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A B S T R A C T

New techniques are being developed to keep Moore’s Law alive, that
is, a doubling in computing power roughly every 2 years. These tech-
niques are mostly focused on parallel programs, this can be the par-
allelization of existing programs or programs written using a parallel
programming language. A literature study is done to get an overview
of the available methods to make parallel programs. The WaveCore
is an example of a parallel system, which is currently in develop-
ment. The WaveCore is a multi-core processor, especially designed
for modeling and analyzing acoustic signals and musical instruments
or to add effects to their sound. The WaveCore is programmed with
a graph like language based on data-flow principles. The layout of
WaveCore is not a standard multi-core system where there is a fixed
number of cores connected together via memory and caches. The
WaveCore has a ring like network structure and a shared memory,
also the number of cores is configurable. More specific details about
the WaveCore can be found in the thesis.

A functional approach to hardware description is being developed
at the CAES group at the University of Twente, this is CλaSH. FP-
GAs are getting more and more advanced and are really suitable for
making parallel programs. The problem with FPGAs however is that
the available programming languages are not really suitable for the
growing sizes and growing complexity of today’s circuits. The idea
is to make a hardware description language which is more abstract
and more efficient in programming than the current industry lan-
guages VHDL and Verilog. This abstraction is required to keep big
complex circuit designs manageable and testing can be more efficient
on a higher level of abstraction (using existing model checking tools).
CλaSH is a compiler which converts Haskell code to VHDL or Ver-
ilog, the benefits of this are that the Haskell interpreter can be used
as simulation and debug tool.

The focus of this thesis is to specify the WaveCore in CλaSH. Spec-
ifying a VLIW processor with CλaSH has been done before, however
because the WaveCore is a non-trivial architecture, it is an interesting
case study to see if such a design is possible in CλaSH. First an imple-
mentation is made of a single core of the WaveCore in Haskell. This
is then simulated to prove correctness compared with the existing im-
plementation of the WaveCore. Then the step towards CλaSH is made,
this requires some modifications and adding a pipelined structure (as
this is required in a processor to efficiently execute instructions).
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I N T R O D U C T I O N

1.1 background

In our everyday live we can not live without computers. Comput-
ers and/or Embedded Systems control our lives. But our increasing
need of computing power is stressing all the limits. Around 1970 Gor-
don Moore[23] noticed that the number of transistors per area die
increased exponentially. This growth is approximated as a doubling
in the number of transistors per chip every two years and therefore an
doubling of computing power as well. This growth later was called
"Moore’s Law". To keep the computational growth of Moore’s Law,
another solution has to be found. A very promising solution to this
problem is the use of multi-core systems. Tasks can be divided over
multiple processors and thus gain the increase in computation power
which conforms with Moore’s Law. But dividing tasks across multi-
ple processors is not an easy task. When a task is divided into as
small as possible subtasks, the execution time then depends on the
tasks which is the slowest (assuming all tasks available are executed
in parallel). As a simple example there are 3 tasks (with a total time
of 9 seconds):

• Task 1 takes 3 seconds to complete

• Task 2 takes 1 second to complete

• Task 3 takes 5 seconds to complete

The total execution time is not the average time of those 3 tasks (93 = 3

seconds), but it is 5 seconds because of Task 3. This maximum im-
provement on a system is called "Amdahl’s Law"[15]. A solution to
this might be to improve the performance of Task 3. This can be done
by making custom hardware for this specific case in stead of using
a generic CPU. Programming languages to create such hardware are
VHDL and Verilog. These are very low level and don’t use a lot of
abstraction. For big designs this is a very time consuming process
and very error prone (Faulty chip design causes financial damage of
$475,000,000 to Intel in 1995[31]). A less error prone and more ab-
stract language is required to reduce the amount of errors and keep
the design of large circuits a bit more simple. This is where CλaSH
comes in. This research will dive in the use of CλaSH as a language
to create a multi-core processor.
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2 introduction

1.2 parallel programming models

A solution to keep Moore’s Law alive is to go parallel. Creating par-
allel applications or changing sequential applications to be more par-
allel is not perfected yet. Research in parallel systems and parallel
programming models are a hot topic. The Graphics Processing Unit,
an Field-Programmable Gate Array and a Multi-core processor are
examples of parallel systems. Each with their advantages and disad-
vantages. What can be done with them and how to program them is
discussed in Chapter 2.

1.3 cλash

Within the chair CAES the compiler CλaSH is developed which can
translate a hardware specification written in the functional program-
ming language Haskell into the traditional hardware specification lan-
guage VHDL (and Verilog). It is expected that a specification written
in Haskell is more concise and better understandable than an equiv-
alent specification written in VHDL, and that CλaSH may contribute
to the quality and the correctness of designs. However, until now
only few large scale architectures have been designed using CλaSH,
so experiments are needed to test its suitability for designing complex
architectures.

1.4 wavecore background

The WaveCore is a multi-core processor, especially designed for mod-
eling and analyzing acoustic signals and musical instruments, and to
add effects to their sound. Besides that, the WaveCore is programmed
with a graph like language based on data-flow principles. The layout
of the processor is also not a standard multi-core system where there
is a fixed number of cores connected together via memory and caches.
The WaveCore has a ring like network structure and a shared memory,
also the number of cores is configurable. Because the WaveCore has
a non-trivial architecture it is an interesting target to be modeled in
Haskell/CλaSH. This is not the first processor being developed using
CλaSH. A Very Large Instruction Word (VLIW) processor is developed
using CλaSH in [6]. This research was also done in the CAES group
at the University of Twente. Collaboration and discussions have been
carried out almost every week. More details of the WaveCore can be
found in Chapter 3.
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1.5 research questions

The idea of this research is to see if CλaSH is usable for specifying the
WaveCore processor. While doing this, the following research ques-
tions will be answered.

1. Is CλaSH suitable for creating a non-trivial multi-core processor
(e.g. the WaveCore)?

2. What are the advantages and disadvantages using CλaSH as a
hardware description language?

3. How does the CλaSH design compare with the existing design
of the WaveCore (C Simulator and VHDL hardware descrip-
tion)?

These questions will be answered in Chapter 6.

1.6 thesis outline

This thesis starts with a small literature study (Chapter 2) in the field
of parallel programming models. As can be read in this introduction
is that the future is heading towards more parallel systems (or multi-
core systems). This parallelization requires a different approach than
the traditional sequential programming languages. After this a chap-
ter is devoted to the many-core architecture of the WaveCore (Chapter
3). This will go in depth to the WaveCore architecture and will make
a start on how this will be implemented in Haskell. The chapter fol-
lowing the WaveCore is the implementation in Haskell and CλaSH
(Chapter 4). After that there will be an explanation of the do’s and
don’t of developing a processor in CλaSH (Chapter 5). This thesis is
finalized by a conclusion in Chapter 6.
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L I T E R AT U R E : PA R A L L E L P R O G R A M M I N G M O D E L S

2.1 introduction

Computers are becoming more powerful every year, the growth of
this computing power is described by Gordon E. Moore’s[23]. This
growth is approximated as a doubling in the number of transistors
per chip every two years and therefore an doubling of computing
power as well. Figure 1 shows this trend. Most of the time this growth

Figure 1: Moore’s Law over time

is due to reducing the feature size of a single transistor, but during
some periods, there were major design changes[34, 21]. The growth
in computing power can not continue with current techniques. The
transistor feature size is still decreasing, however the associated dou-
bling of computation power is not easy to meet, this is the result of
"hitting" several walls:

• Memory Wall - Access to memory is not growing as fast as the
Central Processing Unit (CPU) speed

• Instruction-Level Parallelism (ILP) Wall - The increasing diffi-
culty of finding enough parallelism in a single instruction stream
to keep a high-performance single-core processor busy

5



6 literature :parallel programming models

• Power Wall - A side effect of decreasing the feature size of a
transistor is an increase in the leakage current, this results in
a raise in power usage and thus in an increase of temperature
which is countered by a decrease in clock speed (which slows
down the processor)

A solution to keep this growth in computing power is the paral-
lel approach. Parallel computing on the instruction level is done al-
ready in VLIW processors, but these get too complicated due to the
ILP wall[22]. So a more generic parallel approach is required. Creat-
ing parallel programs is not trivial (e.g. due to data dependencies)
and converting sequential programs to parallel programs is also not
an easy task. The gain in speedup of converting a sequential program
to a parallel program is also known as Amdahl’s Law [15]. It states
that the maximum speedup of a program is only as fast as it’s slowest
sub part of the program. As an example: when a program takes up
10 hours of computing time on a single core and most of the program
can be parallelized except for one part which takes up 1 hour of com-
puting time (which means 90% parallelization). The resulting parallel
program will still take at least 1 hour to complete, even with infinite
amount of parallelization. This is an effective speedup of (only) 10

times (at a core count of 1000+ see Figure 2), it does not help to add
more cores after a 1000. It shows that the speedup of a program is lim-
ited to the parallel portion of the program. With 50% parallelization
only a speedup of 2 times can be achieved.

Figure 2: Amdahl’s Law graphical representation

automatic parallelization Efforts are put into the automatic
parallelization of sequential programs, if this would work correctly, it
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would be an easy option to make existing sequential programs paral-
lel. One of the techniques to make this possible is Thread-level Data
Speculation (TLDS)[24, 32], this technique speculates that there are no
data dependencies and continue execution until a dependency does
occur and then restart execution. TLDS can accelerate performance
even when restarting is required, as long as it doesn’t have too much
data dependency conflicts.

parallel programming To make better use of the parallel sys-
tems, a programming language is required to make this possible. Sev-
eral programming languages and models exist, these are explained
during this literature study.

current trends Digital Signal Processors (DSPs) gained more
importance in this growing era of multi-core systems[17]. The main
reason is that computational cores are getting smaller so more of
them fit on the same chip, more room for on-chip memory and I/O
operations became more reasonable. Programming these multi-core
systems is still very challenging, therefore research is done to make
this easier. This is done by creating new programming languages (e.g.
[5, 26]) or adding annotations to existing languages.

2.1.1 Literature outline

An introduction to the problem of Moore’s Law is given already. Sec-
tion 2.2 will give an overview of the currently available parallel pro-
gramming models. Systems which could benefit from these program-
ming models can be found in Section 2.3, this can range from a single
chip, to a distributed network of systems connected via the Internet.
A further research is done in programming models which are de-
signed to run on programmable hardware like an FPGA in Section 2.4.
This connects with the rest of the Thesis because this is focused on
implementing a multi-core processor on an FPGA using the functional
language Haskell.

2.2 programming models

A detailed summary about all programming models is given in [10,
18]. Figure 3 is a graphical representation of the available models.
This includes the following programming models:

• POSIX Threads (Pthreads) - Shared memory approach

• OpenMP - Also a shared memory approach, but more abstract
than the Pthreads

• MPI - Distributed memory approach
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Shared Memory

POSIX Threads
OpenMP
CUDA (language)

Distributed Memory

MPI
UPC (language)
Fortress (language)

Cluster

SMP/ 
MPP

SMP/ 
MPP

SMP/ 
MPPSMP/ 

MPP

SMP/MPP = These are systems with multiple processors which 
share the same Memory-bus

Figure 3: Overview of parallel systems

2.2.1 POSIX Threads

The Pthreads, or Portable Operating System Interface(POSIX) Threads,
is a set of C programming language types and procedure calls[7].
It uses a shared memory approach, all memory is available for all
threads, this requires concurrency control to prevent race conditions.
These types and procedures are combined in a library. The library
contains procedures to do the thread management, control the mutual-
exclusion(mutex) locks (which control concurrent data access on
shared variables) and the synchronization between threads. The down-
side of this approach is it is not really scalable, when more threads
are used, accessing shared variables gets more and more complicated.
Another limitation is that it is only available as a C library, no other
languages are supported.

2.2.2 OpenMP

Open Multi-Processing (OpenMP) is an API that supports multi-platform
shared memory multiprocessing programming in C, C++ and
Fortran[9]. Compared to the Pthreads, OpenMP has a higher level of ab-
straction and support for multiple languages. OpenMP provides the
programmer a simple and flexible interface for creating parallel pro-
grams, these programs can range from simple desktop programs, to
programs that could run on a super computer. The parallel program-
ming is achieved by adding annotations to the compiler, thus requir-
ing compiler modification. Can be combined to work with MPI (next
subsection). It uses a shared memory approach just as the Pthreads. An
graphical representation of the multi-threading of OpenMP is showed
in Figure 4, where the Master thread can fork multiple threads to
perform the parallel tasks.
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Figure 4: OpenMP

2.2.3 MPI

Message Passing Interface (MPI) is a distributed memory approach.
This means that communication between threads can not be done by
using shared variables, but by sending "messages" to each other[28].
Compared to OpenMP and Pthreads is more of a standard than a real im-
plantation as a library or compiler construction. The standard consists
of a definition of semantics and syntax for writing portable message-
passing programs, which is available for at least C, C++, Fortran and
Java. Parallel tasks still have to be defined by the programmer (just
as the OpenMP and Pthreads). It is the current standard in High Perfor-
mance Computing (HPC).

2.3 parallel systems

Now that we have explained some Parallel Models, we dive into sys-
tems specifically designed for parallel programming. A parallel sys-
tem can have multiple definitions. Examples of parallel systems are:

• Multi-Core CPU - Single chip which houses 2 or more functional
units, all communication between cores is done on the same
chip (shown on the left side in Figure 5).

• GPU - A processor designed for graphics which has many cores,
but these cores are more simple then a MultiCore CPU shown
on the right in Figure 5.

• FPGA - An FPGA is a chip that contains programmable logic
which is much more flexible then a GPU or CPU, but the clock
speed is much lower than that of a GPU or CPU.

• Computer Clusters (Grids) - Multiple computers can be con-
nected together to perform calculations, synchronization is not
easy and most of the time the bottleneck of these systems
(SETI@Home is an example currently used for scanning the
galaxy for Extraterrestrial Life[1]).
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Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 5: Multi-core CPU vs GPU

2.3.1 GPU

GPUs are massively parallel processors. They are optimized for Sin-
gle Instruction Multiple Data (SIMD) parallelism, this means that a
single instruction will be executed on multiple streams of data. All
the processors inside a GPU will perform the same task on different
data. This approach of using the processors inside a GPU is called
General Purpose GPU (GPGPU) [12, 19, 29, 30, 33]. The GPU has a par-
allel computation model and runs at a lower clock rate than a CPU.
This means that only programs which perform matrix or vector cal-
culations can benefit from a GPUs. In video processing this is the case
because calculations are done on a lot of pixels at the same time.

Programming languages to make applications for the GPU are:

1. CUDA - Developed by NVIDEA[27] and only works on NVIDEA
graphic cards.

2. OpenCL - Developed by Apple[14] and is more generic than
CUDA and is not limited to only graphic cards.

3. Directcompute and C++ AMP - Developed by Microsoft and
are libraries part of DirectX 11, only works under the windows
operating system.

4. Array Building Blocks - Intel’s approach to parallel program-
ming (not specific to GPU).

Compute Unified Device Architecture (CUDA)

CUDA is developed by NVIDEA in 2007[27]. An overview of CUDA is
given in Figure 6. It gives developers direct access to virtual instruc-
tion set and the memory inside a GPU (only NVIDEA GPUs). CUDA

is a set of libraries available for multiple programming languages, in-
cluding C, C++ and Fortran. Because CUDA is not a very high level
language, it is not easy to develop programs in it. Developers would
like to see high level languages to create applications (which makes
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Figure 6: CUDA

development faster and easier). Therefore research is done in gener-
ating CUDA out of languages with more abstraction. Examples are:

• Accelerate[8] - Haskell to CUDA compiler

• PyCUDA[20] - Python to CUDA compiler

accelerate Research has been done to generate CUDA code out
of an embedded language in Haskell named Accelerate[8]. They state
that it increases the simplicity of a parallel program and the result-
ing code can compete with moderately optimized native CUDA code.
Accelerate is a high level language that is compiled to low-level GPU
code (CUDA). This generation is done via code-skeletons which gen-
erate the CUDA code. It is focused on Array and Vector calculations,
Vectors and Arrays are needed because the GPU requires a fixed
length to operate (it has a fixed number of cores), thus making Lists in
Haskell unusable. Higher order functions like map and fold are rewrit-
ten to have the same behavior as in Haskell. This has still the abstrac-
tions of Haskell, but can be recompiled to be CUDA compatible. A
comparison is made with an vector dot product algorithm, what was
observed is that the time to get the data to the GPU was by far the
limiting factor. (20 ms to get the data to the GPU and 3,5ms execution
time with a sample set of 18 million floats). The calculation itself was
much faster on the GPU than on the CPU (about 3,5 times faster, this
includes the transfer time for the data).
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fcuda Although CUDA programs are supposed to be run on a
GPU, research is being done to compile it to FPGA’s. This is called
FCUDA [29]. Their solution to keep Moore’s Law alive is to make it
easier to write parallel programs for the FPGA using CUDA. FCUDA
compiles CUDA code to parallel C which then can be used to pro-
gram an FPGA. CUDA for the FPGA is not enough according to
them for more application specific algorithms which cannot exploit
the massive parallelism in the GPU and therefore require the more re-
configurable fabric of an FPGA. Their example programs show good
result especially when using smaller bit-width numbers than 32-bit,
this is because the GPU is optimized for using 32-bit numbers. Pro-
grams which use more application specific algorithms should per-
form much better on the FPGA than on the GPU, this was not tested
thoroughly yet.

OpenCL

OpenCL is a framework for writing programs that run on heteroge-
neous systems, these systems consist of one or more of the following:

• Central Processing Units (CPUs)

• Graphics Processing Units (GPUs)

• Digital Signal Processors (DSPs)

• Field-Programmable Gate Arrays (FPGAs)

OpenCL is based on on the programming language C and includes
an Application Programming Interface (API). Because OpenCL is not
only a framework for an GPU, it also provides a task based framework
which can be for example run on an FPGA or CPU. OpenCL is an
open standard and supported by many manufacturers. Research is
done in compiling OpenCL to FPGA’s to generate application specific
processors[16].

DirectCompute

DirectCompute is Microsoft’s approach to GPU programming. It is
a library written for DirectX and only works on the newer windows
operating systems.

Array Building Blocks

Intel’s approach to make parallel program easier is done in [25]. Their
aim is a retargetable and dynamic platform which is not limited to
run on a single system configuration. It is mostly beneficial in data
intensive mathematical computation and should be deadlock free by
design.



2.4 fpgas : programmable logic 13

2.3.2 Heterogeneous systems

The methods mentioned until now mostly use 1 kind of system. In
heterogeneous systems there could be multiple types of parallel sys-
tems working together. CUDA is a heterogeneous system because it
uses the GPU in combination with the CPU. A whole other kind of het-
erogeneous system is a grid computing system. Multiple computers
connected via a network working together is also a heterogeneous
system. An upcoming heterogeneous system is the use of FPGA to-
gether with a CPU. The FPGA can offload the CPU by doing complex
parallel operations. Another possibility of the FPGA is that it can be
reconfigured to do other tasks. More about the FPGA is in the next
section.

2.4 fpgas : programmable logic

FPGAs once were seen as slow, less powerful Application Specific In-
tegrated Circuit (ASIC) replacements. Nowadays they get more and
more powerful due to Moore’s Law[4]. Due to the high availability
of Logic Elements (LEs) and Block-RAMs and how the Block-RAM is dis-
tributed over the whole FPGA, it can deliver a lot of bandwidth (a
lot can be done in parallel, depending on the algorithm run on the
FPGA). Although the clock-speed of an FPGA is typically an order of
magnitude lower than a CPU, the performance of an FPGA could be a
lot higher in some applications. This higher performance in an FPGA

is because the CPU is more generic and has a lot of overhead per in-
struction, where the FPGA can be configured to do a lot in parallel.
The GPU however is slightly better in calculation with Floating Point
numbers, compared with the FPGA. The power efficiency however is
much lower on an FPGA compared with a CPU or GPU, research on
this power efficiency of an FPGA has been done in several fields and
algorithms (e.g. Image Processing [30], Sliding Window applications
[12] and Random Number generation [33]). The difference in perfor-
mance between the CPU and FPGA lies in the architecture that is used.
A CPU uses an architecture where instructions have to be fetched from
memory, based on that instruction a certain calculation has to be done
and data which is used in this calculation also has to come from mem-
ory somewhere. This requires a lot of memory reading and writing
which takes up a lot of time. The design of the ALU also has to be
generic enough to support multiple instructions, which means that
during execution of a certain instruction, only a part of the ALU is ac-
tive, which could be seen as a waste of resources. An FPGA algorithm
doesn’t have to use an instruction memory, the program is rolled out
entirely over the FPGA as a combinatorial path. This means that most
of the time, the entire program can be executed in just 1 clock cycle.
Therefore an algorithm on the FPGA could be a lot faster when it
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fit’s on an FPGA and takes up a lot of clock cycles on the CPU. This
is not the only reason an FPGA could be faster, the distributed style
of the memory on an FPGA can outperform the memory usage on
an CPU easily. Because the memory on an FPGA is available locally
on the same chip near the ALU logic, there is almost no delay and
because there are multiple Block-RAM available on an FPGA, the data
could be delivered in parallel to the algorithm. The big downside of
using FPGAs is the programmability, this is not easily mastered. The
current industry standards for programming an FPGA are VHDL and
Verilog. These are very low level and the tools available are not eas-
ily used as well Figure 7 shows the tool-flow when using the Xilinx
tools. Fist a design in VHDL or Verilog has to be made, this design
is then simulated using the Xilinx tools. When simulation is success-
ful, the design can be synthesized. This synthesization can take up
to a few seconds for small designs but bigger design synthesization
could take up to a couple of days. Then optimization steps will be
done by the tool followed by mapping, placement and routing on the
FPGA. This results in a net list file which then can be used to program
the FPGA. The steps from synthesis to programming the FPGA could
not be improved much, what can be improved is the programming
language. Another downside of using VHDL or Verilog is that FPGA

vendors have specific Intellectual Property (IP) cores which are not
hardly interchangeable between FPGAs of the same vendor and even
worse compatibility between vendors. That is the subject for the final
part of this literature study.

2.4.1 High level programming of the FPGA

As mentioned before, the current standards for programming the
FPGA are VHDL and Verilog, these are low level languages and higher
level languages are preferred for easier development and better scal-
ability. Doing simulation with VHDL and Verilog requires Waveform
simulation which is doable for small designs, but get exponentially
complicated with bigger designs, this makes verification hard. Re-
search is being done to compile different high level languages to
VHDL or Verilog. The goal of these languages is to leave out the
step of WaveForm simulation. Another benefit of using high level lan-
guages is the support for existing verification tools. VHDL has some
tools for verification but are not easy to use (e.g. Property Specifica-
tion Language (PSL)). A couple of methods to generate VHDL are:

• System Verilog - A more object oriented version of Verilog, but
this is not very well supported by current Electronic Design
Automation (EDA) tools
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Figure 7: Xilinx Toolflow: From design to FPGA

• C-Based frameworks - A couple of frameworks are available for
compiling a small subset of C to VHDL but are very limited (e.g.
no dynamic memory allocation)

• CUDA/OpenCL - These are already parallel languages and
should be more compatible with the parallel nature of an FPGA

but the languages used are still low level (C, C++, Fortran)

• High Level Languages - These are more abstract and could use
existing tools for verification, some examples will be given in
the next section

• Model Based - There are compilers available which can convert
Matlab or Labview to VHDL or Verilog, or the use of data-flow
graphs as in [26] can be used to program DSP like algorithms on
the FPGA
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2.4.2 High Level Languages

As mentioned as one of the solutions for better programmability of
the FPGA is the use of high level programming languages. A few lan-
guages will be mentioned here.

cλash One of these languages is CλaSH [3], this is a language
based on Haskell in which a subset of Haskell can be compiled to
VHDL and Verilog. This language is being developed at the Com-
puter Architecture for Embedded Systems (CAES) group on the Uni-
versity of Twente. Haskell’s abstraction and polymorphism can be
used by CλaSH. Usage of lists and recursion however is not sup-
ported in CλaSH, this is because hardware requires fixed length val-
ues. A functional programming language (Haskell) is used because
this matches hardware circuits a lot better than traditional sequential
code. This is because a functional language is already a parallel lan-
guage. Once a circuit is designed and simulated in CλaSH, the code
can be generated for the FPGA. Currently both VHDL and Verilog
are supported. Another language which uses Haskell as a base for
designing digital circuit is Lava [13].

liquidmetal Another language to program FPGAs or more gen-
eral, heterogeneous systems, is Lime[2]. Lime is compiled by the Liq-
uidMetal compiler. It has support for polymorphism and generic type
classes. Support for Object oriented programming is also included,
this complies with modern standards of programming and is com-
mon knowledge of developers. Another approach using LiquidMetal
is the use of task based data-flow diagrams as input to the compiler.
LiquidMetal is not specifically targeted for FPGAs, it can be used on
the GPU as well. When using the FPGA, the LiquidMetal compiler will
generate Verilog.

2.5 conclusion

FPGA technology is getting much more interesting due to the increase
of transistor count and features available on the FPGA. Programming
the FPGA however using the current standards, VHDL and Verilog, is
getting to complex. Waveform simulation of big designs is not feasi-
ble anymore therefore more abstraction is required. Using high level
languages seems to be the direction to go in the FPGA world. Simu-
lation can be done using the high level languages in stead of using
Waveform simulation, this can be much faster and existing verifica-
tion tools can be used. CλaSH is a good example of using a functional
languages as a Hardware Description Language (HDL). The EDA tools
currently available can use an update as well, support for more lan-
guages is preferred, but that is out of the scope of this research.
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B A C K G R O U N D : T H E WAV E C O R E

3.1 introduction

The WaveCore is a coarse-grained reconfigurable Multiple Instruction
Multiple Data (MIMD) architecture ([35], [36]). The main focus is on
modeling and analyzing acoustic signals (generating the sound of e.g.
a guitar string or create filters on an incoming signal.) The WaveCore
has a guaranteed throughput, minimal (constant) latency and zero
jitter. Because of the constant minimal latency, there is no jitter. This
is important in audio signal generation because the human ear is very
sensitive to hiccups in audio. This chapter will explain the software
and hardware architecture of the WaveCore and some pointers to the
CλaSH implementation are made at the end.

3.1.1 Software Architecture

The software architecture is based on data-flow principles. Figure 8

shows a schematic representation of the data-flow model. The top-
level consists of one or more actors called WaveCore Processes (WPs),
a graph can consist of multiple WPs interconnected via edges. These
edges are the communication channels between WPs. Each WP consist
of one or partitions. Every partition is broken down to multiple Prim-
itive Actors (PAs). These PAs are interconnected via edges, at most 2

incoming edges and 1 outgoing edge. The tokens on these edges are
called Primitive Token Elements (PTEs). Each PA is fired according to a
compile-time derived static schedule. On each firing, a PA consumes
2 tokens and produces 1 token. The output token can delayed us-
ing the delay-line parameter. A delay-line is an elementary function
which is necessary to describe Feedback Delay Networks (FDNs), or
Digital Waveguide models. This delay can be used for e.g. adding
reverberation to an input signal or adding an echo.

3.1.2 Hardware Architecture

The introduction showed the programming model of the WaveCore
processor. This section will show how this is mapped to hardware.
The global architecture of the WaveCore is show in Figure 9. This
consist of a cluster of:

• Multiple Processing Units (PUs) (explained in the next section)

17
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clock is halted when there is no input data available, resulting
in a data-flow driven power optimization mechanism. Each
processor is equipped with non-cached local memory which
is justified by the observation that many common DSP tasks
have a small memory requirement. A streaming application is
partitioned and distributed over a number of dataflow driven
processors. The programming methodology is based on C,
where the architecture is exposed to the programmer. Our
WaveCore concept inherits some of the aspects of the men-
tioned architectures (small RISC processor core, scalability of
processor and associated compiler, data-flow). However, we
focus on a declarative programming methodology instead of
imperative. Moreover, we focus on very strict predictability
of the overall processing, which is dominantly driven by the
application domain of physical/acoustical modeling. In section
III. we elaborate on the WaveCore programming methodology
and associated architecture. In section IV. we position the
technology. We evaluate the technology in section V. and
conclude in section VI.

III. WAVECORE MIMD ARCHITECTURE

Like mentioned in the introduction the WaveCore pro-
gramming model is tightly linked to the MIMD architecture
and physical modeling application domain. The programming
model is based on a declarative representation of a cyclo-static
dataflow-graph (CSDF) [2]. As we will show this concept
results in both an efficient mapping of the data-flow model
on the MIMD architecture, as well as a natural programming
interface to functional languages. The MIMD architecture is
derived from and strongly linked to the programming model.
Therefore, we will first elaborate on the dataflow model, fol-
lowed by an explanation of the associated MIMD architecture.

A. Dataflow model

A schematic representation of a WaveCore dataflow graph
is depicted in fig. 1. At top-level, the graph consists of actors,
which we call WaveCore Processes (WP), and edges. WPs
only communicate to each other via tokens which are trans-
mitted over the edges. Each WP is periodically fired, according
to a cyclo-static schedule. A WP does not autonomously fire
on the presence of tokens on its input edge(s) but in an
orchestrated way through a central scheduler. The rationale
of this firing principle is that this yields a strict, predictable
and jitter-free overall process behavior. A WP might have
multiple inbound and outbound edges, where each edge carries
an associated token-type. An edge has one producer, but
may have multiple consumers, which enables broadcast-token
distribution (note that this is a deviation from the pure CSDF
definition). Feedback edges and hence closed-loop process
graphs are supported and still fully deterministic because of
the mentioned central firing principle. Edges are capable to
buffer a finite, programmable number of tokens. A WP is
composed of one or more ’WP-partitions’, like WP1 in fig. 1
breaks down into WP1.a and WP1.b. If a WP is composed
of more than one WP-partitions, then it might be that tokens
are also decomposed and distributed over WP-partitions. This

Fig. 1. WaveCore dataflow graph

is illustrated in fig. 1 by edge E1, which tokens are split and
forwarded to WP-partitions WP1.a and WP1.b. The concept
of WP-partitions is driven by the MIMD architecture, where a
WP might be decomposed and mapped on multiple processing
entities as we will show in the next section of this paper.
Ultimately a WP-partition breaks down into one or more
’primitive actors’ (PA). Hence, a WP, or WP-partition consists
of an arbitrary number of arbitrarily connected PAs. Likewise,
a token (or token partition) breaks down into one or more
atomic ’primitive token elements’ (PTE). Each PA in a WP
is unconditionally fired according to a compile-time derived
static schedule when the WP itself is fired. Upon firing, a PA
consumes at most two PTEs and produces one PTE. A PA
is a 6-tuple which is depicted in fig. 2. Upon firing the PA

Fig. 2. Primitive Actor (PA)

consumes (depending on its function f ) at most two PTEs
(carried by inbound edges x1[n] and x2[n]) and produces an
output PTE through the outbound edge with optional delay-
line y[n+ λ], according to equation 1.

y[n+ λ] = f(x1[n], x2[n], p) (1)

Where the delay-line length can be modulated with the in-
bound edge τ [n] at run-time, according to equation 2.

λ[n+ 1] = bΛ.(τ [n]− 1)c (2)

The PTEs (being floating-point numbers) which are carried by
the inbound edge τ [n] determine the actual delay-line length λ.
According to equation 2, the actual delay-line length λ varies
between 1 and Λ.

1 < τ [n] < 2 (3)

Summarized:

Figure 8: WaveCore Data flow Graph

y[n+λ] :outbound edge
τ [n] :inbound delay-line length modulation edge
Λ :delay-line length
x1[n] :inbound edge
x2[n] :inbound edge
f :arithmetic function (add, mul, div, cmp, etc.)
p :parameter (applicable when required by f , e.g.

y[n+ λ] = p.x1[n])

The motivation for inherent delay-line support within the
definition of the PA is inspired by physical modeling of
acoustical phenomena [3]. The delay-line as a basic modeling
entity plays a fundamental role within this domain. Adding
dynamic delay-line length to this concept efficiently extends
the modeling capabilities with a wide range of dynamic
system properties (e.g. Doppler shifting, multi-path delay in
varying reference systems, etc.). The supported arithmetic
PA functions (i.e. denoted with the ’f ’ tuple-element) are
the commonly applied basic arithmetic and logical functions
like addition, multiplication, multiply-addition, division,
compare, etc. A PA behaves combinatorial when Λ equals
zero, and sequential when Λ is unequal to zero. As a result,
a WP can be classified as an abstract RTL (Register Transfer
Level) description since a WP is a network of interconnected
combinatorial and sequential basic elements. The RTL nature
of a WP has implications for the WaveCore MIMD processor
architecture, and the positioning of the technology as we will
show in the next section.

B. Reconfigurable MIMD cluster

The defined data-flow model can be mapped on a reconfig-
urable WaveCore MIMD cluster, which is depicted in fig. 3.
The MIMD cluster consists of a matrix of interconnected
Processing Unit (PU) tiles, and a local shared memory tile. A
PU is a dedicated RISC processor, which is optimized for WP
execution and is described in more detail in the next section.
The MIMD cluster is configured through the Host Processor
Interface (HPI). For this purpose, a host-CPU (which could be
a general purpose processor) loads a configuration image into
the MIMD cluster, and programs the CSDF scheduler. This
scheduler is basically a timer which periodically generates
firing events through the HPI to the PUs on which the WP, or
WP-partitions are mapped. Therefore, each PU has to iterate
the associated WP-partition within the available time, before
the next WP fire event is generated by the scheduler. The
execution with this strict deadline is guaranteed by the static
schedule and the predictability of the data streams through
the memory hierarchy. The PUs within the cluster are inter-
connected by means of a Graph Partitioning Network (GPN),
which is indicated by the red interconnect in fig. 3. Each
PU is enabled to produce and /or consume PTEs through the
GPN, which are associated with WP-partition cuts (e.g. PTEs
produced by WP1.a and consumed by WP1.b in fig. 1). Only
sequential PAs are allowed to produce graph-cut PTEs. The
GPN is implemented as a buffered ring network. The buffering
capacity is very small, and dimensioned in such a way that

Fig. 3. WaveCore MIMD cluster

each PU can produce and consume one graph-cut PTE each
clock cycle. Tokens which are produced by PAs remain inside
the PU onto which the WP(partition) is mapped, unless these
tokens are associated to delay-lines, graph-cuts or WP-edge
tokens. The memory hierarchy is derived from the locality of
reference properties of a WaveCore CSDF graph. Within the
hierarchy we distinguish three levels, without caches. Level1
is associated to local memory references which are due to
the execution of PAs within a WP-partition. The required
storage capacity for this execution is located inside each PU as
tightly coupled data memory. The ’mem’ tile within the cluster
embodies the level2 memory and is dominantly associated to
token buffering and delay-line data storage. Apart from that,
the level-2 memory tile is used to support PA execution (e.g.
transcendental look-up functions like hyperbolic, where the
associated physical look-up table is shared by all PUs in order
to avoid replication of relatively expensive look-up memory
resources in each PU). PU access to the shared level2 memory
tile is arbitrated by means of a fixed arbitration scheme.
Conflicting level2 memory access is self-scheduled through
HW arbitration and therefore not required to be resolved by
the mapping tools. All remaining level3 memory traffic is
mapped on the external memory interface. This level3 memory
is used to store token data as well as large delay-line buffer
space. The difference with level2 memory is that level3 is
supposed to be a large bulk memory, like DDR3. Level3
memory is also used to exchange tokens between WaveCore
processes and possibly other processes, like control actors
which might be executed as SW process on the host CPU.
Likewise, the level3 memory can be used to exchange tokens
between WaveCore clusters, when multiple WaveCore clusters
are present in a SoC. Level3 memory, combined with a process
independent token definition enables the composition of a
heterogeneous system in a straightforward way. In many data-
flow architectures, the token data is streamed from producing
HW entity to consuming HW entity like in [5]. In such
architectures the tokens stream between the spatially mapped
processes, which implies a good exploitation of the inherent
locality of reference. Within WaveCore we chose to exchange
tokens through the explained level2 and level 3 memory
hierarchy, where PUs are responsible for both writing and
reading token data to/from these shared memory resources.

Figure 9: WaveCore Global Architecture

• External memory, the WaveCore drives a high-performance in-
terface which could be linked to for example a controller for
DRAM or a controller connected to a PCIe device.

• The Host Processor Interface (HPI) which handles the initializa-
tion of the cluster (writing the instruction memories of the PUs)
and provides runtime-control to the cluster.

• The Cyclo-Static Data-flow (CSDF) scheduler periodically fires
every process in the WaveCore Process Graph (WPG) according
to a compile-time derived static schedule.

This cluster is scalable, the number of PUs is configurable (as long as
there is room on the target device, this could be an Field-Programmable
Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC)).

processing unit Each PU is a small RISC processor.
Every WaveCore Process Partition (WPP) is mapped to a single PU.
This mapping is done automatically by the compiler. The PUs are con-
nected via a ring network and have access to a shared memory. The
structure of a single PU is showed in Figure 10. The different blocks
of the PU are explained in section 3.3. Every PU consist of a Graph
Iteration Unit (GIU) and a Load/Store Unit (LSU). The GIU is the main
calculation unit, has it own memories and control logic. The LSU takes
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care of moving external data to/from the executed WaveCoreWPP (to-
ken data and/or delay-line data). The LSU has 2 threads which con-
trol the communication between the external memory and the GIU,
one thread to store data from the GIU in the external memory (Store
Thread) and one to read data from the external memory to the GIU.
This is done via buffers between the LSU and the GIU. Because of
this of this "decoupling", this hides the memory latency from the GIU

which makes the iteration process more efficient. Components inside
the GIU are:

• Arithmetic Logic Unit (ALU) - The arithmetic computation unit

• X and Y memories - The local memories used by the ALU

• Cmem - The Coefficient Memory, which is required by some
instructions as a third parameter

• Address Computation Unit (ACU) - This unit calculates all the
memory address required to read and write to the X and Y
memory

• Router - Handles the WriteBack of the output of the ALU, this
could be to one of the internal memories, the external memory
or the Graph Partition Network (GPN)

• GPN port - Handles the communication with other PUs.

• WriteBack Buffer (WBB) - Acts as a buffer between for the Coef-
ficient Memory (C-Mem), when the buffer is filled and no other
components are writing to the C-Mem, the WBB will be written
to the C-Mem.

• HPI port - Handles the communication with the host processor

• Program Control Unit (PCU) - Parses the ALU function from the
instruction coming from the Program Memory (Pmem)

• Inbound FiFo (ibFiFo) and Outbound FiFo (obFiFo) - FiFo buffers
for communication between the GIU and LSU

graph iteration unit The pipeline structure of the GIU is
showed in Figure 11. The pipeline in the current configuration con-
sists of 13 stages where most of the stages are required for the exe-
cution of the floating point unit (this currently depends on the Xilinx
floating point technology). Below is a summary of the pipeline inner
workings (a more detailed explanation is given in section 3.3). The
instruction set of the GIU is optimized to execute (i.e. fire) a PA within
a single clock-cycle.

• FET - Fetch instructions from the instruction memory
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GIU: Graph Iteration Unit
LSU: Load/Store Unit
GPN: Graph Partition Network
LSU: Load/Store Unit
PCU: Program Control Unit
ACU: Address Computation Unit
WBB: WriteBack Buffer

GPN port writeback into X/Y memories:
- Main requirement: predictability => conflicting ports 
- Writeback to X/Y memories is in most cases not replicated (either X or Y) 
- Use both A and B ports of the memories? => does not make much sense because 
Operand fetch is in many cases on both memories => in many cases no free timeslots
- Shallow buffer in GPN unit?
- WBB for GIU writeback?
- Solve completely in compiler:

=> possible?
=> exact known determinism
=> what about predictability in GPN network?
=> forget it........

- Most probable solution:  
=> Compiler “soft-schedule”
=> Evenly distributed X/Y memory allocation
=> GPN moves schedule balance: not too early, not very late
=> Shallow buffer in GPN unit 

YmemYmem

RouterRouter

GPN
port

GPN
port

XmemXmem

HPI
port
HPI
port

ACUACU

CmemCmem

ibFIFOibFIFO

obFIFOobFIFO

DMACDMAC

GIU LSU
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HPI

Ext.
Mem

PmemPmem

X1 X2

f

y[n]

ALUALU

P

PCUPCU

WBBWBB

Figure 10: WaveCore Processing Unit

• DEC - Decode the instruction and setup reads for the internal
memories

• OP - Read operands from FiFo if required

• EXE1 (x4) - Execute Floating Point Adder

• EXE2 (x6) - Execute Floating Point Multiplier

• WB1 - Write-back of the calculation results

• WB2 - Communicate with the GPN network

load/store unit The LSU executes two linked-lists of DMA-
descriptors (one for the load, the other for the store-thread). A DMA
descriptor is composed of a small number of instructions. The LSU

also makes use of a pipeline, this is showed in figure 12.
It consists of 3 simple stages:

• Stage 1 - Fetch the instructions from the Instruction Memory
and update internal registers used for communication with the
external memory

• Stage 2 - Decode instructions

• Stage 3 - Pointer updates are written back to cMem, and exter-
nal memory transactions are initiated
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= WB1 pipeline stage

= OP pipeline stage= OP pipeline stage

= WB2 pipeline stage
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Figure 11: WaveCore GIU Pipeline
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Imem DEC

MOV
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load PC, store PC

WBB Dmem

Figure 12: WaveCore LSU Pipeline

3.2 wavecore programming language and compiler , sim-
ulator

As mentioned in section 3.1.1, the programming model is based on
the data-flow principle. A program consists of one or more Signal
Flow Graphs (SFGs). Each SFG consist of a list of statements (the in-
structions). Each statement has the following structure:

< f >< x1 >< x2 >< y >< p >< dl >

where:

• f - The ALU-function

• x1 - Source location of x1

• x2 - Source location of x2

• y - Write-back destination

• p - Location of the 3rd ALU variable

• dl - Delay length
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An example program with block diagram is showed in Figure 13.
Programs for the WaveCore can be run/tested with the C-Simulator.
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Figure 13: WaveCore Program Example

This simulator is written in C. The C-Simulator takes the byte-code
generated by the WaveCore compiler. The WaveCore compiler takes
care of the mapping to the different PUs of efficient execution. An
example implementation which uses 5 PUs is showed in figure 14.
This is implemented on an Spartan 6 LX45 FPGA1.
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● WaveCore instance on Xilinx Spartan®-6 LX45:

● 5 PUs
● Can execute up to 8960 PAs  @48 kHz 

sampling rate
● 40 KByte on-chip L1 memory
● 16 KByte on-chip L2 memory
● 128 Mbyte DDR2 L3 memory  
● AC97 audio codec

● Purposes:

● WaveCore technology evaluation
● Guitar effects processor application demo
● Complex physical modeling with ultra-low 

latency

Figure 14: WaveCore implementation on an FPGA

3.2.1 WaveCore GIU Instructions

TODO: - Opcodes mappen naar WC language?
The WaveCore GIU instructions can be divided into 3 groups:

1 http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/lx.html

http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/lx.html
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• Default Instructions - These instructions execute most of the
instructions see Figure 15.

• Pointer Initialization Instructions - These instructions initial-
ize the memory pointers which are update by the ACU and used
to address the x and y memories. The structure of this instruc-
tion is showed in Figure 16.

• Alternative Route Instruction - These are instructions where
the result of the ALU does not take the normal route, but are
routed trough the GPN or the external memory, see Figure 17.

As can be seen in Figures 15, 16 and 17 is that the length of the
instructions is only 28 bits (0 - 27). The WaveCore however uses 32

bit instructions, the 4 missing bits are reserved for the opcode for the
ALU. The ALU can execute during every instruction mentioned above.
The possible OpCodes are listed in Table 1. The bit representations
of the OpCode are not important for now but can be found in the
WaveCore documentation.

dest a/s pd(7b)
0

00=X-mem
01=Y-mem
10=XY-mem (repl.)
11=Alt-mode

a/s:
0=Add
1=Sub

Operand Memory Assign:
0 = X1 → Xmem, X2 → Ymem
1 = X2 → Xmem, X1 → Ymem

Default pointer mode

pd(7b) = pointer displacement: 7 bits unsigned number, to be added to / subtracted from referenced pointer

a/s pd(7b)oapd(7b)dl
6781415161723242526

a/s
27

acuY(8b)acuX(8b)acuW(8b)

0=no delayline
1=delayline

Alt pointer mode, pointer init

1   10 sel not used
27 26 25 24 19 18 12 0

imm(12b)

imm
11

sel(5)=X-wb
sel(4)=Y-wb
sel(3)=PntrGPNx
sel(2)=PntrGPNy
sel(1)=X-op
sel(0)=Y-op

Alt pointer mode, alternative route (token and/or GPN)

1   11
27 26 25

acuY*/acuWb

8b 8b

24 8 7 0

4b

1522
acuX*/acuWa-

*) acuX/acuY format is identical to acuW or acuX/acuY format (depending on context)
*) Conflicting permutations between opRC and wbRC are not checked by HW
*) Assignment definition in acuX/Y/W fields are ignored in 'Alt'-mode
*) WbRC(3) = LSU destination writeback enable ('1' == push outbound FIFO)

NOTE: LSU is the only destination in that case (no parallel writeback)!!
*) Delay-lines are not supported within Alt-pointer mode

*) Replicated X/Y writeback uses X-WB pointer solely
*) LSU WB simultaneous with Wbrc modi NOT possible (NOTE: handle in compiler)
*) Writeback is disabled when NOP instructions are executed. However, pointer updates are possible in combination 
   with NOP instructions. 

wbRCopRC
1619

3b

opRC X1 X2 WbRC(3:0) WB-dest
000 X LSP 0000 X(a)
001 Y LSP 0001 Y(a)
010 LSP X 0010 XY(a)
011 LSP Y 0011 IGC(x)
100 X Y 0100 X(b)
101 Y X 0101 Y(b)
110 - - 0110 XY(b)
111 - - 0111 IGC(y)

1--- LSP

Figure 15: WaveCore Default Instruction

dest a/s pd(7b)
0

00=X-mem
01=Y-mem
10=XY-mem (repl.)
11=Alt-mode

a/s:
0=Add
1=Sub

Operand Memory Assign:
0 = X1 → Xmem, X2 → Ymem
1 = X2 → Xmem, X1 → Ymem

Default pointer mode

pd(7b) = pointer displacement: 7 bits unsigned number, to be added to / subtracted from referenced pointer

a/s pd(7b)oapd(7b)dl
6781415161723242526

a/s
27

acuY(8b)acuX(8b)acuW(8b)

0=no delayline
1=delayline

Alt pointer mode, pointer init

1   10 sel not used
27 26 25 24 19 18 12 0

imm(12b)

imm
11

sel(5)=X-wb
sel(4)=Y-wb
sel(3)=PntrGPNx
sel(2)=PntrGPNy
sel(1)=X-op
sel(0)=Y-op

Alt pointer mode, alternative route (token and/or GPN)

1   11
27 26 25

acuY*/acuWb

8b 8b

24 8 7 0

4b

1522
acuX*/acuWa-

*) acuX/acuY format is identical to acuW or acuX/acuY format (depending on context)
*) Conflicting permutations between opRC and wbRC are not checked by HW
*) Assignment definition in acuX/Y/W fields are ignored in 'Alt'-mode
*) WbRC(3) = LSU destination writeback enable ('1' == push outbound FIFO)

NOTE: LSU is the only destination in that case (no parallel writeback)!!
*) Delay-lines are not supported within Alt-pointer mode

*) Replicated X/Y writeback uses X-WB pointer solely
*) LSU WB simultaneous with Wbrc modi NOT possible (NOTE: handle in compiler)
*) Writeback is disabled when NOP instructions are executed. However, pointer updates are possible in combination 
   with NOP instructions. 

wbRCopRC
1619

3b

opRC X1 X2 WbRC(3:0) WB-dest
000 X LSP 0000 X(a)
001 Y LSP 0001 Y(a)
010 LSP X 0010 XY(a)
011 LSP Y 0011 IGC(x)
100 X Y 0100 X(b)
101 Y X 0101 Y(b)
110 - - 0110 XY(b)
111 - - 0111 IGC(y)

1--- LSP

Figure 16: WaveCore Initialize Pointers Instruction

3.3 next step : simplified pipeline (for use with cλash)

Now that we have discussed the existing WaveCore, a start is made to
implement this in CλaSH. The pipeline is simplified, namely the float-
ing point arithmetic is replaced by fixed point. This simplifications
make it easier to implement the WaveCore in CλaSH (and in general
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dest a/s pd(7b)
0

00=X-mem
01=Y-mem
10=XY-mem (repl.)
11=Alt-mode

a/s:
0=Add
1=Sub

Operand Memory Assign:
0 = X1 → Xmem, X2 → Ymem
1 = X2 → Xmem, X1 → Ymem

Default pointer mode

pd(7b) = pointer displacement: 7 bits unsigned number, to be added to / subtracted from referenced pointer

a/s pd(7b)oapd(7b)dl
6781415161723242526

a/s
27

acuY(8b)acuX(8b)acuW(8b)

0=no delayline
1=delayline

Alt pointer mode, pointer init

1   10 sel not used
27 26 25 24 19 18 12 0

imm(12b)

imm
11

sel(5)=X-wb
sel(4)=Y-wb
sel(3)=PntrGPNx
sel(2)=PntrGPNy
sel(1)=X-op
sel(0)=Y-op

Alt pointer mode, alternative route (token and/or GPN)

1   11
27 26 25

acuY*/acuWb

8b 8b

24 8 7 0

4b

1522
acuX*/acuWa-

*) acuX/acuY format is identical to acuW or acuX/acuY format (depending on context)
*) Conflicting permutations between opRC and wbRC are not checked by HW
*) Assignment definition in acuX/Y/W fields are ignored in 'Alt'-mode
*) WbRC(3) = LSU destination writeback enable ('1' == push outbound FIFO)

NOTE: LSU is the only destination in that case (no parallel writeback)!!
*) Delay-lines are not supported within Alt-pointer mode

*) Replicated X/Y writeback uses X-WB pointer solely
*) LSU WB simultaneous with Wbrc modi NOT possible (NOTE: handle in compiler)
*) Writeback is disabled when NOP instructions are executed. However, pointer updates are possible in combination 
   with NOP instructions. 

wbRCopRC
1619

3b

opRC X1 X2 WbRC(3:0) WB-dest
000 X LSP 0000 X(a)
001 Y LSP 0001 Y(a)
010 LSP X 0010 XY(a)
011 LSP Y 0011 IGC(x)
100 X Y 0100 X(b)
101 Y X 0101 Y(b)
110 - - 0110 XY(b)
111 - - 0111 IGC(y)

1--- LSP

Figure 17: WaveCore Alternative Route Instruction

OpCode Function

ADD y[n+ λ] = x1[n] + x2[n]

CMP y[n+ λ] == (x1[n] > x2[n])

DIV y[n+ λ] = x1[n]/x2[n]

LGF y[n+ λ] = LogicFunct(x1[n], x2[n],p

LUT y[n+ λ] = Lookup[x1[n]]

MUL y[n+ λ] = x1[n] · x2[n]
MAD y[n+ λ] = p · x1[n] · x2[n]
AMP y[n+ λ] = p · x1[n]
RND y[n] = random(0, 1)

Table 1: Functions of the ALU

for VHDL as well), because implementing the Floating point is dif-
ficult and time consuming and is not required to show that CλaSH
is suitable for implementing the WaveCore. The resulting pipeline
is sufficient as a proof of concept. Figure 18 shows the more sim-
plified pipeline used as base for the CλaSH implementation. Apart
from the floating point unit, the pipeline has the same functionality
as in Figure 11, only now all the relations between the internal blocks
are more clearly drawn, this is used later to create the CλaSH code.
Explanation of the stages in the simplified GIU pipeline :

1. Instruction Fetch - Instruct the GIU Instruction Memory (GIU Mem)
to fetch an instruction with the GIU Program Counter (GIU PC)
as the memory address (and increase the GIU PC)

2. Instruction Decode - Decode the instruction coming from the
GIU Mem.
ACU function:

• Determine the x1 location
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GIU Pipeline LSU Pipeline
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Figure 18: Simplified Pipeline

• Determine the x2 location

• Determine where the result of the ALU is written to.

• Control memories (x,y and c) for reading the correct ALU

input values.

• Update memory address pointers which are stored in a
register (ACU pointers).

PCU function:

• Extract ALU function (operation code)

3. Operand Fetch - The values from the memories (x,y and c) are
now available and using the result from the ACU the values for
x1 and x2 can be determined. There is also a check if the instruc-
tion is a TAU instruction, if this is the case, the ALU does not
have to perform a calculation but a simple write of x1 to the
C-Mem

4. ALU Execution - Execute the ALU
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5. WriteBack Stage - Write the result of the ALU to the appropriate
memory, GPN network or the outbound FiFo

6. GPN Communication - Read and write to the GPN network, and
write to x and y memory if required

And there is also the LSU pipeline (on the right in Figure 18).

• Stage 1 - Read the correct instruction from the LSU Instruc-
tion Memory (LSU Mem), where the memory address is deter-
mined by the LSU scheduler. This scheduling depends on the
FiFo buffers, the store thread is executed if there is data avail-
able in the obFiFo and the load thread is executed when there is
space available in the ibFiFo]

• Stage 2 - The LSU instruction is decoded and accordingly the
LSU registers are updated.

• Stage 3 - Pointer updates are written back to cMem, and exter-
nal memory transactions are initiated

3.3.1 WaveCore examples

• Efficient modeling of complex audio/acoustical algorithms

• Guitar effect-gear box

• Modeling of physical systems (parallel calculations can be done,
just as the real physical object/system)

3.3.2 WaveCore example used in Haskell and CλaSH

impulse response As an example for the WaveCore implemen-
tation in CλaSH, an impulse response is simulated. An impulse re-
sponse shows the behavior of a system when it is presented with a
short input signal (impulse). This can be easily simulated with the
WaveCore. First a Dirac Pulse is generated using the WaveCore code
in Listing 1.

1 .. Dirac pulse generator:

2 .. .y[n]=1 , n=0

3 .. .y[n]=0 , n/=0

4 ..

5 SFG

6 C void void .one 1 0

7 M .one void .-one[n-1] -1 1

8 A .one .-one[n-1] .y[n] 0 0

9 GFS

Listing 1: Dirac Pulse in the WaveCore language
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The Dirac Pulse is then fed in an Infinite Impulse Response (IIR)
filter, the WaveCore compiler has build-in IIR filters. Listing 2 shows
a 4th order Chebyshev2 Lowpass filter with a -3dB frequency of 2000

Hz.

1 SFG

2 .. 4th order Chebyshev Lowpass filter with a -3dB frequency of 2000 Hz

3 IIR CHE_3db LPF 4 2000 0.1 LPF_Instance

4 .. We connect the primary input to the input of the filter with a unity

amplifier:

5 M .x[n] void LPF_Instance.x[n] 1 0

6 .. We connect the output of the filter to the primary output .y[n]:

7 M LPF_Instance.y[n] void .y[n] 1 0

8 ..

9 GFS

Listing 2: IIR filter in the WaveCore language

The resulting output behavior of the IIR filter is showed in Figure
19. As can be seen in this figure, at first there is a peak and it will
flatten out in time.

Figure 19: Impulse response of an IIR filter with a Dirac Pulse as input.

2 http://en.wikipedia.org/wiki/Chebyshev_filter

http://en.wikipedia.org/wiki/Chebyshev_filter
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I M P L E M E N TAT I O N

4.1 introduction

The previous chapter shows the architecture of the WaveCore. As a
start for the implementation in CλaSH, the WaveCore PU is first im-
plemented in Haskell. This implementation is not yet a simulator of
the WaveCore PU but more of an emulator. This is because not all
internal workings are implemented, only the output behavior is mim-
icked. The difference between a Simulator and Emulator is explained
below.

4.1.1 Simulator vs Emulator

An emulator mimics the output of the original device, a simulator is
a model of the device which mimics the internal behavior as well. In
the case of the hardware design of a processor, there is a Simulator
(written in C) and a hardware description (VHDL or Verilog). This
so called Simulator is more an emulator then a simulator. There are
different reasons this choice.

• Easier Programming - For complicated ALU operations and
pipelining are written in a more behavioral style.

• Faster execution - A simulator is used as testing before creating
the actual hardware, faster execution is then a plus.

• Memory management - No simulation of the
Block Rams (Block-RAMs), this could be a simple array, therefore
save the hassle of controlling the Block-RAM

The downside is that only the output is replicated and not the ac-
tual internal process.

4.1.2 Outline

This chapter will first show how 1 PU is implemented in Haskell. This
is done in Section 4.2. It will give the details on how a WaveCore
instruction will be written in a list of Algebraic Data Types (ADTs)
(Haskell). After the implementation of the single PU in Haskell, the
simulation of this (Haskell) PU is explained and demonstrated in Sec-
tion 4.3. There are 2 simulators mentioned in this chapter:

29
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• C-Simulator - This is the simulator written in C which is in-
cluded in the existing WaveCore compiler.

• Haskell-Simulator - This is the simulator written in Haskell to
simulate the WaveCore implementation written in Haskell.

The output of the Haskell-Simulator is then explained and compared
with the existing C-Simulator.

4.2 haskell : a single processing unit (pu)

This section will show the implementation a single PU in Haskell,
this will be referenced to as the HaskellPU in the rest of this section.
As a starting reference for implementing the HaskellPU is the block
diagram in Figure 20.

GIU: Graph Iteration Unit
LSU: Load/Store Unit
GPN: Graph Partition Network
LSU: Load/Store Unit
PCU: Program Control Unit
ACU: Address Computation Unit
WBB: WriteBack Buffer

GPN port writeback into X/Y memories:
- Main requirement: predictability => conflicting ports 
- Writeback to X/Y memories is in most cases not replicated (either X or Y) 
- Use both A and B ports of the memories? => does not make much sense because 
Operand fetch is in many cases on both memories => in many cases no free timeslots
- Shallow buffer in GPN unit?
- WBB for GIU writeback?
- Solve completely in compiler:

=> possible?
=> exact known determinism
=> what about predictability in GPN network?
=> forget it........

- Most probable solution:  
=> Compiler “soft-schedule”
=> Evenly distributed X/Y memory allocation
=> GPN moves schedule balance: not too early, not very late
=> Shallow buffer in GPN unit 

YmemYmem

RouterRouter

GPN
port

GPN
port

XmemXmem

HPI
port
HPI
port

ACUACU

CmemCmem

ibFIFOibFIFO

obFIFOobFIFO

DMACDMAC

GIU LSU

GPN

HPI

Ext.
Mem

PmemPmem

X1 X2

f

y[n]

ALUALU

P

PCUPCU

WBBWBB

Figure 20: WaveCore Processing Unit

The figure is a standard way of illustrating the workings of a pro-
cessor. It consists of several blocks which have different functionality.
In Haskell, each different block can easily be defined and in the end
connected together (in hardware: attach all wires). The next section
show the translation to Haskell for the bigger blocks in the diagram.
All functions which represent a block in the diagram are prefixed
with exe (from execute).

4.2.1 Instructions

Instructions for the WaveCore processor can be defined as ADTs in
Haskell. The current instructions require direct mapping to bits and
are mentioned in Section 3.2.1 in Figures 15, 16 and 17. Rewriting
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these to Haskell is showed in Listing 3. The opcodes used in the in-
struction are listed in Listing 4. More type definitions related to the
instructions can be found in Appendix A in Listing 23.

1 data GIU_Instruction

2 = Default

3 GiuOpcode

4 Delay

5 Destination

6 MemoryAddressOffset

7 OpMemAssign

8 MemoryAddressOffset

9 MemoryAddressOffset

10 | PointerInit

11 GiuOpcode

12 SelectPointer

13 Immediate

14 | WritebackRoute

15 GiuOpcode

16 OpLocation

17 OpLocation

18 WbRC

19 MemoryAddressOffset

20 MemoryAddressOffset

Listing 3: Haskell GIU Instructions

1 data GiuOpcode = NOP | RND | AMP | MAC | MUL | DIV | CMP | HYS | EOG | DOU | LUT

Listing 4: GIU opcode in Haskell

In stead of defining every bit of the instruction, the definition can
be much more simplified using the abstraction of ADTs. These instruc-
tions can be seen as an embedded language in Haskell. The CλaSH
compiler will automatically generate the bit representation which will
be required on the hardware to represent the instructions. Parsing
these instructions will be simplified by using pattern matching. This
improves readability and programmability. This data-type then can
also be easily reused to create a compiler for the WaveCore Program-
ming Language. An example which makes use of this pattern match-
ing is showed in Listing 7 (which is the execution of the ALU).

4.2.2 ACU

The ACU performs all calculations on the memory pointers. These
memory pointers are memory addresses which can be updated by
an instruction. These memory addresses are saved in registers in the
processor. The ACU takes the "old" memory pointers as input and
generates the new pointers depending on the instruction. The func-
tion description mentioned above is shown in Listing 5 as Haskell
code.
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1 exeACU :: GIU_Instruction -> ACU_Pointer -> (MachCode,ACU_Pointer)

2 exeACU giuInstr acuP = case giuInstr of

3 -- NoOp instruction (Nothing has to be executed)

4 Default NOP _ _ _ _ _ _ _ -> (nullCode,acuP)

5 -- Default Instruction

6 Default op delay dest wbDispl opAssign opXDispl opYDispl ->

7 (machCode,newPointers)

8 where

9 acuXWBpntr’ = case dest of

10 Xmem -> acuXWBpntr + wbDispl

11 XYmem -> acuXWBpntr + wbDispl

12 _ -> acuXWBpntr

13

14 acuYWBpntr’ = case dest of

15 Ymem -> acuYWBpntr + wbDispl

16 XYmem -> acuYWBpntr + wbDispl

17 _ -> acuYWBpntr

18

19 (x1Op’,x2Op’)

20 | opAssign == X1_x_X2_y = (OpLocX,OpLocY)

21 | otherwise = (OpLocY,OpLocX)

22

23 -- Pointer Initialization

24 PointerInit op selectPointer value ->

25 case selectPointer of

26 Xwb -> (machcode, acuP {acuXWBpntr = value})

27 Ywb -> (machcode, acuP {acuYWBpntr = value})

28 PntrGPNx -> (machcode, acuP {acuIGCXpntr = value})

29 PntrGPNy -> (machcode, acuP {acuIGCYpntr = value})

30 Xop -> (machcode, acuP {acuXOPpntr = value})

31 Yop -> (machcode, acuP {acuYOPpntr = value})

32 where machcode = nullCode

33

34 -- Calculate writeback routes

35 WritebackRoute op opa opb wbrc a b ->

36 (machCode, newPointers)

37 where

38 machCode = MachCode opa opb wbDest’

39 wbDest’ = writebackDestination wbrc

40

41 acuXWBpntr’ = case wbrc of

42 Xa -> acuXWBpntr + a

43 XYa -> acuXWBpntr + a

44 Xb -> acuXWBpntr + b

45 XYb -> acuXWBpntr + b

46 _ -> acuXWBpntr

47

48 acuYWBpntr’ = {-(same as acuXWBpntr’)-}

49

50 acuXOPpntr’

51 | opa == OpLocX = acuXOPpntr + a

52 | opb == OpLocX = acuXOPpntr + a

53 | otherwise = acuXOPpntr

54

55 acuYOPpntr’ = {-(same as acuXOPpntr’)-}

Listing 5: Haskell implementation of the ACU

The incoming instruction is pattern matched against the available in-
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structions. A good example of the power of pattern matching is the
first case (Default NOP ...), when the NoOp instruction is matched, it
doesn’t care about the other variables and they don’t have to be read-
/handled, when other instructions are matched, it will use the next
case (Default op ...).

4.2.3 ALU

The ALU performs the main task of calculating the result value of a
computation performed by the processor. The ALU has 4 inputs and 1

output. The opcodes can be found in Table 1 which can be found in
Section 3.2.1. The resulting code in Haskell is listed in Listing 6.

1 exeALU op p x1 x2 = y

2 where

3 y = case op of

4 AMP -> x1 * p

5 MAC -> p * x1 + x2

6 MUL -> x1 * x2

7 DIV -> divide x1 x2

8 CMP -> comparator x1 x2

9 HYS -> hysteresis p x1 x2

10 _ -> error "Unknown GIU OpCode"

Listing 6: Haskell implementation of the ALU

An alternative implementation which makes use of the pattern
matching in Haskell is showed in Listing 7.

1 exeALU AMP p x1 _ -> x1 * p

2 exeALU MAC p x1 x2 -> p * x1 + x2

3 exeALU MUL _ x1 x2 -> x1 * x2

4 exeALU DIV _ x1 x2 -> divide x1 x2

5 exeALU CMP _ x1 x2 -> comparator x1 x2

6 exeALU HYS p x1 x2 -> hysteresis p x1 x2

7 exeALU _ _ _ _ -> error "Unknown GIU OpCode"

Listing 7: Alternative Haskell implementation of the ALU using pattern matching

Both ALU implementations (Listing 6 and 7) have the same behavior.
It is the choice of the programmer which he finds the most easy to
use. The first approach is a lot less work in typing, but in the second
approach the inputs that are used are better visible. The function
exeALU has 4 inputs:

• op - The opcode decoded from the instruction

• p - Optional calculation value

• x1 - Input 1

• x2 - Input 2

And 1 output:
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• y - The result of the calculation done by the ALU.

Depending on the function (opcode) of the ALU, the correct case is
handled (line 3 in Listing 6).

4.2.4 PCU

The PCU is a very trivial component, it only extracts the opcode of the
instruction. All instructions mentioned in Section 4.2.1 can contain an
opcode, only the opcode is required so the rest of the instruction can
be discarded (as can be seen in Listing 8). This might not be the most
efficient implementation at this point, but because the other data is
not used, CλaSH will only connect the "wires" (in VHDL) which are
used by the op part of each instruction.

1 exePCU :: GIU_Instruction -> GiuOpcode

2 exePCU giuInstr = case giuInstr of

3 Default op _ _ _ _ _ _ -> op

4 PointerInit op _ _ -> op

5 WritebackRoute op _ _ _ _ _ -> op

Listing 8: Haskell implementation of the PCU

4.2.5 Connecting it all together

The main component in the PU implementation is connecting all the
blocks together. The current model of the PU can be seen as 1 big
Mealy machine1. A Mealy machine is shown in Figure 21.

f

State

Input Output

Figure 21: A mealy machine.

The Mealy machine consist of an input, a state and an output. The
output is depending on its input and the current state. In the case
of the WaveCore, the state consists of memories, program counters,
registers etc. A more precise list is shown as Haskell data type in
Listing 9.

1 http://en.wikipedia.org/wiki/Mealy_machine

http://en.wikipedia.org/wiki/Mealy_machine
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1 -- Processing Unit Record (State)

2 data PUState = PUState

3 { core_id :: Int32

4 , reg :: RegisterSet

5 , acuP :: ACU_Pointer

6 , ibfifo :: FiFo

7 , obfifo :: FiFo

8 -- Program Counters

9 , giuPC :: Int32

10 , lsuLoadPC :: Int32

11 , lsuStorePC :: Int32

12 , dcuOut :: MemoryValue

13 -- Memories

14 , cMem :: Memory

15 , xMem :: Memory

16 , yMem :: Memory

17 , extmem :: ExternalMemory

18 -- Memories and free-base pointers:

19 , lsuThreadToken :: LSU_ThreadToken

20 }

Listing 9: Haskell state definition

• core_id - Identification number of the current PU core

• reg - Registers containing information about communication
with the external memory

• acuP - Set of memory pointers used to index the memories

• ibfifo - The inbound fifo, used for communication from the LSU

to the GIU

• obfifo - The outbound fifo, used for communication from the
GIU to the LSU

• giuPC - The program counter for the GIU instructions

• lsuLoadPC - The program counter for the LSU load instructions

• lsuStorePC - The program counter for the LSU store instructions

• dcuOut - Output value of the ALU

• cMem - The C-Mem

• xMem - The X memory

• yMem - The Y memory

• extmem - The external memory

• lsuThreadToken - This token is passed round-robin to the LSU

store and load thread, only 1 thread can be active (the one "hold-
ing" this token).
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All items mentioned above are found in the WaveCore PU overview
(Figure 20). In Listing 10 a subset of this "wiring-it-together" is showed.
The inputs of the exePU function are:

• program - A list of instructions which together form the pro-
gram to be executed on the WaveCore

• state - The current state of the Mealy machine

• _ - A don’t-care value which acts as a clock cycle

Outputs:

• state’ - The new state, this is used as input state for the next
clock cycle

• dcuOut - The output value of the ALU calculation

This is not the complete implementation of the exePU function, we
only show the important parts of the Haskell implementation. Impor-
tant to see is that the output of one function (e.g. exeACU) is used as
input to the next function (e.g. exeALU). There are some "–Code Hidden–
" statements in the code, these are parts of the code left-out because
they don’t contribute in explaing the workings of the exePU function.
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1 exePU program state _ = (state’, dcuOut)

2 where

3 -- ’Extract’ the current state

4 PUState{..} = state

5 -- Retrieve the instruction from the program memory:

6 giuInstruction = program!!giuPC

7 -- Retrieve the opcode from the instruction using the PCU

8 opcode = exePCU giuInstruction

9 -- Execute the ACU which returns:

10 -- - the new ACU pointers

11 -- - read and write locations

12 (machCode, acuP’) = exeACU giuInstruction acuPointers

13 -- ’Extract’ acu result:

14 -- - x1 location

15 -- - x2 location

16 -- - writeback location

17 MachCode{..} = machCode

18

19 -- Execute the ALU using the opcode retrieved from the giuInstruction

20 y = exeALU f p x1 x2

21 where

22 -- Read p from the c-memory

23 p = cMem !! giuPC

24 x1 = -Code Hidden-

25 x2 = -Code Hidden-

26 -- result of the exePCU

27 f = opcode

28 -- Update the program counter

29 giuPC’ = giuPC + 1

30 -- Update the new state

31 state’ = state

32 { giuPC = giuPC’

33 , dcuOut = y

34 , xMem = xMem’

35 , acuP = acuP’

36 -Code Hidden-

37 }

Listing 10: Haskell implementation of part of the PU

4.3 simulation

The HaskellPU only has 1 PU, this means that only programs that are
mapped to a single PU by the WaveCore compiler can be used with the
Haskell-Simulator. This simulator consists of the following functions

4.3.1 simulate

This is the simulation function to start simulation, it will parse the
Haskell objectcode and feeds it to the execute function. It will initi-
ate the state with default values. Part of Haskell Object code of the
example program is listed in Listing 12.
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4.3.2 execute

Run the exePU function recursively until no more inputs in the input
list. It will detect when a program is ended execution and will restart
the program counters to restart the program.

4.3.3 genOutput

Create the debug output (See Listing 13). This function can be edited
to create any debug output required.

1 simulate objcode settings inputValues = execute program inputs state settings clock

2 where

3 parsedObjCode = parseObjCode objcode

4 ParseRes{..} = parsedObjCode

5 -- Parse instructions from the HaskellObjectcode

6 program = (map parseGIU a, map parseLSU b)

7 (a,b) = splitAt lsuLoadBase iMem

8 inputs = tail inputValues

9 initState = initiateState parsedObjCode

10 -- Restarting the state means resetting the program counters

11 state = restartState initState (head inputValues)

12 -- Execute the program until no inputs are available

13 execute program input state settings (tick:ticks)

14 -- End of execution (No more inputs)

15 | input == [] = []

16 -- Otherwise show output of the current tick en execute the rest

17 | otherwise = dispOutput : executeRest

18 where

19 -- Pop current input from the list and return the tail as input’

20 input’ = tail input

21

22 -- Calculate the new state and the output

23 (state’,output) | endPU = (restartState state (head input),0)

24 | otherwise = exePU program state tick

25

26 PUState{..} = state

27 SimSettings{..} = settings

28

29 -- Recursive call of the execute function with the rest of the inputs

30 executeRest = execute program input’ state’ settings ticks

31 -- Generate debug output for de the debugger using the state and program

32 dispOutput = genOutput program state

33 -- Functions to determine if it is the end of the program

34 -- by checking if all instructions the GIU memory and LSU memory are executed

35 endPU = endGIU && endLSUStore && endLSULoad

36 endGIU = (guiMem!!giuPC)== EndGiu

37 endLSUStore = ((lsuMem!!lsuStorePC) == LSU_EOT_Store) ||

38 ((lsuMem!!lsuStorePC) == LSU_EOT_ALL)

39 endLSULoad = ((lsuMem!!lsuLoadPC) == LSU_EOT_Load) ||

40 ((lsuMem!!lsuLoadPC) == LSU_EOT_ALL)

Listing 11: The simulate function in Haskell for simulation of the HaskellPU
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1 instructionList =

2 [ PointerInit NOP Yop 0

3 , PointerInit NOP Xop 0

4 , PointerInit NOP PntrGPNy 8

5 , PointerInit NOP PntrGPNx 8

6 , PointerInit NOP Ywb 0

7 , PointerInit NOP Xwb 0

8 , Default MAC NoDelay Xmem 0 X1_x_X2_y 1 0

9 , Default AMP NoDelay Ymem 0 X1_x_X2_y 0 0

10 , Default NOP NoDelay Xmem 1 X2_x_X1_y 0 0

11 , Default NOP NoDelay Xmem 0 X2_x_X1_y 0 0

12 -Code Hidden-

13 , Default AMP NoDelay Xmem 1 X1_x_X2_y (-1) 0

14 -Code Hidden-

15 , Default NOP NoDelay Xmem 0 X2_x_X1_y 0 0

16 , Default AMP NoDelay Xmem (-2) X1_x_X2_y 2 0

17 -Code Hidden-

18 , Default NOP NoDelay Xmem 0 X2_x_X1_y 0 0]

Listing 12: Part of the instructions generated from the C-Simulator object file

4.4 output

The output of the Haskell-Simulator can be plotted in the browser(see
Figure 22) or an output file can be generated. The output file is just
a list of the output values of the processor. This output file is used
for verifiying the correctnes of the Haskell-Simulator by comparing
its output with he output of the C-Simulator. The program that is be-
ing simulated is the same as mentioned in Section 3.3.2 (the Impulse
Response of an IIR filter).

result In this example program the output file of the Haskell-
Simulator is exactly the same as the output of the C-Simulator.

4.4.1 Workflow

The workflow of using the current C-Simulator is shown in Figure 23.
Using the C-Simulator:

1. Create WaveCore program in the WaveCore Programming Lan-
guage.

2. Use the compiler to create an output file and a graph.

3. As a side product, the WaveCore compiler also generates an
object file (which can be used as a source program to the actual
hardware implementation on the FPGA).
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Figure 22: Example browser output Haskell-Simulator
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Using the Haskell-Simulator:

1. Create WaveCore program in the WaveCore Programming Lan-
guage.

2. Use the WaveCore compiler to generate object code.

3. Use the generated object code to generate the list of Haskell
GIU_Instructions (see Listing 3).

4. Use the generated list as input for the Haskell Simulator to cre-
ate the chart in Figure 22.

This is not the most preferred work-flow but for testing if it is pos-
sible to create a processor using CλaSH, this is a good start. The pre-
ferred solution does not use the WaveCore compiler at all, but doing
all the necessary steps using Haskell (or CλaSH). (See Figure 24). This
is mentioned in the Future Work section (6.4)

WaveCore 

Compiler

WaveCore

Simulator

WaveCore 

Program Code

WaveCore 

Object Code

Haskell

Simulator

WaveCore 

Input File

WaveCore 

Output File

WaveCore

Output File Same Output

WaveCore

ObjectCode

Parser

Haskell 

Datatype

Haskell 

Program Code

Haskell

WaveCore 

Compiler

WaveCore

Input File

CLaSH

Compiler

WaveCore

Hardware Description

FPGA

WaveCore Hardware 

Description (VHDL)

Optional

Figure 24: Preferred Workflow

running the haskell-simulator The Haskell-Simulator has
3 different operating modes:

1. Output to browser as a chart

2. Output to a file as a list of values

3. Debug mode

Chart output Figure 22 shows the output in the browser.

File output The output is generated in a file which has the same
format as the output of the C-Simulator, therefore the results of both
the simulators can be easily compared.

Debug Mode It is possible to use the Haskell-Simulator in debug
mode, this debug mode can show information about the state every
cycle. The information that is displayed can be chosen like this. If you
want to show e.g. the Program counter(giuPC), the current memory
pointers (acuP), the output of the ALU(dcuOut) and the internal mem-
ories (xMem and yMem). When displaying the memory, only the values
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that are non-zero are displayed, this is much more efficient when de-
bugging.

1 [show giuPC, showACUPointers acuP, show dcuOut, showMemory xMem,

showMemory yMem]

The function used for generating the debug information is shown
in Listing 13.

1 -- Generate output every "fire" of the PU

2 genOutput program state

3 -- During the program execution executed

4 | not endPU = showValues

5 [ show giuPC

6 , show acuP

7 , show dcuOut

8 , show xMem

9 , show yMem]

10

11 -- When the program is done execution display the output

12 | otherwise = show dcuOut

13 where

14 PUState{..} = state

15 showValues = intercalate ", "

Listing 13: Haskell-Simulator output generation

Running some cycles in the Haskell-Simulator then results in the
output shown in Listing 14.

1 *Main> debug
2 0, acuP {0,0,0,0,0,0}, 0.0, ["1 = 1.0"], []
3 1, acuP {0,0,0,0,0,0}, 0.0, ["1 = 1.0"], []
4 2, acuP {0,0,0,0,0,0}, 0.0, ["1 = 1.0"], []
5 3, acuP {0,0,0,0,0,8}, 0.0, ["1 = 1.0"], []

6 4, acuP {0,0,0,0,8,8}, 0.0, ["1 = 1.0"], []
7 5, acuP {0,0,0,0,8,8}, 0.0, ["1 = 1.0"], []

8 6, acuP {0,0,0,0,8,8}, 0.0, ["1 = 1.0"], []
9 7, acuP {1,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0"], []

10 8, acuP {1,0,0,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
11 9, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
12 10, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
13 11, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
14 12, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
15 13, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]

16 14, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
17 15, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]

18 16, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
19 17, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
20 18, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
21 19, acuP {1,0,1,0,8,8}, -1.0, ["0 = 1.0","1 = 1.0"], ["0 = -1.0"]
22 20, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
23 21, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
24 22, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
25 23, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]

26 24, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
27 25, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]

28 26, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
29 27, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
30 28, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
31 29, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
32 30, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
33 31, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
34 32, acuP {0,0,2,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
35 33, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]

36 34, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
37 35, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]

38 36, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
39 37, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
40 38, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
41 39, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
42 40, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
43 41, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
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44 42, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
45 43, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]

46 44, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]
47 45, acuP {2,0,0,0,8,8}, 1.0, ["0 = 1.0","1 = 1.0","2 = 1.0"], ["0 = -1.0"]

Listing 14: Haskell-Simulator output

4.5 moving to cλash

In order to make the code CλaSH compatible, the following steps
have to be taken.

• Declare a topEntity.

• Replace lists by vectors.

• Rewrite functions that previously used lists.

• Choose appropriate data types for the used numerical types in
the Haskell implementation

• Add Block-RAM

• Pipeline the processor

These steps will be explained in the following subsections.

4.5.1 First CλaSH version

After removing lists, rewriting functions and choosing the right data-
types. A first VHDL version is generated.

1 exePUmealy :: Signal Tick -> Signal (Maybe WaveFloat)

2 exePUmealy = (exePU program) <^> initState

3 where

4 initState = {-Setup initial State-}

5 program = {-List of instructions-}

6

7 -- Declare the topentity for VHDL generation

8 topEntity = exePUmealy

Listing 15: VHDL v1

How to declare the topEntity is shown in Listing 15. The time it took
to generate this version is shown in Listing 16, it shows that total
generation took just under 6 minutes (352 seconds). And uses a lot
of RAM, about 8 gigabytes (see Figure 25), this however is a known
issue in CλaSH and improvements are promised. This version uses a
lot of registers because the memories (e.g. the xMem and yMem) are
stored in registers. In later versions, this will be a lot smaller with the
use of BlockRAM’s. This difference is shown in chapter 5.3(Table 2).



44 implementation

Figure 25: CλaSH RAM usage with generating VHDL

1 *VHDLGen> :vhdl
2 Loading dependencies took 5.1902969s
3 Applied 10078 transformations
4 Normalisation took 295.5219029s
5 Netlist generation took 40.1652973s

6 Testbench generation took 0.0050003s
7 Total compilation took 352.3031506s

8 *VHDLGen>

Listing 16: Time to generate VHDL using CλaSH

Time to synthesize using the Quartus2 (by Altera) tooling:

• Analysis & Synthesis - 16 min

• Fitter (Place & Route) - 13 min

• TimeQuest Timing analysis - 2 min

The resulting RTL schematic is way too large thus not usable. This
is because the initial state is the input of the mealy machine, and in
this case that is huge. Every memory value is an input. So if we take
a memory size of 200 for the x and y memory, it will need 200 inputs
of 32 bits wide. The resulting speed is also not usable (only 12 MHz).
The area usage of this single PU is shown in Figure 26.

4.5.2 Using Block-RAM

To really reduce area usage, we have to reduce the register usage.
Most of the registers that are used, are used by the memories. Because
these are memories and do not have to be accessed all at the same
time (e.g. only 1 value is required per cycle), why not use available
Block-RAM on the FPGA for this. One downside to this approach, is that
the data will not be available in the same clock cycle, but 1 cycle later
and only 1 value can be retrieved at the time, this means no parallel

2 http://dl.altera.com/?edition=web

http://dl.altera.com/?edition=web
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Figure 26: FPGA area usage of a single PU with no Block-RAM and no pipelin-
ing.

reading from the Block-RAM. This automatically requires some sort of
pipeline for the processor and the introduction of the Signal type. The
Signal type is a signal which can be of any type (e.g. Number, Bit or even
a GIU_Instruction), which is synchronized to a central clock signal. This
is different to the combinatorial circuit which is stateless.

where do we use Block-RAM The following memories (as can be
seen in Figure 20 or Figure 18) are suitable to be stored in Block-RAM:

• X Memory

• Y Memory

• GIU Instruction Memory

• LSU Instruction Memory

• Coefficient Memory

Because we use custom data types, for example the WaveFloat which
corresponds with a Fixed Point number (in which the representation
is easily changed if we want to increase accuracy, or reduce width).
Now we can create a memory using this data-type, so no hassle with
the bit-width, this is done by the CλaSH compiler. The same goes
for the instructions for the WaveCore. As shown in Listing 3, we can
use GIU_Instruction as constructor for the Block-RAM, this is shown in
Listing 17.
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1 bramXmem :: Signal (MemoryAddress, MemoryAddress, Bool, MemoryValue)

2 -> Signal MemoryValue

3 bramXmem input = (blockRam initialValue) wAddr rAddr wEnable wValue

4 where

5 initialValue = obj_xMemory

6 (wAddr,rAddr,wEnable,wValue) = unbundle’ input

7

8 bromGIUmem :: Signal (MemoryAddress)

9 -> Signal GIU_Instruction

10 bromGIUmem rAddr = (blockRam initialValue) wAddr rAddr wEnable wValue

11 where

12 wAddr = signal 0

13 wEnable = signal False

14 wValue = signal GiuNop

15 initialValue = obj_giuInstructionMemory

Listing 17: Declaration of the Block-RAM for the GIU Instruction Memory and the X
Memory

4.5.3 CλaSH PU

The CλaSHPU will be the CλaSH implementation of a single PU. Cre-
ating the CλaSHPU requires some changes to the HaskellPU. These
changes are summarized here:

• Insert a pipeline (4.5.4)

• Create a state for every stage in the pipeline (4.5.5)

• Connect all the pipeline stages together (4.5.6)

4.5.4 Pipeline

A pipelined structure is required for it to run efficiently and fast
enough (also the use of Block-RAM automatically requires some sort
of pipeline due to the delay of reading from the Block-RAM). As men-
tioned in Section 3.3, the pipeline is simplified for a CλaSH implemen-
tation. The functions which where created for the internal functions
inside the HaskellPU from Section 4.2 (e.g. ALU, ACU, etc), are reused
in the CλaSH implementation. In stead of using one function, exePU

from the HaskellPU, all the functions will be divided over a pipeline.
Pipelining is a critical step for processors, it cuts down the time to
execute the whole combinatorial path of the processor. It does this by
adding registers between pipeline stages.

Example Pipeline Stage Execution

Implementing the pipeline in CλaSH is done by creating a function
for every pipeline stage. The execution of a single stage (Stage 2) is
showed in Listing 18. Every stage is a Mealy machine on itself, this is
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visible in the type definition of the function exePUStage2. To keep a bit
more simple, the output of the stage, is also the state, only delayed by
1 clock cycle. Some explanation about the code:

• Lines 4-6 - Helper functions to extract the values from the input,
output and the state

• Line 9 - Assign the current state to the output

• Line 10 - Build up the new state

• Line 13 - Usage of the exePCU function from the HaskellPU

• Line 15/16 - Usage of the exeACU function from the HaskellPU

1 exePUStage2 :: Stage2 -> Stage2Input -> (Stage2,Stage2Output)

2 exePUStage2 state input = (state’,output)

3 where

4 Stage2Output{..} = state

5 Stage2Input{..} = input

6 Stage1Output{..} = stage1_output

7 -- The output is the current state (so 1 cycle delayed of the inputs)

8 output = state

9 -- The new state of this pipeline stage

10 state’ = Stage2Output opCode x1Op x2Op wbDest acu_pointers’

11 where

12 -- Extract the opcode using the exePCU function

13 opCode = exePCU stage2_GIU_Instruction

14 -- Calculate new memory pointers using the old pointers

15 (machCode,acu_pointers’) =

16 exeACU stage2_GIU_Instruction acu_pointers

Listing 18: Example code for the execution of Pipeline Stage 2

4.5.5 State for each pipeline stage

For execution of each stage, a data type is required for every in and
output of every stage. Figure 27 displays the output of stage 2 and the
input of stage 3 (the red circles), which corresponds with the CλaSH
code in Listing 19. The definition of all the stages can be found in
Appendix A, Listing 25 and Listing 26.



48 implementation

GIU Pipeline LSU Pipeline

S
ta

g
e

 6

W
ri

te
b

a
c
k
 2

S
ta

g
e

 1

In
st

ru
c
ti

o
n

 

F
e

tc
h

S
ta

g
e

 2

In
st

ru
ct

io
n

 

D
e

co
d

e

S
ta

g
e

 3
 

O
p

e
ra

n
d

 F
e

tc
h

S
ta

g
e

 4

A
lu

 E
x
e

cu
ti

o
n

S
ta

g
e

 5

W
ri

te
b

a
ck

 1

S
ta

g
e

3
S
ta

g
e

1
S
ta

g
e

2

GIU PC
LSU

Mem

ACU
ACU 

pointers

ibFIFO

GIU

Mem

PCU

LSU

Registers

LSU 

Decode

External 

DRAM

Memory

LSU

Scheduler

DMA

controller

MOV
TAU 

instruction

x

y

fifo

GPN Port

Other PU

yMem

xMem

cMem c

cMem

WBB

muxx1

x y fifo

muxx2

x y fifo

c

Router
obFIFO

yMem

xMem

Writeback 

FiFo

yMem

xMem

ALU

x1 x2

f

p

+1

Load PC

Store PC

Figure 27: Registers marked in the Pipeline

1 data Stage2Output = Stage2Output

2 { output2_Opcode :: GiuOpcode

3 , output2_X1Source :: OpLocation

4 , output2_X2Source :: OpLocation

5 , output2_WriteBackDest :: WbDestination

6 , output2_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)

7 }

8

9 data Stage3Input = Stage3Input

10 { stage2_output :: Stage2Output

11 , stage3_MemoryValues :: (MemoryValue,MemoryValue,MemoryValue)

12 , stage3_IbFifoTop :: FiFoValue

13 }

Listing 19: CλaSH code for pipeline stage 2 and 3

The output of Stage 2 has these values:

• output2_Opcode = The OpCode for the ALU parsed by the PCU in
stage 2

• output2_X1Source = The source for the x1 value in the ALU

• output2_X2Source = The source for the x2 value in the ALU

• output2_WriteBackDest = The destination of the ALU value

• output2_MemAddresses = The memory addresses for writing back
of the result

The input of Stage 3 has these values:

• stage2_output = The output of Stage 2 (So the values listed above).

• stage3_MemoryValues = The values read from Block-RAM.

• stage3_IbFifoTop = The first value of the ibFiFo (if there is one).
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Every value between a pipeline stage, as circled in Figure 27, will be
converted to a register. This adds a cycle delay between every pipeline
stage.

Multi Stage pass through

When for example the destination address, decoded from the instruc-
tion, which is specified in Stage 2, but is not needed until Stage 5

(because then the calculation result is available from the ALU, all the
intermediate stages will have to pass through these values. This is vi-
sualized in by the red circles in Figure 28. So stages 2,3 and 4 have as
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Figure 28: Values pass through multiple stages

output these memory values (see Listing 20 for the type definitions
of these states). Listing 21 shows the CλaSH code to simply pass on
the Memory Addresses. (The ... is there to hide CλaSH code which
is not relevant to this section, complete definitions can be found in
Appendix A in Listing 25 and Listing 26).
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1 data Stage2Output = Stage2Output

2 { ...

3 , output2_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)

4 }

5

6 data Stage3Output = Stage3Output

7 { ...

8 , output3_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)

9 }

10

11 data Stage4Output = Stage4Output

12 { ...

13 , output4_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)

14 }

Listing 20: Multiple stage pass through CλaSH data types

1 exePUStage3 :: Stage3 -> Stage3Input -> (Stage3,Stage3Output)

2 exePUStage3 state input = (state’,output)

3 ...

4 state’ = Stage3Output ... output2_MemAddresses

5 ...

6

7 exePUStage4 :: Stage4 -> Stage4Input -> (Stage4,Stage4Output)

8 exePUStage4 state input = (state’,output)

9 ...

10 state’ = Stage4Output ... output3_MemAddresses

11 ...

Listing 21: Passing through memory addresses over multiple stages

4.5.6 Connecting pipeline stages together

Listing 22 shows how the stage 2 and 3 are connected together.

• Line 1 - This is the call to execute pipeline-stage 2 as a mealy
machine, initialized with an initState and has i2 as input

• Line 3-9 - Initial value of the state of stage 2

• Line 10 - Setup the input for stage 2 consisting:

– o1 - The output of stage 1

– giuInstr - The instruction coming from the GIU Block-RAM

• Line 13 - Initialize stage 3 and execute it

• Line 15-19 - Initial value of the stage of stage 3

• Line 20 - Setup the input for stage 3 consisting of:

– o2 - Output of stage 2

– memValues - Output values of the x,y,c memories
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– ibfifoval - Inbound FiFo value

• Line 21 - Combining 3 signals(values from Block-RAM) to 1 signal
using the bundle function.

1 o2 = (exePUStage2 <^> initState) i2

2 where

3 initState = Stage2Output

4 { output2_Opcode = NOP

5 , output2_X1Source = OpLocX

6 , output2_X2Source = OpLocY

7 , output2_WriteBackDest = WbNone

8 , output2_MemAddresses = (0,0,0)

9 }

10 i2 = Stage2Input <$> o1 <*> giuInstr

11

12

13 o3 = (exePUStage3 <^> initState) i3

14 where

15 initState = Stage3Output

16 { stage2_output :: Stage2Output

17 , stage3_MemoryValues :: (MemoryValue,MemoryValue,MemoryValue)

18 , stage3_IbFifoTop :: FiFoValue

19 }

20 i3 = Stage3Input <$> o2 <*> memValues <*> ibfifoval

21 memValues = bundle (xMemValue,yMemValue,cMemValue)

Listing 22: Connecting the pipeline stage 2 and 3 together





5
R E S U LT S / E VA L U AT I O N

This chapter is dedicated to discuss the results from the different
implementations.

• Comparing Simulators (5.1)

• Problems During creation of simulator (5.2)

• CλaSH Problems (5.3)

• Explain the guidelines (5.4)

5.1 haskell simulator vs c simulator

There is a simulator available for the existing WaveCore implemen-
tation. This simulator is written in C. As mentioned in Section 4.1.1,
this is more of an emulator than a simulator. For creating output
that is similar to the output of the physical WaveCore this is a good
idea, but for verification of the design, this might not be the best idea.
Two separate design paths are required to create such a simulator.
The benefits of this simulator is that it is much faster then using a
real simulator which mimics the internal behavior of the hardware
design. The simulator created with CλaSH is a "real" simulator. All
internal components are also modeled. The big advantage of this is
that the hardware design corresponds one-to-one with the simulator
design. The advantages and disadvantages of both approaches are
listed below.

WaveCore C simulator

+ Faster execution

- Emulator not simulator

- Requires an extra design phase

Haskell simulator

- Slower simulation

+ Create hardware using CλaSH

+ Real simulator
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5.2 problems with developing the haskell simulator

In the early stages of the development of the Haskell simulator, a
memory usage problem was encountered. The memory usage would
increase linearly with the simulation time. While this is not expected
because a state is used to save immediate values, this memory usage
should not grow linearly in time, values will be rewritten in this state.
This increase in memory is shown in Figure 29. As can be seen in
this Figure is that the usage after 5 seconds is 800MB. This is not scal-
able for simulations which take minutes. The problem causing this
is the lazy evaluation nature of Haskell. Functions are only evaluated
when required, this causes traces to calculations are stored in memory
which will be calculated when needed. In this case the output values
are required and are needed at the end when displaying the result.
Solving this problem was done by using strict types, this means that
no lazy evaluation is done on these types and thus no memory explo-
sion occurs. This is sown in Figure 30, the total memory usage stays
constant at about 0.3 MB with the same test program as in Figure 29.
As a side benefit, the speed is also increased a bit (about 25% faster).

Simulator.exe 3200 +RTS -p -hc -s 819,165,105 bytes x seconds Fri Jun 20 15:32 2014

seconds0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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(420)exeALU.y/exeALU/exePU...

(279)exeLsu/exePU.(...).ls...

(539)mConcat/insertInMemor...

(383)restartState/execute....

(490)mConcat/insertInMemor...

(211)exePU.giuPC’/exePU/ex...

(309)exePU.(...)/exePU/exe...

(392)mConcat/insertInMemor...

(259)exePU.(...)/exePU/exe...

(435)exePU.acuP’/exePU/exe...

(219)exeACU/exePU.(...)/ex...

(210)exePU.state’/exePU/ex...

(209)exePU/execute.(...)/e...

Figure 29: Linear increase of memory usage

5.3 cλash

Starting with the hardware version (CλaSH) also generated some
problems, these problems are not specific to CλaSH but to hardware
in general. Table 2 shows the difference of using Block-RAM in stead of
logic cells as memory. About 85% of the Logic Elements (LEs) used in
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Simulator.exe 3200 +RTS -p -hc -s 328,796 bytes x seconds Fri Jun 20 15:27 2014
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(111)main

(87)Text.Read.Lex.CAF
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(195)simulate.program/simu...

(157)parseObjCodeRec.cMem’...

(203)parseGIU/simulate.pro...

(57)PINNED

(90)GHC.Float.CAF

Figure 30: Memory usage fixed

Version LE’s Registers Memory Compile Time

No Blockram 42 k 22 k - 29:39

With Blockram 6 k 2 k 13 k 4:29

Table 2: Difference with using Blockram

the Block-RAM free version are used for the memory. Synthesizing the
hardware using Block-RAM is also much faster (about 5 times faster).

5.3.1 Testbench generation

Generating a testbench with a bigger list of inputs (100+), will take
a lot of time or will not complete at all. This was not a good solu-
tion to compare results of the existing WaveCore simulator and the
CλaSH version. This was solved by creating output files which where
the same format as the WaveCore simulator and these output files
are then compared. This comparison is plotted in (TODO: Plot with
C-Sim vs Haskell/CλaSH Sim). A solution to this is to create a cus-
tom testbench in VHDL and create a separate file as input for this
testbench in which the input values are stored.

5.3.2 Implementing Block-RAM and pipelining

Implementing Block-RAM required the use of "Signals" other than just
using the the Mealy machine. The output of the Block-RAM is 1 cy-
cle delay and the communication between the Block-RAM is done via
signals. Because of the output delay of the Block-RAM, some sort of
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pipelining had to be implemented. This caused for more use of sig-
nals. In the end all pipeline stages are connected via signals and each
pipeline stage itself is a Mealy machine. Every cycle the output of a
pipeline stage, is the state of the previous cycle. The pipeline design
itself is explained in Section 3.3.

5.4 guidelines for development

To develop a processor in CλaSH, one needs some guidelines. Firstly,
some knowledge about hardware is required. Using a pure mathemat-
ical approach will work for small algorithms, but when designing big-
ger circuits, some hardware knowledge is required (for example the
use of Block-RAM, pipelining and usage of the synthesis tools). When
using Haskell as a start for your processor implementation (which is
recommended because it will be faster with simulation), some guide-
lines are needed. These guidelines are explained below.

preparation Keep CλaSH in mind, this means take the following
steps before starting with a (processor or other pipelined) design:

1. Create custom types in your designs (e.g. do not use Int or
Float), declarations of these types should be kept in a separate
file (in the WaveCore case, these types are stored in the Types.hs
file).

2. Functions that do conversions between types, or do some debug
stuff with types should also be stored in a separate file. This
makes the transition from Haskell to CλaSH easier, ideally only
these files have to be changed, so switching between Haskell
and CλaSH is as easy as switching out these files.

3. Recursion must be avoided, the CλaSH compiler cannot cope
with recursion (yet1).

4. Because recursion is not allowed, this means that infinite lists
are also out of the question. List can be used, but should have
a finite length. (In CλaSH these will be converted to Vectors
which in hardware require a constant length).

recommendations These points are not required to make a de-
sign in CλaSH but are highly recommended.

• Use a mealy machine (because processor is a basically a mealy
machine)

• Choose appropriate data type for calculation (Fixed point) Float-
ing point calculation is very precise, but in hardware this is a

1 Research is being done to add recursion to CλaSH
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very "expensive" operation. It requires a lot of space on an FPGA

and requires multiple clock cycles. If possible, try to use a Fixed
Point representation, this is a lot cheaper to use in hardware.

• Use a pipeline, this is required if you use Block-RAMs because the
reading is 1 cycle delay. Pipelining can be done as explained in
Section 4.5.3.





6
C O N C L U S I O N

In this chapter the research questions mentioned in the introduction
will be answered.

6.1 is cλash suitable for creating a multi-core proces-
sor (as example the wavecore).

CλaSH is suitable for creating multi-core processors. Although the
complete design of the WaveCore is not finished in CλaSH, it is pos-
sible to create such a design. As mentioned in the previous chapter
(Section 5.4), some guidelines are required to implement the design.
The implementation of the pipeline was more difficult than expected,
this might not be a problem with CλaSH but more a general problem
in hardware design. A big improvement in dealing with pipelines
would be the introduction of time dependent types[11] , this is on-
going research and should be available in future releases of CλaSH.
Using these time dependent types would simplify the creation of the
pipeline, the types itself will handle the delay cycles. The advantages
and disadvantages are mentioned in the next research question.

6.2 what are the advantages and disadvantages using

cλash

Using CλaSH has some advantages and disadvantages, these are
listed below.

6.2.1 Advantages

• Easily scalable

• Can make use of higher order functions in Haskell

• Save design time (creating the hardware description gives the
bonus of a simulator where normally one would write a simu-
lator written in an other language (e.g C) next to the VHDL or
Verilog hardware description)

• Simulator and hardware design are the same thing, so less er-
rors can occur during development, fixing an error in the simu-
lator, immediately fixes the same error in the hardware design
(and visa versa).
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• Can make use of pattern matching (an embedded language in
Haskell), which improves readability and simplifies the con-
struction of parsers and compilers.

• During development the code can easily be tested using the
existing GHC interpreter.

6.2.2 Disadvantages

• From a hardware designer point of view: Knowledge about
Functional programming is required (and the extras needed for
CλaSH)

• From a Haskell programmer point of view: Knowing Haskell
and CλaSH is not enough for creating a fully working processor,
knowledge about hardware is still required.

• Simulation using a CλaSH simulator is much slower than creat-
ing a custom C simulator (could be partly solved by creating a
Haskell emulator as well).

6.3 how does the cλash design compare with the exist-
ing design of the wavecore

A hardware comparison between the existing WaveCore design and
the generated design by CλaSH can not be done because:

• WaveCore uses Floating-point arithmetic and CλaSH uses Fixed-
point arithmetic.

• Only 1 PU is implemented, networking with multiple PUs is not
implemented and tested.

• No realization on FPGA has been done.

6.3.1 Simulator comparison

There are some differences between both simulators. The existing C-
Simulator is much faster because it is implemented as an emulator.
Creating and maintaining the C-Simulator however is an extra de-
sign step compared to the CλaSH version. The hardware code (VHDL
or Verilog), is generated out of the simulator code (in the case of
CλaSH). This takes away the step of creating a standalone simulator.
This simulator is a real simulator of how the hardware works inter-
nally, this means that all internal states are modeled in this design,
in the C-Simulator only the output behavior is mimicked. When fast
simulation (or emulation) is required then a separate emulator has to
be created (this could be based on the existing Haskell code to save
design time).
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6.4 future work

The current implementation of the WaveCore in CλaSH is not fin-
ished. Things that still have to be done are:

• Finish the pipeline

• Connect multiple PU’s together

• Compare FPGA area usage of the existing WaveCore implemen-
tation and the Haskell version

6.4.1 WaveCore compiler in Haskell

The current WaveCore compiler is made in C. In the ideal case this
is all done in the same language (e.g. Haskell). The benefits of this
approach would require knowledge of only Haskell (and of course
CλaSH). A graphical representation of how then the Work-flow of
the usage of the tools is showed in 31. A start has been made for this
approach in the current research (Compiler can generate WaveCore
ObjectCode with a list of Haskell data-types).
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Figure 31: Preferred Work-flow
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H A S K E L L / CλA S H D ATA T Y P E S

This appendix has a subset of all type definitions used in the HaskellPU
and CλaSHPU. These include:

• Instructions - Instructions and types related to the instructions
are listed in Listing 23.

• Numberic Types - All the numeric types used in the CλaSH
implementation (next to the Haskell numeric types) are listed
in Listing 24.

• Pipeline Stage Input Types - All the pipeline inputs are defined
in Listing 25.

• Pipeline Stage Output Types - All the pipeline outputs are de-
fined in Listing 26.

1 data GiuOpcode = NOP | RND | AMP | MAC | MUL | DIV | CMP | HYS

2 | EOG | DOU | LUT

3 data Delay = NoDelay | Delay

4 data Destination = Xmem | Ymem | XYmem | Alt_mode

5 data OpMemAssign = X1_x_X2_y | X2_x_X1_y

6 data SelectPointer = Xwb | Ywb | PntrGPNx | PntrGPNy | Xop | Yop

7 data OpLocation = OpLocX | OpLocLSP | OpLocY

8 data WbRC = Xa | Ya | XYa | IGCx | Xb | Yb | XYb | IGCy | LSP

9

10 data GIU_Instruction

11 = Default

12 GiuOpcode

13 Delay

14 Destination

15 MemoryAddressOffset

16 OpMemAssign

17 MemoryAddressOffset

18 MemoryAddressOffset

19 | PointerInit

20 GiuOpcode

21 SelectPointer

22 Immediate

23 | WritebackRoute

24 GiuOpcode

25 OpLocation

26 OpLocation

27 WbRC

28 MemoryAddressOffset

29 MemoryAddressOffset

Listing 23: Instruction type definitions
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1 -- Type definitions

2 -- CLaSH Haskell

3 type WaveFloat = SFixed 8 24 Float

4 type DmemAddr = Unsigned 20 Int

5 type Int32 = Unsigned 32 Int

6 type Immediate = Unsigned 12 Int

7 type MemoryAddressOffset = Signed 8 Int

8 type RegAddr = Unsigned 8 Int

9 type OperandType = WaveFloat WaveFloat

10 type LSU_Immediate = DmemAddr DmemAddr

11 type MemoryValue = OperandType OperandType

12 type FiFoValue = OperandType OperandType

13 type RegisterValue = Int32 Int32

14 type MemoryAddress = Int32 Int32

Listing 24: Haskell and CλaSH Numeric types

1 -- Pipeline Inputs

2 data Stage1Input = Stage1Input

3 { resetPC :: Bool}

4

5 data Stage2Input = Stage2Input

6 { stage1_output :: Stage1Output

7 , stage2_GIU_Instr :: GIU_Instruction

8 , stage2_ACU_Pointers :: ACU_Pointer}

9

10 data Stage3Input = Stage3Input

11 { stage2_output :: Stage2Output

12 , stage3_MemoryValues :: (MemoryValue,MemoryValue,MemoryValue)

13 , stage3_IbFifoTop :: FiFoValue}

14

15 data Stage4Input = Stage4Input

16 { stage3_output :: Stage3Output}

17

18 data Stage5Input = Stage5Input

19 { stage4_output :: Stage4Output

20 }

21

22 data Stage6Input = Stage6Input

23 { stage5_output :: Stage5Output

24 , stage6_GPN_Outside :: GPN_Data}

Listing 25: CλaSH Datatypes for the Stages(Inputs)
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1 -- Pipeline Outputs

2 data Stage1Output = Stage1Output

3 { output1_GIU_PC :: Int32}

4

5 data Stage2Output = Stage2Output

6 { output2_Opcode :: GiuOpcode

7 , output2_X1Source :: OpLocation

8 , output2_X2Source :: OpLocation

9 , output2_WriteBackDest :: WbDestination

10 , output2_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)}

11

12 data Stage3Output = Stage3Output

13 { output3_x1 :: OperandType

14 , output3_x2 :: OperandType

15 , output3_p :: OperandType

16 , output3_f :: GiuOpcode

17 , output3_WriteBackDest :: WbDestination

18 , outout3_CMemVal :: Maybe MemoryValue

19 , output3_CMemWriteAddr :: MemoryAddress

20 , output3_ibFiFoRead :: Bool

21 , output3_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)}

22

23 data Stage4Output = Stage4Output

24 { output4_ALU_output :: OperandType

25 , output4_WriteBackDest :: WbDestination

26 , output4_MemAddresses :: (MemoryAddress,MemoryAddress,MemoryAddress)}

27

28 data Stage5Output = Stage5Output

29 { output5_xMemValue :: (MemoryAddress,MemoryValue, Bool)

30 , output5_yMemValue :: (MemoryAddress,MemoryValue, Bool)

31 , output5_obFiFoValue :: Maybe FiFoValue

32 , output5_GPN_Data :: GPN_Data}

33

34 data Stage6Output = Stage6Output

35 { output6_GPN_Outside :: GPN_Data

36 , output6_xMemData :: (MemoryAddress,MemoryValue, Bool)

37 , output6_yMemData :: (MemoryAddress,MemoryValue, Bool)}

38

39 -- Pipeline States

40 type Stage1 = Stage1Output

41 type Stage2 = Stage2Output

42 type Stage3 = Stage3Output

43 type Stage4 = Stage4Output

44 type Stage5 = Stage5Output

Listing 26: CλaSH Datatypes for the Stages(Outputs)
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