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Abstract

The SHERPA-project (www.sherpa-project.eu) focuses on developing a collaboration between
human rescuers and ground/aerial robots for improving rescue activities. In this collaboration,
the human should be able to use the robots with ease when necessary, while the robots should
be autonomous when the human does not demand control.

The MSc research focuses on the control of the slave device using a semi-autonomous controller,
where variations in parameters can be made by the operator to support the autonomous con-
troller. The key-aspects of this research are that the operator’s discrete outputs and the robot’s
continuous inputs are clearly separated and that the operator can assist the robot without being
cognitively overloaded by the robot. The overall goal of the semi-autonomous control architec-
ture is to combine the stability and precision of autonomous control with the cognitive abilities
of the operator. The architecture has been validated through simulations and experiments.





Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Report overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Bilateral Human-Robot Control for Semi-Autonomous UAV Navigation 4

3 Methodology and software implementation 12

3.1 Use-case-scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 A*-Path-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Setpoint selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.4 Position controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.5 Safety-mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusions and Recommendations 26

A Hardware setup 27

A.1 Using the XSens suit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.2 Using the Myo-armband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.3 Haptic feedback with vibration motors . . . . . . . . . . . . . . . . . . . . . . . . 29

B Installation Manual 32

C User Manual 37

D Myo streamer C++ code 40





1 Introduction

1.1 Context

This master-thesis has been performed at the RAM department of the University of Twente,
under the European project named ”Smart collaboration between Humans and ground-aErial
Robots for imProving rescuing activities in Alpine environments” (SHERPA). The goal of
SHERPA is to develop a mixed ground and aerial robotic platform to support search and rescue
activities in a real-world hostile environment like the alpine scenario [1]. The team consists of
a human-rescuer, an intelligent ground-vehicle that carries the load, a fixed-wing Unmanned-
Aerial-Vehicle (UAV) and a big multi-rotor UAV for mapping and several smaller multirotor
UAVs for nearby scanning. The robots in this team support the rescuer by improving aware-
ness. Since the human-rescuer is on-site and busy in the rescuing activity, he is often unable
to supervise the platform. Therefore the emphasis of the SHERPA project is placed on robust
autonomy of the platform, inducing small work-load on the operator.

This master-thesis project contributes to this robust autonomy, specifically on the robust au-
tonomy of the smaller multirotor UAVs. In this report, a semi-autonomous control-method is
presented for controlling these smaller UAVs in dense terrain.

1.2 Report overview

First in the next subsections the state-of-the-art is presented. Then in section 2, the conference
paper, submitted to IROS 2015, is given. This paper presents our proposed semi-autonomous-
control architecture. Furthermore it describes the methodology and implementation details on
this and the hardware used for realisation, and it presents experiment results. In section 3,
additional information regarding the methodology is presented. Also some specific details on
the software-implementation are given and an overview of the implemented software structure is
presented. Finally, in section 4 conclusions are presented and recommendations for future-work
are made.

The appendices describes how the hardware can be used(appendix A), and show the manuals
for installing the software (appendix B) and using the software (appendix C). Furthermore some
C++ code is documented as this piece of code stands separate from the rest of the software and
could potentially get lost for this reason (appendix D).

1.3 State of the art

Thanks to their agility, UAVs are exemplary to be used in surveillance, inspection and search-
and-rescue missions [1]. In the context of these missions, it is often desirable for these UAVs to
operate fully autonomous. In many cases, however, these missions take place in dense terrain,
which does not allow fully autonomous operation [2], unless e.g. the UAVs operate at a certain
height in which no obstacles are expected [3]. Navigating an UAV close to obstacles, such as
buildings or dense trees, is difficult and unreliable, as the UAV requires a certain amount of
airflow to stay in the air, and this airflow can cause turbulence. Inside buildings or dense forests
the problem becomes even bigger.

For this type of missions, current research focuses at the use of semi-autonomous control to
overcome the unpredictability of the environment and its impact on the stability of the UAV.

1



Most of these semi-autonomous control methods can be categorized in three different types:
Shared-control, Traded-control and Supervisory-control.

As the name states, shared-control focuses on sharing the control efforts between the human-
operator and the autonomous-controller. This can be either separate [4], in which the hu-
man controls some of the control efforts and the autonomous-controller controls others, or
combinatory[5] [6], where both the human and the autonomous-controller contribute to some
shared control efforts together, in a specified manner. This can be, for instance, that in nor-
mal operation the control is mainly dominated by the autonomous-controller, whereas in more
dangerous situations main contribution gradually shifts over to the human operator. Shared-
control has shown to increase the overall efficiency and performance [5] [7] and homogenizes the
performance of human operators from different backgrounds [6]. The main downfall of this type
of semi-autonomous control is that the human has to be present at all times. Also, it was shown
that the operator tends to overly trust the system [5], reducing situational awareness and, with
this, the operator’s performance at crucial moments. Furthermore, it was observed that the
operator started to expect certain behaviour from the autonomous controller and anticipate
on this, which can lead to frustration and worse performance when the autonomous controller
behaved differently. In the our context, this type of semi-autonomous control is not viable, as
the operator cannot be present at all times.

In traded-control, control efforts are shifted between the human operator and the autonomous
controller, which can be either a part or the total control effort. One of the main types of
semi-autonomous traded-control is the mixed-initiative-interaction (MII) method [8]. MII is a
flexible interaction strategy, in which the task at hand determines which actor should contribute
to which control effort. In certain applications the autonomous controller can lead [9] [10],
where the human operator takes over if the situation requires this (e.g. a ground robot that
gets stuck in unequal terrain and needs a complex control strategy to get loose). Often in this
case, the human overtakes the complete control effort. Other applications can be led by the
human, where the autonomous controller takes over in case necessary (e.g. driving a vehicle
with safety-systems which are activated if the task diverges from regular driving to avoiding an
accident). Results in research show that traded-control, in complex scenarios, can reduce the
overall immobility time to a comparable amount of autonomous control, while it can increase
the coverage in exploring an area to be comparable to that of pure teleoperation [11]. However,
in switching the control effort, there can be some undesired switching behavior temporarily
reducing stability. Furthermore, both operators need to be standby. Also, the human requires
high environmental awareness to properly take over the control actions. This is undesirable in
the SHERPA scenario for two reasons. First, as the operator is busy traversing the difficult
terrain, the operator cannot be distracted too much by keeping track of the UAVs. Second,
UAVs are intrinsically unstable, which means that small mistakes can have big consequences,
and undesired switching behavior can be fatal to the system.

Supervisory control [12] [13] allows the human operator to have a reduced workload, as dur-
ing normal operation the control effort relies completely on the autonomous controller. The
supervisor is the human operator who, from time to time or upon request of the autonomous
controller, monitors the autonomous controlled system. In case necessary, the operator can
intervene to either modify the control algorithm or grant permission for certain operations. In
some cases, it is inevitable for the operator to also have the ability to take over control efforts,
which basically implies a combination of supervisory- and traded-control. Supervisory control
is often applied in situations where there is a big time-delay or the human operator needs to
multitask. Research has shown that supervisory control can prevent cognitive overloading, that
would occur if the operator had to control both a robot and perform another task. [14] . Next
to this it allows for multiple robots to be controlled simultaneously by one operator [15] [16].
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However, the more manual operation is demanded, the less complex other tasks can be and the
less number of UAVs can be supervised effectively [17].

In this report, a semi-autonomous control architecture is presented, which can be classified as
supervisory control. It is implemented for the UAV navigation in dense terrain. It is not desired
to allow the human supervisor to directly teleoperate the UAV, as the performance is likely to
drop and it can jeopardize the stability. The other extreme, only giving the operator the ability
to allow/disallow certain requests from the autonomous controller, e.g. yes you can fly through
that narrow opening / yes you can close in to humans, brings along several problems as well, such
as what to do after the UAV has flown through the opening or how close can the UAV approach
humans. In this case, the supervisor has limited methods for control and cannot supervise the
dangerous action as it is being performed. The situation can become worse due to unexpected
circumstances. Modifying the control-algorithm itself could cause unexpected behavior and
confusion forCite the operator when it is not implemented to be transparent. Therefore, our
approach is to merely allow the operator to modify the boundaries/safety-limits of the control
algorithm. By this way, the UAV can be allowed to pass a dangerous situation, while the
operator supervises the system and can control the process. The effect of the operator’s actions
and the expected behavior of the autonomous controller are transparent and predictable, and
the operator preserves methods to intervene when the situation becomes worse.

In the paper which can be found in the next section, our proposed semi-autonomous control
architecture is presented and elaborated.

The control method is applied in the field of UAV navigation, but yields the potential to be
applied in different fields as well. For example, in Robotic Surgery, the surgeon could supervise
the robot by allowing a maximum amount of force to be applied during several aspects of
the operation, whereas in Personal Robotics, interaction could be managed by controlling the
maximum amount of pressure the robot can apply in interaction or the maximum movement
speed the robot can have.
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Bilateral Human-Robot Control for Semi-Autonomous UAV Navigation

Han W. Wopereis, Matteo Fumagalli, Stefano Stramigioli, and Raffaella Carloni

Abstract— This paper proposes a semi-autonomous bilateral
control architecture for unmanned aerial vehicles. During
autonomous navigation, a human operator is allowed to assist
the autonomous controller of the vehicle by actively changing
its navigation parameters to assist it in critical situations,
such as navigating through narrow paths. The overall goal
of the controller is to combine the stability and precision of
autonomous control with the cognitive abilities of a human
operator, only when strictly required for the accomplishment
of a task. The control architecture has been validated through
extensive simulation and in experiments.

I. INTRODUCTION

Thanks to their agility, Unmanned Aerial Vehicles (UAVs)
are exemplary to be used in surveillance, inspection and
search-and-rescue missions [1]. Although fully autonomous
operation is often appropriate and desirable, many complex
tasks in dense terrains, such as exploration of forests or
buildings, can only be accomplished if the UAV is supervised
by a human operator [2]. Teleoperation requires full attention
of the operator, which is not cost-efficient, and can increase
the duration of the operation as the time needed to perform
a specific task depends linearly on the delay in the loop [3].

Different types of semi-autonomous controllers have been
proposed and investigated. Most of these can be classified
under shared-control, traded-control and supervisory-control.
In shared-control, the inputs from the human operator and
the autonomous controller are combined, e.g., in sliding-
scale autonomy. Experienced users might expect a certain
behavior of the autonomous controller, which leads to worse
performance, or overly trust the system, which leads to re-
duced situational awareness [4]. Shared-control has also been
proven to improve efficiency in the human-robot cooperation
[5] or in a multi-robot team [6]. In the bilateral shared-control
proposed in [7], the human operator can modify the shape
of the path of mobile robots while receiving feedback on
the actions of the autonomous controller. In traded-control,
the control switches between teleoperation and autonomous
operation. One of the main types of semi-autonomous traded-
control is the mixed-initiative-interaction, a flexible inter-
action strategy in which the task determines if the human
operator or the autonomous controller should contribute to
completing it [8]. In certain tasks the autonomous controller
can lead [9], [10], while in other cases the human leads

This work has been funded by the European Commission’s Seventh
Framework Programme as part of the project SHERPA under grant no.
600958.

The authors are with the Faculty of Electrical Engineering, Mathematics
and Computer Science, CTIT Institute, University of Twente, The Nether-
lands. Email: h.w.wopereis@student.utwente.nl, m.fumagalli, s.stramigioli,
r.carloni@utwente.nl.
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Fig. 1. Overview of the semi-autonomous bilateral architecture, in
which the human operator can actively change the autonomous controller’s
parameters.

[11]. Results show that traded-control can reduce the overall
immobility time to a comparable amount of autonomous
control while it can increase the coverage in exploring an
area to be comparable to that of teleoperation.

This paper proposes a semi-autonomous control architec-
ture which can be classified as supervisory-control [12]. The
control architecture is depicted in Figure 1 and is based on
the classical bilateral teleoperation paradigm in which the
human-operator operates a Master device, which consists of
the Human machine interface and the Master controller, to
interact with the Slave device via a communication channel.
The Slave device consists of the Slave controller, which per-
forms low-level control, and the Slave robot which represents
the physical robot. The Master device receives a feedback on
the state of the slave and/or on the environment.

Our approach extends the classical paradigm by inserting
an autonomous controller between the Master device and
the Slave device. When desired or needed by the mission,
the human operator can issue discrete commands to the
autonomous controller and overrule the autonomous con-
troller’s parameters. The autonomous controller translates
these discrete signals into a continuous stream of setpoints.
By this means, the operator can supervise the autonomous
controller and assist it to overcome problematic situations,
without directly teleoperating the slave robot.

The overall control architecture is validated in both a
simulation environment and experiments. A quadrotor UAV
has to autonomously navigate a cluttered environment, while
avoiding obstacles and paths that are narrower than a certain
safety distance. The human operator is equipped with a non-
invasive human-machine-interface that facilitates inertial and
electro-myographic inputs so that the safety level can be
overruled by interpreting the gestures of the human operator.
Non-invasive haptic and graphical information are fed back
during performing the mission.
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Fig. 2. The autonomous controller with specified signals.

II. AUTONOMOUS CONTROLLER

This section describes the details of the semi-autonomous
controller, as shown in Figure 1, in which a human operator
supervises an UAV during the execution of a task. The chosen
scenario includes an UAV that navigates in a static map and
a human operator that can influence the navigation algorithm
by adjusting the safety distance, i.e., the minimum required
distance of the UAV to obstacles or the minimum width of
a path the UAV can navigate in.

The overall architecture of the autonomous controller is
detailed in Figure 2. With reference to the figure, the total
system consists of three top-level blocks: the master device,
the autonomous controller and the slave device. The master
device refers to the human operator who, by means of
a human-machine interface, assigns targets to be reached
in the map and is able to issue commands that modify
the safety distance. On the slave side, the robot performs
setpoint tracking and shares its state with the autonomous
controller, which is then in charge to feed information back
to the human operator. Between the master and the slave,
the autonomous controller translates the discrete input from
the master device to a continuous stream of setpoints for the
slave device, and vice versa.

The autonomous controller is defined as an interconnection
of four main modules that are schematically represented
in Figure 2. These modules, which are the task manager,
constraint handler, path planner and feedback generator, are
described in the next sections, with the exception of the
task manager. In general, the goal of the task manager is to
interpret signals from the human-machine interface into tasks
and to list and determine task execution order. By allowing
only a single task to be assigned at a time, the task-manager
reduces to a translation from user-input to target-locations.

III. PATH GENERATOR

Considering for simplicity a 2D environment, let X ∈ R2

be the set of equidistant points that form a grid into which
a 2D map is divided, and let x ∈ X be a grid point. Let
xs, xt ∈ X be the grid points that, respectively, represent
the start position and the target position of the UAV during
a complete task, and let p(xs, xt) be a path connecting xs to
xt. Finally, let xc be the current position of the robot and let

us define xs := xc at the moment in which the autonomous
controller receives a new target position xt.

The path generator block finds a suitable path p(xs, xt)
by using the heuristic best-first-search algorithm A* [13],
which finds the lowest cost path by expanding its search at
grid points with the lowest value of the function:

f(x) = g(x) + h(x)

In this function, f(x) is the estimated total cost of a path
p(xs, xt) via x, g(x) the past travel-cost from xs to x, and
h(x) is the heuristic function that estimates the minimum
future cost-to-go for reaching xt starting from x. By ex-
panding its search at grid points with the lowest value of
f(x), the A*-method prioritizes the grid points that have
the biggest chance to be a part of the optimal path. In the
following subsections, the implementations of g(x) and h(x)
are reported.

A. Travel-cost g(x)

The travel-cost g(x) is defined as the past travel-cost from
xs to x. To ensure finding the minimum value for g(x), g(x)
is calculated incrementally, by adding the local cost c(xp, x)
of traveling from xp to x to the past cost g(xp) of traveling
from xs to xp, where xp is the neighboring parent grid point
of x that results in the lowest value for g(x). The value of
g(x) is then found as:

g(x) = g(xp) + c(xp, x)

In order to generate proper paths, each grid point on the
map is assigned a cost for entering, which is defined as the
travel-weight w(x). Using this travel-weight, with reference
to Figure 3, the local cost c(xp, x) is defined as:

c(xp, x) =




w(x) if x ∈ [x11, x22]√
w(x)2 +

(
w(x11)+w(x22)

2

)2
if x = x12

(1)
The travel-weight w(x) can be defined arbitrarily in the

map. In our specific case, in order to avoid paths that are in
the vicinity of obstacles, w(x) depends on dobs(x), which is
defined as the smallest Euclidian distance of grid point x to



xp

x11 x12

x22

Fig. 3. Supporting figure for equation 1, illustrating two different
possibilities to travel towards neighboring grid points (green-to-red and
green-to-blue).

an obstacle, i.e.:

w(x) =





1 if dobs(x) > ro

β + α · ro − dobs(x)
ro − ri

if dobs(x) > ri

100 otherwise

(2)

in which, respectively, ri, ro are the minimum and maximum
value assignable to safety distance rs; α ∈ [0, 99] and β ∈
[1, 99−α] are a scale factor and a weight-offset, respectively.
In Figure 4, an example of the travel-weight map, with α =
49 and β = 50, is displayed by the blue color of the map: the
darker the blue, the higher the travel-weight for that specific
grid point. The offset generated by β = 50 is seen at the
border between the white and blue.

Note that, by introducing a reasonably high weight-offset
β, the algorithm is forced to first search for a lower-cost
detour which is not in the proximity of obstacles. This
is visible in the left of Figure 4, where the top area is
first completely scanned before the algorithm progresses
through the opening. This is an important aspect for our
approach, as traveling in the proximity of obstacles may
require the operator’s attention and, therefore, should be
avoided. Section V goes into more detail about this. The
weight-scale-factor α ensures that paths traversing in the
proximity of multiple obstacles prioritize the center, as can
also be seen on the left part of Figure 4.

B. Cost-to-go h(x)

The A*-method results in the optimal path p(xs, xt)
between the start location xs and the target location xt under

Fig. 4. Left: First the algorithm expands its search for routes with less
proximity to obstacles. Then it expands through the opening, finding the
target quickly after. Right: This is the worst case situation. The target is
unreachable and the algorithm has to search all possible paths. The grid is
sized 51× 51 points; calculation time is 0.53s.

the condition that h(x) is admissible, i.e. h(x) does not
overestimate the cost-to-go for reaching xt. For calculating
the minimum cost-to-go h(x) on a grid with minimum travel-
weight w(x) = 1, which allows for both diagonal and lateral
movement, the sum of the minimum steps between x and xt
can be taken, with the diagonal steps weighted by

√
2. The

value of h(x) is calculated as:

dx = x− xt
h(x) = χ ·

(
(
√
2− 1) ·min(|dx|) + max(|dx|)

)

in which min(|dx|), max(|dx|) denote the element of dx
with the smallest/biggest norm, respectively, and χ ∈ [0, 1)
is the admissibility-factor to assure admissibility in the
presence of calculation errors. By choosing χ = 0.99, h(x)
is underestimating the cost-to-go and therefore is admissible.

C. Unreachable target

In case a target position is unreachable, the algorithm
completely explores the grid-space X and concludes that the
target is unreachable. In this scenario there are two options.
The path-generator could return a signal telling the target is
unreachable and wait for a new target, or it can attempt to
go as close as possible.

By assuming the operator has a certain awareness of the
environment, it can be said that in case of an unreachable
target, this was set on purpose. Then, it is desirable that
the UAV is guided as close as possible to the target. This
closest position is found by searching X for the grid-point
x for which h has the lowest value. Then, if the target is
unreachable, xt is redefined as:

xt := xh,min

where h(xh,min) = min(h(X)). An example of this redefi-
nition is shown on the right part of Figure 4.

IV. PATH EXECUTOR

The path executor is made of two blocks, namely the
setpoint selector and the position controller. The setpoint
selector generates a continuous stream of valid setpoints xsp
utilizing path p(xs, xt) received from the path generator and
safety-distance rs received from the parameter handler. The
position controller translates xsp into Euler-angle-setpoints
and an elevation setpoint for the UAV’s low-level controller.
The position controller is implemented as a well-known PD-
controller and is not further explained in this paper. The
setpoint-selection method is elaborated below.

A. Setpoint selection

Given a path, the setpoint selection block of Figure 2
continuously finds suitable setpoints that drive the UAV
towards the target. To do so, with reference to Figure 5, it
uses the line-of-sight method to search for the furthest point
xp on the path p(xs, xt), for which the minimum distance
dobs(xcxp) between the line-segment xcxp and the nearest
obstacle is greater than safety distance rs.

Once xp has been found, the next setpoint xsp is found as
the point on the line-segment xcxp that is at the maximum



Fig. 5. Graphical representation of the line-of-sight method.

xc,reloc

xc

xc,reloc

xc

Fig. 6. Figure to illustrate relocating xc in case dobs(xc) < rs. Left:
Single relocation. Right: Double relocation.

distance Rmax from xc, with Rmax a manually chosen limit
on the distance between xc and xsp. This is calculated as:

xsp =

{
xp · Rmax

|xcxp| if |xcxp| > Rmax

xp Otherwise

The aforementioned line-of-sight function is implemented as
shown in Algorithm 1.

Algorithm 1 Line-of-sight setpoint selection
1: xp := xs
2:
3: for i ∈ [size(p(xs, xt), 1] do
4: if dobs(xcxp,i) > rs), then
5: xp = xp,i
6: break
7: end if
8: end for

Note that, at any instance, it can occur that dobs(xc) < rs,
e.g., due to the operator increasing the value of rs or due to
disturbances. For Algorithm 1 to work properly, it is required
that xc is not located within rs, since in that case it will
always output xp := xs, which is not valid per definition. In
this work, it is essential that by increasing rs, the UAV is
forced to move along within the boundaries imposed by rs.

Each loop, preliminary checks are performed to see if
dobs(xc) < rs. If this is the case, attempts are made to
relocate xc onto the border imposed by rs. Figure 6 shows
this relocation in two different cases.

Note that this method does not consider any dynamic
behavior of the UAV, nor does it include any initial velocities
in the process of selecting new setpoints. This implies that
the actual trajectory traveled by the UAV may violate the
safety-measure imposed by rs. It is assumed that during

Fig. 7. Left - Path generation influenced by rs: the path leads to the
smallest h(x). As the UAV cannot reach the goal, it stops and asks for help
in front of the wall. Middle - Path generation is aware of the limits on rs:
the path leads to the goal, the UAV asks for help in front of the door. Right
- Path generation ignores rs: the path leads towards the goal, the UAV asks
for help in front of the wall.

normal operation, the safety-distance is high enough to
prevent collision, in combination with the relocation.

V. PARAMETER HANDLING

In some scenarios, the human operator can influence more
parameters. In these cases, the parameter handler’s block
has to interpret the operator’s intentions and to convert
corresponding inputs to appropriate parameters, which are
then forwarded to the autonomous controller.

In this work, the parameter handler interprets the inertial
and electro-myographic data of the human operator as the
safety-distance rs and sends the new value rs to the setpoint
selection block. By analyzing how the variations in rs should
influence the path generator block led to three different pos-
sibilities: the path-generator can be influenced by variations
of rs, the path generator can be aware of the limits (ri,ro)
of rs, or, the path generator can ignore the variation of rs.

Figure 7 depicts these three possibilities and shows the
local minimum of each. As shown in the left figures, if rs
influences the path generator, the path leads to min(h(X))
in front of the wall. Furthermore, upon lowering rs, the UAV
will suddenly start to move towards xt, without the operator
being able to guide it safely through the opening. In the
right figures, it can be seen that ignoring the existence of
rs can cause the system to get stuck at a local minimum,
even if there is no real reason to ask for operator attendance.
The figures in the middle show that it is better to avoid
areas with obstacles, unless there is no other viable solution.
This feature is implicitly implemented by the weight-offset
β (see Equation 2) on the travel-weight w(x) close to
obstacles, as described in Section III-A. A time-lapse of the
behavior due to the human intervention is shown in Figure
8, where the human sets a reduced safety-distance that allow
passing through a narrow path in the map (e.g., a door),
computationally impossible otherwise, due to the generation
of a local minima that prevent completing the path.
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Fig. 12. Result plots for one of the trials in the experiment, in compliance
with the the 2D map in Figure 11.

A significant amount of overshoot is visible in the plots,
which appears to be mainly caused by turbulence due to the
small area and the air-flow of the UAV.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel approach for bilateral
control for semi-autonomous UAV navigation, in which the
novelty is given by the ability of the human operator to assist
the autonomous controller by adapting certain navigation
parameters, in this particular case the safety-distance to
obstacles. The advantages of this method over other semi-
autonomous control methods are: the default navigation pa-
rameters can be set conservative while the operator preserves
flexibility, a clear distinction between discrete user-input
and continuous autonomous-control output and a reduced
cognitive workload for the human operator.

The approach was implemented for our specific scenario
and different important aspects of implementing the proposed
control architecture were discussed. An A*-path-planning
algorithm was used to generate paths and a relocation plus
line-of-sight method was used to find suitable setpoints on
this path. Advantages of this approach are the flexibility to
scale up to 3D and bigger grids and the ability to account
for uncertainties such as disturbances and initial velocities.

Experiments showed a high performance and reliability in
the presence of significant disturbance and the operator was
able to assist the UAV to safely travel through the opening in
21 out of 22 trials. The system showed good responsiveness

to variations in the safety-distance and showed to success-
fully counteract overshoot.
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3 Methodology and software implementation

This section elaborates the methodology used for the semi-autonomous controller. Design
choices and alternatives are more thoroughly presented and algorithms are explained. Next
to this, specific details about the software implementation are presented as well.

First, design choices regarding the methodology are presented using the use-case-scenario as a
guideline. Then a complete overview of the software-structure is presented. From this overview,
each of the algorithms used is explained and finally details on the software implementation are
given.

3.1 Use-case-scenario

The use-case-scenario for which our semi-autonomous control method is tested is the one of
UAV navigation in a cluttered, static map. The human operator, who is on-site, can send
target-positions to the autonomous controller and can influence the navigation algorithm by
adjusting the safety-distance, i.e. the minimum required distance of the UAV to obstacles.
This also induces the minimum width of a path or opening the UAV can navigate through.
Obstacles are defined as straight lines, which can stand free or connected. Due to availability,
a low-cost Parrot AR.Drone is selected for experiments. This quadrotor takes Euler-angles and
an Elevation setpoint as inputs, for an internal controller. As the human-operator is on-site,
the master-device has to be wearable and non-invasive.

The methodology for the autonomous controller in this use-case-scenario should consist of:

• A path-planning algorithm, which translates discrete target-positions to a continuous
stream of setpoints, while obeying the safety-distance.

• Input handlers, which translate the (possibly continuous) inputs from the master-device
to discrete target-positions and variations in the safety-distance.

• Operator feedback generation, which generates appropriate feedback for the human-operator.

For simplicity, the assumption is made that the map is static and known a-priori. This removes
the need of environmental sensors. Feedback on the robot’s state is fed directly into the path-
planning algorithm.

3.2 Overview

The overview of the semi-autonomous control architecture, which was previously presented in
the paper in section 2, is presented again in figure 1 below. The software architecture is mainly
constituted by the autonomous controller. The master-device and the slave-device have some
hardware-specific software to communicate with the autonomous controller, but in this report
these are considered to be part of the hardware-setup and are elaborated in section A.

The autonomous controller consists of four blocks: Path Planner, Feedback generator, Task
manager and Parameter handler. The path-planner is the complete navigation algorithm,
whereas the Task manager and Parameter handler are the input handlers, and the Feedback
Generator generates feedback for the operator.
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Figure 1: The total system architecture, focused at the Autonomous controller. Signals are
indicated, for their specific meaning, see 2

The path-planning algorithm consists of a path-generator, which finds collision-free paths in
the environment, and a path-executor, which executes this path. The path-executor consists
of a setpoint-selector that selects the next viable setpoint, and a position controller, which
transforms these position setpoints into Euler-angles and Elevation setpoints.

The feedback to the operator is generated separately in the Feedback-generator. It uses a variety
of data from the path-executor to supply the operator situation-awareness and insight in the
path-executors behavior. This feedback is both graphic and haptic.

The input regarding target-locations is handled by the task-manager, which carries this name
so that in later stages it could be possible to have multiple tasks at once. In that case the
task-manager decides which task to perform next, which is possibly done in discussion with the
Path-generator. The input regarding the safety-distance is handled by the Parameter-handler
and directed towards the path-executor which has to obey this safety-distance.

3.3 Algorithms

In the next subsections, design choices and explanations of used algorithms are presented. The
specific implementation has been presented in the paper, but some design choices or explanations
were omitted due to limited space.

3.3.1 A*-Path-finding

As introduced in section 2, the path-finding algorithm used in the Path Generator is the A*-
search-algorithm [18]. This heuristic search algorithm finds the shortest route between two
positions on a grid or graph by expanding its search from start-position until the end-position is
reached. It is called heuristic, as it prefers to expand at the most promising path-segments first
by using a heuristic function. The most promising path-segment is found by calculating the
sum of the past path-cost (travel-cost) and the expected future path-cost (cost-to-go) for each
evaluated node1. The algorithm continues at the node with the lowest value for this sum, which
therefore, at that iteration, is most likely to be part of the optimal path between the start- and
end-position. For this algorithm, to guarantee it finds the optimal path, it is crucial that the

1In search-algorithms, a grid-point is often referred to as a node.
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cost-to-go is not over-estimated. Best calculation time can be achieved when the estimation is
exact, as in this case the least nodes will be expanded.

The algorithm was chosen among others, as it finds an optimal path, is comparably easy to
implement and does not unnecessarily over-calculate. Also, the workspace and the obstacles are
not bound to specific shapes for the algorithm to work, as long as the grid is dense enough in
comparison to the workspace and obstacles’ size. Several variations on the A*-algorithm exist,
such as Jump-Point-Search [19] and iterative-deepening-A* [20]. Jump-point-search improves
calculation time in uniform grids, whereas iterative-deepening-A* allows lower memory usage.
In our case however, memory is not a problem and the grid is not uniform.

The algorithm explained

First let us make some definitions. Let X ∈ R2 be the grid with equidistant nodes, and x ∈ X
denotes one of these nodes. Furthermore, xs, xt denote, respectively, the nodes of the start- and
end-position. The optimal path from one node to another is denoted by p(xi, xj).

Let’s assume at first, for simplicity, that the cost for traveling from node to node is uniform in
X. We define traversing X to be possible both diagonal and lateral. The local-cost c(xi, xj) to
travel from node xi to node xj is given by:

c(xi, xj) =

{
1 if travelling lateral√

2 if travelling diagonal
(1)

in which the cost for travelling diagonal is properly weighted.

The travel-cost for x, defined G(x), is the cost travelling from xs to x. G(x) can be calculated
incrementally by adding the local-cost c(xp, x) to the travel-cost of the previous ”parent” node
G(xp):

G(x) = G(xp) + c(xp, x) (2)

The cost-to-go, defined H(x), can be found as:

H(x) = 1 ·max(|xt − x|) + (
√

2− 1) ·min(|xt − x|) (3)

with the max,min denoting the maximum and minimum element of these 2D vectors, respec-
tively.

The total-cost, F (x), for node x is then found as:

F (x) = G(x) + H(x) (4)
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In our specific implementation n = 8 and the array in the lookup table for a specific node,
M(x, 1 : 8), stores the following information:

M(x, 1 : 8) = [ px(1) , px(2) , w(x) , Fclosed list , Fopen list , G(x) , xparent(1) , xparent(2)]
(7)

From left to right, this is:

1. 2. The actual position px, corresponding to the coordinates of x.2

3. The travel-weight w(x) in which also is stored whether x is an obstacle.

4. If x is on the closed-list and the value F it has.

5. If x is on the open-list and the value F it has.

6. The lowest known travel-cost G(x).

7. 8. The parent node’s coordinates xparent.

By doing this, most searches are simplified to a simple lookup, which takes O(1) (constant
time). The only searches remaining are to find nodes on the open-list if the value of F has to be
replaced or to find the position to insert the node if they don’t appear on the list yet. Basically,
the closed-list has become obsolete.

3.3.2 Setpoint selection

The setpoint-selection method used is Line-of-sight path-following method. In short, this means
that, at any time, given a current position xc and a path p(xs, xt), the next setpoint is the
furthest point xp on p(xs, xt) for which holds that the smallest distance between line-segment
xcxp and the obstacles is bigger than the safety-distance.

The setpoint-selection algorithm is thoroughly explained in the paper in 2. Therefore it is not
further elaborated here.

This method was chosen for the following reasons:

• It is predictable and intuitive.

• It is easy to implement and process, as it only requires some geometric calculations.

• It takes shortcuts traversing the path where possible, optimizing the total travel-distance.

Downfalls of this method in general are that neither angular rate nor the velocity is limited and
that initial conditions are ignored while selecting a setpoint.

For a multirotor UAV unlimited angular rate is no problem.

The velocity can be limited in the setpoint-selection algorithm by taking a setpoint xsp on the
line-segment xcxp, which is at a maximum distance Rmax away from current position xc. A
nice positive of this is that in open environments the velocity is likely to be limited by Rmax,
whereas in cluttered environments the velocity is likely to be limited by the distance of xp. This

2The actual position px is necessary as the path has to be translated to real positions for the setpoint-selector.
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implies that the UAV moves at maximum velocity in open areas and slows down in cluttered
areas.

Not taking initial-conditions into account can form a problem, as the expected travel-route
may differ from the actual travelled route. However, in general the safety-distance will be
set high (relative to the maximum velocity). There is a responsive mechanism build in the
setpoint-selector (as described in the paper) which reacts when the safety-distance is breached
and applies an repulsive force. Therefore the effects of not taking initial conditions into account
is not expected to be a problem in our application.

3.3.3 Feedback

The feedback to the user consists of two parts: the haptic-feedback and the graphical-user-
interface(GUI).

The haptic-feedback-device consists of an armband with vibration motors driven by an Arduino
prototyping board. It can receive multiple different warning signals, which it translates in
different vibration-patterns. These patterns can be, for instance, all vibration motors vibrate
together with the intensity (PWM) varying in a sinusoidal manner or that the vibration moves
around the arm by actuating each vibration motor one-by-one.

The protocol for haptic feedack signals from autonomous controller to human operator is as
follows: the autonomous controller periodically sends a single message to the Arduino (e.g.
each 3 seconds), that carries the specific warning signal. The Arduino then maps this signal
to a specific vibration pattern that lasts for a certain duration (e.g. 1 second). As long as the
situation occurs, the autonomous controller keeps sending single messages, and the operator is
alerted. The reason to send signals periodically is to prevent disturbing and overloading the
operator. The signalling stops when the situation is solved.

The specific implementation for the haptic-feedback can be found in appendix A.3.

The graphical feedback is provided by the GUI, shown in figure 9. In here, the path p(xs, xt)
is illustrated as the green line, with a green cross at xt. The purple cross is the target-position
given by the operator, but due to quantized space, xt diverges a bit. The obstacles are shown
as black lines, whereas the travel-weight is represented by the darkness of the blue in the figure.
The red cross indicates the furthest valid path-point xp and the orange cross indicates the
limited setpoint xsp. The red circle shows the current safety-distance, and is drawn around the
current position xc. Last, the yellow line with the red dot gives an indication of the velocity
and direction of the UAV.

The GUI is interactive and can be clicked on to set new targets (xt). It provides more infor-
mation than necessary to function, as this increases trust and understanding with the human-
operator [21].
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Figure 9: The graphical-user-interface.

3.3.4 Position controller

The position controller for the multirotor UAV was reused from the work of a former bachelor
student at the RAM department of the University of Twente, Cees Trouwborst, whom I’d like
to thank for this.

It was not altered in a significant way, and therefore a link to his bachelor report and the
controller-package is considered to be sufficient.

The report can be found at: https://www.ce.utwente.nl/aigaion/attachments/single/

1177

The package can be found at: https://github.com/ceesietopc/ram_ba_package

Note that the package found in the GITHUB was slightly altered and is therefore not the
one directly usable for our software architecture. The altered package is stored at the RAM
department and can be found there.

3.3.5 Safety-mechanisms

It can happen that the system overshoots into the area induced by the safety-distance. Three
main causes for this can be found:

1. In constrained areas, turbulence, reflecting on walls e.g., can cause the UAV to get an
extra positive acceleration.
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2. The PD-controller is tuned to be under-damping.

3. The inability of the line-of-sight setpoint-selection method to take initial conditions into
account, can cause it to select setpoints for which the actual travelled trajectory interferes
with the safety-distance.

Assuming the safety-distance is relatively big, this will not form a problem for the stability.
However, it is undesired behavior and should therefore be prevented where possible.

To prevent overshoot into the restricted safety-area, which is induced by the safety-distance, a
safety-mechanism can be implemented.

Velocity-Obstacles-algorithm

A suitable safety-mechanism would be to implement the Velocity-Obstacles-algorithm [22] [23].
This algorithm uses the current position of the UAV in combination with the current position
and velocity of the obstacles, to form a set of velocities for the UAV that result in collision within
a certain time-frame, assuming constant velocities. This set is called the Velocity Obstacles
(VO). By selecting the next setpoint, in combination with the current velocity, in such a way
that the net-velocity is not in VO, collision can be prevented.

The Velocity-Obstacles-algorithm has not been implemented due to its complexity and the
assignment’s limited time.

Velocity-Braking-algorithm

An attempt has been made to implement a simplified version of the Velocity-Obstacles algo-
rithm, which only looks if the current velocity requires braking.

Figure 10 illustrates how this approach was implemented. The blue circle shows the current
position of the UAV and the blue line indicates the velocity of the UAV. The braking algorithm
detects that, within a certain look-ahead-distance DLA — DLA is chosen to be the braking-
distance when applying half the maximum acceleration of the system —, a collision with the
safety-area will occur (this figure is an exaggerated example). Braking is necessary to prevent
this. So instead of sending xsp to the position controller, a combination of a braking setpoint
and the perpendicular component of xsp is sent, xsp,vo. This induces braking to prevent the
collision.
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Figure 10: Velocity-braking illustrated.

This braking-algorithm has been tested and removed from the software, as there is a serious
problem with this algorithm. Since it only looks for interference straight-ahead, an object
could enter the interference region from the side. The algorithm would then apply braking,
but since the object has entered somewhere within the braking-distance, this would not be
enough. Furthermore, braking is applied step-wise, which causes undesired behavior. These
two problems might be fixable, but this would still be fixes and not solutions to our initial
problem. Therefore the conclusion is that it is better to not use this method.

3.4 Software implementation

The software implementation of figure 1 is shown in figure 11. The Robotic-Operating-System
(ROS) framework [24] has been used in creating the software. In this framework, different
scripts(threads) run along-side and communicate over internal UDP-connections. There are six
main threads that constitute the autonomous-controller, indicated by the grey boxes. These
scripts are written in programming language Python and are documented properly. Therefore
the implementation is not presented here.

For simulation the Gazebo environment [25] is used with the TUM-simulator package.
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Figure 11: The software structure and the interconnections. The grey boxes are the different
threads running, the arrows between them are internal UDP message ports.

robotState - The state of the robot coming from the Optitrack or Gazebo
xsens rightHand - The right-hand position coming from the XSens, used for target position.
myo selectTarget - The select-target message from the Myo (fingersspread gesture)
myo setSafetyDistance - The message from the Myo to adjust the safety-distance (rotate arm).
graphic selectTarget - Select-target message from clicking on the figure in the GUI.
warningSignal - Warning signal for the user send to the haptic feedback.
setpoint - The calculated setpoint xsp.
targetDestination - The set target-position xt.
path - The found path from start-position to target-position p(xs, xt).
currentPos - xc, interpreted by the setpoint selector.
currentTwist - Velocity information for the graphical feedback.
nextPoint - The selected path-point xp in the setpoint-selecting algorithm.
processedSafetyDistance - The current value of the safety-distance
cmd vel - Setpoints in Euler Angles and Elevation, for the UAV.

Table 1: Legend to support figure 11

As can be seen in the figure, the setpoint-selector receives all user input and distributes this to
the appropriate other threads. It is acknowledged that the user-input regarding target-positions
does not enter directly in the Path Generator, the a star generator thread, as was shown earlier
in the control architecture in figure 1. This is because the implementation the setpoint selector
thread embeds the input collecting tasks of the Task-Manager. Only a single target is allowed at
a time, which makes the Task-manager obsolete. The Myo interpreter thread is the Parameter
Handler from figure 1. The Feedback Generator can be found in the arduino feedback and
graphic feedback threads.

The graph is assumed self-explanatory, in combination with the legend in table 1.
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4 Conclusions and Recommendations

The goal of this master thesis research has been to contribute to the robust-autonomy of the
smaller multirotor UAVs of the SHERPA project. This report presented a novel bilateral semi-
autonomous control approach for UAV navigation, which allows the human-operator to assist
the autonomous controller by adapting certain navigation parameters in which the autonomous
controller has to operate.

The approach has been implemented and flight tests have been performed to validate the control
algorithm and implementation. Experiments showed a high performance and reliability of the
system in the presence of significant disturbance. In the final experiment, the operator was able
to assist the UAV to safely travel through a small opening (≈ 10-20 cm bigger than the UAV) in
21 out of 22 trials. In experiments, the system demonstrated good responsiveness to variations
in the safety-distance and it was demonstrated the system successfully counteracts overshoot
into the safety-area induced by the safety-distance. An attempt was made to prevent overshoot
by implementing a braking algorithm, but due to observation of bad behavior in experiments it
has been removed after some flight-tests.

In future work, one of the first steps would be to remove the assumption of the a-priori known
map, so that the experiments are better resembling reality. To do this, instead of letting the
autonomous controller know each obstacle in the complete map, implementations can be made
such that the autonomous controller only perceives obstacles that are within sight or in the
memory. This way the behavior of the total system can be investigated when the autonomous
controller cannot predict which path will eventually lead to the target. Also the interaction
between the human operator and the autonomous controller can be further investigated.

The subsequent step, removing the a-priori known map completely, would be to implement a
SLAM3-algorithm. This would allow the system to operate outside of the optitrack-area or the
simulation environment. In this case, it is best to extend the current implementation of the
algorithms, which is completely in 2D, to work in 3D. At this moment, the flying height is set to
be constant and the UAV is assumed to have clearance, but in real and unknown environments
this is not guaranteed.

A different contribution to this work could be made by implementing and investigating the
Velocity-Obstacles-algorithm. This algorithm could potentially improve the robustness even
more, as it can prevent overshoots into the safety-area. Furthermore, it can make the sys-
tem responsive to non-static obstacles which, if implemented in combination with the above
mentioned recommendations, completes the system to be used in truly unknown, dense envi-
ronments.

3Simultaneous Localization and Mapping
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A Hardware setup

The hardware architecture is presented in the paper in section 2. This section elaborates details
for communicating with the XSens suit [26], Myo-armband [27] and Haptic Feedback [28]. It
also provides specific instructions regarding the use of it. The use of Optitrack [29] is not
discussed here as its manual can be found on the RAM-wiki.

A.1 Using the XSens suit

Below a step-wise guide to using the XSens suit is given. Note that second person is needed to
help putting on the suit.

Needed for the XSens suit to work with the ROS software are:ue to

• A windows laptop running the MVN Studio software.

• A Ubuntu laptop running the ROS software.

• The usb-key for unlocking MVN Studio.

• Two wireless receivers to receive data from the XBus-masters (the devices in which the
batteries for the suit go).

• An externally powered usb-hub.

• A network router with two network cables, one for the windows laptop, one for the Ubuntu
computer. (Wired communication is preferred as there is a lot of data transferred)

To set up the environment:

1. Turn on the windows laptop and connect the usb-hub to it. Put the USB-key in one of
the slots.

2. Place the two wireless receivers at a certain distance from each other, preferable on dif-
ferent heights. Make sure they are well above the waist. Connect them to the computer.

3. Turn on the Ubuntu computer and connect the router to both computers. Check the
IP-address given to the Ubuntu computer (type: ifconfig in terminal) and write it down.

4. Put on the XSens Motion capture suit. Instructions on how to put on and wear the suit
can be found in the user-manual. Ask someone for help putting it on. ! Do not put the
batteries in the wrong way around, as it will cause short-circuit in the XBus masters!

5. Start the MVN-Studio software and initialize a work-session. Calibrate the XSens suit.
(Instructions in user-manual)

6. In MVN-Studio: Go to Preferences — Miscellaneous — Network Streaming. Enable
Network Streaming and add the IP-Address of the Ubuntu computer to the list. Use port
25114 (as this port number is in the code of the Network-receiver script in ROS).

7. Start ROS on the Ubuntu computer, by opening two terminals and entering:

$ roscore

$ rosrun xsens network receiver xsens receiver.py
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8. In another terminal, you can check if it works by entering:

$ rostopic echo /Xsens network receiver/RightHand

A.2 Using the Myo-armband

To use the Myo-armband, a windows computer is necessary as well. The stable stock-software
for the Myo-armband is, at this moment, only available for windows. The Myo-armband also
has an supporting Software-Development-Kit (SDK), available for download on their website.
This SDK can be used to develop code for the Myo in C++.

For our application, C++ code has been developed that sends the data from the Myo over
the network via a TCP-protocol. The TCP-protocol has been chosen as we want to assure
that gestures get transmitted correctly. The standard provided data, i.e. gesture and IMU
information, is sent 10 times per second after a connection has been established, as this is
redeemed to be enough. The implementation allows this data to be send on each IP-address
the windows computer has available. The port can be selected as well. The default used port
in our application is port 5000. This C++ code can be found in appendix D.

Needed to run the Myo-armband in combination with ROS are:

• A Windows laptop running the Myo-Connect software. Also the Myo-streamer.exe exe-
cutable has to be present on the computer.

• A Ubuntu laptop running the ROS software.

• Usb-receiver for the Myo-armband.

• A shared network between the Ubuntu computer and the Windows computer.

To set up the environment:

1. First set up both computers. Make sure they have a shared network (make sure firewalls
don’t cause problems).

2. Put on the Myo-armband and wait for 2 minutes. It works best when it is warmed up a
bit.

3. Calibrate the Myo-armband using the Myo-Connect software.

4. Start the Myo-streamer software on the windows computer. Do this in the following
manner:

Open a command window and navigate to the folder where Myo-streamer.exe is located.

Type: Myo-streamer.exe [IP-ADDRESS] [PORT] ; to run the program. The IP-address
should be the address assigned to the windows computer, not the one that is assigned to
the Ubuntu computer.

5. Check, on the Ubuntu computer, in the Myo receiver.py script if the value for SERVER-IP
is correct. If not, change this.

6. Run the Myo receiver by opening two terminals and typing:

$ roscore $ rosrun myo network receiver myo receiver.py

7. Now you can listen to the messages by typing in a new terminal:

$ rostopic echo /Myo network receiver/myo msg
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1 /*
2  * rosserial PubSub Example and Vibration motor code
3  * Shows how to receive and send messages between ROS and Arduino.
4  * Also realizes the vibration pattern.
5  */
6  
7  
8 // Necessary includes.
9 #include <ros.h>

10 #include <std_msgs/String.h>
11 #include <std_msgs/Int8.h>
12  
13 // Make a nodehandle and define the looptime for the vibration-pattern calculation
14 ros::NodeHandle  nh;
15 int LOOPTIME = 5; // timestep in milliseconds
16  
17 // Callback for the message received from ROS . 
18 // If message is 1, vibrate all motors at full strength in an on-off pattern.
19 // If message is 2, vibrate around the arm in sinusoidal strength.
20  
21 void messageCb( const std_msgs::Int8& toggle_msg){
22   
23   // If message 2
24   if (toggle_msg.data==2){
25     
26     // Keep track of start time and total signal length.
27     unsigned long startTime = millis();
28     // Set first current time.
29     int currentTime = millis()-startTime;
30     
31     while(currentTime<1000){
32       // See how long this loop takes 
33       unsigned long loopTime = millis();
34       
35       // Calculate values for the PWM's using the sinus waves.
36       int value1 = 0;
37       if (currentTime<334){
38         value1 = 255*sin(3.14*3*currentTime);
39       }
40       int value2 = 0;
41       if (currentTime>222 && currentTime<556){
42         value2 = 255*sin(3.14*3*currentTime-222);
43       }
44 int value3 = 0;
45       if (currentTime>444 && currentTime<667){
46         value3 = 255*sin(3.14*3*currentTime-444);
47       }
48       int value4 = 0;
49       if (currentTime>666 && currentTime<1000){
50         value4 = 255*sin(3.14*3*currentTime-666);
51       }
52       
53       // Write these values to PWM.
54       analogWrite(9,value1);
55       analogWrite(10,value2);
56       analogWrite(11,value3);
57       analogWrite(12,value4);
58       
59       // Wait till looptime is over.
60       while(millis()-loopTime<LOOPTIME  ){
61         delayMicroseconds(100);
62       }
63       
64       // Set new current time.
65       currentTime = millis()-startTime;
66     }
67   } 
68   
69   // Send a signal that is "Beeping" for one second.
70     else if (toggle_msg.data==1){
71     for(int i = 0; i<5; i++){
72       analogWrite(9,255);
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73       analogWrite(10,255);
74       analogWrite(11,255);  
75       analogWrite(12,255);    
76       delay(150);
77       analogWrite(9,0);
78       analogWrite(10,0);
79       analogWrite(11,0);  
80       analogWrite(12,0);    
81       delay(50);
82     }  
83   }  
84 }
85  
86 // Define subscriber for the signal message channel.
87 ros::Subscriber<std_msgs::Int8> sub("/AStarGenerator/blocked", messageCb );
88  
89 // Define a publisher for the value of the rotary button (as an example).
90 std_msgs::String str_msg;
91 ros::Publisher chatter("/Arduino/turnButton", &str_msg);
92 char rotaryValue[5] = "asdf"; // Initialize
93  
94 void setup()
95 {
96   // Setup the outputs and inputs.
97   pinMode(13, OUTPUT);
98   pinMode(9,OUTPUT);
99   pinMode(10,OUTPUT);

100   pinMode(11,OUTPUT);  
101   pinMode(12,OUTPUT);  
102   
103   pinMode(7,OUTPUT); // Power for rotary button.
104   digitalWrite(7,HIGH);
105   
106   // Initialize ros node/serial communication.
107   nh.initNode();
108   nh.advertise(chatter);
109   nh.subscribe(sub);
110 }
111  
112 void loop()
113 {
114   // Read the value of the rotary button.
115   int value = analogRead(A0);
116
117   // Translate into characters.
118   rotaryValue[3] = char(value%10+48);
119   value = value-value%10;
120   value = value/10;  
121   rotaryValue[2] = char(value%10+48);
122   value = value-value%10;
123   value = value/10;
124   rotaryValue[1] = char(value%10+48);
125   value = value-value%10;
126   value = value/10;
127   rotaryValue[0] = char(value+48);
128   
129   // Publish this string message.
130   str_msg.data = rotaryValue;
131   chatter.publish( &str_msg );
132   
133   // Check for retrieved signals.
134   nh.spinOnce();
135   
136   // Wait for 500 milliseconds.
137   delay(500);
138 }
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File: /home/wopereis/catkin_ws/src/…NSTRUCTIONS/How-to-install.txt Page 1 of 4

1  
2 ===============================
3 How to install the RAM packages
4 ===============================
5  
6  
7 Hi! This file was written to help you install the RAM packages, ram_ba_package, 
8 and ram_a_star_generator. The date of writing is 19-03-2015, with the current 
9 version of Ubuntu being 14.04 and the current version of ROS being Ros Indigo.

10  
11 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
12 ================= What is the ram_ba_package package? ====================
13 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
14  
15 The ram_ba_package is a package that can connect to several (real-life) Parrot
16 AR.Drones and apply control them either in group or seperately. Stand-alone it
17 supports Position-Control via the interface and Velocity-Control via a Joystick.
18 If a Gazebo-environment (ros-node) is running, the ram_ba_package detects this 
19 and a Quadrotor in the simulation environment can be controlled through the 
20 interface as well. Note that the Quadrotor needs to be named: "quadrotor" in the
21 actual Gazebo world, as the ram_ba_package searches for this name to receive 
22 state-information of the object.
23  
24  
25 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
26 =============== What is the ram_a_star_generator package? ================
27 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
28  
29 The ram_a_star_package is a package that generates shortest-paths in 2D-space 
30 between the current location and the selected target location. It then sends 
31 Setpoints on this path towards the ram_ba_package's Position-Controller. These 
32 setpoints are the package's output, which can be interpreted by other position-
33 controllers as well.  
34 The package allows the target location to be changed by mouse-click on a inter-
35 face, or by the use of an XSens IMU suit in combination with a MYO-emg armband. 
36  
37  
38 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
39 ==================== General installation instructions ===================
40 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
41  
42 In order to complete the installation please follow the three sections, which 
43 will help you installing the total package.
44
45 1. The first section guides you through installing ROS itself.
46 2. The second section guides you through installing the necessities for the 
47 ram_ba_package and the ram_ba_package itself.
48 3. The third section helps you installing the ram_a_star_generator package.
49  
50 !NOTE! The ram_ba_package can run  without the ram_a_star package, but the
51 ram_a_star_generator package uses the controller in the ram_ba_package for 
52 the simulation or experiment environment.
53  
54  
55 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
56 ========= 1. Installation of ROS itself and setup of workspace ===========
57 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
58  
59 This was written for ROS Indigo. It might be backwards compatible with future
60 versions, but this is not tested. The installation will assume installation of
61 ROS Indigo.
62  
63 1. Start by having Ubuntu 14.04 installed (Trusty). If another version is 
64 installed, be sure that it is compatible with ROS Indigo.
65 2. Follow the steps on:   http://wiki.ros.org/indigo/Installation/Ubuntu
66 Be sure to install the Desktop-Full version at step 1.4 unless you have specific
67 reasons not to.
68 3. Set up workspace by following this part of the ROS-tutorial: 
69 http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
70 4. Make life easy: perform the following lines in Terminal to automatically 
71 source your workspace:
72  
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73 --> echo "source /[YOUR CATKIN WORKSPACE/devel/setup.bash" >> ~/.bashrc
74 --> source ~/.bashrc
75  
76 Your ros environment should be set up properly at this moment.
77 This can be tested by following the tutorials of ROS. If these work it is fine.
78  
79  
80 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
81 ================= 2. Installation of the ram_ba_package ==================
82 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
83  
84 This package was written by Cees Trouwborst and adapted for simulation by 
85 Han Wopereis.
86 To set up the environment properly, a couple of extra packages are delivered 
87 with this package. These are: 
88  
89 - Ardrone_autonomy , a modified version by kbogert of it for multiple quadrotors
90 - Mocap_optitrack, for the optitrack system.
91 - Yosc_cmd_vel_mux, for switching between multiple cmd_vel topics 
92 (might be obsolete for the use with single quadrotors, but I'm not sure)
93 - Tum-simulator, for the simulation in gazebo.
94  
95 1. Place these packages in ~/[YOUR CATKIN WORKSPACE]/src location.
96 2. Place the ram_ba_package in ~/[YOUR CATKIN WORKSPACE]/src location.
97 3. In terminal:
98  
99 --> cd ~/[YOUR CATKIN WORKSPACE]/

100 --> catkin_make
101  
102 4. You should have Gazebo 2.2.3 installed by default by the 
103 ROS-indigo-desktop-full install. Check this by running:
104  
105 --> roscore
106 --> open new terminal by pressing [ctrl]+[shift]+[t] 
107 --> rosrun gazebo_ros gazebo
108  
109 If it runs an empty environment you are fine.
110  
111 Otherwise try this: http://gazebosim.org/tutorials?tut=ros_installing
112 And retry.
113  
114 4. Check if the packages are properly installed for AR.Drone gazebo.
115  
116 --> roslaunch cvg_sim_gazebo ardrone_testworld.launch
117  
118 It should launch an environment with a ARdrone inside. 
119 Search for the Ardrone as it is not directly in view.
120  
121 5. Check if the ram_ba_package is working by:
122  
123 --> roscore
124 --> open new terminal by pressing [ctrl]+[shift]+[t] 
125 --> rosrun ram interface.py
126 --> roslaunch cvg_sim_gazebo ardrone_testworld.launch
127  
128 Press scan, it should find a SimulationDrone if Gazebo is open.
129 Press the line of the Simulation Drone twice to open the controller. 
130 Toggle the "Interface" button to select position control.
131 Toggle the "Publish Setpoint" button to enable the controller.
132  
133 It should take off.
134  
135 6. In real experiments instead of running Gazebo, you need to set up the envi-
136 ronment according to the documentation in the RAM_BA_PACKAGE. 
137 This cannot be tested without an actual AR.Drone
138  
139 !NOTE! Note that this delivered package is not the same as published on GITHUB 
140 by Ceesietopc. !NOTE!
141  
142  
143  
144  
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145 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
146 ============== 3. Installation of the ram_a_star_generator ===============
147 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
148  
149 To install the full A-star-generator package you need the following packages:
150  
151 - myo_udp_client package, contains the UDP_client to receive the data from MYO,
152 which streams from a windows pc using a streaming script. (Not Mandatory)
153  
154 - Xsens_node package, which interprets XSens data streams from the MVN studio 
155 software of XSens which runs on a windows PC (Not mandatory)
156 (Might not be compatible for all XSens suits)
157 (MTx-version Upperbody Xsens suit is supported)
158  
159 - rosserial package, to communicate with an Arduino over USB (Not mandatory)
160  
161 - ram_a_star_generator package, contains the following scripts:
162  
163 * a_star_generator.py   - Generates the shortest path in an environment with 
164                           obstacles.
165 * setpoint_selector.py  - Selects the furthest line-of-sight point in the path 
166 * graphic_feedback.py   - The GUI.
167 * myo_interpreter.py    - Interprets incoming Myo data from the myo_udp_client.
168  
169 !NOTE! The ram_a_star_generator package does not support multiple ARDrones at
170 the moment. It also does not support simulationously running simulation and 
171 actual Experiments.
172  
173 Installation instructions:
174  
175 1. Place all packages in ~/[YOUR CATKIN WORKSPACE]/src
176 2. Compile:
177  
178 --> cd ~/[YOUR CATKIN WORKSPACE]/
179 --> catkin_make
180  
181 It should work without errors.
182  
183 3. Check if it works by launching the package. The launch-file contains some 
184 parameters that can come along.
185  
186 Default values for the params are:
187  
188 record = 0
189 simulation = 0
190 xsens = 1
191 myo = 1
192 arduino = 0
193  
194 The 'record:=1' feature starts a ROSBAG node, which captures the data send over 
195 the publishers and the subscribers. Find the location where it is stored after-
196 wards by searching your computer for .bag files.
197  
198 To launch: Open a terminal
199 --> roslaunch ram_a_star_generator ram_a_star_generator.launch record:=0 
200 simulation:=1 xsens:=0 myo:=0 arduino:=0 
201  
202 This should open three separate terminals for:
203  
204 - Graphic-feedback
205 - Setpoint-selector
206 - A-star-generator
207  
208 It should open the ram_ba_package interface.py.
209 It should open gazebo with a custom RAM environment 
210 It should open a Matplotlib figure, showing the GUI. The environment of the GUI
211 might not match the environment in Gazebo (this is not interconnected).
212  
213 The figure should show:
214 * A blueish map, with black obstacle lines. The darker the blue, the higher the 
215 travel-weight is for the A-star-algorithm.
216 * A magenta X for the current goal location.
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217 * A red circle for the current obstacle-avoidance safety-distance around the 
218 current position.
219 * A yellow line indicating the velocity and heading.
220  
221 If you click it somewhere, it should reveal a shortest path to the clicked 
222 location with a green line. (Travels only diagonal and straight)
223  
224 * A red X for the next setpoint picked.
225 * A orange X for a distance limited setpoint 
226  
227 If you press scan in the ram interface.py and connect to the Simulation drone,
228 a controller menu should pop up. Toggle the 'A-star' button and the 
229 'Publish setpoint' button. It should start tracking this line.
230  
231 At this point, everything should work. 
232  
233  
234  
235  
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1  
2 ===============================
3   How to use the RAM packages
4 ===============================
5  
6 Hi! This file was written on 20-03-2015 to help you use the ram_a_star_generator 
7 package. This package extensively uses the ram_ba_package, for which specific 
8 documentation is available. This documentation is not repeated here.
9  

10 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
11 ============ How do I use the ram_a_star_generator package? ==============
12 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
13  
14 To use the ram_a_star_generator package, one single launch-file has been added.
15 This launch-file can be launched by typing in a terminal:
16  
17 --> roslaunch ram_a_star_generator ram_a_star_launcher.launch
18  
19 which launches the minimum required nodes to do experiments.
20  
21  
22 The launch-file includes some arguments that can be send along while starting.
23 These arguments determine whether it is a simulation or experiment, whether to 
24 record data etc.
25  
26 To illustrate this: 
27  
28 --> roslaunch ram_a_star_generator ram_a_star_launcher.launch simulation:=1 record:=0
29  
30 launches everything which is necessary for the simulation environment to run.
31  
32  
33  
34 The possible arguments that can be sent along while launching, with 
35 their explanations and defaults, are:
36  
37 ===============================================================================
38  
39 <arg name="record" default="0"/>        - Enables rosbag-recording of data. (Be sure to check 

wheter it actually starts). Is not completely flawless but works most of the time.
40     
41 <arg name="simulation" default="0"/>    - Enables simulation mode, and therefore starts Gazebo 

nodes and doesn't start AR.Drone nodes. Starts special simulation environment.
42
43 <arg name="environment1" default="0"/>  - Sets a set of parameters of the ram_a_star_generator 

according to predefined environment 1. (Overwrites regular/simulation environment)
44  
45 <arg name="environment2" default="0"/>  - Sets a set of parameters of the ram_a_star_generator 

according to predefined environment 2. (Overwrites regular/simulation/environment1)
46  
47 <arg name="environment3" default="0"/>  - Sets a set of parameters of the ram_a_star_generator 

according to predefined environment 3. (Overwrites regular/simulation/environment1/2)
48  
49 <arg name="xsens" default="1"/>         - Starts the nodes for interpreting and receiving the 

XSENS data.
50  
51 <arg name="myo" default="1"/>           - Starts the nodes for interpreting and receiving the MYO 

data.
52  
53 <arg name="arduino" default="0"/>       - Starts the node for communication with the Arduino for 

the haptic-feedback.
54  
55 ===============================================================================
56  
57 If there is anything unclear about the explanation, a closer look can be taken
58 in the ram_a_star_launcher.launch file, to see how this works.
59  
60 !NOTE! The ram_ba_package is used to run with this package, however it is not
61 the original ram_ba_package, but an adapted one. Therefore, be sure to get this 
62 adapted one. 
63  
64 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
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65 ================== How do I add a custom environment? ====================
66 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
67  
68 For an example on how to add custom environments in the package, please look in 
69 the launch-file. In here you will find examples on how to change and add 
70 environments. 
71  
72 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
73 ======================== Don't forget to have fun! =======================
74 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
75  
76  
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1 // Copyright (C) 2013-2014 Thalmic Labs Inc.
2 // Distributed under the Myo SDK license agreement. See LICENSE.txt for details.
3 #define _USE_MATH_DEFINES
4 #include <cmath>
5 #include <iostream>
6 #include <iomanip>
7 #include <stdexcept>
8 #include <string>
9 #include <algorithm>

10 #include <sstream>
11  
12 // The only file that needs to be included to use the Myo C++ SDK is myo.hpp.
13 #include <myo/myo.hpp>
14  
15 #pragma warning(disable : 4996)
16 #pragma comment(lib, "Ws2_32.lib")
17  
18  
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <winsock.h>
23 #include <time.h>
24  
25 #define STREAMING_TEST 1
26 #define BUFFER_SIZE 4096
27  
28 using namespace std;
29  
30 void usage(void);
31  
32  
33 // Classes that inherit from myo::DeviceListener can be used to receive events 
34 // from Myo devices. DeviceListener provides several virtual functions for hand-
35 // ling different kinds of events. If you do not override an event, the default 
36 // behavior is to do nothing.
37  
38 class DataCollector : public myo::DeviceListener {
39 public:
40  
41  
42 DataCollector()
43     : onArm(false), isUnlocked(false), roll_w(0), pitch_w(0), yaw_w(0), currentPose()
44 {
45 }
46  
47 // onUnpair() is called whenever the Myo is disconnected from Myo Connect.
48 void onUnpair(myo::Myo* myo, uint64_t timestamp)
49 {
50 // We've lost a Myo.
51 // Let's clean up some leftover state.
52 roll_w = 0;
53 pitch_w = 0;
54 yaw_w = 0;
55 onArm = false;
56 isUnlocked = false;
57 }
58  
59 // onOrientationData() is called whenever the Myo device provides its 
60 // current orientation, which is represented as a unit quaternion.
61 void onOrientationData(myo::Myo* myo, uint64_t timestamp, const myo::Quaternion<float>& quat)
62 {
63 using std::atan2;
64 using std::asin;
65 using std::sqrt;
66 using std::max;
67 using std::min;
68  
69 // Calculate Euler angles (roll, pitch, yaw) from the unit quaternion.
70 float roll = atan2(2.0f * (quat.w() * quat.x() + quat.y() * quat.z()),
71 1.0f - 2.0f * (quat.x() * quat.x() + quat.y() * quat.y()));
72 float pitch = asin(max(-1.0f, min(1.0f, 2.0f * (quat.w() * quat.y() - quat.z() * quat.x
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()))));
73 float yaw = atan2(2.0f * (quat.w() * quat.z() + quat.x() * quat.y()),
74 1.0f - 2.0f * (quat.y() * quat.y() + quat.z() * quat.z()));
75  
76 // Convert the floating point angles in radians to a scale from 0 to 18.
77 roll_w = static_cast<int>((roll + (float)M_PI) / (M_PI * 2.0f) * 18);
78 pitch_w = static_cast<int>((pitch + (float)M_PI / 2.0f) / M_PI * 18);
79 yaw_w = static_cast<int>((yaw + (float)M_PI) / (M_PI * 2.0f) * 18);
80 }
81  
82 // onPose() is called whenever the Myo detects that the person wearing it 
83 // has changed their pose, for example, making a fist, or not anymore.
84 void onPose(myo::Myo* myo, uint64_t timestamp, myo::Pose pose)
85 {
86 currentPose = pose;
87  
88 if (pose != myo::Pose::unknown && pose != myo::Pose::rest) {
89 // Tell the Myo to stay unlocked until told otherwise. We do that 
90 // here so you can hold the poses without the Myo becoming locked.
91 myo->unlock(myo::Myo::unlockHold);
92  
93 // Notify the Myo that the pose has resulted in an action, in this 
94 // case changing the text on the screen. The Myo will vibrate.
95 myo->notifyUserAction();
96 }
97 else {
98 // Tell the Myo to stay unlocked only for a short period. This 
99 // allows the Myo to stay unlocked while poses are being performed,

100 // but lock after inactivity.
101 myo->unlock(myo::Myo::unlockTimed);
102 }
103 }
104  
105 // onArmSync() is called whenever Myo has recognized a Sync Gesture after 
106 // someone has put it on their arm. This lets Myo know which arm it's on 
107 // and which way it's facing.
108 void onArmSync(myo::Myo* myo, uint64_t timestamp, myo::Arm arm, myo::XDirection xDirection)
109 {
110 onArm = true;
111 whichArm = arm;
112 }
113  
114 // onArmUnsync() is called whenever Myo has detected that it was moved from
115 // a stable position on a person's arm afterit recognized the arm. Typically
116 // this happens when someone takes Myo off of their arm, but it can also 
117 // happen when Myo is moved around on the arm.
118 void onArmUnsync(myo::Myo* myo, uint64_t timestamp)
119 {
120 onArm = false;
121 }
122  
123 // onUnlock() is called whenever Myo has become unlocked, and will start 
124 // delivering pose events.
125 void onUnlock(myo::Myo* myo, uint64_t timestamp)
126 {
127 isUnlocked = true;
128 }
129  
130 // onLock() is called whenever Myo has become locked. No pose events will be 
131 // sent until the Myo is unlocked again.
132 void onLock(myo::Myo* myo, uint64_t timestamp)
133 {
134 isUnlocked = false;
135 }
136  
137 // There are other virtual functions in DeviceListener that we could over-
138 // ride here, like onAccelerometerData(). For this example, the functions 
139 // overridden above are sufficient.
140  
141 // We define this function to print the current values that were updated by 
142 // the on...() functions above.
143 void print()
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144 {
145 // Clear the current line
146 std::cout << '\r';
147  
148 // Print out the orientation. Orientation data is always available, even if no arm is 

currently recognized.
149 std::cout << '[' << std::string(roll_w, '*') << std::string(18 - roll_w, ' ') << ']'
150 << '[' << std::string(pitch_w, '*') << std::string(18 - pitch_w, ' ') << ']'
151 << '[' << std::string(yaw_w, '*') << std::string(18 - yaw_w, ' ') << ']';
152  
153 if (onArm) {
154 // Print out the lock state, the currently recognized pose, and 
155 // which arm Myo is being worn on.
156  
157 // Pose::toString() provides the human-readable name of a pose. We
158 // can also output a Pose directly to an output stream
159 // (e.g. std::cout << currentPose;). In this case we want to get the
160 // pose name's length so that we can fill the rest of the field with
161 // spaces below, so we obtain it as a string using toString().
162 std::string poseString = currentPose.toString();
163  
164 std::cout << '[' << (isUnlocked ? "unlocked" : "locked  ") << ']'
165 << '[' << (whichArm == myo::armLeft ? "L" : "R") << ']'
166 << '[' << poseString << std::string(14 - poseString.size(), ' ') << ']';
167 }
168 else {
169 // Print out a placeholder for the arm and pose when Myo doesn't 
170 // currently know which arm it's on.
171 std::cout << '[' << std::string(8, ' ') << ']' << "[?]" << '[' << std::string(14, ' 

') << ']';
172 }
173  
174 std::cout << std::flush;
175 }
176  
177 // These values are set by onArmSync() and onArmUnsync() above.
178 bool onArm;
179 myo::Arm whichArm;
180  
181 // This is set by onUnlocked() and onLocked() above.
182 bool isUnlocked;
183  
184 // These values are set by onOrientationData() and onPose() above.
185 int roll_w, pitch_w, yaw_w;
186 myo::Pose currentPose;
187 };
188  
189  
190 int main(int argc, char **argv)
191 {
192 WSADATA w; /* Used to open windows connection */
193 unsigned short port_number; /* Port number to use */
194 int a1, a2, a3, a4; /* Components of ip-address */
195 int client_length; /* Length of client struct */
196 int bytes_received; /* Bytes received from client */
197 SOCKET sd; /* Socket descriptor of server */
198 struct sockaddr_in server; /* Information about the server */
199 struct sockaddr_in client; /* Information about the client */
200 char buffer[BUFFER_SIZE]; /* Where to store received data */
201 struct hostent *hp; /* Information about this computer */
202 char host_name[256]; /* Name of the server */
203 char myo_message[100]; /* Current message */
204 string separator = " ; "; /* Separator in message over UDP*/
205  
206
207
208     cout << endl;
209     cout << "=========== Myo initalization ===========" << endl << endl;
210     
211     // First, we create a Hub with our application identifier. Be sure not to 
212     // use the com.example namespace when publishing your application. The Hub
213     // provides access to one or more Myos.
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214     myo::Hub hub("com.example.myo_streamer");
215  
216     cout << "Attempting to find a Myo..." << endl;
217     myo::Myo* myo = hub.waitForMyo(10000);
218  
219     // If waitForMyo() returned a null pointer, we failed to find a Myo, 
220     // so exit with an error message.
221     if (!myo && !STREAMING_TEST)
222     throw std::runtime_error("Unable to find a Myo!");
223  
224     // We've found a Myo.
225     std::cout << "Connected to a Myo armband!" << std::endl << std::endl;
226  
227     // Next we construct an instance of our DeviceListener, so that we can 
228     // register it with the Hub.
229     DataCollector collector;
230  
231     // Hub::addListener() takes the address of any object whose class 
232     // inherits from DeviceListener, and will cause Hub::run() to send 
233     // events to all registered device listeners.
234     hub.addListener(&collector);
235  
236     cout << endl;
237  
238  
239 // Network connection =============================
240 cout << endl;
241 cout << "=========== Network initalization ==========" << endl << endl;
242  
243 /* Interpret command line */
244 if (argc == 2)
245 {
246 /* Use local address */
247 if (sscanf(argv[1], "%u", &port_number) != 1)
248 {
249 usage();
250 }
251 }
252 else if (argc == 3)
253 {
254 /* Copy address */
255 if (sscanf(argv[1], "%d.%d.%d.%d", &a1, &a2, &a3, &a4) != 4)
256 {
257 usage();
258 }
259 if (sscanf(argv[2], "%u", &port_number) != 1)
260 {
261 usage();
262 }
263 }
264 else
265 {
266 usage();
267 }
268  
269 /* Open windows connection */
270 if (WSAStartup(0x0101, &w) != 0)
271 {
272 fprintf(stderr, "Could not open Windows connection.\n");
273 exit(0);
274 }
275  
276 /* Open a datagram socket */
277 sd = socket(AF_INET, SOCK_DGRAM, 0);
278 if (sd == INVALID_SOCKET)
279 {
280 fprintf(stderr, "Could not create socket.\n");
281 WSACleanup();
282 exit(0);
283 }
284  
285 /* Clear out server struct */
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286 memset((void *)&server, '\0', sizeof(struct sockaddr_in));
287  
288 /* Set family and port */
289 server.sin_family = AF_INET;
290 server.sin_port = htons(port_number);
291  
292 /* Set address automatically if desired */
293 if (argc == 2)
294 {
295 /* Get host name of this computer */
296 gethostname(host_name, sizeof(host_name));
297 hp = gethostbyname(host_name);
298  
299 /* Check for NULL pointer */
300 if (hp == NULL)
301 {
302 fprintf(stderr, "Could not get host name.\n");
303 closesocket(sd);
304 WSACleanup();
305 exit(0);
306 }
307  
308 /* Assign the address */
309 server.sin_addr.S_un.S_un_b.s_b1 = hp->h_addr_list[0][0];
310 server.sin_addr.S_un.S_un_b.s_b2 = hp->h_addr_list[0][1];
311 server.sin_addr.S_un.S_un_b.s_b3 = hp->h_addr_list[0][2];
312 server.sin_addr.S_un.S_un_b.s_b4 = hp->h_addr_list[0][3];
313 }
314 /* Otherwise assign it manually */
315 else
316 {
317 server.sin_addr.S_un.S_un_b.s_b1 = (unsigned char)a1;
318 server.sin_addr.S_un.S_un_b.s_b2 = (unsigned char)a2;
319 server.sin_addr.S_un.S_un_b.s_b3 = (unsigned char)a3;
320 server.sin_addr.S_un.S_un_b.s_b4 = (unsigned char)a4;
321 }
322  
323 /* Bind address to socket */
324 if (bind(sd, (struct sockaddr *)&server, sizeof(struct sockaddr_in)) == -1)
325 {
326 fprintf(stderr, "Could not bind name to socket.\n");
327 closesocket(sd);
328 WSACleanup();
329 exit(0);
330 }
331  
332 /* Print out server information */
333 printf("Server running on %u.%u.%u.%u\n", 
334     (unsigned char)server.sin_addr.S_un.S_un_b.s_b1,
335 (unsigned char)server.sin_addr.S_un.S_un_b.s_b2,
336 (unsigned char)server.sin_addr.S_un.S_un_b.s_b3,
337 (unsigned char)server.sin_addr.S_un.S_un_b.s_b4);
338 printf("Press CTRL + C to quit\n");
339 cout << "Start of main loop:" << endl;
340 cout << "==  == == == == == == == == == == == == == == == ==" << endl;
341 cout << endl;
342  
343  
344 while (1) {
345  
346  
347 // #### Myo ####
348  
349 // In each iteration of our main loop, we run the Myo event loop for
350 // a set number of milliseconds. In this case, we wish to update our 
351 // display 20 times a second, so we run for 1000/20 milliseconds.
352
353 // After processing events, we call the print() member function we 
354 // defined above to print out the values we've obtained from any 
355 // events that have occurred. 
356
357 //collector.print();
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358  
359
360  
361  
362 // #### Streamer ####
363  
364 /* Loop and get data from clients */
365 client_length = (int)sizeof(struct sockaddr_in);
366 /* Receive bytes from client */
367 bytes_received = recvfrom(sd, buffer, BUFFER_SIZE, 0, (struct sockaddr *)&client, 

&client_length);
368  
369 if (bytes_received < 0)
370 {
371 fprintf(stderr, "Could not receive datagram.\n");
372 closesocket(sd);
373 WSACleanup();
374 exit(0);
375 }
376 //cout << "Incoming data = " << buffer << "|| " << endl;
377  
378 // Overwriting the 9th character with a null sign, to overcome 
379 // mismatches in python -- c++ strings. It kept sending an extra 0
380 //  at the end, of which errors are prevented by this.
381 buffer[8] = NULL;
382  
383 //cout << "Stripped towards =  " << buffer << "||" << endl;
384             //cout << "Data request received. Starting request string compare." << endl;
385 //cout << (strcmp(buffer, "GET DATA")) << " voor " << buffer << " vs " << "GET DATA\r

\n" << endl;
386
387 /* Check for data request with common message between sender and 
388    receiver*/
389 if (strcmp(buffer, "GET DATA") ==0)
390 {
391     cout << "Composing message: " << endl << endl;
392 string myo_message2;
393
394 /* Comment out for streaming test!!!*/
395 // Run 20 times per second, should be enough.
396 hub.run(1000/20);
397 /* Get current pose */
398  
399 string poseString = "Not on arm";
400 string armString = "None";
401 string unlockedString = "Nothing";
402 string rollString = "0";
403 string pitchString = "0";
404 string yawString = "0";
405  
406  
407 if (collector.onArm) {
408 // Print out the lock state, the currently recognized pose, 
409 // and which arm Myo is being worn on.
410  
411 // Pose::toString() provides the human-readable name of a 
412 // pose. We can also output a Pose directly to an output 
413 // stream (e.g. std::cout << currentPose;). In this case we
414 // want to get the pose name's length so that we can fill 
415 // the rest of the field with spaces below, so we obtain it 
416 // as a string using toString().
417 poseString = collector.currentPose.toString();
418  
419 if (collector.whichArm == myo::armLeft){
420 armString = "Left  Arm";
421 }
422 else {
423 armString = "Right Arm";
424 }
425 if (collector.isUnlocked){
426 unlockedString = "Unlocked";
427 }
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428 else {
429 unlockedString = "Locked";
430 }
431  
432 rollString = to_string(collector.roll_w);
433 pitchString = to_string(collector.pitch_w);
434 yawString = to_string(collector.yaw_w);
435 }
436  
437  
438 myo_message2 = poseString + separator + armString + separator + unlockedString + 

separator + rollString + separator + pitchString + separator + yawString;
439
440  
441 strcpy(myo_message, myo_message2.c_str());
442 //int messageOccupationCount = 0;
443  
444 //myo_message = myo_message2.ToCharArray(1, 1);
445  
446  
447 cout << myo_message << endl;
448  
449  
450 //cout << "Na combinen: " << endl << endl;
451  
452
453 //cout << myo_message << endl;
454 //cout << (char *)&myo_message << endl;
455 //cout << (int)sizeof(myo_message) << endl;
456 //cout << endl;
457  
458 /* Send data back */
459 if (sendto(sd, (char *)&myo_message, 100, 0, (struct sockaddr *)&client, 

client_length) != 100)
460 {
461 fprintf(stderr, "Error sending datagram.\n");
462 closesocket(sd);
463 WSACleanup();
464 exit(0);
465 }
466 }
467 }
468  
469 closesocket(sd);
470 WSACleanup();
471  
472 return 0;
473 }
474  
475 void usage(void)
476 {
477 fprintf(stderr, "timeserv [server_address] port\n");
478 exit(0);
479 }
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