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Summary

The goal of this thesis is to develop a mathematical model that optimizes the oil and gas �ows
of the International Company for Onshore Oil Operations (OilCO) and that supports operational
decision making when disturbances occur. This mathematical model serves as a basis for the Oil-
OperationsOptimizer (O3) that OilCO wants to implement for the management of its day to day oil
and gas movements. The main question of our research is:

What is the best mathematical model for the optimization of OilCO's oil and gas �ows
including dealing with disturbances?

The main goal of the O3 is to generate a schedule with a 30-day horizon which speci�es the production
rates of the reservoirs and the throughput rates of the reservoirs against minimal costs. The assets
of OilCO that we model are part of a pipeline network where oil and gas are extracted from the
earth at reservoirs, after which both �ows are separated at separation facilities. Subsequently the
oil is transported by pipelines to the customers, which are re�neries and terminals. Both terminals
and separation facilities have storage tanks, in which oil can be stored. Each type of asset has it
own operational constraints that we consider in our model for the O3. The costs involved in the O3
are pumping costs, penalties for non-satis�ed demand, penalties for deviating from the production
targets, changeover costs at the reservoir, inventory costs, and penalties for having less on stock than
the safety stock. The disturbances the O3 needs to deal with are: opportunities on the spot market,
the scheduling of maintenance, asset breakdowns, and uncertainty in tanker arrivals.

The designed model for the O3 is a Mixed-Integer Linear Program based on an event based time
representation. In an event based time representation the planning horizon is divided into time
periods of unequal length based on pre-de�ned events that change the system, which in our case are
the arrival and departure of tankers at the terminals and the start and end of a day. We model
OilCO's network as generic as possible by modelling each type of asset using the same constraints,
which allows us to make changes in the network if needed. In the objective function we assume that
the energy costs have a non-linear relation with the throughput rate. We approximated this relation
by creating an example of a pump, which is based on two existing models. Moreover, we propose
a simpli�cation for our model primarily based on the reduction of the number of integer variables,
which turns out to decrease the average running time by 69%.

To be able to deal with disturbances, we extend the developed deterministic model. We indicate
how the model can be used in a what-if analysis to deal with asset breakdowns, the scheduling of
maintenance, and spot market opportunities. Furthermore, we apply RO to deal with the uncertainty
in tanker arrivals by generating di�erent scenarios of tanker arrival realizations as input for the
model. Since the number of tanker arrival realizations is excessively large, we use the Sample Average
Approximation method in which we minimize the average of a representative sample. Our model
variables are divided into design and control variables. The design variables are variables of which the
values cannot be changed when the tanker arrival moments get known, while the control variables can
be changed and therefore depend on the realization. The robust model minimizes the sum of the cost
resulting from the design variables and the sample average of the costs resulting from the control
variables, together with a term for model robustness and a term for solution robustness. Model
robustness is the extend to which a model is �almost� feasible for every realization of the uncertain
parameters, where solution robustness is the extend to which the solution is �close� to optimal for
every realization.

In the experiments we test a tanker arrival case in which the demand is stable and a case in
which demand is less stable and has a peak. Results show that the deterministic model is capable of
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generating a schedule very fast. However, the deterministic model only considers one tanker arrival
scenario, which makes the solution inaccurate in some cases. The robust model considers 80 tanker
arrival scenarios and therefore yields a solution which is on average cheaper for all possible scenarios.
In the robust model it is possible to increase both model robustness and solution robustness at the
prize of increasing total costs. Robustness is achieved by deviating more in the throughput rates of
the pipelines to the customers, resulting in having less infeasibilities in the inventory levels of the
terminal storage tanks. When robustness is further increased, shortages at the terminals occur when
the model decides to transport less oil to the terminals to avoid infeasibilities.

All in all, our model is capable of generating an optimal or robust schedule with a 30-day horizon
in a couple of minutes. Howerever, during this project we did not have direct contact with OilCO,
so many assumptions are made about cost relations and parameter values. We formulate several
alternatives for the model in case our assumptions about cost relations turn out to be incorrect, so
the model can be adjusted quickly. Moreover, we perform a sensitivity analysis on the most important
parameters of which we are uncertain about the value: the storage tank sizes, the peak e�ciency
throughput and the cost factors. The sensitivity analysis shows that the values of certain parameters
have a large in�uence on the solution, but is also shows that our model is capable of dealing with
di�erent input values. In the future the model can be extended with the scheduling of the tankers
at the terminals and the scheduling of maintenance.
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1 Introduction

This thesis is written as part of an internship at ORTEC Consulting Group (OCG) in Zoetermeer.
The graduation assignment involves a current project of OCG done in cooperation with ITCo, which
is a large International IT company that received a request for proposal from the International
Company for Onshore Oil Operations (OilCO) to design a company-wide system that manages its
oil and gas �ows on a day to day basis. ITCo consulted OCG to develop the optimization module
of the company-wide system, which is called the OilOperationsOptimizer or O3. This graduation
project involves the development of a mathematical model for the optimization module. Below, we
�rst introduce the key players in this project: OCG (Section 1.1) and OilCO (Section 1.2). As ITCo
is only an intermediary company between the key players, we not further introduce ITCo. Section
1.3 introduces the focus of our project, the O3 and Section 1.4 provides a research plan for the
development of the mathematical model for the O3 optimization module.

1.1 ORTEC Consulting Group

OCG is a business unit within the ORTEC Group, where it combines business knowledge, operations
research and IT in their products and services. It currently has around 150 consultants employed and
operates in various industries, such as the airline industry, the oil and gas industry, and postal services.
The company o�ers numerous optimization solutions in the �eld of process industry optimization,
revenue management, supply chain optimization, and site logistics optimization. This research takes
place at the Oil, Gas and Chemicals (OGC) department within OCG, which is currently involved in
the tender for the development of a company-wide system for scheduling oil and gas movements at
OilCO.

1.2 International Company for Onshore Oil Operations

OilCO is an oil and gas company that operates onshore and in shallow coastal water in several
countries around the world. OilCO operates in the upstream and midstream oil business. The
upstream business involves the extraction of oil and gas from the earth, while the midstream business
covers the processing and transportation of crude oil products. OilCO produces its oil and gas from
ten big oil reservoirs, which all contain around 300 oil wells. When the oil is pumped out of a well,
it contains a fraction of gas, which is called associated gas1. The associated gas is separated from
the oil at one of the four separation facilities near the reservoirs, after which the oil is transported to
the customers via a large pipeline network. OilCO supplies the produced oil to two di�erent sorts of
customers: terminals and re�neries. Two major terminals, called Terminal1 and Terminal2, export
oil with oil tankers. Furthermore, there are two re�neries called Re�nery1 and Re�nery2 that are
also customers of OilCO's oil. The re�neries are owned by the International Oil Re�ning Company.
The length of OilCO's oil pipelines varies from a few kilometres up to around 400 kilometres (the
pipeline to Terminal2), resulting in a total network of more than 1,500 km of pipelines. The size of
the network means that the pumping costs of pumping oil through the pipelines are high.

OilCO wants to implement a company-wide system that is capable of optimizing the oil and
gas production at the oil reservoirs and its transportation to meet the contractual agreements with
their three customer groups (terminals, International Oil Re�ning Company, and BuyGas), which

1Next to associated gas, OilCO also extracts non-associated gas (NAG) from gas �elds. Both types of gas are sold
to BuyGas, which is an international gas company.
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is currently done based on operational experience. The new company-wide system, the OilOper-
ationsOptimizer, or O3, will be used for the real time scheduling of oil and gas production and
distribution.

1.3 The O3

The O3 will be a company-wide system that will have an advisory role in the day to day management
of the oil and gas movements of OilCO. As such, it should be able to recommend on the optimization
of the production and pipeline movements collectively. The time frame in which the O3 optimizes
OilCO's oil and gas �ows is 30 days. The input of the O3 will be the current production plan, which
states the production outputs of oil and gas per day. The main objective for the O3 is to recommend
on production rates, separation rates, and throughput rates such that all customer demand is met
against minimal costs. Large penalties for non-satis�ed demand are included in the model as these
are part of the contracts between OilCO and its customers. Furthermore, the changeover costs for
changing the production rate of an oil reservoir are important, meaning that the production quantities
of the oil reservoirs need to be as steady as possible. The changeover costs have to be minimized,
together with the pumping costs, inventory costs at the storage tanks, and penalties for non-satis�ed
demand. Finally, the O3 has to take deviations from the original production plan into account.

The O3 has to be capable of answering what-if questions in case of disturbances concerning
the daily operations. The model has to optimize oil and gas �ows when a single disturbance or
combinations of disturbances occur, which can occur both on the demand side (tanker is delayed or
extra pro�t can be gained on the spot market) as well as on the supply side (breakdown of a plant,
maintenance of a pipeline). The system has to recommend based on comparing di�erent actions that
could be taken. The recommendation could be a change in schedule such as a reallocation of oil or
a temporary increase in production. Besides such a reactive scheduling approach, the O3 also needs
to take tanker arrival uncertainties into account, which leads to a predictive scheduling approach.

The scope of research is the development of a mathematical model for the optimization module
of the O3, which includes all functional requirements mentioned above and has to be implemented in
the ORTEC Supply Chain Scheduling Tool, when �nished. The running time of the model has to be
reasonable, i.e. several minutes, since OilCO uses the O3 on a daily basis, which is a challenge given
the size of the network, the interdependence of oil and gas �ows, and the di�erent what-if questions
that have to be examined.

1.4 Research plan

The goal of this research is:

to develop a mathematical model that optimizes OilCO's oil and gas �ows including op-
erational decision making support when disturbances occur

In order to achieve this goal, we have formulated research questions of which the main question is:

Main question: What is the best mathematical model for the optimization of OilCO's oil and gas
�ows including dealing with disturbances?

Since it is impossible to answer this question at once, we formulate several sub questions of which we
treat one per chapter. First we need to describe the processes of OilCO, which is done by examining
OilCO's oil and gas movements. Here, we want to know what we exactly have to consider for the
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mathematical model. Furthermore, we consider the functional requirements of OilCO for the O3
to �nd out what the exact requirements for our model are. Since OCG has no direct contact with
OilCO, information is gathered from the functional design speci�cation of the O3, the website of
OilCO, and experience of OCG in similar projects.

Chapter 2: What are OilCO's relevant processes and what are the associated requirements for the
O3?

Section 2.1: Which processes are associated with OilCO's oil and gas movements?

Section 2.2: What are OilCO's functional requirements for the O3?

Section 2.3: Where do we lack information?

When we know the requirements for the O3, we review the existing mathematical models that cover
pipeline �ow scheduling. In order to develop a suitable model for OilCO's processes, more knowledge
is required about how models for similar situations are formulated. Furthermore we look at the
concept of Robust Optimization, since our model needs to take uncertainties into account when it is
solved.

Chapter 3: Which pipeline �ow scheduling models and Robust Optimization models exist that can
be used for modelling OilCO's processes?

Section 3.1: What optimization models for pipeline �ow scheduling exist in literature?

Section 3.2: Which of these models are useful for OilCO's optimization problem?

Section 3.3: What is Robust Optimization and how is it applied in the upstream and mid-
stream oil business?

With the information about existing models from Chapter 3 and the requirements resulting from
Chapter 2, we formulate step by step an optimization model as the basis of the O3. Moreover, we
use the experience of OCG on modelling similar processes.

Chapter 4: What is a suitable model formulation for the O3?

Section 4.1: How to represent time in our model?

Section 4.2: What assumptions have to be made?

Section 4.3: How to model OilCO's oil and gas network?

Section 4.4: How to formulate OilCO's processes in constraints for an optimization model?

Section 4.5: What is a suitable objective function for the optimization model?

Section 4.6: What are the consequences of the lack of information and how can we deal with
them?

Section 4.7: How to simplify the model to boost performance?

After formulating the model, we implement it in the ORTEC Supply Chain Scheduling tool. Our
model needs to be able to handle disturbances by generating and evaluating what-if scenarios. To
achieve this the model may have to be solved multiple times with di�erent inputs and additional
restrictions or some heuristic may have to be designed. We extend the model with a what-if analysis,
such that it can be used to deal with disturbances. Moreover, we look at how to deal with the
uncertainty in demand in our model, where we use the Robust Optimization knowledge we gathered
in Section 3.3.
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Chapter 5: How to use the proposed model formulation in order to deal with disturbances?

Section 5.1: How to use the model for what-if analysis?

Section 5.2: How to take the uncertainty in demand into account by using Robust Optimiza-
tion?

In order to measure the performance of our model for the O3, we test it. First we test the deterministic
model from Chapter 4 and then compare it with the robust model from Section 5.2. Furthermore,
we test the simpli�cation from Section 4.7, to see if it really boosts performance.

Chapter 6: What is the performance of the developed model?

Section 6.1: What are useful parameter values for the experiments?

Section 6.2: What is the performance of the deterministic model?

Section 6.3: What are the di�erences between the deterministic model and the robust model?

Section 6.4: What is the performance of the simpli�ed model?

As indicated in Section 2.3, there is a lack of information. We examine the consequences of this lack
of information on the model's solution and performance by doing a sensitivity analysis on uncertain
parameters.

Chapter 7: How sensitive is our model to changes in uncertain parameters?

Finally, after all sub questions have been answered, Chapter 8 discusses the main question, a conclu-
sion and we also provide recommendations for further research.
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2 Situation description

This chapter describes the requirements for the O3 in terms of processes and assets it has to consider
and functional requirements. We take a look at the current processes of OilCO in Section 2.1. A
challenge in this respect is that ORTEC does not have direct contact with OilCO, but has contact
with OilCO via ITCo. Section 2.2 considers the functional requirements OilCO that has formulated
for our model. Section 2.3 examines the uncertainties in information that are caused by having no
contact with OilCO, whereas Section 2.4 summarizes this chapter.

2.1 OilCO's oil and gas movements

To develop a model, information is required about the processes involving oil and gas movements. In
this section we follow oil and gas from the reservoir to the customer, where we only discuss parts of
the process that have to be modelled in the O3. The O3 considers the following units and customers:
the reservoirs (Section 2.1.1), separation facilities (Section 2.1.2), pipelines (Section 2.1.3), re�neries
(Section 2.1.4), terminals (Section 2.1.5), storage tanks (Section 2.1.6), and BuyGas (Section 2.1.7).

2.1.1 Oil/Gas reservoirs

Oil is extracted from several oil reservoirs, which also contain (associated) gas. The proportion of
this associated gas depends on the characteristics of the reservoir and is presented in the Gas Oil
Ratio (GOR). The unit of the GOR is cubic feet per barrel (cf/bbl), as oil volumes are measured in
barrels (bbl) and gas volumes in cubic feet (cf).

In total, 10 oil reservoirs are considered for the O3, which are the biggest 10 that OilCO exploits.
These reservoirs provide almost all of the 2.5 million bbl per day that OilCO produces. The reservoirs
are clustered into four so called production assets: Asset1, Asset2, Asset3, and Asset4. Table 1 shows
an overview of the division of the production over the ten oil reservoirs and production assets. Each
reservoir has a minimum and maximum capacity of oil that it can produce per day.

Production planning is currently done by the corporate planning department using production
plans with a rolling horizon. The corporate plan is a long term plan that speci�es of the amount of oil
and gas to be extracted from the reservoirs and that must be in line with the shareholder agreements.
The current planning model generates plans with di�erent rolling horizons of which a rolling �ve year
plan is the highest level plan. The automated planning model disaggregates this plan into a rolling
one year and a three months plan, which is then further disaggregated into a short term operational
rolling plan of one month which speci�es the daily targets. The daily targets are the amounts of oil
and associated gas that a certain reservoir should produce on a certain day.

The strategy of OilCO on production volumes is created in cooperation with its shareholders, who
want OilCO to follow the strategy and therefore minimize deviations from the production targets.
The O3 therefore has to take deviations from the production plan into account when generating
a schedule, along with the changeover costs. Changeover costs occur when the production rate is
changed, as this implies that individual wells, of which each reservoir has approximately 300, have
to be started up or shut down.

2.1.2 Separation facilities

The mixture of oil and gas is transported from the reservoirs to a separation facility where the oil and
gas �ows are separated, because they have to be transported to di�erent customers. The separation
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Production Asset Name of reservoir Regular production per day (bbl) Asset Total (bbl)

Asset1 Reservoir0 800,000
Reservoir1 152,000
Reservoir2 108,000
Reservoir3 60,000

1,120,000
Asset2 Reservoir4 713,000

Reservoir5 38,000
Reservoir6 66,000

817,000
Asset3 Reservoir7 84,000

Reservoir8 55,000
139,000

Asset4 Reservoir9 465,000
465,000

Grand Total 2,541,000

Table 1: Daily oil production (bbl) per reservoir and asset

process is optimized at the asset level by the CurrentSystem (CS), which is a local system that OilCO
currently uses. The O3 has to operate at a company wide level rather than at the asset level, so the
O3 complements the CS. Each production asset has its own separation facility, such that OilCO has
four separation facilities in total. The separation facilities are called SepFac1, SepFac2, SepFac3, and
SepFac4, where the number corresponds to the asset at which the facility is located. All separation
facilities have storage tanks in which oil can be stored after separation. Gas is directly transported to
the di�erent BuyGas facilities, as these are close to the separation facilities. The separation facilities
have a maximum daily separation capacity. Facilities can be in maintenance for a certain period
in which they are unable to process at this maximum capacity. The availability percentage of a
separation facility indicates which percentage of the daily maximum separation capacity can used.
During the separation process 3% of the oil is lost, which is a factor that the O3 has to take into
account.

2.1.3 Pipelines

All oil and gas transport takes place via unidirectional pipelines, meaning that oil and gas can only
�ow in one direction. Each pipeline has its own capacity, which is the maximum throughput rate it
can handle. As oil in a pipeline cannot be compressed, the oil �ow that enters a pipeline is equal to the
�ow that leaves the pipeline. Some pipelines in the network are connected to a pipeline node, which
is a junction of pipelines where �ows split up and/or merge. Here, the pipeline node near Asset4 is
called Node 1 and the pipeline node near Re�nery1 is called Node 2. Table 8 in Appendix A gives
an overview of all pipelines in OilCO's network. Some locations are connected by multiple parallel
pipelines, as can be seen in the overview.

Oil is transported through the pipelines using pumps. Pipelines of signi�cant length require more
than one pump to keep the oil �owing. The pumping costs depend on the throughput rate of a
pipeline and are one of the cost components that have to be minimized. However, there are some
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units on the same location (e.g. the Reservoir9 and SepFac4) that are connected by pipelines that
are so short that pumping costs are irrelevant and therefore have a length of 0 in the overview.
Unfortunately, the information in the table is incomplete, so we have to make assumptions. If we
do not know the capacity of a pipeline, we assume that the capacity is in�nite. For some pipelines
the capacity is insu�cient with respect to the production. For example, the production of reservoir
Reservoir6 is 66,000 bbl per day, while the capacity of the pipeline from Reservoir6 to SepFac2 is
36,000 bbl per day. We adjust the capacities of these pipelines, of which the result can be found in
the column �Adjusted capacity� in the pipeline overview of Appendix A.

2.1.4 Re�neries

OilCO delivers oil to two re�neries (Re�nery1 and Re�nery2) that are owned by the International
Oil Re�nining Company. Both re�neries have a pre-speci�ed �xed oil demand per day and a penalty
cost occurs for each barrel of oil that is undelivered. Furthermore, it is not possible to deliver more
than given demand to the re�nery, because the re�nery can not handle the extra oil.

2.1.5 Terminals

The two terminals, Terminal1 and Terminal2, are also customers of OilCO's oil. Both terminals
have loading platforms, where Terminal1 has three and Terminal2 has two. At these platforms oil
is loaded into tankers with a rate of 50,000 bbl/hour. OilCO has contracts with oil tankers, which
arrive in a three day window and have to pay a big �ne when they are too late. The three day
period is pre-arranged to provide tankers with �exibility in their travel times, since tankers have to
cover long distances. At least three days before the beginning of three day window, tankers have to
con�rm an exact arrival date. The loading time of a tanker, which is usually around a day, consists of
a constant component for berthing and unberthing and a variable component. The variable loading
time, which depends on the size of the tanker, is calculated by dividing the total tanker volume by
50,000 bbl/hour. In the contracts with the tankers a de�cit cost is included, which OilCO has to
pay when demand is unful�lled or ful�lled too late. Oil tankers can switch between the preassigned
terminals due to the large distance (±500km) between the terminals. Both terminals also have
storage tanks where oil can be stored for later use (more details, see Section 2.1.6). Next to that,
oil is sold on the spot market, which is an opportunity for gaining extra pro�ts. The spot market
demand is also delivered via tankers.

2.1.6 Storage Tanks

As described above, some of OilCO's assets have storage tanks for oil. Storage tanks have a minimum
and a maximum inventory limit that must be taken into account. A minimum inventory limit exists,
since the storage tanks have �oating roofs which are damaged if the tank gets empty. Next to
the minimum inventory limit, storage tanks have a safety stock that must be taken into account,
where it is possible to have less in stock than the safety stock against certain costs (so called safety
stock penalties). Storage tanks can be used to cope with short term issues, e.g. the delay of a
tanker. However, storing oil bears inventory costs, which is one of the cost components that has to
be minimized.
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2.1.7 BuyGas

BuyGas, which is OilCO's gas customer, operates multiple gas processing facilities located close
to OilCO's separation facilities. In addition to associated gas from oil reservoirs, OilCO exploits
non-associated gas to ful�ll the gas demand, which is extracted from gas �elds and therefore does
not have to be separated from oil. This non-associated gas is transported to the BuyGas facilities
in the same way as the associated gas. The O3 has to determine the volumes of associated and
non-associated gas that are used to ful�ll BuyGas' demand. The BuyGas facilities processes gas by
extracting all its usable components. From the BuyGas facilities lean gas, which is gas without any
usable components, is transported back to the oil reservoirs, since each reservoir requires an amount
of gas injected per day in order to maintain pressure in the reservoir. In case there is a de�cit in lean
gas returned from BuyGas, nitrogen or other products are injected into the reservoir.

2.2 Functional requirements

Currently, OilCO uses a plan based on operational experience to match the demand from their
three customer groups (terminals, the International Oil Re�ning Company, and BuyGas) to their
supply capabilities. The O3 aims to replace this plan in the future by optimizing the scheduling
of oil and gas movements in a time horizon of 30 days, which is complicated by uncertainty in the
arrival times of the tankers at the terminals. Moreover, the schedule must minimize total costs of
which pumping costs, penalties for non-satis�ed demand, penalties for deviating from the production
targets, changeover costs at the reservoir, inventory costs, and safety stock penalties are important
cost components. Extra gains can be generated by selling oil on the spot market. As stated earlier,
the O3 does not take decisions automatically, but recommends to the user. Speci�cally, the O3
advices on the following decisions:

• the production rate of the di�erent oil reservoirs and associated separation facilities;

• the throughput rate of the di�erent pipelines in the network

The inventory levels of the di�erent storage tanks are a direct result from these decisions, since
inventory levels depend on the ingoing and outgoing throughput rates of a tank. The inventory levels
are therefore auxiliary variables.

The O3 must be able to handle disturbances as well, as it must consider delayed tankers, oppor-
tunities on spot market, maintenance of assets, and asset breakdowns. These disturbances are dealt
with using both predictive scheduling as well as reactive scheduling. Predictive scheduling means
that the disturbance is taken into account when the schedule is created and reactive scheduling
means that the disturbance is taken into account after a schedule is realized. The O3 has to perform
reactive scheduling on opportunities on spot market, maintenance of assets and asset breakdowns,
as these disturbances do not occur frequently and are di�cult to predict, meaning that preventive
scheduling is not the best way of dealing with these disturbances. One could argue that for the
scheduling of maintenance of assets predictive maintenance is possible, but this is out of scope for
the O3. On these disturbances what-if analysis is applied, meaning that the O3 has to calculate the
consequences of di�erent reactions on disturbances, compare the outcomes, and �nally present the
best possible action to be taken. The recommendations need to be such that demand is still satis�ed
(by re-allocating the oil) when possible.

For the uncertainty in tanker arrivals we look at predictive scheduling techniques, since it is
hard to predict the exact arrival time of a tanker due to the fact that tankers arrive in a three day
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window. The O3 has to yield solutions that are, by design, more capable of dealing with di�erent
arrival moments. We apply the method called Robust Optimization (RO) to our model to achieve
that. Therefore, we look at RO techniques that are relevant for the O3 in Chapter 3.

Finally the O3 has to come up with an schedule within a couple of minutes, as the system has to
be used in daily operations.

2.3 Information uncertainty

Unfortunately we do not have contact with OilCO during this project, as stated in the introduction
of this chapter. In this section we indicate what the consequences are and how to deal with them. We
split the uncertainty into process uncertainty (Section 2.3.1) and data uncertainty (Section 2.3.2).
The process uncertainty is uncertainty about the processes that is modelled and data uncertainty is
uncertainty about the parameter values of the model.

2.3.1 Process uncertainty

For some of OilCO's processes it is unclear what they exactly look like, meaning that some assump-
tions have to be made about how things exactly work at OilCO. The assumptions on how the energy
and changeover costs should be modelled have a large impact on the model, since these are important
cost components which our model has to minimize, but we do not know exactly what causes these
costs and which factors have impact on them. For example, we do not know if the size of a changeover
(which is the change in production rate) in�uences the changeover cost, or if the changeover costs
are constant for each changeover. We examine how these cost components are modelled in similar
models by performing a literature review in Chapter 3. Based on this literature review and the
experience within the Oil, Gas and Chemicals department of OCG we make assumptions about how
we model the cost components. Furthermore, in Section 4.6 we indicate what the consequences are
if our assumptions are incorrect, which makes adjusting the model easier when more is known about
the processes.

2.3.2 Data uncertainty

The data we have available for this thesis is incomplete and uncertain, as the pipeline overview in
Appendix A indicates. The main goal of this thesis is to develop a mathematical model, which is
possible without knowing the exact parameter values. We, however, require data in Chapter 6 to
perform numerical experiments on our model to see how our model performs and make possible
adjustments to the model if needed. We make educated guesses for the values of the parameters in
the model to be able to do the experiments. There may be, however, some parameters (e.g. storage
tank size) of which the value is uncertain, but that have a strong in�uence on the optimal schedule
and model performance. In Chapter 7 we identify these parameters and perform a sensitivity analysis
on them to examine the in�uence of the value of the parameter on the model.

There is also uncertainty regarding the outlook of OilCO's network. It could be that there are
more storage tanks in the model, or that some pipeline connections are di�erent from the pipeline
overview in Appendix A. We want to deal with this by formulating a model that is as generic as
possible, so the network can be changed easily. Every type of unit and customer is modelled using
the same variables and constraints, such that a network layout that is di�erent from OilCO's (but
includes the same sort of units) can also be modelled using our model formulation.
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2.4 Summary

In this chapter we examined OilCO's processes and the functional requirements for the O3, such that
our mathematical model considers all relevant factors. It became clear that our model should consider
a pipeline network of production facilities, separation facilities, pipelines, re�neries, terminals, and
storage tanks. Each type of asset has it own operational constraints that have to be considered.
The O3 has to generate a schedule with a 30 day horizon with minimal total costs, which consists
of pumping costs, penalties for non-satis�ed demand, penalties for deviating from the production
targets, changeover costs at the reservoir, inventory costs, and safety stock penalties. The schedule
involves all assets mentioned and has to be generated in reasonable computation time. The most
important decisions that the schedule has to specify are the processing rates of the reservoirs and
throughput rates of pipelines in the network.

The O3 has to be able to handle disturbances by using both predictive as reactive scheduling
techniques. The opportunities on the spot market, the scheduling of maintenance and asset break-
downs are dealt with by using what-if analysis and for the uncertainty in tanker arrivals we look at
Robust Optimization (RO). In Chapter 3, a literature review is performed on models for situations
similar to OilCO's.
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3 Literature review

In this chapter we look into literature in order to get an overview of existing optimization models
on pipeline �ow scheduling and RO techniques. The sub question that this chapter answers is:
�Which pipeline �ow scheduling models and Robust Optimization models exist that can be used for
modelling OilCO's processes?� The goal of the �rst part of this literature review is to get insight in
how OilCO's pipeline network can be modelled, how the di�erent assets can be modelled, and how
the di�erent cost components can be modelled. The research focuses on scheduling problems, since
OilCO's optimization problem is on the scheduling of the production rates and throughput rates.
Although the O3 has to schedule crude oil and gas �ows, some models about other products (for
example petroleum or water) may also be interesting as long as pipeline transportation is involved.
The main focus of this literature review is on the scheduling of liquid �ows, since most of the �ows
that have to be modelled are oil �ows. We search, however, for literature about liquid pipeline
scheduling problems that also consider gas �ows.

OilCO operates in the upstream and midstream oil business. The upstream business involves the
extraction of oil and gas from the earth and the midstream business involves the processing of crude oil
and transportation of crude oil or oil products. Articles on optimization of downstream oil activities,
which involves the distribution of re�ned products, are therefore omitted. We limit ourselves to
upstream and midstream oil business in which pipelines are the main means of transportation, which
means that articles that only cover shipment of crude oil by tankers are omitted. Section 3.1 gives an
overview of existing optimization models and Section 3.2 indicates which of these models are relevant
for OilCO.

Next to that, we look at RO techniques to deal with the uncertainty in tanker arrivals. Section 3.3
covers an overview of RO techniques and applications in the upstream and midstream oil business.
Section 3.4 presents the conclusions of our literature review.

3.1 Optimization models for pipeline �ow scheduling

Almost all literature on optimization models for scheduling �ows of products through pipelines orig-
inates from the oil industry. These models not only consider crude oil, but also various re�ned oil
products. Water is the only other product present in literature (Abbasi & Garousi, 2010). Mathe-
matical models are used to support decision making that minimizes cost (Lee et al., 1996; Rejowski
& Pinto, 2003; Moro & Pinto, 2004) or maximizes pro�t (Mas & Pinto, 2003; Reddy et al., 2004a;
Pan et al., 2009). Most scheduling problems concerning a network of oil pipelines optimize the oil
�ow schedules, which contain information on the volume, the timing, and the destination of the oil
that is pumped into the pipelines, which are decisions that are also relevant for OilCO's optimization
problem.

Typical types of cost components that are minimized in the models are: pumping costs (Rejowski
& Pinto, 2008; Herrán et al., 2010), inventory costs (in case storage tanks are considered) (Lee et al.,
1996; Cafaro & Cerdá, 2012), and changeover costs (in case di�erent products are considered, note
that this is a di�erent de�nition than changing the production rate) (Reddy et al., 2004b). All these
are cost components are also relevant for OilCO's optimization problem. The cost components that
are considered as well as the method by which they are determined di�ers per model.

When a capturing a business process as OilCO's into a mathematical model, often some assump-
tions have to be made. An important assumption that is made in every oil pipeline optimization
model: the pipeline remains completely full with incompressible oil products at any time (Cafaro &
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Cerdá, 2008b). The only way to get a volume of oil out of a certain pipeline is to inject an equal
volume of oil at the origin, which means that the oil �ow into a pipeline has to be equal to the �ow
out of the pipeline, and that there always is an initial volume of oil in the pipeline. This also holds
for points in the network where pipelines split up or merge (MirHassani et al., 2011).

Literature on pipeline �ow scheduling concerns both optimization of single pipelines (Rejowski &
Pinto, 2003; Relvas et al., 2013) and networks of pipelines (Stebel et al., 2012; Cafaro & Cerdá, 2012).
We are mainly interested in networks, since this best re�ects OilCO's situation. In the literature the
network is represented by a set of nodes that are connected by pipelines, and sometimes by using
a graph formulation (Abbasi & Garousi, 2010). Nodes in the network can be supply nodes (or
sources), demand nodes (or sinks), and intermediate nodes through which �ow is transported. Flow
is produced at the supply nodes, consumed at the demand nodes, and conserverd at the intermediate
nodes, meaning that the incoming �ow must be equal to the outgoing �ow. In some models it is also
possible to change the characteristics of the �ow (Neiro & Pinto, 2004) or store �ow (Rejowski &
Pinto, 2008) at a node.

When an optimization model provides a schedule for oil �ows, the way the time component is
modelled is an important choice, because it in�uences the model basics and the performance of
the model. Time can be represented in a discrete or a continuous way, which both can be found
in literature. In a discrete time representation, the time horizon of the schedule is divided into
time slots, which are of equal length in the original discrete time representation. (Lee et al., 1996;
Rejowski & Pinto, 2003). The schedule determines what activities take place in which time periods
and calculates inventories for the beginning and end of each period. A discrete formulation uses binary
variables to indicate if an activity occurs in a time slot. To obtain a high accuracy for a discrete time
formulation, a large number of time slots has to be used (Reddy et al., 2004a), which directly a�ects
the number of binary variables in the model and therefore increases computation time. A continuous
time representation means that the start and end times of activities are continuous variables (Mas
& Pinto, 2003) and, in many cases, that the volumes of product batches are also modelled in as
continuous variables (Relvas et al., 2006; Cafaro & Cerdá, 2008b). Some recent models also contain a
hybrid version of both representations called an event based time representation, which is a continuous
time representation by using discrete time intervals with unequal length (Saharidis et al., 2009). In a
event based time representation the model variables are assumed constant when no external changes
occur. The time horizon is therefore divided into events instead of hours, meaning that an interval is
de�ned as a period between the moments an event starts and �nishes. These events are prede�ned
external events which change important model parameters, e.g. the arrival of a customer tanker,
which causes that the model variables are only evaluated on moments that are relevant for the
schedule and reduces the number of discrete time intervals.

Most work around the optimization of oil pipeline networks is done around two scheduling prob-
lems: the Crude Oil Operations Scheduling Problem and the Multi-product Pipeline Scheduling
Problem. We look into these problems and associated models in more detail �rst. Section 3.1.1 con-
siders the Crude Oil Operations Scheduling Problem and Section 3.1.2 considers the Multi-product
Pipeline Scheduling Problem. Section 3.1.3 presents an overview of other existing models.

3.1.1 The Crude Oil Operations Scheduling Problem

Problem description
The Crude Oil Operations Scheduling Problem �rst received attention in literature in 1996 (Lee et

al., 1996; Shah, 1996). The problem considers the unloading of crude oil tankers to deliver crude oil
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to an oil re�nery. The tankers are mostly Very Large Crude Carriers (VLCCs), which are unloaded
in ports at unloading berths. The moment they unload depends on the availability of the di�erent
berths, such that waiting time may occur. The unloaded oil is transported via pipelines to storage
tanks in which the crude oil is stored. Since the re�nery demands speci�c crude oil blends, the oil
from di�erent storage tanks is combined into a charging tank via pipelines. These charging tanks
feed the Crude Distillation Units (CDUs) of the oil re�nery. Figure 1 shows a graphical overview of
the problem.

Storage tank

Storage tank

Charging tank

Crude Destillation UnitVLCC

Unloading berth

Unloading berth

Figure 1: Graphical overview of the Crude Oil Scheduling Problem

The problem is to determine a schedule that speci�es:

• The waiting time for each tanker in the sea

• Unloading duration time for each tanker

• The crude unloading rates from the tankers to the storage tanks

• The crude oil transfer rate and mixing rate from storage tank to charging tanks

• Inventory levels of all tanks involved

• CDU charging rates

• Sequence of mixed crude to be charged into each CDU

The di�erent types of equipment have capacity limitations: pipelines have a maximum throughput
that they can handle, storage and charging tanks have a maximum storage level, and unloading berths
have a limited availability. The goal is to �nd a schedule that minimizes operating costs within the
operational restrictions.
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Solution methods for the problem
For the Crude Oil Operations Scheduling Problem, models using both discrete and continuous

time representations can be found in literature. Lee et al. (1996) and Shah (1996) propose a discrete
time formulation with time periods of equal length. Lee et al. (1996) assume that there is only one
unloading berth at the port and ignores changeover times for the transition between two di�erent
types of crude mixes at the CDU. Lee et al. (1996) assume that perfect mixing occurs when crudes
from di�erent storage tanks are combined in one charging tank. Only speci�c key components in crude
or mixed oil are considered, because calculating the properties takes a lot of computational time due
to non-linear equations. Shah (1996) only considers one type of tanks, which receive crude oil from
the tankers as well as charge it to the CDU. Shah (1996) decomposes the model in two sub models, an
upstream and a downstream model and de�nes certain types of crudes on beforehand. Both papers
propose a Mixed-Integer Linear Program (MILP) to solve the problem with mass balance equations
at the end of each interval. The objective function of the model of Lee et al. (1996) minimizes the
sum of the unloading costs, the waiting costs of tankers, the inventory costs of the tanks, and the
changeover costs of the CDU, whereas the model of Shah (1996) minimizes the total value of the
crude oil in storage when it is no longer consumed by a CDU.

Reddy et al. (2004b) extend the model of Lee et al. (1996) by allowing multiple parcels (separate
compartments) of crude oil per tanker, which are unloaded via a single-buoy mooring pipeline and/or
single parcel tankers. The properties of crude mixes are considered, which adds non-linear equations
to the model. The model uses a combination between continuous and discrete time representation,
as multiple activities can occur within one discrete time slot. The non-linear properties result in a
Mixed-Integer Non-linear Program (MINLP) which is relaxed into a MILP. The relaxation results
in crudes that are not mixed in the right mixture. The model maximizes pro�t as the margins per
crude are included and also a penalty for having less in stock than the safety stock is included.

Mas & Pinto (2003) present the �rst continuous time representation of the problem, meaning
that the start and end time of unloading and charging events are continuous variables. The model
is decomposed into several sub models: a port model and a substation model (where the storage
tanks are). First an assignment of tankers to unloading platforms is generated in the port model and
subsequently a schedule for the loading and unloading operations of tanks and pipelines is generated
using the substation model. Both sub models are modelled using a MILP formulation. The port
model maximizes pro�t that consists of the revenue minus the crude oil cost minus the cost of
utilizing the unloading platform and minus the interface costs (which separates two di�erent types of
crudes) and overstay costs (which are costs for delay) of the tankers. The substation model minimizes
operating costs that consists of loading/unloading costs of the tanks and again the interface costs.

Reddy et al. (2004a) also present a continuous time formulation, which solves the same problem
variant as solved by Lee et al. (1996) with as only di�erence that storage and charging tanks are
combined and CDUs are loaded directly from the storage tanks, meaning that multiple tanks can
feed a single CDU at the same time. The authors compare their model with the model of Reddy
et al. (2004b) with discrete time representation, but encounter di�culties because of the di�erences
in formulations. Reddy et al. (2004a) conclude that the discrete time representation outperforms
the continuous time representation for smaller and more complex problems. Reddy et al. (2004a),
however, expect that continuous time representations has the best potential of being the best choice
in the future, as their model is the �rst one that uses a continuous time representation and it has to
be developed further.

Jia & Ierapetritou (2004) use a decomposition approach to solve a similar problem as Mas & Pinto
(2003) do. They extend the model with a product blending and delivery part, which occurs after the
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processing of the CDU. All sub models are solved using MILP formulations with a continuous time
representation, which is compared with the discrete time model of Lee et al. (1996) and conclude
that their continuous time model solves signi�cantly faster.

Moro & Pinto (2004) also consider the crude oil operations from a continuous time perspective,
but focus on the properties of the crude oil as di�erent crudes are mixed. They consider the non-
linear aspects of a model that takes the di�erent oil properties into account, as Reddy et al. (2004b)
also do. The model of Moro & Pinto (2004) maximizes the CDU feed �ow rate while minimizing the
costs associated with tank operations, where tanker unloading costs and pipeline transfer costs are
omitted. Moro & Pinto (2004) propose both a MINLP formulation and a derived MILP formulation
with linearized constraints. The authors conclude that the MINLP model is able to generate a more
e�cient schedule for a short term horizon.

Pan et al. (2009) base their work on the work of Reddy et al. (2004a) and try to come up with
a more e�cient model. A new continuous time model is proposed, which has non-linear equations
due to the modelling of blending of crudes with di�erent properties. The authors propose a heuristic
to determine an unloading procedure and indirectly calculate the crude composition and properties
in each tank, which results in a problem that can be modelled using linear equations. Their model
outperforms the model of Reddy et al. (2004a), as it requires fewer binary variables and requires less
computational time.

Saharidis et al. (2009) are the �rst to introduce the event based time representation (which is ex-
plained in Section 3.1). The authors show that an event based formulation outperforms discrete time
formulation regarding computational time needed. The paper considers several modes of blending
and various recipe preparations to cope with the non-linear mixing constraints. Their model, which
minimizes the number of set-ups needed, assumes that a single oil tank can contain only one type of
crude oil at a time.

Yadav & Shaik (2012) also propose an event-based time representation for the problem, based on
a simpli�ed state-task-network (STN) formulation which corresponds to a MINLP formulation. The
non-linear constraints are relaxed to reduce computational e�ort, although it may give composition
discrepancies of crude blends. The authors provide three di�erent formulations of oil �ows in a tank
based on whether mixing is allowed or not, whether simultaneous input and output is allowed or not
and whether bypassing (which happens when a volume of oil passes a storage tank without entering
it) is allowed or not.

Not only Mixed-Integer Programs are proposed in literature, as Adhitya et al. (2007) propose
a heuristic that can be used to reschedule operations when disruptions occur. Generating a new
optimal schedule typically requires signi�cantly large amounts of time, which is undesirable when
disruptions require a fast response. Furthermore, a disruption causes the input of an optimization
model to change, which can result in severe changes in a schedule. The authors propose a heuristic
that overcomes both these shortcomings. The heuristic decomposes the schedule in certain �operation
blocks�, which are rescheduled when a disruption occurs. Another advantage of the proposed heuristic
is that it generates multiple feasible schedules instead of only one optimal schedule.

Wang & Rong (2010) propose a two-stage robust model to solve the crude oil scheduling problem
under uncertain conditions. The �rst stage of the model is developed using chance-constrained
programming and fuzzy programming that can be transformed into the deterministic counterpart
problem, whereas the second-stage is scenario-based. Through the combination of approaches, the
model can deal with uncertain parameters with both continuous and discrete probability distributions.
The article primarily focuses on tanker arrival uncertainty and CDU charging demands uncertainty.
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3.1.2 The Multi-product Pipeline Scheduling Problem

Problem description
The Multi-product Pipeline Scheduling Problem received �rst attention in 2003 (Rejowski & Pinto,

2003). Where the Crude Oil Scheduling Problem considers the processes of transporting crude oil to
an oil re�nery, the Multi-product Pipeline Scheduling Problem considers the process from the re�nery
to the customers. A re�nery produces petroleum products that have to be transported to customers
via a single pipeline, which is divided into segments with at the end of each segment a tank depot
that is connected to a customer market. In the pipeline, each segment either transfers products to
the depots or to the next customers. At the re�nery, products have to be stored in dedicated tanks,
which prevents mixing of crudes. Furthermore, an interface material is pumped into the pipeline
between batches of di�erent products to prevent mixing of crudes. Typical operational costs that
have to be minimized are inventory costs at the di�erent storage tanks, pumping costs and interface
costs for the interface material between di�erent products in the pipeline. Figure 2 shows a graphical
overview of the problem.

Refinery

Finished 
products tanks

Depot DepotDepotDepot

Segment 1 Segment XSegment 3Segment 2

Customer 1 Customer XCustomer 3Customer 2

Figure 2: Graphical overview of the Multiproduct Pipeline Scheduling Problem

The problem consists of �nding a schedule that speci�es:

• Timing and volume of all batches that are pumped into the pipeline

• Distribution of batches among the di�erent depots

• Locations and sequence of the di�erent batches in the pipeline

• Inventory levels of all tanks involved

The operational constraints that have to be considered are the maximum inventory levels of the
di�erent tanks, the capacity of the pipeline, the maximum production rate of the re�nery and the
fact that only one product can be pumped into the pipeline at a time. The main assumption is the
same as in the crude oil scheduling problem, namely that the pipeline should remain completely full
at all times. It is also assumed that all �nished products have constant densities.

Solution methods for the problem
Rejowski & Pinto (2003) are the �rst to treat the Multi-product Pipeline Scheduling Problem
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in literature. They propose a MILP formulation to solve the problem, which uses a discrete time
formulation that also divides the pipeline into packs of equal volume. The volume of a certain
product that is discharged from the �nished products tanks into the pipeline is a multiplication of
the volume of a pack (which is a constant) and the number of time slots that a discharge takes. The
volumes at the di�erent tanks are calculated using mass balance equations at the end of each time
slot. This model still has drawbacks as it only allows one unloading operation in the entire system
at a time. The model minimizes the sum of inventory costs of the tanks, the interface costs between
di�erent batches and the pumping costs. One year later, the same authors improved their model by
adding some practical constraints (Rejowski & Pinto, 2004), which imply that the pumping of oil
in a segment of the pipeline can only be stopped if the segment stores exactly one type of product.
Also integer cuts were added to determine lower bounds on the number of times that a segment of
the pipeline must operate within the time horizon. Both improvements increase the performance of
the model in terms of calculation time needed signi�cantly.

Rejowski & Pinto (2008) further develop the model of Rejowski & Pinto (2004) by changing the
time representation from discrete to continuous. This is done by giving the time intervals a variable
duration, using the same time representation as Moro & Pinto (2004). The model also considers
pumping �ow and yield rate variations and minimizes inventory costs, interface costs and pumping
costs. The variable duration of time intervals results in non-linear terms in the objective function,
which makes the proposed model a MINLP. The pumping costs are also non-linear due to the division
of the unit pumping cost and the amount of product by the pumping yield rate (the �ow rate that
results from a certain pumping rate), which is considered since the power consumption of the booster
stations changes signi�cantly with the �ow rate in the pipeline. The authors show that the proposed
MINLP solves faster than the MILP of Rejowski & Pinto (2004), which considers a �xed �ow and
yield rate.

Herrán et al. (2010) further improve the discrete time model, using the same assumptions and
objective function as proposed by Rejowski & Pinto (2003). The big di�erence is that their model
involves multiple re�neries, intermediate nodes, and destination nodes, which results in a larger
network and increases complexity, meaning that solving a real life case to optimality takes more than
20,000 seconds.

Relvas et al. (2013) consider a simple network of a single re�nery tank farm and one customer
at the end of a multi-product pipeline. The authors also propose a MILP with a discrete time
representation, however the pipelines are not discretized into packs. The receiving time of a batch
can therefore assume intermediate values between points of the discrete time scale, which results in a
model that solves problems with a medium-term time horizon in a relatively short time. The model
minimizes the average �ow rate, which indirectly minimizes pumping costs.

The �rst model that uses a continuous time representation for the Multi-product Pipeline Schedul-
ing Problem is proposed by Cafaro & Cerdá (2004). The problem is the same as considered by
Rejowski & Pinto (2003), but with the batch volumes and start and completion times of the di�erent
product batches modelled as continuous variables, which reduces the number of binary variables,
constraints and computation time.

Relvas et al. (2006) also propose a continuous time model in which they consider a single multi-
product pipeline network as done by Relvas et al. (2013). The proposed MILP model maximizes the
amount of products transported plus the total inventory at the end of the time horizon. An extension
of the model which takes a settling period (the period in which the oil has to stay in a tank) into
account is also considered, which results in a more complex model with a lower performance.

Relvas et al. (2007) improve the model of Relvas et al. (2006) by adding a variable �ow rate,
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pipeline stoppages, and variable settling periods. Next to that, a new rescheduling methodology is
proposed, which tells how to re-optimize a given schedule when a disturbance occurs. The considered
disturbances are: variation on client demands, imposition on product sequence, unpredicted pipeline
stoppages, batch volume modi�cations, �ow rate adjustments, and variation on maximum capacity
storage. The model indirectly minimizes pumping costs by minimizing the pumping �ow rate.

Relvas et al. (2009) develop a pre-processing heuristic to improve the model of Relvas et al. (2007).
The heuristic tries to �nd the most desirable product sequences to be pumped into the pipelines,
which results in a lower solving time for schedules with short-term and medium-term horizons.

Cafaro & Cerdá (2008a) consider the dynamic scheduling of a single multi-product pipeline over a
multi-period moving horizon to extend the model of Cafaro & Cerdá (2004). At the end of the current
period, the planning horizon moves forward and the re-scheduling process based on updated problem
data is triggered again over the new horizon. The authors propose an e�cient MILP formulation
based on a continuous time representation, which minimizes the sum of pumping, transition, down-
time, back-order, and inventory carrying costs.

Cafaro & Cerdá (2008b) consider the same real-world case study as Relvas et al. (2006) and adjust
the proposed MILP formulation of Cafaro & Cerdá (2004) to this model. The authors consider a
product-dependent settling time in the tanks, resulting in a much simpler model than Relvas et al.
(2006). Batch-size tracing is considered as unimportant in the model, which makes the computation
time drop by a factor of nearly 100.

Cafaro & Cerdá (2012) consider a multi-product pipeline network including mesh structures,
which means that alternative paths between nodes can exist. The model allows simultaneous batch
injections at multiple input stations. The proposed MILP formulation based on a continuous time
representation is able to generate short-term operational schedules in reasonable computation time.
The objective of the model is to timely meet all product demands at distribution terminals at mini-
mum total cost including pumping, interface, pipeline utilization, and inventory costs.

Boschetto et al. (2010) consider a large network of re�neries, harbors, customers, and depots
that are connected by pipelines. This is the �rst article that considers bidirectional pipelines, which
all have their own capacity. The problem is decomposed hierarchically into an assignment block
(where resources are allocated), a heuristics block (where the sequence of products is determined),
a pre-analysis block (where volumetric and �ow rate limits are determined using simulation), and a
timing block (where the timing of activities is determined using a MILP model). These steps result
in a schedule that minimizes the makespan. In addition the costs for violating the time windows of
pumping and receiving the product batches are minimized.

Stebel et al. (2012) extend the work of Boschetto et al. (2010) and add a MILP model for the
tactical level. The model enables to test scenarios at the strategic and tactical levels to see the impact
on the operational level.

MirHassani et al. (2011) present an algorithm for the long-term scheduling of a single multi-
product pipeline. The algorithm uses a MILP with a continuous time representation for calculating a
short-term schedule iteratively to come to a long term schedule that aims to minimize penalty costs
for under utilizing pipeline capacity, interface costs, and costs resulting from delays in supplying the
demand.

MirHassani & Fani Jahromi (2011) discuss the short-term scheduling of the distribution of multiple
products from a single re�nery to multiple depots through a tree-structure pipeline. The authors
propose a continuous time MILP formulation to generate a schedule. The objective is again to
minimize the sum of inventory costs of the tanks, the interface costs between di�erent batches, and
the pumping costs, as in the initial problem of Rejowski & Pinto (2003).
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Fabro et al. (2014) consider a real-world case of four re�neries, which are connected via interme-
diate nodes to a single port using unidirectional pipelines. An important consideration of the model
is that all pipelines are heated and therefore heating constraints exist. The other new aspect of the
model is that it allows to use the same tank for di�erent products during the time horizon. The
authors extend the hierarchical decomposition approach as introduced by Boschetto et al. (2010),
which results in a method that generates a schedule for the coming 30 days in less than 300 seconds.

3.1.3 Other optimization models

We have clari�ed that a lot of the research done on pipeline �ow scheduling is centered around the two
previously mentioned problems, however also other models can be found in literature. Ortiz-Gomez
et al. (2002) provide three multi-period optimization models for oil production planning in the wells
of an oil reservoir, which generate a schedule involving the production of oil from the wells in each
time period. The �rst model assumes that a well either is shut down or open to �ow during a �xed
time period of which the resulting model consists of a discrete time MILP formulation. The second
model assumes that each well operates at full production capacity. In this model the time periods
are disaggregated in a number of sub periods. This model has some non-linear constraints because of
the so called well bore pressure behavior, which makes the model a MINLP model. The third model
is also a MINLP model, which assumes a cyclic operation mode for all of the wells of the reservoir
in each period of time. All three models minimize the sum of the variable costs associated to the
production rate and the costs associated to each well, which change depending on whether the well
is open to �ow or shut down.

Neiro & Pinto (2004) present a general modelling framework for the operational planning of
petroleum supply chains. The framework contains models for processing units, storage tanks, and
pipelines, which are all combined in a large MINLP model. The objective is to maximize revenue,
which is obtained by the product sales minus costs related to raw material, operation, inventory, and
transportation. It is assumed that the transportation costs are linear with the �ow rate. The non-
linear equations result from the operational costs, which depend on both the variable feed �ow rate of
a unit and variables concerning operating modes. The authors state that applying a decomposition
method to deal with the non-linear constraints is part of future work.

Finally Abbasi & Garousi (2010) consider the optimal scheduling of pump operations in �uid (such
as oil or water) distribution networks. Since pumping costs are severe in these kind of networks, even
slight improvements in the operations of these systems could lead to considerable savings. The
proposed MILP model determines a optimal pump operation schedule while considering multi-tari�
electricity supply. The model applies linearization techniques on the non-linear aspects of the model,
for example some network hydraulics constraints and the calculation of power consumed.

3.2 OilCO's optimization problem

Now that we have an overview of all recent pipeline scheduling literature, we decide which of these
models are relevant for OilCO. To compare the models, we give a schematic overview of OilCO's
optimization problem in the same way as we did for the Crude Oil Operations Scheduling Problem
in Figure 1 and the Multi-product Pipeline Scheduling Problem in Figure 2. Figure 3 illustrates a
simpli�ed graphical overview of OilCO's optimization problem, according to the di�erent processes
as explained in Section 2.1.

It becomes clear that the optimization problem of OilCO di�ers from the Crude Oil Scheduling
Problem and the Multi-product Pipeline Scheduling Problem. However, both problems contain
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Figure 3: Graphical overview of OilCO's optimization problem

aspects that could be used for solving OilCO's optimization problem. Recall that the goal of this
literature review is to get insight in how OilCO's pipeline network can be modelled, how the di�erent
assets can be modelled, and how the di�erent cost components can be modelled. Section 3.2.1
explains how OilCO's pipeline network can be modelled and Section 3.2.2 treats how to model the
assets in OilCO's optimization problem. We treat OilCO's optimization problem in a systematic
manner by using the frequently used decomposition approach (Shah, 1996; Mas & Pinto, 2003; Jia
& Ierapetritou, 2004; Neiro & Pinto, 2004), which divides the total optimization problem in several
sub models based on the functionality of the di�erent nodes in the model. Section 3.2.3 looks at how
to model the di�erent cost components in the objective function of OilCO's optimization problem
and Section 3.2.4 looks at the functional requirements of the O3. All sections indicate the relevant
literature for that part of OilCO's optimization problem.

3.2.1 Network

Pipeline networks can be modelled as a �ow network of nodes that are connected by pipelines (Stebel
et al., 2012; Cafaro & Cerdá, 2012), we can model OilCO's network in a similar way. In this network
model all OilCO's assets are represented by nodes with speci�c characteristics. In OilCO's network
the reservoirs and the NAG-�eld are the supply nodes which produce �ow and the customers of
OilCO are the consumers of the �ow. Other assets of OilCO can be modelled as nodes that either
conserve �ow (pipeline nodes), store �ow (storage tanks) or change the characteristics of the �ow
(separation facilities). How to model pipeline �ows in the network strongly depends on the time
representation that is chosen. Discrete time representations lead to intuitive model formulations, but
lack in performance. A continuous time representation could be more suited than a discrete time
formulation, as it is able to model times and volumes more precisely and it requires fewer binary
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variables in the model (Reddy et al., 2004a). More recently, a hybrid form called event-based time
representation (Saharidis et al., 2009; Yadav & Shaik, 2012) also gives promising results.

3.2.2 Assets

Since we did not �nd any literature about �uid pipeline scheduling problems that also involve gas
�ows, we do not have any literature of this part of the model. For modelling the oil reservoirs, the
model of Ortiz-Gomez et al. (2002) could be used as it considers multi-period optimization for oil
production planning in the wells of an oil reservoir. Although this local optimization is done by the
CS of OilCO, this information about well and reservoir behavior could be useful.

Separation facilities are not modelled explicitly in the literature, but the framework of Neiro &
Pinto (2004) contains a sub model of a processing unit. A processing unit is de�ned here as �a piece
of equipment that is able to physically or chemically modify the material fed into it�. According to
this de�nition, a separation facility could be modelled as a processing unit that changes the gas/oil
mixture into gas and oil. This sub model considers di�erent feed streams that are mixed before they
are processed, which causes non-linear constraints when the properties of the total feed stream are
calculated. It may be that this also causes non-linear constraints for OilCO, as the GORs from the
reservoirs can vary.

Storage tanks are present in most of the found literature and most models also consider the
inventory costs of the storage tanks in their objective function. OilCO's storage tanks can be modelled
in the same manner as in existing literature. Some authors (Reddy et al., 2004b; Saharidis et al.,
2009; Yadav & Shaik, 2012) give special attention to the mixing of di�erent types of crudes in a
storage tank. Non-linear constraints occur because the properties of the mixture are calculated using
non-linear equations. Pan et al. (2009) have proposed a heuristic to deal with this by calculating
the properties of the mixture in an indirect way. In OilCO's optimization problem only one type of
crude is considered, so non-linear equations are avoided.

The di�erent oil customers of OilCO can be modelled as the CDU in the Crude Oil Operations
Problem and the customers in the Multi-product Pipeline Scheduling Problem, these are all customers
with a certain demand for a certain product in a certain period. The modelling of the customers
could even be simpli�ed as all OilCO's oil customers demand the same product.

3.2.3 Objective function

The objective of OilCO's optimization problem is to minimize total costs which consist of: pump-
ing costs, penalties for non-satis�ed demand, penalties for deviating from the production targets,
changeover costs at the reservoirs, safety stock penalties, and inventory costs. In certain articles
(Rejowski & Pinto, 2003; Herrán et al., 2010; MirHassani & Fani Jahromi, 2011) the pumping costs
are considered as the product of the pumped volume and the unit pumping cost and in some articles
it is the product of the �ow rate and a cost factor (Neiro & Pinto, 2004). Other authors (Rejowski &
Pinto, 2008; Abbasi & Garousi, 2010) consider the pumping costs as non-linear, because the amount
of power that pumps consume changes non-linearly when the �ow rate in the pipeline changes. This
consideration makes the model non-linear, but more accurate. Since OilCO's pumping costs are a
signi�cant part of the total costs, we want to model them as accurately as possible, so we use the
non-linear approach.

The �nes for non-satis�ed demand are not modelled as a cost component in many articles as most
authors model the ful�llment of demand as a constraint. MirHassani et al. (2011) include �nes for
delays in delivering the demand. Production target deviation costs are not considered in any of the
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articles, but Relvas et al. (2007) penalize deviations from the original schedule in their re-optimization
methodology, which is done by multiplying the absolute deviation from the original schedule with a
cost factor. Changeover costs at the reservoirs are also not considered in any of the articles, but some
(e.g. Lee et al. (1996); Reddy et al. (2004b)) Crude Oil Operation Scheduling models do consider
changeover costs of changing the tank that feeds the CDU. These models can be useful to see how
changeover costs are modelled. Inventory costs are considered in almost every article that considers
storage tanks, the inventory costs always are a simple multiplication of the average inventory level
and a cost factor (Lee et al., 1996; Cafaro & Cerdá, 2012). Reddy et al. (2004b) model safety stock
penalties in their objective function, this formulation is useful for OilCO.

3.2.4 Functional requirements

The most important functional requirement is that a schedule is generated in reasonable time, which
is proved to be hard in large networks (Herrán et al., 2010) and/or on large time horizons (MirHassani
et al., 2011). Some techniques were proposed in literature that could increase the performance of
an optimization model by decomposing the problem hierarchically into several levels that add more
detail to the schedule (Relvas et al., 2009; Boschetto et al., 2010; Fabro et al., 2014).

Another functional requirement is that the O3 has to be able to handle disturbances. Rescheduling
techniques have been proposed by multiple authors (Relvas et al., 2007; Adhitya et al., 2007) who
claim that solving a model all over again is ine�cient in case of a disturbance and instead propose
heuristics to reschedule only the relevant parts of a schedule. These heuristics can be used for the
handling of disturbances by the O3.

3.3 Robust optimization

The O3 needs to deal with di�erent kinds of disturbances (see Section 2.2). Disturbances such as
assets breakdowns are events which are best modelled after realization by means of reactive scheduling
(Li et al., 2012). The what-if analysis proposed by OilCO can be seen as a form of reactive scheduling
as the �base case� is generated by solving the deterministic model. For disturbances in the form of
delayed tankers a more robust approach would be better, since possible delay should be taken into
account already when solving the model rather than after solving. Note, that the optimal solution of
a deterministic model based on estimated arrival times does not have to be the solution that is able to
withstand tanker delay. There may be solutions that are only close to optimality and are more robust
with respect to tanker delay. Uncertainty related to demand and tanker arrival time can explicitly
be taken into account through preventive approaches (Li et al., 2012). Robust Optimization (RO) is
a preventive approach in which models are formulated that, by design, yield solutions that are less
sensitive to uncertainty in model parameters (Mulvey et al., 1995). As the O3 needs to be able to
deal with disturbances, solutions are needed that are robust to these disturbances and thus RO a is
useful method to be applied to the model for the O3. Section 3.3.1 gives a brief introduction into
RO where the concept of RO is explained. Section 3.3.2 concerns RO applications in the oil and gas
industry.

3.3.1 Introduction in Robust Optimization

RO had its �rst applications in the early 1990s (Mulvey et al., 1995). In RO there are two forms of
robustness: solution robustness and model robustness. Solution robustness means that the solution of
the optimization model remains �close� to optimal for every realization of the uncertain parameters.
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Model robustness means that the solution of the optimization model remains �almost� feasible for
every realization of the uncertain parameters. The de�nitions of �close� and �almost� are subjective,
but quanti�ed by norms in the model.

A RO model is a model that has two sets of decision variables: design variables and control vari-
ables. Design variables are decision variables whose optimal values do not depend on the realization
of the uncertain parameters. Design variables cannot be adjusted, once a realization of the uncertain
parameters is observed. Control variables are decision variables that can be adjusted once a realiza-
tion of the uncertain parameters is observed. Let the set x (we denote the set with a small letter,
because the set denotes a vector of variables, while capital letters denote matrices of parameters)
denote the set of design variables and the set y denote the set of control variables. The deterministic
linear optimization model then has the following form (Mulvey et al., 1995):

min cTx+ dT y

s.t. Ax = b

Bx+ Cy = e

x, y ≥ 0 (1)

In (1) the second line denotes the constraints in which only design variables are included and the
third line denotes the constraints in which the control variables are included together with the other
design variables. In this model there is uncertainty in the coe�cients d, B, C and e. Mulvey et al.
(1995) introduce the set Ω, which denotes the set of scenarios of realizations. Every scenario s (with
s ∈ Ω) has an associated set {ds, Bs, Cs, es} of realizations of the uncertain parameters and a vector
ys of associated control variables. The authors also de�ne a vector of penalty variables zs and the
probability ps that scenario s occurs. The vector of penalty variables measures infeasibilities in the
scenario, such that these can be penalized in the objective function. The resulting RO model is then:

min σ(x, y1, ..., ys) + ωρ(z1, ..., zs)

s.t. Ax = b

Bsx+ Csys + zs = es ∀s ∈ Ω

x ≥ 0, ys ≥ 0 ∀s ∈ Ω (2)

The objective function minimizes the sum of the functions σ(.), which is a function of the original
variables, and ρ(.), which is a function of the penalty variables. The objective function ξ = cTx+dT y
of (1) is now a random variable which has a probability ps of taking value ξs = cTx + dTs ys. This
implies that there is no single objective function, but there are multiple objective functions that can
be used, denoted by the function σ(.). If σ(.) =

∑
s∈Ω psξs holds then the expected value of random

variable ξs is minimized. If σ(.) = maxs∈Ω psξs holds then the maximum value of psξs is minimized,
also known as a worst-case analysis. The advantage of RO over stochastic linear programming is
that in stochastic linear programming only the expected value of ξs is minimized, where in RO every
function of the random variable ξs can be minimized, depending on the choice of σ(.). In high risk
situations Mulvey et al. (1995) propose a function that minimizes the expected value of ξs plus a
constant (λ) multiplied with the variance, so both the risk that a decision maker is willing to take
and the distribution of ξs can be taken into account. The σ(x, y1, ..., ys) part of the objective is then
denoted as:

σ(x, y1, ..., ys) =
∑
s∈Ω

psξs + λ
∑
s∈Ω

ps(ξs −
∑
s′∈Ω

ps′ξs′)
2 (3)
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The parameter λ in (3) is used to make a trade-o� between minimizing the expected value and the
variance. The function ρ(.) in (2) is called the feasibility penalty function, which penalizes violations
by the control variables in the second line of constraints in (2). The speci�c choice of the penalty
function is problem dependent. A commonly used penalty function when only positive violations
of the constraints are relevant is: ρ(z1, ..., zs) =

∑
s∈Ω psmax{0, zs}. The parameter ω in (2) is a

weight factor that is used to make a trade-o� between solution robustness (function σ(.)) and model
robustness (function ρ(.)).

3.3.2 Robust Optimization applications in the oil and gas industry

In literature some applications of RO in upstream and/or midstream oil operations exist. Wang &
Rong (2010) propose a RO model for the Crude Oil Operations Scheduling Problem (see Section 3.1.1)
to deal with uncertainty in tanker arrival times and �uctuating oil demand. Uncertain demands are
represented by chance-constrained programming and tanker arrival delay is represented by a scenario
approach as in (2). They propose an σ(.) function similar to (3), except that the variance term is
replaced by

∑
s∈Ω ps|ξs−

∑
s′∈Ω ps′ξs′ | in order to have a linear model. Infeasibilities in violating the

minimum and maximum storage capacity of a storage tank are penalized in the objective function.
Li et al. (2005) also propose a RO model for dealing with uncertainty in demand and tanker arrivals
in the Crude Oil Operations Scheduling Problem in which they do not penalize infeasibilities in the
objective function, but penalize schedule changes. The σ(.) function maximizes the expected pro�t
over all scenarios. Li et al. (2012) propose a RO framework for dealing with demand uncertainty in
the Crude Oil Operations Scheduling Problem, which contains solution methods for di�erent kinds of
uncertainty in demand. The resulting MINLP maximizes pro�t, which is the gross pro�t per scenario
minus the safety stock penalties per scenario. In Section 5.2 we apply RO in order to come to a model
for the O3 that yields solutions that are robust to disturbances.

3.4 Conclusion

This chapter presented a literature review to see which optimization models for pipeline �ow schedul-
ing are useful for OilCO. We found two major topics on this subject: the Crude Oil Operations
Scheduling Problem and the Multi-product Pipeline Scheduling Problem. We gave an extensive
overview about existing models for these problems and the di�erences in approaches of solving them.
In modelling pipeline �ow scheduling models, the manner in which time is represented is essential as
it determines the model formulation and performance. For both the Crude Oil Operations Schedul-
ing Problem (Jia & Ierapetritou, 2004) and the Multi-product Pipeline Scheduling Problem (Cafaro
& Cerdá, 2004), continuous time representations outperform discrete time presentations. An event
based time representation also outperforms the discrete time representation (Saharidis et al., 2009).
No research is done so far in comparing continuous time representations with event based time repre-
sentations. We therefore prefer a continuous time or an event based time representation for OilCO's
optimization model.

Most of the proposed models are Mixed Integer Programs, where some are linear and some are
non-linear. Non-linearity can occur when the mixing of di�erent types of crudes are considered and
when the e�ciency of pumps is taken into account. We will model OilCO's network as a network of
nodes which are connected by pipelines and where every node corresponds to one of OilCO's assets.
We found in literature examples of how the di�erent assets of OilCO can be modelled. We also found
examples of how to model the di�erent cost components we need to minimize. Aspects of other
models can be used for a mathematical model for the O3, even though the problems considered in
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literature di�er a lot from OilCO's optimization problem. In Chapter 4 we use these aspects in our
model formulation.

This chapter also gave an overview of RO techniques and applications in upstream and/or mid-
stream oil operations. Here we saw how a optimization model can be extended such that it yields
solutions that are robust to disturbances. Furthermore, we found applications of RO in upstream
and/or midstream oil operations (Wang & Rong, 2010; Li et al., 2005, 2012) that can be useful for
the O3. Section 5.2 uses this knowledge to extend our optimization model such that it is able to deal
with disturbances.
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4 Model formulation

In this chapter we formulate a model for the optimization module of the O3 based on the good insight
in OilCO's processes and the overview of relevant models from literature. The model will be basis for
the optimization module of the O3. First, in Section 4.1 we choose the time representation we use
in the model, since this decision in�uences the basics of the model. In Section 4.2, we make choices
on where to allow simpli�cations by making assumptions, while Section 4.3 describes the basics of
how we model OilCO's network. In Section 4.4, we formulate constraints for our model, Section
4.5 clari�es the objective function of our model, Section 4.6 explains the uncertainties in the model
and which alternatives are possible, and Section 4.7 clari�es a possible simpli�cation of the model.
Finally, Section 4.8 summarizes this chapter.

4.1 Time representation

In Chapter 3 we found that the manner in which time is represented in an optimization model for
pipeline �ow scheduling determines the basics of the model and has impact on its performance. In
this Chapter we discussed discrete time representations, continuous time representations, and event
based time representations. Recall that a discrete time formulation divides the scheduling horizon in
discrete time periods of equal length, a continuous time formulation models the start and end times
of the events that have to be scheduled as continuous variables, and an event based representation
divides the scheduling horizon into time periods of unequal length based on the start and end times of
external events. These events are prede�ned external events that change important model parameters,
e.g. tanker arrivals. The model variables are assumed to be constant during periods in which no
such event occurs.

In case of OilCO, it is impossible to de�ne events that have to be scheduled, which is necessary
for a continuous time representation, since its reservoirs, separation facilities, and pipelines oper-
ate constantly. Furthermore, the linear models with continuous time representations assume the
throughput rate to be constant, which is not the case for OilCO's problem, since the throughput
rate is one of the decision variables of the model. The throughput rate can be variable by making
the model non-linear, since both the throughput rate during an event and the duration of the event
would be variable. However, since it takes more time to solve non-linear models, a continuous time
representation is not an appropriate choice for our model, which leaves us with an event based time
representation or a discrete time representation.

Both of these time representations divide the scheduling horizon in discrete time periods and model
variables are evaluated at the end of each time period. An event based time representation can have
the same accuracy as a discrete time representation, while needing less time periods (Saharidis et al.,
2009). The accuracy of a discrete time representation depends on the chosen number of time periods,
where the accuracy of an event based time representation is always the same as it evaluates model
variables only at times (the start and end times of events) on which important model parameters
change. For OilCO's situation these times would mostly be the start and end of a day, since the
production (daily targets), re�nery demand, and BuyGas demand are on a daily basis. The terminal
demand, however, is not on a daily basis, because this demand depends on the start and end times
of the loading of the tankers. Since we have no information about how many tankers OilCO serves,
we make an assumption about this. If we assume that the maximum number of tankers that is
loaded per day is �ve, which is reasonable given the number of loading platforms (also �ve), an event
based time representation would result in at most twelve (start and end of day and the start and
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end of loading of �ve tankers) time periods per day. Furthermore, we may round every start and
end moment to the nearest hour, since the level of detail required in our schedule is not minutes, but
hours.

An event based time representation with twelve time periods per day corresponds with a discrete
time representation with time periods of two ( 24hours

12 periods ) hours. Thus when twelve time periods per
day are used, a discrete time representation has a base time period of two hours, while an event
based time representation has a base time period of one hour, which is more accurate. We therefore
choose to implement a event based time representation.

Figure 4 shows an example of the event based time representation in a tanker schedule of three
days at the two terminals, in which the loading times of the tankers di�er due to the di�erences in
tanker volume. In this �gure, the vertical blue lines indicate the start and end times of a time period.
The set T 2 denotes the set of time periods we use in this model and the set D denotes the set of
days. The parameter durt denotes the duration (in hours) of time period t and set Td (with Td ⊂ T )
is the set of time periods that are part of day d. Note, that a time period can be only part of one
day, since the start and end of a day are also moments that de�ne new time periods. In the example
of Figure 4 dur1 = 4, dur2 = 6, dur3 = 14, dur4 = 2, dur5 = 2, T1 = {1, 2, 3}, and {4, 5} ∈ T2.

Figure 4: Example of an event based time representation

In our model, volumes are expressed in barrels (bbl), as this is the volumetric unit that OilCO
uses for oil. Gas volumes are expressed in cubic feet (cf) to avoid the conversion of units in our
model. All rates (i.e. throughput rate) are expressed in bbl/h. In our model the most important
decision variables are the production rates of the reservoirs and the NAG-�eld, the separation rates
at the separation facilities, and the throughput rates of the pipelines. The production rate variable
PRr,t denotes the production rate of reservoir r in time period t in bbl/h, variable GASd denotes the
production rate of the NAG-�eld on day d in cf/h, the separation rate variable SRsf,t denotes the
separation rate of separation facility sf in time period t in bbl/h, and the throughput rate variable
THp,t speci�es the throughput rate of pipeline p in time period t in bbl/h. In our model we use
rates instead of volumes, since we use time periods of di�erent duration and changes in production,
separation or throughput are easier to notice if rates are compared. For some constraints (e.g. storage
tank levels), however, we require volumes. These volumes simply can be calculated by multiplying
the rate in a certain time period with the duration of that period.

2In our model capital letters denote sets and variables and small letters denote indices and parameters. The small
letter that denotes the index for elements of a set is the same letter as the capital letter that denotes the set. If we
require a second index for the same set, an apostrophe is added to the letter.
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4.2 Assumptions

The following assumptions have to be made for our optimization model for the O3:

A1 An oil pipeline remains completely full with incompressible oil products at any time, so the
only way to get a volume of oil out of a certain pipeline is to inject an equal volume of oil at
the origin. For convenience we also assume this for the pipelines in which the oil/gas mixture
is transported.

A2 Only one type of crude oil is considered, which means that di�erent qualities of crudes are not
taken into account.

A3 All storage tanks are treated as aggregated capacities. In reality there are multiple smaller
storage tanks at the tank locations, but we model this as a single storage tank with an overall
total capacity.

A4 Changeover times for changing the production rate at a reservoir are neglected, while we do
take changeover costs into account.

A5 Only one type of pump is used to realize throughput at each pipeline. OilCO transports oil
though pipelines that require more than one pump due to their length. We assume that all
these pumps are of the same type.

A6 Transportation times of gas to BuyGas are neglected.

Assumption 1 is made for most oil pipeline scheduling problems, which means that an increase in
throughput at the origin of a pipeline directly results in an increase in throughput at the destination
of the pipeline. In reality there is some delay, but this assumption can be made, since we look at
time periods of multiple hours. OilCO suggests Assumption 2, because they have other systems for
monitoring crude qualities and this is therefore out of the scope of the O3. Assumption 3 simpli�es
the model signi�cantly, while the same storage volume is available. We make Assumption 4, since
taking changeover times into account would make the model more di�cult, while changeover times
are relatively short compared to the planning horizon and occur only rarely. Moreover, we do not
know what the production rate during a changeover is, where it is possible that the production
rate increases/decreases gradually or instantly or that the production rate is 0 during changeovers.
Assumption 5 makes it easier to calculate the energy costs for a pipeline, since every type of pump at
a pipeline requires a separate calculation of the energy costs. This is avoided by assuming all pumps
are of the same type. We make Assumption 6, because BuyGas operates di�erent facilities which
are all close to separation facilities. We therefore assume that the gas is delivered to BuyGas at the
moment it is separated from the oil or extracted from the oil extracted from the NAG-�eld. These
assumptions make that we can translate OilCO's processes into an easier model.

4.3 Network modelling

Figure 5 shows a functional diagram of the total network we want to model, where all gas is directly
transported from the separation facilities to BuyGas. It is uncertain if the network exactly looks
like Figure 5. Therefore, we model the network as generic as possible (see also 2.3.2). Oil pipeline
networks can be modelled as a set of nodes which are connected by pipelines (Stebel et al., 2012;
Cafaro & Cerdá, 2012). The basics of OilCO's network can be modelled in a similar manner, since
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we assume that all oil is of the same quality and the �ow into a pipeline is equal to the �ow out of
the pipeline (so transportation times can be neglected). In every node the �ow has to be conserved
(�ow in = �ow out), unless the node is a source (which produces �ow) or or a sink (which consumes
�ow).

In our network, nodes are represented by OilCO's assets (set A) and arcs are represented by
pipelines (set P ). The set A is a collection of all assets of OilCO, which are all units mentioned in
Section 2 excluding pipelines. Not all assets are actually owned by OilCO, since the re�neries and
BuyGas are customers. The set of assets consists of the set of reservoirs R, the set of separation
facilities SF , the set of storage tanks ST , the set of re�neries RF , the set of terminals TE, and the
set of pipeline nodes N . In this network every pipeline connects two assets to each other, which is
modelled using a set C which denotes all pipeline connections. Pipeline connections are represented
by a combination of an asset (a), a pipeline (p), and another asset (a′), such that pipeline p transports
�ow from asset a to asset a′. We require pipeline p in this set to distinguish parallel pipelines between
asset a and asset a′. The sources of this network that produce �ow, are the reservoirs and the NAG-
�eld. In the network the only place where the produced �ow is consumed is at the customers, these
are the sinks. In a network all intermediate nodes have to conserve �ow. In OilCO's network this
principle holds for the pipeline nodes N (Node 1 and Node 2 in Figure 5), because these are junctions
of pipelines where �ows split up and/or merge, which means that the incoming �ow is equal to the
outgoing �ow.

The other assets are modelled di�erently as �ow is either stored or converted at those assets. At
the separation facilities SF an extra �ow is generated, as a gas �ow is extracted from the oil �ow.
The oil �ow is conserved in a separation facility, which means that the incoming oil �ow rate must
also be equal to the the outgoing oil �ow rate. The separation rate is also equal to the incoming
oil �ow rate into the separation facility, as that is the rate at which the oil is processed. For �ow
conservation we do not consider the gas �ow rate of the incoming mixture, as gas is compressed in
the pipeline. The incoming oil �ow rate also has to be equal to the the outgoing oil �ow rate. The
outgoing gas �ow rate is calculated by multiplying the oil �ow rate with the GOR. At the storage
tank the incoming �ow can also be greater (stock level increases) or lower (stock level decreases) than
the outgoing �ow. Section 4.4 explains how this network model is translated into constraints for the
optimization model.

4.4 Constraints

We structure our explanation of the optimization model according to the di�erent assets of OilCO
and formulate constraints for each asset. We model all assets of a certain type in the same way, since
we want a model that is as generic as possible to be able to model network layouts that are di�erent
from OilCO's, as long as the same types of assets are used. Section 4.4.1 covers the reservoirs,
Section 4.4.2 covers the processing facilities, Section 4.4.3 covers the pipelines, Section 4.4.4 covers
the storage tanks, and Section 4.4.5 covers the demand locations.

4.4.1 Reservoir constraints

Recall that the set R denotes the reservoirs, which are the sources of the network �ow model. Since
the reservoirs have no storage tanks, all oil that is produced has to be transported. Equation (4)
assures this by setting the sum of the throughput rates (THp,t) of the outgoing pipelines equal to
the production rate (PRr,t). The summation domain (p, a)|(r, p, a) ∈ C ensures that the production
of reservoir r is pumped into the pipelines p that connect asset a to reservoir r.
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Figure 5: Functional diagram of OilCO's network

PRr,t =
∑

(p,a)|(r,p,a)∈C

THp,t ∀r ∈ R; t ∈ T (4)

rminr availr,t ≤PRr,t ≤ rmaxr availr,t ∀r ∈ R; t ∈ T (5)

The minimum and maximum production rate are taken into account in (5). Here, rminr is the
minimum production rate and rmaxr is the maximum production rate of reservoir r, which are both
input parameters. Parameter availr,t is the availability (in %) of reservoir r during time period t.
The maximum possible production rate in time period t is the maximum production rate of reservoir
r multiplied with the availability of the reservoir in that time period. To ensure that the model
remains feasible when the availability is low, the minimum production of reservoir r (rminr) is also
multiplied with the availability.

4.4.2 Separation facility constraints

Recall that the set SF denotes the separation facilities. In the separation facilities gas is extracted
from the oil. The separation rate (SRsf,t) is the rate at which gas is separated from the oil, and has
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to be equal to the sum of the incoming oil �ow rates, as that is the rate of the oil �ow into the facility.
Equation (6) sets the SRsf,t variable equal to the incoming oil �ow rate. The ratio between the oil
and the gas �ow depends on the parameter gorr, which is the GOR of reservoir r in cf/bbl. The gas
�ow rate (GFRsf,t) of separation facility sf in time period t is determined by multiplying the oil
�ow rate with the GOR, which we model in (7). The inequality (8) bounds the separation rate in
the same way as is done for the reservoirs in (5). Here the parameter avsf,t denotes the availability
(in %) of separation facility sf in time period t and srmaxsf denotes the maximum separation rate
of separation facility sf .

∑
(r,p)|(r,p,sf)∈C

THp,t = SRsf,t ∀sf ∈ SF ; t ∈ T (6)

∑
(r,p)|(r,p,sf)∈C

THp,t gorr = GFRsf,t ∀sf ∈ SF ; t ∈ T (7)

SRsf,t ≤ srmaxsf avsf,t ∀sf ∈ SF ; t ∈ T (8)

(1− oilloss)SRsf,t =
∑

(p,a)|(sf,p,a)∈C

THp,t ∀sf ∈ SF ; t ∈ T (9)

For the conservation of �ow the separated oil has to leave the separation facility via pipelines,
which we model in (9). We also account for the oil loss (oilloss) that occurs in the separation facilities
in this constraint, which is the fraction of oil that is lost in the process. The transportation of gas
out of the separation facility is not explicitly modelled, because the BuyGas facilities are close to the
separation facilities.

4.4.3 Pipeline constraints

Recall that the set P denotes all pipelines and the setN denotes all pipeline nodes in the network. Our
model considers a maximum and a minimum �ow per pipeline, which are the maximum (pmaxp)
and minimum (pminp) throughput of pipeline p, respectively. Both the minimum and maximum
throughput are considered in (10). Here, the availability of pipeline p during time period t in %
(avap,t) is also considered using the same formulation as for the reservoirs and separation facilities.

pminp avap,t ≤ THp,t ≤ pmaxp avap,t ∀p ∈ P ; t ∈ T (10)∑
(a,p)|(a,p,n)∈C

THp,t =
∑

(p,a)|(n,p,a)∈C

THp,t ∀n ∈ N ; t ∈ T (11)

In a pipeline node the �ow is not converted or stored, but the �ows are only merged and/or split
up. Equation (11) is a �ow conservation constraint, meaning that the incoming �ow rate of oil has
to be equal to the outgoing �ow rate of oil.

4.4.4 Storage tank constraints

Recall that the set ST denotes all storage tanks. For storage tanks st the end inventory of time
period t is modelled as variable Ist,t. In Equation (12) the end inventory of a certain time period is
calculated by adding all incoming oil volumes to the end inventory of the previous period (Ist,t−1)
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and subtracting all outgoing oil volumes from it. Here Ist,0 is an input parameter that denotes the
inventory of storage tank st at the beginning of the planning horizon. The parameter durt is included
in the equation to calculate the volume pumped into the tank by multiplying the throughput during
time period t by the duration (durt) of the same period in hours, so the units of the variables THp,t

(bbl/h) and Is,t (bbl) are aligned.

Ist,t = Ist,t−1 +
∑

(a,p)|(a,p,st)∈C

THp,t durt −
∑

(p,a)|(st,p,a)∈C

THp,t durt ∀st ∈ ST ; t ∈ T (12)

mininvst ≤ Ist,t ≤ maxinvst ∀st ∈ ST ; t ∈ T (13)

Inequality (13) ensures that the inventory of a storage tank stays between its minimum (mininvst)
and maximum (maxinvst) volume.

4.4.5 Demand constraints

OilCO delivers to three sorts of customers: terminals, re�neries, and BuyGas. All these customers
have a demand that has to be ful�lled and OilCO receives a �ne per bbl of demand that is not
met. Recall that the set RF denotes the re�neries and set TE denotes the terminals. Parameter
tdemte,t speci�es the terminal demand, which is the demanded volume at terminal te in time period
t. Parameter rdemrf,t speci�es the re�nery demand, which is the demanded volume of re�nery rf in
time period t. The gas demand of BuyGas is a daily demanded volume and is denoted by gdemd. In
(14) the volume of oil delivered to a re�nery in a time period has to be equal to the demanded volume
in that time period. Variable SHRrf,t is added to measure the total shortage volume at re�nery rf
at the end of time period t. It is impossible to deliver more than the demand, because the re�nery
can not handle the extra oil. The volume of oil delivered in a time period is again calculated by
multiplying the throughput of that time period with the duration of that time period. The shortage
is added to the demand of the next time period, since variable SHTrt,t measures the total shortage
instead of the shortage in time period t. We need to penalize this total shortage, because all demand
has to be ful�lled as fast as possible, since the customer is waiting for the oil.

∑
(a,p,tp)|(a,p,rf)∈C

THp,t durt = rdemrf,t − SHRrf,t + SHRrf,t−1 ∀rf ∈ RF ; t ∈ T (14)

∑
(a,p)|(a,p,te)∈C

THp,t durt = tdemte,t − SHTte,t + SHTte,t−1 ∀te ∈ TE; t ∈ T (15)

∑
(sf,t)|t∈Td

GFRsf,t durt +GASd ≥ gdemd ∀d ∈ D (16)

Equation (15) follows the same reasoning for the terminals. Here, the SHTte,t variable denotes
the total shortage volume at terminal te at the end time period t. It it is also impossible to deliver
more than the demand at the terminals, since the oil is directly pumped into tankers without spare
capacity. Both SHRrf,0 and SHTte,0 denote the total shortages at the re�neries and terminals at the
beginning of the planning horizon. The durt parameter is again included to align the units bbl and
bbl/h of the di�erent variables. The production volume at the NAG-�eld on day d in cf is denoted
by the unrestricted variable GASd. The NAG production closes the gap between the associated gas
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production (GFRsf,t) and the BuyGas demand, which is ensured by (16). Recall that t ∈ Td when
time period t is part of day d, so the summation in (16) sums over all time periods t in day d. It is
possible to deliver more gas than demanded, since the surplus gas is �ared.

4.5 Objective function

Our model needs to minimize the sum of pumping costs, changeover costs, inventory costs, safety
stock penalties, penalties for non-satis�ed demand (also called shortage penalties), and production
target deviation penalties. In Chapter 3 we discussed examples of how these cost components can be
modelled, which we use to determine the objective function. We treat the di�erent cost factors one
by one.

At OilCO the pumping costs are determined by the energy costs for operating the pipeline. The
variable ENp,t denotes the energy costs for pipeline p during time period t in US Dollars (USD) per
hour, which is multiplied with the duration of time period t (durt) in order to get the total amount
of USD. Section 4.5.1 explains how the energy costs are calculated using the models of Rejowski &
Pinto (2008) and Abbasi & Garousi (2010).

Changeover costs occur when the production rate of a reservoir in time period di�ers from the
production rate in the previous time period, because this means that individual wells have to be
started up or shut down. We multiply the number of changeovers with a cost factor per changeover,
as is also done by Lee et al. (1996) and Reddy et al. (2004b). For this we introduce a binary variable
CHr,t which has to take value 1 if a changeover occurs between time period t and time period t−1 at
reservoir r and 0 otherwise. Furthermore, the parameter ccr denotes the cost in USD of a changeover.
We assume that the size of the changeover is not important for the changeover costs, because we do
not know for sure if a bigger changeover results in higher costs. Section 4.5.2 explains the calculation
of binary variable CHr,t.

In literature the inventory costs are calculated by multiplying the average inventory in a time
period by a cost factor (Lee et al., 1996; Cafaro & Cerdá, 2012). We apply this method by multiplying
the average inventory (AIst,t) of storage tank st in time period t by a cost parameter cinvst , which
denotes the cost per bbl per hour in storage at storage tank st, and the duration of the time period
durt. AIst,t is calculated by (17).

AIst,t =
Ist,t + Ist,t−1

2
∀st ∈ ST ; t ∈ T (17)

The safety stock penalties are the fourth term of the objective function. The penalties are
calculated by multiplying the safety stock penalty for having one bbl less than the safety stock
in storage (sspst) at storage tank st by the volume that the inventory level is below safety stock
(BSSst,t) at storage tank st in time period t. Section 4.5.4 clari�es how we calculate the BSSst,t

variable using the formulation of Reddy et al. (2004b).
The �fth and sixth cost components cover the penalties of non-ful�lled demand at the terminals

and re�neries. Variable SHRrf,t denotes the total shortage volume at re�nery rf at the end of time
period t and variable SHTte,t denotes the total shortage at terminal te at the end of time period t.
Both variables are multiplied with a cost factor. Cost factor cshtte is for shortages at terminal te
and cshrrf is for shortages at re�nery rf , which denote a penalty per barrel of non-ful�lled demand.

The last cost component covers the production target deviation costs, which are penalties for
OilCO when it does not produce accordingly to the production targets. The production targets are
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expressed in a volume per reservoir per day. Relvas et al. (2007) also penalize changes in the original
plan in the objective function, by multiplying the absolute deviation from the plan with a penalty
cost factor. We apply the same method to OilCO's problem. Here, the variable DEVr,d denotes
the absolute deviation from this target at reservoir r on day d. The amount is multiplied with cost
parameter cdevr which denotes the penalty cost per bbl of deviation at reservoir r. Section 4.5.3
explains how we calculate the DEVr,d variable. The overall objective function is as follows:

min
∑
p,t

durtENp,t +
∑
r,t

ccr CHr,t +
∑
st,t

cinvst durtAIst,t +
∑
st,t

sspstBSSst,t

+
∑
te,t

cshtte SHTte,t +
∑
rf,t

cshrrf SHRrf,t +
∑
r,d

cdevrDEVr,d (18)

4.5.1 Energy costs for operating pipelines

In Chapter 3 we have seen that the energy costs for operating pipelines can be calculated in di�erent
ways. Rejowski & Pinto (2003), Herrán et al. (2010), and MirHassani & Fani Jahromi (2011) consider
the energy costs to be linear with the pumped volume, where Neiro & Pinto (2004) consider the
energy costs to be linear with the throughput rate. Both approaches result in the same energy costs
formulation in our model, since we use prede�ned time intervals, so the volume transported in time
period t is equal to THp,t ∗ durt. Rejowski & Pinto (2008) and Abbasi & Garousi (2010) consider
the energy costs to be non-linear with the throughput rate. We also choose this non-linear approach,
because it is the most realistic approach for OilCO's situation. We want to model the pumping costs
as realistic as possible, since the pumping costs at OilCO are signi�cant as OilCO's network consists
of more than 1,500 kilometres of pipelines. There are, however, pipelines with a length of (almost) 0,
since these connect assets that are on the same location. For these pipelines the energy costs are not
relevant. The set EP ⊂ P denotes the pipelines for which the energy costs are relevant. We combine
the approaches of Rejowski & Pinto (2008) and Abbasi & Garousi (2010) to get a formulation of the
energy costs costs that is most in line with OilCO's situation. We, however, have no information on
the characteristics of the pumps that OilCO uses, so modelling the energy costs exactly is impossible.
Therefore, we model the behavior of the energy costs such that the model �nds the solution with
(almost) the lowest costs, although we do not know the exact value of the costs. We create an example
of a pump based on both cited articles to illustrate the relation between throughput rate and energy
costs. The e�ciency of a pump is an important factor in this realtion. The e�ciency of a pump
indicates how e�cient a pump operates at a certain production rate, which is indicated by a function
called the e�ciency curve. In the analysis we de�ne TH∗p as the peak e�ciency throughput, which
is the throughput rate at which maximum e�ciency is achieved, and set it equal to 100 kbbl/hour
in our example. Using the e�ciency curve (which is already a function of the throughput) we de�ne
an equation in which the energy costs are a function of the throughput, which we need to include
energy costs in our model. Appendix C covers the detailed analysis.

Figure 6 show the energy costs ENp,t as a function of the throughput rate THp,t, which is the
result of the analysis. The �gure shows that the energy costs behave di�erently at both sides of the
peak e�ciency throughput (the vertical dashed line). Therefore, we treat both parts separately in
order to �nd a formulation for the behavior of the energy costs.

Throughput > Peak e�ciency throughput
Figure 6 shows that the energy costs function is convex when the throughput is higher than the
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Figure 6: Energy costs of the example pump at di�erent throughput rates

peak e�ciency throughput, meaning that it is cheaper to spread increases above the peak e�ciency
point over multiple periods. For example, it is cheaper to have a throughput of 110 for �ve time
periods than have a throughput of 150 for one period and a throughput 100 in the other four, while
both cases result in the same volume of oil (550) that is transported.

To model the costs in case the throughput rate is larger than the peak e�ciency throughput we
introduce variable PTDp,t, which is bounded by (19) and (20). Variable PTDp,t denotes the positive
deviation from the peak e�ciency throughput at pipeline p in time period t in bbl/hour.

PTDp,t ≥ THp,t − TH∗p ∀p ∈ EP ; t ∈ T (19)

PTDp,t ≥ 0 ∀p ∈ EP ; t ∈ T (20)

As an example for expressing the costs of choosing a throughput rate above the peak e�ciency
throughput, we use the quadratic cost function SPTDp,t = (PTDp,t)

2, which is a simple convex
function. Adding this equation to our model, would change the model from linear to non-linear.
However, a non-linear model requires more time and di�erent methods to solve, so we want to keep
our model linear. Using an approximation here is acceptable, because we only want to model the
principle behavior of the energy costs instead of the exact cost, since the latter is impossible with
the current information. A commonly used method to approximate a non-linear objective function
is a piecewise linear approximation (Manthey, 2013), which we use, because it is easy to implement
and does not require extra integer variables. For this piecewise linear approximation a set L of line
segments is required next to the parameters brpp,t,l and sbrpp,t,l (with sbrpp,t,l = (brpp,t,l)

2), which
are the values of PTDp,t and SPTDt,p at the breakpoints (which are located at the start and end
of the line segments). Using the piecewise linear function the value of SPTDp,t is approximated by
a convex combination of two values at the breakpoints. (21) shows this approximation, in which the
variable λp,tp,l speci�es the weight of the breakpoint at the end of line segment l.
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∑
l

λp,t,l sbrpp,t,l = SPTDp,t ∀p ∈ EP ; t ∈ T (21)∑
l

λp,t,l brpp,t,l = PTDp,t ∀p ∈ EP ; t ∈ T (22)∑
l

λp,t,l = 1 ∀p ∈ EP ; t ∈ T (23)

The constraints (22) and (23) bound the variable λp,t,l. It can be shown that only two λp,t,l
variables are non-zero per pipeline and time period, since the function we approximate is convex.
If this would not be the case, we would require extra integer variables to force only two λp,tp,l to
be non-zero (Manthey, 2013). The energy costs for THp,t > TH∗p are calculated by multiplying
SPTDp,t with a cost factor (csqp).

Throughput ≤ Peak e�ciency throughput
The behavior of the energy costs is di�erent when the throughput is lower than the peak e�ciency

throughput. Based on Figure 6 assume that the function is linear when 1
5TH

∗
p ≤ THp,t ≤ TH∗p

(Figure 7 shows the linearization). The case in which the throughput is lower than 1
5TH

∗
p is not

relevant, since every pipeline has a minimum throughput that is higher than 1
5TH

∗
p . The linear part

of the cost function is of the form cap THp,t + cbp, where cap and cbp are the cost factors. cap is the
slope of the line and cbp is equal to the value of the linearization energy costs when THp,t = 0. In
this example cbpwould lie around 700.

Figure 7: Linearization of the energy costs

The total energy costs thus consist of a linear element and a non-linear element. The advantage
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of this split is that less breakpoints are required to approximate the non-linear function and that the
non-linear function is convex. (24) calculates the energy costs of pipeline p in time period t.

ENp,t = cap THp,t + cbp + csqp SPTDp,t ∀p ∈ EP ; t ∈ T (24)

Determining the values for the cost factors cap, cbp, and csqp is di�cult. One of the factors that
in�uences these cost factors is the length of pipeline p, as more pumps are required when the length
of the pipeline increases. It is, however, not necessary to know the values of the cost factors exactly,
as our main goal was to model the behavior of the energy costs.

4.5.2 Changeover costs at the reservoirs

Recall that the changeover costs are calculated by multiplying the number of changeovers by the �xed
costs per changeover, as is also done by Lee et al. (1996) and Reddy et al. (2004b). A changeover
occurs when the production rate at a reservoir is changed. The binary variable CHr,t has to be 1
when the production rate di�ers from the production rate in the previous time period, which can
be both a positive and a negative di�erence. Inequalities (25)-(26) model this relation. Here, PRr,0

is an input parameter that denotes the current production rate of reservoir r. The parameter M is
an auxiliary parameter, which has the value of the maximum possible production deviation. This
maximum possible production deviation is the production capacity minus the minimum production
of reservoir r (rmaxr − rminr).

(PRr,t − PRr,t−1) ≤ CHr,tM ∀r ∈ R; t ∈ T (25)

(PRr,t−1 − PRr,t) ≤ CHr,tM ∀r ∈ R; t ∈ T (26)

4.5.3 Production target deviation penalties

In the objective function we calculated the production target deviation penalties by multiplying
the deviation from the production target (DEVr,d) by a penalty factor (ccr), as Relvas et al. (2007)
propose. The deviation is the absolute deviation from the daily production target. Parameter planr,d
denotes the production target at reservoir r on day d. The summation

∑
t∈Td

PRr,t durt calculates
the volume produced on day d by multiplying the production rate with the time period duration for
all time periods in day d. Equations (27) and (28) bound variable DEVr,d at the absolute deviation
of the daily production from the production target.

DEVr,d ≥ planr,d −
∑
t∈Td

PRr,t durt ∀r ∈ R; d ∈ D (27)

DEVr,d ≥
∑
t∈Td

PRr,t durt − planr,d ∀r ∈ R; d ∈ D (28)

4.5.4 Safety stock penalties

To calculate the variable BSSst,t, which denotes the volume that the inventory level of storage tank
st is below safety stock at the end of time period t, we use the formulation of Reddy et al. (2004b).
The safety stock of storage tank st is denoted by parameter safinvst. Equations (29) and (30) bound
variable BSSst,t.
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BSSst,t ≥ safinvst − Ist,t ∀st ∈ ST ; t ∈ T (29)

BSSst,t ≥ 0 ∀st ∈ ST ; t ∈ T (30)

4.6 Cost modelling alternatives

We made assumptions about the cost components in the model from the previous sections, because
we do not have contact with OilCO during the project. Moreover, we made assumptions about how
we calculate the changeover costs and energy costs, as we already addressed in Section 2.3.1. In this
section we want to point out these uncertainties in modelling the costs and discuss model changes
that must be done when the cost components turn out di�erently than assumed. Section 4.6.1 covers
the energy costs and Section 4.6.2 covers the changeover costs.

4.6.1 Uncertainty in modelling energy costs

Section 4.5.1 explains our energy costs approach. We created an example of a pump to examine the
relation between the throughput rate of a pipeline and the associated energy costs. According to
this relation we formulated the energy costs using both a linearization and an approximation of a
convex function by a piecewise linear approximation. We modelled the non-linear behavior of the
energy costs, such that the optimal solution is yielded, although we do not know the exact value of
the costs. This results from the lack of information of OilCO's operational costs. If we get data from
OilCO and our assumption about the behavior is right, the cost parameters cap, cbp, and csqp have
to be estimated using the data.

If our assumption is not right, more work has to be done. Then �rst the relation between
throughput rate and energy costs has to be derived from the data, of which the only thing we know
for sure is is that it is non-linear. The de�nition of parameter sbrpp,t has to be changed according to
this non-linear relation. Then the non-linear relation can again be approximated by constraints (21),
(22), and (23) in the same manner as is done now. If the non-linear function, however, is not convex
some variables and constraints have to be added to the model (Manthey, 2013). These variables and
constraints have to make sure that at most two λp,t,l variables are non-zero per pipeline and time
period, so the approximated function can be expressed as a convex combination of two breakpoints.
This is done by adding auxiliary binary variable Yp,t,l and constraints (31) and (32) (with Yp,t,0 = 0).
In case of a convex function automatically exactly two λp,t,l variables are non-zero.

λp,t,l ≤ Yp,t,l−1 + Yp,t,l ∀p ∈ P ; t ∈ T ; l ∈ L (31)

∑
l

Yp,t,l = 1 ∀p ∈ P ; t ∈ T (32)

This formulation, however, has a large impact on the model performance, since it adds a large
number of integer variables (one for every combination of pipeline p, time period t, and line segment
l) to the model. In Section 7 we perform a sensitivity analysis on the current behavior of the energy
costs to examine how the model reacts on di�erent values for the peak e�ciency throughput.
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In both cases it is possible to relax Assumption 6 from Section 4.2, if this assumption turns out
to be unrealistic. The pipelines in the model should then be separated into segments that belong
to a single pump. All variables and constraints would then hold for each segment instead of each
pipeline. This would make the model larger with every segment that is added, because every extra
segment means extra variables and constraints (including the piecewise linear approximation).

4.6.2 Uncertainty in modelling changeover costs

Section 4.5.2 explains the changeover costs. We assumed that the changeover costs are constant for
every changeover at a reservoir meaning that the costs of a changeover are independent of the size
of the changeover (which is the change in production rate). If the changeover costs, however, do
depend on the size of the changeover, the model needs to be changed. It then could also be the
case that the costs for increasing production are di�erent from the costs for decreasing production.
These relations can be modelled using linear equations if there exists a linear relation between the
change in production rate and the changeover costs. We would require extra variables PCHr,t and
NCHr,t which are respectively the positive and negative production changeover rates of reservoir r
in time period t. These variables would denote the positive and negative di�erence in production rate
between time period t and time period t− 1, which means that PCHr,t = max{PRr,t − PRr,t−1, 0}
and NCHr,t = max{PRr,t−1 − PRr,t, 0}. This de�nition can be modelled in constraints similar to
(29) and (30), since BSSst,t = max{safinvst−Ist,t, 0}. Both PCHr,t andNCHr,t are then multiplied
with a cost factor in the objective function. With this de�nition variable CHr,t and constraints (25)
and (26) would become obsolete en can be omitted, meaning that our model would change from a
Mixed Integer Linear Program (MILP) to a Linear Program (LP), since CHr,t is the only integer
variable in it.

If there is a non-linear relation between the change in production rate and changeover costs, then
the relation can be modelled using variables PCHr,t and NCHr,t in the same way as is done for the
relation between energy costs and variable PTDp,t in constraints (21), (22), and (23). There is a
non-linear relation when, for example, increases in production have to be spread over all reservoirs
in order to obtain the lowest cost. Parameter sbrpp,t then needs to be changed accordingly to the
changeover costs as a function of change in production rate. This would increase the model size
signi�cantly, since a piecewise linear function is added for each combination of reservoir r and time
period t. If the changeover costs are a convex function of the change in production rate then no extra
variables are needed, otherwise extra integer variables are needed as in (31) and (32).

4.7 Model simpli�cations

In Section 2.2 it became clear that the model needs to be solved in a few minutes. We therefore
propose a few simpli�cations for the model, which can be solved if the original model takes too
much time to solve. In a MILP, which our model is, performance can be improved by reducing the
number of integer variables in the model. Our model only has integer variables to model changeovers.
Variable CHr,t takes value 1 if a changeover occurs between time period t and time period t − 1 at
reservoir r and 0 otherwise, meaning that there exists an integer variable for every combination of
r and t in the model. Our simpli�cation is based on reducing the number of integer variables by
excluding certain of those combinations from the model. We use the assumption that the costs are
independent of the size of the changeover, so the model will prefer one large changeover over multiple
smaller ones. The simpli�cations of this section, therefore, do not hold if our assumption is wrong
and one of the alternatives of Section 4.6.2 is implemented.
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First, we look at the reservoirs r for which all integer variables are de�ned. From the instance that
needs to be solved it can be deduced at which reservoirs takeovers will take place, if changeovers take
place at all. For example, if the costs of a changeover are equal at all reservoirs and an increase in
production rate is needed, the changeover will be realized at the reservoir that is the closest to Node
1 (all oil passes Node 1 on its way to the customer), so the energy costs for transporting the extra oil
are minimized. On the other hand a decrease in production rate will be realized at the reservoir that
is the farthest away from Node 1 to save the most energy costs. In most cases changeovers will only
occur at one reservoir, since the costs are per changeover. Therefore, a changeover will mostly take
place at a large reservoir so the increase or decrease can take place at one single reservoir. Based on
this reasoning, the number of reservoirs where changeovers are allowed could be limited to only one
or two, which reduces the number of changeovers by 80% or 90% and boosts model performance.

Second, we look at the time periods t. The start and end times of time periods are de�ned by the
arrival and departure times of tankers and the start and end of a day, which results in a maximum
of 12 time periods a day, so every few hours it is again evaluated if a changeover is needed. By only
evaluating the decision of making a changeover at the start and end of a day the number of integer
variables can also be reduced signi�cantly. The timing of a changeover is then less precise in the
solution, which could result in slightly higher costs, but the model can be solved again by allowing
changeovers in the time periods that start and end in the days before and after the changeover(s) at
the same reservoir(s) in the less precise solution. Solving two much smaller models after each other
can still be faster than solving one larger model, while the solution is the same.

Finally we can also improve performance by looking at the size of parameterM in constraints (25)
and (26), which is multiplied with the integer variables. We have put the value ofM on the di�erence
between maximum and minimum production rate, as that is the biggest possible changeover size.
Based on the considered case M could be made smaller by increasing minimum production and/or
decreasing maximum production. For example, if we have an instance for which an increase in
production rate is expected we can set the minimum production equal to the current production,
meaning that the solution space becomes smaller, sinceM is smaller and therefore the model is solved
faster.

We test these simpli�cations and compare it with the model from Section 5.2.2 in Section 6.4 to
see if the simpli�ed model yields a solution faster.

4.8 Summary

In this chapter we have formulated our model for the optimization module of the O3, which can also
be found in Appendix D. First, we explained how we deal with time by introducing the event based
time representation. Next, we stated the assumptions we require to capture OilCO's processes into a
model and clari�ed how we model OilCO's network. Moreover, we gave an overview of all operational
constraints our model takes into account and the objective function and its cost components. Our
proposed model is a MILP, since we de�ned binary variables to model the changeover costs. We split
the energy costs into a linear part and a non-linear part of which the non-linear part is approximated
using a piecewise linear function. Our model minimizes the sum of energy costs, changeover costs,
inventory costs, shortage penalties, production target deviation costs, and safety stock penalties.
Furthermore, we indicated the uncertainty in the modelling of the energy costs and changeover costs
with possible alterations. Finally, we proposed some simpli�cation for our model, which reduces
the number of integer variables of our model and decreases the size of parameter M and therefore
improves performance. In Chapter 5 we extend our model such that it can deal with disturbances.

40



5 Dealing with disturbances

In Chapter 4 we formulated a model for the O3. This is a deterministic model as all input parameters
are considered as �xed values. In reality, however, uncertainty plays a role in OilCO's daily operations
as disturbances can occur during daily operations. In Section 2.2 the relevant disturbances were
mentioned: delayed tankers, opportunities on the spot market, maintenance of assets, and asset
breakdowns. In Section 2.2 we also mentioned that we use both reactive as predictive scheduling to
deal with these disturbances. The reactive scheduling is the what-if analysis as proposed by OilCO,
which we treat in Section 5.1. The predictive scheduling is the RO as discussed in Section 3.3. Section
5.2 explains how the deterministic model of Section 4 has to be adjusted in order to yield a solution
for OilCO that is more robust to disturbances. Section 5.3 summarizes this chapter.

5.1 What-if analysis

The planner at OilCO can use the what-if analysis to simulate di�erent scenarios and compare
the consequences of alternative actions when a disturbance occurs. The O3 does not have to take
the decision on how to react on a disturbance, but it has to give the planner a clear overview of
the di�erent alternatives such that the planner can take the decision. In this section we treat the
di�erent disturbances for the what-if analysis separately. For each disturbance we indicate how
the model is solved and what decisions can be taken using the analysis. Section 5.1.1 covers the
breakdown of assets, Section 5.1.2 covers the asset maintenance, and Section 5.1.3 covers the spot
market opportunities. In all these sections the base case is the current optimized schedule, which
was implemented before the disturbance occurred.

5.1.1 Asset breakdown

At OilCO asset breakdowns occur, meaning that an asset (partly) stops working and cannot be
used entirely for a certain period, while that was unplanned. A breakdown can happen at every
reservoir, separation facility, and pipeline. When an asset breakdown occurs the planner has to
decide if a reaction is required and if yes, which reaction is required. The main concern when an
asset breakdown occurs is if the demand can still be ful�lled in the coming periods. First an estimate
is required of how long it will take to solve the breakdown, which has to be expressed in a percentage
of the maximum rate in a time period. For example a pipeline breakdown can result in an availability
of 0% for the �rst three days after the breakdown, an availability of 25% on the fourth day and 60%
on the �fth day. The pipeline is then fully available again on the sixth day. This estimate is then
entered into the model using the availability parameters, for the example of pipeline p′ this would
be: avap′,t = 0 t ∈ {T1 ∪ T2 ∪ T3}, avap′,t = 25 t ∈ T4, and avap′,t = 60 t ∈ T5. If we solve the
model with those parameter values we get optimal reaction on the breakdown. However, in case the
broken down asset is a reservoir, this approach yields an unrealistic solution, because every change
in production rate during maintenance results in a changeover. The production rate would be lower
than is possible in the periods with 25% and 60% availability to avoid extra changeovers, which has to
be avoided by �xing the production rates to the maximum possible production rates and neglecting
the changeover costs for the reservoir in the �rst periods.

Furthermore, it is possible to solve the model with some �xed variables. If all variables that
concern parts of the network that are not in�uenced by the broken down asset (all variables concerning
assets upstream or downstream of the broken down asset are in�uenced) are �xed, then we can see
the consequences of attaining the current schedule when solving the model. The what-if analysis can
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then show the di�erence between doing nothing when the breakdown occurs (the base case with a
lower availability), or changing the schedule (re-optimizing with lower availability). The analysis can
therefore help the planner in deciding what to do when an asset breaks down.

5.1.2 Asset maintenance

Sometimes an asset requires maintenance, which means that an asset cannot be (entirely) used for a
certain time period. Reservoirs, separation facilities, and pipelines require maintenance periodically.
The O3 has to advice on what the consequences are of scheduling maintenance in a certain period,
using what-if analysis. First, an estimate is required of what the impact the maintenance has on
the availability of the asset in the same way as for the asset breakdowns. Subsequently, the model
can be solved for di�erent scenarios of the moment the maintenance is scheduled. The planner can
compare the di�erent scenarios to determine when the maintenance takes place. The planner can
also compare the scenarios with the base case to determine if it is a good idea at all to schedule
maintenance in the coming 30 days.

5.1.3 Spot market opportunities

OilCO sometimes gets an opportunity to sell oil on the spot market. The spot market allows OilCO
to sell its oil on the short term for higher prices than on the regular market, but this is only known
a few days or weeks in advance. The planner has to decide if OilCO takes the opportunity or not.
In the what-if analysis a tanker is added to the schedule for the moment and volume of the spot
market opportunity. The planner can solve the model with this adjusted terminal demand (parameter
tdemte,t) to see what the consequences (compared with the base case) of taking the opportunity are.
These consequences have to be compared with the revenue of the opportunity, since our model only
concerns cost. If there is �exibility in the timing of the spot market opportunity is delivered, the
model can be solved with di�erent loading moments to determine the best moment to schedule the
extra tanker (or to decide to decline the opportunity).

5.2 Robust Optimization applied to OilCO

In this section we apply Robust Optimization (RO) to OilCO's situation. In Section 3.3 we gave an
overview of RO techniques that are useful for OilCO. We extend the model of Chapter 4 to come to
a model that yields solutions that are less sensitive to tanker delay. In Section 5.2.1 we explain how
we model tanker delay and in Section 5.2.2 we propose a RO model for OilCO. The notation for the
RO is introduced in 5.2.2, but can also be found in Appendix B. The complete RO model can also
be found in Appendix E.

5.2.1 Tanker arrival uncertainty

For OilCO we want to generate a schedule that is robust to uncertainty in tanker arrival times. All
terminal demand at OilCO is ful�lled eventually, so there is no uncertainty in the total demand, but
there is uncertainty in when that demand exactly occurs. In the model this means that parameters
tdemte,t, which are the demand volume at terminal te during time period t, can change if there is a
tanker delay, but

∑
t tdemte,t is the same for every realization of the tanker schedule. We therefore

cannot model demand as independent random variables as is done in the model of Li et al. (2012).
We apply the scenario approach of Wang & Rong (2010) to model tanker arrival uncertainty, since
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tanker schedule scenarios at OilCO are easy to de�ne and total demand is not a�ected. A tanker
schedule scenario consists of realizations of all the tanker arrivals during the scheduling horizon.
OilCO agrees on a three day window with the customers' tankers, meaning that the tankers have
to arrive at the agreed terminal within that window. At least three days before the beginning of
the three day window, tankers have to con�rm an exact arrival day out of the three days from the
window. As we have no data from OilCO on tanker arrivals, we have to make some assumptions
here. We assume that tankers that have not con�rmed a day yet always arrive within their three day
window. To avoid being late, tankers always aim to arrive on the �rst day of the window. Note that,
in the deterministic model we also assume that all tankers arrive on the �rst day. Tankers that have
already con�rmed a day can have a delay of one day (although only with a small probability), even
if that means that they arrive outside their three day window.

For our event based time representation we want to keep the number of time periods to a minimum.
Therefore, we use a discrete probability distribution to limit the number of possible realizations per
tanker. Every tanker that has not con�rmed a date yet has a probability to either arrive on the �rst,
second, or on the third day of the three day window. A tanker can arrive on every whole hour in a
day. We assume that a tanker always arrives on the same hour in a day, so we require a maximum
of two extra events per tanker in our event based time representation. Every tanker that has not
con�rmed a date yet therefore has three possible arrival moments. Every tanker that has con�rmed
a date arrives either on the con�rmed date or one day later.

Based on our assumption of a maximum of �ve tankers per day in our 30 day horizon, we have a
maximum of (27∗5)3 + (3∗5)2 = 2, 460, 600 possible tanker arrival scenarios. In contrast to Wang &
Rong (2010), who consider only three scenarios in their model and evaluate all three, it is impossible
for us to evaluate all scenarios in our model. We therefore apply Sample Average Approximation
(Verweij et al., 2003), where a number of scenarios is generated by random sampling and the sample
average is minimized. The set Ω denotes all scenarios that can occur at OilCO during the scheduling
horizon and set S (with S ⊂ Ω) denotes the set of samples of tanker arrival scenarios that we consider
for our model.

5.2.2 Robust Model

To de�ne a RO model we have to identify which part of the model is a�ected by the uncertainty
(control variables) and which part is not (design variables). The uncertain parameter tdemte,t is
calculated from the tanker schedule by multiplying the number of tankers that is loaded at terminal
te during time period t by the loading rate (50,000 bbl/hour) and the duration of time period t in
hours. A variable that is directly in�uenced by parameter tdemte,t (as can be seen in (15)) is SHTte,t,
which is the total shortage volume at terminal te at the end of time period t. Based on this, also
the throughput rates of the pipelines from the terminals to the terminal storage tanks have to be
adapted. We call this subset the control pipelines CP (with CP ⊂ P ). Variable THp,t, which is the
throughput rate of control pipeline p (with p ∈ CP ) in time period t, is a control variable, because
the amount of oil pumped to the terminal depends on when the tanker exactly arrives. The inventory
levels of the storage tanks at the terminals are indirectly in�uenced, because these inventory levels
depend on when the oil is pumped from the tanks to the terminals. Again, we call this subset the
control storage tanks CST (with CST ⊂ ST ). The inventory levels of these tanks are therefore a
control variable. The throughput rates of all pipelines for which energy costs are relevant (subset
EP ) have to be design variables, as these are long pipelines for which it is impossible to adjust
the throughput rates on a short notice. Therefore, the variables concerning the terminal locations
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(terminal storage tanks, the pipelines at the terminals, and the terminals themselves) are control
variables and variables concerning all other parts of the network are design variables.

All control variables are scenario dependent. Parameter tdems
te,t denotes the demand in bbl

at terminal te during time period t in scenario s. Variables SHT s
te,t, TH

s
p,t (with p ∈ CP ), and

Isst,t (with st ∈ CST ) are de�ned in the same manner, which also holds for the objective function
variables that directly depend on the control variables: AIsst,t and BSS

s
st,t (both with st ∈ CST ).

The pipelines in CP are not in set EP (CP ∩ EP = ∅), because the pipelines connect assets on
the same location and energy costs are therefore not relevant. The random variable ξs, which is the
objective function (18) of scenario s, is written in the form ξs = cTx+ dTs ys:

ξs =
∑
p,t

durtENp,t +
∑
r,t

ccr CHr,t +
∑
rf,t

cshrrf SHRrf,t

+
∑
r,d

cdevrDEVr,d +
∑

st/∈CST,t

sspstBSSst,t +
∑

st/∈CST,t

cinvst durtAIst,t

+
∑

st∈CST,t

sspstBSS
s
st,t +

∑
st∈CST,t

cinvst durtAI
s
st,t +

∑
te,t

cshtte SHT
s
te,t (33)

For the RO model of OilCO we need to specify a σ(.) function, which depends on variable ξs,
and a penalty function ρ(.). We do not know how much risk OilCO's planners are willing to take,
but we take the σ(.) function that includes risk (see Equation (3)) as a basis, just in case OilCO's
planners are risk-averse. In this function parameter λ can be used to make a trade-o� between
minimizing the risk term or the expected value of the variables, where an increase in λ results in
an increased focus on risk term. In case OilCO's planners do not want to take risk into account, λ
can be set to 0. The expected value of random variable ξs (E[ξs] =

∑
s∈Ω psξs) can be written as

E[ξs] = cTx+
∑

s∈Ω psd
T
s ys. In the Sample Average Approximation the expected value is replaced by

the sample average (Verweij et al., 2003), meaning that ps is replaced by 1
|S| and thus every scenario

gets the same weight in the objective. We also replace the variance by the sample variance term, this
is also done by replacing ps by 1

|S| . Since there is no uncertainty in the design variables, taking all

terms that do not depend on s out of the variance term does not in�uence the variance of ξs. As the
quadratic term in the variance leads to a non-linear model, we apply the same method as (Wang &
Rong, 2010) by replacing the variance term in (3) by the absolute deviation from the expected value.
This leads to the following σ(.) function:
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σ(.) =
∑
s∈Ω

1

|S|
ξs + λ

∑
s∈Ω

1

|S|
|ξs −

∑
s′∈Ω

1

|S|
ξs′ |

= cTx+
∑
s∈Ω

1

|S|
dTs ys + λ

∑
s∈Ω

1

|S|
|dTs ys −

∑
s′∈Ω

1

|S|
dTs′ys′ |

=
∑
p,t

durtENp,t +
∑
r,t

ccr CHr,t +
∑
rf,t

cshrrf SHRrf,t

+
∑
r,d

cdevrDEVr,d +
∑

st/∈CST,t

sspstBSSst,t +
∑

st/∈CST,t

cinvst durtAIst,t

+
1

|S|
∑
s

(
∑
st,t

sspstBSS
s
st,t +

∑
st,t

cinvst durtAI
s
st,t +

∑
te,t

cshtte SHT
s
te,t)

+ λ
1

|S|
∑
s

|
∑

st∈CST,t

sspstBSS
s
st,t +

∑
st∈CST,t

cinvst durtAI
s
st,t +

∑
te,t

cshtte SHT
s
te,t

−
∑
s′

1

|S|
(

∑
st∈CST,t

sspstBSS
s′

st,t +
∑

st∈CST,t

cinvst durtAI
s′

st,t +
∑
te,t

cshtte SHT
s′

te,t)| (34)

In (34) the third, fourth and �fth line denote the sample average of ξs, of which the third and
fourth line denote the value of the design variables and the �fth line denotes the sample average of
the control variables. If we want to do a worst case analysis then the

∑
s on the �fth line only has

to be replaced by maxs. The last two lines denote the risk term.
We now take a look at the penalty function ρ(.). In the RO model of Wang & Rong (2010)

infeasibilities in violating the minimum and maximum storage capacity are penalized in the objective
function. For OilCO only infeasibilities in violating the maximum storage capacity are relevant, as
no realization of tanker delay can result in a violated minimum storage capacity. A delayed tanker
can cause an infeasibility in maximum storage capacity, because a tanker delay causes a delay in
the discharge of oil from the terminal tanks, while this tank keeps receiving oil. In (2) penalties are
measured by variable zs,where we de�ne variable Z

s
st,t as the violation in bbl at storage tank st at

the end of time period t in scenario s, with Zs
st,t ≥ 0. In order to measure the violation, we extend

(13) from Section 4 as follows:

mininvst ≤ Isst,t ≤ maxinvst + Zs
st,t ∀st ∈ CST ; t ∈ T ; s ∈ S (35)

For all st /∈ CST , (13) still holds. Since Zs
st,t can only take positive values, we only have to

consider positive violations of the constraints. A commonly used penalty function for that situation
is
∑

s∈Ω ps Z
s
st,t (Mulvey et al., 1995), which we also use. This leads to the following penalty function

for OilCO:

ρ(.) =
1

|S|
∑
s

(
∑

st∈CST,t

penst Z
s
st,t) (36)

Where penst is the penalty in USD per bbl for violating the maximum inventory of storage tank
st, which is similar to the formulation of Wang & Rong (2010).
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The objective function of the RO model consists of the sum of (34) and (36), so the overall
objective function is:

min
∑
p,t

durtENp,t +
∑
r,t

ccr CHr,t +
∑
rf,t

cshrrf SHRrf,t

+
∑
r,d

cdevrDEVr,d +
∑

st/∈CST,t

sspstBSSst,t +
∑

st/∈CST,t

cinvst durtAIst,t

+ CSA+ λ
1

|S|
∑
s

|
∑

st∈CST,t

sspstBSS
s
st,t +

∑
st∈CST,t

cinvst durtAI
s
st,t

+
∑
te,t

cshtte SHT
s
te,t − CSA|+ ω

1

|S|
∑
s

(
∑

st∈CST,t

penst Z
s
st,t) (37)

where CSA = 1
|S|

∑
s(

∑
st∈CST,t

sspstBSS
s
st,t+

∑
st∈CST,t

cinvst durtAI
s
st,t+

∑
te,t

cshtte SHT
s
te,t), which

denotes sample average of the control variables. The parameter ω can be used by the planner to
make trade-o�s, just as the parameter λ. The parameter ω can be used to make a trade-o� between
model robustness and minimizing costs. A higher value for ω results in an increased focus on model
robustness, as violations of the maximum storage capacity are penalized more. In Section 6 we test
this model for di�erent values of λ and ω.

5.3 Summary

In this chapter we clari�ed how to use the deterministic model of Chapter 4 to deal with disturbances
as maintenance, asset breakdowns, spot market opportunities, and tanker delay. First, we explained
how we can use our deterministic model in a what-if analysis (Section 5.1) for dealing with mainte-
nance, asset breakdowns, and spot market opportunities. Every disturbance has its own approach
here. For dealing with tanker delay we applied RO to our model (Section 5.2). We applied RO by di-
viding the variables in the deterministic model into design and control variables and using a scenario
approach to model tanker delay. A scenario consists of a realization of delay for every tanker within
the scheduling horizon. As the number of possible scenarios is large, it is impossible to evaluate all
possible scenarios. Therefore, we use a Sample Average Approximation. We chose to incorporate a
risk term in the objective function and to penalize infeasibilities in the storage tank capacity, which
leads to a model where we had to rede�ne one set of constraints (35). The new objective function is
shown in (37).

In Chapter 6 we compare our RO model with the deterministic model of Chapter 4 for di�erent
values of λ and ω. Finally we check if the simpli�cations from Section ?? yields solutions in less
computational time.
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6 Numerical results

In this chapter we perform numerical experiments to examine the performance of our models proposed
in Chapters 4 and 5. In this chapter we perform three di�erent experiments to test these models.
First we describe the values of the di�erent parameters we use in the model for the experiments
(Section 6.1). In the �rst experiment we solve the deterministic model for di�erent tanker arrival
cases and compare the solutions with each other (Section 6.2). Next, we test the robust model in
terms of solution value, required CPU time and robustness. We test the robust model for di�erent
values of λ and ω (Section 6.3) and compare it with the deterministic model. Finally, we test the
simpli�cations from Section 4.7 to see if it indeed yields the same solutions and solves faster (Section
6.4). We perform all experiments on a computer with 2.60 GHz processor and 8.00 GB RAM using
AIMMS 3.13.6.213 with solver CPLEX 12.6. Section 6.5 concludes this chapter.

6.1 Parameter input

In this section we determine the parameter data that we use in the experiments. In Section 2.3.2 we
indicated that there is uncertainty about parameter values and the values of the parameters given in
this section are therefore not certain. We make educated guesses for these values based on the limited
information supplied by OilCO, the experience within OCG, and internet research. As most of the
values in this chapter are guessed, we perform a sensitivity analysis in Chapter 7 on the parameters
that have a large in�uence on the model. In this section we explain the parameter input by the
di�erent parts of the model: the network input (Section 6.1.1), demand input (Section 6.1.2), and
cost factor input (Section 6.1.3).

6.1.1 Network input

The production volumes in the production plan are constant for every day during the planning
horizon. The production volumes are oil volumes, which are equal to the volumes of Table 1. The
gas volume is calculated using the Gas Oil Ratio (GOR) of the speci�c reservoir. The GOR di�ers
per reservoir and ranges from 200 to 900, as these are normal values for oil that is extracted from
reservoirs. The maximum production per reservoir is set on 1.2 times the production plan value and
the minimum production per reservoir on 0.4 times the production plan value. The current production
rate is equal to the rate that matches the production target of the �rst day. All reservoirs, separation
facilities, and pipelines have a availability of 100%. Table 2 shows the reservoir input data.

The maximum separation rate of a separation facility is calculated by adding the maximum
production rates of the reservoirs that are connected to that separation facility. The oil loss is 0.03
in all separation facilities. Most data on pipelines including the information required for set C (the
set that indicates the pipeline connections between assets) can be found in Appendix A. Here, the
pipelines of which the capacity is unknown are unconstrained and the minimum throughput is 20% of
the pipeline capacity. The terminal storage tanks have a maximum inventory of 3,000,000 bbl, while
the other storage tanks have a maximum inventory level of 1,500,000 bbl. The maximum inventory
level parameter is examined in the sensitivity analysis of Chapter 7. The minimum inventory level
of all storage tanks is 0 bbl, although it is higher in practice, to have round numbers for both the
maximum inventory and the di�erence between maximum and minimum inventory. The safety stock
levels and current inventory levels are 1

6 and 1
3 of the maximum inventory levels.
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Reservoir Regular
produc-
tion

(kbbl/day)

Max
produc-
tion

(kbbl/day)

Min
produc-
tion

(kbbl/day)

GOR
(cf/bbl)

Reservoir0 800 960 320 250
Reservoir1 152 182.4 60.8 350
Reservoir2 108 129.6 43.2 600
Reservoir3 60 72 24 400
Reservoir4 713 855.6 285.2 500
Reservoir5 38 45.6 15.2 700
Reservoir6 66 79.2 26.4 300
Reservoir7 84 100.8 33.6 650
Reservoir8 55 66 22 800
Reservoir9 465 558 186 450

Table 2: Reservoir input data

6.1.2 Demand input

The oil demand of both re�neries is a constant 107,385 bbl per day, which leaves 2,250,000 bbl of
the regular oil production for the terminals. The demand is spread over both terminals based on
the number of loading platforms. Terminal1 has three loading platforms, whereas Terminal2 has
two, which results in an average demand per day of 1,350,000 bbl for Terminal1 and 900,000 bbl
for Terminal2. For the terminals this demand is not constant per day, because demand depends on
when the tankers arrive. We consider two di�erent demand cases in our model, which are di�erent
tanker scenarios for a 31 day period, while the average demand is the same. The �rst case is based
on a tanker arrival schedule what we think is realistic for OilCO when taking tanker sizes3, number
of arrival platforms at the terminals, and production volumes into account. The second case is a
demand case in which demand is less constant over time as all tankers have a maximum tanker size
of 2,000 kbbl and demand is not spread in the same proportion over Terminal1 and Terminal2. The
second also has a peak in demand in the second week, with this peak we want to force a changeover
in the solution, so that we can examine how our model deals with that. Figure 9 shows the Gantt
chart for both the stable and the unstable case. The Gannt chart shows per terminal the arrival and
departure moments of the tankers. Recall that the loading duration of a tanker is linear with the
size of the tanker, which results in an equal loading duration for all tankers in the unstable case.
The arrival hour of a tanker on a day is randomly chosen, as a random integer between 0 and 23 is
generated.

The Gantt chart of the unstable case shows that there is a peak in demand from day 11 to day
15, where the demand decreases signi�cantly after day 15 as less tankers arrive. We consider this
case to see how our model deals with less constant demand pattern and what the di�erences are with
the case with stable demand pattern. We treat these two cases separately in Section 6.3 to be able
to compare the results. At the terminals and the re�neries the current total shortage volume is 0
and the BuyGas demand is 1,800,000,000 cf per day for the entire planning horizon.

Recall that we assume that tankers that have not con�rmed a day yet always arrive within their

3Tanker sizes normally vary between 200 and 2,000 kbbl.
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Figure 8: Gantt charts of the stable (above) and unstable (below) demand case

three day window. Furthermore, we assume that tankers always aim to arrive on the �rst day of the
window, since tankers want to avoid being late due to the corresponding penalties. More precisely,
we assume that tankers that have not con�rmed a day have a probability of 0.6 to arrive on the �rst
day of the window, a probability of 0.3 to arrive on the second day of the window and 0.1 to arrive
on the third day of the window. Tankers that con�rmed an arrival day have a probability of 0.2 to
have a delay of one day.

6.1.3 Cost factor input

Our model has seven cost components and nine cost parameters, as all cost components have one
cost parameter except the energy costs with three parameters. We do not know the exact values of
these parameters. Therefore, we cannot retrieve the real costs that OilCO makes in the experiment.
We, however, want the model to yield the best solution whatever the objective value may be. We
therefore focus on the values of the cost components relative to each other. In the sensitivity analysis
of Chapter 7 we change the cost parameters one by one and see what the in�uence is on the solution.
For the energy costs we have three cost factors: cap, cbp, and csqp (see (24)). The value of cbp
has no in�uence on the solution value, since it is a constant. The ratio between cap and csqq
determines the shape of the cost function, where we want a function that looks like the function of
our example in Figure 6, since this �gure gives an example of what the energy costs as a function of
the throughput are. In our example cbp lies around 700. In Figure 9 we see the energy costs from
Figure 6 including an approximation with cap = 30, cbp = 700, and csqp = 1. In this example the
peak e�ciency throughput is again half the maximum throughput (TH∗p = 1

2TH
max
p ). The part of

the approximation where throughput is higher than the peak e�ciency throughput does not exactly
match the function (indicated by the red plane), but both functions are convex so they have a similar
behavior. Therefore, we take cap = 30 csqp for every pipeline. To determine the ratio of these factors
between pipelines we take the ratio of the lengths of the pipelines, since it takes more energy to
realize a certain throughput rate at a longer pipeline.

For now we put the peak e�ciency throughput on 95% of the �regular throughput�. This regular
throughput is determined by solving the deterministic model with constant average terminal demand.
The regular throughput is calculated afterwards by taking the average throughput per pipeline. This
approach is based on the assumption that OilCO designed its network such that it operates at the
maximum e�ciency throughput. We put the maximum e�ciency throughput TH∗p not on the regular
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Figure 9: Energy cost approximation

throughput, but on 95% of the regular throughput, since we assume that the production has increased
since the the network was designed. In Section 7 we perform a sensitivity analysis on the value of
TH∗p , since we are not sure about these assumptions, while the value of TH

∗
p has a large in�uence on

energy costs, since it determines for which values of the throughput rate the energy costs function is
non-linear. We use 11 breakpoints for the piecewise linear approximation of the non-linear part of
the function. This number is justi�ed in Appendix F.

We put the costs of a changeover on 10,000 USD, since the changeover cost factor has to be the
highest of all. Furthermore, the penalty of a shortage at the re�nery (cshrrf ) is set on 40 USD per bbl
and the penalty of a shortage at the terminals (cshtte) is set on 20 USD per bbl, since this implies that
a terminal shortage is cheaper than a shortage at the re�nery. A shortage at a terminal is preferred,
since there is more �exibility in planning at the terminals which makes it possible to overcome the
shortage in the realization of the schedule. The penalties for deviating from the production plan
(cdevr) are set to 1 USD per kbbl deviation from the plan on a certain day. The inventory costs
have the lowest cost factor, these are 0.0001 USD per kbbl per day. The safety stock penalties sspst
should be higher than the inventory cost to have e�ect on the inventory level, so they are set on 0.01
USD per kbbl per day.

In the robust model the maximum inventory level violations penalties (penst) are 0.1 USD per
kbbl. In the robust model we use a sample size of 80 scenarios, of which the number is justi�ed in
Appendix G.

6.2 Deterministic model results

We solved the deterministic model for both cases. Table 3 shows the results of this experiment, in
which all cost factors and the CPU time are shown. For the stable demand case only the energy
costs, safety stock penalties, and inventory costs are larger than zero, since the cost factors of these
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cost components are high and these costs can be avoided. In Chapter 7 we perform experiments to
determine for which values of the cost factors these cost components get larger than zero in the stable
demand case. For the unstable demand case, there are also additional changeover costs, production
plan deviation penalties, and terminal shortage penalties. Both cases are solved within 12 seconds,
which is excellent considering our goal from Section 2.2 that the model needs to be solved in a couple
a minutes.

Demand case Stable demand Unstable demand

Total costs (USD) 2,401 26,348
Energy costs (USD) 2,376 13,406

Changeover costs (USD) 0 10,000
Inventory costs (USD) 23 18

Safety stock penalties (USD) 2 90
Terminal shortage penalties (USD) 0 142
Re�nery shortage penalties (USD) 0 0

Production target deviation penalties (USD) 0 2,883
CPU time (s) 4.5 11.9

Table 3: Deterministic model results for both cases

In the solution of the stable demand case the throughput rates of the pipelines are more or less
constant, because that is the cheapest way to ful�ll the demand. This constant rate is only possible
since the demand is stable. For a more unstable demand case, changes in throughput rate are needed,
which is more expensive due to the fact that the energy costs are a convex function of the throughput.
When the demand is perfectly constant the energy costs are 2,376 USD, which is the same as for
the stable demand case. In the solutions there is a di�erence between the behavior of the inventory
levels of the terminal storage tanks and the storage tanks at the separation facilities. Figure 10 gives
as an example of the inventory levels of both types of storage tanks for the stable demand case.

Figure 10: Inventory levels of a separation facility and a terminal storage tank for the stable demand
case

The terminal storage tank inventory levels �uctuate, since the incoming �ow is constant, but the
outgoing �ow �uctuates. The start and end times of the events of the event based time representation
can be seen in Figure 10, since these are the points on which the throughput rate from the terminal
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storage tank to the terminal changes. The separation facility storage tank inventory levels are more
or less a straight line, since both the incoming and outgoing �ow are constant.

For the unstable demand case the solution is di�erent, as expected, since the demand pattern is
also di�erent. As the throughput rate �uctuations are very large in certain periods to deal with the
peak in demand, the energy costs are higher. In the solution a changeover occurs, as the production
rate increases at the Reservoir9 to its maximum at the beginning of the planning horizon in order to
have enough oil available for the peak demand. After the peak demand the production rate could
be lowered back to the original production plan (or even lower), but this extra changeover is more
expensive than the additional production plan deviation penalties and energy costs, so there is only
one changeover. When the changeover cost factor is lowered to 1,505 USD or lower 2 changeovers
or more occur in the solution: one at the beginning of the planning horizon and one after the peak
demand. The extra production volumes caused by the changeover do not result in higher inventory
costs as in the stable demand case, since the extra produced volume is pumped into tankers between
day 10 and 14. As the safety stock is needed to ful�ll the peak in demand, the safety stock penalties
are higher for the unstable demand case.

Figure 11 shows the inventory levels of a separation facility storage tank and a terminal storage
tank for the unstable demand case, these are di�erent from the inventory levels of Figure 10, as
the separation facility storage tank inventory levels �uctuate more and the terminal storage tank
inventory level has larger �uctuations because the tanker loads are larger. As the extra production
is not enough to cover the peak in demand, both tanks are empty at the end of the peak, which also
causes shortages at Terminal1 However, this is only a shortage of 7 kbbl, which is small compared to
tanker loads of 2,000 kbbl, resulting in terminal shortage penalties of 141.6 USD. A small shortage
of 7 kbbl can probably be eliminated when the schedule is realized, as it takes around 8 minutes to
pump 7 kbbl into a tanker.

Figure 11: Inventory levels of a separation facility and a terminal storage tank for the unstable
demand case

6.3 Robust model results

In this section we test the robust model from Chapter 5 and compare it with the deterministic
model. Section 6.3.1 considers the experimental set-up, Section 6.3.2 considers the results of the
stable demand case, and Section 6.3.3 considers unstable demand case.
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6.3.1 Experimental set-up

In Section 3.3 we identi�ed two sort of robustness: model robustness and solution robustness. We
included both types of robustness in our model of which the weight is indicated by parameters λ and
ω. Recall that λ determines the the solution robustness as it is multiplied with the risk term in the
objective function. The value λ determines the trade-o� between minimizing the expected value of
the control variables or the �variance� (which we replaced by the absolute deviation from the mean)
of the control variables. Recall that ω determines the model robustness as it is multiplied with a term
that penalizes infeasibilities. Therefore, parameter ω quanti�es the trade-o� between minimizing the
total costs or minimizing the infeasibility penalties. In this section we want to �nd out how di�erent
values of λ and ω in�uence our solution. We test the values 0, 1, 10, and, 100 for λ and the values
0, 1, 10, 100 and 1,000 for ω.

Increasing the solution and/or model robustness by increasing λ and/or ω in the model yields,
by de�nition, a solution with higher cost. OilCO has to decide if the increase in costs is worth the
increase in model and/or solution robustness. Therefore, we examine what the additional costs are
when the robustness is increased and by how much the robustness is increased. We evaluate the
solution robustness and model robustness for the di�erent values of λ and ω. We measure solution
robustness by the average absolute deviation of the objective value for di�erent scenarios from the
sample average. Model robustness is measured by the average violation of the storage tank capacity at
the terminal storage tanks (in kbbl) and the percentage of scenarios (of the 80 scenarios we evaluate)
that have infeasibilities in them. Also the deterministic schedule is evaluated for both solution and
model robustness by re-solving the deterministic model for every scenarios, while �xing all variables
concerning the parts of the network that are not in�uenced by tanker arrival uncertainty (which are
the design variables of the robust model). This allows us to evaluate how the terminal tank inventory
levels react to a scenario of tanker arrivals and check if the scenario becomes infeasible.

In Section 6.2 we saw that the case with stable demand and the case with unstable demand yield
di�erent solutions, which is why we treat them separately in this experiment. First, we consider
stable demand case (Section 6.3.2) and subsequently the unstable demand case (Section 6.3.3).

We start the analysis with the results of solving the model with λ = ω = 0, which means that
both solution robustness and model robustness are not considered as both terms are multiplied with
zero. The model then yields a solution by minimizing the average costs over the 80 scenarios, which
we want to compare with the deterministic schedule where only one scenario is considered. Next
we examine what the di�erent solutions are as λ and/or ω increases, here we �rst look at how both
parameters a�ect total costs, as increasing one or both parameters by de�nition increases total costs.
Then, we look at how increasing ω in�uences model robustness and how increasing λ in�uences
solution robustness. Finally, we examine how both parameters a�ect the CPU time to solve the
model.

6.3.2 Experimental results for the stable demand case

Table 4 shows the computational results for this experiment with the stable demand case. The
�Infeasibilities� column shows the average volume (in kbbl) of violation of the maximum inventory.
The �% infeasible� column shows the percentage of scenarios with infeasibilities in them. The �Abs
Dev� column show the average absolute deviation of the costs that result from the control variables
of a realization from the sample average, which replaces the variance of the total costs (see Section
5.2.2).
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Model λ ω Objective
value
(USD)

Total
costs
(USD)

CPU
Time
(s)

Infeas-
ibilities
(kbbl)

%
infeas-
ble

Abs
Dev
(USD)

Deterministic N/A N/A 2,401 2,401 4.5 22,318 96 0.7
Robust 0 0 2,405 2,405 255 12,097 96 0.7
Robust 1 0 2,405 2,405 835 12,231 96 0.7
Robust 10 0 2,406 2,406 902 12,078 96 0
Robust 100 0 2,407 2,407 1,190 12,431 98 0
Robust 0 1 2,809 2,603 427 2,052 71 1.0
Robust 1 1 2,810 2,603 1,399 2,052 71 1.0
Robust 10 1 2,811 2,606 1,061 2,053 71 0
Robust 100 1 2,812 2,607 833 2,052 73 0
Robust 0 10 3,678 3,075 338 603 26 2.1
Robust 1 10 3,680 3,074 1,055 605 26 2.0
Robust 10 10 3,684 3,075 1,012 608 26 0.1
Robust 100 10 3,685 3,077 849 609 26 0
Robust 0 100 6,052 4,222 304 183 16 3.1
Robust 1 100 6,055 4,222 1,124 183 16 3.1
Robust 10 100 6,061 4,230 876 183 16 0.1
Robust 100 100 6,063 4,233 737 183 16 0
Robust 0 1,000 17,720 6,030 254 117 8 611.9
Robust 1 1,000 17,863 5,533 1,126 123 9 4.5
Robust 10 1,000 17,870 5,540 856 123 9 0.2
Robust 100 1,000 17,873 5,546 687 123 9 0

Table 4: Computational results for the stable demand case

Deterministic model vs robust model with λ = ω = 0
Table 4 shows that the objective value of the robust model with λ = ω = 0 (second row) is almost

equal to the objective value of the deterministic model, while the robust model takes almost 50 times
more CPU time to solve. This di�erence in CPU time is caused by the fact that the deterministic
model takes one scenario into account when solved and the robust model 80 scenarios.

Table 9 in Appendix H shows the division of total costs over the di�erent cost components of the
solutions. Here only the energy costs, inventory costs, terminal shortage penalties, and the penalties
for having less in stock than the safety stock are shown, since the other cost components are zero.
The table shows that the robust model �nds a pipeline schedule with equal energy costs as the
deterministic model, but inventory costs are higher. The inventory costs are higher, since the robust
model considers scenarios with delay and delay results in the fact that oil has to be stored longer
and thus leads to higher inventory costs.

The average absolute deviation is low, meaning that for every scenario the deterministic model
would yield a solution close to 2,405 USD and therefore solution robustness is high. For both models
the percentage of infeasible scenarios is 96%, meaning that model robustness is low, since infeasibilities
are not penalized in both models.
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In�uence of ω and λ on total costs
Increasing the value of λ decreases the absolute deviation and increases total costs for the stable

demand case, which is expected by the de�nition of λ. However, in the experiments with λ = 1
and ω ≥ 10 a solution is found with lower total costs as in the same experiments with λ = 0. The
in�uence of the value of λ on the total costs for most experiments, as can be seen in Table 4, is
only small, since λ is multiplied with the average absolute deviation of the control variable costs of a
scenario from the sample average. These control variable costs include the inventory costs, and safety
stock penalties, which are low compared to the energy costs. The average absolute deviation is only
signi�cant for ω = 1, 000 and λ = 0, since this solution includes terminal shortage costs. Increasing
λ decreases the absolute deviation again, where the total costs are remarkably also decreased. The
total costs decrease, since increasing λ decreases the e�ect of ω.

Increasing ω has more in�uence on the total costs. Figure 12 shows the total costs for di�erent
values of ω, here we took the averages of all values of λ.

Figure 12: In�uence of ω on total costs for the stable demand case

The �gure shows that increasing ω increases total cost, which is primarily caused by an increase
in energy costs. In the robust solution the terminal storage tank levels are kept below the maximum
inventory levels by deviating more in the throughput of the pipelines, resulting in extra costs. Figure
13 shows an example of the di�erence in throughput between the deterministic solution and a robust
solution. The example is from the experiment with λ = 0 and ω = 100. The �gure shows the
throughput of one of the three pipelines between Node 1 and Node 2 (Node 2 is connected to
TerminalTank1 (see Appendix A), which causes the �uctuations in the robust solution). The red
line denotes the maximum capacity of the pipeline and the black dashed line the peak e�ciency
throughput (recall that the peak e�ciency throughput is set at 95% of the �regular throughput�). In
the optimal solution the throughput of this pipeline is constant over time, which is the cheapest way
to transport a certain volume through the pipeline and exactly how we wanted to energy costs to
behave when the throughput is more than the maximum e�ciency throughput (see Section 4.5.1).
The robust solution has higher costs because the throughput is much higher than the maximum
e�ciency throughput in certain time periods, which also causes the separation facility storage tanks
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inventory levels to �uctuate more than in the deterministic solution of Figure 10. We now examine
if these extra costs result in improvements in model robustness.

Figure 13: Di�erence between the optimal and a robust solution

In�uence of ω on model robustness
The deterministic model and the robust model with ω = 0 both had an infeasibility percentage

of 96%. Figure 14 shows the infeasibility percentage and the average violation in kbbl for di�erent
values of ω. The average violation in kbbl is the average infeasibility volume per infeasible scenario
(so not the average of all scenarios), which is calculated by correcting the �Infeasibilities� column of
Table 4 for the number of infeasible scenarios.

Figure 14: In�uence of ω on model robustness for the stable demand case

For the deterministic model the infeasibility percentage is equal to the robust model with ω = 0,
but the average violation is more than three times as high (43,533 kbbl) as for ω = 0. The �gure
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shows that increasing ω increases model robustness as both the number of infeasible scenarios as the
violation per infeasible scenario are reduced. However, it is remarkable that the average violation per
infeasible scenario increases as ω is increased from 100 to 1,000. The number of infeasible scenarios,
however, is almost halved as ω is increased from 100 to 1,000. The �gure proves that our robust
model indeed yields solutions that are, by design, less sensitive to uncertainty in tanker arrivals. It
is up to OilCO to decide if this increase in robustness is worth the extra costs.

In�uence of λ on solution robustness
We already concluded that increasing λ has a low in�uence of total costs, since the costs represented

by the control variables are low compared to the energy cost. The absolute deviation is low for most
experiments, meaning that solution robustness is high. However, the average absolute deviation is
signi�cant for ω = 1, 000 and λ = 0, since this solution includes terminal shortage costs. Increasing λ
increases the solution robustness, as the absolute deviation is lowered and therefore the solutions for
di�erent realizations are closer to optimal. We can therefore conclude that improving the solution
robustness only has a very small e�ect since it is already high. Furthermore, solution robustness only
is low when terminal shortage costs are included in the solution, in that case solution robustness can
be improved by increasing λ.

In�uence of λ and ω on CPU time
The CPU time for the di�erent models, which di�ers per combination of λ and ω as Figure 15

shows. We conclude that the CPU time increases when ω is increased from 0 to 1 for most values of
λ. The CPU time slightly decreases when ω is further increased to 1,000 for most values of λ. The
CPU time decreases as λ is increased, however it is on average 67% less when λ = 0, compared to the
other values. The best value for λ in for the stable demand case is zero considering this performance
di�erence and the fact solution robustness is already high. All running times are more than 50 times
the running time of the deterministic model (4.5 seconds) and are on average 13.5 minutes, which is
high compared to our goal of a couple of minutes. We try to improve the CPU time for this case by
solving it with the simpli�ed model in Section 6.4.

Figure 15: In�uence of λ and ω on the CPU time for the stable demand case
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6.3.3 Experimental results for the unstable demand case

In this section we examine the experimental results for the unstable demand case in the same manner
as the stable demand case. We start with the results of solving the model with λ = ω = 0, which
means that both solution robustness and model robustness are not considered as both terms are
multiplied with zero. After that we examine what the di�erent solutions are as λ and/or ω increases,
here we �rst look at total costs, then at model robustness, third at solution robustness, and �nally
at CPU time. Table 5 shows the results of the experiment. The division of the total costs over the
di�erent cost components can be found in Table 10 of Appendix I.

Model λ ω Obj-
ective
value
(USD)

Total
costs
(USD)

CPU
Time
(s)

Infeas-
ibilities
(kbbl)

%
infeas-
ble

Abs Dev
(USD)

Determin. N/A N/A 26,538 26,538 12 73,393 96 52.1
Robust 0 0 25,216 25,216 742 47,777 100 225.4
Robust 1 0 25,262 25,257 2201 48,387 100 5.2
Robust 10 0 25,269 25,268 1207 48,871 100 0.1
Robust 100 0 25,269 25,269 2519 48,910 100 0
Robust 0 1 28,170 26,037 900 21,323 100 403.8
Robust 1 1 28,267 26,097 3007 21,645 100 6.0
Robust 10 1 28,274 26,107 1683 21,652 100 0.2
Robust 100 1 28,275 26,109 1755 21,660 100 0
Robust 0 10 42,866 28,262 903 14,604 95 1395.6
Robust 1 10 43,703 27,721 1577 15,556 95 425.9
Robust 10 10 44,091 28,123 1353 15,965 95 0.3
Robust 100 10 44,093 28,128 1544 15,965 95 0
Robust 0 100 116,111 56,557 907 5,955 89 27390.6
Robust 1 100 137,231 46,467 1899 7,457 93 16197.9
Robust 10 100 155,624 49,220 1463 10,640 93 0.4
Robust 100 100 155,627 49,226 1716 10,640 93 0
Robust 0 1,000 333,416 202,862 287 1,306 44 116492.4
Robust 1 1,000 440,114 175,257 1428 1,657 44 99206.7
Robust 10 1,000 589,011 301,894 2981 2,869 61 22.0
Robust 100 1,000 589,210 301,634 3204 2,876 61 0

Table 5: Computational results for the unstable demand case

Deterministic model vs robust model with λ = ω = 0
Table 5 shows that the solution value for the robust model with λ = ω = 0 is lower than the

solution value of the deterministic model, which is di�erent from the results of the case with stable
demand. The deterministic model only considers 1 scenario in which all tankers arrive on the �rst
day of their 3-day window, where the robust model considers 80 scenarios with di�erent realizations
of delay. As delay causes the peak in demand to be �attened and to be spread over more days, the
robust model yields a lower solution value, because the throughput rates are less high in the period
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with the peak in demand and some of the terminal shortage penalties are avoided. For both models
the percentage of infeasible scenarios is close to 100%, since infeasibilities are not penalized in both
models.

In�uence of ω and λ on total costs Although the e�ect is small in the experiment with the
stable demand case, the value of λ has a larger e�ect on the total costs in the unstable demand case.
Increasing the value of λ increases the objective value signi�cantly when ω = 100 and ω = 1, 000,
however in the experiments with λ = 1 and ω ≥ 10 a solution is found with lower total costs as in
the experiments with λ = 0, just as in the stable demand case.

Increasing ω also has an e�ect on the total costs. The total costs are especially high when ω = 100
or higher, since the model chooses to send less oil to the terminals to prevent infeasibilities, although
that causes shortage penalties. In case ω ≥ 100, less penalties for deviating from the production
plan occur, since the production rate at Reservoir9 is increased by less than in the other solutions,
so less oil is pumped into the network and therefore infeasibilities are avoided. The solution does not
include a changeover for the case that ω = 1, 000 and λ = 0 or λ = 1, since not increasing production
prevents infeasibilities against high terminal shortage penalties. The increase in total cost is further
explained by the deviations in throughput rate, which we already saw in Figure 13.

In�uence of ω on model robustness
Figure 16 shows the infeasibility percentage and the average violation per infeasible scenario for

di�erent values of ω. Increasing the value of ω increases model robustness, since both the infeasibility
percentage and the average violation per infeasible scenario decrease. Both are, however, higher as
in the stable case (see Figure 14), because less infeasibilities are avoided as there is less �exibility in
the period with the peak in demand in changing throughput rates without causing shortages at the
terminals. The average violation per infeasible scenario decreases for every increase of ω, while the
infeasibility percentage only is below 100% for ω > 1.

Figure 16: In�uence of ω on model robustness for the unstable demand case
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In�uence of λ on solution robustness
The solution robustness is lower for experiments with λ = 0 than in the stable demand case, because

the terminal shortage penalties increase, which are calculated per scenario and create di�erences in
total costs per scenario. Increasing the value of λ does again decrease solution robustness as the
absolute deviation decreases. The absolute deviation can be decreased to 0 if λ is set to 1,000, just
as in the stable demand case.

In�uence of λ and ω on CPU time
Figure 17 shows the CPU times for the di�erent values of ω and λ. The CPU times to solve the

unstable demand case are larger than for the stable demand case (see Figure 15), since a changeover
is required in the solution and the model has to decide when and at which reservoir that changeover
occurs. The �gure shows that the CPU time is lower for λ = 0, because the risk term is excluded in
those experiments. The relation between ω and the CPU time is the same as in the stable demand
case when ω is between 0 and 100, but di�erent for ω = 1000 as the CPU times signi�cantly increase
for λ ≥ 10. As the average CPU time is 28 minutes, which is high compared to our goal of a couple
of minutes, we try to improve the CPU time of this case by solving it with the simpli�ed model in
Section 6.4.

Figure 17: In�uence of λ and ω on the CPU time for the stable demand case

6.4 Simpli�cation results

In Section 4.7 we propose a few simpli�cations for the model, which reduce the number of integer
variables in the model to boost performance. In this section we test if these simpli�cations improve
the CPU time to solve the robust model. We examine if the simpli�cations yield the same solution
as the robust model and where possible di�erences are. For this test we take the results of the
experiments of the robust model from the experiment of Section 6.3 and compare these with the
same experiments solved by the simpli�ed model. For the simpli�ed model we use the following
simpli�cations, based on the analysis of the two cases:

1. Changeovers can only occur at the beginning of the day.

2. Changeovers can only occur at Reservoir9 (closest to Node 1) and Reservoir3 (farthest away
from Node 1).
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Demand case Stable Unstable Average

CPU time without simpli�cations(s) 806 1,664 1,235
CPU time with only simpli�cation 1(s) 791 736 764
CPU time with only simpli�cation 2(s) 365 400 383
CPU time with simpli�cation 3&4(s) 713 729 721
CPU time with all simpli�cations(s) 330 351 341

All simpli�cations - no simpli�cations(s) -476 -1,313 -895

Table 6: CPU time di�erence between robust and simpli�ed model

3. The minimum production rate is increased to 0.9 (was 0.4) times the production plan rate.

4. For the stable demand case the maximum production rate is decreased to 1.1 times the pro-
duction plan rate, while for the unstable demand case this value is kept at 1.2.

Simpli�cation 1 decreases the number of integer variables signi�cantly, however it can cause di�erences
in the solution. Simpli�cation 2 further decreases the number of integer variables, but will not change
the solution, as we know that changeovers occur at Reservoir9 (when an increase of production rate
is required) or Reservoir3 (when a decrease of production rate is required). Since demand is stable in
the �rst case, we only expect small changeovers (if any occur) so the di�erence between minimum and
maximum production rate may be decreased as in simpli�cations 3 and 4 to decrease the size of the
M parameter that is used in the constraints (Constraints (25) and (26)) that bound the changeover
variable. In the unstable demand case we only increase the size of the minimum production rate, since
the production rate of Reservoir9 is increased to its maximum in the previous experiments. Next
to experiments with all simpli�cations, we also perform experiments with one of the simpli�cations
to see which simpli�cation has the largest impact. We perform an experiment with simpli�cations 3
and 4 together, since both simpli�cations decrease the size of the M parameter.

Table 6 shows the results of the experiments per case. The simpli�cations improves the CPU
time by 69%. The largest improvement is yielded at unstable demand case. Simpli�cation 2 has the
largest impact on the CPU time and Simpli�cation 1 has the smallest impact. Since the changeovers
at the unstable demand case occur at the beginning of the day, Simpli�cation 1 has no e�ect on the
solution and, therefore, the simpli�ed model yields the same solutions as the robust model for all
experiments.

6.5 Conclusion

In this chapter we compared the di�erent models we proposed in this thesis. In Section 6.2 we
compared two di�erent tanker arrival cases for the deterministic model. The conclusion is that the
tanker arrival scenario has almost no impact on the energy costs of the stable demand case, as it only
slightly increases inventory costs and the safety stock penalties. In the solution of the stable demand
case the throughput of the pipelines is constant, which is in line with the energy costs behavior we
chose in Section 4.5.1. In the solution of the unstable demand case a changeover occurs in order
to deal with the peak in demand. Moreover, the throughput is increased to transport the extra
produced oil to the terminals and terminal shortages occur.

In Section 6.3 we compared the deterministic model with the robust model. When comparing
the deterministic model with the robust model with λ =0 and ω = 0 for the stable demand case
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it seems that including more tanker arrival scenarios is of little impact, as the deterministic model
with one scenario yields almost the same solution as the robust model with 80 scenarios. However,
when making the same comparison for the unstable demand case there is a much larger di�erence,
since the delay of the tankers causes the peak in demand to �atten and therefore the energy costs
to decrease. Solving the robust model with λ =0 and ω = 0 is therefore preferred over solving the
deterministic model.

Increasing ω increases the total costs but decreases the number of infeasible scenarios and the
average infeasibility (in kbbl) per infeasible scenario. For the stable demand case the highest value of
ω we tested yielded an infeasibility percentage of 8.4% (which is 96.6% when model robustness is not
taken into account), while the total costs where increased by 135%. For the unstable demand case
the infeasibility percentage could only be decreased to 52.6%, since the peak in demand gives less
�exibility in avoiding infeasibilities. Deciding which value of ω is the best for OilCO is di�cult, since
we do not know if we modelled the energy costs correctly (see Section 4.6.1) and we do not know
if the robust solution is totally realizable. In the robust solution the throughput rates are changed
every few hours in certain periods (see Figure 13), but the question is if this is possible in practice.
We do not have enough information on this subject to judge if the solution is realizable. However,
we can conclude that the robust model yields solutions that are more capable of dealing with the
uncertainty in tanker arrivals, meaning that taking model robustness into account by setting ω > 0
is preferable.

The average absolute deviation of the objective value for di�erent scenarios from the sample
average is low for most experiments. This low absolute deviation causes that the value of λ has little
in�uence on the solution. In solutions with terminal shortage costs the solution robustness is low,
as terminal shortage costs are part of the control variable costs which vary per realization of the
tanker arrival moments. Here, increasing λ decreases the absolute deviation and even decreases total
costs when ω is high, but decreases model robustness. We propose to set λ = 0 in case no terminal
shortage costs are expected, because this has a positive e�ect on model performance and almost no
e�ect on model solution. When there are terminal shortage costs involved increasing λ increases
solution robustness and even decreases total costs when ω is high. Increasing λ for high values for
ω decreases the e�ect of ω as total cost and model robustness both decrease, but the question is if
decreasing the value of ω instead of increasing the value for λ in those cases yields a �better� solution.

For the considered cases we decreased the number of integer variables and the size of parameter
M in order to boost model performance, resulting in an average CPU time improvement of 69%.
Therefore, we suggest to use this simpli�cation. The average CPU time to solve the model then is
330 seconds for the stable demand case and 351 seconds for the non stable demand case, which are
both in line with our goal of a couple of minutes.

In Chapter 7 we perform sensitivity analysis on input parameters that are uncertain to see how
they in�uence the model in terms of solution, objective value, total costs, and CPU time.
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7 Sensitivity analysis

In this chapter we perform a sensitivity analysis on the uncertain parameters in our model to �nd out
how sensitive our model is to changes in these parameters. Moreover, we want to �nd out if our model
is able to deal with all these di�erent input values. In Section 2.3.2 we addressed the uncertainty
in parameters for the �rst time. In this section we identi�ed the storage tank size (also called the
maximum inventory level) as one of the parameters on which we perform sensitivity analysis. In
Section 6.1.3 we identi�ed the peak e�ciency throughput of the pipelines and the di�erent cost
factors of the objective function as uncertain, implying that we analyze these as well. First, Section
7.1 describes the analysis set-up. Subsequently, Section 7.2 considers the storage tank size analysis,
Section 7.3 considers the peak e�ciency throughput analysis, and Section 7.4 considers the cost
factors analysis.

7.1 Analysis set-up

In this chapter we change one factor at a time in our analysis, since there are a large number of
uncertain parameters and we need to keep the number of experiments in an acceptable range. We
therefore choose a number of values for the uncertain parameters for which the model is solved and
keep all other parameters constant. In the previous chapter we concluded that the value of λ has
low in�uence on the solution in most tests, while setting λ equal to 0 boosts performance. Therefore,
we set it equal to 0 in the analysis. We analyze both the e�ect of the changes in parameter values
on the optimal solution (ω = 0) and a robust solution (ω = 100) for both cases to see if there is a
di�erence in sensitivity. We treat the stable demand case and the unstable demand case separately
in the analysis. We use the simpli�ed model for most of this analysis, since we concluded that
the simpli�ed model outperforms the robust model (see Section 6.5). However, we use the model
without simpli�cation for the changeover cost analysis, as we want to include all possible changeover
moments. After solving the model we analyze the di�erence in solution values, where we look at
the di�erence in total costs and the di�erent cost components. Furthermore, we look if the obtained
schedule changes and what the robustness of the obtained schedule is. Finally, we look at the e�ect
of the parameters values on the CPU time to solve the model.

7.2 Storage tank size analysis

We perform a sensitivity analysis on the storage tank size, since it determines the amount of variability
in demand and operations that the network can handle and since we have no information on the size
of the tanks. In Section 6.1 we set the storage tank size of the terminal tanks on 3,000,000 bbl and
the size of storage tanks at the separation facilities on 1,500,000 bbl. We based this value on what
we think is a logical tank size given OilCO's production and demand volumes, but we do not know
the exact value. Figure 10 shows that the inventory levels at a terminal storage tank vary more than
the inventory levels at a separation facility storage tank. We therefore perform most experiments
on the terminal storage tanks. For the terminal storage tanks we perform experiments for the tank
sizes: 1,000,000 to 5,000,000 bbl, with steps of 500,000 bbl. For the separation facility storage tanks
we examine the values 750,000 to 2,000,000 bbl with steps of 250,000 bbl. The safety stock levels and
the initial inventory are kept constant on the same absolute level as in Section 6.1. In Section 7.2.1
we analyze the separation facility storage tanks and in Section 7.2.2 we analyze the terminal storage
tanks.
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The assumption that every tank of a certain type (terminal storage tank or separation facility
storage tank) has the same storage capacity may not be correct. It may also be possible that OilCO
based its tank sizes on the volume of oil that passes through the tank on an average day. Table 7
shows these volumes.

Storage tank Average daily volume in kbbl Location

SepFacTank1 1,344 Separation facility
SepFacTank2 980.4 Separation facility
SepFacTank3 166.8 Separation facility
SepFacTank4 558 Separation facility
TerminalTank1 1,350 Terminal
TerminalTank2 900 Terminal

Table 7: Average daily volumes of the di�erent storage tanks

In the table the largest daily volume of a separation facility storage tank (SepFacTank1) is more
than eight times larger than the smallest one (SepFacTank3). We perform experiments for setting
the tank sizes equal to 1 till 4 times the volumes of Table 7, with steps of 0.5. In contrary to the
other storage tank experiments, we vary both the separation tank volumes and the terminal volumes
at the same time. The safety stock levels are 1

6 times the storage tank size and the initial inventories
are 1

3 times the storage tank size, just as in Chapter 6. In Appendix J we analyze the storage tank
size based on the average daily volume, since this analysis is similar to the analysis of the storage
tank size based on tank type.

7.2.1 Separation facility storage tank analysis

We solve the model for ω = 0 and ω = 100 for di�erent separation facility storage tank sizes: 750,
1,000, 1,250, 1,500, 1,750, and 2,000 kbbl. In this section we treat some remarkable results of the
experiment. Figure 18 shows an overview of the total costs, infeasibility percentages, average violation
per infeasible scenario, and CPU time for the di�erent separation facility storage tank sizes. The
total costs are more or less stable for all tests as the separation facility storage tank size increases,
however there is a small increase in energy costs for the experiments with ω = 100 and a tank size of
750 kbbl. The throughput rates have to �uctuate more in those experiments, as a size of 750 kbbl
is too small for the South East Tank. The di�erence in costs between ω =0 and ω = 100 are caused
by an increase in energy costs and the di�erence in costs between the stable and unstable demand
case are caused by the peak in demand of the unstable demand case, which we both already saw in
Section 6.3.2.

The infeasibility percentages are almost constant on 98% for the unstable demand case and on
100% for the stable demand case with ω = 0, but for both cases with ω = 100 there is a di�erence
for a tank size of 750 kbbl. Increasing ω lowers the average infeasibility percentage to 16% for the
stable case and to 89% for the unstable case. The average violation per infeasible scenario are more
or less constant for both ω = 0 and ω = 100 for both cases, with a small increase at 750 kbbl for the
stable case.

Furthermore, the CPU time is also more or less constant for all experiments. We conclude that
the separation facility storage tank size only has an in�uence on the model if it is smaller than 1,000
kbbl.
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Figure 18: Separation facility storage tank experiment results

7.2.2 Terminal storage tank analysis

We solve the model for both cases with ω = 0 and ω = 100 and with di�erent terminal storage tank
sizes: 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500 and 5,000 kbbl. In this section we look
at the same indicators as in Section 7.2.1. Figure 19 shows the total costs, infeasibility percentages,
average violation per infeasible scenario and CPU time for the di�erent terminal storage tank sizes.
The �gure of the CPU time looks similar to the CPU time in Figure 18, where for most experiments
the CPU time is constant. However, for the stable case with ω = 100 the CPU time is higher for low
values of the terminal storage tank size, since it is harder to �nd a robust solution.

The �gures of the total costs, average violation per infeasible scenario, and infeasibility percentages
di�er a lot from Figure 18. The total costs are constant for ω = 0, just as in Figure 18, but for ω = 100
the total costs are very high when the terminal storage tank size is small and decrease as the terminal
storage tank size increases. The di�erence in total costs are primarily caused by a di�erence in energy
costs and terminal shortage costs. When the terminal storage tank size is low, the throughput rates
of the pipelines that supply the terminal storage tanks have to �uctuate more in order to yield a
robust solution. When the terminal storage tank size increases the total costs converge to the total
costs for ω = 0 (the optimal solution). It is remarkable that the experiments with the unstable
case and ω = 100 do not include the changeover when the terminal tank size is at most 2,000 kbbl,
since the terminal tanks cannot handle the extra oil. Since there is no extra oil production in these
experiments, the terminal shortage costs are high. For the same reasons the changeover is smaller
than in the original solution (where the tank size was 3,000 kbbl) for tank sizes lower than 3,000
kbbl.

The infeasibility percentage is 100% for tank sizes smaller than or equal to 2,500 kbbl for the
stable case with ω = 0 and for tank sizes smaller than 3,500 kbbl for the unstable case with ω = 0.
When the tank size increases the infeasibility percentage decreases to 0 as the tank becomes large
enough to deal with all delay scenarios. For ω = 100 the infeasibility percentage decreases when the
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Figure 19: Terminal storage tank experiment results

tank size is at least 1,500 kbbl for both cases. There are no infeasible scenarios when the tank size is
5,000 kbbl for the stable case for both ω = 0 and ω = 100, while there are always infeasible scenarios
in the experiments of the unstable case.

For all experiments the average violation per infeasible scenario decreases when the terminal tank
size increases, since the violations are the volumes that the inventory level is above the maximum
inventory level of the terminal storage tanks.

If we compare the results of this analysis with the results of 7.2.1, we can conclude that the
in�uence of the terminal storage tank size on total costs and model robustness is larger than the
separation storage tank size.

7.3 Peak e�ciency throughput analysis

We analyze the impact of the peak e�ciency throughput, since it is an important concept in the
models, since we based our energy costs de�nition on it, and since we do not have any information
about the exact value of it. Recall that the peak e�ciency throughput is the throughput rate at
which the pumps of the pipelines operate at maximum e�ciency. In Section 6.1 we set the peak
e�ciency throughput of a pipelines equal to 95% of the regular throughput. This regular throughput
is based on the average throughput in a network with perfectly constant demand.

It may be that this assumption is not correct and OilCO's regular throughput is equal to the
peak e�ciency throughput. Furthermore, it may be that OilCO designed its network to be prepared
for an increase in demand, so that the peak e�ciency throughput lies above the regular throughput.
In this analysis we investigate values for a peak e�ciency throughput of 90%, 95%, 100%, 105%, and
110% of the regular throughput.

However, it can also be possible that the peak e�ciency throughput does not depend on the
regular throughput at all, but that it is a �xed percentage of maximum pipeline throughput. We try
values for a peak e�ciency throughput of 40%, 50%, 60%, 70%, and 80% of the pipeline capacity,
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Figure 20: Peak e�cient �ow as a percentage of the regular throughput results

where the average pipeline utilization (average throughputpipeline capacity ) was 70.2% in the experiments of Section
6.2.

Per experiment we examine what the e�ect of the peak e�ciency throughput is on energy costs,
model robustness, and CPU time. Furthermore, we examine if changing peak e�ciency throughput
yields a di�erent schedule, or that it yields the same schedule with a di�erent objective value.

Section 7.3.1 gives the results of the experiment where the peak e�ciency throughput is a per-
centage of the regular throughput. Appendix K gives the results of the experiment where the peak
e�ciency throughput is a percentage of the pipeline capacity, since the results are similar as in the
experiment where the peak e�ciency throughput is a percentage of the regular throughput.

7.3.1 Peak e�ciency throughput as a percentage of the regular throughput

We solve the model for both cases, for ω = 0 and ω = 100, and for the mentioned values of the peak
e�ciency throughput. Figure 20 shows the energy costs, CPU time, infeasibility percentage, and
average violation per infeasible scenario.

For all case the energy costs decrease as the peak e�ciency throughput increases to 100% of
the regular throughput, as this means that on average the throughput is above the peak e�ciency
throughput. As the peak e�ciency throughput increases above 100% of the regular throughput
the costs are stable for ω = 0 for the stable demand case, but not for ω = 100 and the unstable
demand case as the throughput sometimes has to be above the peak e�ciency throughput in order
to deal with tanker arrival uncertainty. Moreover, in case the peak e�ciency throughput increases
above 100% of the regular throughput the CPU time to solve the model decreases for ω = 0, which
might be caused by the fact that the non-linear part of the energy costs function is approximated
in less time periods. The infeasibility percentage slightly decreases for ω = 100 for both cases if the
percentage of the regular throughput increases, as it is cheaper to vary in throughput rate below
the peak e�ciency throughput than above the peak e�ciency throughput. This allows the model to
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Figure 21: Di�erence in throughput in the optimal solution for a peak e�ciency throughput below
and above the regular throughput

avoid more infeasibilities without exceeding the peak e�ciency throughput. The average violation per
infeasible scenario remains constant if ω = 100 for both cases. The average violation per infeasible
scenario when ω =0 increases when the percentage of regular throughput increases for the stable
demand case, while the opposite happens for the unstable demand case. To explain this di�erence
in behavior, we look at the corresponding solutions. Figure 21 shows the throughput rate of one of
the pipelines between Node 1 and Node 2 in the optimal solution of the stable demand case.

The throughput rate at peak e�ciency of 90% of the regular throughput is constant for the
same reasons as in Section 6.3.2, where the peak e�ciency throughput was 95% of the regular
throughput. The throughput rate �uctuates when the peak e�ciency throughput is at 110% of
the regular throughput. These �uctuations have a negative e�ect on model robustness (see Figure
20), where in the unstable demand case �uctuations in throughput have a positive e�ect on model
robustness, so the e�ect on model robustness depends on the timing and size of the �uctuations.
Since �uctuations throughput rate below the peak e�ciency throughput have a low in�uence on
the energy costs, solutions exist that are close to optimal and are more robust. For example, when
ω = 0.01 for the stable demand case in the 110% experiment the average violation per infeasible
scenario decreases from 153,338 kbbl to 2,797 kbbl, while the total costs increase with 0.45 USD.
In this solution the throughput rate �uctuates just as in Figure 21, but on di�erent moments with
di�erent sizes. The question is, again, to what extend a �uctuating throughput rate is realizable in
practice. The peak e�ciency throughput has a high in�uence on the model as it both in�uences total
costs as the solution in terms of throughput rates. The e�ect on model robustness in case ω = 100
is however small.

7.4 Cost factor analysis

We perform sensitivity analysis on the cost factors, since they determine how heavy the cost compo-
nents are weighted in the objective function and their values are hard to determine. We analyze the
cost factors one by one, since the ratio between the factors has a big in�uence the resulting schedule.
Our objective function has seven cost components: changeover costs, energy costs, inventory costs,
and penalties for shortages at the re�neries, shortages at the terminals, deviating from the produc-
tion plan, and having less in stock than the safety stock. In most experiments of the stable case
in Chapter 6 only the energy costs, inventory costs and penalties for having less in stock then the
safety stock were larger than zero. For the cost components that were equal to zero, we want to �nd
out by how much their cost factor has to decrease in order to make that cost component larger than
zero. We divide the cost factors of these cost components by 2, 5, 10, 25, and 50 and analyze how
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the solution changes. For comparison, we perform the same analysis to the unstable demand case.
For the cost components that are larger than zero, we saw that the energy costs are much larger

than the inventory cost and the safety stock penalties. We check if the solution changes if the safety
stock penalty factor and inventory cost factor increases. We multiply both factors with 2, 5, 10, 25,
and 50 such that the safety stock penalty factor stays 100 times larger than the inventory cost factor.
For all experiments we again compare a robust solution with the optimal solution. We examine the
cost factors one by one (except for the inventory cost and penalties for having less in stock then
the safety stock, these are combined). Section 7.4.1 examines the terminal shortage penalty factor,
Section 7.4.2 examines the re�nery shortage penalties factor, Section 7.4.3 covers the changeover cost
factor, Section 7.4.4 considers the penalty factor for deviating from the production plan, and Section
7.4.5 examines the inventory cost factor.

7.4.1 Terminal shortage penalty factor analysis

For the terminal shortage cost factor we evaluate the values 20, 10, 4, 2, 0.8, and 0.4 USD/kbbl.
The results can be found in Appendix L. For the stable demand case decreasing the shortage factor
indeed causes terminal shortage costs. The solution includes terminal shortage costs when the cost
factor is at most 0.4 USD/kbbl for ω = 0, where this is at most 4 USD/kbbl for ω = 100. The
shortage volumes also increase progressively as the cost factor decreases, as more and more energy
costs can be saved.

The unstable case already had shortage costs in the solution for a cost factor of 20 USD/kbbl.
The shortage volumes also increase as the cost factor decrease, although the terminal shortage costs
decrease when the cost factor is at most 2 USD/kbbl for both ω = 0 and ω = 100, since from
that point the cost factor decreases faster than the shortage volumes increase. The solution has no
changeover any more when the cost factor is equal to 2 USD/kbbl or less for ω = 0 or 4 USD/kbbl
or less for ω = 100, since then preventing shortages by increasing production is more expensive than
not increasing production and paying the shortage penalties. For both cases the model robustness
increases for ω = 100 as the cost factor decreases, since less oil is sent to the terminals to avoid
infeasibilities.

7.4.2 Re�nery shortage penalty factor analysis

For the re�nery shortage cost factor we evaluate the values 40, 20, 8, 4, 1.6, and 0.8 USD/kbbl. The
results can be found in Appendix M. For the stable case with ω = 0 the solutions are the same for
all experiments, while for ω = 100 there are re�nery shortage costs if the cost factor is 1.6 USD/kbbl
or less. However, these shortages are very small, as they are at most 50 kbbl in total for the entire
planning horizon.

The unstable case yields re�nery shortage costs for ω = 0 when the shortage cost factor is at most
1.6 USD/kbbl, however these shortages are just as small as in the stable demand case experiments
with shortages. The solutions for the experiments of the unstable demand case with ω = 100 include
re�nery shortage costs if the cost factor is 4 USD/kbbl or less, however these shortages are much
larger than in the other experiments as the solutions for cost factors of 1.6 and 0.8 USD/kbbl do
have changeovers in them.The changeovers are excluded to prevent infeasibilities at the terminals,
resulting in high shortages at the re�neries.
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7.4.3 Changeover cost factor analysis

For the changeover cost factor we evaluate the values 10,000, 5,000, 2,000, 1,000, 400, and 200 USD.
The results can be found in Appendix N. In the stable demand case the solutions are the same,
which is caused by the stable production plan in combination with the high penalties for deviating
from the production plan.

In the unstable demand case, the number of changeovers increases from one to two (the production
rate changes back to the production plan rate) in case the changeover cost factor is at most 1,000
USD to decrease the penalties for deviating from the production plan. In case ω = 0 there are
even four changeover in the solution when the changeover cost factor is 200 USD, caused by a short
production increase at a second reservoir to save energy costs during the peak in demand.

7.4.4 Production plan deviation penalty factor analysis

For the production plan deviation penalty factor we evaluate the values 1, 0.5, 0.2. 0.1, 0.04, and
0.02 USD/kbbl. The results can be found in Appendix O. For the stable demand case all solutions
are the same, since the changeover costs are to high to change the production rate.

For the unstable demand case the production plan deviation penalties decrease as the cost factor
decrease, but for ω = 0 this decrease is proportional to the decrease in cost factor, so the solution
is the same. For ω = 100 the solution changes, as the production rate at Reservoir9 increases to its
maximum for a cost factor of 0.2 USD/kbbl or lower.

7.4.5 Inventory cost factor analysis

The inventory costs (combined with the penalties for having less in stock than the safety stock)
are the only cost factor in this analysis that were already non-zero in the experiments of Section 6.
For the inventory cost factor we evaluate the values 0.0001, 0.0002, 0.0005, 0.001, 0.0025, and 0.005
USD/kbbl per day. The results can be found in Appendix P. For the stable case the increase in
cost factor results in an increase in total costs. The inventory costs increase proportionally to the
increase in cost factor, which means the total inventory over the 31 day period stays the same, which
is explained by the fact that the oil enters and leaves the network on exactly the same moments. The
penalties for having less in stock than the safety stock increase also, but less than proportional to the
cost factor increase. The total volume that is less in stock than the safety stock during the planning
horizon therefore decreases as the inventory cost factor increases. The energy costs also increase,
which means that the throughput rate has to deviate more above the peak e�ciency throughput in
order to prevent that there is less in stock than the safety stock on certain moments. These deviations
also cause the model robustness to slightly decrease.

For the unstable case we see exactly the same e�ect. So for both cases we conclude that not only
the total costs change when the inventory cost factor is changed, but also the solution in terms of
throughput rates changes.

7.5 Conclusion

In this Chapter we performed a sensitivity analysis on the uncertain parameters of our model to
examine what the e�ects of changes in these parameters are on our model. We performed sensitivity
analysis on the storage tank sizes, the peak e�ciency throughput, and the cost factors of the objective
function.
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In Section 7.2.1 we saw that the total costs and model robustness is more or less constant as the
separation facility storage tank changes in size. The total costs increase and robustness decreases
only when the tank size is smaller than or equal to 1,000 kbbl. The CPU time is insensitive for
di�erent values of the storage tank size. In Section 7.2.2 we saw that terminal storage tank size
has a large in�uence on both model robustness and total costs when ω = 100. Total costs decrease
and model robustness increases as the terminal tank size increases. The infeasibility percentage
and average violation per infeasible scenario eventually get zero if the terminal storage tank is large
enough. From the analysis we conclude that the model is more sensitive to changes in the terminal
storage tank size than the separation facility tank size.

The peak e�ciency throughput value has a large e�ect on the model, as it both has a large in�uence
on total costs and the throughput rates of the pipelines. The most important factor that determines
this in�uence is if the peak e�ciency throughput is below or above the average throughput needed
to ful�ll demand. In Section 7.3.1 we performed experiments where the peak e�ciency throughput
was a percentage of this average throughput. The experiments show that the optimal solution is
to have constant throughput when the peak e�ciency throughput is below the average throughput
and �uctuates when the peak e�ciency throughput is above average throughput. In the latter case
there are many solutions that are close to optimal, which is caused by the fact that the energy costs
function is linear when the throughput rate is below the peak e�ciency throughput.

The cost factor analysis showed that the model the least sensitive for changing the production plan
deviation penalty factor, as the solution only changes if demand is unstable, ω = 100, and the penalty
factor is divided by ten or more. Changing the re�nery shortage penalty factor only yields re�nery
shortages if the factor is decreased enough, ω = 100, and/or demand is unstable, although shortages
are small in most experiments. Terminal shortage penalties increase as the terminal shortage penalty
factor is increased, as less oil is pumped to the terminal to decrease energy costs and/or infeasibilities.
Increasing both the inventory costs factor as the penalty factor for having less in stock then the safety
stock yields solutions that have higher energy costs and lower robustness as throughput rates have
to deviate more in order to keep the inventory level above the safety stock. For the stable demand
case changing the changeover cost factor has no e�ect on the solution, while it increases the number
of changeovers for the unstable demand case.

The model is therefore very sensitive to changes in storage tank size and peak e�ciency through-
put, while the sensitivity di�ers per cost factor. If we would have chosen an other value for the
sensitive parameters in Section 6.1 then most experiments in Chapter 6 would yields di�erent solu-
tions. However, the sensitivity analysis gives no proof that the chosen method for our problem is
insu�cient, as our model comes up with in an optimal solutions for all experiments.
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8 Conclusions and recommendations

This chapter gives the conclusions and recommendations of our research. Section 8.1 answers the
main question of our research in a conclusion, Section 8.2 gives the limitations of this research, Section
8.3 provides recommendations to OCG to make the model commercially more interesting and Section
8.4 gives the recommendations for future theoretical research on this topic.

8.1 Conclusion

The main research question is:

What is the best mathematical model for the optimization of OilCO's oil and gas �ows
including dealing with disturbances?

Our model is capable of generating a 30-day schedule that optimizes OilCO's oil and gas produc-
tion and transportation. It considers OilCO's reservoirs, separation facilities, pipelines, re�neries,
terminals, storage tanks, and the gas customer while minimizing energy costs, changeover costs at
the reservoirs, inventory costs, penalties for non-satis�ed demand, penalties for deviating from the
production targets, and penalties for having less in stock than the safety stock.

The proposed model is based on an event-based time representation, which proved to have a posi-
tive impact on model performance in literature, as it decreases the number of integer variables needed
to achieve a solution, while having the same accuracy compared to a discrete time representation.
The proposed simpli�cation, based on decreasing the number of integer variables, improves model
performance by 58%. As this is substantial it shows that event-based time representation, which
requires less integer variables is indeed the best choice.

Our model deals with disturbances by solving it with di�erent parameters and comparing the
results in a what-if analysis. Moreover, by applying Robust Optimization solutions are yielded that
are, by design, more capable of dealing with disturbances. By setting parameters λ and/or ω greater
than zero gives a solution that has respectively a higher solution and/or model robustness. Increasing
solution robustness means that the solution is �closer� to optimal for the realizations of the tanker
arrivals, while increasing model robustness means that the solution is �closer to feasible� for the
realizations of the tanker arrivals. Both types of robustness are realized by varying the throughput
rates of the pipelines and pumping less oil to the terminals to prevent infeasibilities, of which the
latter causes shortages. The question is to what extend a schedule in which the throughput rates
vary heavily is realizable in practice, which is a question we cannot answer with our knowledge of
the process. Another question we cannot answer is if solution robustness is really something OilCO
wishes to achieve, as total costs have to be increased in order to decrease risk. If the answer is no,
than the risk term can be removed from the objective function, i.e., λ = 0.

The average running time of the robust model is 330 seconds if the simpli�cation is applied,
which is in line with our goal that the model should yield the optimal solution within a couple of
minutes. The sensitivity analysis shows that the solution is sensitive to changes in terminal storage
tank size, the peak e�ciency throughput of the pipelines and the cost factors, so changing these input
parameters of the model results in di�erent schedules with di�erent costs.

All in all, our research results in a model that is capable of doing what it is supposed to do with
a good performance. However, the lack of knowledge of the processes and the lack of data for the
input parameters make it impossible to determine if this model really is the best model for OilCO.
The sensitivity analysis shows that the values of certain parameters have a large in�uence on the
solution, but is also shows that our model is capable of dealing with di�erent input values.
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8.2 Limitations

Our research has the following limitations:

• The lack of direct contact with OilCO made it impossible to con�rm certain �ndings and
assumptions during the process, resulting in some uncertainties in the model. The uncertainty
in parameter values can have a impact on the model we designed in case the input parameters
are incorrect, as the sensitivity analysis showed that the solution of the model is sensitive to
changes in the parameters.

• The lack of direct contact with OilCO made it impossible to verify the solutions that are
provided by the model. Therefore, we could not adjust the model in case it provides solutions
that are impossible to realize.

• By taking the tanker arrival scenarios as �xed input for our robust model, we assumed that
OilCO has no �exibility at all in scheduling tankers, meaning that every tanker has to be
served on the moment it arrives. OilCO therefore has to be very �exible in deviating with
the throughput rates of the pipelines in order to get a robust schedule in which all demand is
ful�lled, while in reality there may be some �exibility in scheduling the tankers.

• The model was only applied on two demand test cases in this research, which is limited compared
with the numerous demand cases that are possible for OilCO. However, both a stable and a
unstable demand case are tested in the experiments. For both cases the model yields an optimal
solution in reasonable time, so we expect that the model can be applied on most demand cases
without additional problems

8.3 Recommendations

We recommend OCG the following with respect to the further development of an optimization model
for pipeline �ow scheduling that can be sold to di�erent companies:

• Try to get direct contact with an oil company to be able to verify all assumptions made during
the process on oil and gas extraction, separation, and transportation processes.

• In the what-if analysis we explained how our model can be used to schedule maintenance,
however this method is a reactive scheduling approach. It could be possible to extend to model
in order to include the scheduling of maintenance in the predictive scheduling approach of
robust optimization, as was done with the tanker arrival uncertainty. To realize this, more
research is needed on maintenance scheduling models and the manner oil companies deal with
maintenance.

• The model could be extended with the scheduling of tankers at the loading platforms, as our
research showed that the manner in which the tankers are scheduled can have a large impact
on the solution. The model then has to determine the three day windows that are given to the
tankers and the result of a certain schedule can be calculated with the current model.

• Investigate the possibilities to use the model in other industries. In literature we found an
application of pipeline �ow scheduling in water transportation, so water companies can be
potential customers for OCG.
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8.4 Future research

We suggest the following to further develop the model theoretically:

• As the energy costs are a large part of the total costs, more information is needed about the
relation between the energy costs and the throughput rate of a pipeline. In our literature review
we only considered mathematical models for pipeline �ow scheduling optimization, while there
might be more information about the energy costs of a pump to realize a certain throughput
rate in (mechanical) engineering literature. Modelling the energy costs in a more accurate
manner makes the model as a whole more accurate.

• More information is needed about how oil and gas extraction, separation, and transportation
processes work at di�erent oil companies. When we know more about these processes and the
di�erences between oil companies, the generalizability of the model can be assessed.
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Appendices

Appendix A Pipeline overview

# From To Length
(km)

Diameter
(inch)

Capacity
(kbbl/day)

Adjusted
Capacity
(kbbl/day)

1 Reservoir6 SepFac2 19.7 16 36 100
2 Reservoir5 SepFac2 unknown unknown 25 100
3 Reservoir4 SepFac2 0 unknown unknown N/A
4 SepFac2 SepFacTank2 0 unknown unknown N/A
5 SepFacTank2 Node 1 35 24 360 460
6 SepFacTank2 Node 1 35 24 360 460
7 Reservoir0 SepFac1 0 unknown unknown N/A
8 Shah SepFac1 68 12 60 60
9 Shah SepFac1 68 16 100 100
10 Reservoir3 SepFac1 80 14 100 100
11 Reservoir1 SepFac1 45 12 120 120
12 Reservoir1 SepFac1 45 16 75 75
13 SepFac1 SepFacTank1 0 unknown unknown N/A
14 SepFacTank1 Node 1 86 32 720 820
15 SepFacTank1 Node 1 86 36 420 520
16 Reservoir9 SepFac4 0 unknown unknown N/A
17 SepFac4 SepFacTank4 0 unknown unknown N/A
18 SepFacTank4 Node 1 0 unknown unknown N/A
19 Reservoir8 SepFac3 29.6 12 55 100
20 Reservoir7 SepFac3 31 20 84 150
21 SepFac3 SepFacTank3 0 unknown unknown N/A
22 SepFacTank3 Node 1 70 20 170 170
23 Node 1 Re�nery2 151 18 unknown N/A
24 Node 1 Re�nery2 395.5 48 1500 1500
25 TerminalTank2 Terminal2 0 unknown unknown N/A
26 Node 1 Node 2 112 32 640 640
27 Node 1 Node 2 112 36 924 924
28 Node 1 Node 2 112 24 312 312
29 Node 2 Re�nery1 unknown unknown unknown N/A
30 Node 2 TerminalTank1 unknown unknown unknown N/A
31 TerminalTank1 Terminal1 0 unknown unknown N/A

Table 8: Overview of all oil pipelines in OilCO's network
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Appendix B Model notation

Sets/indices

A - Assets, with a, a′ ∈ A

R - Reservoirs (1,2,...,10), with r ∈ R and R ⊂ A

SF - Separation Facilities (1,2,3,4), with sf ∈ SF and SF ⊂ A

P - Pipelines for oil (1,2,...,34), with p ∈ P

EP - Pipelines of which the energy costs are relevant, with ep ∈ EP and EP ⊂ P

T - Terminals (1,2), with te ∈ TE and TE ⊂ A

RF - Re�nery (1,2) with rf ∈ RF and RF ⊂ A

ST - Storage tanks (1,2,...,6) with st ∈ ST and ST ⊂ A

T - Time period (1,2,...,nt) with t ∈ T

D - Days (1,2,...,30) with d ∈ D

N - Pipeline nodes n ∈ N and N ⊂ A

L - Line segments of the piecewise linear function, with l ∈ L

C - Pipeline connections, which are pairs such that pipeline p connects asset a to asset a'

Td - Set of time periods that are in day d, with Td ⊂ T

Parameters

nt = Number of time periods

durt = Duration of time period t in hours

rmaxr = Max gas/oil production rate of reservoir r in bbl/h

rminr = Min gas/oil production rate of reservoir r in bbl/h

gorr = Gas-oil ratio of reservoir r ( volume of gas
volume of oil )

oilpr = Oil fraction of the reservoir r (volume of oil
total volume )

planr,d = Production target of reservoir r on day d in bbl

PRr,0 = Current oil production rate of reservoir r in bbl/h

srmaxsf = Maximum separation capacity of separation facility sf in bbl/h

avsf,t = Availability of separation facility sf during time period t in %
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oilloss = Percentage of oil that is lost in the separation process

pcapp = Maximum throughput of pipeline p in bbl/h

avap,t = Availability of pipeline p during time period t in %

rdemrf,t = Demanded volume in bbl of re�nery rf in time period t

SHRrf,0 = Current total shortage of re�nery rf in bbl

gdemd = Demanded volume in bbl of BuyGas on day d

tdemte,t = Demanded volume in bbl of terminal te in time period t

SHTte,0 = Current total shortage of terminal te in bbl

mininvst = Minimum inventory of storage tank st in bbl

maxinvst = Maximum inventory of storage tank st in bbl

safinvst = Safety stock of storage tank st in bbl

Ist,0 = Current inventory of storage tank st in bbl

eap = Constant that is used for calculating the e�ciency of pipeline p

ebp = Constant that is used for calculating the e�ciency of pipeline p

ecp = Constant that is used for calculating the e�ciency of pipeline p

edp = Constant that is used for calculating the e�ciency of pipeline p

cshtte = Costs of one bbl of shortage at terminal t in USD

cshrrf = Costs of one bbl of shortage at re�nery rf in USD

ccr = Changeover costs of a changeover at reservoir r in USD

cdevr = Costs for deviating from the production plan at reservoir r in USD

cinvst = Costs for holding one bbl of oil in stock for one hour at storage tank st in USD

sspst = Safety stock penalty per bbl under safety stock at storage tank st in USD

cap = Variable pumping costs at pipeline p in USD

cbp = Constant pumping costs at pipeline p in USD

csqp = Cost factor of the squared positive deviation from the peak e�ciency throughput at
pipeline p in USD

TH∗p = Peak e�ciency throughput of pipeline p

THmax
p = Zero e�ciency throughput of pipeline p

EFF ∗p = Maximum e�ciency of pipeline p
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brpp,t,l = Value of PTDp,t at the breakpoint at the end of line l

sbrpp,t,l = Value of SPTDp,t at the breakpoint at the end of line l

M = Big M, an auxiliary parameter

Decision Variables

PRr,t = Production rate of oil of reservoir r in bbl/h in time period t in bbl/h (Continuous)

SRsf,t = Separation rate of separation facility sf during time period t in bbl/h (Continuous)

THp,t = Throughput of pipeline p in time period t in bbl/h (Continuous)

Auxiliary Variables

DEVr,d = Deviation from the production target at reservoir r on day d in bbl (Continuous)

GASd = Gas extracted from the non-associated gas �eld on day d in cf (Continuous)

GFRsf,t = Gas �ow rate after separation in separation facility sf during time period t in cf/h
(Continuous)

ENp,t = Energy costs in USD at pipeline p during time period t (Continuous)

EFFp,t = E�ciency of the pumps at pipeline p during time period t (Continuous)

PTDp,t = Positive throughput deviation from TH∗p in time period t in bbl/h (Continuous)

SPTDp,t = Squared positive throughput deviation from TH∗p in (bbl/h)2 (Continuous)

λp,t,l = Weight of the break point at the end of line l at pipeline p during time period t (Con-
tinuous)

SHTte,t = Total shortage at terminal te at the end of time period t in bbl (Continuous)

SHRrf,t = Total shortage at re�nery rf at the end of time period t in bbl (Continuous)

Ist,t = Inventory of storage tank st at the end of time period t in bbl (Continuous)

AIst,t = Average inventory of storage tank st during time period t in bbl (Continuous)

BSSst,t = Volume in bbl that the stock level at storage tank st is below the safety stock at the
end of time period t (Continuous)

CHr,t = 1 if there is a changeover in production rate of reservoir r between time period t and
time period t-1 (Binary)
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Additional declarations for robust model

Sets/indices

S - Scenarios, sample of a tanker delay scenario that is used in the model, with s ∈ S and
S ⊂ Ω

CST - Control storage tanks, which are the storage tanks at the terminals, with cst ∈ CST and
CST ⊂ ST

CP - Control pipelines, which are the pipelines that connect terminal tanks to the terminals,
with cp ∈ CP and CP ⊂ P

Ω - Set of all possible tanker arrival scenarios.

Parameters

tdems
te,t = Demanded volume in bbl of terminal te in time period t of scenario s

penst = Penalty in USD per bbl for violating the maximum inventory of storage tank st (with
st ∈ CST )

ω = Parameter that is used to make a trade-o� between model robustness and solution
robustness in the objective function

λ = Parameter that is used to make a trade-o� between the sample average and sample
variance in the objective function

Variables

Zs
st,t = Auxiliary variable to measure tank capacity violation of storage tank st (with st ∈ CST )

in time period t of scenario s in bbl (Continuous)

THs
p,t = Throughput of pipeline p (with p ∈ CP ) in time period t of scenario s in bbl/h (Con-

tinuous)

SHT s
te,t = Total shortage at terminal te at the end of time period t of scenario s in bbl (Continuous)

Isst,t = Inventory of storage tank st (with st ∈ CST ) at the end of time period t of scenario s
in bbl (Continuous)

AIsst,t = Average inventory of storage tank st (with st ∈ CST ) during time period t of scenario
s in bbl (Continuous)

BSSs
st,t = Volume in bbl that the stock level at storage tank st (with st ∈ CST ) is below the

safety stock at the end of time period t of scenario s (Continuous)

ξs = Objective function of scenario s (Continuous)
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Appendix C Energy costs analysis

In this analysis we want to �nd out the relation between the throughput rate of a pipeline and
the associated energy costs by creating an example of a pump based on the work of Rejowski &
Pinto (2008) and Abbasi & Garousi (2010). According to these authors an important variable in
calculating the energy costs is the e�ciency of the pumps at a pipeline. Here, variable EFFp,t

denotes the e�ciency of the pumps at pipeline p during time period t. This e�ciency is a function
of the throughput (THp,t) at pipeline p during time period t. Rejowski & Pinto (2008) and Abbasi
& Garousi (2010) propose a third degree polynomial to describe this function, which (38) shows.

EFFp,t = eap TH
3
p,t + ebp TH

2
p,t + ecp THp,t + edp ∀p ∈ EP ; t ∈ T (38)

The parameters eap, ebp, ecp, and edp are constants that depend on the characteristics of the
pumps at pipeline p, where we assume that for each pipeline only one type of pump is used (see
Section 4.2). Rejowski & Pinto (2008) state that the parameters eap, ebp, ecp, and edp can be
requested at the pump manufacturer and give two examples for values of the parameters. We cannot
use this approach as we have no contact with OilCO's pump manufacturers. Abbasi & Garousi (2010)
estimate the parameters eap, ebp, ecp, and edp using extra parameters, for which they de�ne EFF ∗p
as the peak e�ciency of pipeline p, which is the maximum e�ciency that the pumps at pipelinep can
realize. TH∗p is de�ned as the peak e�ciency throughput of pipeline p, which is the throughput rate
at which the peak e�ciency is achieved. Since edo = 0 they approximate the e�ciency with a cubic
approximation as in (38) that goes through the points (0, 0), (TH∗p , EFF

∗
p ) and (THmax

p , 0), where
THmax

p is the throughput rate associated with the point where the e�ciency is 0 again at pipeline
p (zero e�ciency point). When EFF ∗p , TH

∗
p , and TH

max
p are known, the constants in (38) can be

calculated by Equations (39)-(41).

eap =
EFF ∗p (2TH∗p − THmax

p )

−(TH∗p )2(THmax
p − TH∗p )2

∀p ∈ EP (39)

ebp =
−EFF ∗p (3 (TH∗p )2 − (THmax

p )2)

−(TH∗p )2(THmax
p − TH∗p )2

∀p ∈ EP (40)

ecp =
EFF ∗p TH

∗
p TH

max
p (3TH∗p − 2THmax

p )

−(TH∗p,)
2(THmax

p − TH∗p )2
∀p ∈ EP (41)

Abbasi & Garousi (2010) state that THmax
p is close to 2TH∗p . We have no information on what

values for EFF ∗p , TH
∗
p , and TH

max
p the pumps at OilCO have, so we illustrate an example to see what

the relation between the throughput rate and the energy consumed is. According to the example
pumps modelled by Rejowski & Pinto (2008), EFF ∗p lies around 0.70. Unlike Abbasi & Garousi
(2010), Rejowski & Pinto (2008) do not assume that edp = 0, since assuming that edp = 0 causes
unrealistic behavior of energy costs when the e�ciency is close to 0 (e�ciency is in the denominator
of the function). To eliminate these large di�erences we need edp to be larger than 0, therefore we
use edp = 0.25 in our example for illustration. To get the top of our e�ciency curve at 0.70, EFF ∗p =
0.70 − 0.25 = 0.45. We show an example where TH∗p = 100, THmax

p = 200 (so THmax
p = 2TH∗p ),

and EFF ∗p = 0.45. We choose this values, because these result in a good illustration of the relation
between the throughput and energy costs, while they are plausible according to Rejowski & Pinto
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(2008) and Abbasi & Garousi (2010). These values result in eap = 0 (because THmax
p = 2TH∗p ),

ebp = −0.000045, and ecp = 0.009.
Rejowski & Pinto (2008) propose (42) to calculate the energy costs, so the energy costs depend on

the throughput rate of a pipeline, a cost factor (cap) for pipeline p and the e�ciency of the pipeline.
This equation is non-linear, because a variable is divided by another variable. We can replace EFFp,t

in (42) by its de�nition given in (38) of which (43) shows the result in which the energy costs just
depend on one variable: the throughput rate.

ENp,t =
cap THp,t

EFFp,t
∀p ∈ EP ; t ∈ T (42)

ENp,t =
cap THp,t

eap TH3
p,t + ebp TH2

p,t + ecp THp,t + edp
∀p ∈ EP ; t ∈ T (43)

Figure 22 shows the e�ciency of this pump of di�erent values of THp,t, as calculated by (38).
Parameter TH∗p is denoted by the vertical dashed line.

Figure 22: The e�ciency curve of the example pump

We calculate the energy costs for di�erent values of THp,t using (43). In this example cap = 1.8,
because this leads to a clear example of the relation between throughput and energy costs. Figure
6 in Section 4.5.1 shows the energy costs for di�erent values of THp,t. We now have an idea of the
relation between the throughput rate and the associated energy costs.
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Appendix D Deterministic model

min
∑
p,t

durtENp,t +
∑
r,t

ccr CHr,t +
∑
st,t

cinvst durtAIst,t +
∑
st,t

sspstBSSst,t

+
∑
te,t

cshtte SHTte,t +
∑
rf,t

cshrrf SHRrf,t +
∑
r,d

cdevrDEVr,d

s.t.
Operational constraints

PRr,t =
∑

(p,a)|(r,p,a)∈C

THp,t ∀r ∈ R; t ∈ T

rminr availr,t ≤PRr,t ≤ rmaxr availr,t ∀r ∈ R; t ∈ T∑
(r,p)|(r,p,sf)∈C

THp,t = SRsf,t ∀sf ∈ SF ; t ∈ T

∑
(r,p)|(r,p,sf)∈C

THp,t gorr = GFRsf,t ∀sf ∈ SF ; t ∈ T

SRsf,t ≤ srmaxsf avsf,t ∀sf ∈ SF ; t ∈ T

(1− oilloss)SRsf,t =
∑

(p,a)|(sf,p,a)∈C

THp,t ∀sf ∈ SF ; t ∈ T

pminp avap,t ≤ THp,t ≤ pmaxp avap,t ∀p ∈ P ; t ∈ T∑
(a,p)|(a,p,n)∈C

THp,t =
∑

(p,a)|(n,p,a)∈C

THp,t ∀n ∈ N ; t ∈ T

Ist,t = Ist,t−1 +
∑

(a,p)|(a,p,st)∈C

THp,t durt −
∑

(p,a)|(st,p,a)∈C

THp,t durt ∀st ∈ ST ; t ∈ T

mininvst ≤ Ist,t ≤ maxinvst ∀st ∈ ST ; t ∈ T∑
(a,p,tp)|(a,p,rf)∈C

THp,t durt = rdemrf,t − SHRrf,t + SHRrf,t−1 ∀rf ∈ RF ; t ∈ T

∑
(a,p)|(a,p,te)∈C

THp,t durt = tdemte,t − SHTte,t + SHTte,t−1 ∀te ∈ TE; t ∈ T

∑
(sf,t)|t∈Td=1

GFRsf,t durt +GASd ≥ gdemd ∀d ∈ D
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Auxiliary constraints

AIst,t =
Ist,t + Ist,t−1

2
∀st ∈ ST ; t ∈ T

PTDp,t ≥ THp,t − TH∗p ∀p ∈ EP ; t ∈ T
PTDp,t ≥ 0 ∀p ∈ EP ; t ∈ T∑

l

λp,t,l sbrpp,t,l = SPTDp,t ∀p ∈ EP ; t ∈ T∑
l

λp,t,l brpp,t,l = PTDp,t ∀p ∈ EP ; t ∈ T∑
l

λp,t,l = 1 ∀p ∈ EP ; t ∈ T

ENp,t = cap THp,t + cbp + csqp SPTDp,t ∀p ∈ EP ; t ∈ T
(PRr,t − PRr,t−1) ≤ CHr,tM ∀r ∈ R; t ∈ T ; t > 1

(PRr,t−1 − PRr,t) ≤ CHr,tM ∀r ∈ R; t ∈ T ; t > 1

(PRr,t − curpr) ≤ CHr,tM ∀r ∈ R; t ∈ T ; t = 1

(curpr − PRr,t) ≤ CHr,tM ∀r ∈ R; t ∈ T ; t = 1

DEVr,d ≥ planr,d −
∑
t∈Td

PRr,t durt ∀r ∈ R; d ∈ D

DEVr,d ≥
∑
t∈Td

PRr,t durt − planr,d ∀r ∈ R; d ∈ D

BSSst,t ≥ safinvst − Ist,t ∀st ∈ ST ; t ∈ T
BSSst,t ≥ 0 ∀st ∈ ST ; t ∈ T
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Appendix E Robust model

min
∑
p,t

durtENp,t +
∑
r,t

ccr CHr,t +
∑
rf,t

cshrrf SHRrf,t

+
∑
r,d

cdevrDEVr,d +
∑

st/∈CST,t

sspstBSSst,t +
∑

st/∈CST,t

cinvst durtAIst,t

+
1

|S|
∑
s

(
∑

st∈CST,t

sspstBSS
s
st,t +

∑
st∈CST,t

cinvst durtAI
s
st,t +

∑
te,t

cshtte SHT
s
te,t)

+λ
1

|S|
∑
s

|
∑

st∈CST,t

sspstBSS
s
st,t

∑
st∈CST,t

cinvst durtAI
s
st,t +

∑
te,t

cshtte SHT
s
te,t

− 1

|S|
∑
s′

(
∑

st∈CST,t

sspstBSS
s′

st,t +
∑

st∈CST,t

cinvst durtAI
s′

st,t +
∑
te,t

cshtte SHT
s′

te,t)|

+ω
1

|S|
∑
s

(
∑

st∈CST,t

penst Z
s
st,t)

s.t.
Operational constraints

PRr,t =
∑

(p,a)|(r,p,a)∈C

THp,t ∀r ∈ R; t ∈ T

rminr availr,t ≤ PRr,t ≤ rmaxr availr,t ∀r ∈ R; t ∈ T∑
(r,p)|(r,p,sf)∈C

THp,t = SRsf,t ∀sf ∈ SF ; t ∈ T

∑
(r,p)|(r,p,sf)∈C

THp,t gorr = GFRsf,t ∀sf ∈ SF ; t ∈ T

SRsf,t ≤ srmaxsf avsf,t ∀sf ∈ SF ; t ∈ T

(1− oilloss)SRsf,t =
∑

(p,a)|(sf,p,a)∈C

THp,t ∀sf ∈ SF ; t ∈ T

pminp avap,t ≤ THp,t ≤ pmaxp avap,t ∀p ∈ P ; t ∈ T∑
(a,p)|(a,p,n)∈C

THp,t =
∑

(p,a)|(n,p,a)∈C

THp,t ∀n ∈ N ; t ∈ T

Ist,t = Ist,t−1 +
∑

(a,p)|(a,p,st)∈C

THp,t durt −
∑

(p,a)|(st,p,a)∈C

THp,t durt ∀st ∈ ST ; t ∈ T

Isst,t = Isst,t−1 +
∑

(a,p)|(a,p,st)∈C

THp,t durt −
∑

(p,a)|(st,p,a)∈C∧p∈CP

THs
p,t durt ∀st ∈ ST ; t ∈ T ; s ∈ S
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mininvst ≤ Ist,t ≤ maxinvst ∀st ∈ ST ; t ∈ T
mininvst ≤ Isst,t ≤ maxinvst + Zs

st,t ∀st ∈ CST ; t ∈ T ; s ∈ S∑
(a,p,tp)|(a,p,rf)∈C

THp,t durt = rdemrf,t − SHRrf,t + SHRrf,t−1 ∀rf ∈ RF ; t ∈ T

∑
(a,p)|(a,p,te)∈C

THs
p,t durt = tdems

te,t − SHT s
te,t + SHT s

te,t−1 ∀te ∈ TE; t ∈ T ; s ∈ S

∑
(sf,t)|t∈Td

GFRsf,t durt +GASd ≥ gdemd ∀d ∈ D

Auxiliary constraints

AIst,t =
Ist,t + Ist,t−1

2
∀st /∈ CST ; t ∈ T

AIsst,t =
Isst,t + Isst,t−1

2
∀st ∈ CST ; t ∈ T ; s ∈ S

PTDp,t ≥ THp,t − TH∗p ∀p ∈ EP ; t ∈ T
PTDp,t ≥ 0 ∀p ∈ EP ; t ∈ T∑

l

λp,t,l sbrpp,t,l = SPTDp,t ∀p ∈ EP ; t ∈ T∑
l

λp,t,l brpp,t,l = PTDp,t ∀p ∈ EP ; t ∈ T∑
l

λp,t,l = 1 ∀p ∈ EP ; t ∈ T

ENp,t = cap THp,t + cbp + csqp SPTDp,t ∀p ∈ EP ; t ∈ T

(PRr,t − PRr,t−1) ≤ CHr,tM ∀r ∈ R; t ∈ T ; t > 1

(PRr,t−1 − PRr,t) ≤ CHr,tM ∀r ∈ R; t ∈ T ; t > 1

DEVr,d ≥ planr,d −
∑
t∈Td

PRr,t durt ∀r ∈ R; d ∈ D

DEVr,d ≥
∑
t∈Td

PRr,t durt − planr,d ∀r ∈ R; d ∈ D

BSSs
st,t ≥ safinvst − Isst,t ∀st /∈ CST ; t ∈ T ; ∀s ∈ S

BSSs
st,t ≥ 0 ∀st /∈ CST ; t ∈ T ; ∀s ∈ S

BSSst,t ≥ safinvst − Ist,t ∀st ∈ ST ; t ∈ T
BSSst,t ≥ 0 ∀st ∈ ST ; t ∈ T
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Appendix F Number of breakpoints required for the piecewise

linear approximation

In this appendix we determine the number of breakpoints required for the piecewise linear approxi-
mation of the energy costs. The more breakpoints we use for the approximation, the more accurate
our approximation is, but the longer it takes to solve the model. We perform an analysis for 1 to 25
breakpoints in the model to see where the �optimum� lies. In the analysis we keep an equal distance
between the breakpoints in terms of throughput. We solve the model for the stable demand case.
The approximation yields energy costs that are higher than in reality, since we approximate a convex
function. Per solution we calculate the �real� energy costs for the yielded solution to examine if the
model �nds a better solution. Figure 23 shows the real energy costs and the CPU time required to
solve the model for a di�erent number of breakpoints.

Figure 23: Energy costs and CPU time for a di�erent number of breakpoints

The �gures show that the real energy costs decrease as the number of breakpoints increases.
The real energy costs, however, slightly increase if the number of breakpoints is 23 or more, since
the model yields a di�erent solution. The CPU time needed globally increases with the number
of breakpoints, although sometimes adding a single breakpoint can decrease CPU time. We add a
breakpoint if adding the breakpoint improves the approximation by 5% or more. When the number
of breakpoints is 11 an additional breakpoint does not improve the approximation by more than 5%
(only 3,6%). Therefore, we choose to take 11 breakpoints in our approximation. If CPU time was
less an issue, we could take more breakpoints. For example, if our critical value is 1% a number of
22 breakpoints is yielded.
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Appendix G Number of scenarios required in the robust model

In this appendix we determine the number of scenarios that we require in our sample set S in order for
the solution of robust model to be signi�cant. We do this by solving the robust model for a di�erent
number of scenarios and see to what extend the costs associated with the design variables change.
Adding extra scenarios increases the solving time of the model, so we want to include as less scenarios
as possible. If adding an extra scenario does not change the design variable costs signi�cantly any
more, then we have the number of scenarios needed. To be certain the number of scenarios applies
is enough for all instances of the model, we take an instance for which we expect the design variable
costs to vary the most. Therefore, we perform the experiment with the unstable demand case with
ω = 100. Figure 24 shows the design variable costs for a number of scenarios that ranges from 1 to
100.

Figure 24: Total costs for a di�erent number of scenarios

The �gure shows that the costs �uctuate when the number of scenarios is low. When the number
of scenarios is more than 80 (the vertical red dashed line), the total costs are more or less stable.
Between 80 and 100 scenarios the decrease in total costs is around 265 USD, which is less than 1%
of total costs. Therefore, we use 80 scenarios in our experiments.
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Appendix H Division of costs in the results of the stable de-

mand case

Model λ ω Energy costs Inventory costs Safety stock
penalties

Terminal
shortage
penalties

Det. N/A N/A 2,375.91 24.63 4.53 -
Robust 0 0 2,375.91 27.03 1.68 -
Robust 0 1 2,375.91 27.03 1.68 -
Robust 0 10 2,375.91 27.03 1.68 1.48
Robust 0 100 2,375.91 27.03 1.82 1.93
Robust 0 1,000 2,572.14 27.03 4.23 -
Robust 1 0 2,572.14 27.03 4.23 -
Robust 1 1 2,572.14 27.03 4.21 2.25
Robust 1 10 2,571.99 27.03 4.42 3.21
Robust 1 100 3,037.18 27.03 11.01 -
Robust 1 1,000 3,036.42 27.03 10.48 -
Robust 10 0 3,033.43 27.03 10.42 4.42
Robust 10 1 3,032.37 27.03 10.38 6.81
Robust 10 10 4,179.78 27.03 15.51 -
Robust 10 100 4,179.14 27.03 15.51 -
Robust 10 1,000 4,179.14 27.03 15.51 8.05
Robust 100 0 4,179.78 27.03 16.16 10.35
Robust 100 1 5,504.68 27.03 18.83 479.21
Robust 100 10 5,486.41 27.03 18.66 1.17
Robust 100 100 5,486.65 27.03 18.68 7.89
Robust 100 1,000 5,486.71 27.03 19.30 12.84

Table 9: Division of total costs over the di�erent cost components for the stable demand case
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Appendix I Division of costs in the results of the unstable de-

mand case

Model λ ω Energy
costs

Change-
over
costs

Prod.
plan

deviation
penalties

Safety
stock

penalties

Inven-
tory
costs

Terminal
shortage
penalties

Det. N/A N/A 13,405.75 10,000 2,883.00 89.96 18.17 141.57
Robust 0 0 12,083.10 10,000 2,883.00 90.27 22.56 137.44
Robust 0 1 12,261.48 10,000 2,883.00 89.94 22.56 0.19
Robust 0 10 12,261.22 10,000 2,883.00 90.66 22.56 10.91
Robust 0 100 12,261.12 10,000 2,883.00 90.90 22.56 11.88
Robust 0 1,000 12,805.94 10,000 2,883.00 78.64 22.56 247.32
Robust 1 0 13,112.63 10,000 2,883.00 77.00 22.56 1.59
Robust 1 1 13,114.02 10,000 2,883.00 76.87 22.56 10.94
Robust 1 10 13,113.30 10,000 2,883.00 76.45 22.56 14.13
Robust 1 100 14,449.60 10,000 2,766.46 78.35 22.30 945.29
Robust 1 1,000 14,430.14 10,000 2,870.68 78.24 22.53 319.44
Robust 10 0 14,605.53 10,000 2,883.00 76.56 22.56 535.35
Robust 10 1 14,604.14 10,000 2,883.00 77.32 22.56 540.98
Robust 10 10 22,318.03 10,000 2,174.32 72.72 20.99 21,971
Robust 10 100 22,129.69 10,000 2,174.32 75.80 20.98 12,066
Robust 10 1,000 22,483.13 10,000 2,216.37 102.76 21.08 14,396
Robust 100 0 22,477.47 10,000 2,216.37 694.21 21.08 13,816
Robust 100 1 37,916.09 - - 157.53 16.24 164,771
Robust 100 10 37,691.47 - - 160.66 16.21 137,388
Robust 100 100 33,756.97 10,000 1,552.40 67.59 19.87 256,497
Robust 100 1,000 34,130.91 10,000 1,552.40 6,231 19.86 249,699

Table 10: Division of total costs over the di�erent cost components for the unstable demand case
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Appendix J Sensitivity analysis: storage tank size based on

average daily volume

We multiply the volumes of Table 7 by 1, 1.5, 2, 2.5, 3, 3.5, and, 4 and solve the model for both
cases with both ω = 0 and ω = 100. Figure 25 shows the results in the total costs, infeasibility
percentage, CPU time, and average violations per infeasible scenario. All the graphs look similar to
the graphs of Figure 19, which is another proof that the in�uence of the terminal storage tank size
on the model is larger than the in�uence of the separation tank size. In case the tank sizes are equal
to the daily average volumes in the stable demand case, there are again changeovers at Reservoir9
and Reservoir0 in the solution. In Section 7.2.1 the changeovers were caused by the di�erences in
daily average volumes between the separation facility storage tanks. In this experiment the storage
tank sizes are proportional to the daily average volumes, so the changeovers have other causes. Since
the storage tanks in this case are relatively small, throughput rates have to �uctuate more in order
to get a feasible solution. Fluctuating in throughput rate is expensive, as we saw in Section 6.3.2,
meaning that it is cheaper to produce more at the reservoir that is closest to Node 1 (Reservoir9) and
produce less at reservoirs that are farther away to save energy costs, even though two changeovers
are needed. In the unstable case for ω = 100 when the storage tanks sizes are equal to the daily
average volumes, even three changeovers occur in the solution to deal with the peak in demand. No
changeovers occur in the unstable case if the storage tank sizes are at least 3 times the daily average
volumes, while no changeovers occur if the storage tank sizes are at least 1.5 times the daily average
volumes for the stable case.

Figure 25: Storage tank volumes based on average daily volume experiment results
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Appendix K Sensitivity analysis: peak e�ciency throughput

as a percentage of the pipeline capacity

We solve the model for both cases, for ω = 0 and ω = 100, and for the mentioned values of the peak
e�ciency throughput. Figure 26 shows the energy costs, CPU time, infeasibility percentage, and
average violation per infeasible scenario. The energy costs �gure looks the same as in Figure 20 with
the only di�erence that the energy costs for 40% and 50% are much higher, which is because the
average utilization of a pipeline is more than 30% and 20% above the peak e�ciency throughput. It
is important to note that the average utilization of the di�erent pipelines in experiments of Section
7.3.1 varies from 36% to 81%, so in case the peak e�ciency throughput as a percentage of pipeline
capacity is increased from 40% to 80% more pipelines have an average throughput rate that is below
the peak e�ciency throughput. The �gures for infeasibility percentage and the average violation
per infeasible scenario for ω = 100 are similar to Figure 20, because �uctuating in throughput rate
becomes cheaper as the peak e�ciency throughput increases, which allows that more infeasibilities
are avoided for ω = 100. In Section 7.3.1 we concluded that �uctuations in throughput can have
both a positive and negative e�ect on model robustness when ω = 0. Figure 26 shows that the
e�ect in this case is positive for the unstable case as both the infeasibility percentage as the average
violation per infeasible scenario decreases, while the e�ect is neutral for the stable case. The CPU
time decreases as the peak e�ciency throughput is increased for the stable case with ω=100, which
might be caused by the fact that the non-linear part of the energy cost function is approximated in
less time periods. For the other experiments the CPU time is more or less stable. Just as Section
7.3.1 we can conclude that also in this case the peak e�ciency throughput has a high in�uence on
the model as it in�uences both total costs and the solution in terms of throughput rates. The e�ect
on model robustness in the experiments with ω = 100 is again small.

Figure 26: Peak e�cient �ow as a percentage of the pipeline capacity results
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Appendix L Terminal shortage cost factor sensitivity analysis

results

Case Omega Terminal
shortage
cost factor

Total costs Terminal
shortage
costs

Prod.
plan

deviation
penalties

Changeover
costs

Energy
costs

Stable 0 20 2,405 - - - 2,376
Stable 0 10 2,405 - - - 2,376
Stable 0 4 2,405 - - - 2,376
Stable 0 2 2,405 - - - 2,376
Stable 0 0.8 2,405 - - - 2,376
Stable 0 0.4 2,334 140 - - 2,165
Stable 100 20 4,222 - - - 4,180
Stable 100 10 4,222 - - - 4,180
Stable 100 4 4,221 30 - - 4,149
Stable 100 2 4,217 33 - - 4,141
Stable 100 0.8 4,301 238 - - 4,020
Stable 100 0.4 4,465 899 - - 3,518

Unstable 0 20 25,216 90 2,883 10,000 12,083
Unstable 0 10 25,102 203 2,883 10,000 11,903
Unstable 0 4 24,817 542 2,883 10,000 11,281
Unstable 0 2 24,260 7,670 - - 16,371
Unstable 0 0.8 17,884 6,293 - - 11,365
Unstable 0 0.4 13,700 5,263 - - 8,222
Unstable 100 20 56,557 21,971 2,174 10,000 22,318
Unstable 100 10 56,633 23,280 2,037 10,000 21,223
Unstable 100 4 52,340 29,975 - - 22,188
Unstable 100 2 41,960 23,682 - - 18,099
Unstable 100 0.8 29,959 15,417 - - 14,363
Unstable 100 0.4 22,825 10,493 - - 12,164

Table 11: Terminal shortage cost factor sensitivity analysis results
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Appendix M Re�nery shortage cost factor sensitivity analysis

results

Case Omega Re�nery
shortage
cost factor

Total costs Re�nery
shortage
costs

Prod.
plan

deviation
penalties

Changeover
costs

Energy costs

Stable 0 40 2,405 - - - 2,376
Stable 0 20 2,405 - - - 2,376
Stable 0 8 2,405 - - - 2,376
Stable 0 4 2,405 - - - 2,376
Stable 0 1.6 2,405 - - - 2,376
Stable 0 0.8 2,405 - - - 2,376
Stable 100 40 4,222 - - - 4,180
Stable 100 20 4,222 - - - 4,180
Stable 100 8 4,222 - - - 4,180
Stable 100 4 4,222 - - - 4,180
Stable 100 1.6 4,222 29 - - 4,151
Stable 100 0.8 4,243 43 - - 4,157

Unstable 0 40 25,216 - 2,883 10,000 12,083
Unstable 0 20 25,216 - 2,883 10,000 12,083
Unstable 0 8 25,216 - 2,883 10,000 12,083
Unstable 0 4 25,216 - 2,883 10,000 12,083
Unstable 0 1.6 25,193 43 2,883 10,000 12,048
Unstable 0 0.8 25,129 136 2,883 10,000 11,997
Unstable 100 40 56,557 - 2,174 10,000 22,318
Unstable 100 20 56,557 - 2,174 10,000 22,318
Unstable 100 8 56,557 - 2,174 10,000 22,318
Unstable 100 4 59,979 8,807 2,104 10,000 22,286
Unstable 100 1.6 59,167 12,895 - - 29,321
Unstable 100 0.8 54,814 11,997 - - 26,012

Table 12: Re�nery shortage cost factor sensitivity analysis results
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Appendix N Changeover cost factor sensitivity analysis results

Case Omega Changeover
cost factor

Total costs Changeover
costs

Prod.
plan

deviation
penalties

Re�nery
shortage
costs

Energy costs

Stable 0 10000 2,405 - - - 2,376
Stable 0 5000 2,405 - - - 2,376
Stable 0 2000 2,405 - - - 2,376
Stable 0 1000 2,405 - - - 2,376
Stable 0 400 2,405 - - - 2,376
Stable 0 200 2,405 - - - 2,376
Stable 100 10000 4,222 - - - 4,180
Stable 100 5000 4,222 - - - 4,180
Stable 100 2000 4,222 - - - 4,180
Stable 100 1000 4,222 - - - 4,180
Stable 100 400 4,222 - - - 4,180
Stable 100 200 4,222 - - - 4,180

Unstable 0 10000 25,216 10,000 2,883 - 12,083
Unstable 0 5000 20,216 5,000 2,883 90 12,083
Unstable 0 2000 17,216 2,000 2,883 90 12,083
Unstable 0 1000 15,715 2,000 1,341 108 12,140
Unstable 0 400 14,515 800 1,341 108 12,140
Unstable 0 200 14,057 800 1,559 95 11,581
Unstable 100 10000 56,557 10,000 2,174 - 22,318
Unstable 100 5000 51,557 5,000 2,174 73 22,318
Unstable 100 2000 48,557 2,000 2,174 73 22,318
Unstable 100 1000 47,313 2,000 1,194 80 22,049
Unstable 100 400 46,113 800 1,194 80 22,049
Unstable 100 200 45,713 400 1,194 80 22,049

Table 13: Changeover cost factor sensitivity analysis results
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Appendix O Production plan deviation penalty factor sensi-

tivity analysis results

Case Omega Prod. plan
deviation
penalty
factor

Total costs Prod. plan
deviation
penalties

Energy costs Changeover costs

Stable 0 1 2,405 - 2,376 -
Stable 0 0.5 2,405 - 2,376 -
Stable 0 0.2 2,405 - 2,376 -
Stable 0 0.1 2,405 - 2,376 -
Stable 0 0.04 2,405 - 2,376 -
Stable 0 0.02 2,405 - 2,376 -
Stable 100 1 4,222 - 4,180 -
Stable 100 0.5 4,222 - 4,180 -
Stable 100 0.2 4,222 - 4,180 -
Stable 100 0.1 4,222 - 4,180 -
Stable 100 0.04 4,222 - 4,180 -
Stable 100 0.02 4,222 - 4,180 -

Unstable 0 1 25,216 2,883 12,083 10,000
Unstable 0 0.5 23,775 1,442 12,083 10,000
Unstable 0 0.2 22,910 577 12,083 10,000
Unstable 0 0.1 22,622 288 12,083 10,000
Unstable 0 0.04 22,449 115 12,083 10,000
Unstable 0 0.02 22,391 58 12,083 10,000
Unstable 100 1 56,557 2,174 22,318 10,000
Unstable 100 0.5 55,350 1,209 22,079 10,000
Unstable 100 0.2 54,611 577 21,986 10,000
Unstable 100 0.1 54,323 288 21,986 10,000
Unstable 100 0.04 54,150 115 21,986 10,000
Unstable 100 0.02 54,093 58 21,986 10,000

Table 14: Production plan deviation penalty factor sensitivity analysis results
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Appendix P Inventory cost factor sensitivity analysis results

Case Omega Inventory
cost factor

Total costs Inventory
costs

Safety
stock

penalties

Energy costs

Stable 0 0.0001 2,405 27 2 2,376
Stable 0 0.0002 2,433 54 3 2,376
Stable 0 0.0005 2,519 135 8 2,376
Stable 0 0.001 2,663 270 17 2,376
Stable 0 0.0025 3,091 676 36 2,379
Stable 0 0.005 3,802 1,352 67 2,383
Stable 100 0.0001 4,222 27 16 4,180
Stable 100 0.0002 4,264 54 31 4,179
Stable 100 0.0005 4,392 135 78 4,179
Stable 100 0.001 4,597 270 151 4,176
Stable 100 0.0025 5,205 676 358 4,171
Stable 100 0.005 6,177 1,352 666 4,160

Unstable 0 0.0001 25,216 23 90 12,083
Unstable 0 0.0002 25,328 45 179 12,084
Unstable 0 0.0005 25,661 113 433 12,095
Unstable 0 0.001 26,193 226 819 12,128
Unstable 0 0.0025 27,690 564 1,843 12,277
Unstable 0 0.005 29,997 1,128 3,249 12,634
Unstable 100 0.0001 56,557 21 73 22,318
Unstable 100 0.0002 56,649 42 144 22,318
Unstable 100 0.0005 56,917 105 353 22,314
Unstable 100 0.001 57,372 210 702 22,316
Unstable 100 0.0025 58,681 535 1,526 22,295
Unstable 100 0.005 60,456 1,129 2,268 22,205

Table 15: Inventory cost factor sensitivity analysis results
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