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Management summary 
 

 

The goal of this research project was to develop hedging strategies for the three commodities corn, 

wheat and soy using futures securities. Under a futures hedge, the variability of the return of a spot 

commodity is sought to be alleviated by taking an offsetting position in a correlated futures position. 

The prime purpose of a hedging strategy then is to find that ratio of the futures position relative to 

the spot position, such that it yields on optimal outcome. This is what is termed the optimal hedge 

ratio – the strategic variable of this research.  

 

The first step in this endeavor concerns finding futures products that best mimic the spot return 

movement. While most of the music in the agricultural commodity market plays in the US, for corn 

and wheat it was found that local spot price movement was best matched by the corresponding Matif 

exchange products. CBOT soybean meal contracts were found to be best correlated with local soy 

exposure. While the term ‘local’ is somewhat generic, it has been used intentionally, for the different 

spot exposures are represented by two different datasets per commodity – the internal replacement 

values on the one hand, and external (i.e., Oil World and Reuters) price series from related products 

on the other hand.   

 

The second step is concerned with settling on an objective that is to be achieved by the hedge. The 

two targets that are considered in this research are reducing the variance of the hedge portfolio to 

the maximum extent on the one hand, and optimizing both variance and average return on the other 

hand, giving rise to the minimum variance –, and mean-variance objective function, respectively. For 

both functions, the variance and correlation of the spot and futures returns are the paramount 

determinants of the optimal hedge ratio. Therefore the major task of the internship was concerned 

with setting up databases for the internal and external price series and programming a model that 

would, amongst other things, flexibly calculate and plot the volatility and correlation of any two 

variables to get an idea of the development of the correlation and volatility dynamics over time.  

 

Having established that correlation and volatility are the crucial ingredients in determining the 

hedge ratio under both objective functions, the third step is then about applying models to estimate 

the volatility and correlation parameters. Four industry standards are applied in this paper – the 

OLS, the EWMA, the DCC, and the diagonal BEKK model. The former is a static model – it simply 

calculates the sample average and standard deviation and applies the resulting hedge ratio 

throughout the entire life of the hedge. The latter three represent econometric, conditional models 

that incorporate new information into the model as it arrives, to come up with a dynamic, time-

varying estimate. Each of these models can be used under both objective functions.  

 

In line with more recent findings in the literature, the time-varying models seem to add little benefit 

in the context of the minimum-variance objective function. That is, this research indicates that it is 

beneficial to stick to the straightforward, static OLS regression method. Under the mean-variance 

objection function, however, time-varying models do add value if the average rate of returns of the 

underlying spot and futures securities are sufficiently big, which has proven to be the case for the 

soybean meal commodity case. 
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Chapter 1 - Introduction 
 

This chapter commences with an introduction of De Heus Voeders B.V., the problem owner of this 

project, passes over to the problem identification and the corresponding research questions, and 

concludes with an overview of the structure of the remainder of this thesis.  

1.1 Company and Background Information 
 

De Heus Holding 

De Heus Voeders B.V. is a global animal nutrition producer founded in 1911. While its headquarter 

is located in Ede, the Netherlands, which is also the center of their group activity, De Heus is also 

commercially active in more than 50 countries, including its foreign affiliates in Poland, Czech 

Republic, Russia, Vietnam, South Africa, Egypt, and Ethiopia, its joint venture with Wellhope in China 

and its partnership with Nutrifarms in Brazil.  

 

With its more than 3000 employees, De Heus accomplishes an annual production output of more 

than 4 million tons of compound feed, with about 50% of the output being contributed by the 8 

production plants in the Netherlands, 25% originating from Poland, and the remaining 25% being 

scattered across the remaining countries. There are numerous product segments, which can roughly 

be divided into five groups – cattle, pigs, layers, broilers, and miscellaneous (including horses, goats, 

sheep, and fish).  

 

While the headquarter in Ede features departments that are present in any corporate institution (e.g., 

Finance & Legal, HR, Marketing, Sales, etc.) it is worth to highlight their Formulation department for 

a moment. This department is closely integrated with the Purchase & Trade department, the problem 

owner of this thesis. It optimizes the feed recipes for all production plants, local as well as foreign 

ones. The tool used for optimization is based on linear programming, and calculates the optimal feed 

recipes by taking into account output -, quality -, nutritional -, and storage constraints as well as raw 

material prices. Given that prices fluctuate over time, so does the composition of the recipes. 

 

Purchase and Trade Department 

The Purchase & Trade department can further be subdivided into two teams – one responsible for 

buying macro ingredients and one for purchasing micro ingredients. As the names suggest, the 

former term denotes the raw materials that make up the bigger portion of the feed in terms of weight 

and includes grains, proteins, fats & liquids, and byproducts. Though there is a great variety of 

macros that are frequently used in production, the ones with the biggest share in terms of weight are 

corn, wheat and soy. Those (macro) commodities also form the focus of our research. The term micro 

ingredients accommodates all the additives that are mixed into the compound feed. Think of 

vitamins, minerals, enzymes, trace elements, amino acids, aromas, etc. While their share in weight in 

the compound feed is much lower, the price per unit of weight is much higher.  

 

But it is not just the characteristics of the two raw material groups that differ. There are also 

differences in terms of market structure. Whilst macro ingredients are produced and traded by 

numerous market participants throughout the world, the market structure of the micro ingredients 

market is much more oligopolistic. In this case, it is the production capacity of a handful of suppliers 
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that primarily drives market prices. Moreover, micro ingredients lack a clear, universally accepted 

reference market price. 

 

The Commodity Market 

A number of macro ingredients, on the other hand, are traded on most futures exchanges around the 

world. Think of cereals like corn, wheat, barley, oats or oilseeds like soybeans, rapeseeds, or palm. 

The word futures is key here, and indicates that agents are able to agree on a transaction in the future, 

based on a price agreed upon today. On a futures exchange, each product has its own delivery 

calendar with mostly around four to eight delivery dates per year, where the most immediate 

delivery date is referred to as the lead, front, or spot contract month. While each futures contract 

specifies a set of quality standards, unit volume, and a pool of destination ports and thus makes a 

physical delivery possible, contracts are usually either closed out or rolled forward (say, at 

November 10, selling 2000 long November contracts and purchasing 2000 January contracts) prior 

to the settlement date (e.g., November 14), which renders them an efficient hedging security.  

 

The notion of forward trading is not only key for futures commodity trading, but is also common 

practice in the physical cash market, where it is not unusual to book a delivery and thus fix a price 

for a period of, say, 12 months. The physical commodity market is a global one with international 

import and export flows. The US is by far the most prominent exporter for corn (50.71 million tons 

in 2013/14 vs. 129.62 million tons worldwide), most of which is imported by Asia (Rabobank Food 

& Agribusiness Research, 2007). Likewise, it is also a leading exporter of soybeans together with 

Brazil (US: 44.82 million tons, Brazil: 46.83 million tons vs. 112.83 million tons worldwide in 

2013/14) (USDA, 2015).  

 

America’s role as the paramount producer and exporter for the most important grain and oilseed 

partly explains why its futures exchange (the Chicago Board of Trade, henceforth CBOT) is also 

leading – leading in terms of trade volume, but also in the sense that it is the exchange that is used as 

reference for pricing cash market contracts. The Matif (a division of Euronext Paris, formerly known 

as Paris Bourse before the merger with Euronext NV in 2000) is the biggest futures exchange for 

agricultural products in Europe. However, its trade volume represents only but a small fraction of 

what the CBOT turns over. Using futures exchanges as a reference to price cash market contracts is 

common practice, where the unit price is the futures exchange price plus a premium or discount 

depending on, amongst other things, the supply & demand and logistics of the products’ country of 

origin, as well as the quality and the destination of the product.    

 

Purchase Policy, Hedging and Coordination 

In deciding whether or not to trigger a long or short position, market fundamentals (supply and 

demand mostly) are the prime source of information. Insights from statistical and numerical 

analyses (e.g., volatility, moving averages of correlations and prices, curve shifts, etc.) are regarded 

as an additional, second opinion, piece of the puzzle.  

As a processor of agricultural commodities, De Heus builds up length in a certain commodity if they 

are under the impression that prices for that commodity are at the verge of increasing. If, on the 

other hand, a bearish sentiment prevails, the quantity bought of that commodity is such that it is just 

enough to keep the factories running. Even though the different subsidiaries are responsible for their 

own procurement, their purchase positions and performances are evaluated at corporate level.  
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Apart from purchasing raw materials from local traders for spot or future, physical delivery, De Heus 

also takes cash settled positions at futures exchanges (CBOT mostly). Occasionally, this is done to 

hedge price fluctuations in the cash market. From the point in time that a commodity enters the 

books of De Heus, up to the time it is consumed in the factories, De Heus is long the commodity. 

Subsequently, a physical position is hedged with a short position in a futures contract.   

Other times, however, taking futures positions is done on speculative grounds in order to exploit a 

certain vision on the market. That is, they would go long (short) if commodity prices are expected to 

increase (decrease) over time or use a combination of both (i.e. spreads) for limited exposure.  

 

Replacement Values 

Each week, the purchasers at De Heus estimate replacement values for an array of commodities. The 

replacement value reflects the purchaser’s estimate of what it would cost per unit of measurement 

to buy a certain commodity in the local cash market. This is done for the most immediate, spot 

delivery but also for delivery in i months, for i = 1, 2, …, 12. The motivation behind this is that, in any 

point in time, there are likely to be book exposures spanning a delivery period of more than just a 

single month. The replacement values thus allow them to continuously monitor the economic value 

of their purchase books. In the context of replacement values, the term ‘spot’ as used in our thesis 

explicitly refers to this most immediate delivery period.    

1.2 Problem Statement 
 

The goal of our research is to 

 

“Contribute to the risk management of De Heus by designing a hedging strategy for their most 

impactful commodity items.” 

 

To understand why it is this issue that is the most relevant to tackle, we have to turn our attention 

to the interplay of a twofold of recent developments.  

 

Structural Changes and Risk Appetite 

First of all, De Heus has been growing tremendously over the past decade and has the ambition to 

double its output scale in the near future. While the company has grown in terms of people and 

output, processes are somewhat lagging behind, calling for more centralization. A couple of 

trajectories have already been put into place to tackle this problem. Their corporate IT system is 

being upgraded, trying to integrate, among other things, the contract -, price -, and stock data of all 

holding countries. Moreover, a global procurement and supply management system is in the making, 

to bundle corporate purchases and facilitate intra-holding transfer and distribution. However, there 

is still a variety of information that is not currently utilized.  

 

Second, the purchase and trade department has a risk taking attitude. Even though most of the 

competitors cover their demand for raw materials mostly by buying spot in the market, De Heus is 

more pronounced in taking positions up to e.g., 18 months ahead in the future, thus locking in a 

presumed low price. This attitude is based on the philosophy that their professional insights into the 

(demands of the) feed industry as well as market fundamentals enable them to make informed 

decisions and take riskier (i.e., longer term) positions. Obviously, while this can save you a lot of 

money, there is also a risk of incurring extra costs if the price development takes on an adverse path, 

where the degree of risk advances with the distance of the delivery period. 
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Market Risk Management 

Apart from the big risk appetite, we are also dealing with a market that has become more and more 

difficult to read over the past years.  While market fundamentals are still the driving force in dictating 

price movement, the increased activity of institutional investors (mutual -, hedge -, pension funds, 

etc.) has lead volatility to increase. Figure 1.1 illustrates this by depicting the 40 days moving average 

volatility of the front month corn and milling wheat Matif futures contracts over the past 14 years. It 

shows how a) volatility swings have become bigger over those 14 years, where especially big swings 

can be observed in the past 4 years, b) how the base volatility level has increased in the period after 

2006 and c) how the volatility of the most recent months has sharply risen. Note, that the CBOT 

futures contracts show similar movements in volatility.      

The combination of those three factors (increased volume, volatility and risk appetite) translates 

into a considerable market risk exposure, which should be managed accordingly.  

 

Market risk has four components – commodity risk, currency risk, interest rate risk, and equity risk. 

The latter component is, apart from a few minority interests, not applicable to our case.  

Interest rate risk, though applicable, only has a marginal impact compared to currency – and 

commodity risk. While currency risk certainly is a hot item within the corporation, commodity risk 

– the risk stemming from an adverse development of the price or volatility of a commodity – has the 

biggest impact on the financial results of the company and is thus the focus of this research.  

 

 
Figure 1.1 – 40 days moving average volatility of the EMAc1 (corn) and BL2c1 (MW) contracts. 

 

As has already been established earlier, the commodity market is mainly a futures market. Even 

though commodity options are available on some exchange markets, De Heus thinks that the 

complexity of those derivatives presumably does not match their current state of development. 

Hence, it is self-evident to resort to futures as a financial security in order to hedge market risk 

exposure.  
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Basis Risk 

The intent of a futures hedge is to take an ‘opposite’ position in a futures contract (e.g., long physical 

and short futures) so that any potential loss in the physical position can be offset by a gain in the 

futures position. The problem with that undertaking is that the returns of a commodity eventually 

paid for in the cash market, are less than perfectly correlated with the returns of any of the available 

futures contracts (irrespective of the futures exchange). Less than perfect correlation translates into 

what is termed as basis risk. Consider the case where the cash commodity price decreases by ∆. 

Assume that the futures price of that commodity, however, only decreases by .7 ∆. This leaves an 

extra loss of .3∆, which is not offset by the gain in the short futures position.  

 

Note that the term basis is not applied consistently in the literature. Usually it is defined as the excess 

of the cash market asset price over the futures security price, but sometimes it is also used the other 

way around. In this research we stick to the common notation, i.e., basis = cash asset price – futures 

price.  

 

Figure 1.2 gives an example of the movement of the basis (green line) of a) the cash market price of 

one of our corn products (blue line) and b) the futures corn product traded on the Matif (red line) 

over the past two and half years. As we can see, even though both products refer to the same 

commodity, there is still considerable fluctuation in the basis, moving within the range of  

€ -24 to € 46 per metric ton. 

 
Figure 1.2 – Basis (green line) movement of corn cash (blue) and corn futures (red) over time. 

 

Optimal Hedge Ratio 

The presence of basis risk is relevant in terms of hedging strategies, because it affects the optimal 

number of contracts that is needed to hedge a certain cash commodity position. If the correlation 

between the two variables in a hedge were perfect (i.e., 1), we would simply buy an amount of futures 

contracts such that the total value (price times quantity) of all those contracts matches the total value 

of the outstanding exposure (bona fide hedge). However, as stated earlier, correlation is imperfect 

and also fluctuating over time. The body of literature governing the optimal hedge ratio, i.e., the 

value of the futures position relative to the value of the cash commodity position, is concerned with 

this issue.  
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To see how the hedge ratio at time t-1, ℎ𝑡−1, the strategic variable in this research, determines the 

outcome of a hedge, consider the following notation of 𝑅ℎ,𝑡, the return of the hedged portfolio at time 

t as given by Chen et al. (2003): 

 

𝑅ℎ,𝑡 =
𝐶𝑠,𝑡−1𝑆𝑡−1𝑅𝑠,𝑡−𝐶𝑓,𝑡−1𝐹𝑡−1𝑅𝑓,𝑡

𝐶𝑠,𝑡−1𝑆𝑡−1
= 𝑅𝑠,𝑡 − ℎ𝑡−1𝑅𝑓,𝑡                                       (1a)                   

 

where 𝐶𝑠,𝑡−1denotes the number of long spot units, 𝐶𝑓,𝑡−1 denotes the number of short futures units 

at t-1, 𝑆𝑡−1 and 𝐹𝑡−1 represent the spot and futures prices at time t-1, respectively, and 𝑅𝑠,𝑡 stands for 

the return of the spot security,  𝑅𝑠,𝑡 = (𝑆𝑡 − 𝑆𝑡−1)/𝑆𝑡−1. Likewise, we have 𝑅𝑓,𝑡 = (𝐹𝑡 − 𝐹𝑡−1)/𝐹𝑡−1.1 

Note, that in the context of this research, the spot prices, 𝑆𝑡, are e.g., the replacement values of De 

Heus. It follows from the above that the hedge ratio is given by  

 

 ℎ𝑡−1 = 
𝐶𝑓,𝑡−1𝐹𝑡−1

𝐶𝑠,𝑡−1𝑆𝑡−1
                                (1b)

            

which is indeed the total value of the futures position over the total value of the spot position at time 

t-1. The notations of (1a) and (1b) stress that the optimal hedge ratio is set prior to period t (i.e., at 

the end of period t-1) in order to optimize the expected outcome of period t.  

 

Note, that in this research, we consider each commodity hedge separately. That is, per spot 

commodity that we analyze, the hedge portfolio in (1a) consists of one type of spot security and one 

type of futures security, only. This restriction greatly simplifies the analysis and is also persistently 

applied in literature. Figure 1.3 visualizes the factors and their interactions leading to the central 

research question. 

 
Figure 1.3 – Problem Cluster. 

                                                             
 
1 In practice futures contracts do not require an initial outlay – the cash flows stem from the daily mark-to-market 
valuation. Still, it is conventional to base hedging strategy calculations on returns rather than plain changes. Amongst other 
reasons, this is because the correlations would be distorted in a cross hedge scenario, where different securities may be 
quoted in different units of measurements and/or currencies. In that regard, returns provide a standardized unit of 
measurement.  
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1.3 Research Questions 
 

Central Research Question 

The central research question of our thesis is therefore the following: 

 

Central Research Question: “How to design a hedging strategy at De Heus for the most 

important commodities with special attention to modeling the optimal hedge ratio?” 

 

De Heus purchases and processes more than 300 ingredients. However, as the research question 

suggests, we limit ourselves to study a handful of commodities only, due to limitations of scope. The 

ingredients we do analyze, are corn, wheat, and soy. Those are the most liquid commodities and 

together they make up about 50% of the weight of the compound feed. 

 

In order to answer the main research question, we set up a number of research sub questions. By 

answering those sub questions, we systematically aim to give an answer to the main research 

question. 

 

Research Sub Questions 

The most basic action in setting up a hedging strategy is picking a futures contract that best mimics 

the price movement of the cash market variable that we want to hedge. Since we have different 

continuations per futures contract, different commodity exchanges that trade futures for the same 

commodity, and since there is a certain degree of substitutability between the (agricultural) 

commodities, we have various futures products that qualify as suitable hedging vehicle per cash 

commodity we want to hedge.  

 

More specifically, we are going to inquire basic basis spreads (e.g., long February cash corn and short 

March CBOT corn, both initiated in December), time spreads (e.g., long February cash corn and short 

May CBOT corn, both initiated in December) and cross spreads (e.g., long February cash corn and 

short March CBOT wheat, both initiated in December) as hedging setups.  

 

Though this might be another point of discussion, in the spirit of Hull (2012), the suitability of a 

futures security as a hedging vehicle will be judged solely on the grounds of its correlation with the 

cash commodity that we want to hedge. Moreover, due to the earlier mentioned preeminence of the 

CBOT and Matif in Europe, we confine our pool of candidate futures contracts to all the agricultural 

commodities that are traded on those two exchanges. The first research sub question therefore is: 

 

Sub Question 1: “Of all the agricultural futures products traded on the CBOT and Matif, based 

on the degree of correlation, per cash commodity, which futures contract qualifies as the most 

suitable hedging security?” 

 

The most important parameter in the context of a futures hedge is the optimal hedge ratio (OHR), 

i.e., the proportion of the total value of a futures position relative to the total value of the original 

exposure to be hedged. There are numerous alternatives that attempt to model this ratio such that 

the hedge performs effectively and/or efficiently. Each of these models makes its own assumptions 

about the stochastic behavior of the variables at issue in the hedge. Correspondingly, our second 

research sub question is the following: 
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Sub Question 2: “Which models are available to model the OHR and what restrictions do they 

pose on the variables involved in the hedge?” 

 

The third research sub question directly follows from Sub Question 2. Given the set of models that 

the literature research yields, and given the assumptions those models make, it would be interesting 

to see in how far, according to basic descriptive statistics, our spot and futures time series conform 

to those assumptions. Therefore we have: 

 

Sub Question 3: “Given the historic data of the cash and futures commodities, to what extent do 

those time series comply with the assumptions posed by the models identified in Sub Question 2 

and what would be the implication of a potential violation of those assumptions?” 

 

Once we have identified a set of methods to model the OHR, we can apply those models to our historic 

data and can compare their performance for the different hedging setups identified in Sub Question 

1. While the term optimal hedge ratio is casually used in the finance community, what is really 

optimal certainly is a point of dispute. Therefore, we need to establish the grounds on which we 

compare the performance of the different OHR models, i.e., we have to ask ourselves:  

 

 Sub Question 4: “On the basis of which indicators do we measure the performance of a hedge?”  

 

Once we have distilled a set of key indicators we can rank the performance of the different hedging 

strategies. However, it is likely that the answer will not be terminal. Model output is a function of 

model input and if the input parameters vary, so may the outcome and the corresponding 

conclusions. A sensitivity analysis should therefore yield insight into the robustness of the strategies’ 

performances: 

 

Sub Question 5: “How volatile are the hedging strategy outcomes with respect to the choice of 

the base parameters?”  

 

1.4 Thesis Structure 
 

This section gives an outline of how the remaining chapters will be devoted to answering the 

research sub questions identified in the preceding section. 

 

In Chapter 2, the literature research, we will shed light into Sub Questions 2 and 4. That is, first, we 

will scan the literature for the different OHR models and their assumptions.  

Moreover, we will investigate the indicators used to determine the performance of a hedging strategy 

as well as the factors that we need to take into account when evaluating a strategy’s performance, 

thus answering Sub Question 4.  

 

In Chapter 3, the methodology chapter, a more detailed description of the different databases for the 

cash prices is given. Moreover, the significant part of this research project was concerned with 

structuring currently underutilized data. We have set up structured databases for the different 

(internal and external) data sources and have developed an application that allows for the query and 

plotting of plain price -, spread-, volatility-, and correlation – series, as well as marginal and bivariate 
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distributions or scatterplots of any of the available price series. This program is also introduced more 

thoroughly in Chapter 3.  

 

The analysis of the data is executed in Chapter 4. First, we kick off by answering Sub Question 1. We 

use our programmed model to review the possible hedging setups to filter a number of combinations 

that are worth further pursuing in the remainder of the analysis.  

Additionally, we analyze the stochastic characteristics of those series and check in how far they might 

violate the assumptions of the models identified in Chapter 2, i.e., we approach Sub Question 3. 

Subsequently, we apply our data to the chosen models and analyze the performance of the different 

models based on the criteria that we found in Sub Question 4. Finally, a sensitivity analysis is 

performed to test the robustness of the proposed solutions (Sub Question 5).  

 

The conclusions of this research are drawn in Chapter 5. Here, we get back to the central research 

question and answer it in light of the empirical findings of Chapter 4. It summarizes the takeaways 

of this project and how they have been derived.  

 

In Chapter 6, we discuss the recommendations that follow from our research. That is, it describes the 

insights from the research that are relevant for an actual implementation of a hedging strategy. 

 

The final chapter highlights the limitations of this research that have to be taken into account when 

interpreting the results of this thesis. In the same vein, it suggests issues for further research that 

could not be touched upon in the limited scope of this research project.  
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Chapter 2 – Literature Review 
 

 

Due to the attractiveness of futures contracts as a hedging vehicle amongst practitioners, futures 

hedging has also become the focus of a lot of research. Being one of the most central questions in 

futures hedging, the study of the optimal hedge ratio, i.e., the total value of the futures position 

relative to that of the spot position, has furthermore attracted a great deal of attention within that 

field of research.  

 

Recall from (1a) and (1b) in the introduction that the return of the hedged portfolio at time t, 𝑅ℎ,𝑡 

and the optimal hedge ratio, set at time t-1, ℎ𝑡−1, are respectively given as    

 

  𝑅ℎ,𝑡 = 𝑅𝑠,𝑡 − ℎ𝑡−1𝑅𝑓,𝑡             𝑎𝑛𝑑            ℎ𝑡−1 = 
𝐶𝑓,𝑡−1𝐹𝑡−1

𝐶𝑠,𝑡−1𝑆𝑡−1
                  

                   

Once more, bear in mind that we set the optimal hedge ratio for period t at the end of period t-1.  

From this point onwards, to stress the fact that we choose the hedge ratio to optimize the outcome 

for period t, we will refer to this variable as ℎ𝑡, rather than ℎ𝑡−1.  

Now, the very first step in modeling the OHR concerns the choice of the objective function that ought 

to be minimized or maximized, i.e., the function that we apply on the variable 𝑅ℎ,𝑡 and optimize with 

respect to the parameter ℎ𝑡 in order to yield the OHR, ℎ𝑡
∗. 

 

The objective function is the function that describes how the return of the portfolio, 𝑅ℎ,𝑡, is 

transformed into the investor’s utility. Obviously, it would be theoretically most rigorous to directly 

optimize the investor’s utility function (Cecchetti et al., 1988). In practice, however, one usually 

applies a set of assumptions concerning the shape of the investor’s utility function so as to make the 

calculations traceable.  

 

Having settled on an objective function, the expression of ℎ𝑡
∗ is mostly a function of the moments of 

the distribution of 𝑅ℎ,𝑡 . The second step is then concerned with the various econometric methods 

that are available to estimate those parameters.  

 

The remaining chapter is structured into four parts. The first part provides a review of the different 

objective functions that have been postulated and applied in literature in order to derive an 

expression for the OHR, i.e., it deals with step 1 in modeling the OHR. It highlights their requisites 

and assumptions as well as their major advantages and shortcomings and eventually settles on an 

objective function that is going to be used in this research.  

 

Part two of this chapter provides a review of the different econometric techniques that are applied 

in literature in order to statistically estimate the OHR. It is thus concerned with the second stage in 

modeling the OHR. Together, part one and part two are targeted to tackle Sub Question 2. 

 

The third part of this chapter concludes with an overview and selection of the available hedging 

performance indicators. After all, we can only judge the performance of the models once we have 

established on what grounds they will be compared. That is, it tries to resolve Sub Question 4.  
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2.1 Review of Alternative Objective Functions 
 

Even though one could think of any objective function, there are six such function groups that are 

frequently referred to in literature. Those are the the minimum-variance -, the mean-variance -, the 

expected utility, -the Sharpe ratio -, the minimum mean-extended Gini-, and the minimum semi-

variance objective functions. This section provides a brief description of the former three objective 

functions. The others are outlined in Appendix A.  

 

2.1.1 Minimum Variance (MV) Objective Function 

 

When researchers review the evolution of OHR estimation, they usually start with Johnson, who was 

the first person to analytically derive the OHR on the basis of the minimum variance criterion in 1960 

(Alexander & Barbosa, 2007).  

 

As the name implies, the objective function F( . ) in this case is simply the variance of the portfolio 

return. Sticking to the definition of the portfolio return in (1a) without time subscript, we get that: 

 

𝐹(𝑅ℎ) = 𝑉𝑎𝑟[𝑅ℎ] = 𝑉𝑎𝑟[𝑅𝑠 − ℎ𝑅𝑓] = 𝑉𝑎𝑟[𝑅𝑠] + ℎ
2𝑉𝑎𝑟[𝑅𝑓] − 2ℎ 𝐶𝑜𝑣[𝑅𝑠, 𝑅𝑓] 

                            = 𝜎𝑅𝑠
2 + ℎ2𝜎𝑅𝑓

2 − 2ℎ [𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓]                                       (2a)

           

Minimizing the variance of the portfolio with respect to the hedge ratio, we first calculate the 

corresponding derivative: 

 

𝜕𝐹(𝑅ℎ)

𝜕ℎ
=  2ℎ 𝑉𝑎𝑟[𝑅𝑓] − 2 [𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓]  

 

Setting the derivative equal to zero, the OHR is given by: 

 

2ℎ 𝑉𝑎𝑟[𝑅𝑓] − 2 [𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓] = 0 

ℎ∗ = 
𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓

𝜎𝑅𝑓
2 =

𝜎𝑅𝑠𝑅𝑓

𝜎𝑅𝑓
2 = 𝜌𝑅𝑠,𝑅𝑓  

𝜎𝑅𝑠

𝜎𝑅𝑓
                                                            (2b) 

 

Where 𝜌𝑅𝑠,𝑅𝑓 is the correlation between the futures and spot returns, and 𝜎𝑅𝑓 and 𝜎𝑅𝑠 are their 

corresponding standard deviations.  

While the minimum variance approach is intuitive and easy to understand, and allows for an 

analytical derivation, a shortcoming of this approach is that it ignores the expected return of the 

portfolio.  

 

2.1.2 Mean - Variance Objective Function 

 

An approach that attempts to eradicate the absence of the mean in the utility function is the mean-

variance approach. Hedging is costly. If you hedge away part of the variance of your portfolio, you 

will inevitably also hedge away part of your expected return. It would thus be reasonable to optimize 

𝑅ℎwith respect to h such that it takes account of the effect on both risk and return. 
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In this context, Chen et al. (2003) propose the following objective function that has been empirically 

applied by Hsin et al. (1994): 

 

𝐹(𝑅ℎ, 𝐴) = 𝐸[𝑅ℎ] − 0.5𝐴 𝑉𝑎𝑟[𝑅ℎ]                     (3a) 

 

where A is the risk aversion parameter, which is divided by 2 for computational convenience. 

Plugging in expressions (1a) and (2a) into (3a) we get:  

 

𝐹(𝑅ℎ, 𝐴) = 𝐸[𝑅𝑠 − ℎ𝑅𝑓] − 0.5𝐴 [𝜎𝑅𝑠
2 + ℎ2𝜎𝑅𝑓

2 − 2ℎ [𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓]] 

                    = 𝜇𝑅𝑠 − ℎ𝜇𝑅𝑓 − 0.5𝐴𝜎𝑅𝑠
2 − 0.5𝐴ℎ2𝜎𝑅𝑓

2 + 𝐴ℎ𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓  

 

Again, optimizing (now maximizing) the objective function with respect to the hedge ratio, the first 

derivative is given by: 

 

𝜕𝐹(𝑅ℎ)

𝜕ℎ
= −𝜇𝑅𝑓 − 𝐴ℎ𝜎𝑅𝑓

2 + 𝐴𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓   

 

Equating the derivative with 0, the following expression for the OHR unfolds: 

 

−𝜇𝑅𝑓 − 𝐴ℎ𝜎𝑅𝑓
2 + 𝐴𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓 = 0 

− ℎ𝜎𝑅𝑓
2 = 

𝜇𝑅𝑓
𝐴
− 𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓 

 ℎ∗ = 𝜌𝑅𝑠,𝑅𝑓
𝜎𝑅𝑠

𝜎𝑅𝑓
−

𝜇𝑅𝑓

𝐴𝜎𝑅𝑓
2                        (3b) 

 

The resemblance of expression (3b) with (2b) is obvious. In fact, if we drop the second term of (3b) 

it is similar to expression (2b). This happens if either the numerator (𝜇𝑅𝑓) is zero, or the denominator 

(𝐴𝜎𝑅𝑓
2 ) tends to infinity. This implies that the mean-variance optimization approach and the 

minimum variance approach yield the same outcome under the assumption that either the investor 

is infinitely risk averse (A  ∞), and/or that the futures products’ price series follows a martingale 

process (i.e., 𝜇𝑅𝑓 = 0) (Chen et al., 2003). 2     

 

While the mean-variance approach is advantageous in that it incorporates the expected return of the 

hedged portfolio, it introduces the problem that we now need the risk aversion parameter in order 

to solve for the OHR.  

 

2.1.3 Maximum Expected Utility Objective Function 

 

As mentioned earlier, the expected utility objective function is the most theoretically rigorous 

approach as it optimizes the utility function with respect to the OHR parameter, without prescribing 

the shape of the utility function. It is the overarching approach that embeds all objective functions.    

                                                             
 
2 Under a martingale stochastic process, the expected value of random variable S at time t+1, 𝑆𝑡+1, is equal to the prior 
realized observation, of S, 𝑆𝑡 – regardless of the set of values observed up to time t. That is, 𝐸[𝑆𝑡+1 |𝑆1…𝑆𝑡] = 𝑆𝑡. It follows 
that in that case 𝐸𝑡[(𝑆𝑡+1 − 𝑆𝑡)/𝑆𝑡] = (𝑆𝑡 − 𝑆𝑡)/𝑆𝑡 = 0.   
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Cecchetti et al. (1988) provide a graphical representation (see Figure 2.1) of this risk-return trade-

off that is inherent in futures hedging and which has been introduced in the prior section. Here, 𝑅ℎ 

refers to the return of the hedged portfolio and is equal to the notation in (1a).  

 

As the investor varies the hedge ratio h, the ratio of expected return to standard deviation also varies. 

This is indicated by the risk-return frontier, which is derived from the joint distribution of the spot 

and futures returns.  

 
 Figure 2.1 – Risk return frontier (Cecchetti et al., 1988) and hedging strategies. 

 

In this figure, the hedge ratio increases as we move from the top to the bottom of the figure. Being 

completely unhedged, the expected return of the portfolio is the highest at ℎ = 0 as there is no 

correlated short position that eats away part of the spot positions’ expected return. In the same vein, 

however, there is not covariance term to reduce the overall risk of the spot commodity. The figure 

highlights how we sacrifice one (expected return) for the other (less risk). This trade-off culminates 

in ℎ∗, the point of minimum variance discussed in Section 2.1.1. This is the leftmost point on the risk-

return frontier.  

 

As we further increase the hedge ratio, we enter the set of inefficient hedge ratios. Consider for 

example ℎ = 1. Assuming the presence of basis risk, this constitutes a scenario in which we are 

overhedged. By definition, the variance at this point is bigger than at ℎ∗ since ℎ ≠  ℎ∗ and ℎ∗ is the 

variance minimizing hedge ratio. 3 Moreover, since ℎ > ℎ∗ the proportion of the expected spot return 

that is erased by the expected futures return, is also bigger. Note, that in most cases, the variance 

minimizing hedge ratios are lower than 1.  

                                                             
 
3 In case of constant hedge ratios, there is only one hedge ratio, ℎ∗, that leads to the corresponding minimum variance point 
in Figure 2.1 

Risk-return  
frontier 

Indifference 
curves 

𝐸[𝑅𝑠] 

𝐸[𝑅𝑠 − 𝑅𝑓] 

𝐸[𝑅𝑓] 

Certainty 
equivalent 

𝑬[𝑹𝒉] 
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Notice, that when the futures price series would actually follow a martingale process, in which case 

𝐸[𝑅𝑓] = 0, then the expected value of the hedged portfolio return, 𝐸[𝑅ℎ], would be immune to 

changes in the hedge ratio. In this event, the set of feasible hedge ratios would be given by the purple, 

horizontal line in Figure 2.1 (for 0 ≤ ℎ ≤ 1). This constitutes a very attractive scenario for we can 

reduce the variance without sacrificing part of the expected value. Ironically, however, if the spot 

exposure earns a risk premium it will have a positive beta. But for a futures security to be a suitable 

hedge instrument, it must be correlated with the spot asset, in which case it will have a positive beta 

as well and thus also earn a risk premium, i.e., have an expected value bigger than zero.    

 

Cecchetti et al. (1988) now argue that the optimal futures hedging ratio is the one that maximizes 

the investors utility. To compute this ratio, we first of all need the utility function of the investor. For 

any given function, we can then derive a set of indifference curves (see Figure 2.1), where, as the 

name implies, each curve represents a set of points along which the investor, in terms of utility, is 

indifferent as to the ratio between risk and expected return. The OHR is then the point at which the 

slope of the indifference curve is equivalent to the slope of the risk-return frontier. This point is 

indicated as ℎ∗∗in Figure 2.1 (Cecchetti et al., 1988).    

 

While the expected utility approach is theoretically appealing, it requires us to know the analytic 

functions of the investor’s utility and the joint distribution of the spot and futures returns, which 

makes it cumbersome to implement in practice. 

 

Note, that both the minimum variance and the mean-variance objective functions are quadratic 

utility functions. Therefore, both of these functions are not generally consistent with the expected 

utility paradigm unless, of course, the investor happens to make investment decisions based on 

quadratic utility functions. Moreover, the three approaches are also identical to each other in case 

the spot and futures returns are bivariate normally distributed (Lien & Tse, 2002).  

 

2.1.4 Conclusion on Objective Functions 

 

Section 2.1 and Appendix A have given a brief review of the most common theories that are applied 

in literature in order to model the optimal hedge ratio. A number of important points crystallize 

alongside the comparison of the different theories.  

 

First and foremost, all of the rather advanced methods analytically resemble the basic minimum 

variance approach under a few assumptions. If we assume that the futures price series, 𝐹𝑡,  follows a 

martingale process then both the mean-variance and the Sharpe-ratio approach equal the minimum-

variance function. The same is also true for the expected utility-, the minimum MEG-, and the minimum 

GSV approach if we impose the stronger assumption that the spot and futures returns, 𝑅𝑠 and 𝑅𝑓 , are 

jointly normally distributed (Chen et al., 2008). Dropping the assumption of joint normality, Baillie 

& Myers (1991, p. 117) less restrictively claim that  

 

 “However, it can be shown that, provided expected returns of holding futures are zero, then the  

  minimum variance hedging rule is also generally the expected utility-maximizing hedging rule.” 
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Lien & Tse (2002) agree with the proposition of Baillie & Myers (1991) under the condition that 

hedgers are not allowed to borrow or lend and that there are no transaction costs involved in the 

hedge.  

 

Since the martingale and joint normality assumption are so often referred to in literature, Chen et al. 

(2008) set out to investigate in how far those two assumptions actually empirically apply for a set of 

25 commodities (amongst which soybean, soy meal, corn and wheat). The tests were conducted on 

daily, as well as weekly, monthly, 2 month, and quarterly returns. They found that the pure 

martingale hypothesis held for all commodities, whereas the joint normality assumption was 

rejected in all but one case. But if the expected value of a commodity return was zero, then this would 

imply that its beta would be zero. In fact, Dusak & Young applied a CAPM analysis to corn, wheat and 

soybean and found neither systematic risk nor evidence of risk-adjusted return premium (Bjornson 

& Carter, 1997).  

 

Second, we see that the rather advanced theories (i.e., the expected utility -, the minimum MEG - and 

the minimum GSV approach) all represent parametric approaches i.e., they require an analytic 

expression of the joint distribution of the spot and futures return series. This makes their application 

infeasible, as, in case of our spot replacement series, we only have around 150 data points to begin 

with, which renders an analytical derivation of the joint distribution function troublesome.  

 

Third, it appears empirically that the added value of more sophisticated approaches to model the 

optimal hedge ratio is rather small (Lence, 1995; Lien et al., 2002). Generally, Chen et al. (2003, p. 

433) claim that, while different objective functions will yield different optimal hedge ratios, 

 

  “[…] there is no single optimal hedge ratio that is distinctly superior to the remaining ones.” 

 

It is probably a mixture of these three reasons that explains why the overwhelming proportion of 

scientific articles on futures hedging almost exclusively centers on OHR estimation in the context of 

the minimum variance approach (Harris & Shen, 2003). And it is also why we will focus on the 

minimum variance objective function in an attempt to model the optimal hedge ratio. Using this 

objective function to show the maximum possible variance reduction, we will, as a secondary 

measure, also apply the mean-variance hedging strategy to inspect whether, and if so, how the series 

of hedge ratios changes, if we also take account of the futures rate of return.  

 

2.2 Review of MV OHR Estimation Methods 

 

Having settled on the minimum-, and mean-variance approaches as our objective functions in  

Section 2.1, we can now proceed to reviewing the techniques that have empirically been applied in 

literature in order to estimate the input parameters for both approaches. As has been noted before, 

the issue of modeling the OHR has been of resounding interest in literature, featuring a proliferating 

number of articles, especially in the minimum variance context.  

 

As it is virtually impossible to spotlight the whole array of models with all their adaptions and 

extensions within the scope of our research, we confine our review to the more recurring models 
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that are frequently used as a benchmark in order to judge the performance of new models and which, 

as we will see, usually perform just as well, if not even better.  

 

Recall from Equations (2b) and 3(b) that, apart from the constant risk aversion coefficient and the 

expected futures return, which is simply estimated as the sample average, the involved input 

parameters are identical. Therefore, any method that models those input parameters will suit both 

objective functions. To avoid unnecessary duplication, this section only describes the minimum 

variance case.  According to (2b) the variance minimizing optimal hedge ratio is given as: 

 

ℎ∗ = 
𝜌𝑅𝑠,𝑅𝑓𝜎𝑅𝑠𝜎𝑅𝑓

𝜎𝑅𝑓
2 = 𝜌𝑅𝑠,𝑅𝑓  

𝜎𝑅𝑠

𝜎𝑅𝑓
                

 

where 𝜎𝑅𝑠 and 𝜎𝑅𝑓 are the standard deviation of the spot and futures return series, respectively, and 

𝜌𝑅𝑠,𝑅𝑓 is the correlation between those two return series. Since the variables in (2b) are all unknown 

population parameters, we need a method to estimate those parameters – and this is what all the 

upcoming models in Section 2.2 are about. While the methods of estimating those variables may 

differ, the way that those estimates are used to assemble the minimum-variance OHR is always the 

one given in (2b), or (3b) in case of the mean-variance OHR.    

 

2.2.1 Ordinary Least Squares (OLS) Regression   

 

The most basic, yet still frequently applied approach to model the OHR is a simple OLS regression.  

 

An OLS regression fits a straight line to the independent and dependent variable observations (in 

our case the spot and futures returns) in a scatter plot such that the total variance (i.e., the sum of 

the squared vertical distances between the observations and the straight line) is minimized 

(Poortema, 2011). As the joint variance minimization is indeed what we are after, the suitability of 

the OLS method in our context is self-evident.   

 

More concretely, we regress the realized, historic spot rates of return, 𝑅𝑠,𝑡, against the realized, 

historic futures rates of return, 𝑅𝑓,𝑡 That is, we have: 

 

 𝑅𝑠,𝑡 = 𝛼 + 𝛽𝑅𝑓,𝑡 + 𝜀𝑡                 (4) 

 

The model is thus set up such that the realized spot rate of return in period t, 𝑅𝑠,𝑡, is explained by a 

constant term 𝛼, the impact of the independent variable, i.e., the realized futures rate of return in 

period t, 𝑅𝑓𝑡, the degree of impact of which is captured by 𝛽, and an error term, 𝜀𝑡 (Bos & Gould, 

2007).  

 

Notice, that we estimate the 𝛽 in (4) with �̂� =
�̂�𝑅𝑠𝑅𝑓

�̂�𝑅𝑓
2 = �̂�𝑅𝑠𝑅𝑓

�̂�𝑅𝑠
�̂�𝑅𝑓

 . 

As one can see, the expression for �̂� is the same as in (2b) except for that the population parameters 

have been substituted by their corresponding sample parameters. Therefore, according to the OLS 

method, the optimal hedge ratio is given by the slope coefficient in (4), i.e., ℎ∗ = β.  
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According to most authors in literature, cointegration poses a problem for the OLS method. 

Specifically, they argue that if the spot and futures return series were cointegrated then the OLS 

regression equation as given in (4) would be miss-specified (Chen et al., 2003; Hatemi-J & Roca, 2006; 

Lahiani & Guesmi, 2014). The argument is that in the presence of cointegration, the OLS regression 

would over-difference the data and cloud the long-run relationship between the two series (Kroner 

& Sultan, 1993). A better estimate of the OHR could then be attained by incorporating error 

correction terms in the regression analysis. Hence, the beta from (4) would not be the best linear 

unbiased estimator (‘BLUE’) anymore. 

 

However, due to limitations in scope and the controversies surrounding the topic of cointegration 

(see Appendix B for more information), this is something that is left for future research.  

 

2.2.2 OHR and Time Variation   

 

A much more serious problem with the OLS method than a potentially spurious definition of the 

regression equation due to the omission of a cointegration relationship, is the fact that it is time-

invariant. As we have seen in Equation (4) the optimal hedge ratio is based on unconditional sample 

moments.  

 

Suppose that the OLS optimal hedge ratio estimation is applied on a window of n weekly 

observations. Of course one will get new, varying estimates of the OHR as the OLS method is applied 

across time. However, per application, it implicitly assumes that the moments of the bivariate 

distribution of spot and futures returns do not change within the period of time spanning the n 

observations. Put differently, any variation of the OHR observed over time is solely due to sampling 

error – there is no feature in the unconditional OLS method that otherwise would explain variation 

over time (Alexander, 2011).    

 

The paramount issue with unconditional modeling approaches is that they are at odds with the 

heteroscedasticity that is oftentimes observed in financial time series (Lien & Tse, 2002). 

Heteroscedasticity refers to the observation that different degrees of volatility usually come in 

clusters. That is, there are relatively tranquil periods (or clusters) where there is little divergence 

from the mean, and there are periods where returns are rather spiky. Volatility clustering is also 

termed autoregressive conditional heteroscedasticity which stresses the fact that there is usually 

autocorrelation (cross correlation of a series with its own, lagged values) in the squared returns and 

that the second moment of the distribution is not constant throughout time. Analog to that, we would 

also expect the correlation between two assets to vary over time as well (Bos & Gould, 2007).  

 

It is for this reason that there is strong support in literature for time-varying approaches that model 

the moments of the bivariate distribution conditional on new price information (Cecchetti et al., 

1988; Baillie & Myers, 1991; Kroner & Sultan, 1993; Lien & Tse, 2002; Engle, 2002; Chen et al., 2003; 

Bauwens et al., 2006; Hatemi-J & Roca, 20006; Bos & Gould, 2007; Hsu et al., 2008; Ramlall, 2009; 

Chang et al., 2011). However, while the majority of the researchers advocates the use of time-varying 

models from a theoretical perspective, empirical validation of the hedging performance 

improvement of those models over time-invariant models is a much more controversial matter.  
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Note, that when literature compares the hedging performance of different models, they usually 

compare what are termed the in-sample and out-of-sample periods. The in-sample period is that 

period of the whole sample period from which we draw the data to estimate the parameters of a 

model. The out-of-sample period then tests the performance of the models on the remaining part of 

the whole sample. Suppose that we have a total sample of 800 observations and split it into 500 in-

sample and 300 out-of-sample observations. The models are parameterized on the basis of the first 

500 observations. Of course, we are generally less interested in the in-sample performance of the 

models, as they have been parameterized in order to increase the likelihood of the in-sample data in 

the first place. What we are more interested in, is how flexibly and well a model copes with new, out-

of-sample data. And it is this period, the out-of-sample period, where time-varying models usually 

prevail (Kroner & Sultan, 1993; Choudhry, 2003; Ramlall, 2009; Alexander, 2011).    

 

To disclose the digressing nature of the findings in literature on the performance differential 

between static and dynamic hedge ratio models, Appendix C provides an overview of the settings 

and outcomes of a number of articles that have empirically tested the relative performance of time-

varying over time-invariant models. While some authors document a strict dominance of dynamic 

models (e.g., Baillie & Myers, 1991; Kroner & Sultan, 1993; Sephton, 1993, Choudhry, 2003; Lien & 

Yang, 2008), others table the exact opposite (e.g., Lien & Wilson, 2001; Lien et al., 2002; Bystrom, 

2003, Alexander & Barbosa, 2007, Kenourgios, 2008). This ambiguity is moreover not restricted to 

the meta-level. We also find differences on the level of individual articles. In the case of Bera et al. 

(1997), Choudhry (2004), Bos & Gould (2007), Hsu et al. (2008), Park & Jei (2010), and Kostika & 

Markellos (2013) for example, the ranking order of static and dynamic models is either interspersed 

and/or contingent on the sample context (i.e., the rankings of the in-sample and out-of-sample 

contexts differ).  

 

Methodologically, the variability in markets, time, and applied parameterization approaches make it 

very difficult to compare the outcomes of the various models to come to a conclusive answer – even 

after three decades of research (Kostika & Markellos, 2013).  

 

The idea that the performance of time-varying OHR models is contingent on the market environment 

to which it is applied to, is also supported by Alexander (2007) who approves the usefulness of more 

sophisticated models in the commodity environment where the basis can be highly volatile due to 

transportation costs, storage constraints, and logistic problems (Alexander, 2011), but highly 

questions their use for hedging for example stock indices.  

 

2.2.3 Exponentially Weighted Moving Average (EWMA)   

 

Another shortcoming with respect to the OLS regression method is that it attributes equal weight to 

all observations in the sample. This makes it stiff and less reactive to more recent information in the 

sample. Owing to this inflexibility, it is also less useful for providing short term estimates for the 

moments of a (bivariate) distribution (Alexander, 2011).  

 

The EWMA method seeks to overcome this shortcoming by introducing the exponential smoother, λ, 

a constant that is between 0 and 1. Assuming that 𝐸[𝑅𝑠] = 𝐸[𝑅𝑓] = 0, the conditional variance and 

covariance of the spot and futures return series are modeled as (Alexander, 2011): 
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𝜎𝑅𝑓,𝑡
2 = (1 − 𝜆)∑ 𝜆𝑖−1  𝑅𝑓,𝑡−𝑖

2𝑛
𝑖=1 = (1 − 𝜆)𝑅𝑓,𝑡−1

2 + 𝜆𝜎𝑅𝑓,𝑡−1
2             (5a) 

 

𝜎𝑅𝑠𝑅𝑓,𝑡 = (1 − 𝜆)∑ 𝜆𝑖−1 𝑅𝑠,𝑡−𝑖 𝑅𝑓,𝑡−𝑖
𝑛
𝑖=1 = (1 − 𝜆)𝑅𝑠,𝑡−1 𝑅𝑓,𝑡−1 + 𝜆𝜎𝑅𝑠𝑅𝑓,𝑡−1                       (5b) 

 

As can be seen, the approach models the (co-) variance by both, a component that recursively 

contains past information of the (co-) variance parameter, as well as a component that captures the 

latest shock observed in the market. Again, it follows form (2b) that:  

 

ℎ𝑡
∗ =

𝜎𝑅𝑠𝑅𝑓,𝑡

𝜎𝑅𝑓,𝑡
2                                 (5c)

    

The subscript of the OHR in (5c) signifies that we just entered the realm of time-varying optimal 

hedge ratios. Notice also how the smoothing constant in (5a) and (5b) indeed provides for the effect 

that the latest observation is always attributed the biggest weight, as the impact of an observation 

that is i periods back in the past is scaled down by a factor of 𝜆𝑖−1. 

 

For modeling volatility in financial markets, the smoothing parameter λ usually takes on values in 

the range between 0.75 and 0.98 (Alexander, 2011). As we can see from Equations (5a) and (5b), the 

higher λ, the more weight is placed on the past volatility parameter, which recursively contains all 

the past n volatility observations and therefore, the smoother the estimated volatility series. Lower 

values for λ on the other hand, ensure that the volatility series reacts more drastically to new shocks 

in the market.     

 

2.2.4 GARCH Class OHRs 

 

A class of models that perfectly lends itself and is extensively used in literature and practice in order 

to model the conditional covariance and variance of (two) financial time series is the GARCH class. 

In fact, the EWMA model that has just been introduced, is a specific case of this class. 

 

GARCH (generalized autoregressive heteroscedasticity) models are a generalizations of ARCH(p) 

models. Under an ARCH(p) model, the volatility for period t is represented as a weighted average of 

the past p innovations: 

  

  𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 +⋯+ 𝛼𝑝𝜀𝑡−𝑝
2                 (6a) 

 

for 𝛼0 > 0, 𝛼1, …, 𝛼𝑝 ≥ 0 and where the innovations are residuals from a mean equation, usually of 

the most simple form: 

 

 𝑅𝑡 = 𝑐 + 𝜀𝑡                  (6b) 

 

The GARCH(p, q) model extends Equation (6a) by adding q autoregressive terms: 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 +⋯+ 𝛼𝑝𝜀𝑡−𝑝
2 + 𝛽1𝜎𝑡−1

2 +⋯+ 𝛽𝑞𝜎𝑡−𝑞
2                 (6c) 
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for 𝛼0 > 0, 𝛼1, …, 𝛼𝑝, 𝛽1, … , 𝛽𝑞 ≥ 0. However, usually it suffices to take p = q = 1, yielding the vanilla 

GARCH method that has found overwhelming applicability in financial institutions: 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2                               (6d) 

 

For 𝜔 > 0 and 𝛼, 𝛽 ≥ 0. It is important to understand that the GARCH model consists of both, the 

mean equation such as in (6b) and the variance equation such as in (6d). Note also, that for the 

underlying data generating process to be stationary, we require that 𝛼 +  𝛽 < 1 (Alexander, 2011).4 

 

The EWMA approach resembles the integrated GARCH (I-GARCH) model where we have that 𝛼 +

 𝛽 = 1. Setting 𝛽 = 𝜆, which implies that 𝛼 = 1 − 𝜆 and dropping the constant term, i.e., 𝜔 = 0 then 

Equation (6d) becomes: 

 

 𝜎𝑡
2 = (1 − 𝜆)𝜀𝑡−1

2 + 𝜆𝜎𝑡−1
2  

 

which is indeed equal to (5a) as the EWMA assumes zero mean and thus causes the constant term in 

(6b) to drop and therefore 𝑟𝑡 = 𝜀𝑡.    

 

The generic GARCH(1,1) model is both more efficient and more effective than the ARCH(p) model as 

the former needs to estimate less parameters, yet has better forecasting qualities (Alexander, 2011). 

It follows from (6d) that the higher 𝛽, the persistency parameter, the longer it takes for volatility 

shocks to fade away. The reactivity parameter, 𝛼, determines in how far volatility is affected by 

squared errors.  

 

In what follows we provide a review of bivariate GARCH models which are just bivariate 

generalizations of the univariate GARCH(1,1) model and thus look very familiar to expression (6d). 

All of those bivariate models assume that the conditional joint distribution of the returns is normal 

with the variance and covariance between the two variables being governed by 𝐻𝑡, the variance-

covariance matrix. In our case: 

 

𝐻𝑡 = [
𝜎𝑅𝑠,𝑡
2 𝜎𝑅𝑠,𝑡𝑅𝑓,𝑡

𝜎𝑅𝑓,𝑡𝑅𝑠,𝑡 𝜎𝑅𝑓,𝑡
2 ]                  (7) 

 

where, of course, 𝜎𝑅𝑠,𝑡𝑅𝑓,𝑡 = 𝜎𝑅𝑓,𝑡𝑅𝑠,𝑡. To distinguish time-varying OHRs, based on conditional second 

moment estimation methods, from the time-invariant OHRs, we denote them with ℎ𝑡
∗|𝛺𝑡−1 where 

𝛺𝑡−1 represents the information set up to and including t-1.  

 

The sole goal of all of the upcoming approaches is to model 𝐻𝑡. In fashion of expression (2b), they all 

construct the optimal hedge ratio as:  

 

 ℎ𝑡
∗|𝛺𝑡−1 =

[𝐻𝑡]1,2

[𝐻𝑡]2,2
=
𝜎𝑅𝑓,𝑡𝑅𝑠,𝑡

𝜎𝑅𝑓,𝑡
2                  (8) 

 

                                                             
 
4 See appendix B for an explanation of what stationarity is and what it implies.  
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2.2.5 Diagonal VECH Parameterization 

 

The VECH GARCH model is the most basic multivariate GARCH model and has originally been 

proposed by Bollerslev et al. (1988).  In its more parsimonious, diagonal representation, the 

covariance matrix, 𝐻𝑡, is given as (Alexander, 2011): 

 

𝑣𝑒𝑐ℎ(𝐻𝑡) = 𝐶 + 𝐴𝑣𝑒𝑐ℎ(𝜉𝑡−1𝜉𝑡−1
′ ) + 𝐵𝑣𝑒𝑐ℎ(𝐻𝑡−1)                   (9) 

 

where vech is the operation that stacks the lower diagonal values of a matrix into a column vector, A 

and B are diagonal coefficient matrices and C is a coefficient column vector. That is, 𝐶 = (𝜔1, 𝜔2, 𝜔3)′, 

𝐴 = 𝑑𝑖𝑎𝑔{𝛼1, 𝛼2, 𝛼3}, 𝐵 = 𝑑𝑖𝑎𝑔{𝛽1, 𝛽2, 𝛽3}, and 𝜉𝑡 = (𝜀𝑟𝑠,𝑡𝜀𝑟𝑓,𝑡)′. 

 

By restricting the parameter matrices A and B to be diagonal we effectively make sure that each 

element in the covariance matrix, 𝐻𝑡 , 𝐻𝑖𝑗,𝑡, is only a function of its own lagged value 𝐻𝑖𝑗,𝑡−1 and 

𝜀𝑖,𝑡−1𝜀𝑗,𝑡−1 for 𝑖, 𝑗 = 𝑅𝑠 , 𝑅𝑓. In the bivariate case, the proposed model involves the estimation of 9 

parameters (Choudhry, 2004).  

 

A serious shortcoming of the (diagonal) VECH parameterization is that it does not ensure positive 

definiteness of the covariance matrix (Baillie & Myers, 1991; Engle, 2002; Lien et al., 2002). 

 

2.2.6 (Diagonal) BEKK Parameterization 

 

There are various restrictions that can be imposed in order to ensure positive definiteness of the 

covariance matrix, 𝐻𝑡. A popular model in that regard is the BEKK model, which builds on the work 

of Baba, Engle, Kraft and Kroner. It is also the GARCH model that has been used in the seminal paper 

on time-varying GARCH optimal hedge ratios by Baillie & Myers (1991).  The plain version with a 

single ARCH and GARCH term is: 

 

𝐻𝑡 = 𝐶
′𝐶 + 𝐴′𝜉𝑡−1𝜉𝑡−1

′ 𝐴 + 𝐵′𝐻𝑡−1𝐵               (10a) 

 

where C, A, and B are 2x2 parameter matrices. While C is upper triangular, A and B are unrestricted. 

In our bivariate case, (10a) involves the estimation of 𝑁(5𝑁 + 1)/2 = 11 parameters (Chang et al., 

2011).  

 

There are a couple of restrictions that can further be imposed on the parameter matrices to reduce 

the number of parameters to be estimated. The two most cited approaches in this respect are the 

scalar and diagonal BEKK parameterization. Since the performance of the latter form of 

parameterization is often found to be superior (Alexander, 2011) – also in the context of futures 

hedging (Chang et al., 2011) – it is also the one that we will further consider in our review.  

 

The diagonal BEKK bivariate GARCH model requires the parameter matrices A and B in (10a) to be 

diagonal resulting in 7 parameters to be estimated (Bauwens et al., 2006): 

 

𝐻𝑡 = [
𝑐1 0
𝑐12 𝑐2

] [
𝑐1 𝑐12
0 𝑐2

] + [
𝑎1 0
0 𝑎2

] [
𝜀1,𝑡−1
𝜀2,𝑡−1

] [𝜀1,𝑡−1 𝜀2,𝑡−1] [
𝑎1 0
0 𝑎2

] + [
𝑏1 0
0 𝑏2

]𝐻𝑡−1 [
𝑏1 0
0 𝑏2

](10b) 
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In the diagonal BEKK version we can also derive a stationarity condition solely on the basis of the 

elements of the diagonal matrices. In particular, for an n-dimensional diagonal BEKK model with just 

one lag, we require that (𝑎𝑖𝑖
2 + 𝑏𝑖𝑖

2) < 1 for all i (Engle & Kroner, 1995).   

 

2.2.7 Constant Conditional Correlation (CCC) Parameterization 

 

Since parameter estimation can become quite a problematic venture in the context of higher 

dimensions, there are a number of simplifications and approximations that can be applied to further 

ease the estimation process. Recall how the covariance matrix in the VECH and BEKK approaches 

were modeled by bivariate GARCH models. 

 

The constant conditional correlation (CCC) proposed by Bollerslev in 1990 simplifies the estimation 

process by modeling the elements of the covariance matrix 𝐻𝑡 by means of univariate GARCH 

processes such as in (6d) (Engle, 2002). The model can be written as:  

 

𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡,       where 𝐷𝑡 = 𝑑𝑖𝑎𝑔{√ℎ𝑖,𝑡}            (11a) 

 

where the ℎ𝑖,𝑡’s are the univariate GARCH processes, and R is the constant correlation matrix, 

containing the conditional correlations (see Appendix D for a proof). In practice, one frequently uses 

the unconditional sample coefficient of correlation of the standardized residuals from the involved 

univariate GARCH processes to model the time-invariant correlation matrix, which is termed the 

variance targeting approach.  

 

2.2.8 Dynamic Conditional Correlation (DCC) Parameterization 

 

Constant correlation is of course, a strong assumption to make. Moreover, variance targeting 

comprises the disadvantage that, should the sample correlation between the standardized residuals 

be nonnegative, then it follows from (11a) that there is no way for the conditional covariance to 

temporarily take on negative values. A negative hedge ratio is therefore impossible. To circumvent 

this problem, the correlation matrix can be modeled to be time-varying as well. More specifically, 

expression (11a) is adapted to become (Engle, 2002): 

 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                              (11b) 

 

A simple way to model 𝑅𝑡 is to deploy the exponential smoothing method, such that: 

 

 [𝑅𝑡]𝑖,𝑗 = 𝜌𝑖,𝑗,𝑡 =
𝑞𝑖,𝑗,𝑡

√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡
 where          (11c) 

 

 𝑞𝑖,𝑗,𝑡 = (1 − 𝜆)(𝜀𝑖,𝑡−1𝜀𝑗,𝑡−1) + 𝜆(𝑞𝑖,𝑗,𝑡−1)        

 

and where 𝜀𝑖,𝑡−1 is the standardized residual of security i at time t-1. Note that while modeling 𝑅𝑡 

using expression (11c) indeed gives rise to a dynamic conditional correlation model, it is not the DCC 

model proposed by Engle (2002) that is frequently referred to in literature when using the term DCC.   
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2.2.9   A Note on GARCH Models and Symmetry 

 

The GARCH models presented so for all rest on the assumption of symmetry. That is, they assume 

that bad market news have the same impact on the volatility of an asset as good news. Empirical 

research, however, suggests that pessimistic information might have a more profound impact on the 

volatility series of an asset (Brooks et al., 2002) due to leverage effects (Park & Jei, 2010).  

In the same vein, Lien & Yang (2008) argue that a positive basis (defined as spot – futures) has a 

bigger influence on the variance-covariance structure between the spot and futures time series than 

a negative basis.  

 

However, despite the effort of those authors to develop GARCH models that account for asymmetry, 

the performance improvement over conventional GARCH models was only marginal at best. In the 

case of Brooks et al. (2002), the out-of-sample hedging performance was even lower than that of the 

conventional models. Park & Jei (2010) even found profound in-sample deficiencies of some 

asymmetric models.  

 

Given that the added value of asymmetric models is disputable, especially in our small sample 

context, and since accounting for asymmetry considerably complicates the model estimation process 

(Alexander, 2011), the investigation of asymmetry is something that we leave for future research. 

 

2.2.10   Conclusion on MV OHR Estimation Methods 

 

While countless methods have been developed in literature to model the optimal hedge ratio under 

the minimum variance objective function, Section 2.2 provided a review of the most commonly 

applied models. Basically, those models can be sub-divided into time-invariant (OLS) and time-

varying (EWMA, VECH, BEKK, CCC and DCC) models. Since the former group assumes that the 

moments of the distribution do not change over time, it fails to account for the heteroscedasticity 

that is often observed in the volatility of financial time series.  

 

Still, there is some dispute of whether the added value of more advanced time-varying models 

justifies their increased complexity in the modeling process. Hence, it will be interesting to see how 

they contest in our context.  

 

As for other restrictions, we have seen that the EWMA method assumes that the expected value of 

both the spot and futures series returns are zero. While this assumption is not made in the context 

of the (VECH, BEKK, CCC, and DCC) GARCH models, they do, however, in most cases assume that the 

residuals are conditionally (jointly) normally distributed as they rely on maximum likelihood 

estimation in order to extract the model parameters, in which case the assumption of normality 

simplifies the computations. However, it is shown that even when the assumption of normality of the 

error terms is violated, then maximizing the Gaussian log-likelihood still provides for quasi-

maximum-likelihood estimates, which are normally and asymptotically distributed should the 

GARCH functions (6b) and (6d) be correctly specified (Bollerslev & Wooldridge, 1992).  

 

Of all the considered models, we will only discard the bivariate VECH GARCH and the CCC model. The 

former does not ensure positive definiteness and the latter relies on the strong assumption of 
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constant correlation, effectively denying the OHR to take on negative values. We therefore resort to 

its dynamic extension instead.  

2.3 Review of Hedging Performance Parameters 
 

Up to now, we have been talking about hedging effectiveness without having specified exactly how 

we would measure it. Section 2.3 features an overview of the various performance measures that are 

proposed and used in literature.  

 

Since we have already settled on our objective functions, the pool of performance measures is already 

refined as it only makes sense to choose from indicators that measure the performance with regard 

to the objective that is sought to be optimized in that function. This insight is backed by Alexander 

(2007) who states that the question of how to estimate the OHR and how to measure its effectiveness 

are integrally related.  

 

Within the space of risk-minimizing measures, Ederington’s measure of hedging effectiveness 

proposed in 1979 is the one that has predominantly been applied in literature to date and is given as 

 

 𝐸 = 1 − 
𝜎𝑅ℎ
2

𝜎𝑅𝑠
2 =

𝜎𝑅𝑠
2 − 𝜎𝑅ℎ

2

𝜎𝑅𝑠
2               (12a) 

 

where, as in (1a), 𝑅ℎ is the return of the hedged portfolio, and 𝑅𝑠 is the return of the sole spot position, 

i.e., the unhedged portfolio. Equation (12a) is therefore just the proportion of the variance reduction 

induced by the futures hedge relative to the proportion of the variance of the unhedged portfolio.   

 

A problem with Ederington’s measure is that it is based on unconditional sample moments. However, 

as we have seen in Section 2.2, the time-varying approaches seek to minimize conditional variance. 

It is for this reason that Lien (2005) disapproves the use of Ederington’s measure of hedging 

effectiveness in any but the OLS setting. He consequently contests all research in which alternative 

estimation approaches are compared to the OLS method based on Ederington’s measure.  

 

The reason is simply that, since the OLS method is designed specifically such that it minimizes the 

unconditional variance, there is no way that any method other than the OLS method beats the OLS 

method on the grounds of Ederington’s measure, since unconditional variance is exactly what it 

measures. This is strictly true in the in-sample context, but also extends to the out-of-sample context 

in case both the in – and out-of-sample sizes are sufficiently large and if there is no structural change 

in the two sample periods (Lien, 2005).  

 

While Lien explicitly claims that the prevalence of OLS methods in terms of unconditional minimum 

variance performance measures holds in comparison with any static or dynamic OHR estimation 

method, Kroner & Sultan (1993) say that this only applies to the static realm. In fact, there are 

numerous papers that empirically observe a bigger unconditional variance reduction of dynamic 

estimation methods over the OLS method – even in the in-sample period (e.g., Baillie & Myers, 1991; 

Kroner & Sultan, 1993; Bera et al., 1997).   

 

Moreover, Lien (2006) also argues that Ederington’s measure yields downwards biased estimates of 

the hedging effectiveness and thus undermines the true value of futures contracts as hedging 
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vehicles. It follows that we have to be cautious when using Ederington’s measure to compare the 

performances of the different models. 

 

To account for the uncondtionality shortcoming, Alexander (2007) simply swaps the unconditional 

moments in (12a) for the conditional moments, which of course yields 

 

𝐸𝑡 = 1 − 
𝜎𝑅ℎ,𝑡
2

𝜎𝑅𝑠,𝑡
2 =

𝜎𝑅𝑠,𝑡
2 − 𝜎𝑅ℎ,𝑡

2

𝜎𝑅𝑠,𝑡
2               (12b) 

 

As for the mean-variance objective function, the effectiveness of a hedging strategy will be based on 

its location on the risk-return plane introduced in Figure 2.1  

 

Apart from focusing on the effectiveness of a hedging strategy, i.e., the degree to which it is capable 

of reducing the variance of the unhedged portfolio, it is reasonable to also shed light onto the 

efficiency of the model. In case of the time-varying models it can be expected that the corresponding 

OHRs are more volatile, inducing the need to more frequently rebalance the hedged portfolio, which 

is costly as each rebalancing act requires a variable amount of transaction costs (Sultan & Kroner, 

1993; Harris & Shen, 2003; Hatemi-J & Roca, 2006; Alexander, 2011).  

2.4 Conclusion on Literature Review 
 

Being armed with the insights acquired in the literature review, we are now able to answer Sub 

Questions 2 and 4. 

 

Sub Question 2: “Which models are available to model the OHR and what restrictions do they 

pose on the variables involved in the hedge?” 

 

In order to specify a set of OHR estimation models, we first of all had to settle on an objective function 

– a function that translates risk and return into the investor’s utility. From the set of six functions 

that have been reviewed, we have chosen variance minimization as our primary objective function 

as this is what all the other functions reduce to if we assume a martingale process of the futures price 

series (mean-variance approach, Sharpe-ratio approach), or if we assume joint normality of the spot 

and futures return series (also including the expected utility-, minimum MEG -, and the minimum GSV 

approach). Moreover, it is nonparametric - an important feature given our limited number of 

observations (Chen et al., 2003). As a secondary measure, we will also deploy the mean-variance 

objective function to check whether the hedge ratios indeed remain unchanged upon introducing the 

average futures return in the optimization problem, as assumed by the minimum-variance approach.     

 

Suitable for both objective functions, we identified four models that we will apply in the analysis, 

namely the OLS regression, the EWMA, the Dynamic Conditional Correlation, and the BEKK GARCH 

model. The OLS model is a time-invariant model and hence does not account for the 

heteroscedasticity that is usually found in the volatility of financial return series. That is, it assumes 

homoscedasticity. While the dynamic EWMA does not make this assumption, it does, however, 

assume that the expected value of the return series is zero. 

The time-varying GARCH models do neither assume homoscedasticity nor zero mean. They do on the 

other hand, usually but not necessarily, assume that the residuals of both series be conditionally 
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(jointly) normally distributed. Violation of this assumption, however, does not immediately 

invalidate the use of those models on a theoretical level.  

Moreover, should the underlying data generating process be stationary, then the sum of the (squares 

of the) ARCH and GARCH parameters in the (diagonal BEKK) GARCH model ought to be smaller than 

unity.  

 

Sub Question 4: “On the basis of which indicators do we measure the performance of a hedge?”  

 

In order to measure the hedging performance in the minimum variance context, literature almost 

exclusively applies Ederington’s measure of hedging performance, which simply divides the 

reduction in the hedged portfolio (including the futures hedge security) by the variance of the 

unhedged portfolio (i.e., the sole spot security). The way that this measure was originally proposed, 

it favors the OLS method as it measures the effectiveness in terms of the unconditional sample 

moments, which is exactly what is optimized by the OLS method. To account for this shortcoming, 

Alexander came up with a measure that was similar to that of Ederington except for that she swapped 

the unconditional for the conditional sample moments.  

 

Moreover, since the EWMA, BEKK GARCH and DCC GARCH will vary over time and thus require the 

investor to rebalance the portfolio over time, it is reasonable to also take into account the impact of 

transaction costs in judging the performance of the four models. As for the mean-variance context, 

the different hedging strategies will be judged by their location in the risk-return plane.  
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Chapter 3 – Methodology 
 

 

In Chapter 2 we have described the different estimation approaches that will be applied in order to 

model the OHR. This chapter describes exactly on what data those models are applied (Section 3.1) 

and the tools that are used in order to derive and implement those models (Section 3.2). Finally, we 

will describe exactly how the unconditional and conditional minimum variance hedging 

effectiveness is measured (Section 3.3).  

3.1 The Data 

 
The primary objective of De Heus is of course to hedge spot market price fluctuations. As has been 

mentioned in the introduction, the purchasers of De Heus make weekly price estimates for a number 

of commodities, which indicate what it would cost to buy a certain unit of a commodity in the spot 

market, for spot delivery or delivery up to 12 months in the future. This is what they call the 

replacement values.    

 

As was also mentioned in Chapter 1, this research focuses on the products corn, wheat, and soy. There 

are however, different kinds of corn, wheat, and soy (by-) products that are processed at the plants 

of De Heus, which differ in terms of form, quality and origin and which have their own, distinct 

product codes. We therefore clarify that we represent corn by the product code 0003, wheat by 0041 

and soy by 0300. All replacement products are denoted in € per metric ton (MT).  

A primary issue concerned with the internal replacement values is that their weekly records just 

started in December 2011, giving us, at the time of writing, a sample size of 158 observations per 

product. Keeping in mind that we preferably would want to split the total sample into an in-sample 

and out-of-sample period (see Section 2.2.3), the sample size is rather thin.  

 

It is for this reason, that we also apply our analysis to weekly spot data from external parties (Oil 

World, and Reuters). While hedging the replacement values is still the prime target, it will be 

interesting to see how the models behave in the context of bigger sample sizes.  

To represent corn, we chose the product “French Corn FOB Rhine” from the Reuters database. Soy is 

sought to be mirrored by “Soya pellets 48% Brazil, cif Rotterdam”, which is also in the high protein 

range. Both price series already include the costs to get it to ports or on waterways in the Netherlands 

and can thus both be considered prices for the local spot market. This is, unfortunately, not true for 

the product “Wheat, U.S., No.2, SRW, fob Gulf” to which we had to resort to in order to represent wheat.  

 

Product category Product name Currency Unit Interval n 

Corn (Replacement) 0003 (GMO corn) EUR MT Weekly 158 

Corn (Reuters) French Corn FOB Rhine EUR MT Weekly 677 

Wheat (Replacement) 0041 (Wheat boat) EUR MT Weekly 158 

Wheat (Oil World) Wheat, U.S., No.2, SRW, fob Gulf USD MT Weekly 597 

Soy (Replacement) 0300 (Soya Hipro ADM GMO) EUR MT Weekly 158 

Soy (Oil World) Soya pellets 48% Brazil, CIF Rott. USD MT Weekly 670 

Table 3.1 – Overview of spot sample data. 
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The futures data will briefly be introduced once we have decided on our futures contract based on 

the correlation study in Section 4.1. 

 

Hedging Horizon  

As is noted by numerous authors, the length of the interval that is used to calculate the returns of the 

price data and on which the models are applied, should ideally be of the same length as the time 

interval for which you want to hedge the commodity (Lien & Tse, 2002; Chen, 2003; Hull, 2012). That 

is, if you want to calculate the optimal hedge ratio to hedge a spot exposure for the coming 4 weeks, 

then you should also estimate your model based on monthly return data.  

 

The problem with that undertaking is that the return intervals in the sample are not allowed to 

overlap, which causes a serious reduction of the sample size if we were to expand the horizon. For 

example, if we were to estimate a model for a hedging horizon for, say, 2 months, then our 

replacement sample size would further shrink down to 20, which impedes any meaningful analysis. 

If, on the other hand, the return periods did overlap, then the observations would be autocorrelated 

and the model estimates would be biased (Chen et al., 2003).  

 

Still, insights from hedging in the monthly horizon setting are very much appreciated as long cash 

positions at De Heus are usually maintained for a longer period of time. Therefore, apart from 

conducting the analysis on the basis of weekly returns, we will also consider monthly returns. 

However, given the aforementioned concerns for sample size reductions, the latter analysis will only 

be conducted for the external Reuters and Oil World series.   

Possessing both weekly and monthly return data, we can then investigate the effect of different hedge 

horizons on the effectiveness of the hedges. Note that Lien & Tse (2000) have shown that under the 

stability under aggregation property (which is satisfied by the constant OLS regression method) the 

optimal hedge ratio theoretically holds for whatever hedging horizon.  

 

Sample Splitting 

In order to test the performance of our models, we first of all split each sample into an in-sample and 

an out-of-sample part, where the former is used to parameterize the model. Once the model is 

estimated, it is then applied on the complete sample.   

Finding a useful point to cut the full sample into two parts asks for finding a reasonable balance 

between having as much observations as possible to estimate a stable model on the one hand, and 

yet having enough observations to test the models in an out-of-sample setting on the other hand.  

For the weekly return samples, we believe that in case of the replacement values, this balance is 

found at n = 130.  For the remaining spot price series that cut is made at n = 500. As for the monthly 

return samples, there will not be any out-of-sample period at all.   

 

Futures Contract Rolling 

As the trading activity in the front month contract usually decreases considerably as it approaches 

its maturity date, a number of researchers consider it good practice to roll it over to the next maturity 

contract one or two weeks before the front month contract expires (Kroner & Sultan, 1993; Harris & 

Shen, 2003; Lien et al., 2002). This is also done in this research, because for various products there 

are indeed a lot of instances in the database that feature dips in the prices of the front month contract 

around maturity.  
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Table 3.2, showing an extract from the Matif corn database, illustrates a case in point of the. If we did 

not roll the front month contract (EMAc1 in this case) prior to maturity (5th of March), then the 

automatic contract rolling would cause a jump from 170 to 182.75 in the lead month series. If 

however, we manually rolled the contract from EMAc1 to EMAc2 two weeks before, i.e., on the 19th 

of February, the price jump would only be 6 (from 173.25 to 179.25). The custom tool has been 

programmed such that it makes the contract switch 14 days before expiry. It is found that for quite 

a few front month contracts, the correlation with local spot commodity series improved around 5 to 

10 per cent.  

 

 
 Table 3.2 – Dip in Matif corn front month series (maturity date 5th of March). 

 

Another alteration that has been made to the original series is the exclusion of return outliers that 

are caused by automatic contract rolling. To clarify what we mean by that consider for example  

Figure 3.1, which shows the corn Matif prices for each of the six continuations. Suppose that there is 

a market consensus that due to fundamental changes, there will be plenty of corn supply in the 

market starting in period 𝑡𝐹 , one year from the present.  

Suppose also, that period 𝑡𝐹 is not currently included in the contract lives of any of the traded 

maturities. As time passes, however, there will be a rollover date at which the new contract initiation 

of the most distant maturity contract (in this case EMAc6) will include period 𝑡𝐹 . At that rollover 

date, we would observe a drastic price adjustment in the contract. And as time further passes, that 

price adjustment cascades through to the following contracts at each rollover date (EMAc6 becomes 

EMAc5, EMAc5 becomes EMAc4 and so forth) until it reaches the front month contract. As we can 

see in Figure 3.1 there are no such adjustments for the second half of 2013 and for the entire year 

2014, which suggests that those adjustments are indeed irregular events.  

The point is that those rollover cascading effects are predictable. It thus makes sense to exclude them 

from our analysis as they would otherwise seriously downward bias our hedging effectiveness, 

irrespective of the applied method.  

3.2 The Tools 
 

We apply two tools in our research. The first is EViews – an econometric software that will be applied 

in order to derive the (OLS, BEKK & DCC) model parameters based on the in-sample data. When 

estimating a (bivariate BEKK) GARCH model, the software provides for the option to choose between 

a multivariate normal and a multivariate Student’s t-distribution of the error terms. We are therefore 

not confined by the assumption of joint normality.   

Manual contract rolling 

Automatic contract rolling 
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EViews 

The way that EViews –or any other econometric software – estimates the parameters of the GARCH 

models is by deploying numerical optimization algorithms (in case of EViews the Marquardt or 

Berndt-Hall-Hall-Hausman algorithm) to maximize some likelihood function. More specifically, the 

likelihood function takes as input the functions given in (10b) and (6b) & (6d) for BEKK and DCC, 

respectively as well as the in-sample observations. The algorithm then fits the model by virtually 

attempting to maximize the likelihood of the data observed in the sample by numerically optimizing 

the likelihood function with respect to the model parameters.  

 

 
 Figure 3.1 – Matif Corn and rollover cascading. 

 

As has been explained in Section 2.2.9 conditional normality is often assumed to make those 

optimization calculations traceable. However, it will be established in Section 4.2 that the 

assumption of normality is significantly rejected for all series – at least for the unconditional case. 

Still, as is also shown in Section 2.2.9, even under violation of the assumption of conditional 

normality, optimization of the Gaussian log-likelihood function still yields quasi-maximum likelihood 

estimates (QMLE), which are consistent and asymptotically normal when the GARCH mean and 

variance functions are correctly specified.  

It is found in the analysis that enforcing the assumption of a conditional t-distribution in some cases 

results in unstable parameters estimates – especially in the small sample context. For example, it will 

be shown in Section 4.2 that all return distributions are stationary. Yet, in some cases, the sum of the 

estimated ARCH and GARCH parameters is found to be bigger than unity, in which case the 

assumption of a mean-reverting volatility process would not hold.5  

Moreover, in cases where estimation under the t-distribution does result in consistent estimates, 

they are found not to differ substantially from the QMLEs.  Consequently, unless stated otherwise, all 

estimates will be based on conditional normality of the errors.  

                                                             
 
5 A mean reverting volatility process is a process, where, over time, the volatility tends to its average level and does not 
follow any trend. It is thus a direct implication of a stationary process, where the moment statistics do not vary across time.  
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To ensure quasi-maximum likelihood estimation, we check the option ‘Heteroskedasticity consistent 

covariance (Bollerslev-Wooldridge)’ for the coefficient covariance. 

 

Custom Tool 

The second tool is the custom application that we have programmed in VBA Excel. For a picture of 

the interface assembled from screenshots, please refer to Appendix E. The program can best be 

described as a time series manager, which lets you query price information from databases, construct 

new time series from those information and plot them on a graph. We have set up structured 

databases for the internal replacement values and external sources including but not limited to the 

already mentioned Oil World and Reuters, the latter of which is also our supplier of real time FX and 

(commodity) exchange market price quotes.  

 

While there are more features and functionalities, the program can roughly be split into three parts. 

In the first part, you choose your base products – i.e., the basic price series of any internal or external 

product, including FX series. You can further edit a given selection by changing its maturity, or 

converting its unit or currency.   

Once a pool of base products has been selected, one may create linear combinations (weighted 

subtractions, additions, divisions, or multiplications) of those base series to create new series. 

Somewhat hidden in the interface, the application also lets you create and plot a volatility series from 

the returns of the base and newly constructed series based on variable rolling window input.   

Those new series may further be combined with the base series of part one to create correlation 

series in part three. Any combination is possible – this is true for the spread as well as for the 

correlation part. Part three moreover lets you specify the time interval that ought to be applied in 

order to calculate the returns as well as the rolling window size based on which the correlations are 

calculated per point in time. It is important to stress that while the graphs only plot the level prices 

of the series of part one and two, the volatility and correlation computations are based on the returns 

of those series.  

 

Research Execution  

The two models thus perfectly complement each other. While EViews provides the parameter 

estimates (i.e., the regression coefficient β in (4), the BEKK coefficient matrices A, B, and C in (10a), 

and the univariate GARCH estimates of the DCC model in (11b)) for the different models, the custom 

application takes those parameters as input to calculate the return series of the hedged portfolio. 

 

In case of the OLS approach, this series can be calculated right away using the built-in spread 

calculation feature. In the context of the time-varying models, we first of all have to combine the 

model parameters with the observations of the base series in order to calculate a set of series 

containing the second moment (i.e., (co-) variance) forecasts per point in time and per series so as to 

consequently construct the series of time-varying optimal hedge ratios.  

In the case where the hedged portfolio includes non EUR - denoted prices, the built-in FX converter 

of the custom model is applied to translate those prices back to EUR. There are two possibilities to 

approach the FX problem in the hedging context. We could either a) conduct all the OHR calculations 

on the basis of the series’ base (i.e., foreign) currencies to receive some value ℎ𝑡
′  and then translate 

the return of the hedged portfolio back to the domestic currency, or we could b) first convert the 

return series to the domestic currency and then base the OHR calculation on the translated series to 

generate some value ℎ𝑡
′′ for the OHR.  
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Since the (co-) variance structure will be slightly altered after currency translation we have that, in 

general, ℎ𝑡
′ ≠ ℎ𝑡

′′. However, if we translate the currency ex post then the FX component causes 

variability in hedge portfolio return, which is not accounted for in the models. Since variance 

minimization is what we want to achieve in the first place, it makes more sense to choose for 

alternative b) – and thus optimize the portfolio on the basis of the translated series, which is indeed 

what is also done in our thesis.   

 

Note, that the Oil World wheat commodity spot exposure is not translated to EUR, as the price quotes 

refer to the US cash market. The series is rather used in order to compare the hedging effectiveness 

in different countries.  

Since the application conveniently prints any time series (thus also the hedge portfolio return series) 

we can then carefully analyze the statistics of the new portfolio and judge both the conditional as 

well as the unconditional performance of the different hedging strategies. 

 

EWMA and GARCH Model Initialization 

Since all the time-varying methods work recursively, we somehow have to manually initialize the 

starting value –after all, there is no t-1 at t=0. If we have not yet collected any price data, then there 

is no past information on which to apply the econometric models. To make sure that the initialization 

phase is not characterized by excessively volatile OHR estimates, the moment estimates for t=0 are 

simply opted to be the sample moments.  

3.3 Minimum Variance Hedge Effectiveness Measurement 
 

The application of each of the four hedging methods will result in distinct streams of futures returns 

and therefore different outcomes of the hedged portfolio return per point in time, 𝑅ℎ,𝑡. Per 

commodity and per sample, the unconditional hedge effectiveness is simply the variance reduction 

measured by the unconditional sample variance of the realized spot and hedge portfolio returns:  

 

 �̂� =
�̂�𝑅𝑠
2 − �̂�𝑅ℎ

2

�̂�𝑅𝑠,𝑡
2                       (13a) 

 

To measure the conditional variances at point t, we apply the EWMA method with a smoothing 

constant of 0.94 on the realized spot and hedge portfolio returns- similar to Alexander (2007). This 

yields n values for the hedging performance for each point in time, i.e.:   

  

�̂�𝑡 =
�̂�𝑅𝑠,𝑡
2 − �̂�𝑅ℎ,𝑡

2

�̂�𝑅𝑠,𝑡
2                                                         (13b) 

 

The overall conditional hedge effectiveness is then measured as an equally weighted average: 

 

 �̅�𝑡 = ∑
1

𝑛
𝑛
𝑖=1 �̂�𝑡                             (13c)
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Chapter 4 – Analysis 
 

Having described the data and models in Chapter 3, this chapter then empirically applies the models 

identified in Chapter 2 on those data in order to answer the central research question – that is, to 

identify the optimal hedging strategy per type of commodity. The analysis is structured into 4 parts.  

It starts off with the correlation study, which aims at identifying the most appropriate hedging 

security per type of product with the aid of our custom tool. It thus tackles Sub Question 1.  

Section 4.2 follows with a brief review of the statistical characteristics of the different futures and 

spot series and discusses their implications regarding the application of the different models, i.e., it 

is concerned with Sub Question 3.   

Armed with those findings, we then proceed to estimate the different model parameters in  

Section 4.3. 

In Section 4.4 we finally apply the different models to the hedge portfolios identified in Section 4.1, 

based on the parameters estimated in Section 4.3. We discuss the performance of those models both 

in terms of conditional as well as unconditional effectiveness measures.  

Since the outcome of the different models is contingent on the applied input parameters it would be 

interesting to see how the results vary with those input parameters. The robustness of the proposed 

strategies is investigated in Section 4.5 and thus answers Sub Question 5.  

Do the futures commodities really all follow a martingale process? In light of the findings from 

Section 4.2, Section 4.6 pursuits to find out in how far consideration for the average portfolio return 

might alter the strategies proposed under minimum-variance.  

The analysis is concluded by Section 4.7, which discusses the main findings of the analysis in the light 

of the central research question.   

4.1 Correlation Study – Identification of the Hedge Securities 
 

This section is concerned with identifying which futures contracts best mimic the various spot 

commodities. Recall that we want to hedge the spot exposure of three types of products, namely corn, 

wheat, and soy – and that per commodity we have two different samples to represent the spot 

positions, which are the replacement values of De Heus on the one hand, and the series from external 

data vendors on the other hand. An overview of all the available agricultural futures commodities in 

our database is given in Table 4.1. Note that the database also includes the Matif Malting Barley 

contract as well as commodities from the Dalian commodity exchange. However, the correlations of 

all of those series with local spot exposures are not mention worthy. Moreover, there was no trading 

activity in the Matif Malting Barley contract at the time of writing. 

 

As mentioned earlier, we consider both basic –, but also cross –, and inter- time hedges. Using the 

custom application, we therefore correlate the weekly returns of each spot commodity series with 

each maturity contract of each futures product, yielding 408 different combinations as we have 68 

different futures maturity contracts in total and 3 different spot products, which are represented by 

two different samples. In the correlation matrix we therefore only show the correlation coefficient 

of the maturity contract with the highest correlation per spot – futures pair.  
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Product Exchange Contracts Currency Unit Size 

Corn CBOT Cc1 to Cc6 USc Bsh 5,000 

Corn Matif EMAc1 to EMAc6 EUR MT 50 

Wheat CBOT Wc1 to Wc6 USc Bsh 5,000 

Milling Wheat Matif BL2c1 to BL2c5 EUR MT 50 

Soybean CBOT Sc1 up to Sc8 USc Bsh 5,000 

Soybean Meal CBOT SMC1 up to SMC9 USD STn 100 

Soybean Oil CBOT BOc1 to BOc9 USc Lbs 60,000 

Rapeseed Matif COMc1 to COMc4 EUR MT 50 

Oats CBOT Oc1 to Oc6 USc Bsh 5,000 

Crude Palm Oil CBOT POc1 to POc9 USD MT 25 

Table 4.1 – Futures contracts overview. 

 

Note that in case the correlation of a more distant maturity contract is only marginally higher than 

that of a front month or nearby contract, then the preference is given to the closer maturity contracts 

as they, in general, feature a higher trading liquidity, which is of course also a major concern when it 

comes to actually implementing the hedging strategies in practice. In general, we have only 

considered those maturities that were also actively traded at the time of writing.6 The results of the 

correlations are summarized in Table 4.2.7  

 

Note, that the numbers in brackets indicate the correlation of the monthly, non-overlapping, return 

periods. For each column (i.e., spot exposure) the contract in bold refers to the futures contract, 

which has the highest correlation with that spot exposure.  

 

A number of things can be observed upon studying the correlation matrix. First of all, there are no 

big surprises as for the spot-futures combinations that yield the highest correlations. A corn spot 

position is best mirrored by a futures corn product. The same holds for the other two product 

categories. Thus, no cross-hedges were found to outperform the rather obvious, basic combinations.  

 

Second, domestic spot commodities are best mimicked by derivatives traded on domestic futures 

exchanges. To a certain extent, this was also to be expected. While the market for the agricultural 

commodities considered in this analysis is a global one, transportation costs, levies as well as 

domestic supply and demand factors still enact distinct price dynamics. Yet, weekly correlations as 

low as .37 (wheat CBOT and wheat replacement), .35 (corn CBOT and corn replacement) or even .22 

(corn CBOT and French corn FOB Rhine) are remarking.  

 

Third, in most cases, the monthly correlations are stronger than the weekly correlations, which also 

makes sense. Financial variables carry both a systemic and an idiosyncratic risk component. While 

variables may diverge in the short term, systemic market forces are likely to make them move in the 

same direction as we stretch the time horizon. This reasoning applies to our case since all the 

variables considered represent agricultural commodities. 

                                                             
 
6 For all the Matif contracts, contract continuities up to + 4 have been traded. As for the CBOT products, corn, soybean, and 
wheat traded actively for continuities up to + 5, soybean oil and soybean meal traded up to + 7, and oats was reasonably 
liquid only for the first two contract maturities.   
7 All displayed correlations are based on the base series (i.e., without FX conversion) of the products. 
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Futures Corn Wheat Soy 

 Rep. Reuters Rep. Oil World Rep. Oil World 

Corn CBOT .35 (.74) 

Cc5 

.22 (.44) 

Cc1 

.34 (.60) 

Cc2 

.51 (.51) 

Cc1 

.30 (.32) 

Cc3 

.34 (.49) 

Cc1 

Corn Matif .50 (.71) 

EMAc2 

.67 (.79) 

EMAc2 

.46 (.65) 

EMAc2 

.52 (.61) 

EMAc2 

.34 (.39) 

EMAc1 

.28 (.49) 

EMAc1 

Wheat CBOT .29 (.61) 

Wc4 

.31 (.51) 

Wc2 

.37 (.58) 

Wc1 

.79 (.92) 

Wc1 

.16 (.40) 

Wc1 

.25 (.46) 

Wc1 

MW Matif .32 (.52) 

BL2c2 

.41 (.62) 

BL2c1 

.58 (.77) 

BL2c1 

.62(.75) 

BL2c1 

.28 (.48) 

BL2c1 

.25 (.45) 

BL2c1 

Soybean CBOT .21 (.60) 

Sc2 

.23 (.34) 

Sc1 

.35 (.57) 

Sc2 

.39 (.41) 

Sc3 

.48 (.39) 

Sc1 

.62 (.71) 

Sc1 

SBM CBOT .23 (.53) 

SMc2 

.21 (.34) 

SMc1 

.28 (.46) 

SMc2 

.33 (.37) 

SMc3 

.52 (.49) 

SMc1 

.65 (.78) 

SMc1 

SBO CBOT .14 (.43) 

BOc1 

.21 (.26) 

BOc1 

.26 (.43) 

BOc1 

.32 (.35) 

BOc1 

.12 (.11) 

BOc1 

.34 (.46) 

BOc1 

Rapeseed Matif .29 (.60) 

COMc1 

.30 (.42) 

COMc1 

.41 (.72) 

COMc2 

.39 (.45) 

COMc1 

.28 (.51) 

COMc2 

.34 (.46) 

COMc2 

Oats CBOT .14 (.40) 

Oc2 

.15 (.27) 

Oc2 

.14 (.25) 

Oc2 

.31 (.32) 

Oc2 

.23 (.34) 

Oc2 

.18 (.38) 

Oc2 

CPO CBOT .16 (.37) 

CPOc1 

.26 (.30) 

CPOc1 

.20 (.33) 

CPOc1 

.33 (.37) 

CPOc1 

.07 (.14) 

CPOc1 

.22 (.29) 

CPOc1 

Table 4.2 – Spot Futures Correlation Matrix. 

 

Fourth and most importantly, the weekly correlations of the internal replacement spot series with 

respect to their futures pendants are somewhat restrained. While they all hover around 50% (50% 

for corn, 58% for wheat and 52% for soy), and thus provide something to work with, they fall about 

15% short of the correlations inherent in the spot series given by the external vendors (i.e., 67% for 

French corn FOB Rhine, and 65 % for the soya pellets 48% Brazil, cif Rotterdam).  

Why is that? If we take a closer look at the 16 weeks moving average correlation between the wheat 

replacement and the BL2c1 futures contract in Figure 4.1, then we see that the correlation moves 

within its high – low range with the plain price levels matching each other quite well for most of the 

time. There are, however, three dips (i.e., diverging price movements) that distort the correlation 

relationship. Consider for example the period around end of May 2013, where a sharp and immediate 

price correction takes place in the futures contract. The wheat replacement series, however, takes a 

lot more time to adjust. A similar instance is witnessed in the period between the start of June and 

start of August 2014. Here, the futures prices slides down in a steady slope. The replacement series, 

however, even slightly increases in the first four weeks, but then sharply drops in the four weeks to 

follow.  In the period around September 20012, the overall price pattern of the two series matches. 

However, the Matif contract is excessively volatile. This degree of volatility is not matched by the 

replacement series, causing the rolling average correlation to drop to a level as low as 21%. 

If those periods were filtered out from the analysis, then the unconditional correlation coefficient 

would increase considerably.  
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Getting back to the correlation matrix, we observe that in general, the correlations of US spot 

commodities are greater than those of the EU spot commodities. The weekly US wheat FOB Gulf 

return series for example features a 79% (92% even on a monthly basis) correlation with the CBOT 

Wc1 futures return series. While not displayed in this table, the same results are also found to hold 

for other US spot commodities such as corn and soybeans. Possibly, this can be ascribed to either the 

role of the CBOT as the leading market place for agricultural commodity futures, providing a degree 

of liquidity that the Matif cannot live up to, and/or the fact that the US is the leading producer of corn, 

soybeans and other agricultural commodities.  

 

 
Figure 4.1 – Illustration of correlation dips for the series wheat replacement and wheat Matif. 

 

Having elaborated on the correlation matrix, we conclude this section by answering Sub Question 1: 

 

Sub Question 1: “Of all the agricultural futures products traded on the CBOT and Matif, based 

on the degree of correlation, per cash commodity, which futures product qualifies as the most 

suitable hedging security ?” 

 

Judged by the unconditional coefficient of correlation, we match both spot corn commodity series 

with the EMAc2 corn Matif contract. In case of soy, we trace both series by the SMc1 CBOT soybean 

meal contract. Finally, the replacement wheat and the Oil World wheat spot series are mimicked by 

the BL2c1, and Wc1, respectively. Take note, that the 0300 soy and SMc1 hedge portfolio is the only 

case in which the spot and futures contracts are denoted in different currencies. If we translate the 

SMc1 returns from USD to EUR, then the correlation between the two variables increases to .55 (.51) 

in the case of weekly (monthly) returns. Likewise, the soy Oil World and SMC1 correlation increases 

to .66 (.79) after translating both series from USD to EUR.   
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4.2 Discussion of Descriptive Statistics  
 

In this section, we will discuss the basic statistical properties of the univariate spot and futures return 

series such as their mean, variance, skewness, and kurtosis. Moreover, as we have seen in the model 

descriptions in Chapter 2, the OLS method assumes that the variance process is homoscedastic. We 

will therefore also investigate the degree of autocorrelation in the different series.  

 

In terms of GARCH model estimation, it has been pointed out that normality of the error distribution 

is usually incorporated in the GARCH parameterization process. We thus also check in how far this 

assumption holds. Finally, we have seen that additional restrictions on the parameters in the GARCH 

model are applied if the underlying data generating process is deemed stationary. Whether or not 

this is actually the case is also being statistically investigated.  

 

The sample statistics provided in Table 4.3 are all based on non-overlapping, weekly return intervals. 

As for the sample start and end dates, all of the futures return series start on 03.01.2000 and end on 

03.12.2014 (resulting in 753 observations for the EMAc2 & BL2c1 series and 706 observations for 

the SMc1 and Wc1 contract series). The replacement return series all start on 19.12.2011 and 

terminate on the 22nd of December, 2014, yielding 158 observations per return series). While the Oil 

World soy and wheat contracts have similar start and end dates (25.10.2001 and 18.12.2014, 

respectively) the wheat series has fewer observations (599) than the soy contract (673) as the 

former has gaps in its database.  

 

To keep the discussion concise and to preserve space, we will not discuss each series individually, 

but rather describe the EMAc2 series as a case in point. The descriptive statistics, histograms, and 

correlograms (with lags from 1 to 5) of the other series can be found in Appendices F and G, 

respectively. An overview of the descriptive statistics is given in Table 4.3.  

 

Series Mean Std. 

Dev. 

Skewness Kurtosis Jarque-

Bera 

Q-Stat ADF 

EMAc2 0.000640 0.0277 -0.5610 8.5046 990.15* 11.006* -23.83* 

BL2c1 0.001113 0.0336 -0.3025 7.6052 676.90* 20.038* -26.46* 

SMc1 0.002507 0.0473 -0.4662 5.5477 216.51* 25.086* -28.13* 

Wc1 0.002318 0.046 0.5564 4.3389 89.16* 2.2041 -26.15* 

0003 -0.001441 0.0292 -0.2646 5.5749 45.49* 7.2182* -11.80* 

0041 0.000233 0.0285 0.1509 6.0013 59.90* 10.312* -10.80* 

0300 0.002791 0.0324 0.9805 6.7955 120.15* 0.1879 -11.51* 

Corn 

Reuters 

0.000730 0.0330 -0.0833 8.3061 814.94* 0.7164 -24.80* 

Soy OW 0.001764 0.0346 -0.1303 4.4127 57.87* 2.3550 -25.01* 

Wheat OW 0.002915 0.0546 1.3660 14.256 3348.62* 13.218 * -27.24* 

Table 4.3 – Descriptive statistics.8 

                                                             
 
8 A star (*) indicates that the null-hypothesis is rejected at the 1% significance level.  
Jarque-Bera test null-hypothesis: Data is normally distributed. 
Ljung-Box Q test (k) null-hypothesis: Data is independently distributed, i.e., features no autocorrelation at lag k. 
Augmented Ducky Fuller test null-hypothesis: Data contains a unit root, i.e., is I(1) and thus not stationary. 
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Now, if we take a first look at the histogram of the weekly EMAc2 return series in Figure 4.2, we 

immediately recognize that the returns are far from being normally distributed. While the 

unconditional distribution is almost symmetric and only slightly skewed to the left (which is captured 

by the skewness values of -.560981) it has a lot of probability weight in the tails of the distribution.  

 

 
 Figure 4.2 – Statistics of the EMAc2 contract (𝐻0: Data is normally distributed). 

 

The fatness of the tails of a distribution is measured by the kurtosis statistic. For a normal 

distribution the reference value of this statistic is 3. The EMAc2 series therefore features a great deal 

of excess kurtosis (5.504), which is oftentimes observed in financial data. Based on the Jarque-Bera 

sample test statistic, which measures the degree of deviation from a normal distribution, we 

consequently strongly reject the null hypothesis that the unconditional distribution is normal at the 

1% significance level. As we can see from Table 4.3, those two conclusions (symmetry and excess 

kurtosis) also apply to all the other futures and spot return series in our analysis.   

 

On a second glance, we see that the average weekly rate of return of the EMAc2 series is 0.00064 

with a standard deviation of 0.0277 (or 3.34% and 19.97% annualized). As for the other European 

futures product in our list, BL2c1, the average is 0.00111 with a standard deviation of 0.0336 (5.95% 

and 24.23% annualized). Those averages are significantly higher than the averages that Chen et al. 

(2008) reported (e.g., 0.000094 for soy meal) and which lead them to fail to reject the martingale 

hypotheses. Those discrepancies are likely due to structural changes in the moments between the 

two sampling periods. In fact, if we apply the same sample period that Chen et al. (2008) used (1980 

to 1997) we also receive significantly lower mean values than the ones reported in Table 4.3 and 

which are based on the 2000-2014 sampling period. Furthermore, the annualized weekly averages 

and standard deviations of the DAX and AEX over the same sample period were 6.79% & 24.06% and 

5.77% & 21.40%, respectively. By definition, those indices have a beta of (close to) 1. If there would 

still be no risk premium in the EMAc2 and BL2c1 contracts, we would expect to observe averages 

that are significantly lower than the market equity indices, which we do not. The same results apply 

upon comparing the SMc1 and Wc1 contracts to e.g., the S&P500 index. 

 

To diagnose the potential for autocorrelation in the series we eyeball the return series to get a first 

impression. Indeed, Figure 4.3 seems to suggest that volatile periods come in clusters, where returns 

                                                             
 
The Q-statistics refer to the Ljung-Box Q test for the first lag.   
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of high magnitude are likely to entail consecutive observations of rather extreme returns of either 

sign. We can also see that those clusters take turns with more tranquil periods of return.  

 

 
 Figure 4.3 – Volatility clustering of the EMAc2 return series. 

 

To test the potential for autocorrelation with more scrutiny, we conduct the Ljung – Box Q test on 

the squared return series (after all, we want to test for heteroscedasticity in the second moments). 

The correlogram in Table 4.4 reports significant degrees of autocorrelation for the first five lags. In 

fact, the series exhibits significant autocorrelation all the way up to lag 22 at the 5 % level. The 

diagnostic test therefore provides strong evidence that extreme returns have an echoing effect on 

successive observations and that recent information is viable in forecasting the conditional variance 

of the series.  

 

While most of the futures and spot series in our analysis show signs of autocorrelation starting from 

the first lag at the 1% significance level (see Table 4.4), some series do not. However, even those 

series that fail to comply with this strict significance level, still feature reasonable degrees of 

autocorrelation. The Oil World soy spot series for example successively increases its degree of 

autocorrelation as we increase the lag size (see Appendix G). While it is almost autocorrelated at lag 

1 at the 10 % significance level, it is significantly autocorrelated at the 5% level for lag 2 and 3. For 

lags 4 through to 36 the p-value of no autocorrelation even approaches zero. 

 

 
 Table 4.4 – EMAc2 Correlogram (𝐻0: No autocorrelation at lag k).  

 

Moreover, once we translate the series to EUR, which is the series that will also be used in the 

analysis, then it is autocorrelated at each lag at the 1% significance level, except for lag 2, where the 
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degree of autocorrelation is significant at the 5% level. The situation for the Wc1 wheat futures series 

is very similar.  

The only series that seem to entail no autocorrelation at all are the Reuters corn and the replacement 

soy spot series.  

 

Another aspect that we can extract from Figure 4.3 upon further inspection is that the volatilities 

seem to mean-revert. This concept is related to stationarity. We statistically test for stationarity by 

means of the Augmented Dickey-Fuller (ADF) test. As we can see from Table 4.3, all return series are 

indeed stationary, as the null-hypothesis of a unit root has been rejected in all cases with p-values 

approaching zero. This implies that we do not need to bother with cointegration and that the OLS 

regression analysis can be conducted without modifying it with error correction terms. 

 

Having reviewed the unconditional sample statistics of our time series, we conclude this section by 

answering Sub Question 3: 

 

Sub Question 3: “Given the historic data of the cash and futures commodities, to what extent do 

those time series comply with the assumptions posed by the models identified in Sub Question 2 

and what would be the implication of a potential violation of those assumptions? 

 

The strongest assumption that has been made in Chapter 2 is the assumption of homoscedasticity of 

the returns proposed by the OLS regression. Clearly, the autocorrelation and heteroscedasticity 

findings in this section contest this claim and rather provide evidence in favor of the hypothesis that 

the conditional variance of the series changes throughout time. At first, the use of the more advanced 

time-varying models therefore seems justified.   

 

Moreover, it has been crystallized in the literature review, that under the assumption of a martingale 

process of the futures prices (i.e., 𝐸[𝑅𝑓,𝑡] = 0), the variance minimizing function would yield the 

same outcome as the mean-variance -, and Sharpe ratio objective function. The EWMA method also 

relies on the zero mean assumption for both the futures and spot return series.  

In this section we have shown that the sample average rates of return deviate from the low values 

observed by (Chen et al., 2008) and Choudhry (2009). While focusing on the minimum variance 

hedge ratios, it therefore seems reasonable to also take a glimpse at the mean-variance hedge ratios 

and outcomes.  

   

Last but not least, we have shown that the unconditional return distributions of all spot and futures 

return series feature fat tails. When estimating the GARCH models it would therefore seem more 

reasonable to assume that the errors are conditionally distributed according to a t-distribution 

rather than a normal distribution.   

4.3 Parameterization of Hedging Strategies 
 

Recall that the number of in-sample observations to estimate the models is n = 130 and n = 500 for 

the replacement and external cash commodity series.  

For the EWMA method, we start with the parameter value λ = .94. In order to save space, the EViews 

parameterization output is only provided for the first case (corn) – for the other output the interested 

reader may consult Appendices H and I for the wheat and soy case, respectively. 
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4.3.1 Corn Parameterization 

 
In this section we consider the parameter estimation for the hedging strategies for the spot 

commodities 0003 corn (replacement) and French Corn FOB Rhine (Reuters), which are sought to be 

mimicked by the futures contract EMAc2 of the Matif commodity exchange. To avoid repetition, we 

denote the former spot as 𝑣1 and the latter spot as 𝑣2. See Table 4.14 for a summary of the parameters 

under the different samples and methods. 

 
OLS Regression 

To get the OLS regression coefficients, we run Regression (4) twice. Once with 𝑣1 as the dependent, 

and once with 𝑣2 as the dependent variable and with EMAc2 as the independent variable in both 

cases. This yields the following outputs. See Tables 4.5 and 4.6, respectively.  

 

Not surprisingly, the effect of the futures returns on both spot series is statistically significant. The 

magnitude of those effects is captured by 𝛽1 = 0.662873  and 𝛽2 = 0.747109. Both are a bit higher 

than their corresponding coefficients of correlation as the spot volatilities are somewhat higher than 

the respective futures volatilities. In this case, Equation (4) therefore becomes: 

 

𝑅1,𝑡 = −0.001285 + 0.662873 𝑅𝑓𝑡 + 𝜀1,𝑡   and          (14a) 

𝑅2,𝑡 = −0.000375 + 0.747109 𝑅𝑓𝑡 + 𝜀2,𝑡         (14b) 

  

  
 Table 4.5 – EViews OLS regression output Corn replacement (𝐻0: 𝛽 = 0). 
 

 
 Table 4.6 - EViews OLS regression output Corn Reuters (𝐻0: 𝛽 = 0). 
 
Dynamic Conditional Correlation 

As has been described in Equation (11a) in Section 2.2.7, the elements of the diagonal matrix, 𝐷𝑡, can 

be modeled as univariate GARCH processes. In the light of the motivation in Section 3.2 we estimate 

those models under the assumption of conditional normality of the errors and hit the option for 

quasi-maximum likelihood estimates.  
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Resorting to the frequently applied vanilla GARCH(1,1) model we then get the following estimates 

for the variables 𝑣1 and 𝑣2, see Tables 4.7 and 4.8. For the EMAc2 futures contract, we also get two 

GARCH(1,1) models, depending on which sample period (that of 𝑣1 or 𝑣2) we base the estimation on. 

The outputs of those two models are presented in Tables 4.9 and 4.10, respectively. For estimation 

of the small sample EMAc2 series, we applied the I-GARCH restriction as in all other setups, EViews 

could not achieve convergence, which resulted in low, and insignificant ARCH and GARCH terms.9   

 

 
 Table 4.7 – Corn Replacement GARCH(1,1) estimation output (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0). 
 

Upon comparing Table 4.7 through to 4.10, we learn that, apart from the forced EMAc2 small sample 

I-GARCH model, the ARCH and GACH terms in all the models are statistically significant at the 5% 

level according to the z-test, which, for each coefficient, tests the null-hypothesis that the coefficient 

is zero. The ARCH and GARCH terms are therefore momentous in modeling the conditional volatility. 

Again, this suggests that in general, heteroscedasticity is present in the considered time series, which 

confirms our first impression of Section 4.2.  

 

 
 Table 4.8 – Corn Reuters GARCH(1,1) estimation output (𝐻0: 𝑐𝑜𝑒𝑓𝑓. = 0). 
 

To formally test whether those GARCH models offer a good fit with the underlying data, we take a 

quick glance at the autocorrelation of the standardized residuals. If the models were specified 

correctly, then autocorrelation should be absent at each lag. The results for each model up to lag 10 

are summarized in Table 4.11.   

 

                                                             
 
9 Under the I-GARCH (integrated GARCH) model, the ARCH and GARCH parameters, α and β, sum to 1. In EViews, the 
constant term, ω, moreover disappears. Note that, as mentioned in Section 2.2.4, this would imply that the underlying 
returns process is not stationary. Clearly, this is at odds with the observation made in Section 4.1 that all return series are 
found to be stationary. Therefore, the I-GARCH restriction is only applied as a last resort.  
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 Table 4.9 – EMAc2 GARCH(1,1) estimation output under replacement sample (𝐻0: 𝑐𝑜𝑒𝑓𝑓. = 0).  
 

 
 Table 4.10 – EMAc2 GARCH(1,1) estimation output under Reuters sample (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0). 
 

Model k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 

GARCH 

Replacement 

1.66 

(.20) 

2.38 

(.30) 

2.44 

(.49) 

2.62 

(.62) 

3.00 

(.70) 

3.05 

(.80) 

4.48 

(.72) 

4.68 

(.79) 

GARCH  

Reuters 

0.83 

(.36) 

1.43 

(.49) 

3.35  

(.34) 

5.58 

(.23) 

6.58 

(.25) 

6.69 

(.35) 

7.50 

(.38) 

7.50 

(.48) 

GARCH EMAc2 

(Rep. sample) 

8.37 

(.00) 

10.30 

(.01) 

10.30 

(.02) 

10.87 

(.03) 

10.97 

(.05) 

11.95 

(.06) 

11.96 

(.10) 

13.84 

(.09) 

GARCH EMAc2 

(Reut. sample) 

2.60 

(.11) 

2.98 

(.22) 

4.30 

(.23) 

6.33 

(.18) 

7.11 

(.21) 

7.12 

(.31) 

16.64 

(.02) 

17.91 

(.02) 

Table 4.11 – Autocorrelation of standardized residuals. Ljung Box Q-Stat per lag k (𝐻0: No  
  autocorrelation at lag k). 
   
As we can see, the GARCH models offer a good fit for both spot series. As for the EMAc2 futures series, 

however, this is not true. Especially in the replacement sample context, where we had to enforce the 

I-GARCH restriction, there is still statistically significant autocorrelation in the first eight lags at the 

10% significance level. In the Reuters sample context, the situation looks a lot better. Yet, the seventh 

and eighth lags still feature statistically significant autocorrelation at the 5% level.  

 

Inserting the estimated values into Equations (6b) and (6d) we get the following mean and variance 

equations for 𝑣1 and the EMAc2 series, 𝑣𝑓: 

 

 𝑅1,𝑡 =   0.000833 + 𝜀1,𝑡                    (15a) 

𝜎1,𝑡
2 =  0.0000823 + 0.265879 𝜀1,𝑡−1

2 + 0.638667 𝜎1,𝑡−1
2            (15b) 

𝑅𝑓,𝑡 =    0.001155 + 𝜀𝑓,𝑡                            (16a)

 𝜎𝑓,𝑡
2 =   0.045642 𝜀𝑓,𝑡−1

2 + 0.954358 𝜎𝑓,𝑡−1
2                (16b) 
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The DCC system is then specified according to (11b) as  

 

𝐻𝑡 = [
𝜎1,𝑡
2 𝜎1,𝑓,𝑡

𝜎𝑓,1,𝑡 𝜎𝑓,𝑡
2 ] =

[
 
 
 √𝜎1,𝑡−1

2 0

0 √𝜎𝑓,𝑡−1
2

]
 
 
 

[
1 𝜌1,𝑓,𝑡
𝜌𝑓,1,𝑡 1

]

[
 
 
 √𝜎1,𝑡−1

2 0

0 √𝜎𝑓,𝑡−1
2

]
 
 
 

                           (17) 

  

where 𝜌1,𝑓,𝑡 is obtained by applying the EWMA method according to (11c) to the standardized 

residuals (i.e., the residual values we get after subtracting from each return observation the constant 

in mean equations (15a) and (16a), divided by their respective standard deviations) of 𝑅1 and 𝑅𝑓 .  

 

Applying the same approach to 𝑣2 and with EMAc2 now being based on the Corn Reuters sample 

period we have:   

 

𝑅2,𝑡 = −0.000224 + 𝜀2,𝑡                (18a)

 𝜎2,𝑡
2 =  0.0000520 + 0.270921 𝜀2,𝑡−1

2 + 0.738139 𝜎2,𝑡−1
2                         (18b)

   

𝑅𝑓,𝑡 = 0.001510 + 𝜀𝑓,𝑡                                           (19a) 

𝜎𝑓,𝑡
2 = 0.0000235 + 0.272499 𝜀𝑓,𝑡−1

2 + 0.740540 𝜎𝑓,𝑡−1
2           (19b) 

 

Similar to (17), expression (11b) then becomes: 

 

𝐻𝑡 = [
𝜎2,𝑡
2 𝜎2,𝑓,𝑡

𝜎𝑓,2,𝑡 𝜎𝑓,𝑡
2 ] =

[
 
 
 √𝜎2,𝑡−1

2 0

0 √𝜎𝑓,𝑡−1
2

]
 
 
 

[
1 𝜌2,𝑓,𝑡
𝜌𝑓,2,𝑡 1

]

[
 
 
 √𝜎2,𝑡−1

2 0

0 √𝜎𝑓,𝑡−1
2

]
 
 
 

                          (20) 

 

BEKK Parameterization 

In estimating the BEKK models, we assume the errors to be conditionally normally distributed. As 

for the constant coefficient matrix C’C in (10a), EViews provides the possibility to ensure various 

restrictions such as confining C’C to be scalar (i,e. b times a matrix of ones), diagonal, rank 1, or full 

rank.  

Whenever model fitting was done for the larger sample sizes, choosing C’C to be indefinite resulted 

in the same output as restricting C’C to be full rank. That is, both rows (or columns) of C’C turned out 

to be linearly independent without the need to apply any further restrictions to the elements of C in 

deriving the BEKK model. As the output is usually similar under both absence or presence of this 

restriction, all large sample models have been estimated applying the full rank restriction, as this 

ensures that the covariance matrix is positive semi definite.  

In the replacement sample context, however, the full rank restriction sometimes led to negative 

ARCH/GARCH parameter estimates, which is why the rank 1 restriction has been applied for all 

replacement samples. Under this restriction, the elements of the second column in C are zero. The 

transformed constant coefficient matrix C’C is still triangular, however.  

As can be seen from the parameter estimates in Tables 4.12 and 4.13,  (𝑎𝑖𝑖
2 + 𝑏𝑖𝑖

2) < 1 holds for both 

𝑣1 and 𝑣2. The displayed parameters correspond to simple mean equations such as in (6b). For 𝑣1 

those constants were 0.001628 and -0.002495 for the spot and futures series, respectively.  In case 

of 𝑣2 we have 0.0000140 and 0.001496. In the fashion of (10b) we then have: 
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𝐶′𝐶𝑣1 = [
0.0000505 0.000115

0 0.000260
] , 𝐴𝑣1 = [

0.458564 0
0 0.161442

] , 𝐵𝑣1 = [
0.850681 0

0 0.634052
]  

 

𝐶′𝐶𝑣2 = [
0.0000879 0.0000302

0 0.0000361
],  𝐴𝑣2 = [

0.426650 0
0 0.545985

] , 𝐵𝑣2 = [
0.868627 0

0 0.840175
] 

 

 
 Table 4.12 – Corn Replacement and EMAc2 Diagonal BEKK output (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0). 

 
Table 4.13 – Corn Reuters and EMAc2 Diagonal BEKK output (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0). 

 

 OLS DCC BEKK 

Parameter Rep Reut Rep Reut Rep Reut 

β 0.662873* 0.747109* - - - - 

𝜇1 - - 0.000833 −0.000224 0.001628 0.0000140 

𝜇2 - - 0.001155 0.001510 ∗∗ 0.002495 0.001496 

𝐶11 - - 0.0000823** 0.0000520** 0.0000505 0.0000879** 

𝐶12 - - - - 0.000115 0.0000302** 

𝐶22 - - 0 0.0000235** 0.000260* 0.0000361** 

𝐴11 - - 0.265879** 0.270921* 0.458564* 0.426650* 

𝐴22 - - 0.045642 0.272499* 0.161442** 0.545985* 

𝐵11 - - 0.638667* 0.738139* 0.850681* 0.868627* 

𝐵22 - - 0.954358* 0.740540* 0.634052* 0.840175* 

Table 4.14 – Corn Parameter summary (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0).10 
 

 

                                                             
 
10 * = significance at the 1% level, ** = significance at the 5% level, *** = significance at the 10% level, 
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4.3.2 Wheat Parameterization 
 
For a thorough discussion on parameterization refer to the corn parameterization case. In this 

section we will only briefly provide and discuss the wheat parameter outcomes. All the EViews 

output can be found in Appendix H. In this section 𝑣1 represents Wheat (0041) replacement and 𝑣2 

stands for Wheat, U.S., No.2, SRW, fob Gulf from the Oil World data source. The former is hedged with 

the BL2c1 Matif futures contract and the latter is hedged via the Wc1 CBOT contract. A summary of 

the coefficients is provided in Table 4.16 at the end of this section. 

 
OLS Parameterization 
Running the regression with 𝑣1 as dependent and BL2c1 variable yields 𝛽1 = 0.639467. Choosing to 

regress Wc1 on 𝑣2, we get 𝛽1 = 0.842738.  

 

DCC Parameterization 

Upon fitting the various univariate GARCH(1,1) models, we have made a number of alterations in the 

software settings. First, in the 𝑣1 context, the parameters of the estimated GARCH models are not 

significant for both the 𝑣1 as well as for the BL2c1 series. To enforce meaningful parameters, the I-

GARCH restriction has been applied. As can be seen in Appendix H, the ARCH and GARCH parameters 

for both GARCH models sum to 1.11 

Second, as already mentioned in the methodology chapter, there are gaps in the sample of the 𝑣2 

series. Those are most pronounced in the range from observation 400 to 500. This results in 

meaningless GARCH parameters. After all, the frequency of the dates corresponding to the 

observations must be consistent throughout the sample in order to study autocorrelation.  

Contrary to the other external data series, we therefore based the estimation of the GARCH model on 

the first 400 observations. The autocorrelation in the standardized residuals for the GARCH models 

of the different series is presented in Table 4.15. Overall, it seems that the model fitting went better 

than in the corn parameterization case. It is only the first two lags of the standardized residuals of 𝑣2 

and BL2c1 (𝑣1 context) that show significant autocorrelation at the 10% level.  

 

Model k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 

GARCH 

Replacement 

0.85 

(.35) 

2.72 

(.26) 

4.58 

(.21) 

4.75 

(.31) 

4.46  

(.45) 

7.69 

(.26) 

7.70 

(.36) 

8.21  

(.41) 

GARCH  

Oil World 

4.89 

(.03) 

4.91 

(.09) 

5.12 

(.16) 

5.31 

(.26) 

6.50 

(.26) 

7.57 

(.27) 

8.27 

(.31) 

8.43 

(.39) 

GARCH BL2c1 

(Rep sample) 

2.87 

(.09) 

5.28 

(.07) 

6.29 

(.10) 

7.69 

(.10) 

7.82 

(0.17) 

7.87 

(.25) 

8.05 

(.33) 

8.57 

(.38) 

GARCH Wc1 

(OW sample) 

0.64 

(.42) 

0.88 

(.64) 

1.50 

(.68) 

5.16 

(.27) 

8.81 

(.12) 

9.10 

(.17) 

9.11 

(.24) 

9.13 

(.33) 

Table 4.15 – Autocorrelation in standardized residuals (𝐻0: No autocorrelation at lag k). 

 

BEKK Parameterization 

Restricting C’C to be full rank in the Reuters sample context and rank 1 in the replacement sample 

(full rank restriction caused negative entries for the GARCH parameter matrix) context has yielded 

                                                             
 
11 See footnote 9. 
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parameter estimates that resulted in a positive semi definite covariance matrices. Both BEKK models 

satisfy the stationarity condition.  

 

 OLS DCC BEKK 

Parameter Rep OW Rep OW Rep OW 

β 0.639467* 0.842738* - - - - 

𝜇1 - - -0.000139 0.002757 0.000484 0.003372 

𝜇2 - - 0.000258 0.003022 0.001054 0.003271 

𝐶11 - - 0 0.0000324 0.0000721 0.000223* 

𝐶12 - - - - 0.000115*** 0.000194* 

𝐶22 - - 0 0.0000385 0.000183*** 0.000168* 

𝐴11 - - 0.045586** 0.069250** 0.023135 0.315406* 

𝐴22 - - 0.085688* 0.022427 0.380860* 0.103625** 

𝐵11 - - 0.954414* 0.925548* 0.940794* 0.905451* 

𝐵22 - - 0.914312* 0.964046* 0.702232* 0.958960* 

Table 4.16 – Wheat Parameter summary (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0). 
 

4.3.3 Soy Parameterization 
 
Again, we only briefly discuss the results of the estimation outcomes that are to be found in  

Appendix I. In this parameterization section, 𝑣1 = Soya Hipro ADM GMO (0300) and 𝑣2= Soya pellets 

48% Brazil, CIF Rotterdam. Both are hedged with the SMc1 contract from the CBOT. A summary of 

the parameter estimates is appended at the end of this section. See Table 4.18. 

 

OLS Regression 

Running the OLS regression with 𝑣1 as dependent and SMC1 as independent variable yields 𝛽1 = 

0.360171. Swapping 𝑣1 for 𝑣2 we get 𝛽2 = 0.535843. One immediately notices how 𝛽1 and 𝛽2 are 

both substantially lower than the coefficient of correlation between the variables in the 

corresponding OLS regression. It follows from (4) and (2b) that this is due to the fact that the 

standard deviation of the returns of the futures series, SMc1 is considerably larger than the standard 

deviation of the respective spot series. In the regression involving 𝑣1 one might suspect that this is 

because the SMc1 series also includes the variability from the FX conversion, whereas the spot series 

is already denoted in the domestic currency. However, having double checked the regression with 

the USD-denoted series, this hypothesis can be rejected, as the regression output was similar.  

 
DCC Parameterization 
Just as in the OLS case, the univariate GARCH estimations of 𝑣2 and SMc1 have also been tested with 

their base currency series. No deviations have been observed in the parameter estimation output.   

As for the GARCH estimation of 𝑣1, we again had to apply the I-GARCH restriction such that 𝛼 + 𝛽 =

1.12 For the small sample GARCH estimation of the SMc1 series, neither the ARCH nor the GARCH 

term is statistically significant. This is also reflected in Table 4.17, which shows the autocorrelation 

in the standardized residuals. There, we can see that there is still statistically significant 

autocorrelation at the first lag at the 10 % level. Overall, though, the fitted GARCH models seem to 

do well in filtering the autocorrelation. 

                                                             
 
12 See footnote 9. 
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Model k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 

GARCH 

Replacement 

1.52 

(.22) 

1.52 

(.47) 

3.90 

(.27) 

3.92 

(.42) 

4.11 

(.53) 

5.51 

(.48) 

6.00 

(.54) 

6.03 

(.64) 

GARCH  

Oil World 

0.15 

(.70) 

0.16 

(.92) 

3.40 

(.33) 

3.77 

(.44) 

4.35 

(.50) 

4.78 

(.57) 

5.31 

(.62) 

5.33 

(.72) 

GARCH SMc1 

(Rep sample) 

3.54 

(.06) 

3.58 

(.17) 

3.69 

(.30) 

3.74 

(.44) 

7.63 

(.18) 

7.93 

(.24) 

8.32 

(.30) 

8.81 

(.36) 

GARCH SMc1 

(OW sample) 

0.03 

(.87) 

0.03 

(.99) 

1.10 

(.78) 

3.11 

(.54) 

5.91 

(.32) 

10.45 

(.11) 

10.55 

(.16) 

11.10 

(.20) 

Table 4.17 – Autocorrelation in standardized residuals (𝐻0: No autocorrelation at lag k). 

 

BEKK Parameterization 

As explained in the corn BEKK parameterization, the system of 𝑣1is based on the assumption that C’C 

is rank 1, while in the context of 𝑣2 it is rank 2. The parameterizations of the BEKK models are 

stationarity consistent for both 𝑣1 and 𝑣2. Refer to Table 4.18 for the parameterization summary.  

 

 OLS DCC BEKK 

Parameter Rep OW Rep OW Rep OW 

β 0.360171* 0.535843* - - - - 

𝜇1 - - 0.002206 0.001298 0.002919 0.001667 

𝜇2 - - 0.004543 0.002440 0.003864 0.002786 

𝐶11 - - 0 0.0000497*** 0.0000777*** 0.0000332* 

𝐶12 - - - - 0.000234** 0.0000617* 

𝐶22 - - 0.000548 0.000323** 0.000703** 0.000154* 

𝐴11 - - 0.050926** 0.099218* 0.108238 0.253757* 

𝐴22 - - 0.246582 0.203071* 0.455762* 0.351549* 

𝐵11 - - 0.949074* 0.865535* 0.945226* 0.955032* 

𝐵22 - - 0.481810 0.640135* 0.660496* 0.894837* 

 Table 4.18 – Soy Parameter summary (𝐻0: 𝑐𝑜𝑒𝑓𝑓.= 0). 

 

4.4 Application of Minimum Variance Hedging Strategies 

 
Per commodity, we review the outcome of the hedging effectiveness of each method in terms of 

conditional and unconditional hedging effectiveness, both in – and out-of- sample. As the OLS method 

is perceived as the baseline method in literature, we discuss the relative performance of each model 

with respect to the straightforward OLS method and shed light into the question of how the OHR 

estimates under the different models vary through time. Taking a broader perspective, we also judge 

the suitability of the hedge setup in general. 

 

As there are likely to be discrepancies between the hedging strategies of the different commodities, 

we consider each individually, starting with corn, followed by wheat and finishing with soy. Per 

commodity, we will of course inspect the hedging strategies for both, the replacement and the 

external vendor series (e.g., Reuters and Oil World). 
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4.4.1 Case Corn 
 
We first reveal the output for the small (replacement) sample and then table the results for the 

Reuters sample. 

 
Corn Replacement (0003) 

As a reference point, Tables 4.19 and 4.20 present the results of the hedge outcome under each of 

the four methods both in– and out-of-sample. Note that 𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) and 𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) denote the average 

of the conditional variances of the spot (or unhedged) and the hedged portfolio, respectively. Note 

that in general, (𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) - 𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡))/ 𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) ≠ �̅�𝑡as denoted in (12c). That is, the difference 

of the average of the conditional variances is not the same as the average of the difference of the 

conditional variances.  

 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0.000859596 0.000859596 0.000859596 0.000859596 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000657166 0,000692255 0,000712092 0,000684584 

�̂� 23.55% 19.47% 17.17% 20.36% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,000893622 0,000893622 0,000893622 0,000893622 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000685523 0,000721173 0,000740599 0,000714103 

�̅�𝑡 25.73% 21.93% 20.17% 22.73% 

Table 4.19 – In-sample Hedging Effectiveness (Corn Replacement). 
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,000927608 0,000927608 0,000927608 0,000927608 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000635513 0,00067238 0,000625247 0,000605969 

�̂� 31.49% 27.51% 32.26% 34.67% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,00076743 0,00076743 0,00076743 0,00076743 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000567221 0,000591321 0,000585012 0,000563196 

�̅�𝑡 24.67% 20.15% 22.23% 25.03% 

 Table 4.20 – Out-of-sample Hedging Effectiveness (Corn Replacement). 
 

There are two conclusions that can immediately be drawn from the first look.  

First, the straightforward, static OLS method significantly outperforms all time-varying models in 

the in-sample context. In the out–of-sample context, however, it is slightly outperformed by the BEKK 

model, both conditionally (25.03% vs. 24.67%) and unconditionally (34.67% vs. 31.49%).  

In terms of unconditional hedge effectiveness, the DCC also scores better than the OLS method, but 

the degree of performance improvement is less striking (32.26% vs. 31.49%). 

Even though we have to be careful in interpreting the results from the out-of-sample context, given 

the rather sparse sample size, the results seem to be consistent with findings in literature that the 

performance of time-varying methods relative to the static OLS model improves in the out-of-sample 

context.  

 

The source of the in-sample dominance of the OLS method is, in part, likely to be located in the poor 

model specification of the time-varying models. As we have seen in Section 4.1, it was rather 

challenging to fit proper univariate GARCH models to the EMAc2 futures series. After model fitting, 

there was still a significant degree of autocorrelation in the standardized residuals, especially in the 
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replacement sample context, which might explain the DCC’s performance dip of 17.17%. Apart from 

the residual autocorrelation of the EMAc2 series in the replacement sample setting, we have also 

seen that the GARCH parameter of the replacement spot series took on a low value of around 0.64. 

This of course makes the covariance estimates of the DCC model less persistent and more reactive.  

 

The OHR series of the DCC model therefore intensively reacts to shocks in the market, which explains 

its spiky shape in Figure 4.4. A particularly harsh reaction of this model occurs in the period around 

October 2013. In general, the time-varying models follow a similar pattern. 

 

 
 Figure 4.4 – Corn Replacement OHR series. 
 
But what exactly is it that the time-varying hedge ratios so unanimously, albeit to a different extent, 

seem to respond to? Recall that the hedge ratio can be defined as the correlation times the standard 

deviation of the spot divided by the standard deviation of the futures. With that in mind, the answer 

to the observed leverage is given in the following Figure (4.5), which plots the volatility of both 

securities and their correlation. 

 

While both, the correlation and the futures volatility parameters do not fundamentally change, the 

volatility of the corn replacement value series increases rapidly. It follows from the formula of the 

OHR that the time-varying hedge ratios will respond with a higher hedge ratio. This behavior makes 

sense. After all, potentially bigger, more volatile returns of one direction have to be offset by a 

multitude of potentially lower, less volatile returns of the opposite direction.  

 

However, it is ironically exactly this virtue, which costs the time-varying hedge strategies their score 

in performance. If we take a look at the conditional hedge performances over time (see Figure 4.6), 

it is exactly this period where the performance gap among the different methods widens the most.  

The problem is that in this period, correlation hovers around only 30%, which is relatively low, 

compared to the rest of the sample period. The low degree of correlation causes the high degree 

of leverage in the futures contracts to occasionally backfire. In fact, the hedging performance of the 

DCC methodology for example, which features the highest degree of leverage, drops slightly below 

zero, which implies that the variance of the hedged portfolio during that time was indeed higher than 

what it would have been without a futures hedge altogether.  
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Figure 4.5– Volatility and Correlation of 0003 and EMAc2 (10 weeks rolling average). 

 

The second major conclusion is that, regardless of the relative performance between the different 

models, an overall hedging effectiveness of around 25% is rather disappointing. To see how the 

hedging effectiveness unfolds in a bigger sample context, we now turn to the French Corn FOB Rhine 

cash commodity of the Reuters database.  

 

 
 
 Figure 4.6 – Codintional Hedging Effectiveness over time (corn replacement).  
 
French Corn FOB Rhine (Reuters) 

Among comparison of the different hedging strategies in Table 4.21 and 4.22 it once again seems that 

the static hedge ratio outperforms the time-varying strategies – but now to a much stricter degree.  

Another interesting point to notice upon comparison is that the unconditional hedging effectiveness 

in the out-of-sample period is about twice as much as it is in the in-sample period. This is true for 

each strategy. For the conditional hedging effectiveness the divide is even higher. 
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Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,00103007 0,00103007 0,00103007 0,00103007 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000632587 0,000683634 0,000713197 0,00069271 

�̂� 38.59% 33.63% 30.76% 32.75% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,000986014 0,000986014 0,000986014 0,000986014 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000630797 0,000679892 0,00070325 0,000678682 

�̅�𝑡 28.20% 24.35% 23.07% 25.67% 

Table 4.21 – In-sample Hedging Effectiveness (Corn Reuters). 
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,00088588 0,00088588 0,00088588 0,00088588 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000310624 0,000318586 0,000344264 0,000353537 

�̂� 64.94% 64.04% 61.14% 60.09% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,000986139 0,000986139 0,000986139 0,000986139 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000305648 0,000319117 0,000367589 0,000379728 

�̅�𝑡 66.45% 65.13% 59.18% 60.23% 

Table 4.22 – Out-of-sample Hedging Effectiveness (Corn Reuters). 
 
This impression is further visualized in Figure 4.7, which plots the evolution of the hedging 

effectiveness of the four strategies. With the out-of-sample period starting in May 2010, the hedging 

effectiveness of all the hedging strategies has moved around 50% ever since.  

 

 
 Figure 4.7 – Conditional Hedging Effectiveness (Reuters Corn). 
 

Another, very interesting point that unfolds from this graph is that now there is a period in which 

the time-varying models significantly outperform the static OLS method. While the conditional 

hedging performance of the OLS method around September/October 2005 drops to as low as -45%, 

the time-varying methods oscillate around 0%. To see how this can be the case, we again take a look 

at the volatility - correlation plot for the period 2005. See Figure 4.8.  
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As we can see, the September/October period constitutes one of the rare instances throughout the 

lifetime of the short-term correlation series, in which the correlation actually drops to a negative 

level – up to –77% in this case, based on an 8 weeks rolling average. The static hedge ratio, of course, 

does not take any account of this and continues to maintain a hedge ratio of 0.747109, which in the 

scenario of a negative correlation leads to an outright long rather than a hedged position, thus 

considerably increasing the variance of the “hedged” portfolio. 

 

The time-varying models, on the other hand, recognize how the conditional correlation (a weighted 

average of past information) slides to zero over time, and thus close their short futures positions (see 

Figure 4.9). The BEKK method, being the most reactive model in terms of parameterization, even 

calculates a negative covariance between the futures and the spot and therefore comes up with a 

negative hedge ratio, resulting in a long futures position, which, given the negative correlation, 

cancels the movements of the long spot position and hence results in a lower variance of the hedged 

portfolio. 

 

 
 Figure 4.8 - Volatility and Correlation of Corn Reuters and EMAc2 (8 weeks rolling average). 

 

Judging the hedging effectiveness of the Reuters corn sample in general, there is a 20% boost in 

hedging effectiveness compared to the replacement sample case (the unconditional, full sample 

hedge effectiveness is 24.86% and 44.7% for the replacement and Reuters sample, respectively).  

 

While the volatility of the spot and futures also play a part, the key parameter to a successful hedging 

strategy is predominantly the degree of correlation. When we compare Figure 4.10 with Figure 4.7, 

we see that the periods of hedging ineffectiveness and correlation dips clearly coincide.  
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Figure 4.9 – Corn Reuters OHR series. 

 
So, while 44.7% may not seem too much either, we have to bear in mind that this refers to the 

unconditional hedging effectiveness, which attributes equal weight to all observations in the sample. 

We can, however, see from Figure 4.10, how the degree of correlation has improved and stabilized 

since the beginning of 2007. The contemporary hedging effectiveness of the EMAc2 futures contract 

is therefore likely to be higher, which is also supported by the remarkably higher degree of out-of-

sample hedging effectiveness reported in Table 4.22.  

 

 
Figure 4.10 - Volatility and Correlation of Corn Reuters and EMAc2 (40 weeks rolling average). 
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4.4.2 Case Wheat 
 

Again, we first present the findings for the replacement sample, followed by the results for the 

external (Oil World) sample.  

 
Wheat Replacement (0041) 

Owing to the higher coefficient of correlation, we learn from Tables 4.23 and 4.24 that the overall 

wheat replacement hedging effectiveness is about 6% to 10% higher than the corn replacement 

hedging effectiveness, whatever model or sample we compare. Once more, we also observe a 

superior performance of the OLS method for both the in – and out-of-sample period. However, just 

as in the corn replacement context, the performance gap is less pronounced in the out-of-sample 

period.  

 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,000711284 0,000711284 0,000711284 0,000711284 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,00047742 0,000496758 0,000499031 0,00051172 

�̂� 32.88% 30.16% 29.84% 28.05% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,000771547 0,000771547 0,000771547 0,000771547 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000520696 0,000541069 0,000542789 0,00055753 

�̅�𝑡 33.55% 30.85% 30.43% 29.47% 

Table 4.23 – In-sample Hedging Effectiveness (Wheat Replacement). 
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,001658295 0,001658295 0,001658295 0,001658295 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,001063388 0,001119915 0,001112036 0,001094289 

�̂� 35.88% 32.46% 32.94% 34.01% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,001034388 0,001034388 0,001034388 0,001034388 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000710177 0,00073522 0,000733411 0,000718214 

�̅�𝑡 31.82% 29.25% 29.40% 31.00% 

Table 4.24 – Out-of-sample Hedging Effectiveness (Wheat Replacement). 
 
While the face statistics document a strict outperformance, it is worthwhile to take a look at how the 

methods compare over time. Figure 4.11 plots the conditional hedge effectiveness over time. Upon 

studying this figure, we realize that the time-varying BEKK method actually beats the OLS method 

for quite some time during the period from end of June 2013 until the end of September 2014.  

However, prior to that period, the converse is true. Here, the BEKK method seriously falls short 

performance wise, also compared to its time–varying counterparts.  

 
Again, this is related to leverage and can be explained by taking a look at the volatility and correlation 

structure throughout the lifetime of the series (see Figure 4.12). If we look closely at Figure 4.11, 

then we see that the period of severe underperformance stretches from the 23rd of July 2012 until 

the 5th of November 2012. As we can see in Figure 4.12, at the start of this period, both the correlation 

and the spot volatility are at periodic highs. The BEKK method being by far the most reactive to 

changes in the (co-) variance structure (see wheat parameterization section) it is also the method 

that responds the quickest by increasing the short position in the futures contracts, assuming a hedge 

ratio of about 80% (see Figure 4.13). 
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  Figure 4.11 - Conditional Hedging Effectiveness (Wheat Replacement). 
 
However, as quickly as the correlation and spot volatility rallied up, they collapse again at the end of 

September. The BEKK method still having the biggest hedge ratio, it suffers the most from the sudden 

decrease in the correlation and spot volatility, which explains the performance gap in Figure 4.12. It 

is only when the correlation stabilizes again that it can catch up with the other methods again.  

 

 
 Figure 4.12 - Volatility and Correlation of Wheat replacement and BL2c1 (10 weeks rolling  
  average). 
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Figure 4.13 – Wheat replacement OHR series. 

 

Wheat, U.S., No.2, SRW, fob Gulf (Reuters) 

While this case does not represent a local cash market commodity exposure, it serves as a welcomed 

reference point for studying the behavior of the OHR models under a more stable correlation 

structure. Tables 4.25 and 4.26 show that the straightforward OLS method is still the favorable 

approach under most criteria. It is only in case of the in-sample average conditional hedging 

effectiveness that the BEKK method outperforms the OLS model by about 0.07%.  

 
In general, the tables show that the performance race is now much tighter than what it used to be in 
the panels before.   
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,00294242 0,00294242 0,00294242 0,00294242 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,001314975 0,001367311 0,001419725 0,001378438 

�̂� 55.31% 53.53% 51.75% 53.15% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,002923135 0,002923135 0,002923135 0,002923135 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,001308529 0,001356309 0,001402696 0,001362541 

�̅�𝑡 59.87% 58.97% 58.80% 59.94% 

Table 4.25 – In-sample Hedging Effectiveness (Wheat Oil World). 
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,003065436 0,003065436 0,003065436 0,003065436 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000668159 0,000686193 0,00076789 0,000774643 

�̂� 78.20% 77.61% 74.95% 74.73% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,003205866 0,003205866 0,003205866 0,003205866 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,00071971 0,000749434 0,000851123 0,000853348 

�̅�𝑡 71.57% 70.89% 69.32% 69.76% 

Table 4.26 – Out-of-sample Hedging Effectiveness (Wheat Oil World). 
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This is also reflected in the evolution of the hedging effectiveness in Figure 4.14. Performance gaps 

open up only occasionally, and if they do, they are of a much smaller magnitude compared to what 

they used to be in the prior cases.   

 

It follows from this observation that the applied hedge ratios under the different models should not 

drift too far apart either. In fact, if we take a look at Figure 4.15 we see that the various methods 

move within the same range for most of the time. It furthermore highlights the only OHR outlier, 

which also explains the big performance deviation highlighted in Figure 4.14.  

 

As the correlation and spot volatility peaked at the end of August 2010 (see figure 4.16), the reactive 

BEKK method is again the first approach to promptly increase the short futures position. However, 

as the spot volatility collapses in no time, the then overhedged portfolio exhibits excessive return 

variance compared to the other models.  

 

 
 Figure 4.14 - Conditional Hedging Effectiveness (Wheat Oil World). 

 

Overall, the effectiveness of hedging a U.S. cash commodity position with a CBOT futures contract 

seems much higher than what we have seen in the panels considered before. Especially during the 

out-of-sample period, which started in May 2010, the unconditional hedging effectiveness of the OLS 

and EWMA method almost hit 80%.    
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 Figure 4.15 - Wheat Oil World OHR series. 

 

 
Figure 4.16 - Volatility and Correlation of Wheat Oil World and Wc1 (10 weeks rolling  

  average). 

 

4.4.3 Case Soy 
 
In the final commodity group we first present the results for the replacement product 0300 (Soya 

Hipro ADM GMO) and then head to the findings for the Oil World product Soya pellets 48% Brazil, CIF 

Rotterdam. 
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Soy Replacement (0300) 

The soy replacement out-of-sample case represents the second instance in which the OLS method is 

outperformed by a time-varying method (BEKK) in terms of both conditional, and unconditional 

hedge effectiveness. However, this is not true for the in–sample context. And if we consider the total 

sample as a whole, then the OLS method performs slightly better (30.65% vs. 29.34% and 29.65% 

vs. 27.66% for the unconditional vs. average conditional hedge effectiveness).  

 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,001034044 0,001034044 0,001034044 0,001034044 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000753622 0,00077668 0,000780107 0,000785165 

�̂� 27.12% 24.89% 24.56% 24.07% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,001111164 0,001111164 0,001111164 0,001111164 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000798204 0,000825088 0,000827693 0,0008282 

�̅�𝑡 28.53% 26.23% 25.94% 25.76% 

Table 4.27 – In-sample Hedging Effectiveness (Soy Replacement). 
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,00119212 0,00119212 0,00119212 0,00119212 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000653354 0,000804962 0,000681221 0,000561777 

�̂� 45.19% 32.48% 42.86% 52.87% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,000807971 0,000807971 0,000807971 0,000807971 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000505621 0,000562502 0,000534532 0,000485664 

�̅�𝑡 35.49% 29.48% 31.77% 37.54% 

Table 4.28 – Out-of-sample Hedging Effectiveness (Soy Replacement). 
 

Apart from the difference in the out-of sample hedging performance, which is also visualized in 

Figure 4.17, there are, conform to the information in Table 4.27, no notable differences among the 

time-varying approaches within the in-sample period.  

 

 
 Figure 4.17 - Conditional Hedging Effectiveness (Soy Replacement). 
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One peculiar characteristic of the replacement soy panel is the low hedge ratio. As we already noted 

in the parameterization section, the volatility of the SMc1 futures series is relatively high compared 

to that of the spot soy replacement series. We therefore theoretically only need a relatively light 

futures position to cancel out swings in the cash market. Consequently, Figure 4.18 displays hedge 

ratios that are mostly below the level of 0.5.  

 
 Figure 4.18 - Wheat Oil World OHR series. 

 

Soya pellets 48% Brazil, CIF Rotterdam (Oil World) 

The big soy sample presents yet another interesting case – the first in which the in-sample OLS 

hedging performance is found to be dominated by a time-varying alternative, BEKK. While, oddly 

enough, the OLS method wins the race in the out-of-sample period - when considering the whole 

sample, the BEKK method is still 1.51% (1.97%) better off in terms of (un-) conditional hedging 

effectiveness.  To get an idea of why that is, we move on to consider Figure 4.19.  

 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,001320084 0,001320084 0,001320084 0,001320084 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000753307 0,000731973 0,000729776 0,000712647 

�̂� 42.93% 44.55% 44.72% 46.01% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,001337301 0,001337301 0,001337301 0,001337301 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000764785 0,000742272 0,000740143 0,000723176 

�̅�𝑡 40.99% 42.07% 42.09% 43.25% 

Table 4.29 – In-sample Hedging Effectiveness (Soy Replacement). 
 

Measure OLS EWMA (0.94) DCC BEKK 

𝑉𝑎𝑟(𝑅𝑠,𝑡) 0,001141313 0,001141313 0,001141313 0,001141313 

𝑉𝑎𝑟(𝑅ℎ,𝑡) 0,000485704 0,000502112 0,000538679 0,000518287 

�̂� 57.44% 56.00% 52.80% 54.59% 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅𝑠,𝑡) 0,001091041 0,001091041 0,001091041 0,001091041 

𝑉𝑎𝑟𝑡̅̅ ̅̅ ̅̅ (𝑅ℎ,𝑡) 0,000431087 0,000444036 0,000476515 0,000457185 

�̅�𝑡 60.90% 60.26% 57.79% 59.59% 

Table 4.30 – Out-of-sample Hedging Effectiveness (Soy Replacement). 
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 Figure 4.19 - Conditional Hedging Effectiveness (Soy Oil World). 

 

As we see, there are two moments where the OLS conditional hedging effectiveness falls short of 

meeting the performance of the time-varying models. For the rest of the whole sample period, there 

are no noticeable differences among the time-invariant and the time-varying methods.  

 

 
Figure 4.20 – Oil World Soy & SMc1 correlation and volatility (10 weeks rolling average). 

 

Figure 4.20 provides an overview of what was going on during the time of the first performance gap, 

which peaked at the 24th of September, 2009. At that time there was a surge in the volatility of the 

futures series. Whereas one would usually respond with lowering the hedge ratio, the static OLS 
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method sticks to its OHR of 0.535843, thus being seriously overhedged. The time-varying methods 

on the other hand utilize the conditional information to lower their positions in the futures contracts. 

Note, that the reasoning behind the second performance shortfall of the OLS method in Figure 4.19 

is similar.  

 

 
 Figure 4.21 - Soy Oil World OHR series. 

 

4.5 Sensitivity Analysis 
 
All outcomes presented in Section 4.4 are based on parameter choices. As we vary those parameters, 

so does the output. In this section we will therefore investigate what happens as we change the 

smoothing parameter λ of the EWMA method or the β parameter of the OLS method in order to 

answer Sub Question 5:  

 

Sub Question 5: “How volatile are the hedging strategy outcomes with respect to the choice of 

the base parameters?”  

 

More interestingly, we have already discussed that the degree of correlation between two return 

variables is likely to increase as we stretch the horizon over which we calculate those returns. Since 

hedges at De Heus are more likely to reside in the sphere of months rather than weeks, we will also 

study what happens as we extent the hedging horizon from 1 to 4 weeks.  

 

To keep the discussion concise, we only provide the output of the λ sensitivity analysis for the full 

sample context. The results for various levels (.85, .90, .94, .97) of the smoothing parameter are 

provided in Table 4.31. As we can see from this table, both the unconditional as well as the 

conditional hedging effectiveness linearly increase as we increase λ. The higher the smoothing 

parameter, the more it approaches the OLS hedging performance. In this regard, the Oil World soy 
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panel constitutes the only exception, where the hedging effectiveness slightly decreases as we 

increase λ from 0.94 to 0.97.  

 

 

Lambda 

HE Corn  

Repl. 

Corn 

Reut. 

Wheat 

Repl. 

Wheat 

OW 

Soy 

Repl. 

Soy 

OW 

 

 λ = 0.85 

E 15.64% 37.51% 27.66% 59.87% 19.23% 45.56% 

�̅�𝑡 16.59% 32.26% 27.40% 61.03% 19.35% 44.49% 

 

λ = 0.90 

E 18.45% 39.22% 29.22% 60.82% 23.50% 46.63% 

�̅�𝑡 19.43% 33.83% 29.03% 62.05% 23.75% 45.65% 

 

λ = 0.94 

E 20.81% 40.72% 30.80% 61.68% 26.65% 46.72% 

�̅�𝑡 21.67% 35.01% 30.62% 62.90% 26.79% 45.92% 

 

λ = 0.97 

E 22.80% 42.09% 32.22% 62.38% 28.42% 45.99% 

�̅�𝑡 23.52% 35.94% 31.97% 63.57% 28.09% 45.40% 

 

OLS 

E 24.86% 44.72% 33.70% 63.06% 30.65% 45.66% 

�̅�𝑡 25.60% 38.20% 33.30% 63.73% 29.65% 45.20% 

Table 4.31 – Full sample OLS and EWMA hedging effectiveness (HE) for various λ. 

 

Overall, this observation makes sense. We have already seen in Section 4.3.2, that the OLS method 

yields the best outcome in most of the cases. Since the EWMA initializes the first (co-)variance 

estimate as the sample (co-) variance, bigger values for λ cause a higher persistency of the initial 

sample estimates and thus result in a closer resemblance with the OLS method, which is solely based 

on the sample estimates. In fact, if λ = 1, then the EWMA method equals the OLS approach.   

 

We have just witnessed in Table 4.31 that, depending on the sample context, decreasing the EWMA 

parameter λ by about 0.05 can cause a hedging effectiveness reduction of about 2% to 3%. In how 

far then is the static OLS method susceptible to changes in beta? To answer this question, refer to 

Figure 4.22, which shows the distribution of the Oil World soy OLS hedging effectiveness as a 

function of its input parameter, beta. Three points can be distilled from this figure. First, the figure 

obviously peaks at its optimal value for beta, in this case ℎ∗ = 0.535843. Second, the graph is axially 

symmetric around ℎ∗ and intersects the x-axis at 0 and 2ℎ∗. This is logical. Apparently, if  ℎ = 0, then 

the hedged portfolio is simply the lone spot position, in which case there is no variance reduction, 

hence zero hedging effectiveness. If on the other hand, ℎ = 2ℎ∗ then we have 
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Third and most importantly, we can see that the slope of the graph gets steeper as we move to the 

tails of the distribution. If we for example decrease beta from 0.1 to 0, then this is associated with a 

15% drop in hedging effectiveness. If, on the other hand, we shift beta by the same magnitude from 

0.5 to 0.4, then the associated loss is “only” 2%. Note, that the shapes for the other samples look very 

similar. This implies that the OLS solution is relatively robust.  

 

 

 
Figure 4.22 – Oil World soy OLS distribution for varying betas (ℎ∗ = 0.535843).  

 

To get an impression of how the hedging effectiveness develops as we extend the hedging horizon, 

we matched the price series such that we get non-overlapping, monthly returns. As we have not 

noticed much performance differences under the time-varying methods in Section 4.3.2, we will only 

discuss the OLS, EWMA and diagonal BEKK methods. Moreover, for reasons discussed in Chapter 3, 

we will only provide the output for the full sample context of the external vendor panels.  

 

Parameters Corn Reuters Wheat OW Soy OW 

β 0.929397* 0.882999* 0.648100* 

𝜇1 -0.001594 0.010522*** 0.003394 

𝜇2 0.004705 0.011812*** 0.005610 

𝐶11 0.001275*** 0.0000271 0.002188* 

𝐶12 0.000653*** 0 0.001566* 

𝐶22 0.000334*** 0.0000122 0.001121* 

𝐴11 0.062935 0.257541* 0.471200* 

𝐴22 0.069913 0.244583* 0.342050* 

𝐵11 0.839981* 0.966901* 0.608452* 

𝐵22 0.947272* 0.971411* 0.859135* 

Table 4.32 – OLS and BEKK parameterization output.  

 

The OLS and BEKK parameterization output is given in Table 4.32. As for the BEKK parameter 

estimation, the coefficient matrix in the Oil World wheat sample had to be restricted to be diagonal 

in order to ensure that the covariance matrix is positive definite. For the remaining two samples, the 

coefficient matrix is rank 1. Refer to Appendices J and K for the EViews OLS and BEKK estimation 

output, respectively. 
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Entering the parameters of Table 4.32 into our custom model, this then yields the following outcome. 

See Table 4.33. Note, that the values in brackets refer to the full sample performance score of the 

weekly return series. The table shows that by enlarging the hedging horizon, the effectiveness 

increases substantially. For the Reuters corn and Oil World wheat sample, the hedging effectiveness 

improves, on average, by 20%, whereas the Oil World soy sample is about 15% better off.  

 

Method HE Corn Reuters Wheat OW Soy OW 

OLS �̂� 62.28% 

(44.72%) 

83.99% 

(63.06%) 

62.63% 

(45.66%) 

�̅�𝑡 58.71% 

(38.20%) 

84.02% 

(63.73%) 

59.87% 

(45.20%) 

EWMA (.94) �̂� 60.07% 

(40.72%) 

83.66% 

(61.68%) 

61.92% 

(46.72%) 

�̅�𝑡 55.09% 

(35.01%) 

83.69% 

(62.90%) 

59.36 

(45.92%) 

BEKK �̂� 62.63% 

(39.11%) 

83.59% 

(60.45%) 

62.78% 

(47.62%) 

�̅�𝑡 58.50% 

(34.70%) 

83.71% 

(63.18%) 

60.27% 

(46.70%) 

Table 4.33 – Full sample hedging effectiveness based on monthly return series. 

 

Moreover, the performances of the OLS and BEKK methods seem to be at par in the monthly interval 

panel. Here, the BEKK method slightly outperforms the OLS method in the Oil World soy sample, 

both conditionally and unconditionally (62.78% & 60.27% vs. 62.63% & 59.87%). However, the 

converse is true in the Oil World wheat sample (83.59% & 83.71% vs. 83.99% & 84.02%). As for the 

Reuters corn sample, the BEKK method scores higher judged by the unconditional hedge 

effectiveness criterion (62.63% vs. 62.28%), but finds itself slightly outstripped based on conditional 

hedge effectiveness (58.50% vs 58.71%). 

 

In general, those results were to be expected and are in line with findings in literature (Ederington, 

1979). We have argued both theoretically and empirically that correlation is a key ingredient to a 

successful hedging strategy. We have also argued and shown that the degree of correlation increases 

as we stretch the return intervals. It follows from the combination of both insights that a higher 

hedge horizon ought to lead to higher hedging effectiveness.  

 

4.6 Application of Mean-Variance Hedging Strategies 

 
While the minimum variance approach is the most effective one in terms of variance reduction, it 

does so without concern for the average rate of return of the futures products. However, we have 

revealed in Section 4.2 that the rate of return of the futures are not negligible. In this section we 

therefore categorize the impact of the reduction in the average rate of return of the spot, due to 

variance minimization. Moreover, we apply the mean-variance OLS, EWMA, DCC, and BEKK hedging 

strategies to see how the hedging strategies would change if we were to take account of the mean 

return.  
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Computationally, there does not change much with respect to the minimum-variance strategy. 

According to (3b), the only alteration that we need to make for the mean-variance hedges is to 

subtract from the minimum-variance hedge ratio the futures expected rate of return divided by the 

product of its variance times the risk aversion parameter (A). To avoid redundancy, we therefore 

also abstain from a detailed explanation of how the OHR varies over time according to the different 

mean-variance models, but rather only provide occasional examples.  

 

For the expected value we simply choose the sample average based on the in-sample observations. 

The conditional variance is drawn from the conditional covariance matrix. To keep the discussion 

concise, we only study the complete sample period. As for the risk-aversion parameters, we consider 

the values 1 through to 10. The risk-return planes used to illustrate the inherent trade-off show 

annualized values, where 

 

𝑅𝑎 = (1 + 𝑅𝑤)
52 − 1  and  𝜎𝑎 = 𝜎𝑤√52 

 

where 𝑅𝑎 (𝑟𝑤) and  𝜎𝑎 (𝜎𝑤) are the annualized (weekly) average and standard deviation, respectively.   

 

4.6.1 Case Corn 
 

Figure 4.23 provides an overview of the annualized risk return plane of the corn replacement hedge 

portfolio. It accommodates the realized outcomes of all mean-variance and minimum-variance 

hedging strategies, as well as the unhedged outcome and the static frontier. As for the mean-variance 

strategies we have sets of outcomes as each risk aversion parameter yields a unique outcome. 

 

The ‘static frontier’ represents the risk-return frontier of Figure 2.1. That is, it shows the set of 

realized average rates of return and standard deviations of the hedged portfolios for 0 ≤ ℎ ≤ 1. The 

outcome of any time-invariant hedging strategy will have to lay on this line for values of h between 

0 and 1 or on the extrapolated line for values above 1 or below 0. Hence, the unhedged and the OLS 

strategy outcomes are all elements of this solution set. Outcomes of time-varying hedging strategies 

are, of course, free to take on risk and return values offside of this line.  

 

Just as in Figure 2.1 the hedge ratio of the static frontier increases as we move down the vertical axis. 

The unhedged portfolio is located at the top of the frontier, where h = 0. The point with the greatest 

curvature on that line is given by the static (OLS) minimum-variance. We can therefore distill from 

Figure 2.1 that mean-variance strategies generally feature lower hedging ratios than minimum-

variance hedging strategies as all mean-variance OLS outcomes are above the minimum-variance 

OLS point. This result is to be expected and directly follows from formula (3b). As the expected 

futures return is subtracted from the expected spot return, concern for the expected portfolio rate of 

return will lead to lower offsetting futures positions than would otherwise be the case.   
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Figure 4.23 – Corn Replacement annualized risk-return plane. 

 

The next interesting point that follows from Figure 4.23 is that not only were the time-varying 

methods less successful in minimizing the portfolio variance, most of them (i.e., DCC & BEKK) also 

reduced the average return to a greater degree. The time-varying mean-variance strategies all 

produce outcomes that are far off the efficient risk-return frontier, with the EWMA and the BEKK 

strategy featuring the worst results.  

 

As discussed in Section 2.1.2 the mean-variance strategy approaches the minimum-variance strategy 

as we increase the risk aversion parameter. It follows that points more to the right refer to outcomes 

of lower risk aversion parameters, while higher coefficients make them resemble their minimum 

variance pendants. 

 

When considering the Reuters sample we observe somewhat identical results. Just as in the corn 

replacement sample, the time-varying mean-variance strategies consumed a bigger portion of the 

average return, while also providing for a lower degree of variance reduction. Likewise, most of the 

solutions of the high risk aversion time-varying mean-variance strategies are below the efficient 

frontier. Only for lower risk aversion coefficients (𝐴 ≤ 3) do those strategies start to pay off.  

 

-0.15

-0.1

-0.05

0

0.05

0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33 0.35

A
ve

ra
ge

 r
et

u
rn

Standard deviation

Static Frontier OLS EWMA DCC BEKK Unhedged OLS MV EWMA MV DCC MV BEKK MV



 
 

 
Page 69 

 
  

 
  Figure 4.24 – Corn Reuters annualized risk-return plane. 

 

4.6.2 Case Soy 

 
In the case of soy, the results look quite different in two regards. First, the location of the risk-return 

outcomes of the various minimum-variance hedging strategies, both time-invariant and time-

varying, is much denser. Only the BEKK MV strategy falls short of delivering the average rate of 

return of the other strategies.  

 

 
Figure 4.25 – Soy Replacement annualized risk-return plane. 
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Second, and more interestingly, all the time-varying mean-variance strategies provide outcomes that 

are more efficient than any static hedging strategy with the DCC method performing best. This is true 

for any risk aversion coefficients in the range from 1 to 10. For each degree of standard deviation in 

the feasible set, there is a time-varying (i.e., EWMA, DCC, and BEKK) hedging mean-variance strategy 

that achieves a higher average rate of return than that of a static mean-variance strategy.  

 

Notice, how most of the time-varying strategies propose solutions based on optimal hedge ratios that 

are, in general, lower than zero (since they are located at the top right from the unhedged solution). 

This might seem as a counter-intuitive outcome at first as we are, on average, effectively increasing 

the outright exposure in a hedging strategy. Keep in mind, however that we are now optimizing both, 

risk and return. Given the low static minimum-variance ratio, due to the high volatility of the soy 

futures series (see Section 4.4.3), contemporaneously optimizing for the mean leads to hedging 

strategies that frequently happen to involve negative hedge ratios.  

 

But how is it even possible that such positive performance differences establish? Realize, that since 

we are naturally short the futures contract in a long spot hedge, we would ideally want to observe 

an inverse relationship between the rate of return and the applied hedge ratios in order to maximize 

the return. That is, if the futures return is positive, we would want to go long in the futures contract, 

which is achieved by a negative hedge ratio and vice versa for negative futures returns.  

As we can see in Figure 4.26 the DCC mean-variance hedging strategy (here plotted with a risk 

aversion coefficient of A = 7) neatly implements the inverse-relationship principle. For most of the 

time, whenever the average return (plotted as a 10 weeks rolling average), is positive, the DCC(7) 

hedge ratio is negative, and vice versa. Static hedge ratios naturally do not possess this flexibility -

hence the average portfolio return difference. In order to visualize in how far a dynamic mean-

variance hedging strategy differs from its minimum-variance pendant, Figure 4.26 also includes the 

minimum variance DCC strategy. 

 

 
 Figure 4.26 - Evolution of the DCC(7), DCC MV OHR and the average futures rate of return. 
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As can be seen, the overall patterns of the two approaches are quite similar. Moreover, as described 

in the paragraph above, the minimum-variance hedge ratios are significantly higher. While this 

contributes to a greater portfolio variance reduction, the inverse relationship now only holds in 

relative terms (i.e., when the average return decreases, the hedge ratio increases and vice versa) but 

not anymore in complete terms (i.e., when the average return is negative, the hedge ratio is positive 

and vice versa). We thus suffer a reduction in the average rate of return.   

 

The results described above also hold for the Oil World soy case, even though the performance 

differential is a bit less pronounced in this case and the proposed strategies tend to rely on higher 

hedge ratios. See Figure 4.27.  

 

 
 Figure 4.27 – Soy Oil World annualized risk-return plane. 

 

4.6.3 Case Wheat 
 

Just as in the corn replacement case, the wheat replacement sample presents a case where the EWMA 

and DCC mean-variance hedging strategies malfunction. Both feature realized risk-return solutions 

that are way off the static frontier, irrespective of the risk aversion coefficient under consideration.   

 

To investigate the source of those performance discrepancies, we again take a look at the hedge ratio 

evolution. Figure 4.29 shows how the hedge ratios of the DCC (A=6) and BEKK (A=10) mean-variance 

strategies change over time. For the same time frame it depicts how the average return (measured 

as a 10 weeks rolling average) develops. Clearly, Figure 4.29 suggests how the inverse relationship 

holds more frequently for the BEKK strategy than it does for the DCC strategy, which exhibits a 

pattern very similar to that of the EWMA (A=6) strategy.  
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Figure 4.28 – Wheat Replacement annualized risk-return plane. 

 

  
Figure 4.29 – Evolution of the DCC (6), BEKK (10) OHR and the average futures rate of return. 

 

Consider for example the period from July 2012 to September 2012 where the futures reaches its 

sample average high. While both strategies propose positive hedge ratios at the start of this time 

frame, the BEKK quickly turns the short futures position in a long position, whereas the DCC strategy 

continues to hold its short futures position. Likewise, the BEKK method proposes a short position 

when the SMc1 series hits its 2013 average temporal low in mid August, while the DCC method 

continues to apply negative hedge ratios.  
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Turning to the wheat Oil World sample, we, similar to both soy sample cases, again observe a 

scenario where the time-varying mean-variance hedge strategies produce risk-return results that 

are superior to those of static strategies. In this case, however, the performances differences also 

unfold for higher risk aversion coefficients and in the realm of higher hedge ratios. The annualized 

standard deviation of the mean-variance OLS (A=3) strategy for example is 27.41% and offers an 

average rate of return of 8.52%. The EWMA (A=4) achieves a slightly lower standard deviation of 

27.19%, yet also provides an annualized rate of return of 10.81%.  

 

 
Figure 4.30 – Wheat Oil World annualized risk-return plane. 

 

4.7 Discussion and Implications 
 

This section discusses the main findings from the analysis. Section 4.7.1 examines the results from 

the minimum-variance hedging strategies. Supplemental insights from the mean-variance hedging 

strategies are dissected in Section 4.7.2.   

 

4.7.1 Minimum-Variance 
 

The central theme of our research has been whether or not time-varying hedge ratios would 

contribute to a higher hedging effectiveness. Indeed, we have seen that those time-varying methods 

(especially the vanilla diagonal BEKK GARCH model) were capable of utilizing recent market 

information to periodically outperform the standard time-invariant OLS regression method in each 

of the six samples. Moreover, it is well established that the maximum benefit of the time-varying 

GARCH (i.e., DCC and BEKK) models can only be obtained if the parameters of the models are kept 

up to date. This has not been the case in this research, where the parameters were kept constant 

throughout the out-of-sample period. So there is some extra potential in the models, which has not 
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been tapped in this paper. Furthermore the literature review has brought forward the point that the 

unconditional hedging effectiveness measure underestimates the true performance of the 

conditional models.  

 

 Corn Rep. Corn Reut. Wheat Rep. Wheat OW Soy Rep. Soy OW 

 In Out In out In Out In Out In Out In Out 

OLS       ~      

TV             

Table 4.34 – Meta performance comparison of time-varying (TV) models and OLS. 

 

Nonetheless, the preference clearly goes out to the time-invariant OLS method. It is much more 

efficient in the sense that it can easily be estimated. Moreover, it seemed to be more effective in most 

of the sample settings, too - even in terms of the unconditional measure. See Table 4.34 for a global 

overview of which model had the lead performance wise, per sample. While the literature research 

already indicated that this would likely be the case for the in-sample setting, the analysis has shown 

that in four out of six cases, the OLS method also outperforms the time-varying methods in the out-

of-sample context. Another factor that supports the preference for the time-invariant model is 

transaction costs. To capture the true benefit of the time-varying models in practice, the futures 

position in the hedged portfolio would frequently have to be rebalanced to account for changes in 

the conditional covariance structure. As we learned from the figures that depict how the OHRs of the 

different models evolve over time, there is considerable volatility in the optimal ratio of futures 

contracts relative to the spot position. This, of course, translates into substantial transaction costs. 

Thus, if we net the potential for additional performance gain due to refreshing parameter estimation 

with the potential for transaction costs, then the preference of the static OLS method over the 

dynamic GARCH models becomes even stronger.  

 

Given the observed dominance in terms of variance reduction of the OLS method – even in the out-

of-sample periods – one itching question remains. If the time-varying models are built to exploit 

shifts in the variance and covariance structure of a set of variables and if we indeed observe 

heteroscedasticity in our return series (which has been shown in both 4.2 as well as 4.3), then why 

do those time-varying methods fail to outperform the static OLS method?  

 

According to Harris et al. (2009) this may be due to a fourfold set of factors, amongst which the 

following two. First, while the true, unobservable hedge ratio (that is, the series of hedge ratios based 

on the true conditional population parameters) may be time-varying, it may not be time-varying to 

the degree that it would be financially beneficial to estimate deviations from the average OHR. 

Second, the problem could reside in the model itself. It could be that either the model does not 

contain enough information about the moment dynamics of the hedged and hedging variable, or it 

could be that the model incorrectly uses this information, i.e., that it is miss-specified.  

 

While we can of course not investigate whether the first factor plays a role, the second explanation 

may arguably be applicable in our case. In literature, model estimation is usually done on the basis 

of samples that contain a number of observations in the quadruple digit sphere. In this research, 

however, especially the replacement sample size was severely restrained. In Section 4.3.1 we have 

seen that it was exactly in this small sample size context, where model estimation was problematic. 
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The claim that sample size could be an issue is further substantiated by the observation that it were 

the big, external sample contexts in which the performance gap between time-varying and time-

invariant models was the closest. For the Oil World soy and wheat series, the in-sample hedging 

effectiveness of the BEKK model was even superior to that of the OLS method.  

 

Irrespective of the methodologies to estimate the optimal hedge ratios, do the available futures 

contracts in general provide a useful instrument to hedge local cash commodity exposure? The 

answer to this question is contingent on what we define as the local cash market variable. If we 

understand this to be the internal replacement values, then the outlook is rather daunting. With 

unconditional weekly return sample correlations of 0.50, 0.58, and 0.55 for corn, wheat, and soy, 

respectively, the potential for variance reduction was shown to be only within the range of 25% to 

35%. While this relates to weekly exposures, the effectiveness in the monthly return context is not 

likely to exceed the 40% range either. In this context, however, we should not forget that the 

replacement sample size is limited. Single correlation dips therefore have a material impact on the 

measured hedging performance.  

 

If, on the other hand, we measure cash market exposure with data from external parties, then the 

outlook for hedging potential is more promising. Those series exhibited a much higher degree of 

correlation with their corresponding products on commodity exchange markets and featured 

monthly variance reduction in the 60% dimension. 

 

4.7.2 Mean-Variance 
 

In Section 4.2 we have established that there is reason to believe that the zero mean assumption 

would not hold for our futures return series. Upon locating the minimum-variance strategy outcomes 

in the risk-return plane, this impression has further been supported. In fact, going from a completely 

unhedged portfolio to an OLS minimum-variance hedge portfolio is accompanied by a drop of about 

5% in the average, annualized rate of return for all cases except the wheat Oil World sample where 

the cut is even about twice as high. Therefore, unless the investor is highly risk averse, one should 

carefully consider in how far one wants to sacrifice parts of the expected return for a greater variance 

reduction. In case of wheat- and soy replacement for example, one would have to deploy a risk 

aversion coefficient of 100 or 40, respectively, in the OLS mean-variance strategy, in order to 

approach the OLS minimum variance outcome. Those values are remarkably high and it is 

questionable whether decision makers at De Heus embody coefficients in that sphere.   

 

Furthermore, insights from the risk-return analysis endorse the conclusion of the OLS method being 

the superior minimum-variance hedging strategy. While in some cases (e.g., the wheat replacement 

sample) time-varying minimum-variance hedging strategies feature solutions that have a higher 

average rate of return, those solutions are not in general more efficient (i.e., they also feature a higher 

volatility).  

 

The unambiguous superiority faints, however, as we introduce the mean rate of return into the 

optimization problem. More specifically, the time-varying mean-variance hedging strategies have 

been shown to outperform the static mean-variance hedging strategy in 3 out of 6 cases. That is, they 

were able to achieve levels of return for a given standard deviation that a static hedge portfolio could 

not achieve, whatever value we choose for the static hedge ratio.  
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Why is it then, that the mean-variance strategies perform so well in some cases (soy replacement, 

soy Oil World, and wheat Oil World), yet perform so poorly in the other cases (corn replacement, 

corn Reuters, wheat replacement)? Looking at Figure 4.31, we see that this is likely due to the 

average spot and futures rates of return. The worse the average rate of return of the spot and futures 

in a hedge, the worse the outcome of the dynamic mean-variance hedging strategies relative to the 

static hedging strategies.  

 

This suggests that incorporating mean optimization in a hedging strategy is beneficial only, if the 

averages exceed a certain threshold level.  

 

 
 

  Figure 4.31 – Spot and futures sample, annualized, average return per hedge portfolio. 
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Chapter 5 – Conclusion 
 

 

The purpose of this project was to facilitate the current risk management at De Heus by investigating 

opportunities for hedging strategies for the three commodities corn, wheat, and soy. The central 

research question was: 

 

“How to design a hedging strategy at De Heus for the most important commodities with special 

attention to modeling the optimal hedge ratio?” 

 

To this end, we have set up structured databases including both cash market and commodity 

exchange securities and programmed a model using VBA Excel that, amongst other things, allows the 

user to visually investigate the dynamics of volatility and correlation changes over time for any 

security by plotting rolling averages of the corresponding series.    

 

Understanding the dynamics of the volatility and correlation of the return series of the spot and 

futures variables is crucial in setting up a proper hedge. In fact, they constitute the sole trinity of 

factors that are used in order to set up a proper hedge. More specifically, it has been shown in the 

literature review that under the minimum variance object function, the optimal hedge ratio, i.e., the 

position in futures relative to the spot position is given as the coefficient of correlation times the spot 

volatility over the futures volatility. 

While minimum variance hedging strategies offer the limit of what is possible in terms of risk 

reduction, they do so without concern for the return of the hedge portfolio. This is appropriate only 

if either the investor is highly risk averse, or if the expected return of the futures security is zero. 

Since both assumptions are found to be unrealistic, we have also calculated and studied mean-

variance hedge ratios, which are similar to the minimum-variance hedge ratios, with the only 

alteration that they also include a subtrahend written as the expected futures return divided by the 

risk aversion coefficient times the variance of the futures.  

 

In general, the choice of the futures products constitutes the first step in setting up a hedging 

strategy. A sixfold of spot series have been sought to be hedged, two per commodity type. Apart from 

the internal replacement values, external price series from Oil World and Reuters have been 

incorporated in our analysis as they featured bigger sample sizes. The considered spot series then 

are 0003 (GMO corn) & French Corn FOB Rhine for corn, 0041 (Wheat boat) & Wheat, U.S., No.2, 

SRW, fob Gulf for wheat, and 0300 (Soya Hipro ADM GMO) & Soya pellets 48% Brazil, CIF Rotterdam 

for soy. An in-depth correlation study revealed that the returns of the corn spot commodities could 

best be mimicked by the EMAc2 corn contract of the Matif commodity exchange, while the soy spot 

exposures were found to best be mirrored by the SMc1 soybean meal contract from the CBOT. As for 

wheat, the replacement series was matched most appropriately by the BL2c1 Milling Wheat contract 

(Matif), while the US wheat spot exposure was best handled by the Wc1 CBOT contract.  

 

With the optimal hedge ratio being a function of the correlation and volatility of the spot and futures 

return series, the central theme of this research was whether or not the hedge ratio should be 

allowed to vary over time. Undertaking this quest is motivated by the concept termed 
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heteroscedasticity, which refers to the tendency of a financial securities’ volatility to usually come in 

clusters.  

 

As modeling the conditional covariance matrix for a portfolio of securities is of great interest in the 

risk management discipline, there are numerous econometric models available to approach this 

endeavor. Three conditional, time-varying, industry-standard models have been applied in our 

research and integrated into the VBA program, namely the EWMA, DCC, and the bivariate BEKK 

model. The effectiveness of those models has been compared against the time-invariant OLS 

regression method, where the optimal hedge ratio is simply obtained by using the unconditional 

sample estimates.  

 

While the minimum-variance analysis has shown that the time-varying models were periodically 

successful at deploying conditional market information by adequately adapting the hedge ratio to 

changes in the volatility and correlation structure, the standard regression method was overall found 

to be more effective in terms of variance reduction. Given those dynamic shifts in the correlation and 

volatility structure, the static character of the OLS method causes the spot position to be occasionally 

overhedged or underhedged. On average, however, it outperformed the other hedging strategies. 

 

In the mean-variance analysis, however, the superiority of the standard regression has vanished. 

Here, it has been shown that the OLS method was outperformed by time-varying models in 3 out of 

6 cases (soy replacement, soy Oil World, wheat Oil World) where the realized solutions of the 

dynamic strategies had more efficient risk-return ratios than any of the OLS strategies, whatever the 

risk aversion coefficient. The other cases exhibited inferior spot and futures returns, which was 

found to inhibit dynamic mean-variance optimization.  

 

However, a profound shortcoming of the time-varying models is their need to regularly rebalance 

the hedge portfolio in order to exploit their conditional benefits. This gives rise to transaction costs, 

which have not even been considered in this analysis.   

 

Overall, the minimum variance hedging effectiveness for the replacement exposures was on the low 

end. The variance reduction of the weekly spot returns for corn, wheat, and soy was only within the 

range of 25% to 35%. Upon applying the analysis on the external Reuters and Oil World price series, 

however, the hedging effectiveness increased to values in the range of 45% and 65%.  

It has moreover been shown that the hedging effectiveness increases as we widen the hedging 

horizon. In fact, having also conducted the external series analysis on the basis of monthly return 

intervals, the hedging effectiveness could further be improved to a range of 60% to 80%.  
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Chapter 6 – Recommendations 
 

 

If you actually decide to set up a hedge – what then are the implications of our research that should 

be taken into account?  

 

The very first step constitutes the clear definition of the hedging objectives. If the target is to reduce 

the variability of the spot return to a maximum degree, then we clearly advocates to use the 

minimum-variance OLS regression method in an attempt to find the optimal hedge ratio. Not only 

has the paper shown that the rather complicated methods add little benefit in terms of variance 

reduction, the OLS method is also a lot easier to estimate, executing only a few commands Excel.  

If however, one wants to jointly optimize the average rate of return and the variance, then one should 

opt for mean-variance hedging strategies. Here, the preference for either a static or a dynamic model 

depends on the return rates of the spot and futures series. If they are sufficiently high, it seems that 

a dynamic model is more appropriate. As for the dataset underlying this study, this has particularly 

been the case for the soy commodity.  

 

However, what is as important as the choice of the estimation model, is the choice of the dataset upon 

which the estimations are to be based. We have seen profound differences in the outcomes based on 

whether we chose to represent a local spot exposure with its corresponding internal replacement 

product or with the series provided by external data vendors.  

Equally eminent is the question of the data window that is chosen to study correlation and volatility. 

What is correlation after all? There is no such thing as a true correlation when we talk about pairs of 

financial variables. The parameter can only be interpreted in the light of the data that have been used 

in order to come up with an estimate. Figure 4.12, which shows the corn Reuters and EMAc2 

correlation, provides an excellent case in point. The correlation structure remarkably improved in 

the period after August 2006. A correlation estimated today based on the complete sample starting 

in May 2000 will be significantly lower (.67) than the one we receive if we only consider the period 

after August 2006 (.80). Likewise, the optimal hedge ratio is destined to change considerably as well. 

We thus have to be very careful in choosing a time window that we believe is representative for the 

future.  

 

Another issue concerned with data is the frequency of the dataset. It has been argued that ideally, 

the interval used to calculate the returns ought to be the same as the length of the period for which 

you want to set up the hedge. The sensitivity analysis has shown that the input parameters, the 

optimal hedge ratio and the hedging effectiveness change considerably as we change the return 

interval. As the programmed model is capable of handling flexible return intervals, this is something 

that should be taken into account when studying opportunities for a hedge.  

 

Finally, an important implication for deriving the optimal hedge ratio that has been touched upon is 

the need to study not just the correlation between the variables in the hedge, but also their respective 

volatilities. We have observed a number of instances where the conditional hedge effectiveness 

decreased not because the correlation changed, but since the spot volatility exploded temporarily. If, 

in this instance, the futures volatility remains unchanged, or even decreases, then we do of course 

need more futures contracts to match the spot return swings. An important advice that follows from 
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our thesis is therefore to use the custom model in order to study the past behavior of the correlation 

and volatilities to get an impression of how they might develop over the time for which we want to 

construct the hedge.  

 

Having derived an assumed optimal hedge ratio, how ought it to be used in practice? The hedge ratio 

is simply a scalar that we use to multiply the proportion of the total value of the spot exposure 

relative to the total value per futures contract in order to calculate the optimal number of futures 

contracts. Suppose that we have 𝐶𝑠,𝑡 = 40,000 tons of corn in our books, which currently sell for 𝑆𝑡 = 

€ 140/MT and of which we want to hedge the price fluctuations. Assume further that we decide to 

use a corn Matif contract, currently valued at 𝐹𝑡 = € 136/MT, to hedge the exposure. It follows from 

Table 3.1 that each contract is concerned with a volume of 𝑄𝑓 = 50 tons. Suppose also that our 

analysis yields an optimal hedge ratio of ℎ𝑡+1
∗ = 0.67. According to (1b) then, the optimal number of 

futures contracts, 𝑁𝑡, that should be shorted, is given as 𝑁𝑡 = ℎ𝑡+1
∗ 𝐶𝑠,𝑡𝑆𝑡

𝑄𝑓𝐹𝑡
= 0.67

40000∗140

50∗136
= 551.76, or 

552 if we round up. Note that in the context of (1b), 𝐶𝑓,𝑡 = 𝑄𝑓𝑁𝑡 . 

 

Notice that, as mentioned in Section 1.1, De Heus makes weekly estimates for replacement values of 

each of the upcoming 12 months. Thus, while our research has only focused on the most immediate 

spot month exposure, you may actually also have booked a delivery 4-5 months ahead.  

If you want to hedge the full product, then you would of course have to hedge each forward month 

separately for which you have booked delivery. To do this, we simply run the complete analysis as 

pointed out in Chapter 4 for each month exposure on the basis of the corresponding replacement 

series. Depending on the resulting OHR, you then short a number of contracts related to the total 

value that is booked for that particular month.  
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Chapter 7 – Limitations & Future Research 
 

 

Our research is based on an array of assumptions, and choices made in order to derive the results 

presented in the analysis. The results should not be accepted at face value but rather be interpreted 

in the light of the assumptions underlying them. A couple of those assumptions have already been 

mentioned in the course of our thesis.  

 

First, the performance of time-varying models is dependent upon the way they are parameterized. 

If, for example, one had chosen a different in-sample interval, then model estimation would have 

yielded different parameters and therefore the optimal hedge ratio series and hedge effectiveness 

would have changed. While the minimum variance sensitivity analysis has shown that the OLS hedge 

performance is relatively robust with respect to changes in beta, such insights do not exist for the 

minimum variance DCC and BEKK model and demand further research.  

It has been argued that the relative performance of the time-varying models rather shines in the out-

of-sample period. In fact, some researchers in literature went so far as to reserve 80% of the sample 

space for out-of-sample performance testing and thus only use the first 20% for model specification. 

In this research, the proportion is rather the other way around. The base sample sizes have simply 

not been large enough to allow for such an allocation. 

 

Second, it has further been argued that continuous model parameter updating would further benefit 

the usefulness of the DCC and BEKK models, whereas consideration for transaction costs due to 

rebalancing would deteriorate their performance.  

The above mentioned points then imply that that our reported performances, especially in the out-

of-sample context, and thus also the usefulness of the time-varying models in general, have to be 

interpreted with care and that further research is welcomed to get a more colored picture of the true 

performance difference, especially in the mean-variance optimization context.  

 

Third, the models have been applied in their vanilla versions. That is, in case of the DCC and BEKK 

model, only the most recent ARCH and GARCH terms have been included for their autoregressive 

representation. While it is unlikely that higher terms would have led to significant performance 

improvements, we cannot reject this hypothesis empirically. The same holds for asymmetric GARCH 

models.  

In general, we often made inference about the performance of time-varying models, while only 

having applied a threefold of the numerous models available in estimating the second moment of a 

distribution. The same is also true for time-invariant models. While we only used the commonly 

applied OLS method, there are other alternatives that could have been applied. The GLS (generalized 

least squares) method is a good example, as it is a linear regression model that can also cope with 

heteroscedasticity in the error terms. Further research would therefore be appropriate to test how 

other time-invariant and time-varying models would score.  

 

Fourth, the mean value in the mean-variance hedging strategies has been modeled as a static sample 

average. One could, however, also allow the mean to vary over time, just as we allowed the covariance 

to vary over time. It would be interesting to see whether this might further improve performance of 

the mean-variance hedging strategies.   
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Fifth, futures contracts are marked to market on a daily basis, creating a stream of unpredictable 

cash flows during the course of the hedging horizon. This gives rise to what are termed multi-period 

hedging models. Like most models applied in literature, the models used in this research only 

consider a single-period setting.  

 

Sixth, another problem concerned with multidimensionality is the fact that we have only considered 

bivariate hedges, involving only one spot exposure and one futures contract. If we theoretically were 

to revoke the diagonality restriction pertaining to the (ARCH and) GARCH parameter matrices in the 

DCC and BEKK model, then adding new securities to the hedge portfolio would introduce new layers 

of complexity as we would have to take into account and model the covariance of any resulting 

combination of variables. Thus, if we would set up simultaneous hedges for both corn and soy, then 

we would not only have to be cautious about the correlation between spot corn and futures corn, but 

also between spot corn & spot soy, and spot corn & futures soy. The same is true for the other 

variables. Further research is therefore necessary to investigate the nature and impact of 

multivariate hedge constructs.  

 

Finally, it has been shown in the literature research that cointegration is an important concept when 

it comes to model specification. More specifically, numerous authors argue that if the spot and 

futures series in a hedge are cointegrated then the OLS and GARCH methods should incorporate error 

correction terms. Due to limitations in scope, cointegration has not been paid any attention to and 

therefore also presents fruitful potential for further research.  
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APPENDICES 
 

APPENDIX A – Objective functions 
 

Sharpe ratio objective function 
 

Another objective function that also takes into consideration the average return of the hedged 

portfolio is the Sharpe ratio objective function, which is given by 

 

 𝐹(𝑅ℎ, 𝑅𝐹) =
𝐸[𝑅ℎ]−𝑅𝐹

𝜎ℎ
               (21a) 

 

where 𝑅𝐹 is the risk free rate of return. Hence, this method maximizes the excess of the portfolio 

return over the risk free rate per unit of standard deviation of the portfolio. Setting the derivative of 

(21a) with respect to h equal to 0 and solving for h, we get the following OHR (see Chen et al., 2003): 

 

  ℎ∗ =
(𝜎𝑠/𝜎𝑓)[(𝜎𝑠/𝜎𝑓)(𝜇𝑅𝑓/𝜇𝑅𝑠−𝑅𝐹))−𝜌𝑅𝑠,𝑅𝑓]

[1−(𝜎𝑠/𝜎𝑓)(𝜇𝑅𝑓𝜌𝑅𝑠,𝑅𝑓/(𝜇𝑅𝑠−𝑅𝐹))]
             (21b) 

 

Note that, again, this method is similar to the variance minimization approach under the assumption 

that futures price series follows a martingale process (Chen et al., 2003), i.e., if 𝜇𝑅𝑓 = 0 then (21b) 

reduces to (2b). 

 

While the Sharpe ratio approach succeeds in involving the expected portfolio rate of return without 

introducing the risk aversion parameter, it complicates the optimization procedure in that (21a) is a 

non-linear function of the hedge ratio (Ramlall, 2009). Moreover, like the mean-variance approach, 

it is consistent to the expected utility paradigm only if either the utility function is quadratic and/or 

the returns are jointly normally distributed (Chen et al., 2003).  

 

Minimum MEG objective function 
 

The minimum MEG objective function makes use of the MEG (mean extended-Gini) coefficient – a 

measure of statistical dispersion that also takes account of the average.   

 

A more pragmatic expression for the MEG coefficient has been put forward by Shalit & Yitzhaki 

(1984). Under this expression, the objective function is given by  

 

𝐹(𝑅ℎ, 𝜐) = −𝜐𝐶𝑜𝑣(𝑅ℎ , (1 − 𝐺(𝑅ℎ))
𝜐−1)                          (22) 

 

where 𝜐 is the risk aversion parameter, and G( . ) is the cumulative distribution function of 𝑅ℎ. The 

OHR is then found by minimizing (22) with respect to h. 

 

An advantage of the minimum MEG approach is that it is consistent with the expected utility 

paradigm. However, it is quite difficult to implement in practice (Lien & Tse, 2002). Moreover, having 

compared the effectiveness of futures and options as hedging vehicles, Cheung et al. (1990) 
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concluded that futures favor the application of the minimum variance objective function, while the 

MEG approach lends itself more to modeling the OHR in an options context. 

 

If the futures and spot returns were jointly normally distributed, then the minimum MEG method 

would yield the same OHR as the minimum variance approach (Shalit, 1995).  

 

Minimum GSV objective function 
 

The final approach accounts for the well-established fact that investors in general are more 

concerned with the risk of a downside movement of an asset than with a potential upside movement 

(Benartzi & Thaler, 1995). 

 

The generalized semi-variance approach integrates this notion of asymmetric risk perception by 

introducing two new parameters, δ and α, where the former stands for the target rate of return, and 

the latter represents the perceived damage from failing to reach that target rate of return (Lien & 

Tse, 2002). The objective function is given by 

 

𝐹(𝑅ℎ, δ, α) = ∫ (δ − 𝑅ℎ)
α𝑑𝐺(𝑅ℎ)

δ

−∞
,       α > 0             (23) 

 

as we can see from the boundaries of the integrals in expression (23), only returns lower than the 

target rate of return are taken into consideration when evaluating the objective function. The OHR is 

derived by minimizing (23) with respect to h. 

 

The two paramount advantages of this approach are the capability to adjust for the asymmetric risk 

perception of managers and the consistency with the stochastic dominance concept. On the flipside, 

however, the approach requires us to know the risk aversion parameter, α, as well as the analytic 

expression for the distribution function of 𝑅ℎ (Chen et al., 2003).  

 

As was the case for the minimum MEG objective function, if spot and futures returns are both jointly 

normally distributed, then the minimum GSV objective function yields an OHR that is similar to that 

under the minimum variance approach (Chen et al., 2003).  

 

Note on the MEG and GSV objective functions 
 

The objective functions of the minimum MEG and minimum GSV methods can easily be augmented 

to also incorporate the expected return of the hedged portfolio. In this case we would have  

 

  𝐹(𝑅ℎ) = 𝐸[𝑅ℎ] − 𝛤(𝑅ℎ) 

 

where 𝛤(𝑅ℎ) is either (22) or (23). Unlike in the mean-variance approach we do not multiply 𝛤(𝑅ℎ) 

by a risk aversion parameter anymore, as (22) and (23) already include a risk aversion parameter 

themselves. For both approaches, the OHR is found by maximizing 𝐹(𝑅ℎ) with respect to h. The 

resulting OHRs are termed optimum mean-MEG and optimum mean-generalized semi-variance, 

respectively.  
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APPENDIX B - OHR and cointegration   
 

The idea of cointegration builds on the concept of (non-) stationarity. A time series is said to be 

stationary (i.e., I(0) in the sense of the Engle & Granger, 1987) if the joint probability distribution of 

the stochastic process underlying the time series is constant throughout time. That is, for a stochastic 

process, 𝑋𝑡, a constant k, and a time frame of length m 

 

     𝑃(𝑋𝑡1 ≤ 𝑥𝑡1, 𝑋𝑡2 ≤ 𝑥𝑡2, … , 𝑋𝑡𝑚 ≤ 𝑥𝑡𝑚) = 𝐹(𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝑚) = 𝐹(𝑋𝑡1+𝑘, 𝑋𝑡2+𝑘, … , 𝑋𝑡𝑚+𝑘)           (24) 

 

It follows from this expression that distribution parameters such as the mean or the variance do not 

change as we wander along the time line. According to Engle & Granger (1987) if 𝑋𝑡 is stationary and 

has zero mean, then the variance of 𝑋𝑡 is finite and innovations in the series only have temporary 

effects. The series thus never drifts too far away from its equilibrium.  

 

If, however, the time series contains a unit root (i.e., I(1)) then the time series is said to be 

nonstationary and (24) does not hold anymore. Moreover, the variance of 𝑋𝑡 goes to infinity as t 

tends to infinity and innovations have a permanent effect on the time series (Engle & Granger, 1987). 

Reversion to historic values thus happens much less frequently, if ever.  

 

The concept of cointegration now states that if there are two time series that are I(1) and there exists 

a liner combination of those two time series such that the linear combination is I(0), i.e., stationary, 

then the two series are said to be cointegrated. If this were the case then, as mentioned in Section 

2.1.1 the OLS regression in (4) would be miss-specified.  

 

The presence of cointegration in spot and futures time series is, however, a very controversial issue 

in literature with divergent contributions on a theoretical (Brooks et al., 2002), as well as on an 

empirical level (Lien & Wilson, 2001). The latter is true even within the realm of agricultural 

commodities. Baillie & Myers (1991) for example found no cointegration among the spot and futures 

series for each of their tested commodities, amongst which corn and soybeans. The opposite is true 

in case of (Choudhry, 2009) who included corn, wheat, and soybeans in the list of tested 

commodities.  

 

The controversies also extend to the question in how far the omission of the cointegration 

relationship affects the hedging performance due to diverging estimates of the OHR parameter.    

According to Ghosh (1995), Ghosh & Clayton (1996), and Kroner & Sultan (1993) the hedging 

performance suffers considerably if cointegration is left out of consideration (Choudhry, 2009).  

Lien (2004) however states that the loss in hedging effectiveness is likely to be minimal.  
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APPENDIX C – Meta-analysis of empirical studies: OLS vs. time-varying 

models13   

 
Article Commodity Tested models Outcome 

Baillie & Myers 

(1991) 

Agricultural commodities: Beef, 

coffee, corn, cotton, gold, soybeans 

Diagonal Vech 

GARCH, OLS 

In & out: GARCH>OLS 

Kroner & 

Sultan (1993) 

FX: British Pound, German Mark, 

Japanese Yen, Swiss Franc 

GARCH-X, OLS, 

naive 

In & out: GARCH-

X>OLS>naive 

Sephton (1993) Agricultural commodities: Feed 

wheat, feed barley, canola 

Vech GARCH, 

CCC, OLS 

Complete sample: 

GARCH>CCC>OLS  

Bera et al. 

(1997) 

Agricultural commodities: Corn and 

soybean 

DVECH GARCH, 

BEKK, CCC, OLS 

In & out: GARCH>OLS>CCC 

>BEKK 

Lien & Wilson 

(2001) 

Crude Oil SV, EGARCH, 

OLS, naive 

In & out: 

OLS>naive>EGARCH>SV 

Lien et al. 

(2002) 

Mixed: FX(BP, DM, JY), agri (SBO, 

wheat, crude oil, corn, cotton), and 

equity indices (NYSE composite, 

S&P 500) 

CCC, OLS Out: OLS>CCC for each 

considered market 

Bystrom 

(2003)  

Electricity spot and futures  CCC, OGARCH, 

OLS 

Out (uncond.): 

Naïve>OLS>CCC>OGARCH 

Choudhry 

(2003) 

Equity indices from Australia, 

Germany, Hong Kong, Japan, South 

Africa & the UK 

GARCH-X, 

GARCH, OLS, 

naive 

Complete & out: 

GARCH>GARCH-

X>OLS>naive  

Choudhry 

(2004) 

Equity indices from Australia, Hong 

Kong & Japan 

GARCH 

(DVECH), OLS, 

naive 

Out 1: OLS>GARCH>naive 

Out 2: GARCH>OLS>naive 

Chen et al. 

(2006) 

Mixed: S&P500, swiss franc, gold, 

coffee, corn, wheat, cotton, sugar, 

soybean oil, soybean 

DCC, CCC, OLS, 

naive 

Out: DCC>CCC>OLS>naive 

Alexander & 

Barbosa (2007) 

Equity indices: Nasdaq 100, S&P 

500, FTSE 100, CAC 40, Hang Seng 

Composite, Kospi 200, Ibovespa 

OLS, ECM, 

EWMA, GARCH 

Out 1 & out 2: 

OLS>ECM>EWMA>GARCH. 

Difference in HE highly 

marginal, though 

Bos & Gould 

(2007) 

S&P 500, FTSE 100 OLS, BEKK, DCC In: BEKK>OLS>DCC 

Out: OLS>DCC>BEKK 

Ku et al. (2007) FX: British pounds and Japanese 

yen 

DCC, CCC, ECM, 

OLS 

In & out: 

DCC>OLS>ECM>CCC 

                                                             
 
13 A few of the articles also test models not included in this list. The overview, however, is mainly restricted to the models 
that are also discussed in our thesis, i.e., VECH, BEKK, CCC, DCC, EWMA, OLS and the naïve hedge. 
“In” and “out” refer to in-sample and out-of-sample performance, respectively.  
Usually there are differences in performance with respect to the different tested commodities. The ranking given under 
“outcome” refers to a joint impression, when considering all commodities together.  
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Lien (2007) Mixed: 24 commodities – FX, equity 

indices as well as agricultural 

commodities 

ECM, OLS, naive 

hedge 

In: OLS>ECM>naive 

Out: ECM>OLS>naive 

Hsu et al. 

(2008) 

Equity indices: S&P 500, FTSE 100, 

MSCI-SWI 

OLS, CCC, DCC In: DCC>OLS>CCC 

Out: DCC>CCC>OLS 

Kenourgios 

(2008) 

S&P 500 OLS, ECM, 

GARCH, 

EGARCH 

In: 

ECM>OLS>EGARCH>GARCH 

Lien & Yang 

(2008) 

Commodities (corn, soybeans, 

cotton, coffee, pork belly, lean hog, 

heating oil, crude oil, copper, silver) 

GARCH, OLS, 

naive  

In: GARCH>OLS>naive 

Out: GARCH>OLS>naive 

Lai et al. 

(2009) 

Equity indices from Hong Kong, 

Japan, Korea, Singapore and Taiwan 

OLS, DCC, naive In & out: DCC>OLS (in 3/5 

cases)>naive 

Park & Jei 

(2010) 

Agricultural: Corn & soybeans CCC, DCC, OLS, 

naive 

In (corn): 

OLS>CCC>DCC>naive 

In (soybeans): 

CCC>DCC>OLS>naive 

Out (both): 

OLS>CCC>DCC>naive 

Kostika & 

Markellos 

(2013) 

Equity indices: DJI, FTSE, and DAX CCC, BEKK 

(diagonal), 

EWMA (.94), 

ECM, OLS, naive 

In: CCC>OLS>ECM>BEKK> 

EWMA>naive 

Out: CCC>ECM>OLS>BEKK> 

EWMA>naive 
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APPENDIX D – Constant Conditional Correlations 
 

As mentioned in section 2.2.7, the CCC model can be written as:  

 

𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡,       where 𝐷𝑡 = 𝑑𝑖𝑎𝑔{√ℎ𝑖,𝑡}            (25a) 

 

Assuming zero mean of the returns, the variance is simply the expected value of the squared returns, 

i.e., ℎ𝑖,𝑡 = 𝐸𝑡−1(𝑟𝑖,𝑡
2 ). Defining the returns as a product of the conditional standard deviation times the 

standardized disturbance  

 

 𝑟𝑖,𝑡 = √ℎ𝑖,𝑡𝜀𝑖,𝑡             (25b) 

 

we can show that even though R is constant, it contains the conditional correlations. Note that the 

conditional correlation between 𝑟1,𝑡 and 𝑟2,𝑡 is given by:  

 

𝜌12,𝑡 =
𝐸𝑡−1[𝑟1,𝑡𝑟2,𝑡]

√𝐸𝑡−1[𝑟1,𝑡
2 ]𝐸𝑡−1[𝑟2,𝑡

2 ]

            (25c) 

 

Substituting (25b) into (25c) and simplifying algebraically we get 

 

 𝜌12,𝑡 =
𝐸𝑡−1[𝑟1,𝑡𝑟2,𝑡]

√𝐸𝑡−1[𝑟1,𝑡
2 ]𝐸𝑡−1[𝑟2,𝑡

2 ]

=
𝐸𝑡−1[√ℎ1,𝑡𝜀1,𝑡√ℎ2,𝑡𝜀2,𝑡]

√𝐸𝑡−1[(√ℎ1,𝑡𝜀1,𝑡)
2]𝐸𝑡−1[(√ℎ2,𝑡𝜀2,𝑡)

2]

= 

√ℎ1,𝑡∗√ℎ2,𝑡∗𝐸𝑡−1[𝜀1,𝑡𝜀2,𝑡]

√ℎ1,𝑡∗√ℎ2,𝑡∗√𝐸𝑡−1[(𝜀1,𝑡)
2]𝐸𝑡−1[(𝜀2,𝑡)

2]

=
𝐸𝑡−1[𝜀1,𝑡𝜀2,𝑡]

√𝐸𝑡−1[𝜀1,𝑡
2 ]𝐸𝑡−1[𝜀2,𝑡

2 ]
= 𝐸𝑡−1[𝜀1.𝑡𝜀2,𝑡]              (25d) 

 

which shows that the conditional correlation between 𝑟1,𝑡 and 𝑟2,𝑡 is the same as the conditional 

covariance of the standardized disturbances. Moreover, it follows from (25b) that  

 

 𝜀𝑖,𝑡 =
𝑟𝑖,𝑡

√ℎ𝑖,𝑡
 

𝑚𝑎𝑡𝑟𝑖𝑥 
𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛
→       𝜀𝑡 = 𝐷𝑡

−1𝑟𝑡 = [

1

𝜎1,𝑡
0

0
1

𝜎2,𝑡

] ⌈
𝑟1,𝑡
𝑟2,𝑡
⌉ = ⌈

𝑟1,𝑡

𝜎1,𝑡
𝑟2,𝑡

𝜎2,𝑡

⌉         (25e) 

 

Writing the conditional correlations in (25d) in matrix form and plugging (25e) into the matrix form 

of (25d) we get that 

 

 𝐸𝑡−1[𝜀𝑡𝜀𝑡
′] = 𝐸𝑡−1 [⌈

𝑟1,𝑡

𝜎1,𝑡
𝑟2,𝑡

𝜎2,𝑡

⌉ [
𝑟1,𝑡

𝜎1,𝑡

𝑟2,𝑡

𝜎2,𝑡
]] = 𝐸𝑡−1 [

𝑟1,𝑡
2

𝜎1,𝑡
2

𝑟1,𝑡𝑟2,𝑡

𝜎1,𝑡𝜎2,𝑡

𝑟2,𝑡𝑟1,𝑡

𝜎2,𝑡𝜎1,𝑡

𝑟2,𝑡
2

𝜎2,𝑡
2

] = [
1

𝜎12,𝑡

𝜎1,𝑡𝜎2,𝑡
𝜎21,𝑡

𝜎2,𝑡𝜎1,𝑡
1
]      (25f)  

 

Likewise, we get the same result as in (25f) when we combine the diagonal and the variance matrix: 

 

𝐷𝑡
−1𝐻𝑡𝐷𝑡

−1 = [

1

𝜎1,𝑡
0

0
1

𝜎2,𝑡

] [
𝜎1,𝑡
2 𝜎12,𝑡

𝜎21,𝑡 𝜎2,𝑡
2 ] [

1

𝜎1,𝑡
0

0
1

𝜎2,𝑡

] = [
1

𝜎12,𝑡

𝜎1,𝑡𝜎2,𝑡
𝜎21,𝑡

𝜎2,𝑡𝜎1,𝑡
1
]                                  (25g)    
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Finally, it follows from (25a) that 𝐷𝑡
−1𝐻𝑡𝐷𝑡

−1 = 𝑅. But if R = (25g) = (25f) = (25c) then this means that 

R indeed contains the conditional correlations. While the term “constant conditional” seems as an 

oxymoron at first, expression (25a) sheds light into what is meant by that. The constant element of 

the model resides in the correlation matrix, R, which is time-invariant. The covariance matrix is, 

however, allowed to vary over time by modeling the individual variance elements with univariate 

GARCH processes, thus providing for the conditional part of the expression in (25a). 
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APPENDIX E - Custom program interface 

 

 
 

 



 
 

 
Page 95 

 
  

APPENDIX F - Histograms and descriptive statistics 
 

The following figures and tables show the histograms and descriptive statistics of the various weekly 

spot and futures series, with exception of the EMAc2 Corn Matif series. The reported p-values refer 

to the Jarque-Bera test with the null-hypothesis that the data is normally distributed.  

 

Return series Milling Wheat Matif, continuation BL2c1: 

 
Return series Soybean Meal CBOT, continuation SMc1: 

 
Return series Wheat CBOT, continuation Wc1: 

 
Return series Corn Replacement (0003), spot continuation: 
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Return series Wheat Replacement (0041), spot continuation: 

 
Return series Soy Replacement (0300), spot continuation: 

 
Return series Corn Reuters, spot continuation: 

 
Return series soy Oil World, spot continuation: 

 
Return series wheat Oil World, spot continuation: 
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APPENDIX G - Correlograms: Autocorrelation in squared returns 
 
The following tables show the correlograms of the various weekly, squared spot and futures series, 
with exception of the EMAc2 Corn Matif series. The reported p-values at each lag k refer to the Ljung 
Box Q test, which tests the null-hypothesis that the data features no autocorrelation at lag k.  
 
Squared return series Milling Wheat Matif, continuation BL2c1: 

 
Squared return series Soybean Meal CBOT, continuation SMc1: 

 
Squared return series Wheat CBOT, continuation Wc1: 

 
Squared return series Corn Replacement, continuation spot: 

 
Squared return series Wheat Replacement, continuation spot: 
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Squared return series Soy Replacement, continuation spot: 

 
Squared return series Corn Reuters, continuation spot: 

 
Squared return series Soy Oil World (USD), continuation spot: 

 
Squared return series Soy Oil World (EUR), continuation spot: 

 
Squared return series Wheat Oil World, continuation spot: 
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APPENDIX H - EViews Wheat Parameterization Output 
 
The following tables show the EViews (OLS, univariate/bivariate GARCH) estimation output for the 
various hedge setups in the wheat panel, based on weekly returns. The reported p-values refer to the 
null-hypothesis that the coefficient in question is zero (i.e., redundant in the regression equation).  
 
OLS: Wheat Replacement (0041), continuation spot &  
Milling Wheat Matif, continuation BL2c1: 

 
OLS: Wheat Oil World, continuation spot & Wheat CBOT, continuation Wc1: 

 
Univariate GARCH (1,1): Wheat Replacement (0041), continuation spot: 

 
Univariate GARCH (1,1): Wheat Oil World, continuation spot: 
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Univariate GARCH (1,1): Milling Wheat Matif, continuation BL2c1 (replacement sample): 

 
Univariate GARCH (1,1): Wheat CBOT, continuation Wc1 (Oil World sample): 

 
B-GARCH (Diagonal BEKK): Wheat Replacement (0041), continuation spot  
& Milling Wheat Matif, continuation BL2c1: 

 
B-GARCH (Diagonal BEKK): Wheat Oil World, continuation spot 
& Wheat CBOT, continuation Wc1: 
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APPENDIX I – EViews Soy Parameterization Output 
 
The following tables show the EViews (OLS, univariate/bivariate GARCH) estimation output for the 
various hedge setups in the soy panel, based on weekly returns. The reported p-values refer to the 
null-hypothesis that the coefficient in question is zero (i.e., redundant in the regression equation).  
 
OLS: Soy Replacement (0300), continuation spot & Soybean Meal CBOT,  
continuation SMc1: 

 
OLS: Soy Oil World, spot continutation & Soybean Meal CBOT, continuation SMc1: 

 
Univariate GARCH (1,1): Soy Replacement (0300), continuation spot: 

 
Univariate GARCH (1,1): Soy Oil World, spot continutation: 
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Univariate GARCH (1,1): Soybean Meal CBOT, continuation SMc1 (replacement sample): 

 
Univariate GARCH: Soybean Meal CBOT, continuation SMc1 (Oil World sample): 

 
B-GARCH (Diagonal BEKK): Soy Replacement (0300), continuation spot  
& Soybean Meal CBOT, continuation SMc1: 

 
B-GARCH (Diagonal BEKK): Soy Oil World, spot continutation  
& Soybean Meal CBOT, continuation SMc1: 
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APPENDIX J – EViews OLS Regression Monthly returns 
 
The following tables show the EViews OLS estimation output for the three hedge setups that include 
external spot series, based on monthly returns. The reported p-values refer to the null-hypothesis 
that beta is zero (i.e., redundant in the regression equation).  
 
OLS: Corn Reuters, spot continuation & Corn Matif, continuation EMAc2: 

 
OLS: Wheat Oil World, spot continuation & Wheat CBOT, continuation Wc1: 

 
OLS: Soy Oil World, spot continuation & Soybean Meal CBOT, continuation SMc1: 
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APPENDIX K – EViews BEKK estimation Monthly returns 
 
The following tables show the EViews Diagonal BEKK B-GARCH estimation output for the three 
hedge setups that include external spot series, based on monthly returns. The reported p-values refer 
to the null-hypothesis that the coefficient in question is zero (i.e., redundant in the regression 
equation).  
 
B-GARCH (Diagonal BEKK): Corn Reuters, continuation spot 
& Corn Matif, continuation EMAc2: 

 
B-GARCH (Diagonal BEKK): Wheat Oil World, spot continuation  
& Wheat CBOT, continuation Wc1: 

 
B-GARCH (Diagonal BEKK): Soy Oil World, continuation spot  
& Soybean Meal CBOT, continuation SMc1: 

 


