made to mitigate those differences (hence the name
‘differences log’). As the reference model may not be fully up to date with the latest
changes, the analyst can see the latest status of it in Table 1.

In practice, the customer’s input will often be in the form of a story about the problem
context (i.e. telling us how things are done at their company called ‘Domain stories’ in
the diagram) or in the form of feedback on the proposed solution. In the latter case, this
could also be feedback directly on the application itself. Small preferences on the user
interface aside, the analyst should realize when such feedback implies a difference in the
assumptions in the reference model.

As an example, the customer may want multiple loading locations when entering a
container booking. The analyst can indicate this difference in the reference model
through the ERD and the process diagram. The ERD should have the possibility to
describe multiple loading locations in relation to a container booking. If this is not the
case, the analyst describes this difference in the table and chooses one of the options as
described.

A counter example is when feedback on the application itself that does not imply a
difference between the domain and the reference model. This type of feedback is more
common in practice. The customer may not like the graphical interface of the system,
wishes certain information to be displayed (like a map of the current location of a ship
on the planning screen), or wishes to be able to use the tab button to jump to the next
input field of a form.

50

Customer | Description of identified difference Iteration of Change at | Fixed | Modelled
customer

Cust. B The related ContainerBooking’s TerminalBooking may 1456, 1457
either be import or export: import going from the deep sea
terminal to the GHCT’s local customer and export vice versa.

Table 1 - Differences log

51

5.2.4 A fit for each customer

As each difference identified is tracked per customer in the differences log (second
column in Table 1), filtering the table on a specific customer results in a summary of
how the system and that customer’s organisation fit together. The list may contain
changes made to the organisation as well as the variations added to the system. On the
other hand, variations added to the system can be tracked to its original customer(s).

52

6 Validation

Aside from the analytically reasoned validity of the method chunk developed, based on
the theoretical foundation and its reasoned design principles, input for external validity
is required. Throughout its development, the method chunk iterates between researcher
and practitioners from the organisation as described in the Action Design Research
(ADR) approach (Sein, Henfridsson, Purao, Rossi, & Lindgren, 2011). However, the
iterations have not yet approached the point of adoption or rejection by the
organisation. Therefore, an alternative is required to obtain external input for the
validation of the method chunk. The goal is to explore the plausibility that the method
chunk will be effective in use for future customers of Cofano to:

* Identify commonality and variability

* Cope with multiple customers

* Improve coordination within the developing organisation

* Quick and precise identification of requirements (or ‘issues’)

6.1Approach

The options identified to that end are:
* Applying the method in a test case within a workshop for Cofano.
* Using the method in the field at a future customer of Cofano.
* Asking experts for their opinion.

Applying the method in a test case will require the attendees of the workshop to be
competent modellers and abstract thinkers. This will require time and effort to develop
these competencies within the organisation and is outside of this project’s scope.

Using the method in the field is seen as commercially risky, as the method is unproven
and may give the future customer a negative impression of Cofano’s abilities.

Therefore, the last option is chosen for this project. The method chunk is explained to
experts and asked for their opinion. The experts asked for their opinion with their
qualifications, and from which perspectives they provide insight are summarized in
Table 2. In short, the experts asked for their opinion had the following qualifications:

* Experienced in management of, and overseeing large IT implementation projects
for core operations in the logistics industry (preferably intermodal container
transport).

* Preferably experienced with generic models (ability to understand the level of
abstraction)

53

Qualifications Stakeholder perspectives

Marco - Consultant (often project leader) in End user, owner and the
Huijsman the logistics industry for process and adopter perspective

IT application optimisation and

implementation (for both adopting

and supplying organisations) (18

years)

- Co-owner and product owner of

Cofano Software solutions (5 years)

Michel - Implementing SAP ERP finance End user and owner
Mensink modules (9 years) with use of

reference models.
\JETe9 821 B - Project management of [T End user, owner and the
der Velde implementation projects for Portbase = adopter perspective

(Previously Port infolink, provider of

nearly nationwide shared services for

the logistics industry in the

Netherlands) (4 years)
Richard Key user SAP implementation at GE Adopter perspective
Klaassen Bayer Silicones (1 year)

Terminal Manager Markiezaat

Container Terminal (7 years)

Table 2 - Experts

The experts were given a presentation on the method chunk and the context it is placed
in. The presentation included an explanation of the core concept of the reference model,
a tour of the reference model, an explanation of the process model with a real life
example to illustrate the method chunk’s use in practice, and its most important design
principles. The experts are asked to identify at least three challenges or pitfalls, and
three advantages of the method chunk.

6.2 Advantages
The advantages identified by experts are listed in Table 3.

In general, all experts that provide insight from the end user or owner stakeholder’s
perspective are convinced that the method chunk will:

* Identify commonality and variability between customer’s problem contexts

* Cope with multiple customers

* Improve coordination within the developing organisation

* Quick and precise identification of requirements (or ‘issues’)

However, there are challenges and pitfalls that may impede each of these advantages.
These are discussed in the next section.

A few of the advantages identified are worth elaborating. First and foremost, as more
terminals adopt the TOS, the practices that the system supports will become a collection
of ‘best of breed’ in the industry. The method chunk makes this knowledge explicit as
added value to potential future adopters of the system.

54

Mensink,
van der
Velde,
Klaassen,

Huijsman

van der
Velde,
Klaassen,
Huijsman
Mensink,
Huijsman

Mensink,
Klaassen,
Huijsman

Mensink,
Klaassen

Mensink,
van der
Velde,
Huijsman
Mensink,
van der
Velde,
Huijsman
Mensink,
van der
Velde,
Klaassen,
Huijsman

As terminals adopt the system, more business practices and solutions
become available; the reference model becomes a collection of best
practices in the industry. The knowledge is added value that comes with
the system that is sold and is made explicit by the reference model.

Business process optimisation (developing and selecting best practices)
becomes part of the software implementation project as opposed to
blindly supporting the process in place.

Opens possibilities for even more distributed development teams:
perhaps even outsourcing/offshoring

Helps the integration process with third party applications in
communicating the process implied by API’s.
Dictionaries in the reference model helps to standardise jargon.

The method chunk will save resources (programming and configuration
activities), estimated at 15-20% from experience.

Gives a professional impression at the customer of the developing
organisation’s capabilities to provide suitable solutions.

Identifies commonality and variability between customers and helps
finding a fit at multiple customers. (Helps coping with multiple
customers.)

Improves coordination through central documentation of customers’
problem contexts resulting in a shared mental model in addition to
newcomer to learn more quickly about the problem contexts.

Quick and precise identification of requirements (or ‘issues’). Will help
to stabilise requirements earlier in the project (problems are more
quickly understood because the assumptions are made explicit).

Problems resolved or improvements made for one adopter become
available for the entire customer base.

Reference model leaves room for unexplored areas to be added by
simply adding blocks.

Table 3 - Advantages identified in expert interviews

In addition, as the decision to add support for certain practices to the system and
developing new practices are part of the implementation projects, the developing
organisation does not merely supply software. Rather, business process optimisation
becomes part of the implementation project, with knowledgeable insights provided by
Cofano from prior adopters.

55

It is even thought that, due to the improved coordination, the method chunk may even
open up possibilities for outsourcing; sharing the mental model with an off shore or near
shore developing team might improve coordination.

From the customer’s perspective, Klaassen noted that problems solved or improvements
made for one adopter become available for the entire customer base. He also said that
the reference model leaves room to add new unexplored parts of the problem contexts
due to its structure and build-up.

6.3 Challenges and pitfalls

As said, there are challenges and pitfalls that may impede the main advantages of the
method chunk. All identified challenges and pitfalls are listed in Table 4. The challenges
and pitfalls that require elaboration are discussed in more detail.

6.3.1 Sharing knowledge with the competitor

As the knowledge of practices and best practices developed throughout its
implementation projects are gathered in the TOS and the reference model (as described
as an advantage in the previous section), adopters may fear sharing this knowledge and
losing their competitive advantage. A counter argument suggested by Mensink is that
their competitive advantage comes from their location and the quality of their
operational execution. Huijsman noted that the adopters’ customer base comes from
their geographic location and rarely regard each other as competitors.

6.3.2 Required capabilities and skill in use

An important pitfall from Mensink’s experience, is that the reference model may give the
impression that any person can analyse the customer’s problem context for differences.
Insight in the customer’s business, knowledge of the reference model’s content,
modelling skills and a certain capacity for abstract thinking are impertinent for the task.
Performing the task by an under qualified person will neither result in a correct
identification of commonality and variability, nor in the correct requirements.
Ultimately, it may result in a poor fit with the organisation where its processes are
poorly supported.

Conversations between people about the reference model’s contents also require certain
capabilities. These may be the analyst and the customer, or co-workers discussing an
identified difference within Cofano. In discussions about the reference model’s contents
and identified differences, the capability to talk in high levels of abstraction and a deep
understanding of the business processes is required. Indeed, a source of difficulty in
enterprise software implementation projects often involves the customer’s poor
understanding of their own business processes and limited ability to simplify and model
them (Dalal, Kamath, Kolarik, & Sivaraman, 2004).

Another challenge noted by van der Velde, is that programmers tend to think strongly in
terms of technical solutions. This tendency results in difficulties in separating the
domain described in the reference model, from the technical solutions to support it. The
separation becomes even more difficult as certain parts of the domain exist only in the
system, but nevertheless is part of the domain.

56

Huijsman
Mensink,
Klaassen,
Huijsman
Mensink,
Klaassen,
Huijsman
Mensink,
van der
Velde,
Klaassen,
Huijsman
Mensink,
Klaassen,
Huijsman
Klaassen,
Huijsman

Mensink,
Huijsman
Mensink,

Klaassen,
Huijsman

van der
Velde,
Klaassen,
Huijsman
van der
Velde,
Huijsman

Challenge or pitfall

A consultant knowledgeable of the reference model’s content, the actual
business processes it describes and the application is still required
Conversation partner needs to be able to abstract at the level of the
reference model.

Changes to the organisation require careful change management

Differences identified and changed in the system may not have added
value for future or past customers, or even result in unwanted changes
at existing customers.

Changes made to the reference model, with implications for the existing
customer base, should be agreed upon through a focus group and/or a
group of representatives of the customer base.

Too many variations added to win over adopters may results in all these
variations described in one complex model and embodied by one
system, resulting in high cost and complexity.

A variation to the system should be made with consideration for added
value for the customer base and its cost.

Changes to the codebase may break existing links with other systems at
existing customers.

The reference model will always lag behind the actual state of the
system’s assumptions in practice.

Work saved in the project is estimated from experience to be merely 15-
20% (the programming and configuration activities).

The knowledge adopted in the TOS and consequently the reference
model is shared by all adopters, which may result in fear of losing
competitive advantage over other container terminals. Also mentioned
in the review of Pajk et al. (2011).

In general, programmers tend to think in terms of technical solutions
straight away and may find it difficult to separate the domain, which is
described in the reference model, from the technical implementation.
The method should be accepted by the developing organisation for it to
work. One fear is that the system implied by the method may impose
too much structure on the informal organisation.

Table 4 - Challenges or pitfalls identified in expert interviews

57

6.3.3 Organisational and software changes

Part of the method is to propose changes to an organisation; perhaps even more than at
normal software implementation projects as the adaptations of the system to the
problem context are kept to a minimum. Therefore, for a successful implementation, the
organisational change should be managed with care.

On the other hand, when variations are added or changes are made to the codebase of
the TOS, these may be unwanted by prior adopters of the system or even break existing
processes and communication links. Mensink and Klaassen suggests a careful
communication plan towards the existing user base upon changes and a focus group of
‘reference customers’ to reflect the impact of the changes made.

In addition, Klaassen noted that too much variation added to tailor to each and every
customer’s wishes may result in a too complex system and reference model and high
cost. Mensink made a related remark that the decision to add a variation to the system
should be made with consideration for added value and its cost. Huijsman nuanced the
notion that as an exception, integration with existing systems of an adopter cannot be
prevented and results in variations that may only be used by one adopter.

Another organisational change is that at Cofano adopting the method. For it to work, the
method should be accepted by the organisation. Huijsman noted that too much structure
imposed by the method might impede its acceptance, as the organisation has an
informal way of working.

58

7 Generalisation

The applicability of the method chunk is limited to use by Cofano, as the process model
is tailored to their development process. Furthermore, the reference model is developed
with HCTs in mind. Its design principles and its building blocks are all based on our
experience with HCTs so far, in conjunction with the TOS’ design. Therefore, the method
chunk developed in this project is limited to instantiate for development projects
conducted by Cofano, where the TOS’ codebase is to be implemented at organisations
that qualify as HCTs.

Organisations that qualify as HCTs, are those which:
- Organise (at least a part of) the transport of intermodal containers or bulk goods
between the shipper and deep sea terminals.
- Of this transport the organisation itself, at least, receives, stores and loads (at
least part of) the intermodal containers or bulk goods for limited periods in
between transports at their location.

59

8 Discussion

Despite the insight the experts give from their experience, the method chunk is built and
validated almost purely analytically. Therefore, its effects from use in practice are yet to
be seen. In addition, there are a few other critical remarks to be made.

8.1How versus what

First off, as the reference model describes the customer’s problem context, it describes
what is supported by the TOS, not how it is supported. Some may consider the
distinction as a limitation. Although very important, whether a process is supported
with a fax machine and a homing pigeon or a state of the art web application in the cloud
is not of concern for the reference model. However, one is not better than the other.
Rather, understanding what is to be supported is the step before developing how to
support it. How to support a process is up to the creativity and innovation of the
developing organisation, but not before it is understood what is to be supported. The
process of understanding the customer’s problem context is documented and made
explicit by use of the reference model.

8.2Shared knowledge benefits realisation only when used

As the method chunk’s potential advantages in part come from its shared knowledge
facets, these advantages will only come into effect when it is actively used by the
developing organisation. Often, the task of understanding the problem context is mainly
placed at the person in charge of the customer dialogue. If only that person were to use
the reference model as a tool for its business analysis and updates it after each sprint,
these advantages will not be realised if programmers do not contribute to the
development of the shared mental model of the customers problem context and only
focus at its outcome (i.e. the issues created).

8.3 Maintenance

In addition, the reference model’s effectiveness is highly dependent on its maintenance;
an out-dated reference model can no longer identify differences with the actual system'’s
assumptions about the customer’s problem context. In a pragmatic organisation, the
reference model can easily be considered unnecessary ‘red tape’. Activities other than
documenting differences and updating the reference model could very well receive
higher priority. In example, as small changes are made ad hoc, these may skip the
reference model’s maintenance activities all together. It is therefore pertinent to keep
these activities as lightweight as possible.

In theory, the reference model will require less maintenance over time as more HCTs
have adopted the TOS: As more organisations have adopted the codebase, the more
generic the reference model’s domain it describes becomes. There will be less feedback
from customers that imply a change in the reference model and more on how their
domain is supported.

8.4 Reference model’s precision

There is a trade off between the reference model’s precision and the effort required in
the reference model’s maintenance activities; on the one hand one might model a highly
detailed state diagram, but it soon becomes near impossible to comprehend (i.e. Figure

60

15 is considered difficult to comprehend). On the other hand, too little detail may
impede the ability to identify relevant differences.

In addition, the reference model may state an assumption about a limitation, which in
theory is technically possible by the system. For example, shuttles will never be meant
to drive a container to a deep sea terminal (why use an hinterland terminal in the first
place if the deep sea terminal is that close by the shipper?), but technically, if a deep sea
terminal is indicated to be a ‘shuttle location’ in the system, the user is capable of
planning a container transport to the deep sea terminal on a shuttle.

61

9 Conclusion
At the beginning of this research, we asked the following question:

What is a suitable method chunk for analysing the problem contexts of HCTs in order to
identify their needs and priorities for software solutions?

We’ve seen that a methodology consists out of at least a product model and a process
model. We asked the following subquestion in order to develop the product model:

* Which pieces of information about the problem contexts can be identified that are
relevant for analysis?

As the same codebase should be able to support more than one customer’s problem
context, the identification of variability and commonality is key. Because commonalities
do not require action by the developing organization, we argue that the relevant
information describes the differences between problem contexts and not yet explored
parts of the problem contexts that may require support from the system.

In order to effectively and efficiently document and store the differences, the question is:
* Whatis a suitable method for documenting the relevant pieces of information?

Reference models laid the theoretical foundation for the product model. The generic
model developed in this project describes currently supported domains by the TOS, such
that variability can easily be identified when comparing problem contexts. Even
stronger, because the same codebase is used to support different problem contexts, the
same reference model can be used to compare against the actual problem context of
adopters. This assures efficiency be reusing the model and only documenting differences
identified.

How well the model describes the problem context assumed by the system and supports
variability in detail is yet to be seen in practice. The adoption of the method chunk is a
long term change project at Cofano. We suspect that, as the model matures in use by
Cofano, it will be able to describe all the details it requires about the problem context, as
it is up to the modellers to add these details for future reference. On a higher level, the
model can add or remove parts of the problem context it describes by adding or
removing building blocks. This allows for expansion of the model as well as the addition
of levels of detail.

In effect, the derived models describe the to be situation together with the customer;
looking for processes that the customer cannot or will not adopt or that are non-existent
in the system. The outcome is therefore a design of how the system and the organisation
will fit together, by mending on both sides (sometimes the organisation changes,
sometimes the system changes.)

In order to adopt the reference model in the overall development process at Cofano, the
question asked is:

62

* Whatis a suitable process for applying the product oriented fragment in the overall
development process of Cofano?

For this project, the current process model of Cofano is identified and extended with use
of the reference model, detailing what activities, and in what order, are needed to
document differences identified and the assumptions made that have become part of the
system. In addition, practices for documenting differences identified in the differences
log are discussed in detail.

The process model makes use of the agile approach already present at Cofano by using
the feedback cycle with the customer as input for the identification of differences and
the end of a sprint as input to update the reference model.

Returning to the main research question: The process model in combination with the
product model form a potential basis for a method chunk at Cofano that may be
instantiated for future implementation project at HCTs. From discussion with experts,
the method chunk yields the potential to effectively identify commonality and variability
(and consequently the identification of ‘issues) for multiple customers and improve
coordination, preparing Cofano for its future growth and its expanding customer base.
In addition, it adds value for the customer by making the acquired embodied knowledge
in the system explicit and by providing the potential to optimise the business processes
through the implementation process. Overall, the method chunk improves the alighment
of the system with the HCTs. Its added value makes the adoption of TOS a unique
proposition for Cofano’s customers.

On the other hand, important pitfalls and challenges may impede these advantages. As
best practices are to be adopted and new best practices developed are shared through
the adoption of the TOS, potential adopters may fear the loss of their competitive
advantage, or may find the organisational change troublesome. Furthermore, the use of
the reference model requires capabilities in abstract thinking and modelling in use, both
within the developing organisation as by the customer. Also should changes to the
reference model and codebase be made with careful consideration for the existing
customer base.

All in all, the most quantifiable advantage is estimated to be between 15-20% of the
implementation project’s resources in terms of programming and configuration
activities and is most likely to become more as more variations are added and the
customer base expands. Not including the other qualitative benefits in the equation, this
implies that at least 15% of an implementation projects resources may be spent to
maintain the reference model and cope with its challenges and pitfalls before a break
even point is reached and further investment in the method no longer yields any
advantages.

9.1 Recommendations for adoption

[t is apparent that the method chunk will require some polishing for use in practice. In
addition, the concept of the method chunk is to be adopted by an organisation with a
limited modelling capabilities and capacity for abstract theoretical thinking while this is

63

mentioned as stringent requirements for its use by experts. With this in mind, a few
recommendations for its adoption by Cofano are in place.

Overall, we recommend a continuation in similar fashion as the ADR method described
by Sein et al. (2011), to promote learning by the organisation as well as continued
development of the method chunk. As the majority of the organisation is not trained in
modelling languages and unfamiliar with taking a comprehension of the customer’s
problem first approach in problem solving, we recommend a few workshops in which:

- In the first, the task is given to identify differences between the reference model
and the current state of the TOS.

- Inthe second, a real life case (observed at a future potential customer) is given
with the task to use the reference model to identify differences.

- Inthe second, or a third: When identifying differences, the task is given to
identify customer feedback that merely applies to a particular solution and does
not imply a difference with the reference model (in order to learn the difference
by the attendees of the workshop)

- In the third or fourth: The task is given to create and link issues to identified
differences.

These workshops will bring the reference model up to date and show what parts of the
method chunk (reference model design and practices) work in practice and which parts
require some additional thought: It is recommended to take the learning points from
each workshop to improve the reference model and practices before conducting the
next.

As the organisation improves the method chunk, so does the organisation itself learn to
model and understand the customer’s problem context by doing, and learns how to start
at a deeper understanding of the customer’s problems before attempting to solve them.

An additional commercial advantage of this internal approach is that it prevents the
customer from being confronted by an unproven method and an organisation that is
untrained in its use.

Once the organisation feels confident to do so, the method chunk can be instantiated for
its first sprint in practice. It is recommended to continue the learning on both ends to
keep improving both the method chunk and the organisation’s ability in using it.

[t should be kept in mind that, as the method and the organisation’s capabilities require
further development, it requires investment in terms of time and effort at first before its
benefits materialise. In addition, the TOS’ variations and customer base are currently
small but expected to expand in the future. Both imply that the benefits of its adoption
come with a delay.

64

10 Scientific contribution

Thomas, Horiuchi & Tanaka (2006) describe that in the past years development of
reference models predominant in the scientific research has distanced itself from their
use in practice. Scientific contributions in the number of methods and practices for
reference modelling are numerous, often in high abstraction, but few recommendations
for the case-specific selection of these techniques have been made. Consequently, a
practitioner has no overview of what to use. This project adds to the void between
scientific research and practice by pragmatically applying the reference model concept
with design principles deciding on specific modelling techniques to use.

In practice, reference models are still rarely used in small and medium sized companies
(Pajk etal,, 2011), implying that this project is one of those rare cases. For most systems
a reference model does not yet exist and creating one for a mature system is time and
cost consuming. As the TOS is still relatively small in terms of variations, this project
created a reference model in an early stage of the system’s development. It shows that
for a software system this scale, a reference model can be created at relatively low cost
(this entire project took approximately 840 hours). However, if the developing
organisation is not yet familiar with the concept, the cost become significantly more to
adopt itin its implementation process.

In addition, this research introduces a new concept in the use of reference models. Its
purpose in this project is to identify variability and commonality between multiple
organisations, as opposed to one organisation. Traditionally, customisations of a
particular ERP implementation are not added to the codebase as variation and made
available to the entire customer base. This feedback loop back to the system’s codebase
and consequently the reference model is not present in Nes’ (2007) overview of
techniques of reference model use nor is it present in Pajk et al.’s (2011) description of
comparing an ERP’s capabilities with the organisation. Confirmed by Mensink’s
experience in SAP implementation projects and van Dongen, Jansen-Vullers, Verbeek, &
van der Aalst’s (2007) description of SAP’s application of the reference model,
traditional customisations are made to the particular instance implemented at a
customer’s organisation and not added to the codebase available to all, resulting in not
reusing the identified differences with the reference model as in this project.

65

11 Future research

Future research can be conducted in a couple of directions. One of which is in the same
direction as this project, focusing on further validation and development. It is
recommended to conduct more iterations to further develop and validate the method
chunk until definitive adoption or rejection by the organisation (Sein et al., 2011),
similar to the recommendations for adoption described in paragraph 9.1. Through such
iterations, the method chunk can be:
- Extended with practices to mitigate the challenges and pitfalls identified during
its validation so far.
- Improved in the quality of the reference model’s ability to help identify important
differences in assumptions by adding details of missing assumptions
- Extended with practices for keeping track of configurations, as these are barely
handled by the current version of the method chunk, as the configuration
possibilities of the TOS are barely present.

Another direction of future research is recommended in a widening the scope of the
implementation projects, adding to its generalizability. Perhaps the same design
principles can be employed to develop a similar method chunk for a software system
that is to support other actors in the same industry, i.e. expediters, barge operators,
trucking companies, etc. On the other hand, the method chunk may be suitable for other
developing organisations as well. The research would have to look into fitting it into a
difference development processes as well and the impact that has on the effects in the
new context.

Another topic for future research would be to explore the use of the method chunk in
combination with a near shore or off shore development team, a potential advantage
thought of by Mensink (2015), one of the experts. The research would explore the
coordination improving capabilities in such setting.

66

Bibliography

Agerfalk, P.].,, Brinkkemper, Sj., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F.,
Kelly, S., & Ralyté, J. (2007). Situational Method Engineering: Fundamentals and
Experiences. In]. Ralyté, S. Brinkkemper, & B. Henderson-Sellers (Eds.), Situational
Method Engineering: Fundamentals and Experiences (Vol. 244, pp. 359 - 368).
Boston, MA: Springer US. doi:10.1007/978-0-387-73947-2

Blank, S. G. (2006). The four steps to the epiphany. Cafepress. com (Third Edit.). Lulu.com.

Dalal, N. P, Kamath, M., Kolarik, W.]., & Sivaraman, E. (2004). Toward an integrated
framework for modeling enterprise processes. Communications of the ACM.

Espinosa, |, Slaughter, S., Kraut, R., & Herbsleb,]J. (2007). Team Knowledge and
Coordination in Geographically Distributed Software Development. Journal of
Management Information Systems, 24(1), 135-169. d0i:10.2753 /MIS0742-
1222240104

Harmsen, A. F. (1997). Situational Method Engineering. Ph.D. Thesis, University of
Twente.

Mensink, M. (2015). (Interview, January 20, 2015).
Nes, P. (2007). Reference Models. Msc. Thesis, University of Twente.
Osterwalder, A., & Pigneur, Y. (2009). Business Model Generation. Amsterdam.

Pajk, D., Indihar-Stemberger, M., & Kovacié, A. (2011). Enterprise Resource Planning
(ERP) Systems: Use of Reference Models. In]. Grabis & M. Kirikova (Eds.),
Perspectives in Business ... (Vol. 90, pp. 178-189). Berlin: Springer Berlin Heidelberg.
doi:10.1007/978-3-642-24511-4

Porter, M. E. (2008). Competitive advantage: Creating and sustaining superior
performance. Simon and Schuster.

Rolland, C., Prakash, N., & Benjamen, A. (1999). A Multi-Model View of Process
Modelling. Requirements Engineering, 4(4), 169-187. d0i:10.1007/s007660050018

Rothengatter, D. C. F. (2012). Engineering situational methods for professional service
organizations - AN ACTION DESIGN RESEARCH APPROACH. Ph.D. Thesis, University
of Twente.

Rubin, K. S. (2012). Essential Scrum: A practical guide to the most popular Agile process.
Upper Saddle River, NJ, USA: Addison-Wesley.

Schoonhoven, C. B. (1981). Problems with Contingency Theory: Testing Assumptions

Hidden within the Language of Contingency “Theory.” Administrative Science
Quarterly, 26(3), 349. doi:10.2307/2392512

67

Sein, M., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design
research. MIS Quarterly, 35(1), 37-56. Retrieved from
http://bada.hb.se/handle/2320/9888

Soffer, P., Golany, B., & Dori, D. (2003). ERP modeling: a comprehensive approach.
Information Systems, 28(6), 673-690. doi:10.1016/5S0306-4379(02)00078-9

Svensson, C., & Hvolby, H.-H. (2012). Establishing a Business Process Reference Model
for Universities. Procedia Technology. doi:10.1016/j.protcy.2012.09.070

Thomas, O., Horiuchi, M., & Tanaka, M. (2006). Towards a reference model management
system for business engineering. In Proceedings of the 2006 ACM symposium on
Applied computing (pp. 1524-1531).

UN. (2001). UN/EDIFACT Message CODECO Release: 01B. United Nations Directories for
Electronic Data Interchange for Administration, Commerce and Transport. Retrieved
from http://www.unece.org/trade/untdid/d01b/trmd/codeco_c.htm

Van Dongen, B. F., Jansen-Vullers, M. H., Verbeek, H. M. W., & van der Aalst, W. M. P.
(2007). Verification of the SAP reference models using EPC reduction, state-space
analysis, and invariants. Computers in Industry, 58, 578-601.
d0i:10.1016/j.compind.2007.01.001

Weill, P., & Olson, M. H. (1989). An assessment of the contingency theory of management
information systems. Journal of Management Information Systems, 59-85.

Weske, M. (2007). Business Process Management. Mairdumont Gmbh & Co. Kg.

Wieringa, R.]. (2003). Design Methods for Reactive Systems: Yourdon, Statemate, and the
UML. Morgan Kaufmann Publishers.

Wieringa, R.J. (2012). The Design Cycle. Design Science Methodology. Lecture conducted
from University of Twente, Enschede.

68

Appendix A

Container Booking Information

Container: ASDF1231237
Carrier: MAERSK
Reference: 1234
Invoice Reference: 1234
Bill of Lading:
Pin: 123
Product Weight UNDG Quantity
Friet 0 - 0
Truck Transportation
Truck: -
Pick-up Location: MCTstraat 21, 1234aa Bergen op

zoom, Nederland
Pick-up reference: -

Pick-up Window: 2014-12-01 00:00

Departure Time: -

Transit Time (minutes): 1,800

Deliver Location: A, door 1, asdf 12, 1234aa Rotterdam,
Nederland

Deliver reference: 1324

Deliver Window: -

Truck: -

Pick-up Location: A, door 1, asdf 12, 1234aa Rotterdam,
Nederland

Pick-up reference: 1324

Pick-up Window: -

Departure Time: -

Transit Time (minutes): -

Figure 24 - Example of a printout of a Truck transport order given to the trucker on hardcopy (page 1 of 2)

69

Deliver Location: MCTstraat 21, 1234aa Bergen op
zoom, Nederland

Deliver reference: -
Deliver Window: -

Figure 25 - Example of a printout of a Truck transport order given to the trucker on hardcopy (page 2 of 2)

70

Appendix B

Africo
Africostraat 1a
1234aa Rotterdm
Nedreland

Africostraat 1a -
1234aa Rotterdm -
Nedreland

Rotterdm - Nedreland

Bergen op Zoom - Nederland Vervoerder is niet aansprakelijk voor kwaliteit
of kwantiteit van goederen in deze container
alsmede schade door verkeerde belading of
manco's aan gebruikte container.

Containernummer: ASDF1234560 Net: -
Laad/Los referentie: -

Uithaal Referentie:

22G1 (20' Dry van)

Zegel:

Aankomst:

Vertrek:

Bergen op Zoom, 27-11-2014

Rotterdm,

Figure 26 - Example of a CMR printout (normally printed on the pre-printed template shown Figure 27)

71

Exemplaire

1

LETTRE DE
VRACHTBRIEF - VERVOERDOCUME!
RIEF -

Code ransportesr No.
Code Frachttitme N

Wwwouy .

" 40 Mty

Expbcitor (nom, / Mzercer
l a—\m (raam adres, wd) nden de T plaats van nmummam‘”hhf.-
weg (CMR) van apassng.
NL 675232
ndon van de zaken 0
oe o \or i van o
oedeponeente Agemens Vervoercondties 1083, uatste verse, van 1000assng.
Powr ks conditions de traneport applicables, vor verso. Skt Rickaefte fr de anwendberen Tranepont-
bedngungen.
adresse. pays) / (naam, acrea, lend)
zt—u—mmm 16 prachisiiver uama. Anacheet Canch)
Ui préves pour la vrsieon de ta marchandies (keu, Days) / Plasts (besterd) voor de sfovering Traragorinss auccossis acresss. Opvolgande vervosrders (raam, adres,
é ’ummmlwummm - " wm”d':-a-m-a o
i‘
H| = == = |
e Usus ot date de n prise en G0 bn marchandiee (leu, pays, dato) / Plaats en dat v.
g § aind Gor Coocderan s, . cum) 7 Ot o g O Gwe Guse (O Lanc, o) 18 Do o by ! -
.g
i 5 Documents arvebs / Bigevoegde documenten
1 %g
| §§
Margues of rumiros | Aantal ol el A |
lilo —— | = § mas Wos wn vty o s/ A e | () Mo st | St (] Pk e g/ o ot | 19 Cubnge 3 ek 3
3
ai
it ;
§ 2
o~
+
- i
; g
£
=
2| Kise Ditee Buchetabe ADR)
== 13 Mtructions ce Fexpiadaes / natructis atzender 19 © 7 Speciein
I Arsosnrgen des Absenders Basonders Versktanngen
Ww [=y
door | L maben vom il Wy e

Prin do Wanepont / Wachiris
Fracht

Pecuctions / Kortingen

o o

From o
30 v, Metserutrver

TOWL. / TORAL

15 Rembousement / Ruckerstan.ng

Art. 3010 - Model IRU / Auteursrecht Stichting Vervoeradres - 's-Gravenhage,

tel. 070-3 51 07 51 - BVA-bestellijn 070-3 51 07 89

A el 50us I SOONSAtINS Oe Mepdcieur / In 1 villen onder verantwoordelihed

&

S-4vZ | Soretm ot tembre de fexpicites / Hardtokening o0 sterosl
va van Go atzender / Unteeschift und Stempel des Absenders

Sgrature ot Bmbre du raneponeur / Handiekening en stempsl
van de vervoerder / und Sterpel des $

24 Marchandises reuss / Goederen ontvangen

Gut emptengen
Ueu / Plasts -/ de "
on -
Sigrature of Bmbre d Gestinataire / Handiskening en stempel
van de goadeessesnds / Unterscheifl und Stempel des £mofingens

MY A S DN) 78 OUrCRAROSOR LORNIUM 00 ASNT 161 UARTD URDLAIC G / WIDIULIM 5 00 Rriens Lo

WO B0 O 10 GO O EEEO B IDEO ND Uy ARLED B § Sergueg

AT WD D WA Y UBA Ul SREIET 0D OO DULEDUGA SENGnS 0 SARSG WSO i auaed

Figure 27 - CMR template (pre-printed

on paper)

72

Appendix C

De volgende containers op terminal per 08-12-2014 12:45 bevatten gevaargoed

(dampspanning bij 50 A°C hoger dan
110 kPa) 640C

Container Type I[N datum Debiteur Netto (kg) Beschrijving UN No. KlasseCijfer Etiketten
CRXU4785327 20G1 02-12-2014 MCT 1,000 HARS, OPLOSSING, brandbaar 1866001 3 F1 3
HLBU1270319 45G1 02-12-2014 MCT 1,000 TRAANVERWEKKENDE MUNITIE, 0018000 1 1.2G 1+6.1+8
met verspreidings-, uitstoot- of
voortdrijvende lading
HLBU1270319 45G1 02-12-2014 MCT 2,000 HARS, OPLOSSING, brandbaar 1866002 3 F1 3
(dampspanning bij 50 A°C hoger dan
110 kPa) 640C
HLXU4083242 20G1 02-12-2014 MCT 1,000 TRAANVERWEKKENDE MUNITIE, 0018000 1 1.2G 1+6.148
met verspreidings-, uitstoot- of
voortdrijvende lading
HLXU4083242 20G1 02-12-2014 MCT 2,000 HARS, OPLOSSING, brandbaar 1866002 3 F1 3

Figure 28 - Example printout of the environment list (a.k.a. 'milieulijst’ in Dutch)

73

