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Management summary 
The Customer Service and Support Department at Thales Nederland aims to be the partner of choice for Life Cycle 

Services of complex technical systems in the defense environment. To establish these intimate customer 

relationships, Performance-Based Contracts (PBC), resulted from Performance-Based Logistics could be considered 

as a growing trend. The customer and Thales agree upon a certain service level, generally the average operational 

availability of a system which is reviewed every period of time. These PBCs include penalty structures to specify the 

consequences involved when targets are not satisfied. During this project, the focus will mainly be on improving 

supply availability. 

Currently, the spare parts allocations are calculated through INVENTRI, using the VARI-METRIC approach, which 

ensures that on average the target operational availability is reached against minimal cost. However, the decisions 

in this approach do not cope with any variability in the interval availabilities, the fraction of time a system is 

operational during a period of time, which are directly related to the expected penalty costs. 

Therefore, the goal of this research is to create insights on which aspects have an impact on this variability in 

interval availability and to use this information to improve the current spare parts allocation with respect to the 

expected penalty costs. The corresponding research question will be: 

“How can Thales improve their spare parts allocation to achieve higher interval availability in order to 

reduce the expected penalty costs while maintaining the requirements in the performance-based 

contracts and the constraint of the spare parts costs budget?” 

To answer this research question, we first analyzed a simplified multi-item, multi-echelon model by using 

simulation. Later on, we added various extensions to this basic model to obtain a more realistic setting. A thorough 

literature study and the findings of previous research at Thales served as a basis for the identification of interesting 

parameters and experiments to examine.  This has led to the following hypotheses that were validated in the 

simulation study: 

“Stock investments for slow moving items (few failures and long replenishment times) lead to lower 

penalty costs in the Performance-Based Contracts compared to stock investments in fast moving items 

(many failures and short replenishment times).” 

“Central stock (depot) investments lead to lower penalty costs in the Performance-Based Contracts 

compared to local stock (base) investments.” 

Hereafter, we translated these findings into several guidelines to make an improvement upon the initial solution 

provided by the VARI-METRIC approach. Three of these methods show promising results. The Waiting times 

method uses the output from the simulation tool and focuses on adding stock to items with long waiting times. The 

Combination method combines the findings of the literature study and the output from the simulation tool 

regarding waiting times of items. The Replenishment Lead Time method, which is not based on an initial solution 

provided by VARI-METRIC, starts from scratch and focuses on items with long replenishment lead times to 

eliminate variability and penalty costs. The implementation of these guidelines in a real-life example has led to the 

following results and conclusions as illustrated below. Note that all figures in the table are compared to the initial 

solution from INVENTRI, thus the VARI-METRIC procedure. Positive numbers mean an increase whereas negative 

numbers illustrate a decrease for that performance indicator. 



  

vi 
 

Method Relative difference in 
penalty costs for 
current practice 

Relative difference in 
life-cycle costs for 
current practice 

Penalty 
structure 

Relative difference in 
penalty costs 

Relative difference in 
life-cycle costs 

Waiting times -3,3% +4,3% Original 
Linear 
Exponential 

-2,3% 
-15,6% 
-24,4% 

+4,7% 
-2,0% 
+1,3% 

Combination -27,9% -4,4% Original 
Linear 
Exponential 

+2,5% 
-27,3% 
-44,8% 

+17,6% 
+2,3% 
+10,1% 

Replenishment 
Lead Time 

-20,4% +15,5% Original 
Linear 
Exponential 

+9,8% 
-31,5% 
-55,0% 

+36,8% 
+17,5% 
+33,2% 

 For current practices at Thales, where they adjust target availability artificially to achieve penalty 

reductions, expected penalty costs are minimized by using the Combination method. Using this method 

also leads to savings in the life-cycle costs of the system. 

 For the original penalty structure we were not able to achieve significant benefits in expected penalty 

costs, because this penalty structure punishes minor deviations from the target availability relatively hard. 

This does not lead to savings in the life-cycle costs. However, linear or exponential penalty structures lead 

to considerable reductions in penalty costs for the corresponding methods. The Waiting times method is 

the only method that is also able to reduce life-cycle costs for the linear penalty structure. This is mainly 

due to the fact that the additional investment in initial spare parts is relatively low for this method 

compared to the Combination or Replenishment lead time method. Furthermore, penalty costs are so low 

for these structures such that the initial investment weighs heavily on the total sum of life-cycle costs. 

Based on these conclusions, we would recommend Thales to follow the guidelines mentioned in the Waiting times, 

Combination or Replenishment Lead Time method, depending on the scenario and the system. For this given 

example, the Waiting Times method performed best regarding the original penalty structure and life-cycle costs for 

linear penalty structures. However, if Thales chooses to continue their current practice, it is wise to choose for the 

Combination method. Finally, the Replenishment Lead Time method is able to reduce the penalty costs significantly 

in the cases of linear and exponential structures, but you need to take into account that the initial investment of 

the spare parts allocation can be considerably higher compared to INVENTRI. 

Another important recommendation is to negotiate exponential or linear step-wise penalty structures to reduce 

penalty costs even more. In general, it would be wise to include the Customer Services & Support Department in 

the decision-making of the penalty structures, since this has a large influence on the expected penalty costs. 

Furthermore, we advise Thales to spend resources on shortening replenishment lead times rather than on reducing 

failure rates, since our regression analysis shows that these lead times have more influence on reducing variance 

and thus expected penalty costs in these PBCs. 

Further experiments show that increasing the length of the review period has a positive effect on the variability of 

the interval availabilities, meaning Thales should aim for review periods with a length as long as possible. Another 

opportunity lies in the design of the contract structure, because individual base contracts may lead to lower 

expected penalty costs compared to a joint contract over all the bases, depending on the penalty structure and the 

amount of slow and fast movers in the system. Simulation is required to find the optimal structure, since this 

relation is not straightforward. 
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1 Business description of Thales Nederland 
In the first chapter we will provide a brief description of Thales Nederland, consisting of a history of the 

company in Section 1.1 followed by Thales Group & Thales Nederland nowadays in Section 1.2. Since this 

project will mainly play a role in the service logistics of the naval services, we will discuss this business 

unit in more detail in Section 1.3.  

1.1 History of Thales Nederland 
The beginning of Thales Nederland started in 1922 under the name of NV Hazemeyer’s Fabriek van 

Signaalapparaten in the city of Hengelo. Their first product was fire control equipment for two new ships 

of the Royal Netherlands Navy and after that the company grew rapidly and welcomed other customers 

in Europe. However, during wartime in 1940 the factory was captured by the invading German Army. 

Several staff members escaped to the United Kingdom and they were able to continue their work on fire 

control and radar systems. When they returned to Hengelo, the factory was pillaged and deserted. 

After the war, the Dutch government saw the opportunity to buy the factory and the company was able 

to continue under the name N.V. Hollandsche Signaalapparaten. Due to this governmental involvement, 

new buildings, facilities and staff made sure that the development of air traffic control equipment, radar 

technology and fire control for the army took place in a high pace. 

In 1956, Philips became a large shareholder and the company flourished and opened plants in several 

cities across the country. Near the end of the eighties Hollandsche Signaalapparaten employed over 

5.000 people serving customers in over 35 countries. 

Another setback in the history of Thales was the end of the Cold War, where the political theatre 

changed dramatically, leading to staff reductions and cuts in defence budgets. The company was taken 

over by Thomson-CSF (now Thales) and through this merger and reorganization, the design of new 

systems were realized which ensured that the company was able to take a leap in defence equipment 

and combat management. Eventually, in December 2000, Thomson-CSF changed its name to Thales. 

Being a member of this group, Thomson-CSF Signaal changed its name to Thales Nederland. (Thales, 

2014) 

1.2 Thales Group & Thales Nederland nowadays 
Thales Group is a world leader for mission-critical information systems. Their ultimate purpose is to 

protect people, property and information. They serve five key sectors: Aerospace, Space, Ground 

Transportation, Defence and Security. In 2013, their sales exceeded 14 billion euros with a workforce of 

approximately 65.000 people. They invested a total of 673 million euros in their department of Research 

and Development, an astonishing 67% of their earnings before interest and taxes in 2013. (Thales, 2014) 

Thales Nederland is the largest defence company in the Netherlands, employing about 2.000 people. 

Their activities are carried out at five locations: Hengelo, Huizen, Delft, Eindhoven and Enschede. Thales 

Nederland operates in professional electronics for defence and security applications, but they are also 
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involved in public transport systems. In 2010 Thales Nederland generated about 600 million euros worth 

of sales, 80% of which is export. (Thales, 2014) 

1.3 Customer Services & Support at the Naval Services 
The department of Customer Services & Support (CSS) describes their mission and vision as: 

 “Customer Services & Support is the partner of choice for Life Cycle Services of complex technical 

 systems in the defense environment.” (Thales Nederland B.V., 2014) 

They establish this intimate customer relationship through delivering innovative services at any place 

and any time and continuously improving and updating their service product portfolio to match their 

customers’ requirements. Since products have a typical service life of ±25 years, different service 

packages are defined in order to let the customer select what suits his needs.  

The replenishment of spares, overhauls and Integrated Logistic Support (ILS) are the main activities for 

CSS, since they account for 72,5% of the order intake between 2007 and 2012. With replenishments they 

aim to provide swift solutions to gaps in the supply chain with an up to date catalogue of spare parts on 

a regular basis. Overhauls include extended preventive maintenance tasks to overcome the effects of 

adverse operational environments and to prevent serious malfunctioning at inconvenient moments. 

Additionally, they could lead to service life extensions. ILS enhances more features during the life cycle of 

the product, such as logistics engineering where they influence the system design, documentation, 

operator and maintainer training and transfer of knowledge and technology to achieve a system with an 

optimal availability and total cost of ownership. (Thales Nederland B.V., 2014) 
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2 Research design 
Section 2.1 will provide more insight into the context of the research, taking the relevant product, 

characteristics of the service contracts and the current determination of the spare parts allocation into 

account. This information will serve as a basis for the research scope in 2.2 and the research objectives in 

section 2.3. The methodology and the outline of the thesis will be addressed in section 2.4. 

2.1 Research context 

2.1.1 Product structure and service chain 

The radar systems consist of many modules and elements (Thales Group, 2014). This system modularity 

can be defined into different system parts (Thales Nederland B.V., 2010): 

- Maintenance Significant Items (MSI) 

All replacement items and higher assemblies, potentially requiring preventive or corrective 

maintenance. MSIs are subject to subsequent analysis (LRUs are a subset of the MSIs). 

- Line Replaceable Unit (LRU)  

Replaceable unit to repair the system at organizational level of maintenance. 

- Shop Replaceable Unit (SRU) 

Replaceable unit to repair LRU at intermediate or depot level, or replaceable unit at 

System/Equipment site with depot means. 

- Software Support Significant Item (SSSI) 

Software component on which maintenance tasks can be conducted. 

Important to notice is that LRUs are repaired by replacement and they consist of one or more SRUs. The 

SRUs consist of parts that can cause a failure of the SRU, leading to a failure of the LRU, leading to failure 

of a (sub)module and ultimately leading to system failure and downtime of the whole system (depending 

on criticality). These definitions are illustrated in the multi-indenture structure of a radar system as can 

be seen in Figure 1 below. 
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Thales has organized a repair supply network to ensure high availability of these complex multi-

indenture systems. Parts are repaired and replaced based on corrective maintenance. Thales defines 

corrective maintenance as: 

“Maintenance on the system to remove an unwanted fault within the system, usually with the 

purpose of restoring a system capability. Corrective maintenance can be scheduled (if repair can 

be postponed), or unscheduled if the fault is to be repaired as soon as possible.” (Thales 

Nederland B.V., 2010) 

The operational repair and supply process starts with the demand for an LRU at a location due to failure 

of that LRU. The corresponding spare part is used to replace the failed LRU or the demand is 

backordered. Depending on the complexity of the failure the failed SRU within the LRU is repaired at the 

base (ship), depot or higher within the echelon network to the OEM. Generally, the more complex the 

Figure 1: Partial multi-indenture structure of a radar system (van Zwam, 2010) 
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failure, the higher the required echelon level to perform the repair. If the selected repair facility has the 

spare part on hand, they will send it back to the base and repair the failed item. Otherwise, this demand 

is also backordered and satisfied when this part will become available from the repair shop. This can also 

be described as a one-for-one replenishment policy (Sherbrooke, 2004). This repair network is illustrated 

below in Figure 2. 

 

Figure 2: Thales' repair network (van Zwam, 2010)  

Given this repair network and product structure, Thales uses a Level of Repair Analysis (LORA) (Basten, 

2014) to determine to repair or discard components upon failure, where to do this and where to locate 

the resources. 

2.1.2 Performance-based contracts 

Within Thales, performance-based contracts (PBC) are a growing trend towards closer working 

relationships between Thales and their customers (van Zwam, 2010). These contracts are based on the 

average availability of the system, leading to penalties when the operational availability is lower than the 

service level agreement and occasionally resulting in bonuses if a higher operational availability is 

achieved (Coenen, 2009) (Driessen, 2014). The operational availability is defined by (Sherbrooke, 2004) 

as: 

                          
    

        
             (2.1) 

 

where MTBM stands for Mean Time Between Maintenance. This is the mean time between two 

consecutive activities (either preventive or corrective), whereas MDT stands for Mean Downtime due to 
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maintenance time (either preventive or corrective), delay due to lack of necessary spare parts and 

possible other delays resulting from the maintenance action. In this research we fill focus mainly on the 

delay due to a lack of necessary spare parts. That means in terms of (Sherbrooke, 2004), we will focus on 

the supply availability, where MSD stands for the mean supply delay of the spare parts: 

                    
    

        
         (2.2) 

2.1.3 Spare parts allocation 

To achieve the service level agreement as stated in the PBC, spare parts are needed to reduce the Mean 

Downtime due to spares and thus increasing the operational availability. Taking into account the 

aforementioned product structure, an appropriate method to determine this spare parts allocation is the 

VARI-METRIC approach (Sherbrooke, 2004). This procedure determines how much should be stocked of 

each item, taking into account failure rates and repair times, at a certain location in the echelon network 

based on the minimization of the backorders at the bases, since these are causing direct downtime of 

the system. This approach is implemented and used by Thales in the computer program INVENTRI, a 

specialized tool developed by Districon and Ortec (Smit, 2009). Calculations in this program are based on 

(Rustenburg, 2000) and (Sherbrooke, 2004) which enables Thales to draw a graph for the availability of 

the system with respect to the investment on spare parts in order to select the most appropriate spare 

parts allocation given a certain target availability. For more details on this approach, we refer to 

Appendix A: (VARI)-METRIC Approach.  

2.1.4 Interval availability 

At the moment, INVENTRI is capable of calculating the optimal allocation of spare parts given target 

supply availability. On average, this availability will be achieved with the selected allocation, but the 

performance-based contracts are generally reviewed on a yearly basis (ter Hofstede, 2014). That means 

that the operational availability of the previous year is compared with the service level agreement. 

Obviously, there will be years with a higher availability than the target, but also years with a lower 

availability, leading to penalties. This problem arises because VARI-METRIC does not focus on this 

variance in availability, but on the average steady-state availability during an infinite timespan. To cope 

with this situation, (Al Hanbali & van der Heijden, 2013) proposed a model to compute the interval 

availability defined as: 

“The system interval availability is defined as the fraction of time a system is operational during a 

period of time [0,T].” (Al Hanbali & van der Heijden, 2013) 

Focusing on this interval availability during the spare parts allocation, rather than on steady-state 

availability for an infinite timespan can yield more accurate results during the yearly revision as 

considered in the performance-based contracts.  

At the moment, there already exists a professional simulation tool called SIMLOX which computes the 

interval availability given a certain spare parts allocation as input. This means that the output of 

INVENTRI can serve as input for SIMLOX to compute the interval availability. SIMLOX allows the user to 

see how the performance of the technical systems is affected by different system design alternatives. 
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One can examine how (interval) availability, resource utilization and system utilization varies over time 

for a given solution and a certain scenario (Systecon, 2013).   

2.1.5 Previous research at Thales 

The research of (Coenen, 2009) provides a deeper understanding of the benefits, costs and risks involved 

with the performance-based contracts. By using a simulation program to compute the long term 

availability with a given stock allocation, he computes the probabilities of having a penalty or bonus 

during the contract. By using these probabilities and the costs of the corresponding spare parts 

allocation, he obtains a relationship between the availability of a contract and the financial result. He 

finds that having an availability as low as possible yields the highest financial result, since stock levels are 

very expensive and penalty costs do not increase below a percentage of 75% availability, depending on 

the contract. However, one could argue that customers of Thales do not accept these low availability 

rates. After performing his sensitivity analysis he also concludes that long term performance can differ 

greatly from short term performance, that bonus and penalty levels have a high influence on the optimal 

stock allocation and that the corresponding costs play an important role in the optimal strategy.  

The previous work on interval availability at Thales was performed by (van Willigen, 2013). He focused 

on an approach to reduce the variability in the system availability for a single-site and single-indenture 

model. He distinguishes three different product groups (slow movers, average movers and fast movers) 

to determine which would be the best investment with respect to expected interval availability, the 

coefficient of variation and the 80% survival probability. The distinction between fast and slow movers is 

solely based on mean repair time and the failure rate of items, however the ratio between these 

parameters remains constant to guarantee the same steady-state availability. The survival function 

stands for the complementary cumulative distribution function of the system interval availability. For 

details on the survival probability function, we refer to (Al Hanbali & van der Heijden, 2013). 

The most important results from the research of (van Willigen, 2013) are that it does not matter which 

item you add to stock if you only take the expected interval availability (steady-state availability) into 

account, since this is based on the expected number of backorders which is a function of the ratio 

between repair and breakdown times. As mentioned before, these ratios remain constant during the 

research. This is also in line with (Sherbrooke, 2004). However, by analyzing the survival function, it is 

found that adding a fast mover to the stock yields a significantly larger survival probability compared to a 

slow mover. A major drawback for this result is that adding a fast mover also results in achieving the 

highest variance of the expected interval availability. The author explains this through the fact that you 

will need a high variability of the interval availability to compensate the higher survival probability for 

the same average of the steady-state availability.  

However, through intuition and experience in the field of factory physics we might say that slow movers, 

where we have relatively long repair times and infrequent demand, lead to high variation and inaccurate 

predictability of failures in comparison with fast movers (Hopp & Spearman, 2000). 
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2.2 Research scope 
We will build upon this previous research by verifying the obtained results concerning the interval 

availability for slow and fast movers. Also, we will extend the single-site, single-indenture model to a 

more realistic multi-echelon, multi-indenture model and analyze the effects of the length of the time 

interval and the structure of the contract. We also discuss model extensions such as order-and-ship 

times, a repair time distribution, cannibalization and lateral support.  

The main focus is to provide assistance in cases where the VARI-METRIC approach is indecisive between 

different scenarios. In these cases, we will only consider the possibilities of different stock allocations 

with same steady-state availability meaning we can alter which items to add to stock and decide upon 

the locations for these items. We will not consider any possibilities in redesigning or remanufacturing 

parts or systems. 

2.3 Research objective 
To assist Thales in the decision making for their spare parts allocation given the principles of the 

performance-based contracts, the interval availability and the research scope, the following main 

research question will be answered: 

“How can Thales improve their spare parts allocation to achieve higher interval 

availability in order to reduce the expected penalty costs while maintaining the 

requirements in the performance-based contracts and the constraint of the spare parts 

costs budget?”  

 

To answer this research question, the following sub-questions will be addressed during the project: 

- SQ 1: How can the current situation at Thales be described? 

An analysis about the current situation with respect to the performance-based contracts and 

spare parts management will be conducted in order to obtain a realistic setting for the 

simulation study. Scientific literature will assist in describing models. 

- SQ 2: Which methods are currently available in the literature to deal with interval availability? 

A literature review about interval availability will be performed to identify methods that deal 

with this topic. 

- SQ 3: Which input parameters/attributes of spare parts allocations are relevant for obtaining the 

same steady-state availability of a system, but achieving different interval availabilities? 

A deep understanding of the VARI-METRIC approach, the opinion of experts and analyzing other 

existing heuristics on spare parts inventory management will assist in finding which key 

attributes contribute to the outcome of interval availability while maintaining the same steady-

state availability. 

- SQ 4: In what way do the given attributes influence the interval availability? 

Here, we will determine the real impact of these key attributes on the interval availability by 

using the professional simulation tool SIMLOX.  
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- SQ 5: How can we design guidelines based on the previous principles to achieve higher interval 

availability and minimize penalties, taking into account the requirements in the performance-based 

contracts and on the spare parts costs budget? 

The previous sub-questions will serve as a basis for the principles of the heuristic aiming to 

improve the spare parts allocation from INVENTRI in a structured manner. 

2.4 Methodology and thesis outline 
Chapter 3 consists of the literature review, where in the first two sections 3.1 and 3.2 the current 

situation at Thales will be described by using after sales business models and spare parts strategies. In 

the succeeding sections 3.3 and 3.4 of this chapter the second and third sub question will be answered 

by analyzing studies on interval and process availability. The conclusions of the literature study will be 

translated into hypotheses for the simulation in section 3.5. 

Then, in Chapter 4, we will perform the simulation study based on the conclusions of the literature 

review to answer sub question 4. Section 4.1 involves the model formulation and section 4.2 includes the 

characteristics of the simulation. The model extensions will be addressed in section 4.3. We will discuss 

the results from this study in Chapter 5 so that we can answer the fifth sub question. We start with the 

basic simulation results in section 5.1 followed by the simulation of the model extensions in section 5.2. 

A sensitivity analysis is performed in section 5.3 and we will eventually provide the guidelines for 

improvements in chapter 6. These guidelines will be tested in a real-life example and these results are 

presented in chapter 7. We will finish the thesis with a concluding chapter 8 and a chapter 9 about 

suggestions for further research.  
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3 Literature review 
To learn more about the issues addressed in sub questions 1,2 and 3, we will perform a literature review 

about these aspects to gain insights. In this section we will briefly focus on the literature about Long 

Term Service Agreements (LTSA) when discussing after sales business models in section 3.1. Then we will 

relate spare parts strategies to these LTSAs in section 3.2. In section 3.3 we will extensively address the 

issues related to the interval availability and in section 3.4 we use the findings on process variability. 

Finally, in 3.5 we conclude on our findings in the literature review to derive hypotheses for the 

simulation study. 

3.1 After sales business models 
Certain products have an extremely long operation phase of ±25 years (Thales Nederland B.V., 2010). 

The service life of these products can even be extended if clients choose for an overhaul by refurbishing 

the system. This way, the system is able to enter the operation phase again for another ±15 years (Doets, 

2014). Studies have shown that the maintenance costs of such products way exceed the initial costs 

(Alfredsson K. , 2001). Therefore, it is more appropriate for businesses to analyze the life-cycle costs 

(Gluch & Baumann, 2004) (Woodward, 1997).  

For Thales, this means that their after sales processes will become more important, since they execute 

the maintenance, repair, supply and support services for these systems. Because of this shift in cost 

focus, performance-based contracts arose at Thales for handling the after sales processes (Doets, 2014).  

In the model of (Cohen, Agrawal, & Agrawal, 2006), they distinguish several models based on service 

priority and ownership, also see Appendix B: After sales business models. Combining their models with 

the situation at Thales we can sketch the following figure concerning the Long Term Service Agreements 

as in Figure 3 below. 

 

Figure 3: Different Long Term Service Agreements for after sales processes (Doets, 2014) 
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Here we can quickly see that the traditional view on contracts has shifted rigorously. The system 

availability is a key measure nowadays and the penalties and bonuses are based on this value, the so 

called penalty structure. Therefore, contracts for availability and capability are becoming a trend, 

certainly for Thales. In an effort to reduce costs and increase efficiency, many navies turn to Thales for 

maintenance and support for their systems after the regular guarantee period, rather than performing 

these tasks by themselves (Thales Nederland B.V., 2012). Also, customers often do not possess the 

knowledge, resources or budgets to perform this maintenance and therefore they outsource this to 

Thales (Thales Nederland B.V., 2014). In the Contract for Availability (CFA), the customer still has 

ownership of the system, but Thales performs all agreed In-Service Support (ISS) against a fixed annual 

fee. In the Contract for Capability (CFC), Thales remains the owner of the system, so that you do not have 

to invest the capital for the acquisition of the initial system (Thales Nederland B.V., 2014). 

3.2 Spare parts strategies 
Techniques in spare parts can be distinguished on two dimensions according to (Rustenburg, 2005), 

namely maintenance type and costs. This leads to four different strategies as can be seen in Figure 4 

below. 

 

 

 

 

 

 

 

 

 

 

 

Within this research we will mainly focus on the fourth class where we have expensive products which 

need corrective maintenance. This is the most difficult category, since this involves the largest part of the 

investment and system critical parts. We need advanced methods to manage these spare parts to cope 

with the unpredictable and unstable demand and to analyze the influence from the part on system 

availability. Study has shown that system approaches are way more effective for these spare parts 

compared to item approaches, since interaction between various levels is included (multi-echelon and 

multi-indenture), discrete demand distributions can be used and extensions as commonality, criticality 

Figure 4: Spare part strategies (Rustenburg, 2005) 
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and redundancy can be included (Rustenburg, 2002). Here, commonality means that the same parts may 

occur in more than one parent. The criticality of a part reflects the probability that the system is down 

due to the failure of this part. Furthermore, a system may contain not only active but also passive 

redundant parts. These passive parts which are on standby can be activated to prevent downtime of a 

system. A suitable method for this category would be the aforementioned (VARI)-METRIC approach by 

(Sherbrooke, 2004).The main takeaways from this method are that we prefer to add cheap fast movers 

to the stock at the individual bases to obtain high backorder reduction in order to achieve high 

availability quickly and thus reducing downtime of the system per individual base, whereas on the other 

hand we might add items to stock at the depot in order to decrease backorders at this depot and 

therefore decrease the pipeline and waiting time for items for all bases simultaneously. The approach 

considers this trade-off and aims to maximize the overall operational availability. To cope with the 

potentially invalid assumption that the base pipeline would be Poisson distributed, the author extended 

the existing model to the VARI-METRIC approach to prevent underestimation of the backorders at the 

base. For more details on both methods, we refer to Appendix A: (VARI)-METRIC Approach. 

3.3 Interval availability 
The first expressions for the moments of cumulative operational time were found by (Takács, 1957), and 

later this work was extended by (Iyer, Donatielle, & Heidelberger, 1986). With the aid of the Laplace-

Stieltjes transform and the central limit theorem both studies were able to determine the asymptotic 

performability distribution. Performability can be described as a composite measure for the performance 

and reliability, in their case it may also be interpreted as the probability density function of the 

operational time obtained from a system during a finite period of time. Where (Takács, 1957) considered 

an on-off stochastic process, (Iyer, Donatielle, & Heidelberger, 1986) considered an M/M/N/N + b 

Markov process, where the N servers represent the N processors and there are b stages in the buffer, 

where each stage holds one job to be processed. They included repair actions of the buffer and the 

failing processors.  

The limitations of the steady-state availability and the need for the computation of the probability for 

not meeting certain availability were recognized by (Goyal & Tantawi, 1988). Before this, high reliability 

was mainly achieved through redundancy, to decrease the amount of downtime (Avizienis, 1978) 

(Siewiorek & Swarz, 1982). The measure of steady-state availability was insufficient, because there were 

penalties involved for not meeting the guaranteed level of availability. Goyal & Tantawi therefore 

calculated the distribution of availability at time t recursively by discretizing the observation period (0,t) 

into such small intervals ∆t that the probability of having two or more failures during this interval is 

negligible. This numerical approach allowed them to consider Markovian failures and repairs, time-

dependent failure and repair rates, and deferred repair and non-deferred repair strategies, with 

sufficiently small approximation errors. For this approach, they considered continuous time two-state 

Markov chains. However, they did not provide an analysis section with error bounds on the 

approximation.  

These approximation errors and lack of error bounds were the main motivation of the research of (de 

Souza e Silva & Gail, 1986). By using the randomization (or uniformization) technique (Cinlar, 1975) 



Thales Nederland B.V. 
Reducing penalty costs in performance-based contracts 

 

 

25 
 

(Ross, 1983) (Berger & Christophi, 2003) they could also numerically calculate the distribution of 

availability during a finite interval period. An important contribution is that modeling details such as 

Coxian distributions, spares and coverage may be included. Furthermore, they showed that other 

performance indicators, such as the density of availability at time t, the expected availability at time t, 

the expected lifetime at time t and the mean time to failure can all be calculated without any significant 

additional computational effort. Also, by using their method, one can specify the error tolerances in 

advance. 

In the paper of (Rubino & Sericola, 1993) two improvements are suggested on the approach of (de Souza 

e Silva & Gail, 1986). They provided an algorithm which needs the same memory space, but works faster. 

A second algorithm is also introduced which needs less memory space than the previous methods and its 

space requirements are known at the beginning.  

More recent research of (Carrasco, 2004) focuses on designing an efficient and fast approach to solve 

large and complex interval availability models by using a truncated transformed model and solving this 

through a state-of-the-art algorithm. Later on, (Huang & Mi, 2013) were able to proof initial 

monotonicity of the interval availability and derived lower bounds and the limit for the interval and 

average availability. Since closed forms for the interval availability were still generally unavailable they 

introduced a Block-by-Block method (Linz, 1985) to compute the interval availability numerically for a 

specified time instant t, showing high accuracy and efficiency. The study of (Kirmani & Hood, 2008) has 

led to a closed form expression for the variance of the interval availability in a 2-state continuous time 

Markov chain (2-CTMC) model. They also propose to derive the coefficient of variation of the interval 

availability to judge its fluctuations. Finally, an approach to compute the first two moments of interval 

availability in closed form for a Markov chain that models the system with more than two states is 

proposed in (Al Hanbali & van der Heijden, 2013). These two characteristics are used to approximate the 

survival function of the interval availability, i.e. the complementary cumulative distribution function of 

the interval availability, using a Beta distribution (Smith, 1997) together with the probability that the 

interval availability equals one, see Appendix C: Interval availability and survival function. This function 

shows excellent accuracy in comparison with a simulation study, especially for high expected interval 

availability.  

3.4 Process variability 
The findings of (Hopp & Spearman, 2000) and (Zijm, 2012) in the production environment can lead to 

insights regarding interval availability. They assume that the times to failure are exponentially distributed 

and they do not make any particular assumptions about the repair times, so deterministic repair times 

are allowed. However, they consider a production line with different workstations and come up with the 

variation of the process time. Furthermore, they consider a preemptive service policy, meaning 

whenever a failure occurs during service time, it will be resumed after repair of the machine.  We do not 

have a production line in our environment at Thales, but we can still use the formula to understand the 

effects on the variability in the system, by using: 

  
    

  (    
 ) (   )

    

  
          (3.1) 
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Where   
  stands for the squared coefficient of variation of the effective process time,   

  includes the 

natural (unaccounted for) variability in the process,   
  includes variability in repair time,   is the 

availability of the system,      is the mean time to repair and let    be the natural process time.  

In our setting considering slow movers versus fast movers, the natural variability   
  will remain equal, 

because we use the same random seed for the generation of pseudo random numbers. Note that the 

squared coefficient of variation of the repair times   
  is determined through the standard deviation and 

mean of the repair time: 

   
  

    
       (3.2) 

The standard deviation    in the repair time is equal to zero, since we consider deterministic repair times 

and this means that the coefficient of variation of the repair times will also be equal to zero. 

The major importance in this formula is that for larger     , we have a larger variance in the system for 

the same steady-state availability. The failure rate does not have an effect on the variance in the system 

for this setting. This means that slow movers with high      cause more variance in the system and 

thus to more variance in interval availability leading to an increase of the probability of receiving a more 

severe penalty. 

This formula also suggests that the steady-state availability has an impact on the variance, because of 

the term  (   ). The outcome will be the largest for  =50% and effects will fade out as system 

availability tends to increase to 100%. 

One could argue that the formula and its applications do not hold in our environment, since we do not 

have workstations and a preemptive service policy. Therefore, we could also use the findings of (Kirmani 

& Hood, 2008) on the variance of interval availability and its common coefficient of variation, where two-

state (on and off) Markov chain models represent a more realistic scenario of our environment at Thales. 

To examine the effects of slow and fast movers in the setting of (Kirmani & Hood, 2008) we experiment 

with the parameters λ (mean time to failure = 1/ λ) and µ (mean time to repair = 1/µ), while keeping 

system availability constant. This means that we maintain the same steady-state system availability, but 

we alter the mean time to failure and the repair times in this case to move from a slow mover to a fast 

mover. Steady-state availability in this case is calculated as: 

                          
 

   
                (3.3) 

For increasing µ (faster repair) and thus increasing λ (higher demand rate), we can see that the 

coefficient of variation  ( ) tends to decrease, meaning that if we have long and infrequent repair times 

(slow movers), we have higher fluctuation in interval availability, compared to short and frequent repair 

times (fast movers). This is also illustrated in Figure 5 below. This conclusion is in line with the previous 

findings of (Hopp & Spearman, 2000). We can also see that the coefficient of variation decreases as the 

review period increases. For more details on the calculations in the model we refer to Appendix D: 

Variance of interval availability and its common coefficient of variation. The curves for the coefficient of 
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variation are increasing for small T due to the authors’ initial assumption at t=0. They assume that the 

Markov chain is always in on-state (system is functioning) at the start, resulting in zero variance. 

  

 

3.5 Conclusions on literature review 
All previous studies on interval availability mainly focus on computations for the moments of the interval 

availability for systems with different complexities using analytical methods. This means that up to now, 

there are no managerial insights available on how the effect of the interval availability can be minimized 

and which attributes in a spare part allocation have a contribution in this matter and in what way. The 

article of (Al Hanbali & van der Heijden, 2013) found that for two different spare part allocations (adding 

centralized stock compared to decentralized), with (nearly) the same steady-state availability, you can 

have different interval availability, but they do not extensively analyze where this difference comes from 

or conclude that it is always better to add stock centrally with regard to interval availability. Sure, (van 

Willigen, 2013) found that the failure rates and repair times of items can have an influence on interval 

availability without affecting the steady-state availability (by keeping the product constant), but this was 

done for a very simplistic scenario with relatively low system availabilities resulting in counterintuitive 

findings. Therefore, we will extensively address the effects of these two characteristics for constant 

products in a more realistic and more complex model in order to understand the real effects of these 

attributes, to come up with the managerial advices on the situations where the VARI-METRIC procedure 

encounters indecisive scenarios concerning the spare parts allocation, since this is lacking in the 

literature. 
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Assistance in these indecisive scenarios is provided by using the findings in the literature (Al Hanbali & 

van der Heijden, 2013) (Kirmani & Hood, 2008) (Hopp & Spearman, 2000) (Sherbrooke, 2004). Their 

conclusions will be translated to hypotheses: 

1. “Stock investments for slow moving items lead to lower penalty costs in the Performance-

Based Contracts compared to stock investments in fast moving items.” 

2. “Central stock investments lead to lower penalty costs in the Performance-Based 

Contracts compared to local stock investments.” 

These hypotheses will be analyzed in a simulation study, because there is a professional simulation tool 

already available which is able to incorporate the characteristics of the situation at Thales. 
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4 Simulation model 
In order to improve the current spare parts allocation at Thales, taking into account the penalty costs 

involved, we perform experiments based on the aforementioned hypotheses. In this chapter we will 

describe the basic model characteristics of the simulation study in section 4.1. Subsequently, in section 

4.2, details about the simulation characteristics will be provided. The model extensions are discussed in 

4.3. 

4.1 Basic model formulation 
To formulate the basic model, we include the following perspectives: the system view, the supply 

network view and the usage profile. We will also include the penalty structure for the Performance-

Based Contracts. 

4.1.1 System view 

The basic model is a radar system which consists of two LRUs with each corresponding failure rates and 

deterministic repair times. Both LRUs have a quantity of one in the system and if one LRU fails, the full 

system is down. This is illustrated in Figure 6 below. 

 

Figure 6: System structure of basic model 

4.1.2 Supply network view 

We consider one depot, which is connected to two bases, where each base exactly has one radar system. 

For the basic model, the order and ship times between the bases and the depot are set to zero. This is 

adjusted in later experiments and some extensions. There are no stocks available for both items at any 

location. This is illustrated in Figure 7 below. 
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Figure 7: Supply network of basic model 

4.1.3 Usage profile 

We will consider a mission profile for both bases where missions with duration of exactly one month 

(730 hours) will be iterated 12 times during a year. This will lead to a continuous mission profile with 

system utilization of 100%. 

4.1.4 Penalty structure 

It is very difficult to set a standard template for a penalty structure in a Performance-Based Contract. 

This depends on several factors, such as trust between Thales and its customer, the corresponding 

system, the measurement of the key performance indicators and the risks that are involved with possible 

downtime. Also, some customers only consider penalties when the actual system availability is below the 

target and are not willing to pay a bonus for higher availability since they did not request this (Driessen, 

2014). Therefore, we will only consider the minimization of penalties and do not take into account 

possible bonuses based on the following common structure as illustrated in Table 1, where target 

operational availability is set to 90%. Although this exact penalty structure was never agreed upon in a 

contract with a customer, it was a suggested structure (Ypma, 2014). It is remarkable that small 

deviations from the target availability are punished severely, whereas very low availabilities are not 

penalized that hard. Contract value is set to 50 million with duration of 15 years. The contract value per 

year is 7% of the total contract value, leading to 3.500.000 per year. 

Table 1: Original penalty structure for 90% Performance-Based Contract 

System availability per year (in %) Penalty percentage of yearly contract value 

0 – 25 % 110 % 

25 – 50 % 100 % 

50 – 70 % 75 % 

70 – 85 % 50 % 

85 – 86 % 25 % 

86 – 87 % 20 % 

87 – 88 % 15 % 

88 – 89 % 10 % 

89 – 90 % 5 % 

90 – 100 % 0 % 
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4.2 Simulation characteristics 
In this section, we will discuss the relevant experiments for the simulation, together with its definitions, 

assumptions and restrictions. Thereafter, we will provide some extensions of the basic simulation model 

to obtain a more realistic setting.  

4.2.1 Definitions 

Before the design of our experiments, we first introduce some important definitions to establish insights 

on slow and fast movers. These different items will have the same steady-state availability through the 

fact that the backorder product remains the same, but they have different characteristics in terms of 

mover ratio. 

Replenishment lead time 

The replenishment lead time of an item is the complete time it takes to restore the system to its state 

before failure of that item. This time depends on the repair time (MTTR) and repair fraction (rf) of the 

corresponding item, the reorder time at the supplier when repair is not successful and possible order 

and ship times (OST) between the depot and the base. 

                                      (    )                       (4.1) 

Note that the order and ship times are always included, because repairs are always performed at the 

depot. When repair is unsuccessful, the item is reordered at its supplier. For every item, it holds that this 

reorder time is always larger than its mean time to repair. 

Mover ratio 

The mover ratio defined as the failure rate of the item divided by the replenishment lead time of the 

item. The failure rate of the item is given as the amount of failures that will occur per million of 

operating hours. The replenishment lead time is the time it takes, in hours, to replenish the item and to 

restore the system to its original state given. 

           (  )   
            

                       
    (4.2) 

Important to notice is that this parameter solely serves as an indicator to make a distinction between 

fast and slow moving items. It is not used in formulas or calculations. With this parameter we can see 

whether there exist different results when comparing fast moving items to slow moving items. Note that 

the mover ratio will be relatively low for slow movers, since they tend to have a low failure rate and long 

replenishment lead time. Fast movers will have higher failure rates, but shorter replenishment lead 

times leading to a higher mover ratio. We will consider mover ratios from 0,001 (slow mover) up to 10 

(fast mover), because replenishment lead times longer than 2 years and shorter than 3 days do basically 

not exist for items and are also not included in INVENTRI (Doets, 2014). A logarithmic scale on these 

mover ratios will be used to illustrate the effects. 

Backorder product 

Note that we cannot change the failure rate and replenishment lead time without taking any restrictions 

into consideration. We need the same backorder product for the different items to guarantee the same 
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steady-state availability (Sherbrooke, 2004) (Rustenburg, van Houtum, & Zijm, 2000) (Muckstadt, 2005), 

as can be seen through the formula of the calculation of the backorders at the base: 

                                     (   )  ∑ (     )  
   

  
    

  
 
       , (4.3) 

Where     denotes the stock level of item i at location j and     is the backorder product defined as: 

                 (   )                                          (4.4) 

Review period 

The time interval during which the availability of a system is reviewed will be called the review period. 

Note that the system availability for each review period is defined as the interval availability. Also, the 

interval availability is reviewed as a total over all bases and not on an individual basis. 

4.2.2 Design of experiments 

In this section we will address the different experiments to determine the influence of the given 

attributes. Note that all scenarios are performed on the aforementioned basic model, unless we state 

otherwise (such as adding stock, include order and ship times or distinguish different review periods). 

 Experiment 1: Slow movers vs. fast movers on different availability levels (section 5.1.1)  

We will first analyze the impact of slow movers versus fast movers on different availability levels. 

This experiment will be performed to see what influence the mover ratio has on the interval 

availability and we will see if this effect changes for different steady-state availabilities. 

 Experiment 2: Adding stock to slow movers vs. fast movers on depot and base level (section 

5.1.2) 

Recall that we will not consider decisions on redesign or remanufacturing, but we do have an 

influence on selecting which item to add to the stock allocation. We will analyze the effects on 

interval availability when adding slow or fast movers to the stock allocation. This will be done for 

both at the bases as for the depot, while maintaining 90% steady-state availability even if we add 

stock. Therefore, we adapt the failure rate and repair time of the items to cope with this. 

 Experiment 3: Adding stock locally compared to adding stock centrally (section 5.1.3)  

As mentioned before, Thales could also decide upon the location of adding stock. We will 

analyze the impact of these locations on the interval availability in this experiment. Order and 

ship times will be included in this model to achieve same steady-state availabilities between 

adding stock on different locations. 

 Experiment 4: Changing the review periods (section 5.1.4)  

We will analyze the effects when changing the review period of the system to a relatively short 

time period compared to long periods. For our experiments we distinguish the review periods as 

stated in Appendix E: Review periods. 

 Experiment 5: Joint contracts and individual contracts (section 5.1.5) 

We will analyze the effects of having a joint contract for all bases together compared to having 

individual contracts per base and investigate whether fast movers and slow movers have an 

impact here. 
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4.2.3 Assumptions and restrictions of the basic model 

In the basic model we have the following assumptions: 

- The radar system consists of two LRUs with both a quantity of one. 

- We do not include the possibility of performing preventive maintenance. 

- We do not include the possibility of lateral support (transshipments between the bases). 

- We do not include the possibility of robbing (cannibalization). 

- We do not include the use of alternative units. 

- We do not include a backorder prioritization; all backorders are satisfied on a First Come First Serve 

(FCFS) basis. 

- We do not include the possibility of common and/or redundant items. 

- All items have the same criticality level, always leading to a failure of the system and thus downtime. 

- The order and ship times between the depot and the bases are considered to be deterministic and 

equal to zero. 

- Failures occur according to a Poisson process, the time between failures is a stochastic variable 

having a negative exponential distribution. The failure rates are constant in time. 

- The item repair times are considered to be deterministic and constant in time. 

- All items failing at the bases are sent forward to the depot, leading to repair probabilities at the base 

of zero. Reparations at the depot are always successful, so reordering is not considered. 

- There is no stock available of any item at any location. 

- Availability is reviewed on a yearly basis (review period is one year). 

4.2.4 Run length 

The simulation will be performed for 1980 review periods (N=1980). Before this, we will have a warm-up 

period of 20 years to cope with long replenishment lead times and low failure rates in order to allow 

queues and other aspects in the simulation to get into conditions that are typical of normal running 

conditions (Simul8, 2015). After this warm-up period, the 1980 review periods will be simulated. For the 

basic model, this means that we simulate for a total of 2000 years, since the review period is one year. 

Although for some experiments we have different review periods, we do not change the warm-up period 

since the length of the review period does not influence the failure rate or replenishment lead times, so 

therefore we can maintain the same warm-up period. We only use one replication to obtain realistic 

results and to prevent running the warm-up period for every replication again. However, to ensure that 

certain stock allocations and item characteristics lead to the target availability, we use 1000 replications 

to check whether the input leads to this target. 

4.2.5 Key performance indicators 

The variance, the coefficient of variation, the survival function of the interval availabilities and the 

expected penalty costs are key performance indicators in this research. These figures are closely related 

to the probability of receiving a penalty, where a lower variance, lower coefficient of variation and a 

higher survival probability for a given system availability will lead to a lower probability of receiving a 

penalty. 
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Note that for both formulated hypotheses it must hold that steady-state availability remains the same; 

otherwise it would not be a valid improvement of the VARI-METRIC solution, since then we do not have 

an indecisive situation for this procedure. For the first hypothesis we face no serious difficulties with 

regard to the restriction on steady-state availability for the basic model. There are no order and ship 

times involved yet, so an equal backorder product will lead to same steady-state availability. However, 

for the second hypothesis regarding stock locations, we have to be aware that this steady-state 

availability changes. This is due to the fact that you will always prefer to stock at the depot to obtain the 

risk pooling effect when order and ship times are ignored. We can overcome this issue by including these 

order and ship times. 

For every review period (T) we will collect the number of systems that were available for that interval. 

Note that this can be a decimal number, meaning if 3 systems are 50% available of the time there are 1,5 

systems available. From there, we can compute the interval availability per review period since we know 

the total number of systems in the network.  

                       ( )  
                            

                                      
                       (4.5) 

Then we are interested in the computation of the variance amongst all interval availabilities, since we 

know that increasing variability generally degrades the performance of a system and variability reduction 

is central to improving performance (Hopp & Spearman, 2000). Obviously, this formula only holds when 

there is no significant correlation between the availabilities for the different intervals. Simulation results 

show that this is indeed the case by calculating and interpreting the Durbin-Watson statistic (Durbin & 

Watson, 1950), so we can apply the formula.  

     ( )  ∑
(                                           ) 

   
    
        (4.6) 

Furthermore, we calculate the survival function and the coefficient of variation. The survival function for 

x can be seen as the probability that the interval availability will be greater than or equal to this x with x 

being a number between 0 and 1. 

                              ( )  
     ( ( )  )

 
                   (4.7) 

A proper view of the extent of fluctuations in the interval availability [A(T)] is not given by their standard 

deviations or variance, but by their common coefficient of variation ( ) (Kirmani & Hood, 2008), defined 

as: 

 ( )  
√     ( ) 

   ( ) 
      (4.8) 

4.3 Extensions 
The multi item, multi echelon basic model obviously represents a more realistic setting of the situation at 

Thales compared to the multi item, single site model from (van Willigen, 2013), but still it is a simplified 
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version of reality. Therefore, we investigate and discuss the effects of some model extensions on the 

interval availability and again compare the influence from slow and fast movers in these extensions. 

4.3.1 Order and ship times 

Recall that the basic model does not take any order and ship times into consideration between the bases 

and the depot. In reality, often there will be a transport time between these stations. In our model 

extension, we include deterministic order and ship times between the bases and depot, since SIMLOX 

does not support the possibility to include a distribution to these transport times. Before starting the 

experiments, we have to be aware of the fact that the steady-state availability might change between 

the slow movers and fast movers for the same backorder product. This did not happen before, since 

these transport times were equal to zero. However, now the fast movers will make use of the transport 

more often compared to the slow movers, so we have to account for this by adjusting the backorder 

product, by including the order and ship times in the replenishment lead time, to obtain the same 

steady-state availability. 

4.3.2 Repair time distributions 

Up till now we assumed that repair times are deterministic. In practice and in recent literature, we often 

see that these repair times follow an exponential distribution (Al Hanbali & van der Heijden, 2013), 

Weibull distribution (Huang & Mi, 2013), or are seen as random variables with a certain mean (Caglar, Li, 

& Simchi-Levi, 2004) (Wong, Kranenburg, van Houtum, & Cattrysse, 2007). Since SIMLOX only supports 

the possibility of an exponential repair time distribution, we will investigate the effects of this 

distribution on the interval availability. We can easily implement this without worrying about the steady-

state availability, since the study from (Alfredsson & Verrijdt, 1999) has shown that the steady-state 

availability tends to show little sensitivity to the distributional form of repair and order and ship times.  

4.3.3 Cannibalization/robbing and lateral support 

The purpose of cannibalization is to recover a limited set of reusable parts from used products or 

components for product recovery management (Thierry, Salomon, van Nunen, & van Wassenhove, 

1995). However, in the case of a multi-echelon network, one could define cannibalization as enhancing 

the reliability of a system by extracting the needed components from another part of the system when 

repair facilities or spare parts are not immediately available (Baxter, 1988). For Thales, this will only work 

when we can exchange non-critical components to the part of the system where they are critical. In this 

way, the system failure will be restored. However, we only consider critical items in our systems and 

therefore this form of cannibalization will not solve anything. Nevertheless, we do have the possibility to 

exchange components between systems if one system is already on failure. Then we can solve a possible 

failure of the second system by replacing the failed item with the working item of the already failed 

system. This is also referred to as robbing.  

Lateral support means that the failed part at one location can be replaced by a ready-for-use spare part 

that comes from another location (excluding the depot). Through this additional flexibility one can 

achieve significant cost savings, especially when lateral transshipment lead times are low and service 

constraints are tight (Wong, van Houtum, Cattrysse, & van Oudheusden, 2006). 
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This would mean that both options provide more flexibility in the network, which will always lead to the 

same or higher system availability for the given spare parts allocation because the original solution is 

always allowed. Although these options could be included in SIMLOX we do not investigate them in this 

simulation study. 

4.3.4 Multi-indenture model 

The multi-indenture model that we consider is a simple extension of the basic model. Both LRUs now 

contain two SRUs, where failure of an LRU is always caused by failure of one SRU, see Figure 8. The LRU 

is repaired by replacement at the base if there is an SRU on stock. This replacement is always successful. 

If there is no SRU on stock, we have to wait for the failed SRU to return. The failed SRU is sent forward to 

the depot where it will be repaired. This repair is always successful. After repair, it is send back to the 

base to put it on stock or to be replaced in the failed LRU. In the basic model, we experimented through 

altering the failure rates and repair times of the LRUs. Now, we also have to deal with the corresponding 

SRUs. We assume that the failure rate of an SRU is exactly half of the failure rate of its LRU. Furthermore, 

the complete replenishment time of the LRU consists of the replacement of the SRU and the repair of the 

SRU. Model and inventory characteristics are the same as in the basic model for single-indenture. For 

more information on the item characteristics for this multi-indenture model, we refer to Appendix F: 

Details for simulation of multi-indenture model.  

 

Figure 8: System structure of multi-indenture model 

4.4 Conclusions simulation model 
To validate our hypotheses we will use a radar system consisting of two items installed at two bases. The 

impact of the level of the steady-state availability will be investigated. Thereafter, we examine the 

effects of stocking a slow or fast mover locally and centrally. Lastly, we investigate the influence of the 

length of the review period and the structure of the contract. We simulate for a period of 2000 years 

with a warm up period of 20 years to compute the variance among the interval availabilities and 

calculate the expected penalty costs according to the penalty structure given in Table 1. Finally, we 

extend the simulation model in several ways to achieve a more realistic setting and to check whether the 

obtained results are influenced.  
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5 Results 
In this chapter we will discuss the findings from the experiments, relate them to the hypotheses of 

section 3.5 and use this relation to design guidelines to improve the current VARI-METRIC solution in the 

spare parts allocation. 

5.1 Simulation results 
The results of the aforementioned experiments will be discussed in this section. Recall that we first 

analyze the influence of different levels of availabilities followed by an experiment where we investigate 

the effect of stock investments for slow and fast moving items at the depot and base. Hereafter, we 

examine the impact of the length of the review period and finally we discuss the findings for the 

different contract structures. All definitions of the parameters used in the experiments can be found in 

section 4.2.1. 

5.1.1 Effects of slow movers versus fast movers without stock for various steady-state 

availabilities 

From Figure 9 we can see that for the different steady-state availability levels, the variability in the 

interval availabilities tends to increase when the steady-state availability decreases. Furthermore, we see 

that variance of the interval availability decreases as we change from slow mover to a fast mover 

independent from the current level of availability. This is not in line with the study of (van Willigen, 2013) 

considering the single-site model, but it is certainly in line with our expectations for the multi-echelon 

model, since fast movers are more predictable because of frequent failures and shorter replenishment 

lead times whereas slow movers occur infrequent with long replenishment lead times. One remark is 

that the effect will decrease when average availability tends to increase to 100%. 

 

Figure 9: Variance of interval availability for different steady-state availabilities 
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The survival functions, in Figure 10, are plotted on a range between zero and the target operational 

availability (90%), since this range is relevant for the penalty structure. Survival functions illustrate the 

probability that the system availability is above a certain threshold. For instance, the chance that the 

system availability is higher than 80% for a system consisting of fast moving items is still 100%, but for 

systems with slow moving items this probability is around 75%. Comparing the mover ratios, we can 

immediately see that fast movers never enter the region where penalties strike the hardest and they 

preserve relatively large probabilities when approaching the target operational level. At some point, they 

intersect with the slow movers. This can be explained through the fact that the area under the complete 

graph will be equal for all functions, because the steady-state availability is equal. This also means that 

slow movers still have a relatively large probability of achieving higher availabilities than the operational 

target, but these are not interesting for the penalty structure. Figure 11 clearly illustrates these effects 

when expected penalty costs per year are plotted for the different mover ratios. Systems consisting of 

fast moving items will lead to significant lower expected penalty costs compared to systems with slow 

movers. 
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Figure 11: Expected penalty costs per year for different mover ratios 

For detailed plots of the interval availabilities and detailed information on the input data for this 

experiment we refer to Appendix G: Details for simulation of experiment 1. 

5.1.2 Effects of adding stock for slow mover versus fast movers 

For these experiments, we will maintain a constant level of steady-state availability in contrast to the 

previous experiment. Furthermore, we consider the possibility of adding items to stock to investigate the 

effects of this. Recall that Thales has little influence on selecting fast and slow movers for certain systems 

and we do not consider redesign as mentioned in the research scope, therefore we only investigate how 

the system behaves if we invest in certain stock. We will distinguish two cases, since we have the 

possibility to add stock centrally at the depot, but can also store it locally at the bases. It is important to 

notice that we will now have two different items in terms of failure rate and repair time in the radar 

systems, a slow and fast mover, whereas in previous experiments they were similar, but obviously the 

backorder product will be the same. Also, since we are adding stock now, we will increase the availability 

in the system. Therefore, we increase failure rates and repair times to a certain extent such that adding 

one item to stock at the depot again leads to a steady-state availability of 90%. For more details on the 

input data and results for these experiments, we refer to Appendix H: Details for simulation of 

experiment 2. 

Adding stock at the depot: fast mover vs. slow mover 

It is clear that adding the slow mover at the depot results in significantly reducing the variance of the 

availabilities compared by adding a fast mover by looking at Figure 12. We obtain a spectacular reduction 

of more than 90% in terms of variance of the interval availabilities if we decide to invest in a slow mover 

compared to a fast mover, while we maintain the same steady-state availability.  
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Figure 12: Stock policies at depot compared to basic model 

Adding stock at the bases: fast mover vs. slow mover 

We expect the same relation for adding stock at the bases, but we do not know whether the effects will 

be greater or smaller. Therefore, we perform similar experiments where we also adapt failure rates and 

repair times. If we only add one item of a slow mover or fast mover to one base, we still have a lot of 

variance due to the other base where no stock is available. However, if we choose to add one item of 

stock at each base, then we see the same drastic reduction of variance when adding the slow movers 

compared to the fast movers as is illustrated below in Figure 13.  

 

Figure 13: Stock policies at bases, adding one item to stock at both bases 
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Again, we observe the same effects as in the case of adding stock at the depot. However, effects are 

particularly visible when we add stock at all bases, because then we eliminate most of the variance 

caused by the slow mover.  

The most interesting thing is to see how these different stock policies relate to the expected penalty 

costs per year. These results are illustrated below in Figure 14. Note that the scenarios are not exactly 

equal between the depot and base stock policies. In the case of depot stock policies we add one item 

(slow mover or fast mover) to stock at the depot, whereas we add two items at the base stock policy, 

one item at each base. The failure rates and replenishment lead times are modified such that both stock 

policies lead to a steady-state availability of 90%.  

 

Figure 14: Expected penalty costs for different stock policies 

The most important conclusion is that for the characteristics of the basic model, we will always prefer to 

invest in a slow mover rather than in a fast mover, since this reduces variability in the system availability 

significantly resulting in considerable lower expected penalty costs per year and thus we agree with the 

first hypothesis stating that stock investments for slow moving items lead to lower penalty costs 

compared to stock investments in fast movers. 
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the ability to serve both bases, so it will be able to pool the risks, whereas the stock at the base is 

dedicated to that certain base. However, by including order and ship times, we can overcome this issue.  

From the results, illustrated in Figure 15 below, we see that adding local stock compared to central stock 

leads to higher variance of the interval availability. However, these effects are relatively small. In the 

survival functions there does not exist any obvious deterioration when adding local stock compared to 

central stock as can be seen in Appendix I: Details for simulation of experiment 3. Here you can also see 

that the mover ratio of the fast mover is adapted to maintain realistic failure rates and repair times.  

Also if we look to the expected penalty costs per year for the different location stock policies, we see 

that there are some minor benefits of adding stock centrally. This means that the second hypothesis, 

stating that central stock investments lead to lower penalty costs compared to local stock investments 

will also be accepted, but we have to take into account that effects are significantly smaller compared to 

the first hypothesis. 

  

Figure 15: Key performance indicators for central stock policies vs. local stock policies 
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5.1.4 Effects of review periods 

Previous research at Thales showed that the variability of the interval availability decreases with the 

interval length (Coenen, 2009). This would suggest that the variance and coefficient of variation of the 

interval availability are larger in short review periods compared to longer review periods. To verify this, 

we distinguish five different review period intervals. We use the basic model concerning the item and 

model characteristics, meaning no order and ship times and no stock and we compare the outcomes to 

the situation where we review on a yearly basis. 

Analyzing the results, we can indeed conclude that the statement of (Coenen, 2009), variance of interval 

availability decreases as the interval length of the review period increases, is justified and that the 

effects are even more obvious for fast mover compared to slow movers. This is also as expected 

considering the theoretical foundation of (Kirmani & Hood, 2008) where the coefficient of variation 

decreases as the interval length increases. 

The input data and results of these experiments are illustrated in Appendix J: Details for simulation of 

experiment 4.  

5.1.5 Joint contracts vs. individual contracts 

For these experiments we extend the basic model with another two bases, leading to a total of four 

bases, to obtain more reliable results for the different contracts. For the joint contract, we measure 

interval availability as an average of the base availabilities per year whereas for the individual contract 

we just measure the availability per base and relate the penalty costs to these figures. For the joint 

contract we will again use the contract value of €3.500.000 per year and for the penalty costs at the base 

we will use an evenly divided distribution leading to a contract value of €875.000 per base. The penalty 

structure is the same as before, drafted in Table 1. 

Obviously, variance among the interval availabilities will be lower for the joint contract since we use the 

average of the four bases which all have an expected availability of 90%. This means that low availability 

for one base can be compensated through high availabilities at the other bases. This ‘portfolio-effect’ 

always guarantees a lower variance for the joint contract.  

One would assume that when variance in interval availability is lower, that expected penalty costs also 

are minimized but because the given penalty structure is not linear there could be different findings. For 

example, if we consider four bases with availability of 100%, 100%, 100% and 0% respectively, we would 

have an average availability of 75% for the joint contract leading to a penalty of €1.750.000 (50% of 

€3.500.000). However, the individual contracts will only have a penalty for the fourth base. The 

corresponding penalty for this base is €962.500 (110% of €875.000). In these cases individual contracts, 

regardless of the significant higher variance, lead to lower penalty costs. 

Results show that for slow moving items the penalty costs will be lower for the individual contracts. This 

is as expected, since for these items we can have the scenario as in the aforementioned example. For the 

fast moving items the joint contract is a better option. This could be explained through the fact that 

variance in availability will be significant lower for these items, so interval availabilities will be close 
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around the expected 90%. In this area, the penalty structure is linear and thus a joint contract offers 

more benefits. 

 

Figure 17: Penalty costs for joint and individual contracts 

5.2 Simulation extensions 
Some extensions to the basic model will be discussed in this paragraph to examine the earlier results still 

hold in more realistic settings.  

5.2.1 Order and ship times 

Through logic we would expect that including order and ship times have larger effect on fast movers, 

since these fail more often and thus will make more use of these times, because we have no stock for 

the items in the basic model. Therefore, the interesting thing to find out is whether the addition of stock 

to slow movers still holds if we consider these order and ship times in our model. However, a difficulty 

here is to identify two similar steady state availability items since these order and ship times lead to 

additional downtime. When we would not adapt the failure rates and repair times as in the basic model, 
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However, if we modify the order and ship times and the item characteristics in such a way that steady 

state availability will remain the same for adding stock at the depot, we can make a valid conclusion 

upon the effects of order and ship times. Details on the input data can be found in Appendix K: Input 

data and results for simulation of order and ship times extension. Note that the fast mover now has a 

mover ratio of 1,0 to maintain realistic failure rates and repair times. 

Results indicate that it is still more useful to invest in slow moving items instead of fast movers, but 

effects slightly decrease compared to the case where we had no order and ship times at all. For example, 

in the case of no order and ship times variance is decreased with approximately 93% if we invest in a 

slow mover compared to the fast mover. If order and ship times of 365 hours are included, which is a 

realistic value for Thales, then the variance reduction is around 79%. The survival functions also show 

that investing in the slow movers lead to lower penalty costs, because the low interval availabilities will 

not be reached and the graph does not get disrupted until we approach the target operational 

availability. 

5.2.2 Repair time distribution 

The inclusion of an exponential repair time distribution in the simulation model leads to additional 

variance in the system. This leads to even bigger advantages on investing in slow movers instead of fast 

movers compared to the case where we had deterministic repair times. For results, we refer to Appendix 

L: Results for simulation of repair time distribution extensions. For these experiments, the case where 

the exponential distribution is included is compared to the case where these times are deterministic. 

5.2.3 Multi-indenture model 

In this section we will examine whether both hypotheses will still be accepted for a multi-echelon, multi-

indenture model. Also, we consider the same extensions for this model as before. This means we study 

the effects of review periods and order and ship times. Details on the input characteristics and the 

results can be found in Appendix F: Details for simulation of multi-indenture model.  

From these results we can conclude that there are no significant differences between the multi-echelon, 

single-indenture model and multi-echelon, multi-indenture model with regard to the outcome of the 

formulated hypotheses. Also in this extended model stock investments in slow movers and central stock 

allocations lead to lower variance and penalty costs. 

5.3 Sensitivity analysis for input parameters 
In this section we will perform a sensitivity analysis with respect to replenishment lead times and failures 

rates to identify interesting areas for Thales to invest in, in order to reduce variance and expected 

penalty costs. 

5.3.1 Replenishment lead times 

To investigate the impact of repair time reductions we use the aforementioned basic model and plot the 

variance of the availability and the expected penalty costs.  

From the results, illustrated in Appendix M: Sensitivity analysis for repair times, we can conclude that 

variance increases more or less in a linear fashion (R2=0,9943) when replenishment lead times increase. 
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Therefore, we would also expect that penalty costs will increase when replenishment lead times 

increase. This is indeed the case, but due to the given penalty structure this is not a linear relationship. A 

logarithmic dependency is more likely to hold here (R2=0,9794) meaning that for large replenishment 

lead times (>½T) there is not much to gain. 

However, an important side note in this analysis is that the failure rate of the items is adapted to ensure 

the steady-state availability of 90%, otherwise we cannot use the provided penalty structure. Also, the 

level of the steady-state availability influences the variance as we saw in section 5.1.1, so maintaining 

the same level eliminates this effect. In the following section we examine the impact of failure rates and 

replenishment lead times separately for various levels of steady-state availability.   

5.3.2 Split analysis 

In this section we will investigate the effects of the failure rate, replenishment lead time and the level of 

the steady-state availability separately in a so called split analysis. 

For the split analysis, we modify the two parameters in the following way such that they are interesting 

for Thales, because these parameters are often used in reports and formulas: 

                               (   )                        (   ) (5.1) 

                   
                        (   )

                ( )
   (5.2) 

Recall that in the basic model we use a yearly review period which indicates that T is equal to 8760 

hours. Also, we assumed a continuous mission profile, meaning the AOH is equal to 8760 hours. 

The range for the failure parameter will be between a failure once a hundred year and 5 failures per 

year. The downtime parameter is plotted between 0,1 (replenishment takes 876 hours) and 2 

(replenishment takes 2 years). 
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Figure 18: Variance of basic model for split analysis 

We can conclude that variance is relatively high in the cases where average availability is around 50%, 

illustrated in Appendix N: Sensitivity analysis for split analysis, as was already predicted by the formula of 
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equal, meaning same steady-state availability, we see a higher variance in cases where the downtime 
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availability have a significant impact on the level of variance, whereas the failure parameter does not 
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depends heavily on the penalty structure and the mover ratio of the items in the system. Although 

intuition would suggest that a joint contract over all bases will always be the better option, it could be 

that an individual contract for each base lead to lower overall penalty costs. Simulation is required to 

find the best option. Lastly, by using a split analysis and regression analysis we found that it is more 

useful to spend resources on shortening replenishment times rather than reducing failure rates in order 

to reduce variability among the interval availabilities. 
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6 Techniques for improved spare parts allocation 
In this section we will provide some guidelines to improve the initial solution obtained from the VARI-

METRIC outcome from INVENTRI. We also consider one heuristic which is not INVENTRI-based.  

6.1 I: Backorder product 
Recall that the VARI-METRIC procedure is indecisive in situations where items have the same backorder 

product and price, taking into account the aforementioned assumptions and restrictions, and this 

product depends on failure rate and replenishment lead time in the basic model. To identify indifferent 

item pairs beforehand within VARI-METRIC, we need equal backorder products. However, this formula 

depends on the model characteristics. For example, when order and ship times (OST) are included in the 

multi-echelon case, these times should be included in the replenishment lead time, since repairs are 

never performed at the base but at the depot instead. Also, repair probabilities (rf) play a role. In some 

cases an item cannot be repaired or repair is unsuccessful at the depot and then we need to reorder that 

item from the supplier instead. Furthermore, when items occur more than once in a system, we need to 

consider this quantity together with its failure rate to determine the real demand of that item. The 

various relevant models with their corresponding backorder products can be found in Appendix P: 

Identification of item pairs for VARI-METRIC. The general formula for the backorder product is: 

                   (                     )               (    )                

                                (6.1) 

Note that this parameter does not depend on the current level of stock, but solely on the item 

characteristics. We take the levels of stock into account in the other methods. 

After we have defined all model characteristics, we can select the relevant item pairs to provide 

assistance in selecting the most appropriate item with regard to interval availability and penalty costs. 

Therefore we need to determine the mover ratios and select the item with the lowest mover ratio, i.e. 

the slowest mover of the item pair, since this will lead to lower variance and penalty costs as found in 

our simulation study in section 5.1.2. Note that the fast mover of this corresponding item pair has to be 

already selected for the stock allocation by INVENTRI; otherwise we cannot exchange any stock between 

the items in the item pair. This means that stock has to be exchangeable between the items. To 

summarize: 

1. Consider INVENTRI as initial solution 

2. Identify item pairs (with exchangeable stock) by using corresponding  exactly equal backorder 

products 

3. Determine mover ratios for these items 

4. Exchange stock between this item pair. Add stock for the item with the lowest mover ratio and 

deduct the stock for the item with the highest mover ratio 

5. Repeat step 2-4 until no more opportunities arise 
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6.2 II: Waiting times reduction 
To avoid the areas where the penalties strike the hardest we can look at the SIMLOX output and analyze 

the waiting times for certain items. There exist some items which have a waiting time higher than 8.000 

hours meaning that during the review period of a year the system availability is lower than 10%. 

Therefore, we will focus on these items by again searching equal backorder product items with regard to 

these long waiting items and which are selected in the spare parts allocation of INVENTRI. Note that 

these high waiting times are caused by long repair or reorder times; therefore this method is also 

partially based on the outcomes of our simulation study. If we find these cases, we will exchange the 

stock between the items to ensure that the average waiting time is below a certain threshold. In our 

case, we maintained a threshold of ½T, meaning 4320 hours. Then we perform the simulation again to 

identify more long waiting items and we iterate until no more opportunities arise. Summarized: 

1. Consider INVENTRI as initial solution 

2. Perform SIMLOX simulation 

3. Analyze SIMLOX item results output by inspecting waiting times 

4. Consider item with highest waiting time and search for an item with equal backorder product 

and exchangeable stock 

5. Exchange stock between this item pair. Add stock for the item with the high waiting time and 

deduct the stock for the other item  

6. Repeat step 2-5 until no more opportunities arise or when waiting times are below threshold 

6.3 III: Combination 
We have a lot of slow movers in the current system, so we cannot only identify item pairs with equal 

backorder product, but we deduct stock from the fast movers, which usually have stocks larger than 1, 

and select multiple slow movers with long replenishment lead times and waiting times to reduce 

variance. Since we do not take the backorder product into account, we need simulation to ensure the 

steady-state availability of 90%, so a simulation run for the newly obtained stock allocation is needed to 

guarantee that steady-state availability did not change. It is sometimes necessary to keep stock for fast 

movers, otherwise the target availability may not be achieved. Therefore it is also necessary to run the 

simulation to check whether the stock from the fast mover may be deducted. Summarized: 

1. Consider INVENTRI as initial solution 

2. Perform SIMLOX simulation 

3. Analyze SIMLOX item results output by inspecting waiting times 

4. Determine mover ratios for items 

5. Deduct stock from fast movers and add stock to multiple slow movers with long waiting times 

6. Perform SIMLOX simulation run to ensure 90% steady-state availability 

a. If lower than 90%, add more slow movers with long waiting times 

b. If higher than 90%, eliminate latest stock additions 

7. Repeat step 2-6 until no more opportunities arise 
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6.4 IV: Replenishment lead time 
This method will not consider INVENTRI as an initial solution, but starts from scratch. In the split analysis 

from the sensitivity analysis we saw that replenishment lead times have more influence on variance than 

failure rates. Therefore, we will sort the item list on backorder product from largest to smallest and then 

we sort it on replenishment lead times from largest to smallest. This is a nested sort. This way, the items 

where failures occur more often and where failures have a large influence on the variability of interval 

availability are on top. Now, we will add these top items to our stock allocation by selecting one item to 

stock. Once already stocked, we move to the next item. We need to run the simulation in order to find 

the 90% steady-state availability. When this target is exceeded, we will eliminate stock from items which 

are in the bottom of the list, having low replenishment lead times. To summarize: 

1. Perform a nested sort 

a. Sort item list on backorder product from largest to smallest 

b. Sort item list on replenishment lead time from largest to smallest 

2. Perform SIMLOX simulation to check 90% steady-state availability 

a. Add stock for items which are on the top of the list and are not in the stock allocation 

yet, when availability is below 90% (many failures with high impact) 

b. Eliminate stock for items which are in the bottom of the list when availability is above 

90% (few failures with low impact) 

3. Repeat step 2 until 90% steady-state availability is reached 
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7 Implementation of guidelines in real-life scenario 
To validate the given guidelines, we will use the setting of a real-life example. We will mention the 

differences with regard to the assumptions in the basic model as stated before. Previous assumptions 

hold when no differences are mentioned. All improvement techniques are compared to the current 

outcome of INVENTRI. For the implementation of the guidelines, we used supporting Excel-sheets to 

manually determine the stock allocation for the different techniques.  

7.1 Model formulation 

System view 

The radar system consists of 8 indenture levels with a total of 209 items. There are different types of 

items involved such as assemblies, disposable units and LRUs. There is no redundancy involved, but we 

do have common items. Furthermore, certain items have repair probabilities between 0 and 1 meaning 

that in some cases the item can be repaired at the depot or that repair is unsuccessful and we have to 

reorder the item at the supplier.  

Supply network view 

The radar is installed at one ship and this ship is part of a depot. The order and shipping time between 

these locations is considered to be 30 days or 720 hours. The initial spare parts allocation is calculated 

and obtained through INVENTRI. 

Usage profile 

The radar has a daily mission with duration of 5,5 hours throughout the whole year leading to a system 

utilization of ±23%.  

Run length 

For this system we will simulate for 1200 years and we use the same warm up period of 20 years.  

7.2 INVENTRI outcome 
Using the spare parts allocation outcome from INVENTRI as basis for the simulation yields the following 

results. The average availability is indeed 90%, its variance is 4,5% and the expected penalty costs are 

almost 560.000 per year. 

7.3 Results of improvement techniques 

Backorder product 

There exist a considerable amount of item pairs with equal backorder product and different mover ratios 

in the current spare parts allocation from INVENTRI. In these cases, INVENTRI indeed selected the item 

with the highest mover ratio (fast mover), since this one is cheaper. For these instances, we will now 

select the item with the lower mover ratio to comply with the aforementioned guidelines. 

Results show that we are able to reduce variance with 10% and the coefficient of variation with 5%. 

However, we are not able to reduce the expected penalty costs which stay around 560.000 per year.  
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Waiting times reduction 

After performing the steps mentioned in this procedure, we could reduce variance with 22%. However, 

we were still not able to reduce the expected penalty costs significantly. 

Combination 

For this method, the results show that we could even reduce variance with more than 50%, but still we 

did not find any improvement for the penalty costs. 

Replenishment lead time 

This method yields the best results in terms of reducing variance, because we achieved a spectacular 

reduction of more than 65%. However, the expected penalty costs increased with almost 10% for this 

scenario, the largest increase among all methods. 

7.4 Sensitivity analysis for real-life example 
In this section we will discuss the impact of different penalty structures and analyze which technique is 

most suitable in the current practices at Thales, where adjusted target system availability is used to 

reduce the probability of receiving a penalty. 

7.4.1 Other penalty structures 

The current penalty structure is constructed such that minor deviations from the target availability get 

punished relatively hard, whereas penalties for very low availabilities are not that high. This results in a 

‘belly-shaped’ curve. A recent study (Wijk & Andersson, 2012) found that step-wise exponential penalty 

structures are suitable for Performance-Based Logistics. Therefore, we consider two additional different 

structures, a linear and exponential relationship within the same range. Note that we used the same 

regions for the system availability during the review period, we only change the level of the penalty as 

can be seen in Figure 19. Although (Wijk & Andersson, 2012) consider these exponential structures as 

suitable for PBCs, it seems unlikely that customers will accept such a structure, since penalties are 

practically negligible in the beginning. Linear penalty structures therefore seem the most appropriate, 

since they punish the system availability in the most ‘even’ way. 
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Figure 19: Different penalty structures 

When comparing the differences in expected penalty costs for these three structures with regard to the 

INVENTRI outcome and the improvement techniques, it becomes clear that the penalty structure has a 

significant influence. The suggested improvement techniques do not really work for the current penalty 

structure, because minor deviations are already severely punished, but if we switch to a linear 

relationship, savings can go up to more than 30%. The improvement techniques become even more 

attractive when conserving an exponential penalty structure. Another important remark is that the 

technique where we focus on the replenishment lead time outperforms every other technique for the 

two suggested structures, but is the worst solution for the current structure. The results are shown in 

Figure 20 on the next page. 

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100%

P
e

n
al

ty
 (

in
 %

 o
f 

co
n

tr
ac

t 
va

lu
e

) 

System availability during review period 

Different penalty structures 

Original

Exponential

Linear

Original step-wise

Linear step-wise

Exponential step-wise



Thales Nederland B.V. 
Reducing penalty costs in performance-based contracts 

 

 

55 
 

 

Figure 20: Expected penalty costs for improvement techniques for different penalty structures 
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the target system availability when determining the spare parts allocation with INVENTRI (Ypma, 2014). 
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method, as we already expected from the survival functions. 
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Figure 21: Expected penalty costs for adjusted target availability 

7.5 Life-Cycle costs 
To obtain a complete overview of the costs related to the radar system, we need to include the expected 

penalty costs per year as well as the corresponding costs for the initial spare parts allocation. Until now, 

we only focused on reducing expected penalties but we did not analyze at which cost this is achieved. To 

investigate whether the improvement techniques can still outperform the INVENTRI solution, we will use 

the life-cycle costs of the system. These are the total costs related to the system during its life-cycle, the 

costs for the initial spare parts allocation together with all expected penalties during the contract period. 

From Figure 22, we see that for the original penalty structure we are not able to reduce the life-cycle 

costs. This is in line with our previous findings, since for the original penalty structure we were not able 

to reduce the expected penalty costs significantly and given the fact that INVENTRI has the cheapest 

initial spare parts allocation, life-cycle costs will not be lower in this scenario. However, if we look at a 

linear penalty structure, the Waiting times method can reduce the life-cycle costs in this case by almost 

170.000. Although we saw that the Combination and Replenishment lead time method can reduce 

penalty costs the most, their initial spare parts allocation has significantly higher value such that they are 

not able to reduce the overall life-cycle costs. 

Another important remark is that linear and exponential penalty structures considerably reduce the life-
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parts allocation. For this reason, we can conclude that the Combination method and Replenishment lead 

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

INVENTRI Pipeline
Product

Waiting Times Combination Replenishment
Lead Time

Ex
p

e
ct

e
d

 p
e

n
al

ty
 c

o
st

s 
p

e
r 

ye
ar

 
Expected penalty costs for adjusted target 

availability 

Target 90% Target 85%



Thales Nederland B.V. 
Reducing penalty costs in performance-based contracts 

 

 

57 
 

time method do not improve the INVENTRI solution, since the penalties are relatively low for these 

penalty structures compared to the costs of the initial spare parts allocation. 

 

Figure 22: Life-Cycle costs for different penalty structures and stock allocation policies 
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explained through the given survival functions for these methods, since the function is relatively steep 

around the 90% target meaning that a lower target availability leads to considerable large savings in 

penalties.  
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Figure 23: Life-Cycle costs for current practice at Thales 

7.6  Conclusion on improvement techniques 
For this example, due to an overwhelming amount of very slow moving items (±95%), we can conclude 

that we were not able to reduce penalty costs significantly. As can be seen in Figure 11 of Section 5.1.1, 

the reduction in expected penalty costs tends to stagnate for items with mover ratios lower than 0,01. 

However, results show clearly that each method can reduce the variance of the interval availability while 

maintaining the same steady state availability. Another argument for the lack of savings in penalties is 

that the given penalty structure punishes minor deviations from the target severely and very low 

availabilities are not penalized that hard. Nevertheless, penalty costs can be reduced significantly when 

considering other penalty structures, such as linear and exponential penalty structures. However, taking 

life-cycle costs into account we see that for the different penalty structures the Waiting times method is 

the best selection. This could be explained through the fact that the investment of the initial spare parts 

allocation does not increase that much, compared to the Combination method where we select multiple 

slow movers with high cost, or with the Replenishment lead time method where we do not consider 

INVENTRI as a starting solution at all and just select items based on their replenishment lead times 

without involving item prices. The benefits in expected penalty costs for the Combination and 

Replenishment lead time method do not outweigh the additional investment needed in initial spare 

parts. 

Furthermore, the Combination and Replenishment Lead Time techniques work extremely well for Thales’ 

current practices where they raise the target availability with 5% to cope with the penalties involved and 
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the survival functions show that these methods are also outperforming the other techniques in terms of 

robustness. For this scenario, only the Combination method is able to reduce the life-cycle costs due to 

the heave additional investment required for the Replenishment Lead Time method. 

Lastly, the Backorder product and Waiting times methods can be considered equally complex in terms of 

implementation, since with the aid of a single Excel-sheet, containing no hard formulas, we can manually 

compute the modified stock allocation without worrying about the steady-state availability, since we 

have item pairs with equal backorder products. However, for the Combination and Replenishment lead 

time method, this is not the case. For these methods we need simulation to obtain the desired steady-

state availability and therefore these methods are more time-consuming and more complex. 
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8 Conclusions & recommendations 

8.1 Conclusions 
Preventive maintenance is only useful if costs are lower compared to corrective maintenance and if the 

failure rate of a system is increasing over time (Al Hanbali, 2013). Due to uncertainty in failure rates and 

the stochastic behavior of the failures it is difficult to conclude whether or not failures rates are 

increasing. During a mission, Thales’ products are in use and preventive maintenance cannot be 

performed. Off-mission, preventive maintenance can be performed, but availability does not play a 

significant role (Ypma, 2014). Therefore, it is easy to see that we need to consider the fourth class of 

spare parts strategies (Rustenburg, 2005). To cope with the difficulties that arise in this class, Thales uses 

a VARI-METRIC based approach to determine the spare parts allocations. 

However, we know that the VARI-METRIC procedure makes decisions based on steady-state availability 

without taking the variability of the different interval availabilities into account. This variability is very 

important for the penalty costs in the growing trend of Performance-Based Contracts (PBC) at Thales. 

Therefore, we introduce several guidelines to improve the initial solution from VARI-METRIC with respect 

to the variance in interval availability and expected penalty costs. A simplified multi-item, multi-echelon 

and multi-indenture basic model shows us that we are able to reduce variance and expected penalty 

costs significantly. In this scenario we compare investments between a fast moving item (many failures 

and short replenishment lead times) and a slow moving item (few failures and long replenishment lead 

times) where the VARI-METRIC approach will be indecisive. Stock investments in the slow mover will 

always yield the better result in terms of variance and expected penalty costs, since disruptions that 

cause long, infrequent outages tend to inflate the coefficient of variability more than disruptions that 

cause short, frequent outages, given constant steady-state availability (Hopp & Spearman, 2000). Also, 

central stock investments lead to lower variance compared to adding stock locally, but effects are 

considerably smaller. Both statements were extensively researched and validated in the simulation 

study. These results have led to several methods to improve the initial solution given by INVENTRI 

through VARI-METRIC. 

We also verified these methods in a real-life example from Thales and the Backorder Product method, 

based on the simulation results from the basic model, showed us that we could reduce variance for this 

system with more than 10%. One drawback is that we were not able to reduce the expected penalty 

costs, because ±95% of all items within this real-life system contained extreme slow movers. Due to the 

given penalty structure the expected penalty costs are not significantly reduced; only the reduction in 

variance is obtained. 

The other methods based on waiting times and replenishment lead times could reduce variance of 

interval availability even further up to 65%, but we still saw that expected penalty costs remained fairly 

the same for this combination of penalty structure and the given system. Other penalty structures, such 

as linear or exponential, led to 31% and 55% savings in penalty costs respectively for the Replenishment 

Lead Time method. The methods also outperform INVENTRI considering Thales’ current practice where 

they adjust system availability artificially, to cope with the involved penalty costs. However, if we take 
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the overall life-cycle costs into account, the benefits of lower expected penalty costs only outweigh the 

additional initial investment in spares for the Waiting times method, given a linear penalty structure. 

Life-cycle costs are minimized for Thales’ current practice by using the Combination method. 

8.2 Recommendations for Thales 
We recommend Thales to apply the principles of the Combination and Replenishment Lead Time 

methods, depending on the scenario, to improve the outcome of VARI-METRIC, since they can reduce 

variance of the interval availability significantly and therefore achieve considerable reductions in 

expected penalty costs considering Thales’ current practice where they raise system availability with 5% 

in comparison with the contracted target availability when determining the spare parts allocation. The 

Waiting times method can also be interesting when considering life-cycle costs, since this method was 

also able to reduce the overall costs during the complete life-cycle of the system. 

Furthermore, we advise Thales to design or negotiate different penalty structures, more suited for 

Performance-Based Logistics, such as exponential step-wise penalty structures (Wijk & Andersson, 2012), 

because they lead to considerable savings in penalty costs and thus in life-cycle costs. Generally, it would 

be wise to involve the Customer Services & Support Department in the decision-making of the penalty 

structures, since these have a major influence on the expected penalty costs and the spare parts 

allocation. 

Other options to reduce the expected penalty costs within these PBCs, without taking the spare parts 

allocation into account, can be achieved through the determination of the interval length and the 

contract structure. Try to aim for relatively long review periods, since this decreases interval availability 

variability drastically. 

When having relatively many slow moving items it can be wise to conclude contracts on an individual 

basis, also depending on the penalty structure in the contract. For systems with a lot of fast moving 

items, joint contracts are a better choice in terms of expected penalty costs. 

The last recommendation for Thales will be that it is wiser to invest resources on shortening 

replenishment lead times rather than reducing failure rates, since our theoretical foundation, sensitivity 

analysis and regression analysis showed that variability in the system availability is more influenced by 

these replenishment lead times than the failures rates.  



Chapter 9: Future research 
W.S. Sleiderink 17-3-2015 
 

62 
 

9 Future research 
In this chapter we will suggest some possible directions for future research. 

9.1 Model extensions 
We considered failure rates to be deterministic and constant in time, but often in practice we encounter 

wear-out phenomena, such as fatigue, creep and wear (Tinga, 2013). These features could be taken into 

account by considering for instance a Weibull-distribution for the failure rates. This is not done in during 

this project because failure rates are highly uncertain at the moment and SIMLOX does not support the 

possibility of varying failure rates during simulation. However, if failure rates indeed are increasing, then 

preventive maintenance can also become more relevant, so one could decide to also add this extension 

in the model. 

Furthermore, the VARI-METRIC assumes that failure of an LRU is caused by at most one failure of an SRU. 

However, it could occur that there exist multiple failures within one LRU and one could examine the 

effects of this using the findings of (Abelin, 2010). 

9.2 Expected penalty costs in VARI-METRIC  
The prices between items can differ significantly as we already saw in our analysis for the life-cycle costs. 

Usually, we see that we have expensive slow movers and cheap fast movers (Ypma, 2014). VARI-METRIC 

currently selects the item with the largest backorder reduction per invested euro. Due to the equal 

backorder products in item pairs, the backorder reduction will be the same. However, as we mentioned 

before, the slow movers tend to be more expensive. So this would usually lead to stock investments in 

fast movers, but if we include expected penalty costs during the same step, we might choose otherwise 

because penalty costs could be combined with investment costs and therefore we could consider 

selecting the slow mover in the spare parts allocation, because the savings in penalty costs could 

outweigh the additional investment in the initial spare parts allocation as we saw for some methods.  

9.3 Verification 
We applied our methods to one system within a real-life setting. To verify the principles, one could 

investigate the effects for other systems, preferably with a greater portion of fast moving items to obtain 

the desired results. Also, an extension to other industries where spare parts management is of 

importance would be worthwhile.  
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11 Appendices 

11.1 Appendix A: (VARI)-METRIC Approach (Sherbrooke, 2004) (van der 

Heijden, 2013) 

11.1.1 Metric 

The Multi-Echelon Technique for Recoverable Item Control (METRIC) is developed for first-indenture 

items (i.e. parts that are installed directly on the base), which are usually repairable (or recoverable) and 

they tend to be expensive with a low demand at any particular base. The one-for-one repair at the base 

or the resupply from the depot simplifies the mathematics of the base-depot joint optimization problem, 

which can be addressed with results from the queuing theory literature. 

Assumptions 

The METRIC model calculates for every item on a system the optimal stock level at each of several bases. 

The objective function is to minimize the sum of backorders across all bases which is equivalent to 

maximizing availability when there is no cannibalization (i.e. consolidation of item shortages on the 

smallest number of end-items). Below the key assumptions in the METRIC model will be listed: 

1. The decision where to repair an item (depot, base) is solely determined by technical factors (e.g. 

availability of technical equipment of specialized personnel) and not by stock levels or repair shop 

workload. 

2. Base resupply from depot only (no lateral supply). 

3. The (s-1, s) inventory policy is appropriate for every item at every echelon level. This means that 

units of an item are not batched for repair and that any scrapped units are reprocured on a one-

for-one basis, because the demand rates are sufficiently low and the costs are sufficiently high 

that the economic order quantity is close to one (Minner, 2014).  

4. Optimal steady-state stock levels are determined. Over some period of time in the future the 

operating hours of the system will remain fairly consistent. 

5. The demand is Poisson distributed. This means that the inter-arrival times between demands are 

independent and that there is a continuous demand such that items will continue failing, even if 

the system is down. 

6. All demand that is not filled is backordered. 

7. All backorders are equally important. 

8. Repair costs are not needed, because if an item can be repaired, its repair cost is always less than 

its purchase cost. 

9. Order and holding costs are not needed, because one-for-one replenishment is assumed and this 

defines the number of orders and the average stock on hand. 

Nomenclature 

The following symbols and definitions are used in the METRIC model: 

 j  = location index (j=0: depot; j=1..N: base) 
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 mij = mean demand per year for item i at location j 

 Tij = mean repair throughput time of item i at location j 

 Oj = time to order and ship an item from the depot to base j 

 rij = probability that an item i can be repaired at base j 

 Xij = number of type i items in the pipeline at location j, with mean µij 

 EBOij = Expected number of backorders for item i at location j 

Marginal approach 

First, determine mean demand and backorders at the depot using Palm’s theorem. 

 Demand at depot: 

    ∑ (     )
 
                    (10.1) 

 Backorders at depot: 

     (   )  ∑ (     )  
(      )         

  
 
                  (10.2) 

Subsequently, we can derive the mean number of items in the pipeline and thus the backorders at the 

base. 

 Average pipeline: 

       {       (     ) (   
     (   )

   
)}             (10.3) 

 Backorders at base: 

     (   )  ∑ (     )  
   

  
    

  
 
                   (10.4) 

By minimizing the sum of these backorders at the bases, through adding stock at the bases or at the 

depot, we can equivalently maximize the availability at the bases.  

Drawbacks 

When we compute the expected backorders for a certain stock level s and compare it to the previous 

iteration with stock level s-1, we can compute a certain backorder reduction to determine at which 

location we add stock. However, the backorder reductions are not monotonically decreasing, which 

means that the backorder function is not convex at those points. This phenomenon called 

convexification can be solved by eliminating these non-convex points to prevent a flush out. 

11.1.2 VARI-METRIC 

During the development of METRIC it was known that the backorders at the base were understated. The 

biggest complication is that the depot pipeline has indeed a Poisson distribution, but this does not hold 

for the base pipeline, it depends on the depot backorders. Generally, the variance-to-mean ratio is 

greater than 1 compared to a Poisson distribution where this ratio equals 1. A solution is proposed to 
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calculate the pipeline variance and use an approximate probability distribution for the pipeline having 

the mean and variance as calculated. 

Indenture levels 

The Line replaceable unit (LRU) is the first indenture item that is replaced in the system. When the failed 

LRU is taken to the maintenance shop, the second indenture items can be replaced, the Shop 

Replaceable Unit (SRU).  An important assumption in this is that the failure of an LRU is caused by the 

failure of at most one SRU with a certain probability q. 

Approach 

In the case of no commonality (specific SRUs cannot be used on more than one LRU), the problem is 

separable per LRU, so we will describe the optimization of 1 LRU with its SRUs in a multi-echelon 

network. 

First, we derive the demand rates per location and per item based on the mean demand, repair 

probabilities and the failure probabilities as can be seen in Figure 24 below. 

 

Figure 24: Deriving demand rates for VARI-METRIC (van Zwam, 2010) 

For the pipeline calculations, we will proceed in the exact opposite direction for the 4 categories. Three 

additional parameters are used in here referring to (1) the fraction of depot demand for SRU i due to 

depot LRU repairs, (2) the fraction of all demand at the depot for SRU i that is being resupplied to base j 

and (3) the fraction of the depot demand moo for a LRU that comes from base j. 

 (1): 

    
      

   
                (10.5) 

 (2): 

    
   (     )

   
                (10.6) 
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 (3): 

    
   (     )

   
                (10.7) 

SRU Pipeline at depot 

At this moment there is no influence from other items or locations, so the pipeline has a Poisson 

distribution with mean mi0Ti0. Therefore, we can easily calculate the mean and variance of the SRU i 

backorders at the depot: EBOi0(si0) and VBOi0(si0). 

LRU pipeline at depot 

The mean and variance of the LRU pipeline depends on the SRU backorders at the depot. A SRU 
backorder has a probability fi0 that it delays a LRU repair at the depot and a probability of 1 – fi0 that it 
delays a resupply to some base. 
 

 Expected pipeline: 

              ∑       (   |      )
 
                (10.8) 

 Variance pipeline: 

                ∑    (     )   (   |      )
 
    ∑    

  
      (   |      )       (10.9) 

SRU Pipeline at base 

The mean and variance of the SRU base pipeline also depends on the SRU backorders at the depot. 

 Expected pipeline: 

 [   ]     [       (     )  ]        (   |      )         (10.10) 

 Variance pipeline: 

   [   ]     [       (     )  ]     (     )   (   |      )     
    (   |        

     (10.11) 

LRU Pipeline at base 

The mean and variance of the LRU at the base depends on both the SRU base backorders and the LRU 

depot backorders. All SRU base backorders arise from LRU demand at that base. We can use the previous 

results as input for the latest computations of the pipeline to obtain the availability per base. 

 Expected pipeline: 

 [   ]  

   [       (     )  ]          (   |               )  

∑    (   | [   ]    [   ])
 
                (10.12) 

 Variance pipeline: 
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                 (10.13) 
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Then, finally the availability at base j due to expected backorders on the LRU and its SRUs is given by: 

 Availability: 

      {     (   | [   ]    [   ]) (    )}
  

           (10.14) 

where Nj is the number of systems at base j and Z0 is the number of applications of the LRU on the 

system. 
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11.2 Appendix B: After sales business models (Cohen, Agrawal, & Agrawal, 

2006) 

 

Figure 25: After sales business models (Cohen, Agrawal, & Agrawal, 2006) 
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11.3 Appendix C: Interval availability and survival function (Al Hanbali & van 

der Heijden, 2013) 
We will start by computing the first two moments of the interval availability. The expected interval 

availability E[A(T)] in [0,T] is equal to the steady-state availability of the finite-state three-dimensional 

approximate Markov chain (AMC) is given by: 

   ( )  ∏ ∑ ∑ ∑       ( )
    (     (     )

 
)

   

      ∑    
 
   

   

  

   
 
             (10.15) 

Let       ( ) denote the steady state probability distribution vector of AMC, j is the item index for which 

holds j = 1,…,M and sj is the stock level of item j in the tagged system. 

Before reporting on the variance of A(T), let us introduce some additional notation. Let    denote a row 

vector of size equal to the cardinality of the state space   . The vector    is obtained from the steady 

state probability vector  ( ) of AMC by replacing the equilibrium probability of the malfunctioning states 

with zero. Let fj denote a column vector of size equal to the cardinality of the state space   . The non-

zero entries of fj are equal to one and they represent the operational states. Then the variance of the 

system interval availability in [0,T] is given by: 

     ( )   ∑     
(  ) 

(   ) 
∑(     )

 

   

 

   

∏  (  )
   

 

   

     ( )  
         

(  ) 
    ( )   

     (10.16) 

For the computation of the probability that the interval availability is equal to one we need    to be the 

row vector that only consists of the steady state probabilities of the operational states of AMC, then: 

 ( ( ))   )     ∑   
 
   ∏   

 
   ∑

(   ) 

  
 
   (  

 )                         (10.17) 

Now we can compute the survival function of the interval availability given by: 

 ( ( )   )  (   ( ( )   )∫  (     )  
 

 
  ( ( )   )          (10.18) 

With 

  
(      )      

      
                    (10.19) 

   (
 

    
  )                (10.20) 

 (     )  
 

 (   )
    (   )                 (10.21) 

Where  (   ) is the beta function. For proofs and more details we refer to the aforementioned article. 
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11.4 Appendix D: Variance of interval availability and its common coefficient 

of variation (Kirmani & Hood, 2008) 
The 2-CTMC model may be described as follows. Let Ui denote the duration of the ith functioning period 

and Di the duration of the ith downtime (non-functioning period). Assume that Ui, i= 1,2… are 

independently and identically distributed with common exponential distribution of mean 1/λ, and Di, i= 

1,2… are independently and identically distributed with common exponential distribution of mean 1/µ. 

In their study, the authors prove that for a 2-CTMC model the following formula for the variance of 

interval availability (I(T)) holds: 

   { ( )}      ((   ) )      ((   ) )    (    ) ((   ) )         (10.22) 

Where 

  
 

   
       

 

   
                   (10.23) 

(Note that   can be considered as the system availability, since this is the downtime divided by the 

downtime plus uptime.) 

And 

 ((   ) )  
     { (   ) }

(   ) 
  ((   ) )  

     { (   ) }  (   )    { (   ) }

{(   ) } 
 

     (10.24) 

To gain proper insights in the extent of fluctuations in the interval availability and thus the variance, the 

authors use the common coefficient of variation, defined as: 

 ( )  
    { ( )}

 { ( )}
                (10.25) 

Obviously, high values of this coefficient mean highly fluctuating interval availability and lower values 

lead to more stable interval availability. 
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11.5 Appendix E: Review periods 
Table 2: Categories for review periods 

Review period Time in hours 

Monthly 730 

Quarterly 2190 

Yearly 8760 

2-yearly 17520 

5-yearly 43800 
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11.6 Appendix F: Details for simulation of multi-indenture model 
Table 3: Item characteristics for basic multi-indenture model 

Item characteristics 

Item Failure Rate Repair Time Backorder Ratio Mover Ratio 

80 7,416193876 7416,19 55000 0,001 

80A 3,708096938 3708,10 13750,0 0,001 

80B 3,708096938 3708,10 13750,0 0,001 

83 741,6198487 74,16 55000,0 10 

83A 370,8099244 37,08 13750,0 10 

83B 370,8099244 37,08 13750,0 10 
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Figure 26: Different steady-state availabilities for multi-indenture model 

 

Figure 27: Effect of mover ratio in multi-indenture model 
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Figure 28: Multi-indenture stock policies without order and ship times 

 

Figure 29: Multi-indenture stock policies with order and ship times 
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Figure 30: Review periods for multi-indenture model 

 (Note that for these experiments we simulated for 1000 years.)  
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Figure 31: Central stock investment versus local stock investment for multi-indenture model 



Chapter 11: Appendices 
W.S. Sleiderink 17-3-2015 
 

80 
 

11.7 Appendix G: Details for simulation of experiment 1 
Table 4: Item characteristics for slow mover for basic model, E[A(T)]=90% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 7,416199109 7416,20 55000,0 0,001 

LRU 2 7,416199109 7416,20 55000,0 0,001 

 

Table 5: Item characteristics for fast mover for basic model, E[A(T)]=90% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 741,6198429 74,1619863 55000,0 10,000000 

LRU 2 741,6198429 74,1619863 55000,0 10,000000 

 

Table 6: Item characteristics for slow mover for basic model, E[A(T)]=83,3% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 10 10000 100000,0 0,001000000 

LRU 2 10 10000 100000,0 0,001000000 

 

Table 7: Item characteristics for fast mover for basic model, E[A(T)]=83,3% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 1000 100 100000,0 10,000000 

LRU 2 1000 100 100000,0 10,000000 

 

Table 8: Item characteristics for slow mover for basic model, E[A(T)]=74,6% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 13,03840408 13038,40408 170000,0 0,001000000 

LRU 2 13,03840408 13038,40408 170000,0 0,001000000 
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Table 9: Item characteristics for fast mover for basic model, E[A(T)]=74,6% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 1303,840408 130,3840408 170000,0 10,000000 

LRU 2 1303,840408 130,3840408 170000,0 10,000000 

 

Table 10: Inventory characteristics for basic model 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 0 0 0 

LRU 2 0 0 0 

 

Table 11: Model characteristics for basic model 

Model characteristics 

Number of systems Mission profile Order and ship time Repair time distribution Result collection interval 

2 CONTINUOUS NONE DETERMINISTIC YEARLY 
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(Note that for some experiments with lower steady-state availability we simulated for 1000 years.)  

Figure 32: Simulation results of experiment 1 
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Figure 33: Survival functions of experiment 1 
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11.8 Appendix H: Details for simulation of experiment 2 
Table 12: Item characteristics for slow and fast mover, E[A(T)]=90% 

Item characteristics 

Item Failure Rate Repair Time Backorder Product Mover Ratio 

LRU 1 
10,12422743 10124,23 

55000,0 0,00100000 

LRU 2 
1012,422802 101,24 

55000,0 10,000000 

 

Table 13: Inventory characteristics in case of fast mover at depot 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 0 0 0 

LRU 2 1 0 0 

 

Table 14: Inventory characteristics in case of slow mover at depot 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 1 0 0 

LRU 2 0 0 0 

 

Table 15: Inventory characteristics in case of fast mover at base 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 0 0 0 

LRU 2 0 1 0 
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Table 16: Inventory characteristics in case of slow mover at base 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 0 1 0 

LRU 2 0 0 0 

 

Table 17: Inventory characteristics in case of fast movers at bases 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 0 0 0 

LRU 2 0 1 1 

 

Table 18: Inventory characteristics in case of slow movers at bases 

Inventory characteristics 

Item Stock at depot Stock at base 1 Stock at base 2 

LRU 1 0 1 1 

LRU 2 0 0 0 

 

Table 19: Model characteristics 

Model characteristics 

Number of systems Mission profile Order and ship time Repair time distribution Result collection interval 

2 CONTINUOUS NONE DETERMINISTIC YEARLY 
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Figure 34: Interval availabilities: adding stock at the depot 
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11.9 Appendix I: Details for simulation of experiment 3 
Table 20: Item characteristics for fast mover 

Item characteristics 

Item Failure Rate Repair Time Backorder Ratio Mover Ratio 

80 51 51,00 2601 1,000000 

83 51 51,00 2601 1,000000 

 

Table 21: Model characteristics for fast mover 

Model characteristics 

Number of systems Mission profile Order and ship time Repair time distribution Result collection interval 

2 CONTINUOUS 700 DETERMINISTIC YEARLY 

 

Table 22: Item characteristics for slow mover 

Item characteristics 

Item Failure Rate Repair Time Backorder Ratio Mover Ratio 

80 2,828427031 2828,43 8000 0,001000 

83 2,828427031 2828,43 8000 0,001000 

 

Table 23: Model characteristics for slow mover 

Model characteristics 

Number of systems Mission profile Order and ship time Repair time distribution Result collection interval 

2 CONTINUOUS 11800 DETERMINISTIC YEARLY 
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Figure 35: Survival functions for central vs. local stock investments 
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11.10 Appendix J: Details for simulation of experiment 4 
Table 24: Input data for experiments on review periods 

Review period experiments 

Interval Hourly duration Amount of review periods Warm up period Simulation length Number of missions 

Month 730 980 175200 890600 1220 

Quarter 2190 980 175200 2321400 3180 

Year 8760 980 175200 8760000 12000 

2-year 17520 980 175200 17344800 23760 

5-year 43800 980 175200 43099200 59040 

 

(Note that for these experiments we simulated for 1000 years.) 
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11.11 Appendix K: Input data and results for simulation of order and ship 

times extension 
Table 25: Item characteristics for order and ship time extension 

Item characteristics 

Item Failure Rate Repair Time Backorder Ratio Mover Ratio 

80 7,745966598 7745,97 60000,0 0,001 

83 123 123 15129 1 
 

Table 26: Model characteristics for order and ship time extension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model characteristics 

Number of systems Mission profile Order and ship time Repair time distribution Result collection interval 

2 CONTINUOUS 365 hours DETERMINISTIC YEARLY 
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Figure 36: Effects of order and ship times on key performance indicators 
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Figure 37: Effects of order and ship times on survival functions 
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11.12 Appendix L: Results for simulation of repair time distribution extension 
   

Figure 38: Key performance indicators for repair time distribution extension 
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Figure 39: Effects of exponential repair time distribution on survival functions 
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11.13 Appendix M: Sensitivity analysis for repair times 
 

 

 

Figure 41: Expected penalty costs vs. repair times 
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Figure 40: Variance of availability vs. repair times 
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11.14 Appendix N: Sensitivity analysis for split analysis 

 

  

Figure 42: Average availability for split analysis 
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11.15 Appendix O: Regression analysis for split analysis 
Table 27: Regression statistics for split analysis 

Regression Statistics 

Multiple R 0,562213419 

R Square 0,316083928 

Adjusted R Square 0,294711551 

Standard Error 0,016361264 

Observations 100 

 

Table 28: Coefficient statistics for split analysis 

  Coefficients Standard Error t Stat P-value 

Intercept -0,00329123 0,004415326 -0,745410587 0,457844725 

Failure Parameter -0,00012611 8,23221E-05 -1,531914688 0,128832361 

Repair Parameter 0,01344008 0,002564842 5,240120957 9,49977E-07 

Average Availability 0,019319312 0,005894689 3,27740993 0,0014592 
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11.16 Appendix P: Identification of item pairs for VARI-METRIC 
Table 29: Backorder products for different models 

Model characteristics Backorder product 

Basic model                          

Basic model with OST              (               ) 

Model with OST and commonalities (                     )   
(               ) 

Model with OST, commonality and 
repair fractions 

(                     )
                                 
 (                 )                 

 

 

  

Figure 43: Backorder products for different models 



Chapter 11: Appendices 
W.S. Sleiderink 17-3-2015 
 

100 
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P
(A
[T
]≥
y)

 

System availability threshold 

Survival functions for improvement techniques 

INVENTRI

Pipeline Product

Waiting times reduction

Combination

Replenishment lead time

11.17 Appendix Q: Survival functions for real-life example 

Figure 44: Survival functions for improvement techniques 
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11.18 Appendix R: Adapted penalty structure 
Table 30: Adapted penalty structure for 85% target 

System availability per year (in %) Penalty percentage of yearly contract value 

0 – 25 % 110 % 

25 – 50 % 100 % 

50 – 70 % 75 % 

70 – 80 % 50 % 

80 – 81 % 25 % 

81 – 82 % 20 % 

82 – 83 % 15 % 

83 – 84 % 10 % 

84 – 85 % 5 % 

85 – 100 % 0 % 

 

 

 

 

 

 

 

 

 


