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Abstract

Accurately segmenting texture images that are characterized by globally varying patterns that
belong to the same class is a challenge, especially when the images are large or highly suscep-
tible to noise. Such textures appear for example in radar images and in H&E stained pathology
images. Markov Random Fields segmentation is a powerful technique that is able to take into
account information of the surroundings of a pixel to infer the most likely class it belongs to.
However, Markov Random Fields work on pixel level which makes it very computationally de-
manding, especially for large images or when fast processing times are required. Furthermore,
working on pixel level means that it is hard to use accurate texture features during segmenta-
tion. This document aims to overcome these drawbacks of Markov Random Field segmentation
by providing a front-end based on the concept of superpixels, the output of which can be used
as input to the Markov Random Field segmentation algorithm.
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1 Introduction

In processing the images generated by radar systems, e.g. surveillance radar, extracting detailed
information from the surroundings of the radar can be very useful. For objects that are clearly
visible in the images, i.e. objects with a large signal to clutter ratio like large or fast objects,
this is not a problem, but detection of objects with a small signal to clutter ratio is challenging.
In this case, extracting detailed information from the surroundings of the radar can be helpful
in the detection of targets. Further complications arise when textures appearing in the radar
images are influenced by, for example, currents, wind, water depth or changes in resolution.
This results in textures that locally have a fixed orientation but for which this orientation varies
globally in an unpredictable way. Then the statistics of the textures can vary per region or, in
the case of changing resolution, can be graded. The radar images shown in this document have
been provided by Thales Hengelo B.V.

The same type of textures appears in H&E (Hematoxy&Eosin) stained pathology images in so-
called stroma. Since research shows that the tumor-stroma ratio in H&E stained sections is a
prognostic marker in the diagnoses and survival of a patient, a reliable estimation of the tumor-
stroma ratio is desired. This estimation can help a pathologist in better distinguishing between
patients with poor or a somewhat better prognosis. The H&E stained pathology images have
been provided by LabPON, Laboratory for Pathology in Hengelo.

Many different texture segmentation methods exist. One class of texture segmentation me-
thods is those using probabilistic models and an example of this is segmentation based on
Markov Random Fields. Since segments in textured images can have a fixed orientation locally
but a globally varying orientation, Markov Random Fields work very well because it gives the
ability to use global information to aid in the inference of the local segment class. However, in
general, the complexity of algorithms increases with the number of pixels in the image. This is
particularly true for methods based on Markov Random Fields which can become computati-
onally intractable if the images are getting larger. Therefore the size of the images is a limiting
factor. Especially the pathology images are very large (Millions of pixels) and things are further
complicated by the fact that the information in the images should not decrease. This implies
that a method is needed to reduce the number of pixels for the Markov Random Field algorithm
while not losing any information in the images.

This document provides a front-end application that effectively reduces the number of pixels
in an image by a large amount while still maintaining the information present in the image. It
is expected that the output of this front-end application can then be used as input for a Markov
Random Field based segmentation algorithm in such a way that the algorithm runs much fas-
ter and the generated superpixels can be used to extract more meaningful (texture) features
from the data as opposed to just using the image pixels as input. To test the front-end and to
illustrate the broad applicability of it, both radar images and H&E stained pathology images
are used since they both contain textures with the characteristics described above. This does,
however, not mean that this front-end application or Markov Random Fields based segmenta-
tion is confined to just these areas.

2 will give an introduction to Markov Random Fields and show why a pre-processing step is
often required when working with Markov Random Fields and images. 3 explains the choice
for SLIC as a pre-processing algorithm and explains the algorithm itself. The results and the
validation of the results are then shown in 5, followed up by a discussion in 6 and a conclusion
plus future work in 7.
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2 A brief to Markov Random Field based texture
segmentation

The purpose of this chapter is to give an overview of what Markov Random Fields (MRF’s) are
and show the reader how they are used in image analysis. It will discuss the mathematical
theory behind MRF’s, why they are useful in this field and what their limitations are.

2.1 Markov Chains

The discussion will start with Markov Chains (Meyn and Tweedie (1993) is an excellent resource
on Markoc Chains, other resources include Cooper (1979), Cooper et al. (1980) and Politis
(1994)). Markov Chains are easier to understand. This will then be extended to 2-D Markov
Chains, which forms the basis for MRF’s.

When a sequence of chance experiments forms an independent trials process (for example
repeatedly flipping a coin), the possible outcomes for each experiment are the same and occur
with the same probability. In the case of flipping a coin the possible outcomes are heads or tails,
both with a probability of 0.5. In other words, the results of past trials have no influence on the
outcome of future trials. When the outcome of past trials does influence the outcome of future
trials, the chain of processes is not independent anymore. Mathematically, when the outcome
of a process depends on the past processes, the probability that Xn+1 takes a particular value x
is given as follows:

P (Xn+1 = x) = P (Xn+1 = x| {X0 = x0, · · · , Xn = xn}) (2.1)

A process is called a Markov Process when its outcome depends only on the outcome of the
previous process. A sequence of these processes is called a Markov Chain and can be depicted
as in Figure 2.1. Here the X ’s are random variables. The possible values a particular instance
of X can take form a set S called the state space of the chain. In the example of the coin-flip,
the state space would be {heads,tails}, for a binary image where a pixel can only take on two
distinct values the state space would be {0,1} and for an intensity image the state space would
be {0, · · · ,255} in the discrete case or {0.0, · · · ,1.0} in the continuous case. Equation 2.1 now
becomes:

P (Xn+1 = x) = P (Xn+1 = x|Xn = xn) (2.2)

And the probability of a sequence:

p (x) = p (x0)
N∏

n=1
P (xn |xn−1) (2.3)

A Markov Chain can be viewed as a state machine. The states are the possible values a random
variable can take, the state space. The process starts in one of these states and moves to the next
state with a certain probability. To clarify this, consider a simple 2-state machine. The state
space is {0,1} and the probability to transition from state j to state i is given by the transition

X0 X1 X2 X3 X4

Figuur 2.1: A Markov Chain

G.R.Huizenga University of Twente
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Figuur 2.2: States and transition probabilities for a 2-state Markov Chain
where the probability of changing states is ρ

parameters of the Markov Chain denoted as θ j ,i = p
(
xn = i |xn−1 = j

)
. Consider a simple 2-state

Markov Chain with a transition probability of ρ, then θ is given by the transition matrix below
and Figure 2.2 shows dependency on the previous state:

θ =
[

1−ρ ρ

ρ 1−ρ

]
(2.4)

Examples of such a Markov Chain for different values of ρ can be seen in Figure 2.3.

0 20 40 60 80 100
−0.5

0

0.5

1

1.5
2−state Markov Chain: rho=0.2

discrete time, n

ρ = 0.2

0 20 40 60 80 100
−0.5

0

0.5

1

1.5
2−state Markov Chain: rho=0.05

discrete time, n

ρ = 0.05

Figuur 2.3: A 2-state Markov Chain with different transition probabilities

Given some observed data, θ is easily estimated using maximum likelihood (ML) estimation:

θ̂ = argmaxθ p (x|θ) (2.5)

For a Markov Chain the maximum likelihood boils down to counting the observed transitions
and dividing by the total number of transitions. Take for example the following Markov Chain:

xn = 0,0,0,1,1,1,0,1,1,1,1,1 (2.6)

There are 2 states, 0 and 1, to estimate θ̂0,1 the number of transitions from state 0 to 1 are
counted and divided by the total number of transitions originating from state 0. This can be
expressed mathematically as follows:

θ̂0,1 =
h0,1∑
k h0,k

(2.7)

Robotics and Mechatronics G.R.Huizenga
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Where h j ,i =∑
n δ

(
xn = i &xn−1 = j

)
and k ranges over all possible states reachable from, in this

case, 0. Applying this to the Markov Chain in Equation 2.6 results in the following estimate θ̂:

h =
[

h0,0 h0,1

h1,0 h1,1

]
=

[
2 2

1 6

]
(2.8)

θ̂ =
[

0.5 0.5
1
7

6
7

]
(2.9)

2.2 Markov Random Fields

Everything discussed so far can be easily extended to more than 2 states and to 2-D Markov
Chains. An example of a 2-D Markov Chain can be seen in Figure 2.4. As indicated by the ar-
rows, the outcome of X(2,2) is dependent on all the processes connected to it that come before it
in the ordering. The advantages of Markov Chains are that there are simple expressions for the
probabilities as well as for the estimation of the parameters θ. However, 2-D Markov Chains
are not readily applied to images because the pixels in an image do not have a natural orde-
ring. Therefore it is impossible to point out which pixels ’come before’ another pixel, as was
indicated by arrows in Figure 2.4.

Figuur 2.4: A 2-D Markov Chain

A Markov Random Field (see Li (2009) for a comprehensive resource about Markov Random
Fields for image processing), like a Markov Chain, is a statistical model for a collection of
random variables that are statistically dependent according to some predefined structure. For-
mally:

p (xs |xr for r 6= s) = p (xs |N ) (2.10)

This states that the probability of a site s ∈ S taking a value xs , given all the other sites, can
be calculated by considering just the neighborhood N of the site. This section will explain the
notion of a neighborhood system and the cliques that can be defined on it. It will also show
that these concepts apply to regular as well as irregular graphs.

In a Markov Chain the only dependency was the outcome of the previous random variable. In
2-D Markov Chains the dependencies as seen in Figure 2.4 are due to the natural ordering of a
2-D Markov Chain. As was touched upon earlier, image pixels do not have a natural ordering,
therefore it is needed to define a structure on the image lattice that enforces this ordering. This

G.R.Huizenga University of Twente
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structure is called a graph G and is defined by a set of nodes, V , and a set of edges between
these nodes, E :

G = (V ,E ) (2.11)

Examples of graphs can be seen in Figure 2.5. In the case of MRF’s, nodes are most commonly
called sites, are numbered, and are indicated by S = {s1, s2, · · · , sn}. Each site i , i.e. a pixel or
superpixel when dealing with images, is associated with a random variable Xi . A realization of
this random variable is denoted by xi .

Figuur 2.5: Examples of graphs. From left to right: an irregular graph, a
regular system (orthogonal grid) where each node has 4 neighbors, a

regular system where each node has 8 neighbors

2.2.1 Neighborhood system

The sites in S are related to each other via a so-called neighborhood system which is defined as
follows where Ni is the set of sites neighboring site i :

N = {Ni |∀i ∈ S} (2.12)

A neighborhood system has a few properties:

1. A site is not neighboring to itself: i ∉ Ni .
2. It is mutual: i ∈ Ni ′ ⇐⇒ i ′ ∈ Ni .

When S is a regular lattice, the neighborhood of site i consists of all the sites within a radius r
where the distance between the sites is the Euclidean distance:

Ni =
{
i ′ ∈ S|‖i ′− i‖2 ≤ r, i ′ 6= i

}
(2.13)

According to this definition, the 4-connected neighborhood of a site, also said to be a 1st order
neighborhood (r = 1), consists of the 4 sites directly left, right, under and above i . Likewise, a
2nd order neighborhood consists of the eight sites surrounding i (see Figure 2.6). Sites at the
edge or a corner of the lattice have fewer neighbors than interior sites. A neighborhood on an
irregular lattice, e.g. the lattice resulting after creating super pixels, is defined in the same way
as on a regular lattice with the exception that the distance measure has to be defined diffe-
rently. Examples of distance functions sometimes used are Delaunay triangulation or Voronoi
polygons.

2.2.2 Cliques

Cliques are subsets of sites in the graph G = (S,E) where S is the set of sites and E the set
of edges the sites defined by the neighboring relationship. A clique can consist of 1 or more

Robotics and Mechatronics G.R.Huizenga
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Figuur 2.6: 2nd order, or 8-connected, neighborhood system

sites with the restriction that those sites always have to form a completely connected subset
of the graph. An example of a completely connected graph and a graph that is not completely
connected is shown in Figure 2.7. A group of single-site cliques is denoted by C1, a group of
pair-site cliques by C2, etc. Sites in a clique are ordered and the collection of all cliques for G is
C =C1∪C2∪C3 . . . . Assuming a 2nd order neighborhood system, the set of cliques belonging to
site X(2,2) in Figure 2.6 is shown in Figure 2.8.

Figuur 2.7: Left: completely connected graph, right: a graph that is not
completely connected

Figuur 2.8: Cliques for a 2nd order neighborhood system defined on a
regular graph

The notion of a neighborhood system and cliques also applies to irregular graphs, e.g. a super-
pixel lattice. Figure 2.9 illustrates this.

G.R.Huizenga University of Twente
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Figuur 2.9: An irregular graph with all possible cliques

2.2.3 Gibbs distribution

Now that an ordering has been enforced on the field by means of a graph and the notion of
neighborhood systems and cliques has been explained, the next step is to formulate a way to
compute the (super)pixel probabilities. This is where the Gibbs distribution comes into play. A
density is a Gibbs distribution if the following condition holds:

P (x) = 1

Z
e−

1
T U (x) (2.14)

T is a constant called the temperature and is in general assumed to be 1. U (x) is the energy
function and is defined as follows:

U (x) = ∑
c∈C

Vc (xc ) (2.15)

and is a summation of so-called clique potentials Vc (xc ) over all possible cliques C where xc

are instantiations of the random variables in clique c ∈ C . It can also be expressed as a sum of
several terms, based on the clique size. For example, considering cliques of up to 3 sites, it can
be expressed as:

U (x) =
∑

{i }∈C1

V1 (xi )+
∑

{i ,i ′}∈C2

V2 (xi , xi ′)+
∑

{i ,i ′,i ′′}∈C3

V3 (xi , xi ′ , xi ′′) (2.16)

A collection of random variables that can be described by a Gibbs distribution is called a Gibbs
Random Field (GRF). The easiest GRF’s to consider are either isotropic or homogenous. A GRF
is said to be homogeneous if Vc (x) is independent of the position of c in S and isotropic if it is
independent of the orientation of c in S. Basically, P (x) is the probability of the occurrence of
a certain configuration x of the field. A more probable configuration has lower energy than a
less probable one.

Robotics and Mechatronics G.R.Huizenga



8 A Front-end Application for Markov Random Field-based Texture Image Segmentation

2.2.4 Hammersley-Clifford theorem

Specifying the joint probability for an MRF from the conditional probabilities is not possible,
but the joint probability of a GRF can be specified by defining clique potential functions Vc

(
f
)

and choosing appropriate potentials functions for the system being considered. Also, an MRF
is characterized by its local property (the Markovianity) and a GRF by its global property. There-
fore, if the equivalence between those two properties can be proved this would provide a way of
specifying the joint probability of an MRF in terms of clique potentials defined on a neighbor-
hood system. This is exactly what the Hammersley-Clifford theorem (Hammersley and Clifford
(1971)) does. It states that X is an MRF on the set of sites S w.r.t a neighborhood system N
defined on this set of sites if and only if X is a GRF on S w.r.t. N . For a proof of the theorem see
e.g. Besag (1974). The joint probability for an MRF can now be formulated as follows:

P (x) = 1

Z
e

−1
T U (x) with U (x) =

∑
c∈C

Vc (x) (2.17)

Choosing the form and parameters of the potential functions is not a trivial task and requires
careful consideration. Next, it is also required to calculate the partition function but because
the number of different configurations can get out of hand quickly, this is usually intractable.
The issue is further complicated if the energy function U (x) contains unknown parameters that
require estimating. Therefore the joint probability is often approximated.

2.3 MRF’s in image analysis

MRF’s were first applied to image analysis by Geman and Geman (1984) and have a wide
range of applications in image analysis ranging from texture modeling (Kashyap and Chellappa
(1983), Chellappa and Chatterjee (1985) or Cohen et al. (1991)), texture segmentation (Derin
et al. (1984), Derin and Cole (1986) or Lakshmanan and Derin (1989)) and image restoration
(Geman and Geman (1984), Jeffs and Gunsay (1993), Simchony et al. (1990) or Zhang (1993))
to face recognition (Phillips and Smith (1994)). In order to show how MRF’s can be applied in
image analysis, this section will discuss an easy example, namely texture synthesis.

2.3.1 Texture synthesis

The easiest models are those which put constraints on just two labels. If only clique potentials
of up to two sites are used, the energy function takes the form

U (x) =
∑
i∈S

V1 (xi )+
∑
i∈S

∑
i ′∈Ni

V2 (xi , xi ′) (2.18)

The above energy function is a 2nd order energy function because it involves up to pair-site
cliques. It is most often used because it is the simplest in form but still considers contextual
information. Now a specific MRF can be specified by selecting proper functions for V1 and V2.
One speaks of auto-models when V1 (xi ) = xi Gi (xi ) and V2 (xi , xi ′) = βi ,i ′xi xi ′ where G (·) are
binary functions and βi ,i ′ are constants describing the pair-site interaction between sites in a
clique. The energy function then takes the following form:

U (x) =
∑

{i }∈C1

xi Gi (xi )+
∑

{i ,i ′}∈C2

βi ,i ′xi xi ′ (2.19)

By constricting the possible labels to just two, e.g. {0,1} in the case of binary images, it is called
an auto-logistic model. The corresponding energy function becomes:

U (x) =
∑

{i }∈C1

αi xi +
∑

{i ,i ′}∈C2

βi ,i ′xi xi ′ (2.20)

G.R.Huizenga University of Twente
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This model can be further simplified by only considering the 4-connected neighborhood sys-
tem and label set {−1,1}. It is then reduced to the Ising model. In the case thatαi = 0 andβi ,i ′ = 1
this states that neighboring sites with the same labels are preferred and result in a lower energy.
This can be further controlled by the temperature T . When T → 0, the joint probability P (x)
concentrates on low energy states of U (x). In other words this means that T can be used to
control the homogeneity of the resulting image when using the Ising model to generate a bi-
nary texture pattern. A large T implies all configurations being almost equally likely, resulting
in an almost uniform P (x), whereas a lower temperature results in P (x) concentrating on lower
energy states and thus higher interaction between sites. This shows in the fact that with lower
temperature, larger distinct regions are formed. This is illustrated in Figure 2.10.

Figuur 2.10: Textures generated by using the Ising model with α= 0 and
β= 1. Left: T = 1, right: T = 0.5

Many different, and more complicated, MRF models exist (see Li (2009) for more examples and
detailed discussions), but what should be taken away from this discussion is that the likelihood
of (super)pixel values of a homogeneous texture can be statistically described with an MRF.
Furthermore, the labels of (super)pixels and/or regions can also be described by an MRF. See for
example Hu and Fahmy (1992) for example where two MRF models are used for segmentation
of images, a binomial model for the values of pixels within a segment and a multi-level logistic
model for the interaction between different segments.

2.3.2 Sampling

There is one more problem that needs to be tackled. When looking again at Equation 2.17
which states the posterior probability for an MRF, the most likely realization of the MRF (for
example a segmentation of an image) is the realization with the lowest energy. However, in
order to come to this segmentation, all the possible configurations need to be evaluated to find
the one with the lowest energy. For most practical problems this is intractable as even with just
two states for a (super)pixel, i.e. there are just two labels, and a small sized image, say 256x256
pixels, this amounts to 265536 possible realizations of the field. A solution to this is to use a
Markov Chain Monte Carlo (MCMC) method to sample from the posterior distribution. One
can think of Monte Carlo methods as algorithms that help obtain a desired value by performing
simulations involving probabilistic choices.

One such sampler is the Gibbs sampler (Geman and Geman (1984)). The Gibbs sampler starts
with a random realization of the field and visits every site, i.e. (super)pixel, in a random or-
der. For every possible label it then calculates the probability the current site takes on this
label given its surroundings and taking into account the observed data. It then draws a label
according to the calculated probabilities and assigns this to the site. After every site has been
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visited, the process of visiting every site in a random order is repeated until the field does not
change anymore. When the field is stationary, the algorithm has arrived at the realization of the
field with the lowest energy and thus the highest probability. Another sampler, also an MCMC
methods closely related to the Gibbs sampler, is the Metropolis-Hastings sampler (Metropolis
et al. (1953) and Kindermann et al. (1980)). Both of these samplers are a form of energy mini-
mization techniques. There are many more energy minimization techniques, for example the
very well-known Iterated Conditional Modes (Besag (1986)) or Simulated Annealing (Geman
and Geman (1984)).

The Gibbs sampler is used in the demonstration of how superpixels can be used as input the
an MRF-based segmentation algorithm described in chapter 5.

2.4 Requirements for pre-processing methods

This chapter has attempted to explain why MRF’s are a good choice for texture segmentation,
i.e. they provide a convenient way to combine prior and data likelihood terms in a single graph
formulation and make it possible to use global information on a local scale to infer the correct
label of a site, even when the texture is varying. While explaining the theory behind MRF’s, this
chapter has also attempted to identify the difficulties and limitations of MRF’s, being the fact
that even for moderately large images the computational demand gets very high, when using
normal image pixels as input it becomes hard to incorporate texture features and it has to be
possible to define a suitable MRF model on the graph structure.

The following chapter will go into pre-processing methods and explains why superpixels as
a pre-processing method is a good choice and will help solve these problems. With this, the
hypothesis is that the generation of superpixels to be used as input to an MRF-based texture
segmentation algorithm will have added value.
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3 Methods for pre-processors for MRF-based texture
segmentation

This chapter discusses what pre-processing is, why it is applied in the field of image proces-
sing and a few different pre-processing algorithms. It also discusses the requirements for the
case at hand, motivates the choice for superpixel generation as a pre-processing step and, after
comparison of multiple different superpixel algorithms, why the choice for SLIC was made. The
next chapter will then explain how SLIC works and discuss some improvements and extensions
that were implemented.

3.1 Pre-processing

Pre-processing is the term used for operations on images that results in an improvement of
the image data by suppressing undesired distortions or enhancing some image features im-
portant for further processing (see Sonka et al. (2007), Chapter 5, for a detailed description of
many methods used for pre-processing). It can also mean that the data is represented in a form
more suited for the algorithms following the pre-processing. Probably the most well-known
example of a pre-processing method is noise removal by filtering the image with a Gaussian
kernel (smoothing). Another example of pre-processing is contrast enhancement by using his-
togram equalization or thresholding to remove pixel with unwanted values. In the case of face
recognition, pre-processing can consist of face registration, the translation and alignment (usu-
ally by using the eyes) of the faces to create a standard form used for further processing. As a
last example of pre-processing, consider image restoration. In image restoration one tries to re-
cover the true values of noisy pixels. Obviously there are many more methods and what defines
pre-processing depends on the requirements of the project.

In the previous chapter it was shown that Markov Random Fields, although a very powerful
segmentation technique, are also very computationally demanding and this demand increa-
ses rapidly with an increase in the number of pixels in the image. This means that in this case
the pre-processing step should consist of a way to decrease the effective number of pixels in
the image, but without losing the information present in it. Also, an MRF operates on indivi-
dual pixels which makes it very hard to incorporate accurate texture features since this requires
neighborhood operations. In a neighborhood operation a window is placed with its center over
the pixel and the texture within this window is analyzed. Here the size of the window is of parti-
cular importance. If it is chosen too small, the texture features will not be accurate. On the other
hand, the larger the window, the bigger the chance the window overlaps two or more distinct
image regions resulting in bad texture features. For these reasons it was decided to generate
superpixels. A superpixel is a collection of pixels that were determined to belong together, in
other words that are part of the same object in the image, and can therefore be seen as 1 pixel.

The following section will take a closer look at a few superpixel algorithms, namely Watershed,
Mean-shift, Turbopixels and Normalized graph-cuts. These were chosen because it showcases
the different approaches one can take to generate superpixels. They will be analyzed in terms
of control (e.g. the size or number of superpixels), boundary recall (how well the superpixel
boundaries adhere to the object boundaries in the image) and computational and memory ef-
ficiency. More examples and variations on the shown algorithms can be found in the literature.
After comparison of the superpixel algorithms, the choice for SLIC is motivated. A detailed
explanation of SLIC and the extension and improvements added to the basic algorithm is de-
ferred to Chapter 4. In this chapter it will also be shown that SLIC requires bookkeeping in the
form of an adjacency matrix. For every superpixel, this adjacency matrix keeps track of which
superpixels are its direct neighbors. As was explained in the previous chapter, MRF-based seg-
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mentation requires the selection of cliques from a neighborhood defined on the graph. In the
case of a graph consisting of superpixels, the neighborhood consists of all the direct neighbors
of a superpixel and therefore SLIC makes it very easy for MRF-based segmentation to deter-
mine the neighborhood of the superpixel by providing the adjacency matrix.

3.2 Existing superpixel algorithms

This section will discuss a few chosen superpixel algorithms and compare them in terms of the
properties mentioned in the previous section.

3.2.1 Mean shift

The mean shift superpixel algorithm, Comaniciu and Meer (2002), is a mode-seeking proce-
dure that consists of two main steps: discontinuity preserving filtering and mean shift cluste-
ring. The first step basically assigns pixels that point towards the same mode the same value
and mean shift clustering groups together all the modes that are similar enough. This will be
explained here in a bit more detail.

Discontinuity preserving filtering

The point of this step is to determine for every pixel in the image the mode it belongs to. To
achieve this, the pixels first have to be mapped to feature space. For example, the R, G and B co-
lor channels of a pixel can be features and in this case the feature space is thus 3-dimensional.
However, more image properties besides color can be used and hence the feature space can be
more dimensional. The feature space is more densely populated in locations corresponding to
significant image features and the mode (or mean) of these more densely populated locations
is what the algorithm is trying to identify. Discontinuity preserving means that the algorithm
will group together pixels that belong to the same mode and in doing so will preserve bounda-
ries present in the image. In other words, if there is a clear boundary between, for example, sky
and grass in an image, the grass pixels will not be counted as sky and vice versa.

To give an understanding of how discontinuity preserving filtering is done, consider the simple
case of 2D feature space as an example, See Figure 3.1. To determine the mode a pixel ’points
to’, a pixel P1 is taken and a circle (kernel) is placed over it. This is depicted in Figure 3.1 by the
green circle. Now this kernel needs to be shifted so that as many points as possible in feature
space are contained within it. To do this, the algorithm iteratively calculates the point of highest
density within the kernel and shifts the center of the kernel to this location until convergence,
i.e. the kernel does not shift anymore. Referring again to Figure 3.1, the kernel is shifted to the
orange location until it converges at the location depicted by the red circle. Now every pixel in
the filtered image is given the value of the mode they point to. For this part of the algorithm the
only real parameter, besides the type of kernel used, is the size of the kernel (bandwidth). The
smaller the kernel, the more modes will most likely be detected so even small changes in, for
example color, will be detected.

As for the kernel, it is most common to take a Gaussian kernel as opposed to for example just a
flat kernel. A Gaussian kernel attaches weights to the points within it where points closer to the
center are weighted more heavily than points located closer to the edge of the kernel. Therefore
a Gaussian kernel wants as many points as possible near its center. A flat kernel on the other
hand just wants to contain as many points as possible. Figure 3.2 illustrates that the Gaussian
kernel has the ability to distinguish modes where a flat kernel cannot.

Mean shift clustering

After discontinuity preserving filtering, the result is an image where every pixel has been assig-
ned the value of the mode it points to after convergence. Basically what is left are superpixels,
but neighboring superpixels can have a mode that is only slightly different. The point if the
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Figuur 3.1: Principle of mean shift (image taken from DeMenthon and
Megret (2002))

Figuur 3.2: Flat kernel versus Gaussian kernel

clustering step is to merge neighboring superpixels with a difference in mode that is less than
a certain threshold.

Discussion

The only parameters for mean shift that can be controlled are the size and type of the kernel
en the threshold that determines whether neighboring superpixels should be merged. This
means that there is no direct control over the amount of superpixels, and hence their size, or
the compactness (how nicely they are shaped) of the superpixels resulting in superpixels that
are highly irregular in shape and of non-uniform size. With a complexity of O

(
N 2

)
, where N is

the number of pixels in the image, it is also quite a slow algorithm.
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3.2.2 Watershed

Watersheds are a quite straight-forward concept. An image may be interpreted as a topographic
surface where, for example, the gray-levels of the pixels represent altitudes. Thus, region ed-
ges correspond to high watersheds and low-altitude region interiors correspond to catchment
basins. Figure 3.3 shows a one-dimensional example to clarify this idea. There are two basic
approaches to watersheds which are essentially dual to each other and they will be discussed
briefly below.

Figuur 3.3: One-dimensional example of watersheds (image taken from
REFERENCE)

Top-down

The first approach determines for every pixel in the image a downward path to a local minimum
of surface altitude. A catchment basin is then defined as the set of pixels whose downward path
all end at the same local minimum. For continuous surfaces the downward paths are easy to
determine. For digital surfaces however, there exist no rules to determine the downward paths
uniquely. This resulted in inaccurate algorithms with extremely high computational costs.

Bottom-up

The second approach by Vincent and Soille (1991) takes the opposite approach of the first one.
Instead of determining downward paths, this approach starts by identifying the local minima
and flooding the basins. This can be visualized as follows: imagine there is a hole in each basin
and that the surface is submerged into water. The basins that are below the water level will fill
with water through their holes as the surface is submerged further and further. The moment
two basins are about to merge together, a dam (or watershed) is constructed as high as the
highest peak of the surface. The algorithm is based on sorting the pixels in increasing order of
their altitudes and a flooding step consisting of a breadth-first scanning of all pixels in the order
of their altitudes. Details can be found in Vincent and Soille (1991).

Discussion

With a complexity of O
(
N log N

)
the watershed algorithm is relatively fast. However, the resul-

ting superpixels are highly irregular in shape and size and do not adhere to boundaries in the
image very well. On top of that, the algorithm does not offer any control over the amount of
superpixels or the compactness of the superpixels.

3.2.3 Turbopixels

Turbopixels, Levinshtein et al. (2009), is an algorithm for generating superpixels that is based
on geometric flows. It starts with a predefined number of initial seeds, evenly distributed over
the image plane, which are dilated so as to adapt to the local image structure. At a basic level,
the initial seeds grow outward by means of a curve evolution method with a skeletonization
process on the background region to prevent the expanding seeds from merging.

The geometric flows associated with the turbopixel algorithm is implemented using level-set
methods. The idea is to devise a flow by which curves evolve to obtain superpixel boundaries.
If C denotes the vector of curve coordinates, then each point on the curve moves with speed
S in the direction of its outward normal. Let Ψ be the level-set over the image defined as the

G.R.Huizenga University of Twente



HOOFDSTUK 3. METHODS FOR PRE-PROCESSORS FOR MRF-BASED TEXTURE
SEGMENTATION 15

signed Euclidean distance of each image pixel to the closest point on the boundary between
pixels already assigned to a superpixels and unassigned pixels. The zero level set of Ψ is the
only set of interest and is intuitively comprised of the pixels that represent the boundaries of
the superpixels. To be able to grow and still maintain an accurate representation ofΨ, pixels in
a narrow band around the boundary of the superpixel are counted towards the zero level set.

The speed term S is comprised of two terms: S = S I SB . SB is proximity-based velocity term that
is used to ensure that growing superpixel boundaries never cross other superpixel boundaries.
This term is therefore 0 on the skeleton of the unassigned region and 1 everywhere else. Step
three in Figure 3.4 shows the skeleton between the growing superpixels and should clarify this
idea.

S I is an image-based velocity term which is a bit more complicated:

S I
(
x, y

)= [1−ακ(
x, y

)
]φ

(
x, y

)−β[N
(
x, y

) ·∇φ(
x, y

)
] (3.1)

Here x and y are image coordinates and φ is a local affinity function:

φ
(
x, y

)= exp
−E(x,y)

v , E
(
x, y

)= ‖∇I‖
Gσ∗‖∇I‖+γ (3.2)

What needs to be taken away from this is that S I slows down the growth of the superpixels when
it comes close to boundaries present in the image. Since boundaries in an image are charac-
terized by large gradients, φ is function that returns low values near edges and high values in
homogeneous regions.

The steps involving the algorithm are depicted in Figure 3.4. First K (the desired number of
superpixels) seeds are evenly distributed over the image plane and shifted to a position of low
gradient magnitude to ensure they are not accidentally placed on an edge in the image. Step 2
evolves the curves over a number of time-steps by computing the velocity S in a narrow band
around the superpixel boundaries, i.e. the zero level setΨ0, and evolves the boundaries accor-
ding to the following equation:

Ψn+1 =Ψn −S I SB‖∇Ψn‖∆t (3.3)

Where n denotes the n-th iteration and ∆t is a time step. This might look complicated but
basically this computes the next iteration by evolving Ψn with the narrow band, extending Ψ
with those pixels that have a positive value. When there are little or no pixels being assigned to
superpixels anymore, the skeleton is updated in step 3. Next the velocities are calculated and
extended again and the process repeats from step 2.

Figuur 3.4: Steps of the superpixel algorithm (image taken from the original
paper Levinshtein et al. (2009))

After the algorithm has ended, generally not all pixels have been assigned to a superpixel. The-
refore the remaining pixels are assigned to their closest superpixel.
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Discussion

Even though Levinshtein et al. (2009) claim their algorithm has a complexity of O (N ), Achanta
et al. (2012) have found in their comparison that it is amongst the slowest superpixel algo-
rithms. It does however give the user control over the amount of superpixels created by selec-
ting the number of initial seeds. The created superpixels also have uniform size and compact-
ness and adhere well to image boundaries.

3.2.4 Normalized graph-cuts

Normalized graph-cuts (Shi and Malik (2000)) is a graph based approach where an image is
viewed as a weighted graph G = (V ,E) with vertices V represented by the pixels and edges E .
Edges between two pixels i and j have a weight w

(
i , j

)
which is a measure of the similarity bet-

ween the pixels. The goal is to partition the set of vertices, i.e. pixels, in disjoint sets V1,V2 · · ·Vn

where the similarity of pixels within the set Vi is high and across sets Vi and V j it is low.

The graph can be partitioned into two disjoint sets V1 and V2 by removing edges where V1∪V2 =
V and V1∩V2 =;. A measure for the dissimilarity is the total sum of the removed weights. This
is called the cut:

cut (V1,V2) =
∑

i∈V1, j∈V2

w
(
i , j

)
(3.4)

The optimal bi-partitioning of the graph is the one where the cut is minimized. See Figure 3.5
for a visualization.

Figuur 3.5: Minimum cut in an image.

The problem with this definition of a cut is that is favors small sets of isolated points in the
feature space, i.e. nodes in the graph or pixels in the image. This happens because the value
of the cut increases with the number of edges removed. In terms of an image, this means that
pixels with a much higher or lower value that its surroundings, e.g. due to speckle noise, that
should be seen as part of a segment are singled out. See Figure 3.6.

To overcome this problem, Shi and Malik (2000) propose a new criterion to partition the graph.
Instead of just looking at the total value of the removed edges, they compute the cut value as a
fraction of the total connections to all the nodes in the graph and call this criterion the norma-
lized cut. Because this is just a bi-partition of the graph, the algorithm is called recursively to
partition each of the two found segments as long as the normalized cut value is below a certain
threshold. A too high a value for the normalized cut means one is trying to force a partition that
does not provide a meaningful segmentation anymore.
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Figuur 3.6: Minimum cut giving a bad partition of the graph.

Discussion

The normalized cuts algorithm produces very regularly shaped superpixels but the superpixels
don’t adhere to image boundaries very well and the algorithm gives no direct control over the
amount of superpixels created other than variation of the threshold discussed above. With a

complexity of O
(
N

3
2

)
it is among the slowest algorithms.

3.2.5 Comparison

After having discussed a few superpixel algorithms, Table 3.1 shows their performance based
on the properties used in the discussion above. The columns for adherence to boundaries and
computational and memory efficiency are rated with – (very bad), - (bad), + (good) or ++ (very
good). A more comprehensive comparison can be found in Achanta et al. (2012). Because
SLIC has very good adherence to boundaries, is faster and more memory efficient than other
superpixel algorithms and gives the user control over both the amount of superpixels generated
and their compactness, it was chosen to be used as a pre-processing method for MRF-based
image segmentation. The following chapter will discuss the SLIC algorithm in detail, including
the extensions and improvements that were implemented.

Adherence to
boundaries

Computational
and memory
efficiency

Control over
amount of
superpixels

Control over
compactness

Mean-shift + - no no
Watershed - ++ no no
Turbopixels + - yes no
N-cuts - - - yes no
SLIC ++ ++ yes yes

Tabel 3.1: Performance of different superpixel algorithms.
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4 Simple Linear Iterative Clustering

Chapter 2 explained the theory behind MRF’s and showed their strengths and weaknesses when
used for texture image segmentation. It showed the need for a pre-processing algorithm and
the properties it should have, i.e. reduce the number of effective pixels in the image while
maintaining the information present in the image, significantly speed up the MRF-based algo-
rithm following it and enable the MRF-based algorithm to accurately take into account texture
features. It was concluded that a superpixel algorithm possesses these properties. Then the
previous chapter compared superpixel algorithms based on how well the resulting superpixel
adhere to image boundaries, the computational and memory efficiency of the algorithm and
whether it enables the user to control the number of superpixels and the compactness of the
superpixels. At the end of the chapter the Simple Linear Iterative Clustering (SLIC, Achanta
et al. (2010)) algorithm was chosen as a superpixel pre-processing method for MRF-based tex-
ture image segmentation. Also, SLIC requires bookkeeping in the form of an adjacency matrix
that can be used later to easily retrieve the neighborhood of a superpixel. This chapter contains
a detailed explanation of SLIC.

SLIC is based on the well-known k-means clustering algorithm (the term k-means was first
used by Macqueen (1967) while the idea goes back to Steinhaus (1956)), which aims to partition
a of n d-dimensional observations (x1, x2, ..., xn) into k clusters S = {S1,S2, . . . ,Sk }. A cluster is
represented by its mean and for every observation the distance to all the clusters is calculated
and it is assigned to the cluster that it is closest to. Mathematically, this can be expressed as
follows:

argmin
S

k∑
i=1

∑
x∈Ci

‖x −µi‖2

Where µi is the mean of the points forming cluster Ci .

The big difference with k-means clustering is that SLIC restricts its search to a small area
around the cluster center whereas k-means clustering compares every observation with all the
cluster centers. The area the algorithm searches is determined by the number of roughly desi-
red superpixels K . If an image contains N pixels then the size of a superpixel is roughly N

K
pixels. This means that if the superpixels are of roughly equal size, there would be a superpixel

center every S =
√

N
K pixels and the size of a superpixel is approximately S2. For this reason

it can be assumed that pixels associated with this superpixel are within a 2Sx2S area around
the superpixel center. Therefore SLIC searches in a 2Sx2S area around the cluster center. This
results in a significant speedup over k-means clustering.

4.1 The algorithm

This section will attempt to give a brief overview of the algorithm in order to establish a general
understanding of how it works. The details will be addressed in later sections.

Figure 4.2 shows a flowchart of the algorithm. As can be seen, the first step is to initialize the
grid, i.e. distribute the initial cluster centers evenly over the image plane. This can be visuali-
zed as in Figure 4.1. The authors of Achanta et al. (2010) propose to calculate the gradients in
a 3x3 neighborhood around each cluster center and move the cluster center to the point with
the smallest gradient inside this neighborhood. The reason to do this is to make sure that the
cluster center is not initially placed on a region boundary or noisy pixel, thereby giving a biased
representation of the cluster. The influence of this bias can be quite large in mainly homoge-
nous images, but since the radar images as well as the H&E stained pathology images are not
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very homogenous, i.e. there are large variations within a cluster, and this step was omitted.
Also, the effect of possible bias is negated by the fact that the final clusters are formed over a
number of iterations where after each iteration the cluster center is recalculated. Experiments
confirmed that this step can be safely omitted in this case.

Figuur 4.1: Initial distribution of the cluster centers over the image plane

Next, the first cluster center is processed. A 2Sx2S image region around it is taken and for every
pixel in this region the distance to the cluster center is calculated according to the distance me-
asure described in the next section. Some bookkeeping is done to know whether the calculate
distance for a pixel to the cluster center currently being processed is smaller than the distance
to the cluster center it is currently assigned to. The pixels for which the calculated distance is
smaller than the distance to the cluster center they are currently assigned to get assigned to the
cluster center currently being processed.

When all the cluster centers have been processed, the cluster centers are recalculated with the
pixels that are currently assigned to it. This process is repeated a number of times. In practice
this process converges in most cases in just a couple of iterations. Here 10 iterations were cho-
sen to be on the safe side, but, depending on the type of images, as few as 2 or 3 can be enough.
Another way to determine when to terminate the algorithm is by calculating the residual error
after processing all the cluster centers. The residual error is defined as the L1 distance bet-
ween previous cluster centers and the recomputed cluster centers. It algorithm is terminated
when the residual error is smaller than a set threshold ε. However, the bookkeeping and extra
calculations involved make the algorithm slower and more complex.

The last step is technically not part of the SLIC superpixel algorithm but is a necessary post-
processing step. Because SLIC does not enforce connectivity of the superpixels, after the
previously described process stray labels may remain. In other words, by continuously re-
assigning pixels to cluster centers, some clusters may become very small or splintered. The
region cleanup is the last step in Figure 4.2 and assigns clusters that are too small to the largest
neighboring cluster. What defines a segment as being too small is application dependent but
in this case it was chosen to merge segments that are less than 25% of the desired superpixel
size.

This concludes the description of the basic SLIC algorithm. In the following sections improve-
ments and extensions to the basic algorithm will be discussed.
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Initialize grid

Take first
cluster center

Grab 2Sx2S
region around
cluster center

Calculate
distances

Assign to
closest

cluster center

All cluster
centers

processed?

Take next
cluster center

Recalculate
cluster centers

Region
cleanup

10 iterations or residual error < ε

no

yes

Figuur 4.2: Flowchart depicting the SLIC algorithm
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4.1.1 Calculation of the distance

In order to determine to which cluster center a pixel belongs, a measure for the distance bet-
ween a pixel and a cluster center is needed. In the case of SLIC, this measure is based on their
spatial proximity in the image and color distance. This means that a cluster center represented
by a 5-dimensional vector consisting of its x- and y-location and its color vector l ab in CIELAB
color space:

Ck = [lk , ak ,bk , xk , yk ]T

The reason the CIELAB color space was chosen, as opposed to for example the well-known
RGB color space, is that in other color spaces the colorimetric distances between individual
colors do not correspond to perceived color differences. For example, the distance between
green and greenish-yellow is perceived as being quite small but the colorimetric distance is
relatively large, whereas the colorimetric distance between red and blue is quite small while
it perceived as being very large. CIELAB overcomes this problem and therefore the Euclidean
distance, which gives the most accurate distance, can be used for both the spatial and the color
distance and this results in the following equations:

dl ab =
√

(lk − li )2 + (ak −ai )2 + (bk −bi )2 (4.1)

dx y =
√

(xk −xi )2 + (yk − yi )2 (4.2)

However, Euclidean distances in CIELAB color space are only meaningful for small distances.
If the spatial distance between pixels exceeds this distance, they begin to outweigh the color
similarities. The result of this is that the superpixels don’t adhere well to region boundaries
anymore and become very irregular and splinter easily. This motivates the introduction of a
variable to control the compactness of the superpixels. To accomplish this, the spatial distance
is normalized to the grid size S and a variable m is introduced in the total distance measure:

D tot al = dl ab +
m

S
dx y (4.3)

In the above equation, m controls the compactness of the superpixels. A higher value for m
results in more emphasis on the spatial distance term and hence more compact, i.e. more
regularly shaped, superpixels. However, a too high value will result in bad adherence to region
boundaries. Therefore, an application specific balance between the 2 terms has to be found.
Achanta et al. (2010) states that meaningful values for m can be in the range [1,20] and propose
to choose m = 10 as a default value that provides a good balance between the 2 terms. However,
as can be seen in Figure 4.3, this is also application dependent. In this case a value of m = 10
does not give a good balance between the color and proximity terms.

4.2 Improvements and extensions

Although the algorithm described above performs very well as is, there are a couple improve-
ments that can be made and extensions that can be added to further facilitate the subsequent
processing. This is the topic of this section and the following subsections will discuss them in
turn.

4.2.1 Dynamic weighting

in the section above the distance measure was explained. The spatial distance is normalized
to the grid size S, or the average expected superpixel size. Then a value for m is chosen that
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3203 superpixels 2073 superpixels 1312 superpixels

Figuur 4.3: The original image and the original image overlaid with the
generated superpixels without dynamic weighting for m = 10,30,50

respectively

finds a good balance between the color term and the spatial term in equation 4.3. This value
for m however, is used over the entire image and not adjusted on a per superpixel basis. This
means that the balancing between the two terms might not be as good as one would like it to
be in every part of the image. Better would be, if in the balancing of the terms, the local color
distribution was taken into account, i.e. dynamic weighting of the color distance term. This
can be done by normalizing the color distance term by the maximum color distance of a pixel
within the cluster to the cluster center. 4.3 then changes to the following:

Ds = dl ab

c
+ dx y

S2 (4.4)

Where c is the maximum color distance within the cluster.

Implementation of dynamic weighting results in superpixels that are more compact and ad-
here better to region boundaries within the image. Also, because of the application of dynamic
weighting, less splintering of the superpixels occurs which results in a much faster region clea-
nup. A downside to dynamic weighting might be that the parameter m is no longer used and
therefore there is no control over the compactness of the superpixels anymore. In general,
however, the results obtained with dynamic weighting are better than without.

4.2.2 Sigma filtering

Sigma filtering (Jong-Sen and Lee (1983)) can be combined with the SLIC superpixel algorithm
to counteract the misclassification of pixels. Misclassification of pixels can occur e.g. when
noisy pixels are present in the image, when small protrusions are classified to belong to the
wrong superpixel due to spatial proximity having more weight than color or, in the case of radar
images, when a point target is present in the image when one is just interested in characterizing
the environment.

What all of these examples have in common is that the misclassified pixels greatly differ from
the mean pixel in the superpixel. Having one or more of those misclassified pixel in the su-
perpixel will introduce an error when the cluster center is recalculated using the pixels that are
determined to belong to said superpixel in the current iteration of the algorithm. Since SLIC is
an iterative algorithm, the error will be propagated and probably grow larger after more iterati-
ons. This motivates the need for a refinement of the SLIC algorithm that makes sure that pixels
that are not a good representation of the superpixel, because they are misclassified or simply
outliers or noisy pixels, are not included in the calculation of the cluster center. This to make
sure that the cluster center is an as good as possible representation of the superpixel. This is
where the sigma filter comes into play.

Kwang-Shik et al. (2013) shows a way to filter out the pixels that are most likely not a good
representation of the superpixel they belong to by looking at the L* values and not taking into
account pixels with an L* value more than α standard deviations away from the mean. If the
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center of a cluster Ck is denoted by ψk and ck is the 5-dimensional vector of a pixel in that
cluster, then mathematically this can be expressed as follows:

ψk = 1

N

∑
l∈Ck

cl (4.5)

In which N is the number of pixels in the superpixel. If however, one wants to include only
pixels inside the cluster with an L* value not more than α standard deviations from the mean
L* of the cluster, than equation 4.5 changes into the following:

ψk = 1

N

∑
l∈Ωk

cl (4.6)

WhereΩk is the set of all pixels with an L* value not more than α standard deviations from the
mean L* of the cluster:

Ωk = (‖Lk −Ll‖ <α ·σk )∩Ck (4.7)

4.2.3 Segment merging

As mentioned earlier in this chapter, the SLIC algorithm can generate a few stray labels or very
small segments because of the iterative nature of the algorithm or the splintering of superpixels.
In the cleanup step, see Figure 4.2, these stray labels and small segments are merged with other
superpixels. In the original SLIC algorithm the authors use a connected components algorithm.
If Θ is the set of neighboring superpixels of the small segment Ck , then it simply merges the
small segment with the first superpixel inΘ that is a neighbor of the first pixel in Ck .

While this is a fast method, it is certainly not the most accurate method. It does not take any
information about the small segment or its neighboring superpixels into account and therefore
canâĂŹt make an informed decision whether merging with the particular neighboring super-
pixel actually improves the final result. Kwang-Shik et al. (2013) describes a different way to
determine to which neighboring superpixel, if at all, the small segment should be merged. This
is discussed here.

The authors of Kwang-Shik et al. (2013), just as was the case with the sigma filter, assume the
luminance is the most defining characteristic of a superpixel and use a simple method based
on just the distance in luminance between the small segment and its neighboring superpixels
to determine with which superpixel the small segment has to be merged.

Let µ denote the mean luminance of the small segment that is to be merged, then the neighbo-
ring superpixel to merge with is determined by the following criterion:

argmin
Ck∈Θ

(µ−µk )2 (4.8)

In other words, the small segment is simply to be merged with the neighboring superpixel that
it is closest to it in terms of the distance in luminance.

This is already an improvement over the way the original SLIC algorithm handled stray labels
and small segments. It now merges the small segment with the most similar neighboring super-
pixel in terms of the luminance distance instead of with the largest segment which might not
be similar at all. However, the fact that a particular superpixel is closest to the small segment
does not mean that it is also similar to the segment. It can occur that in terms of the lumi-
nance distance all neighboring superpixels are very different. In this case the small segment is
different enough from all its neighboring superpixels that it should be its own superpixel. The-
refore, Kwang-Shik et al. (2013) set a threshold for the luminance distance to determine if they
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should be merged at all. Let dL be the distance in luminance between the small segment and
the closest neighboring superpixel. Then they should only be merged if dL < T , where T is a
predetermined threshold. In their paper they propose to use a default value of T = 300, but this
parameter can be set lower or higher depending on the application’s needs.

4.2.4 DBSCAN

Going from pixels to superpixels is already an incredible reduction in terms of effective pixels,
but inspecting the result of the SLIC algorithm one can immediately see that certain superpixels
are very similar. To reduce the effective number of pixels even more, a simple clustering algo-
rithm, DBSCAN (Ester et al. (1996)), is used to group very similar superpixels together. Since
information about neighboring superpixels has already been needed in earlier steps in the al-
gorithm, bookkeeping is already being done in the form of an adjacency graph. This makes
DBSCAN an efficient choice. It also has the benefit that which superpixels are being merged
can be controlled by a parameter, a threshold. This is needed to make sure that superpixels
that shouldn’t be grouped definitely will not be grouped. This can be accomplished by setting
the threshold high enough.

DBSCAN is effectively a region growing technique that can best be explained by referring to the
pseudo code below:� �

1 . Repeat u n t i l every superpixel has been v i s i t e d
1 . 1 . Take superpixel , S , and s t a r t a new c l u s t e r
1 . 2 . Mark S as v i s i t e d
1 . 3 . Find neighboring superpixels closer than

threshold
1 . 4 . While the set of neighboring superpixels i s not

empty
1 . 4 . 1 . Take the f i r s t in the l i s t of

neighboring superpixels , T
1 . 4 . 2 . Mark T as v i s i t e d
1 . 4 . 3 . Expand the current c l u s t e r with T
1 . 4 . 4 . Find neighboring superpixels of T and

add to the l i s t
2 . Create new l a b e l s� �

Basically the algorithm starts by taking a superpixel, marking it as visited and starting a cluster
with it. Next it finds all the neighboring superpixels with a distance smaller than the threshold.
It visits this list of neighboring superpixels, adds them to the cluster and marks them as visited,
then expands the list of neighbors with the neighboring superpixels of those, again, within a
distance smaller than the threshold. So the list of neighbors is being expanded whenever there
are connected superpixels being found within a distance smaller than the threshold. This pro-
cess continues until the list of neighboring superpixels is exhausted. At this point a new cluster
is started with a superpixel that has not been visited by the algorithm yet.

Because in this process, the label the newly made cluster is assigned is simply the label of the
superpixel the cluster has been started with, the labels will not be sequential anymore. There-
fore, the last step is a renumbering of all the clusters so their labels are again a sequential list
[1, . . . , N ] where N is the total number of clusters.

Figure 4.4 shows the results of the SLIC algorithm with and without the use of the DBSCAN
algorithm to illustrate the difference. As can be seen, using the DBSCAN algorithm, even with
a low threshold to make sure errors are definitely not being introduced, results again in a sub-
stantial reduction of the effective number of resulting superpixels. Note however, that in this
particular case a threshold over 5 should not be used as that does introduce new errors. For
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example at the top of the round tumor area on the bottom, stroma is taken with the tumor in
the last two images.

1299 superpixels 823 superpixels

756 superpixels 695 superpixels 640 superpixels 597 superpixels

Figuur 4.4: Left to right, top to bottom: The original image, the original
overlaid with the superpixels and 5 images after using the DBSCAN
algorithm for different thresholds (4, 4.5, 5, 5.5 and 6 respectively)
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5 Results

In the previous chapter the SLIC algorithm was explained in detail, a few intermediate results
were shown as were the workings of the DBSCAN algorithm. But to be able to say something
about how well the algorithm as a whole performs, a couple things are needed.

First a ground truth is needed. In the case of the H&E stained pathology images the ground
truth was provided by someone with expertise in the area. An example of an H&E stained pa-
thology image with its ground truth can be seen in columns (a) and (b) of Figure 5.2. The ground
truth shows a partition of the original image in a black and a gray section. The black section
represents tumor and the gray section stroma.

The second thing that is needed is a clear formulation of the requirements the superpixels have
to meet. In other words, properties by which to indicate how good a set of superpixels is. Since
the goal of the pre-processing method is to reduce the effective number of pixels without losing
the information present in the image, the first property is readily stated: size. The superpixels
have to be as large as possible. The larger the superpixels, the easier for the MRF-based seg-
mentation algorithm. Of course, there is no size for the superpixels to refer to. This depends
for example on the image size, but also on the features present in the image. The first row in
Figure 5.2 shows an H&E stained pathology image with a fairly clear distinction between tumor
and stroma so the superpixels can be larger in this case than when tumor and stroma are more
intertwined (see for example the last two rows in Figure 5.2). However, if two sets of superpixels
for the same image are compared and the accuracy is comparable, then the set with the largest
superpixels is preferable. This leads to the second property: accuracy. The accuracy of a set
of superpixels is a measure of how well the boundaries of the superpixels agree with the boun-
daries of the ground truth. This is also called boundary recall. Since even segmenting H&E
stained pathology images by hand by an expert pathologist is prone to error, two limits were
chosen. The lower limit was set to three and the upper limit to six. The lower limit says that if a
superpixel boundary falls within three pixels of the ground truth boundary it is still counted as
correct. If it is further away but falls within six pixels from the ground truth boundary it is still
acceptable. Superpixel boundaries further away are counted as wrong. There is one exception
to this. Even if a superpixel boundary pixel doesnâĂŹt fall within three pixels from the ground
truth boundary, it can still be counted as correct if that pixel falls within a white area. As can be
seen on the original H&E stained images (column (a) in Figure 5.2), there can be quite a lot of
white in the image. This white matter is neither tumor nor stroma so if a superpixel boundary
cuts through this white matter it does not influence the accuracy of the set of superpixels. Be-
cause measuring the accuracy this way is not exact and to still be able to distinguish between
sets of superpixels with comparable accuracy, the average distance (in number of pixels) the
superpixel boundaries are away from the ground truth boundaries is also calculated for the
boundary pixels classified as acceptable.

5.1 Measurement algorithm

To determine which and how many boundary pixels from the ground truth can be classified
as correct, acceptable and wrong, two edge maps are created: one from the ground truth and
one from the superpixels generated by the SLIC algorithm. Next a distance transform is ap-
plied to the superpixel edge map. The distance transform determines for every pixel that is
not a boundary pixel how far away from the closest boundary it is located. Lastly, as explained
earlier, pixels are also classified as correct if they are further away from the ground truth boun-
daries than LB but fall within the white matter. Therefore, an image indicating the white matter
connected to the ground truth boundaries is also required. These four images are shown in Fi-
gure 5.1 below. The white matter image is acquired by a simple relative thresholding operation
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Figuur 5.1: Left to right: The ground truth edge map, white matter
connected to the ground truth boundaries, superpixel edge map and the

distance transform from the superpixel edge map

on the original H&E stained image. It is assumed that pixels with a luminance value larger than
0.7 times the maximum luminance value found in the image are white matter. The distance
transform of the superpixel edge map is shown in color, where a darker color indicates a closer
proximity to a border, for clarity.

Let A be the set of pixels belonging to the boundaries of the ground truth, B the set of pixels be-
longing to the boundaries of the superpixels and dB (A) ≤ n a function that returns the ground
truth boundary pixels within a distance n from a superpixel boundary. In the case that pixels
within a distance > LB and ≤U B pixels from the ground truth border are classified as accepta-
ble, this can now be expressed mathematically as follows:

Aaccept abl e = {A|dB (A) > LB ∧dB (A) ≤U B} (5.1)

Where LB and U B are the lower and upper bounds for accepted distances respectively. The
percentage Paccept abl e of correctly classified pixels can be expressed as:

Paccept abl e =
|Aaccept abl e |

|A| (5.2)

Similar equations hold for the pixels classified as wrong. The equation for correctly classified
pixels has an extra condition that even when pixels are further away from the ground trust
boundaries than LB pixels, they can still be classified as correct if they are in the white matter
connected to the boundary. If C is the set of pixels consisting of white matter connected to the
ground truth boundary then the equation becomes:

Acor r ect = {A|dB (A) ≤ LB ∨C (A)} (5.3)

When interested in the average distance daver ag e that pixels classified as acceptable are from
the ground truth boundaries, this can be calculated as follows:

daver ag e =
U B∑

n=LB+1

|Aaver ag e (n)|
|A| n (5.4)

Aaver ag e (n) is a function that returns the set of pixels classified as average at distance n from
the ground truth boundaries. The results in column (d) in Figure 5.2 where obtained in this way
and show a bar chart indicating which portion of the ground truth boundaries was classified as
correct, acceptable and wrong for an increasing number of initial superpixels.

Unfortunately there is no ground truth available for the radar images which means that the
superpixel results cannot be measured and expressed as they has been done for the H&E stai-
ned pathology images. However, visual inspection of the image and the result do show that the
algorithm seems to work as intended. For the results see Figure 5.3 below.
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Figuur 5.2: (a) Original H&E stained image (b) The ground truth (c)
Superpixels overlaid on the original image (d) Bar chart of boundary recall

The last thing left to do is show that the results can be used for an MRF-based segmentation
algorithm. As explained earlier in this document, in order to be able to use an MRF-based seg-
mentation algorithm, a neighborhood structure with cliques needs to be defined on the graph.
It is therefore useful to visualize the graph after generating the superpixels. This is shown in
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162 superpixels

325 superpixels 496 superpixels

646 superpixels 800 superpixels

Figuur 5.3: The original radar image and the original image with the
superpixels overlaid for 250, 500, 750, 1000 and 1250 inital superpixels

respectively

red in Figure 5.4. There is an edge between every pair of directly neighboring superpixels. This
means that as a local neighborhood of superpixel i , the superpixels connected to it with an
edge can be taken. Then the single cliques are the individual superpixels in the neighborhood
and pair-site cliques are superpixel i with one of its direct neighbors. Below is a small demon-
stration that will show how this can be used in practice.

Figuur 5.4: The original image and the original image overlaid with the
superpixel boundaries in green and the graph structure in red.
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5.1.1 Demo

To illustrate the ideas presented in this document and to prove that the superpixels can be used
as input for MRF-based texture image segmentation, a small demonstration was implemented
and will be discussed below. The aim of the demonstration was not to provide an optimal
segmentation, but was kept simple on purpose to prove the ideas can be used in practice.

Recall that the Hammersley-Clifford theorem stated that the joint probability of a Markov
Random Field can be expressed as the joint probability of a Gibbs Random Field:

P (x) = 1

Z
e

−1
T U (x) with U (x) =

∑
c∈C

Vc (x) (5.5)

U (x) is the energy function which is a summation over the clique potential functions. To define
the clique potential functions, a choice of model needs to be made. In the case of the H&E stai-
ned pathology images, there are just two labels that need to be considered: tumor and stroma.
To further simplify matters, only clique potentials up to two sites are considered resulting in
the following energy function for superpixel Xi :

U (xi ) =V1 (xi )+
∑

i ′∈Ni

V2 (xi , xi ′) (5.6)

Since there are just two labels to be considered, one speaks of an auto-logistic model and the
potential functions can be expressed as V1 (xi ) = αi xi and V2 (xi , xi ′) = βi ,ii ′ xi xi ′ . By chosing
the possibles a superpixel can take to be −1 or 1, i.e. tumor is represented by −1 and stroma by
1, the model is further reduces to the Ising model. In the Ising model α is commonly chosen as
0 and β as 1. This results in the following energy function:

U (xi ) =
∑

i ′∈Ni

xi xi ′ (5.7)

and the conditional probability for superpixel xi becomes:

P (xi |Ni ) = 1

Z
e

−1
T xi

(∑
i ′∈Ni

xi ′
)

(5.8)

One thing to clarify here is the choice of neighborhood. As was seen in Figure 5.4, the resulting
superpixel graph is an irregular graph. The neighborhood of superpixel xi in the above descri-
bed model consists of all its direct neighbors. On a regular graph, the direct neighbors of a pixel
are the four directly next to and above and under the pixel in a 4-connected neighborhood, or
all eight surrounding pixels in an 8-connected neighborhood. In an irregular superpixel graph
there is no telling on forehand how many direct neighbors a superpixel has and therefore this
was written as a sum in Equation 5.8.

Now that the model has been established, the joint probability of the field needs to be compu-
ted and evaluated. That realization of the field with the highest probability, or in other words
the lowest energy, has to be found. Looking again at Equation 5.5 it is clear that even when only
considering two labels and n superpixels, to find the configuration of the field with the lowest
energy amounts to evaluating 2n configurations of the field. Even with a low amount of super-
pixels this very quickly becomes intractable. Therefore, a Gibbs sampler was used. The Gibbs
sampler is a way to sample from the underlying probability distribution and by doing this en-
ough times, get as close as possible to the global minimum. One starts with an initialization
of the field and visits the superpixels in random order. For the visited superpixel probabilities
are computed for every possible label that the superpixel takes on this label given its neigh-
borhood by using the energy function derived above. In this case that results in a probability
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that the superpixel should be classified as tumor and a probability that it should be classified
as stroma, given how its direct neighbors are labeled. These probabilities are then multiplied
by the probability density function of the observed data, i.e. the features extracted from the
superpixel describe the likelihood of the superpixel taking a certain label based only on the ob-
served data. According to the probabilities calculated, it is determined whether the assigned
label of the superpixel should be changed or not. This process is repeated a number of times
until no change in labels happens anymore. At this point the realization with the lowest energy
has been found.

There is one thing that was not talked about here yet and that is the temperature parameter. As
explained earlier, low values for the temperature enforce a higher interaction between super-
pixels and thus larger distinct regions are formed whereas a higher temperature drives the field
to a more uniform distribution of the labels. See Figure 2.10 for an illustration of this idea. In
classic Gibbs sampling the temperature is being kept constant at a value of 1 or slightly lower,
e.g. 0.9. This means that in order to arrive a realization of the field with the lowest energy, the
starting point, the initial random distribution of the labels, has to be a very accurate guess as to
not end up in a local minimum.

To counteract this behavior and to not have to rely on a very good starting point, a scheme
called Simulated Annealing (SA) was implemented. In SA it is possible to start with a random
realization of the field and update the labels as described above starting with a high tempera-
ture, and at every iteration lowering the temperature slightly. This results in a more accurate
sampling and it is less likely to settle at a local minimum instead of the global minimum. As a
more intuitive explanation, a high temperature motivates a more uniform distribution of labels
so an iteration with a high temperature can be thought of as violently shaking the field. This
results in a new realization that is quite different of the previous one. When lowering the tem-
perature gradually, the shaking becomes less and less violent until a state is reached where the
field does not change anymore. This is visualized in figure 5.5 where the temperature is gra-
dually lowered over ten iterations. It is visible that the early iterations shake up the field pretty
hard whereas the later iterations change the field less and less drastically.

As can be seen in Figure 5.5, after a number of iterations the realization of the fields comes
closer and closer the ground truth. In Figure 5.5 tumor is represented by black, stroma by white
and white matter by gray. The demonstration does not result in a perfect segmentation but as
explained earlier serves the purpose of showing that superpixels can indeed be effectively used
as input to an MRF-based segmentation algorithm. The result can be significantly improved by
e.g. choosing a more accurate model, considering a larger neighborhood system and extracting
more and better features from the superpixels. In this case, the only features used were the
L*a*b* colors of the superpixel.
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Figuur 5.5: The original H&E stained pathology image with its ground truth
followed by ten iterations of the MRF-based segmentation algorithm
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6 Discussion

The previous chapter explained the method by which the accuracy of the superpixel algorithm
was measured and showed some of the results in Figure 5.2. As expected, column (d) shows that
with a higher number of initial superpixels the accuracy of the algorithm becomes better. The
images shown are all 1000x1000 pixels (one megapixel). Results for the larger images are not
shown here because the images are so large that when displayed here it is hard to distinguish
anything in them. However, as expected, the results do not change with images of different size.
If two images are comparable in nature (contrast, the way the tumor and stroma are intertwi-
ned) but the second image is four times larger, then the results are approximately the same
for the same size superpixels. I.e. the larger image in this case needs to start with four times
more initial superpixels. Also, a correctly chosen threshold for the DBSCAN algorithm will not
change the accuracy of the superpixel algorithm. As long as no new errors are introduced, i.e.
a too high threshold resulting in superpixels covering stroma being merged with superpixels
covering tumor or vice versa, the accuracy of the superpixels algorithm with or without the use
of DBSCAN will be the same.

To get an idea of what areas in an image are problematic, the results can also be shown as in
Figure 6.1. Here the parts of the ground truth boundaries are colored according to how the
pixels are classified.

When looking at the places in the original image where the ground truth boundaries are colo-
red red, or, equivalently, classified as wrong, and the superpixels boundaries thus do not adhere
well to the tumor/stroma boundaries in the image, it can be seen that this is the case in places
where a distinction between stroma and tumor is very hard to make. It also occurs at locations
in the image where the objects (tumor or stroma) are smaller than the superpixel size. This
can be seen in the image in Figure 6.1 by looking at the very narrow piece of stroma between
the larger tumor segments. Because the algorithm enforces a certain level of regularity for the
superpixels, it can be that when the superpixel size is chosen too large, the trade-off between
color and proximity importance is made in favor of proximity. This results in ’prettier’ super-
pixels in the sense that they are shaped more regularly, but has as a side-effect that they do
not adhere to object boundaries very well. This effect can be countered by choosing the super-
pixels smaller. As a rule of thumb the size of the superpixels should be chosen no larger than
the smallest object that one wants to be able to identify in the image. This is, however, a trade-
off itself since generating more superpixels takes longer. As explained in the previous section,
the size of the superpixels is also a property by which to state how well the algorithm performs,
but using the DBSCAN algorithm will eventually reduce the final number of superpixels again.
As mentioned earlier, the DBSCAN algorithm is very fast so that the output of the superpixel
algorithm can be used to try different threshold values.
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(a) (b) (c) (d)

Figuur 6.1: (a) Original H&E stained image (b-d) ground truth boundaries
colored according to how their pixels are classified for an initial number of

superpixels of 500, 2500 and 5000 respectively
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7 Conclusion and future work

In Chapter 2 this document tried to explain why Markov Random Fields are a good choice when
dealing with images that contain globally varying textures in an unpredictable way, are very
large or are subject to heavy noise causing outliers. This last property can occur in the H&E
stained pathology images for example when more of the staining material attaches to certain
parts of the stroma or tumor resulting in very bright or dark spots that should still be classified
as belonging to the rest of the stroma or tumor. MRF’s can infer the true class of these spots
given its surroundings. In the case of radar images the same argument can be made. These
images are sensitive to speckle noise or point targets appearing in the environment of the radar.
In this case MRF’s can also infer the true class of the superpixels giving its surroundings.

Chapter 3 explained that most of the time a pre-processing step is run on the raw data in or-
der to prepare it for the main algorithm. This means that the data is transformed into a form
more suited for the algorithm following it. Face recognition was used as an example where the
pre-processing consists of face registration and translation resulting in a standard form for the
faces to then be processed further. In this case, a pre-processing step is required to bring down
the effective number of pixels in the image without losing the information present in it. The
choice for SLIC over other superpixel algorithm was motived and the algorithm was explained
in detail including improvements and extensions. Especially the DBSCAN algorithm is an im-
portant step. The results showed that more accurate results were obtained when the number
of superpixels is larger, but the objective was to bring the number of effective pixels down as far
as possible. The DBSCAN algorithm performs a quick clustering on the superpixels, merging
superpixels together that definitely belong together without introducing new errors as long as
the threshold is chosen low enough.

Chapter 5 then showed the results of applying the superpixel algorithm and, in the case of the
H&E stained pathology images, verified these results. It was observed that with more initial su-
perpixels the accuracy of the algorithm increased. Chapter 5 also identified problematic areas
and images and showed that, although superpixels are performing very well on a lot of images,
there is still room for improvement. Therefore, the first step in improving the algorithm is to
find a way to make the superpixel algorithm more effective on images with low contrast bet-
ween stroma and tumor or when stroma and tumor are highly intertwined. This can be done
by extending the distance measure, taking more features into account than just color and dis-
tance, e.g. the dominant direction of the texture, or by trying to enhance the contrast between
tumor and stroma in the images. It would also be very helpful to have more reference data
for the radar images so the accuracy of the superpixel algorithm can also be verified on these
images.

Since the focus here was not on optimizing the algorithm for speeds but rather on correctness
and accuracy, this is also future work. At this time the algorithm is especially slow on larger
images with a high number of superpixels. This can most likely be improved by a significant
amount by splitting the original image into sub images, e.g. like shown in Figure 7.1, running
the algorithm on the small sub images with a correspondingly smaller number of superpixels
and later merging the results.

With an algorithm optimized for speed the initial number of superpixels can be set quite high
to achieve a higher accuracy, but DBSCAN still requires some manual inspection of the image
and results to determine the optimal threshold value resulting in the smallest number of super-
pixels while not losing in accuracy. To make the algorithm completely automatic it is also desi-
rable to find a way to determine the optimal DBSCAN threshold value for a particular image.
This would eliminate completely the need for any human supervision.
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Figuur 7.1: Division of the original image in smaller sub images

The next step would be to actually implement an MRF-based segmentation algorithm, fed with
features extracted from the superpixels. An example of a feature for the H&E stained pathology
images could, again, be color since tumor tends to be significantly darker than stroma. Also,
direction of the texture in the superpixel compared with that of its surrounding superpixels can
be used as a feature since the general direction of tumor and stroma tend to be perpendicular
to each other. Another discriminating feature is the size of the cells and nuclei contained within
tumor and stroma. An algorithm like SIFT (Scale Invariant Feature Transform, Lowe (1999)) can
be used to function as a ’blob’ detector. The size and the blobs and the amount of them can be
a good indicator to determine whether the particular superpixel should be classified as tumor
or as stroma. The dominant direction of the texture within a superpixel can most likely also
be used as a feature for superpixels created for radar images, but, unfortunately, an algorithm
like SIFT will most likely not work for radar images. In this case it is probably better to look
at second-order statistics, obtained for example by using co-occurrence matrices (Gotlieb and
Kreyszig (1990)). A co-occurrence matrix keeps track of the frequency of co-occurrence values
at a given offset within the superpixel. From these co-occurrence matrices, statistics like the
entropy, contrast (also known as variance), energy, correlation or homogeneity can be compu-
ted. These values are a representation of the superpixel and can be used for classification of the
superpixels.
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