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SAMENVATTING

Vandaag de dag bepaalt software hoe we onze gegevens (mogen) opslaan. De pro-
grammatuur bepaalt welke bestandsindelingen, welke database management syste-
men of welke cloud-diensten worden ondersteund. Gegevens zijn lastig te delen
tussen programma’s of apparaten: bestanden zijn ongeschikt (te primitief); cloud-
diensten zijn programmaspecifiek of kunnen gegevens niet (of slecht) uitwisselen
met concurrerende diensten. Dientengevolge worden de gegevens van de gebruiker
versplinterd over diverse opslagmechanismen.

Programma’s zijn onnodig ingewikkeld; gegevens zijn slecht uitwisselbaar; de
gebruikers hebben geen controle over hun gegevens; ontwikkelaars schrijven on-
nodige code. Ons hedendaagse ‘gegevensbeheerparadigma’ veroorzaakt deze prob-
lemen door een sterke koppeling van programma’s met opslag. Wij stellen een
nieuw gegevensbheheerparadigma voor om deze problemen op te lossen.

Ons nieuwe gegevensbeheerparadigma scheidt programma’s en opslag met een
centraal systeem voor informatievoorziening en -uitwisseling: de kenniswolk [know-
ledge cloud]. Programma’s zijn niet langer bezorgd met opslag maar wisselen in-
formatie uit met de kenniswolk met hetzelfde informatiemodel als het programma
intern gebruikt—deze kwaliteit wordt opslagonwetendheid [storage-agnosticism|
genoemd. De gebruiker kan de kenniswolk instellen, zonder medeweten van pro-
gramma’s, om de opslag en verwerking van zijn gegevens te sturen—deze kwaliteit
wordt omstandigheidsaanpasselijkheid [context-adaptivity] genoemd.

De onderzoeksbijdrage bestaat uit een achtergrondstudie, een onderbouwd voor-
stel voor de kenniswolk, een ontwerp van diens architectuur, een implementatie
van een kenniswolk-prototype met demonstratieprogramma’s en een theoretische
case-study. Deze resultaten geven antwoord op de hoofdvraag van het onderzoek:

Wat zijn de gevolgen voor gebruikers en ontwikkelaars als pro-
gramma’s met een enkele kenniswolk werken om informatie op te
halen en op te slaan, in plaats van met diverse afzonderlijke opslag-
mechanismen?”

Dankzij het gebruik van een kenniswolk, kunnen programma’s minder ingewikkeld
worden; worden gegevens beter uitwisselbaar; krijgen gebruikers betere beheersing
van hun gegevens; zouden ontwikkelaars minder onnodige programmatuur moeten
schrijven. Aanvullend onderzoek is noodzakelijk om onze resultaten te valideren in
praktischere omstandigheden met meer complexiteit maar de eerste bevindingen
zijn bemoedigend.



ABSTRACT

In the state of the art, software programs decide how data is (or may be) stored.
The program's code determines in which file formats, which database management
systems or which cloud services are supported. Sharing data between programs or
devices is difficult: files are inadequate (too low-level); cloud services tend to be
program-specific or interoperate badly with competing services. Consequentially,
the user’s data is splintered across various storage mechanisms.

Programs are unnecessarily complex; data is badly interoperable; users are not
in control of their data; developers must write inessential code. Our current ‘data
management paradigm’ causes these problems by promoting a strong coupling
between programs and storage. We propose a new data management paradigm to
solve these problems.

Our new data management paradigm separates programs and storage by a
central system for information provision and exchange: the knowledge cloud. Pro-
grams are no longer concerned with storage; they exchange information with the
knowledge cloud in the same information model the program uses internally—we
call this quality storage-agnosticism. The user can configure the knowledge cloud,
oblivious to the programs, in order to control storage and processing of the user's
data—we call this quality context-adaptivity.

Our research contribution includes a background study, a substantiated proposal
for the knowledge cloud, a design of its architecture, an implementation of a
knowledge cloud prototype with demonstration programs and a theoretical case
study. These efforts permit us to answer the main question:

“What are the effects for users and developers if programs interacted
with a single knowledge cloud for information access and storage,
rather than with various storage mechanisms separately?”

By using a knowledge cloud: programs may be less complex; data is more in-
teroperable; users have more control of their data; developers should write less
inessential code. More research is necessary to validate our results in more prac-
tical conditions with more complexity, but our initial findings inspire confidence.






PREFACE

Enschede, April 2015

Dear reader,

For years | struggled with a problem, a challenge, an annoyance—one that seemed
s0 obvious that it just begged for a solution: programs didn't like my file organisa-
tion. My attempts to switch operating systems, switch browsers, switch mail clients
all failed—all because the alternatives stored data in a completely different way,
often hiding it in complex file formats and folder hierarchies or databases. | could
not share, access or organise my data the way | wanted. My data! | was dismayed
by the state of affairs but | had to accept it. Giants that were (and still are) far
more experienced and knowledgable than | didn't work on The Ultimate Solution,
so there probably couldn't be any.

While studying Computer Science (specialisation Software Engineering) or ex-
ploring the Web, | occasionally stumbled upon some neat principle, some well-
reasoned design or some weird powerful technology that made me wonder if these
could help solve my problem. As small insights and ideas came to me, | chose
to write them down and to bide my time for an eventual confrontation with my
problem. The master thesis would be that confrontation.

The final project gave me the opporburdenty (opportunity and burden) to seek
out new knowledge and solutions; my problem definitely required those. In June
2012, six months before the final project would actually be relevant, | pitched my
problem to Christoph Bockisch and he concurred that my problem seemed worthy
of further investigation as a research topic.

When | started working on this problem as a research project, | had six pages
of notes and scribbles. Since then, much time has passed and scribbles turned into
research results, documents, source code and many new insights. | do not know
what the past few years would have looked like, if | had not pursued my research
idea or if | had not jolted down small ideas and insights over the years. No matter,
though; | am actually quite content with reality as it is.

This conclusion to my research project would not have been possible without the
help of many people.

| would like to thank my research supervisors: Christoph Bockisch, Maurice
van Keulen and Arend Rensink. Their own enthusiasm for my research topic, their
insights and their complementary expertises were of tremendous value. (Their pa-
tience is also greatly appreciated.) | also want to thank my many friends, especially
those | got to know at the | A.P.C. foundation and S.H.BV. Sagittarius. Of course,
my gratefulness extends to my family.

Thank you for your interest in my work!

Wanno Drijthout
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INTRODUCTION

In the past decades, technology has evolved at an unprecedented pace. To manage
a particular piece of information (like calendars and documents), we may have
once used one device and one application. Today, we want to manage the same
information at different devices (such as smart phones, tablets, laptops and desktop
PCs). So, applications need some mechanism to store and access this structured
(distributed) information. We notice that software products tend to select these
mechanisms and thereby dictate how we (the users) may use, model, store and
supply data. We find this problematic and unnecessary.

TO ILLUSTRATE: Mozilla Firefox uses bookmarks while Microsoft Internet
Explorer uses favorites; synchronizing between these applications or across devices
is all but impossible (as will be further discussed in section §1.6). Software that
does offer synchronization features may only support a limited selection of proto-
cols; for example: to exchange calendar appointments, Microsoft Outlook prefers
Microsoft Exchange while Mozilla Thunderbird (with extensions) uses CalDAV.

To simply enable client applications to access and share some data (hyperlink
collections, calendars), we need to manage various centralized storage servers or
use some proprietary cloud service. And we may still find client applications we
want to use that do not support that particular storage mechanism.

TRADITIONAL STORAGE The most common storage mechanism is the
hierarchical file system—originally invented for the Multics operating system in
1965 [14] Its prime construct (the file segment) is essentially a raw byte array
without predefined structure. Most applications will expect their files to be format-
ted in some fashion. Formats may be standardized (XML, JSON) and readable by
different programs; alternatively, formats may be proprietary or human-unreadable.

To meet the modern need of sharing data between devices, various synchron-
ization utilities (Dropbox, Microsoft OneDrive) and remote file access protocols
(SMB, WebDAV) exist. However, many programs expect to be solely responsible
for file management and ignore concurrent file modifications or locks by external
parties. Applications may also mutate files and folders so quickly that synchroniz-
ation utilities go haywire and possibly corrupt files. Moreover, one cannot easily
share fragments of a (changing) file; if only because the lack of inherent structure
makes the selection and recombination of relevant file fragments difficult.

MODERN STORAGE We notice a trend for modern applications to support
data sharing and synchronization by storing user data ‘in the cloud" In practice,
this cloud is some proprietary (possibly application-specific) internet service to
manage data over which the user has no control. Some cloud-like service software

Software programs
control data storage.

Sharing data is
difficult.

Files lack structure.

Sharing data as files
is inadequate.

Cloud services control
data storage.
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products may be run on a home server, but these are rare and often functionally-
limited.

Paradoxically, to maintain and access a single state of their data with their
devices, users need to yield control over their data and devices to foreign ap-
plications and services. With their data now splintered across various application-
specific services on different machines with proprietary APIs, data interoperability
may be hindered as well. For programs to access the user’s data, developers now
need to implement support and maintain more storage-related code (server APlIs,
synchronization logic, account management) in their applications. That functionality
bloats programs and increases their complexity.

1.1 MOTIVATION & GOAL

A 'data management paradigm’ is a set of concepts and thought patterns on
data management. Today, programs need to explicitly support particular storage
systems. Assigning the responsibility for storage to applications is the fundamental
characteristic of our data management paradigm that makes it primitive. This
paradigm was adequate in times when people used (or even shared) one device
to manage all their data. Nowadays, people use different devices (with possibly
different applications) to manage their data. The traditional paradigm cannot serve
modern demands and causes various problems:

o Programs are unnecessarily complex because they must support and ab-
stract different storage mechanisms.

o Data is badly interoperable because it is stored to conform exactly to some
program’s (possibly unique) format.

e Users are not in control of their data because programs decide how data
is used and stored.

o Developers must write inessential code to implement, support or abstract
from storage services.

Clearly, both users and developers stand to benefit from a data management
paradigm that ameliorates these problems. The goal of this research project is to
present and substantiate our vision for such a new data management paradigm.

1.2 THE NEW DATA MANAGEMENT PARADIGM

The proposed new data management paradigm contributes to solving the four
identified problems by moving the responsibility for storage from programs to a
central information provision and exchange service: the knowledge cloud.
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1.2.1 The knowledge cloud

We imagine that each device would run a knowledge cloud instance, controlled
and configured by the user. Where applications would traditionally access the
file system or network sockets to access storage, they would now contact the
knowledge cloud instead, as shown in figure 1. Programs exchange information in fo
their own model with this intermediary system and delegate other responsibilities
(such as data storage) to this intermediary system. Applying this paradigm requires
programs to be structured fundamentally differently; interaction with the knowledge
cloud is not imagined as an additional feature to existing programs.

Exchange server
Mail,Calendar |
L

Outiook [
IMAP'SHT‘T server Internet Explorer
al Cloud Edition
Thunderbird [
I "CalDAV server Firefox
Calendar Cloud Edition
SQLite DB Outlook
1 Bookmarks Cloud Edition
Firefox
T Synchronization server Thunderbird
Bookmarks Cloud Edition

Internet Explorer Fl':':vs;ﬁg;"

Figure 1: The effect of the current (left) and proposed (right) data management paradigms
on program-storage-interaction.

1.2.2 Fundamental Qualities

The knowledge cloud is a generic abstraction layer between programs and stor-
age mechanisms and must be flexible enough to use various storage mechanisms
in various circumstances. The knowledge cloud enables two fundamental qualit-
ies of the new paradigm: storage-agnosticism and context-adaptivity (as will be
described in more detail by section §3.2 on page 22).

storage-agnosticism permits users and programs to remain ignorant of
storage concerns. Rather than interpreting data (in some format from some
data source), a storage-agnostic program specifies an information model
and expects the information from the knowledge cloud to conform.

context-adaptivity permits other parties to invisibly manipulate the inter-
action between programs and storage. By interception and adaptation, other
parties (contexts) could support cross-cutting concerns (authorization, data
transformation) without the program noticing.

3
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1.3 RESEARCH QUESTIONS

Our research project intends to answer the following main question:

Q0 “What are the effects for users and developers if programs interacted with
a single knowledge cloud for information access and storage, rather than
with various storage mechanisms separately?”

In particular, we consider the following research questions:
Q1 Can the use of a knowledge cloud reduce program complexity?
Q2 Can the use of a knowledge cloud improve data interoperability?
Q3 Can the use of a knowledge cloud improve control by users over their data?

Q4 Can the use of a knowledge cloud reduce the need for inessential code?

1.4 CONTRIBUTIONS

With this research project, we contribute to a fundamental discussion on data man-
agement paradigms, their weaknesses and qualities. We describe the state of the
art paradigm and identify its fundamental weakness: assigning responsibility for
storage to applications. We also present an alternative paradigm that separates
storage from application and introduce the ‘knowledge cloud’ to realize this sep-
aration. We define two fundamental qualities this new paradigm would have due
to having a knowledge cloud: storage-agnosticism and context-adaptivity. We sub-
stantiate our vision by elaborating on the reason and design of a knowledge cloud
and implementing a prototype knowledge cloud (Project Klowid). A case-study
further illustrates the supposed effects of a knowledge cloud on software.

1.5 APPROACH

This document describes our efforts to find and validate answers to the research
questions, which include:

specifying a example use-case of the knowledge cloud;

o investigating concerns of programs, storage and the knowledge cloud;

o establishing what requirements and benefits a knowledge cloud should have;
o designing a general architecture for a knowledge cloud;

e implementing a knowledge cloud prototype with demonstration programs;
o simulating the effects of using a knowledge cloud on an existing program;

o concluding with our findings and recommendations for future research.
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1.6 GUIDING EXAMPLE: MANAGING BROWSER
HYPERLINKS

In this document we introduce and discuss various abstract concepts. To ease un-
derstanding and discussion, one imaginative problem case will quide us throughout
this document: the ‘web browser’ problem we mentioned at the very beginning.
ALl modern web browsers have some feature for users to maintain a collec-
tion of hyperlinks. Different browsers support different organization models and
storage back-ends. Microsoft Internet Explorer calls remembered hyperlinks ‘Fa-
vorites” and organizes them hierarchically. Mozilla Firefox maintains an hierarchy
of ‘Bookmarks' and allows each bookmark to be ‘tagged’ by multiple categories.
This problem case exhibits the problems we introduced in section §1.1 as follows.

PROGRAMS HAVE UNNECESSARY COMPLEXITY Internet Explorer
accesses and observes the file system to maintain an up-to-date hierarchy of favor-
ites. Firefox needs to access a database and optionally maintain a synchronisation
server connection. The browsers implement functionality of non-trivial complexity
(e.g., parsing, maintaining connections, handling /O and connection failures) to
simply maintain correspondence between data storage and their in-memory in-
formation model.

DATA IS BADLY INTEROPERABLE  Neither browser in question is able
to use hyperlink collections of the other: Firefox does not use favorites; Internet
Explorer does not use bookmarks. From the user's perspective: both browsers
dictate how hyperlink collections are modelled, stored and used—i.e., users suffer
vendor lock-in. For other applications and users to access bookmarks and favorites,
they would still need to support each browser-specific data format and storage
mechanism.

Internet Explorer and Firefox persist bookmarks somewhere in the user's per-
sonal directory on the local file system. Internet Explorer uses a folder hierarchy
of hyperlink files with an obscure data format. Firefox uses a SQLite file in an
obscure location, which is difficult to access. While Internet Explorer favorites may
be synchronized across devices as ordinary files, their presentation order would
be lost [a]. To synchronize Firefox bookmarks, one would need to run a server
application [b] or submit their data to a vendor-run service.

USERS DO NOT CONTROL DATA Internet Explorer saves favorites in a
hierarchy of files and folders on the file system; Firefox uses a SQLite-database.
The user has no control over these data formats and storage mechanisms.

DEVELOPERS WRITE INESSENTIAL CODE  Browser developers write
and maintain the code for the aforementioned complexity. Other programs may need
to also access favorites or bookmarks; their developers must first determine how
and may end up implementing similar code again.

5
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SOLUTION: THE KNOWLEDGE CLOUD  Currently, both browsers are
concerned with data storage and thereby hinder data interoperability and user
control. The browsers could support all sorts of sharing, synchronization and ex-
change features, but this would only increase the user’s reliance on the browser,
bloat the code base etc. In our proposed paradigm, browsers would connect their
information model to the knowledge cloud and would no longer be concerned with
data formats and storage. Instead, the (user-controlled) knowledge cloud provides
the information browsers need, transforms between models if needed and manages
the storage of information, as shown in figure 2.

Knowledge cloud

Moxzilla Bookmarks"] Hyperlinks
Firefox Model Model
Microsoft

Internet Explorer

Relational DBMS (MySQL, SQIJQ]

— Firefox Synchronization server

Favorites

File System

Figure 2: Simplified model of a possible configuration of the knowledge cloud for quiding
example (section §1.6). Note-shaped nodes denote information; edges between
them denote possible transformations. Folder-shaped nodes denote storage
mechanisms that are accessed by the cloud to bring external data into the
cloud for further processing (shown with red edges).



2 BACKGROUND

We proposed (chapter 1) a new data management paradigm in which programs
are not responsible for data storage—a knowledge cloud would be instead. A
knowledge cloud that assumes responsibility of storage for arbitrary programs and
arbitrary storage mechanisms needs to handle various concerns. This chapter elab-
orates on relevant concerns, grouped by five aspects of the new data management
paradigm (as shown in figure 3):

§1. Storage-related concerns: data formats, storage interfaces, consistency guar-
antees;

§2. Program-related concerns: storage abstraction, impedance mismatch, inter-
operability;

§3. Cloud-related concerns: model interchange, federations, canonical models,
knowledge models, existing solutions;

§4. Model structures: the features and (dis)advantages of relational, object-
oriented and other models;

§5. Related work: existing knowledge-cloud-like systems.

PROGRAM
KNOWLEDGE

Figure 3: The aspects of the knowledge cloud: (1) between cloud and storage, (2)
between pragram and cloud and (3, 4, 5) inside the cloud.

2.1 STORAGE-RELATED CONCERNS

In the current data management paradigm, programs are concerned with accessing
storage and they may do so in different ways. In the proposed paradigm, the
knowledge cloud is expected to access storage, instead. We consider some common
storage-related concerns a knowledge cloud would need to consider.
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2.1.1 Data formats

Data formats define the structure with which data is described and (de)serialized.
A data format is defined by a (parsable) grammar and constraints (e.g., encoding,
validation).

Nowadays, programs tend to use a general-purpose data format such as XML,
YAML or JSON. Generally, such formats model information hierarchically (sec-
tion §2.4.1). XML and YAML support cross-referencing, making them fit more
easily to object-oriented information models (section §2.4.3) as well. Before the
advent of general-purpose data formats, programs defined custom file formats with
custom parsers. Some programs (e.g., Microsoft Word) even deprecated their cus-
tom data formats (DOC) in favour of XML-based successor formats (DOCX). By
using a general-purpose data format, programs can also reuse common libraries
(e.g., XML-parsers) to abstract from raw data (cf. data independence [12]).

Database management systems tend to use custom binary (i.e, non-textual)
formats for their databases. Database formats are optimized for being used with a
DBMS (e.g., PostgreSQL) or library (e.g., SQLite).

2.1.2 Storage interfaces

Programs access storage via some programmatic interface, often in conjunction with
some query language, protocol or library.

SQL [10] is a well-known declarative language for querying and mutating data
in a relational database (section §2.4.4). Most relational database management
systems (RDBMS) can interpret SQL-queries and proprietary extensions thereto.
Although SQL is standardized, programs must still explicitly support the interface
of particular RDBMSs.

The Open Database Connectivity standard (ODBC) aims for database independ-
ence by offering a generic database interface to client programs. It was originally
developed by Microsoft in the 1990's and is supported by many programs in its
Office-suite. It seems not to be used often by modern applications.

Libraries (such as JDBC [c]) can abstract from particular database management
systems (cf. database-agnosticism [d]), facilitate query construction through fluent
APIs [e] and (de)serialize query results into program entities. Some programming
languages facilitate storage access through first-class language constructs (such
as NET LINQ [f]).

2.1.3 Consistency guarantees

Relational database management systems traditionally support transactions (a
unit of work on the database). Reliable transaction systems satisfy the ACID-
properties [25, 27]:

atomicity Either the transaction fails (without a trace) or succeeds (with full
results).

consistency Committed transactions only have legal (valid) results.
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isolation Effects of transactions are hidden from concurrently executed trans-
actions.

durability Once the transaction is committed, its results are guaranteed to
survive calamity.

Relational DBMSs generally support transactions and allow clients to specify how
strictly the ACID-properties should be enforced due to a performance trade-off.

Relatively recently, NoSQL systems [g] emerged as alternatives to the tradi-
tional RDBMS. The class of NoSQL-systems encompasses storage systems with
non-relational data models (such as the key-value store, a graph or a document).
Distributed, big data and real-time web applications tend to use NoSQL-systems.
Compared to traditional and well-researched RDBMSs, NoSQL-systems suffer
a number of weaknesses hindering their widespread adoption [25]. Distributed
NoSQL-systems generally sacrifice consistency for the sake of availability and
partition tolerance (as defined by Brewer's theorem [24]). Most NoSQL-systems do
not guarantee ACID-properties but may guarantee the weaker BASE-properties
(Basically Available, Soft state, Eventual consistency [45, 3]).

2.2 PROGRAM-RELATED CONCERNS

Programs use an information model of some domain. Programs concerned with
storage must also maintain the relation between this information model and the
storage (data) model. In the proposed paradigm, the knowledge cloud would assume
or affect such responsibilities, like the following.

2.2.1 Program architecture

Most programs abstract from storage by using libraries, language constructs and/or
applying some architectural pattern.

The traditional three-tier architecture [h] distinguishes a presentation tier (with
the Ul), an application tier (with business logic and an information model) and a
data tier (with the data model and storage interfacing). To abstract the relation
between information model and data model, the Active Record pattern [22] could
be applied.

An alternative to top-down architectures (like the three-tier architecture) is the
onion architecture [i] where infrastructural services (like storage) are attached
on the outside of the architecture (instead of ‘built on top of’). The Repository
pattern [22] could be applied to maintain the relation between information and
data model in this architecture.

2.2.2 Impedance mismatch

Managing the relation between storage data models and program information mod-
els affects not only architectural elegance. Commonly, object-oriented programs

9
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use a relational DBMS for storage. The fundamental differences (i.e., incompatibil-
ities) between these models give rise to the infamous object-relational impedance
mismatch [33]. Object-relational mappers (ORMs) may be used to bridge the differ-
ence between these models, but their unsuitability for non-trivial mappings earns
ORMs the moniker “the Vietnam of Computer Science” [j].

2.2.3 Interoperability

Interoperability is the quality of heterogeneous systems to exchange informa-
tion [43]. Apart from customer demand, there is no real impetus for program de-
velopers to consider interoperability; most programs are designed to simply store
data for their own purpose—not to exchange it with other programs.

Interoperability is hindered by heterogeneity on various levels [39], such as
syntactics (e.q., data format differences), semantics (e.q., interpretational differ-
ences), pragmatics (e.g, communicational differences) and the social world (e.g.,
cultural and legal differences). For one program to exchange data with another,
both programs need to support interoperability on all these levels. As programs
are currently responsible for storage and thereby for the actual exchange of data
between programs, they determine the opportunities for interoperability as well.

To support data interoperability between programs, various functionalities are
required [43, 41], such as:

o a mechanism to communicate and exchange information;
e a mechanism to browse available information;
o a mechanism to adapt information (from different schemata or structures);

o a mechanism fo integrate information (from different sources).

2.3 CLOUD-RELATED CONCERNS

The proposed knowledge cloud assumes responsibilities for storage, for many
programs and many storage mechanisms. Consequently, the knowledge cloud is
concerned with integrating heterogeneous data sources and models, providing
program-specific information models, aggregating, transforming and exchanging
data. Knowledge about the models, their structure and relevance is critical. The
following sections elaborate on related concerns.

2.3.1 Knowledge models

We define knowledge as information with context to determine its relevance (see
later section §3.1.1). Literature defines a knowledge level model [60] as “a model
constructed in a manner whereby no specific attention is paid to implementation
issues and decisions”. Knowledge level models, such as ontologies and problem
solving models, are useful for system engineering and human understanding. They
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are also relevant to establishing canonical models (section §2.3.4) and transform-
ations between models (section §2.3.3).

ontologies: an ontology is "an explicit specification of a conceptualization” [26].
Such models generally describe the shared understanding of some domain
by multiple agents. Ontologies improve interoperability, re-usability and
sharing of information. The models differ in the level of formality (highly
informal up to rigorously formal), purpose or subject matter (specialized
versus general world).

problem solving models: a problem solving model is “a description of
problem solving at the knowledge level” and “specifies which bodies of
knowledge participate in problem solving and how they relate to each
other” [60]. Such models express the structure of problem solving while
abstracting from implementation details. Problem solving models improve
re-usability and efficiency. The models differ on scope, abstraction level,
formalism, problem categorisation and problem solving methods.

2.3.2 Model interchange

Uschold [60] defines knowledge interchange as “the exchange of information content
of two or more independently defined knowledge bases” to facilitate knowledge
sharing and reuse. Sharing knowledge between agents requires a communication
protocol, which may be a translation between the internal formats of individual
agents or translations with a common interchange format.

In our terminology: model interchange (cf. knowledge interchange) is the “ex-
change of content of multiple independently defined models” to facilitate interoper-
ability (cf. knowledge sharing) and reuse. Interoperability between programs and
storage applications (cf. agents) requires transformations between their internal
models (cf. formats) or transformations with a common interchange or canonical
model (cf. interchange format).

Achieving full interoperability without interchange model requires transforma-
tions between each pair of internal models. Using an interchange model reduces
the complexity of translating between models [60], as depicted in figure 4. One
obstacle is the interaction problem, which states that the tasks of an applica-
tion affect the nature and content of the model (‘knowledge base"), harming its
genericness.

Model 1 Model 2 Model 1 Model 2
‘\ /
Interchange model
/ \
Model n Model . .. Model n Model . ..

Figure 4: The required number of transformations (depicted as arrows) between n dif-
ferent models, without (left; 2n (n— 1)) and with (right; 2n) an interchange
model.
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2.3.3 Model transformations

Developing sufficiently powerful transformations between models is a difficult
problem [60]. Transformations should be deterministic and often need to be bi-
directional [53]. A bidirectional transformation with consistency relation R would
consist of two directional functions (parametrised by source and target models):

_)
R : AxB—B
<_
R AxB— A

In practice, bidirectional transformations are not bijective; this requirement
would be too restrictive [53] However, maintaining consistency (deterministic-
ally) with non-bijective bidirectional transformations is more difficult. Theoretically,
transformations allow sequential composition (e.g, (A — B) o (B — C)=A—(),
but this is problematic in practice. Transformations are coherent if they are cor-
rect, hippocratic (i.e., they do not modify models that are already consistent; also
known as ‘check-then-enforce’ semantics) and undoable (i.e., restoring one model
to a previous state restores the other model to the previous state). In practice,
undoability is too restrictive.

The trade-offs between qualities and restrictions are design considerations for
transformation approaches [52]. Other design considerations are the following. Are
transformations explicitly bidirectional? Should the user resolve inconsistencies or
can inconsistencies be tolerated? Must source models be updated as the target
model is modified?

Model transformation is an active research area in computer science. Much
research on bidirectional research is based on (triple) graph grammars. Triple
graph grammars [49] define graphs for the source model, target model and a graph
with correspondences between source and target nodes. Initiatives like OMG's
Model Driven Development aim to reify model transformations into first-class
software engineering constructs and drive the development of model transformation
approaches and tools, such as QVT [37] or ATL [35]

Another foundation of transformations is the lens [8, 32]: a bidirectional trans-
formation between pairs of connected structures. Originally, lenses were asymmet-
ric: one model was the primary model, the other was a 'view'. Since then, the math-
ematical foundation of lenses has been strengthened [32] to permit sequentially-
composable symmetric lenses. Lenses have been used to synchronize hierarchically
structured data [21], to implement a generic tree synchronization framework ("Har-
mony’) [20] and to enable updatable views for relational databases [7].

2.3.4 Federated databases and canonical models

A federated database ‘interconnect[s| databases [with minimal] central authority
yet support[ing] partial sharing and coordination among database systems” [30]. A
composite database system has a central schema, contrary to a federated database
system, although both are named ‘federated’ in practice.
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The databases in a federation may be heterogeneous; each database defines
an export and import schema. Conflicts between their models (e.g., with regard
to naming, value domains, relation cardinality) must be resolved, for example by
defining schema mappings (i.e., database views). The autonomy of each compon-
ent database and the heterogeneity between them makes consistency harder to
guarantee, as transactions in a federation may span multiple databases, possibly
with different consistency guarantees (section §2.1.3).

The federation as a whole may have a canonical model (a unified data model)
that serves as interchange model (section §2.3.2) between the different component
database schemata. The canonical model may be derived from component schemata
as a virtual composite view (the ‘Global as View' approach). Alternatively, the ‘Local
as View' approach calls for component database schemata to implement a fragment
of the canonical model.

Unified data models require a structure that can express the structure of sub
models. The Entity-Relationship-model is often used for ‘unified data models’, but
is actually inadequate for that purpose [48]. The functional model and some object-
oriented models are most suitable [51, 48]. Some common model structures will be
discussed in section §2.4.

2.4 MODEL STRUCTURES

Models describe the structure of (data, information, knowledge) content. Various
models exist and the knowledge cloud should allow the expression of all structures
and support transforming between them. An overview of the most common models
and their qualities follows.

2.4.1 Hierarchical

The hierarchical information model was common in early databases and still is
in file systems (with directories/folders as interior nodes and segments/files as
leaf nodes). Hierarchies are often used to model registries, such as the Windows
registry and LDAP-services (e.g., OpenLDAP).

Hierarchies structure content in a tree of interior nodes (that reference other
nodes) and leaf nodes (that reference no other nodes). Each node has a single
parent node, except the ‘root’ node which has none.

The major advantage of the hierarchical model is its simplicity [57]. However,
there are significant disadvantages: it is difficult to represent many-to-many rela-
tionships; deletion of a node can delete its descendants; ‘conceptually symmetric’
queries' cannot always be answered equally easily; it is difficult to answer ad

A model structure’s semantic relativism is the power of its operations to derive views (ie., external
schemata) with another conceptualization on the same content [48]. Conceptually symmetric queries
yield semantically related views. For example: "find all Xs that contain ¥" and "find all Ys that
are contained by X" are conceptually symmetric because they query the same relation between X
and Y (viz. contains (Xs, Ys)) but yield different results.
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hoc queries. Core to these disadvantages is the model’s navigational nature: users
must traverse a specific ‘path’ to access data (cf. access path dependence [12)).

2.4.2 Network

The network model was standardized by Committee on Data Systems Languages
(CODASYL). It generalizes the hierarchical tree structure to full graphs and thus
supports multiple parentage: any data item could have multiple parents [44]

Compared to hierarchies, networks permit cycles, more realistic models and more
flexibility. However, the model is still navigational and thus unsuitable for ad hoc
queries.

2.4.3 Object-Oriented

The object-oriented model was formally introduced by Simuta 67; the SmaALLTALK
programming language subsequently introduced ‘Object-Oriented Programming’
as a paradigm. Although somewhat different than the initial design, the object-
oriented model is the industry standard for programming languages.

The object model represents data as objects, structured as classes with op-
erations (i.e., methods) and attributes (ie., variables) [15]. Classes are arranged
in a hierarchy of generalized super-types and specialized subtypes. Objects are
identified as ‘the same’ by being the same instance, not by having equal attribute
values (as would be the case with a relational model).

The major advantages of the object-oriented model are encapsulation, inherit-
ance and polymorphism. Encapsulation protects a class's internal state from direct
outside access, thereby improving robustness. Inheritance enables classes to extend
and specialize others, thereby reusing existing definitions. Polymorphism permits
synonymous operations to have different implementations for different object types
while allowing clients to remain largely ignorant of these differences. The object
model is suitable for modelling complexity (nested structures) but not for ad hoc
queries [54].

Disadvantages of applying this model in a DBMS include poor performance
(query optimization is complex) and lack of scalability. Like the network model,
the object-oriented model is navigational and suffers the corresponding weak-
nesses [44]

2.4.4 Relational

The relational model was introduced by Codd [12] to abstract from the ‘internal
representation’ of data in databases and solve problems that haunted the (then
dominating) hierarchical and network models. The relational model was revolu-
tionary and is still the industry standard today. Popular DBMSs (MySQL, Post-
GReSQL, SQLiTe) have a common language (i.e., SQL) to query for data in the
managed relational databases.

The relational model is a mathematically sound model (ie. its operations are
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defined in a relational algebra). It represents content as tuples (ie., rows), struc-
tured in a relation (ie., table) on sets (i.e, columns). Tuples can cross-reference
others by using (foreign) keys.

The major advantage of the relation model is data independence: the inde-
pendence from changes in data types and data representations. Particularly, it
reduces dependence on data ordering, indexing and access paths (ie, it is not
navigational). The relational model has powerful operations to derive different con-
ceptualizations (i.e., views) from one source model and thus permits relations to be
(logically) symmetrically exploited (cf. conceptually symmetric queries; 2.4.1). The
relational model is suitable for ad hoc queries but not for modelling complexity [54]
(e.g., nested structures).

Despite its improvements over older information models, the relational model
has fundamental limitations [59]: it lacks object identities; one cannot distinguish
relationships from entities (i.e., entities are modelled as relationships between an
entity identifier (primary key) and its attribute values); it does not support complex
values, collection types, inheritance or methods.

2.4.5 Object-Relational

The object-relational model extends the relational model with support for complex
values (like the object-oriented model does), abstract data types, inheritance and
rule systems [44, 15]. Users can define and extend new data types and operations.
Objects may be modelled as columns, rows or as nested values in relational tables.
The object-relational model has a less severe impedance mismatch (section §2.2.2)
than a pure relational model [55] Object-relational DBMSs may use the query
language SQL3 that extends SQL(2) with object-oriented features.

The object-relational model is suitable for complex data with queries. To con-
trast: the relational model is suitable for simple data with queries; the object
model for complex data without queries [54]

Object-relational DBMSs scale well. However, the performance of ORDBMSs
may be worse than pure object-oriented DBMSs if the client merely needs an
object store (ie., overkill). Additionally, query optimization and index structures
may perform worse than with a purely relational DBMS [56].

2.4.6 Entity-Relationship

The Entity-Relationship model [11] defines two distinct constructs to model in-
formation: entities and relationships to inter-associate entities.
The ER-model is supposed to be sufficiently expressive such that it shares most
advantages of the network model and relational model, without the limitations.
The prime weakness of the ER-model is its very essence, namely: having two
distinct basic structures [48]. This leads to arbitrary modelling; some designs may
define some concept as an entity, others as a relationship.

I’ Data
independence, ad hoc
querying

I+ No complex
values or type
hierarchies

Object-relational:
data in object tables.

I°= Object-oriented
features, ad hoc
queries, scalable

I = Performance

Entity-relationship:
data as entities or
relationships.

I~ More expressive
than network and
relational models.

I = Two first-class
constructs
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2.4.7 Functional

The functional model is a directed graph with nodes being sets (of values or
entities) and arcs being functions (one-to-one, partial, total, onto). Functional
models may be queried with languages like DAPLEX [50], FQL [9] or AmosQL [46].

Many model structures use records [36] to describe relations between entities:
fixed sequences of values, like relations with tuples (relational structure) or nodes
with children (hierarchical structure). Record-based structures are suitable for
modelling information with the same kind of attributes. The more specialized or
exception some information is, the less appropriate a record-based structure is’.

A functional structure generalizes from records and thus expresses exceptional
relations and derived functions as naturally as stereotypical relations and primitive
functions [50]. Derived functions (e.g., calculated functions, functions that adapt in-
formation from another model) are critical for modelling other conceptualizations of
some source model [28]. Consequently, the functional model is sufficiently powerful
to express other model structures [51] (e.g., relational or network), possibly enforced
by ‘data policy definitions’.

2.5 RELATED WORK

The concept 'knowledge cloud’ is related to earlier research. Sibley and Kerschberg
[51] defined the Generalized Data System as a system that could accommodate
any model structure (section §2.4). Mediator Systems [42] fuse information from
heterogeneous information sources. We elaborate on a few technologies that inspire
our work: to model knowledge and facilitate interchange, to structure storage, to
centralize knowledge, and to compose knowledge from different sources.

2.5.1 Semantic web

The World Wide Web Consortium (W3C) started the Semantic Web project to
‘[provide] a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries” [k].

The integration of heterogeneous data sources into one “Web of Data” is of
prime importance to the Semantic Web [19]. The technology stack of Semantic
Web (which includes Linked Data and RDF) has already proved useful for the
integration of medical and social information.

2.5.1.1 Linked Data

Linked Data [5] is a standardized approach to structuring and referencing data on
the WWW conform Semantic Web principles. The most fundamental rules are:

Consider a database of car models and their attributes (number of doors, length, fuel consumption);
describing a nuclear-powered flying car in (solely and exactly) those terms would be artificial at
best.
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e use Uniform Resource Identifiers (URIs) with the http-scheme to reference
data;

e use standards (RDF, SPARQL);

o and refer to related data by their URIs.

2.5.1.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) standardizes [1] how relationships
between ‘pieces of information’ can be described as triples of subject-predicate-
object (ie, a graph). Specifically, it permits different authors to use different
names and descriptions of conceptually similar information. SPARQL is a language
specification [m] for querying and manipulating RDF graphs.

RDF is not guaranteed to allow for all common data model structures to be
represented, but it is commonly used for data interchange (in general) and with
object models [n] and relational models [0]. Using RDF does not solve the common
object-relational impedance mismatch (section §2.2.2) but replaces it by an object-
RDF mismatch [16, 40]. Mappers, libraries and APIs to access RDF-models from
(object-oriented) programming languages are available but they may not fully
support the flexibility of RDF models [38].

2.5.2  Microsoft Windows Future Storage (WinFS)

Microsoft has attempted [p] to implement 'structured storage’ since the 1990s. Its
projects intended to abstract from physical storage and to provide more structure
to (meta)data. It would allow for easier data exchange between applications and
more complex queries. To that end, the projects attempted to supplement or replace
the traditional byte-based hierarchical file system by database technologies and
models. WinFS [q] is perhaps the most well-known project, once promoted as one
of three fundamental new technologies in Windows ‘Longhorn’ (eventually released
as Vista). The project ended with cancellation.

2.5.3 Horde

Horde [r] is a PHP groupware system. Groupware is the class of applications that
facilitate Personal Information Management for groups of people: e-mails, calen-
dars and appointments, tasks, address books, notes, file sharing etc. Groupware
applications are often tightly-integrated and support various storage mechanisms
and various interfaces for clients to access their information.

Like the knowledge cloud, groupware consolidates storage needs for clients and
facilitates information exchange between users. Like a program, this groupware
product is responsible for storage and (as such) not storage-agnostic.

It may facilitate information exchange with (different) client devices through
domain-specific protocols (e.g, CalDAV for calendar and task data, CardDAV for
address books, IMAP for e-mail). Such standardized protocols have clearly defined
operations and are not context-adaptive.
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2.5.4 OpenlLink Virtuoso Universal Server

OpenLink Virtuoso Universal Server [s] allows clients to access and manipulate
data from various sources and formats via a single endpoint (viz. the Virtuoso
server) through one of many protocols/APIs. It also permits existing applications
to extend the server.

Virtuoso is a data server that implements various storage mechanisms; to estab-
lish a united data model and facilitate data interchange. It also allows the server
to be extended by application logic. In these regards, Virtuoso is very similar to
what the back-end of the knowledge cloud is supposed to be. Virtuoso does not
seem to support tailoring and transforming information models to the needs of
client programs as intended for the knowledge cloud..

2.5.5 Amos Il

Amos Il [18, 46] is described as a distributed mediator system. At its core, it
is a functional and object-relational database management system with common
database features (e.g., storage, recovery, transaction, the AmosQL query language).
It implements a functional query language derived from DAPLEX [50], facilitates
data integration between heterogeneous sources and optimizes query. Amos Il can
operate in a distributed multi-database configuration (e.q., as a federated database
system; section §2.3.4).

We value many of the concepts Amos Il applies; it may relatively easily fit
the role of knowledge cloud in our proposed paradigm. It implements building
blocks (mediators) to encode domain-specific knowledge about data and reconcile
schematic incompatibilities between data sources, which is extremely useful to
support context-adaptivity and storage-agnosticism.
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We have established the background (chapter 2) of knowledge cloud by describing
various concerns the knowledge cloud would need to handle. In this chapter, we
elaborate on the:

§1. Reason for the knowledge cloud: why is the knowledge cloud the right
instrument to deal with the raised concerns?

§2. Qualities of the knowledge cloud: how does the knowledge cloud solve the
problems of our current data management paradigm?

§3. Functional requirements: what needs must a knowledge cloud satisfy?

§4. Consequences of the new paradigm: what is the role of users, developers,
data and programs in the new paradigm?

3.1 REASON FOR THE KNOWLEDGE CLOUD

We considered models at different abstraction levels, from different perspectives

and for different applications, as shown by figure 5. We assigned a perspective and The knowledge cloud
abstraction level to the knowledge cloud that would otherwise be left unassigned. fills a conceptual gap.
For that reason, we reckon the knowledge cloud is not an optional practical tool

but actually a critical service that satisfies a conceptual need which the current

data management paradigm does not recognize.

‘ Abstraction level ‘ ‘ Perspective ‘ ‘ Application
Information « ————————— External - — — — — — — — — — — Program
Knowledge < — — - Conceptual — — — — Knowledge
cloud
Data<——————————— Internol — — — — — — — — — — — Storage

Figure 5: Mappings (dashed edges) and interactions (solid edges) between model ab-
straction levels, perspectives and software applications.

To reinforce this vision, we elaborate on each of the concepts in the figure.
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3.1.1 Model abstractions: data, information, knowledge

One can model entities and attributes at different levels of abstraction. The ab-
straction levels data, information and knowledge can be distinguished [1] Higher
levels imply more abstraction, more meaning or more value [47]. We may define
the following abstraction levels (inspired by [2, 6, 60]):

data are raw facts, like recorded descriptions of things, events, activities and
transactions.

Example:

<person><id>wdrijfhout</id><ft>Emperor</ft></person>

information is data with some meaning to the perceiver (a person, a program).
Example:
The person identified as wdrijfhout has job title Emperor.

knowledge is information with context to determine relevance; it is “anything
that can be known or believed about a real or hypothetical world" (including
“matters of fact” or “ways of reasoning”).

Example:

The person identified as wdrijfhout has job title Emperor, in the context
of wdrijfhout's fantasies in the year 2015.

3.1.2 Model perspective: internal, external, conceptual

Early database management systems tended to enforce a tight coupling between
how data is accessed by clients (i.e., the external schema) and how data is stored
(e, the internal schema) and thus burdened the clients with irrelevant technical
details. ANSI-SPARC recognized this lack of data independence (58] and proposed
the three-schema' approach which includes the conceptual schema. The three-
schema approach consists of the following models:

internal models represent the ‘physical’ data as seen by the information
system. These models describe the storage of the conceptual model, such
as performance optimization strategies, encoding mechanisms, access paths
and the data model.

Example:

Entity PErsoN is persisted as a database table; attribute NAME has a
variable length (reserve space for 20 characters); attribute Jos is a foreign
key to the table Jos; attribute NAME is indexed for fast look-up.

Entity JoB is persisted as a database table; attribute TiTLE with variable
length (reserve space for 30 characters); attribute SECURITY CLEARANCE LEVEL
is an integer between 0 and 10.

1 Over time, the word "model” superseded "schema”.
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external models represent the ‘logical’ information as seen by a user applic-
ation. These models are views of the conceptual model, tailored to distinct
users/programs and their needs.

Example:

View User has a Name and an IsApmiN flag.
Only Persons with a JoB with SECURITY CLEARANCE LEVEL > 1 are USERs.
A SECURITY CLEARANCE LEVEL > 7 sets the ISADmIN flag.

the conceptual model represents knowledge [60] about some domain as
relevant for the user ‘community” as a whole. Its perspective is a relatively
stable intermediate model to which other models (ie., internal and external
models) are mapped.

Example:

Entity PersoN has a NAaMe and optionally a Jos.
Entity JoB has a TITLE and @ SECURITY CLEARANCE LEVEL.

3.1.3 Model applications: storage, program, cloud

The three-schema approach is typically applied to the architecture of a single
information systems (e.g., a DBMS). We can apply the distinction of three schemata
to the data management paradigm as a whole:

storage applications offer data persistence and retrieval services. They
tend to be general-purpose and allow the user to manage arbitrary data.
They generally mandate the use of a particular model structure (e.g., rela-
tional DBMSs, hierarchical file systems) and its constructs (e.g. relations
and tuples, files and folders). Storage applications correspond to the internal
models of the three-schema approach.

Examples:

DBMSs, file systems, networked file servers.

program applications are domain-specific information processing tools.
Their domain-specific information model is embedded and instantiated by
the program. The information model generally serves to support the user ap-
plication’s functions and the specific implementations. Program applications
correspond to the external models of the three-schema approach.

Examples:

Mail clients, word processors and business administration tools.

the knowledge cloud maintains the knowledge on providing programs with
relevant information from the data in storage. What facts (data) and mean-
ings (information) are relevant, depends on the context (knowledge). Context
may be shaped by queries, the involved applications, the user's identity
and credentials, external configuration, performance requirements etc. The
knowledge cloud corresponds to the conceptual model of the three-schema
approach.
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The weaknesses of data management paradigms without a knowledge cloud re-
semble the weaknesses of a ‘two-schema’ approach. Without a knowledge cloud to
provide contextually-relevant knowledge, programs have to determine what is rel-
evant and retrieve the data from storage themselves. Unsurprisingly, the program
developer would not be particularly inclined or able to consider interoperability,
lacking knowledge about the relevance of their information for other programs.

3.2 QUALITIES OF THE KNOWLEDGE CLOUD

To handle the various concerns a knowledge cloud has to deal with, it must be
flexible and extensible. Therefore, the knowledge cloud enables two qualities of the
new data management paradigm: storage-agnosticism (section §3.2.1) and context-
adaptivity (section §3.2.2). These qualities are fundamental to our approach of
solving the problems of the current data management paradigm (section §3.2.3).

3.2.1 Storage-agnosticism

The ANSI-SPARC three-schema approach [58] (cf. section §3.1.2) promotes data
independence for users of database management systems. Data independence
“insulates a user from adverse effects of the evolution of the database environment”;
i.e, differences in physical storage of data do not affect the client. By virtue of data
independence, applications can remain ignorant of the physical representation of
information as data.

We propose storage-agnosticism to entail data and information independence.
Storage-agnostic programs do not consider data models or abstract from them
(cf. section §2.2.1). Storage-agnostic programs only use their information model
and rely on the knowledge cloud for providing and storing those models using
some data storage mechanism. This separation of concerns allows the knowledge
cloud considerable freedom in how it manages storage and populates information
models. In particular, it allows the knowledge cloud to consider interoperability
(cf. section §2.2.3).

RELATION TO GUIDING EXAMPLE (section §1.6)

Storage-agnosticism allows Firefox and Internet Explorer to remain oblivious of
the storage or origin of their bookmarks and favorites. This allows the knowledge
cloud to aggregate bookmarks from Firefox and favorites from Internet Explorer,
transform them and serve bookmarks as favorites to Internet Explorer and serve
favorites as bookmarks to Firefox.

3.2.2 Context-adaptivity

The knowledge cloud needs to select and adapt data models from its storage
services into contextually relevant information models (i.e., knowledge models;
section §3.1.1). Context determines what is relevant and how the knowledge cloud
should adapt the models accordingly; this is context-adaptivity. Context-adaptivity
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is inspired by Context-Oriented Programming [31] and its actor-, environment- and
system-dependent behaviour variations.

When a client program requests the knowledge cloud to provide information, the Context-adaptivity
context could include the identity of the program. Additionally, it may include user permits users to
identification and authorization credentials in order to include sensitive information control nformation

exchange.

and allow certain operations. Context may specify performance trade-offs to affect k
data compression and how many results are returned. Context may specify the use
of versioning to make model mutations incremental (rather than destructive).

Crucially, client programs may specify some context but the knowledge cloud
ultimately determines the whole context. The knowledge cloud may also consider
user configuration, compatibility measures, security constraints and other contexts.

Context-adaptivity allows programs to use various contextually-enabled features
in the knowledge cloud without necessarily being aware of it. This is useful for
managing interoperability (cf. section §2.2.3) and cross-cutting concerns. In other
words: client programs could be oblivious to authorization and versioning and still
enjoy the benefits of security and automatic back-ups.
RELATION TO GUIDING EXAMPLE (section §1.6)

Firefox may request knowledge in the domain ‘bookmarks’ Context-adaptivity
allows the knowledge cloud to consider the currently logged in user, the com-
puter network and user preferences and actually yield knowledge in the domain
‘not-deleted work-related bookmarks accessible to John, including bookmarks trans-
formed from favorites’.
3.2.3 Benefits to data management
Using a knowledge cloud to enable storage-agnosticism and context-adaptivity
should contribute to solving the four identified problems (see research questions
in section §1.3) of our current ‘primitive’ data management paradigm, as shown in
table 1.
Table 1: This table shows how storage-agnosticism and context-adaptivity affect the

identified data management paradigm problems.
PROBLEM STORAGE-AGNOSTICISM CONTEXT-ADAPTIVITY

[Q1] Programs are [I] Absolves from storage-related [II] Absolves from certain
unnecessarily complex. concerns. program-related concerns.
|Q2] Data is badly [I1l] Unifies models from [IV] Transforms and adapts data to
interoperable. heterogeneous data sources. contextual requirements.
|Q3] Users are not in [V] Enables users to dictate data [VI] Enables users to dictate data
control of their data. storage policies. usage and processing policies.
|Q4] Developers must [VII] Obsoletes data models, storage [VIII] Centralizes reusable logic.

write inessential code. APls and exchange protocols.
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3.3 FUNCTIONAL REQUIREMENTS

The benefits we attributed to storage-agnosticism and context-adaptivity (table 1)
imply abstract requirements of the knowledge cloud. We also considered vari-
ous concerns in our background research (chapter 2) that the knowledge cloud
must deal with. The following list of detailed requirements is derived from those
background concerns and grouped by knowledge cloud benefits.

I. In order to reduce program complexity, the knowledge cloud absolves from
storage-related concerns. Therefore, it
—with regard to data formats (section §2.1.1)—

1. Must serialize and deserialize (application-specific and general-purpose)
arbitrary data formats.

2. Must interface with file systems.
3. Must interface with database management systems.
—with regard to storage interfaces (section §2.1.2)—
4. Must interface with storage mechanisms to store information models.

5. Must derive storage mechanism queries (e.g., SQL) from context (e.g.,
a knowledge domain).

6. Must provide a knowledge cloud interfacing library.

7. Should implement knowledge cloud-adapters for existing libraries and
language constructs.

—with regard to consistency guarantees (section §2.1.3)—
8. Should support transactional storage processing.
9. Could allow clients to specify desired consistency guarantees.
10. Could support multiple consistency models (ACID, BASE).
11. Could support distributed transactions.
Il. In order to reduce program complexity, the knowledge cloud absolves from
program-related concerns. Therefore, it
—with regard to program architecture (section §2.2.1)—
1. Must be integrable with existing architectures.
2. Should not impose software-architectural constraints.
3. Must enable less complex architectures (compared to non-cloud-solutions).
—with regard to impedance mismatch (section §2.2.2)—

4. Must support customizable mappings between differently-structured
models.

5. Must reconcile structural incompatibilities between models.
—with regard to interoperability (section §2.2.3)—

6. Must be a communication kernel between interoperating programs.
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7. Must enable interoperability between interoperability-oblivious pro-
grams.

8. Must transform between (program-specific) information models.

In order to improve data interoperability, the knowledge cloud unifies het-
erogeneous data sources. Therefore, it

1. Must maintain a federation of data stores and a canonical data model
(section §2.3.4).

2. Must facilitate interchange between models from data stores (sec-

tion §2.3.2).

In order to improve data interoperability, the knowledge cloud transforms
and adapts data to requirements. Therefore, it

1. Must allow all common data model structures (section §2.4) to be
represented.

2. Must support transformations to facilitate interchange between models
(section §2.3.3).

3. Must maintain knowledge on the contextual relevance of information
(section §2.3.1).

In order to improve user control over data, the knowledge cloud enables
users to dictate data storage policies. Therefore, it

1. Must allow users to install data sources.
2. Must allow users to configure the relevance of particular data sources

in specified contexts.

In order to improve user control over data, the knowledge cloud enables
users to dictate data usage and processing policies. Therefore, it

1. Must allow users to install (model processing) agents (plug-ins, soft-
ware components).

2. Must allow users to configure the relevance of particular agents in
specified contexts.

In order to reduce the amount of inessential code developers write, the know-
ledge cloud obsoletes data models, storage APls and exchange protocols.
Therefore, it

1. Must maintain the relation between (storage) data models and (pro-
gram) information models.

2. Must control data models, storage APIs and exchange protocols in-
directly, as implied by information models.

3. Could offer an interface to access raw data models, storage APIs and
exchange protocols.
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Programs would
ignore storage
concerns but must
support remote model
changes.

[Q2]
Data would be

managed by the cloud
and be more

interoperable.
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VIIL. In order to reduce the amount of inessential code developers write, the
knowledge cloud centralizes reusable logic. Therefore, it

1. Must allow programs to specify that certain centralized services are
contextually relevant.

2. Should allow programs to suggest the installation of agents.

3.4 CONSEQUENCES OF THE NEW PARADIGM

A knowledge cloud with the aforementioned qualities and requirements drives
the new data management paradigm we propose. The new paradigm would affect
programs, data, developers and users as follows:

3.4.1 Programs

Programs would define information models and provide a user interface to access
that information. Programs would no longer explicitly consider storage but must
now consider unexpected modifications to their information models (propagated by
the knowledge cloud).

Programs would request the knowledge cloud to provide and manage instances
of a particular information model. The definition of information models must be
shared with the knowledge cloud. Programs might publish type declarations in
Java code or a custom model description language. Future research must determine
practical approaches.

To exchange information models, programs and knowledge cloud implementa-
tions may benefit from advanced programming language features, such as incre-
mental compilation, reflection, remote procedure calls, inter-process communication,
CORBA or shared memory. Future research must determine practical approaches.

3.4.2 Data

Data would be decoupled from programs. Data would be read, written and inter-
preted by knowledge cloud components (knowledges, offers, feeds, agents) instead.
The knowledge cloud also facilitates data interoperability by (on-demand) trans-
formations.

The knowledge cloud is extensible and can include components to interpret
various data formats from various sources with various technologies: knowledge
from relational databases (possibly using object-relational mappers and SQL),
knowledge from web services (possibly using JSON), knowledge from binary files
(possibly using parsers).
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3.4.3 Users

Users would need to manage a knowledge cloud by configuring data sources,
installing components and adapting their availability to particular contexts. In
particular, the user could install and configure components for his many on-line
accounts (e-mail, instant messaging, address books, schedules). Programs that use
the knowledge cloud could instantly use those accounts (indirectly) and would
need no further configuration by the user.

3.4.4 Developers

Developers need to relinquish control over various concerns they previously im-
plemented directly (like storage 1/O, authorization etc.). If they cannot relinquish
control, they would need to implement custom knowledge cloud components. De-
velopment approaches that separate the information model from other application
logic (like Domain-Driven Design [17]) must be applied as well, because the
information model must be shared with the knowledge cloud.

Q3]

Users would control
their data by
configuring the
knowledge cloud.

(Q4]

Developers should
relinquish storage
control and implement
information models
with care.






4 DESIGN

We explained (chapter 3) how the knowledge cloud is critical for our proposed
data management paradigm. In this chapter, we describe:

§1. Abstractions: what indirections should a knowledge cloud support?
§2. Architecture: how does a knowledge cloud work?

§3. Concepts: what are the concepts introduced to the knowledge cloud?

4.1 ABSTRACTIONS

By describing the knowledge cloud’s primary goals we reveal the most fundamental
abstraction requirements.

The knowledge cloud provides clients with relevant knowledge. Cli-
ents do not care why this knowledge was relevant (context-adaptivity)
or where it originated (storage-agnosticism). Knowledge sources in
the cloud exchange knowledge. Knowledge may depend on other
knowledge (to transform, expand, filter, use etc.), thus establishing a
dependence hierarchy.

We identify necessary abstractions for critical phrases (underlined) in the above
description and name these abstractions for use in the design:

knowledge cloud provides clients Clients need an interface (CLoup)
to access knowledge in the cloud.

relevant We need a model to describe knowledge characteristics (TraiT) and
an abstraction to make assertions about some knowledge’s characteristics
(Domain). Clients need an abstraction to specify (SPECIFICATION) what char-
acteristics constitute relevance.

knowledge Clients need an abstraction (KNOWLEDGE) to access and mutate
provided knowledge.

context-adaptivity We need abstractions to model the context (DomAIN,
TraiT, SpeciFication) of client-cloud and server-cloud interactions (like
knowledge requests) and adapt it (Scope, BUREAU).

storage-agnosticism We need an abstraction for information that is rel-
evant in some context (KNOWLEDGE) and its providing storage mechanism
(FEED).
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knowledge sources We need an abstraction to provide knowledge (FEED,
OFrFEeR) and for creating and managing these knowledge providers (AGENT).

exchange We need an abstraction to request and provide knowledge (QUESTION,
ANSWER) and to satisfy these requests and responses (NETWORK).

other knowledge We need to model knowledges' dependencies on other
Knowledge (QUESTION).

dependence hierarchy We need to establish a model of knowledge's in-
terdependencies (NETWORK) by repeatedly searching (ORCHESTRATOR) for
knowledge that is available (FEeD, OFFER) and could satisfy a known de-
pendency (QUESTION, ANSWER).

Relation to guiding example (section §1.6)

Web browsers are clients of the knowledge cloud. The knowledge cloud provides
an interface to access knowledge in a relevant domain. Firefox uses the interface to
access relevant knowledge (i.e., on bookmarks); similarly, Internet Explorer would
access knowledge on favorites.

The browsers do not consider the origin of the provided knowledge (storage-
agnosticism) nor the circumstances that made it relevant (context-adaptivity). The
knowledge cloud may consider various knowledge sources (e.g., Firefox's bookmark
database, Internet Explorer's favorites folder, a file with secret hyperlinks). To
satisfy Firefox's request, it may choose to use the bookmark database, ignore the
secret hyperlinks (lacking authorization) and transform the favorites into bookmarks
(to facilitate data exchange between Firefox and Internet Explorer).

Transforming favorites into bookmarks implies a dependency of the new book-
mark knowledge on the original favorite knowledge. Similarly, to combine multiple
(bookmark) knowledges implies a dependency of the ‘combined’ knowledge on
all its component knowledges. As knowledges build on other knowledges, they
establish a dependence hierarchy.

4.2 ARCHITECTURE

Figure 6 shows the proposed knowledge cloud architecture. We describe the con-
cepts by walking through a common scenario in which a client asks for relevant
knowledge from the cloud, from the perspectives of a client and a cloud server.

Note that the architectural design does not mandate any particular machine
configuration; the design can be applied in one application, in a client-server
configuration or possibly even a peer-to-peer configuration.

4.2.1 A client asks for knowledge in a domain

We will illustrate a typical interaction between a client application and cloud
server. References to the guiding example (section §1.6) are shown in italic.



4.2 ARCHITECTURE | 31

Specification —is satisfied by—»  Domain
< rait & rait
has in
Answer Question Knowledge
107 4 depends on subknowledge—
gets asks answers provides
|
Network Offer
organizes and satisfies—»|
Scope T T
opens creates provides
Orchestrator Feed
creates needs collection of ———#
J5es provides
connects to
d Bureau Agent
creates— manages >
Extensibility

Figure 6: The proposed knowledge cloud architecture. The icon colours denote packages
of related concepts. Lines denote a relation between concepts. The stick-figure
represents the client. The dashed box ‘Extensibility’ marks the concepts that
may be implemented or specialized by third-party ‘plug-ins’ to support storage
mechanisms, web services, other data servers, transformations etc.

1. The client connects to a CLoup (the public interface of the knowledge cloud)
to initialize a session.
The browser uses some reusable library to establish a connection with the
knowledge cloud (generally: a server on localhost).

2. The client opens a Scope on the cloud.
The knowledge cloud has determined and set the context of the browser’s
interaction with the knowledge cloud: the name of the browser, the name of
the user etc.

3. The client builds a SpeciFicaTioN of the DomaIN it wants the cloud to provide
knowledge for. A specification is a simple logical expression of the traits a
domain should exhibit. TRaITs are properties such as the knowledge schema,
owner, source, credentials.

The browser Firefox would specify that relevant domains exhibit the traits
*has bookmarks" and “for user John" and “is formatted as RDF" (a graph).

4. The client commands the scope to get the KNowLEDGE(s) with a domain that
satisfies the specification; the scope formulates the corresponding knowledge
QuesTioN and uses the cloud to ANSWER it.
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The browser Firefox may get zero, one or more different ‘bookmark col-
lections’ Indeed, John may have multiple bookmark collections (one private,
one work-related, back-ups). Some of these bookmark collections could even
be stored as Internet Explorer favorites. Firefox may allow fohn to further
restrict the specification (“no back-ups”). Additionally, Firefox may have spe-
cified to the knowledge cloud it wants all relevant knowledge “aggregated”
as one virtual bookmark collection.

4.2.2 The cloud provides knowledge in a domain

1. The Croup maintains at least one BUREAU (a registry of AGENTS).

The bureau contains agents (plug-ins/modules) for storage systems (e.g,,
the file system and SQLite databases), for parsers (e.q, text-to-RDF), for
generic model manipulations (e.q, aggregating multiple RDF-models into
one) and for application-specific models (e.q, a transformer from bookmarks
to favorites and vice-versa).

. When a client opens a Scorg, a bureau prepares a collection of currently

available feeds for that scope.

The agents yield feeds to recognize some domain specifications (e.g., ‘file
bookmarks.sqlite”) and to offer the corresponding relevant knowledge, if
available.

. When the client asks the scope to answer a knowledge QuEsTion, an Or-

CHESTRATOR for the given feeds is instantiated.
Firefox asks for exactly one knowledge model that ‘has Bookmarks” ‘of
John”

. The orchestrator builds a NeTwork of knowledge OFrFers and their inter-

dependencies. Offers contribute to answering some question, like the ‘root’
question the client asked. Offers may specify new questions if the offered
knowledge depends on other knowledge. The orchestrator tries to find new
offers for new questions, recursively.

The orchestrator asks the question to the available feeds. One feed offers
this knowledge immediately from storage. Another feed (provided by the
Favorite-Bookmark-Conversion-agent) offers this knowledge (transformed)
and needs knowledge that “has Favorites” “of John” Another feed is able to
combine both knowledges to provide the ‘exactly one” knowledge Firefox
wanted. A network is built to describe the dependencies between all offers.

. Once the network is built, it builds the KnowLeDGES (if any) that answer

the root question.

A hierarchy of knowledge models is built from the dependence hierarchy in
the network, as shown in figure 7. The knowledge cloud provides Firefox
the top knowledge (the root node) and discards the network.

. The scope yields the knowledges to the client.

Firefox can now interact with the requested knowledge. Mutations propagate
down/up through the knowledge hierarchy, but that is not Firefox’s concern.
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Result

( Bookmarks from database
Union of bookmarks

Bookmarks from favorites

depends on

depends on

Figure 7: Example of the dependence hierarchy that could be constructed for a request
for bookmarks.

4.3 CONCEPTS

For the concepts in figure 6, we will elaborate on their core responsibilities (with
their collaborators) [4] and the possible implementation variations. Concepts are
grouped in packages; for each package we elaborate on their relevance and design
considerations.

4.3.1 Knowledges, questions and answers (green)

KNowLEDGE represents an information model in some domain. Knowledge may
depend on other knowledges with particular domains and amounts and express
these requirements as QUESTIONS for which it demands ANSwERs. See figure 8.

Other knowledge l—cONtains Answer
may require_ y
r Y -
may depend on - answérs
| -
Knowledge |- - - - T POE _ o} Question

Figure 8: Illustration of relations between KNowLEDGE, QUESTION and ANSWER.

RELEVANCE  Knowledge represents relevant information, abstracted from its
storage mechanism. It is the primary unit of result the knowledge cloud exchanges
(in questions and answers).

RELATION TO GUIDING EXAMPLE (section §16)

Knowledge models can be implemented at different abstraction levels in a trade-
off with re-usability. Vendors (of applications or libraries) could implement spe-
cialized knowledge models (“InternetExplorerFavoriteFile’) but would then also
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need to implement the feed with (de)serialization and/or transformation logic for
it. Other vendors may implement more reusable models (for example: generic RDF
graph models) but they may be too ‘raw’ for applications to directly use. On the
other hand, Mozilla Firefox actually uses the RDF data model internally [t].

CONSIDERATIONS

o Knowledge should be storage-agnostic (to clients) and yet transparently
propagate mutations to dependent knowledge.

o The relevance of KNoWLEDGE is determined by the traits its domain exhibits
(section §4.3.2).
4.3.1.1 Knowledge

Represents a mutable information model that is relevant in some contextual DomaiN.

RESPONSIBILITIES
o (Implementations) Expose some information model.
o Save/commit model mutations to dependent knowledges.

e Load/update the model with mutations from dependent knowledges.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o Implementations of KNOWLEDGE expose some information model. These im-
plementations can be built on a generic framework (e.g, a generic graph
model) or for particular client applications (e.g., domain-specific objects).
To ease interoperability in the cloud, using an object-oriented or functional
model is recommended.

o Implementing KNOWLEDGES with a generic data model (e.q., graph, rela-
tional [13]) generally requires implementations for plain instances (graphs,
tables) and for operations thereon (set operations, projection, selection, join).

o Consider how mutations to some KNOWLEDGE are propagated to its depend-
ent knowledges or storage mechanism.

o Practical use of the knowledge cloud may require access to KNOWLEDGE
across processes/hosts. One could provide proxy implementations to trans-
parently convert local KNnowLEDGE calls and events to remote queries and
commands. To convert calls, one may use Remote Procedure Call-technology
or write a custom adapter.

4.3.1.2 Question

Expresses the need for some amount of KNOWLEDGES in some DoMmAIN.
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RESPONSIBILITIES
o Describe the SpeciFicatioN of the required DomaiN.

o Describe the acceptable minimum and maximum amounts of relevant KNow-
LEDGES.

o Determine if it is answered satisfactorily by some KNowLEDGE candidates.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o A simple implementation is answered by simply having the right amount of
KNowLEDGES satisfying the specification.

» More complex implementations could consider the ‘cost’ of using a particular
KNOWLEDGE.

4.3.1.3 Answer

Presents KNowLEDGE that is available to answer a particular QUESTION.

RESPONSIBILITIES
o Describe the QUESTION.

o Describe the answering KNOWLEDGE.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o More complex implementations could declare a preference/priority order
among ANSWERS.

4.3.2 Domains, traits and specifications (blue)

Domains exhibit traits. TRAITs are characteristics. A domain SPECIFICATION determ-
ines what traits a domain must exhibit. See figure 9.

has and/or/not surl?sal:/me

Specification | _is satisfied by .

=== Domain | - -2 oI Trait

Figure 9: Illustration of relations between DomaiN, TRAIT and SPECIFICATION.
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RELEVANCE Domains, traits and specifications are used to characterize
knowledge and determine its relevance in some context (such as a knowledge
request).

RELATION TO GUIDING EXAMPLE (section §1.6)

A knowledge model of a simple file may have a domain with traits ‘file
[home/john/bookmarks.dat”, “mimetype application/json”, “charset utf-8". A book-
mark's knowledge model may have a domain exhibiting the traits “has Bookmarks’,
“belongs to John". A specification is a simple logical expression of such traits
that some arbitrary domain (d) may satisfy or not; eg., hasBookmarks (d) A
belongsTo (d,fﬂhn). Clients (like Firefox) and feeds (like transformers) ask for
knowledge by constructing such a specification.

CONSIDERATIONS

o Developers of agents, feeds and knowledges will not consider all possible

traits. Therefore, supporting an open-world assumption in implementations
of domains, traits and specifications may be desirable.
One could use a three-valued logic to allow some domain to truly ex-
hibit, not exhibit or maybe exhibit some trait. However, an eventual (binary)
decision as to whether some knowledge is relevant or not is required. Mod-
elling uncertainty through a ‘'maybe’ state can be useful; eg., to log the
incompatibility, ask the user to decide, apply heuristics.

o Knowledges can depend on (ie., ‘ask for’) other knowledges. The superior

knowledge specifies the required domains of its dependent knowledges. One
may require the reverse (ie. inferior knowledges expressing requirements
on their superiors) for modelling authorization (using information-flow con-
trol [29]) or relevance (to demote redundant or unreliable knowledge).
A knowledge hierarchy has a corresponding instantiation order of individual
knowledges. One could consider supporting temporal logic [23] to specify
that some trait must hold for some or for each later knowledge (where ‘later’
means hierarchically superior).

4.3.2.1 Trait

Is a characteristic (fact, property) of some subject, as exhibited by a DomaIN or
asserted by a SPECIFICATION.

RESPONSIBILITIES
o Determine if this TraIT subsumes another.

o Ensure that equal TRAITs subsume each other.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o The knowledge cloud provides implementations for DomAIN and SPECIFICA-
TIoN. The knowledge cloud provides a few basic TraiTs (to describe know-
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ledge schema and model type). User applications and knowledge cloud
plug-ins may define traits.

o Implementations generally model a property and a value range. Generally,
instances with some value range imply similar instances with a value sub-
range.

— The property could be specified explicitly (with a simple identifier
attribute) or implicitly (by the class identity).

— The value range may be undefined/singular (singleton TRAIT), permit
absent values (TraiTs with actual values subsume similar ones with
missing values) or be an actual value range or enumeration.

4.3.2.2 Domain

Makes assertions about some subject’s characteristics (i.e., exhibited TraITS).

RESPONSIBILITIES
o Determines if a given TRAIT is exhibited.

o Provides a characterizing SPECIFICATION.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o A simple implementation (SETDOMAIN) maintains a set of affirmed traits.
Traits that cannot be implied by any contained trait are determined to be
not expressed (assuming a closed world).

e More complex implementations could express conjunctions, disjunctions and
negations (like a SPECIFICATION).

4.3.2.3 Specification

Expresses the characteristics (TraITs) a candidate object (a DomaIN) must exhibit
to qualify as ‘satisfying. The specification pattern [u] is a propositional logic
boolean expression to separate assertions about candidate objects from the can-
didate objects itself. The pattern is useful for selecting, validating and constructing
objects.

RESPONSIBILITIES

o Determine if a candidate DomaAIN satisfies the specified conditions.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

e Apart from conjunction, disjunction and negation other operators could be
implemented.
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e The specification pattern can be extended to support subsumption and par-
tial satisfaction. In that case, instead of asking if a specification is satisfied
by some domain, one could ask if the specification is subsumed by that
domain’s characterizing specification.

4.3.3 Feeds, offers, networks and orchestrator (orange)

Feeps make OFFeRrs for knowledges in certain domains. The ORCHESTRATOR builds
NETWORKs of offers to satisfy a particular knowledge request. See figure 10.

Feed

______ _provides_ __ _ | oer |1 __ - bulds ___ ot Knowledge
~ | has dependencies |

nad

maintains depenc‘%ncy hjerarchy ~ ~ _ - answ%rs

Orchestrator - ———==—-F=—==2 » Network

builds and populates has (un)answered: Question

Figure 10: Illustration of relations between FEep, OFFER, NETWORK and ORCHESTRATOR.

RELEVANCE Feeps expose (OFfers for) knowledge from particular know-
ledge sources. The ORCHESTRATOR builds a NETWORK of all relevant offers to satisfy
a particular knowledge request.

RELATION TO GUIDING EXAMPLE (section §1.6)

These components are internal to the cloud; client applications will not directly
interact with them.

If a webbrewserweb browser (say, Microsoft Internet Explorer) requires a cus-
tom knowledge model interface (InternetExplorerFavoriteFile), its developers would
most likely want to provide implementations of the knowledge model and the feeds
that offer it. A knowledge cloud may enable client applications to (remotely) install
new feeds and knowledges to the cloud (if given authorization) or require manual
installation by the user.

CONSIDERATIONS

o The ORCHESTRATOR should be deterministic; i.e., it should produce the same
NETWORK for the same knowledge request and set of FEEDs every time.
4.3.3.1 Feed

Provides Orrers for knowledges that are relevant to (ie., satisfy) some domain
specification.
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RESPONSIBILITIES

e Provide relevant OFrers for some domain specification.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o For each implementation of knowledge, a FEep-implementation to instanti-
ate the knowledges should be available as well.

4.3.3.2 Offer

Declares the availability of some knowledge.

RESPONSIBILITIES
o Describe the knowledge structure.
o Describe the dependent knowledge QUESTIONS.

o Provide KNOWLEDGE (given answers to the dependent questions).

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o Each implementation of FEED generally requires an implementation of OF-
FER (to actually provide the offered knowledge) as well.

4.3.3.3 Network

Maps questions to their satisfying knowledge offers and builds the corresponding
KNowLEDGE hierarchy.

RESPONSIBILITIES
o Maintain mapping of QuESTION to a set of satisfied OFFERs.
e Determine if some OFFER is satisfied.
o Determine if some QUESTION is answered.

o Provide KNOWLEDGES that answer some QUESTION.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o A simple implementation could maintain a mapping of QuESTIONS to OFFERS
for each root question.

o A more complex implementation may have a more reusable mapping, such
that NETWoRks are not built anew for each request.
4.3.3.4 Orchestrator

Populates a Network with Orrers from a FEED that contribute to the answering
of a ‘root’ knowledge question.
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RESPONSIBILITIES
o Create a NETWORK for answering some root knowledge QUESTION.

o Prevent dependency loops among knowledges. Knowledge should never de-
pend on itself.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

o To accept a knowledge OFFER, its own dependent questions need to be
answered (by other offers). The space of requested offers and their de-
pendencies can easily explode. A brute-force breadth-first search may not
suffice. To solve larger spaces, one may benefit from constraint logic pro-
gramming [34].

4.3.4 Agents and bureaus (purple)

AGENTs provide knowledge cloud components. BUREAUs manage a registry of agents
and collect the agents' components. See figure 11.

Agent | | provides
i
manages collects _ | Feed
Orchestrator |9t feeds U g reay [1”

Figure 11: Illustration of relations between AGENTS and BUREAU.

RELEVANCE The AGENT is an installable module or plug-in of cloud com-
ponents by a trusted partner (a system administrator, an application vendor); such
an abstraction allows for configuration and extension of a knowledge cloud.

The Bureau defines an AGENT cooperation sphere; this abstraction permits
selective availability of agents (e.qg., to separate of mutually-incompatible AGENTSs,
to quarantine classified and unsafe AGENTS).

RELATION TO GUIDING EXAMPLE (section §1.6)

There may be an agent for "Microsoft Internet Explorer” and one for ‘Mozilla
Firefox” to provide feeds that expose client-specific knowledge (possibly as custom
model implementations; e.g., InternetExplorerFavoriteFile). There may be other
agents with feeds that transform knowledge models (favorites versus bookmarks);
such agents could be built by anyone.
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CONSIDERATIONS
o The AGents may use background threads to discover knowledge sources.

o AGENTs may need to execute private initialization/disposal instructions when
they are (de)registered at some BUureau.

4.3.4.1 Agent

Represents a module with knowledge cloud components.

RESPONSIBILITIES

o Provide a collection of FEEDs.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS
o A simple implementation may provide pre-instantiated feeds.

o Implementations that adapt external systems (e.g., a file system, a DBMS,
another cloud) for the cloud will generally instantiate one feed that lazily
checks if a relevant knowledge source exists and can be offered.

4.3.4.2 Bureau

Manages a registry of AGENTs and collect their feeds.

RESPONSIBILITIES
e Maintain a registry of AGENTs.

e Provide a collection of FEEDs.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS
o A simple implementation contains an arbitrary collection of AGENTs.

e More complex implementations may impose constraints on registered AGENTS
(e.g., by vendor, class signature or some authorization mechanism).

4.3.5 Clouds (black)

The Croup is the public interface for clients to open a ScoPe for retrieving know-
ledge. See figure 12.

RELEVANCE To hide the inner workings of the CLoup for clients, the know-
ledge cloud exposes a public interface. The ScopE insulates the client from server-
volatilities: it snapshots the CLoub's configuration.
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connectsto | Cloud
Client " opens via cloud | builds rewrns __ | Answer
™ Scope ::g:e%;nswerm answ%rs
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Figure 12: Illustration of relations between Ctoup and ScopE.

RELATION TO GUIDING EXAMPLE (section §1.6)
The web browsers use the public interface to query the knowledge cloud for
knowledge with their respective information models (hookmarks vs. favorites).

CONSIDERATIONS

e We should avoid forcing an architectural distinction between client and
server components. Without changes to the high-level design, the CrLoup
interface should be suitable for in-memory, inter-process and inter-machine
implementations. While a singleton cloud per host is proposed, various con-
cerns (e.g,, performance, testability, extensibility, security, reliability) may
demand that client programs run a private cloud in their own memory. De-
velopers and programs could then still benefit from some abstractions (like
knowledge retrieval and orchestration) the knowledge cloud design provides.

4.3.5.1 Cloud

Provides a Scope on the cloud and its available knowledge sources.

RESPONSIBILITIES

o Open a ScopEe on currently available feeds.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

e An in-memory implementation runs in the local process's memory. A proxy
implementation may transparently convert local calls to calls on a re-
mote server (or process). To convert calls, one may use Remote Proced-
ure Call-technology or write a custom adapter using some protocol (e.g.,
SQL, SPARQL).Implementations may use a bureau (or multiple) to maintain
configurations of interoperating agents.

4.3.5.2 Scope

Provides the knowledge answers that satisfy some knowledge question.
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RESPONSIBILITIES

o Provide ANSwERs that satisfy some QUESTION.

IMPLEMENTATION VARIATIONS AND SPECIALIZATIONS

e Scopes may adapt the client's question to consider other contexts (e.g., user
identity and authorization, application identity, manual configuration).






5 VALIDATION

We identified problems our current data management paradigm suffers (chapter 1)
and proposed the knowledge cloud as the solution (chapter 3). We also provided
an architectural design of this knowledge cloud (chapter 4). Our efforts to validate
our proposal and design consist of:

§1. Demonstration: a prototype to show the practical application of a knowledge
cloud and validate its architectural design;

§2. Theoretical case-study: Horde to illustrate the potential gains of using a
knowledge cloud on complex software;

§3. Results of our efforts to validate the knowledge cloud's ability to solve the
identified problems.

5.1 DEMONSTRATION: A PROTOTYPE

Our quiding example (section §1.6) describes the challenge of maintaining one
hyperlink collection across various browsers with distinct domain models (specific-
ally Firefox's bookmarks and Internet Explorer's favorites). We proposed using a
knowledge cloud to maintain this relation. As implementing a practical solution
is beyond the scope of this research project, we demonstrate the use of a know-
ledge cloud with the implementation of a knowledge cloud prototype and a few
demonstration client programs.

5.1.1 Purpose

The purpose of our demonstration is to:
o validate the architectural design of the knowledge cloud;
o illustrate how a knowledge cloud facilitates (better) data interoperability;
o illustrate how a knowledge cloud improves user control;

e assess the feasibility and practical effort of making cloud-enabled programs.

We implement a
knowledge cloud
prototype and
demonstration
programs.
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5.1.2 Scope
The scope our demonstration is limited to illustrate how the knowledge cloud
Our demonstration is facilitates interoperability between client programs. In particular, our demonstration
limited in SCope. does not (OnSlder

e interactions between cloud and storage. Our demonstration maintains data
models in-memory and does not persist models. Production-ready know-
ledge cloud will need to access storage.

o inter-process communication (IPC) between clients and cloud. Our demon-
stration runs the knowledge cloud and client programs in a single process.
Production-ready knowledge clouds will find IPC relevant and may bene-
fit from various existing IPC-libraries [v] or alternative technologies (RPC,
CORBA).

5.1.3 Method & Implementation

Our demonstration involves a prototypical implementation’ of the knowledge cloud
Our demonstration architecture (‘Klowid') and two cloud-enabled client programs. One client program
also illustrates data (‘MyFF') uses bookmarks (in reference to Firefox); another (MylE’) uses favorites
(nteroperabllity. i\ reference to Internet Explorer), as shown in figure 13. These models are similar
but not trivially so; for example: bookmarks are tagged with multiple categories

whereas favorites are contained by a single folder in a hierarchy.

myie m

FFModel

(©) iEmocel ¢ 1 [@ Fotcer ©
1 arent) subfolders .
getFavorite(Path) String name P getBookmarkByUri()

* getBookmarksWithTag()
getFolder(Path) getAllTags()

rites contains

#
*

© Favorite © Bookmark
URlid

URlid
Date lastUpdated grﬁgv ::::
gr!ng w:a String uri
ring ur List<String> tags

Figure 13: The favorite and bookmark domain models for client programs MylE and
MyFF, respectively. The knowledge cloud will facilitate the exchange of
information between the different models.

We implement two The knowledge cloud has a configuration of implemented knowledges, offers,
knowledge cloud  feeds and agents; these implementations provide or synchronize (transform) favorite
configurations. and bookmark models. We implement two cloud configurations:

1 The source code for this project is available on-line via http://klowid.eu/.
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e one applies transformation rules and uses RDF (section §25.12) and
Apache Jena [w];

o one applies direct manipulation of Java objects and is called the POJO-
approach (‘Plain Old Java Objects’).

As required by the proposed new paradigm, the client program implementations
are oblivious to the knowledge cloud configuration and accept either.

5.1.3.1 Demonstration client programs

Our demonstration client programs are simple bookmark/favorite managers (shown
in figure 14). These client programs do not concern themselves with storage and

only interact with their bookmark/favorite model and the knowledge cloud as
follows:

1. client programs query the cloud for knowledge with a specified domain (i.e.,
‘has BookmarkModel' and 'has FavoriteModel’ respectively);

2. client programs freely mutate the bookmark/favorite model (e.g., per instruc-
tion by the user);

3. client programs commit and update knowledge model changes to/from the
cloud.

|- | My Little [E [f =
TICCLMAWW. KD BU
Froject Klowlid
Froject, Develapment
Add new I Edit selected I Remove selected)
= PR odelg dentifier=home)
¢ [ Development
B cifl peal T11d-e54c-417 2-bi29-2B0982009817, name=Frojec Klowid, uri=hiip:iwaw Haowid eu)
[ Praject
] b 11d-e54c-417 2-bi2g- 17, name=Froject Klowid, uri=hlip:fiwamw Kawid eu)|
t| Refresh Automatic | Update from cmn| Commit to cloud |I

Universiteil Twente
hitp:faww Ltwente nl

root/Education/Unversites

Addpew | Editseiecied | Remove selected

1 i nama=roat )
¢ [ Folderfis=hli acal e 8355.5208-0504-4849-sf1_Dad Bedésates, ation
% L3 Foldend-niip BB D2 5-4ecis-2 10174035717 nams —Uners iss)
&Y o123 4580070354477 c-b27 - EAA 515604, be-Liniuersitit Twsrfe, uri-hifunues uhwents
| Retresh Automatic | Update from cloud | Commit o cloud |I

Figure 14: Screenshots of MyFF" and ‘MylE" demonstration programs.
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5.1.3.2 Knowledge cloud prototype

Our knowledge cloud prototype implements all components of our architectural
design (section §4.2). Our two configurations (RDF-Jena versus POJO) have dis-
tinct implementations of knowledge, offers, feeds and agents. Different configur-
ations allow the knowledge cloud to construct different hierarchies of different
knowledge instances to satisfy the same client-specified domain. Both configura-
tions have knowledge implementations that simply maintain some bookmark/favor-
ite model in memory and implementations that maintain a correspondence between
some favorite knowledge and some bookmark knowledge.

5.1.3.3 Configuration A: transformation using RDF and Apache Jena

We implemented agents, feeds, offers and knowledges to transform bookmarks to/-
from favorites via RDF models. By using generic RDF (graph) models, we could
use existing technologies: graph-based inference engines (to transform models),
Object-RDF-(de)serialization frameworks (to possibly save and load bookmark/fa-
vorite models from disk). In this configuration, the knowledge cloud orchestrates
knowledge as shown in figure 15.

MyFF MyIE
Firefox demo program Internet Explorer demo program

'Ijnterface BookmarkKnowledge nterface FavoriteKnowledge
L |
JenaBookmarkKnowledgej

JenaFavcribeKncrwledgeT

| interface JenaKnowledge

\ A schema=myff

JenaSyncknowledge

interface JenaKnowledge
A schema=myie

interface JenakKnowledge jnterface JenakKnowledge
A schema=myff A schema=myie

interface JenakKnowledge
A schema=sync

A —synced A —synced A —synced

[ 4
‘ Simple]enaKnowIedge_FFT ‘ SImpIa]enaKnowledge_IET ‘ SImpIa]enaKnowledge_SyncT

Figure 15: The knowledge hierarchy for the two client programs that would be orches-
trated with a RDF-Jena cloud configuration. Edges denote dependencies on
knowledge and are labelled by the domain specification. Red edges denote
bookmark-modelled information; blue edges denote favorite-modelled inform-
ation.

RDF graphs consist of a set of triples (subject, predicate, object) in which each
component is some node (a literal, a Uniform Resource Identifier, a blank node?).
Apache Jena implements different RDF graph models. Some implementations main-
tain triples in memory or in storage. Other implementations build on other models
to infer triples or combine graphs.

2 RDF defines blank nodes as nodes with identity but without URI. Blank nodes refer to anonymous

resources and may only be used as subject or object
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Jena’s inference graph model binds to another model and uses a reasoner [x] to
infer the addition/removal of RDF triples from the source model. Jena implements
reasoners for the RDF Schema and OWL standards as well as a ‘generic rule
reasoner’ for custom transformations.

We configured a generic rule reasoner with custom fransformation rules (see
section §A.1 on page /1) to synchronize RDF-representations of favorites and
bookmarks (see section §A.2 on page 72). We used the Jenabean library [y] to
(de)serialize Java bookmark/favorite objects to/from RDF.

Unfortunately, this approach turned out to be invasive (model had to be adapted
for Jenabean), buggy, incomplete (deletions are not supported), bloated (transform-
ation file is large), slow and unstable (infinite loops).

5.1.3.4 Configuration B: synchronization using POJO

In response to the (unexpectedly many) difficulties with the RDF-Jena-approach,
we implemented agents, feeds, offers and knowledges to transform bookmarks to
and from favorites with Java code. In this configuration, the knowledge cloud
orchestrates knowledge as shown in figure 16.

MyFF MyIE
Firefox demo program Internet Explorer demo program

interface BookmarkkKnowledge Interface FavoriteKnowledge

FromFavor vled: 7 | meBoolonarkFavar'rtaKnnwiedge7

interface BookmarkKnowledge®, interface FavoriteKnowledge  /interface BookmarkKnowledge ‘interface FavoriteKnowledge
A stransformed \ A transformed A ﬂtra::ry A stransformed

—_—

_h_"| Slmpleamhnarld(nmledgei] _| SimpleFavoriteKnowledge

Figure 16: The knowledge hierarchy for two client programs that would be orchestrated
with a POJO cloud configuration. Edges denote dependencies on knowledge
and are labelled by the domain specification. Red edges denote bookmark-
modelled information; blue edges denote favorite-modelled information.

This approach turned out to work very well; it is complete, fast, maintainable
and easy to implement.

5.1.4 Discussion

Given the purpose of our demonstration (section §5.1.1), we conclude the following.

5.1.4.1 Architecture design is adequate (for our demonstration)

For (at least) the limited scope of this demonstration, the architecture is valid.
The prototypical implementation of the knowledge cloud architecture (see figure 6)
satisfies the needs of this demonstration. In particular, our demonstration shows
that the architecture has adequate abstractions to support completely different
knowledge cloud configurations (i.e., the RDF-Jena versus POJO approaches).
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Our demonstration is too artificial to conclude overall architectural adequacy,
but it does permit us to present our architecture as a solid initial design for
future implementations. We suspect storage-related concerns (such as database
transactions) and realistic imperfections (failing connections, misbehaving agents
or clients) may require adaptations to the architecture we designed.

5.1.4.2 Knowledge clouds support data interoperability

The demonstration shows that the knowledge cloud supports data interoperability
by facilitating transformations between heterogeneous models with different know-
ledge cloud configurations. The flexibility of knowledge cloud configurations turns
out to be of significant value.

Our first approach (RDF-Jena; figure 15) to facilitate data interoperability failed.
We assumed that RDF's general-purpose nature and the availability of tools and
libraries would ease transformation between models, but this assumption was
wrong. Our second approach (POJO; figure 16) was to simply ‘adapt’ one inform-
ation model into the other with Java code, thus avoiding serialization, deserializa-
tion, RDF-models, inference engines etc. The second approach was successful and
easier.

Programs have information models (e.g., in-memory Java objects) with logic to
maintain consistency and integrity (e.q., default values in getters, validation logic
in setters, bidirectional relations etc.). Data-level transformations (like the RDF-
Jena approach) operate on raw data representations of the information models,
bereft of that information model logic. /nformation-level transformations (like the
POJO approach) access and manipulate information models like the client programs
do and reuse that logic. Therefore, information-level transformations have many
benefits over data-level transformations.

Data-level transformations resemble traditional approaches to data interoperab-
ility (without a knowledge cloud): distinct programs share a common data format
and re-interpret the stored data into their own (heterogeneous) information mod-
els. Information-level transformations avoid data formats altogether and directly
manipulate in-memory information models. As maintainer of information models,
the knowledge cloud is particularly well-suited for this approach to data interop-
erability.

5.1.4.3 Knowledge clouds improve user control

The user configures the knowledge cloud to specify how data is managed and
stored, thereby maintaining control over his data. The user would directly benefit
from any configurational flexibility. Our demonstration shows this flexibility: the
knowledge cloud may use completely different configurations (RDF-Jena versus
POJO) to provide information models to programs, without notice or change to
those client programs.

A knowledge cloud configuration requires implementations of knowledge, offers,
feeds and agents to transform and provide model instances (from storage). Know-
ledge cloud configurations vary greatly in the required levels of effort, boilerplate
code and overall quality.
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5.1.4.4 Cloud-enabled programs are feasible (for our demonstration)

The demonstration confirms that implementing cloud-enabled programs is feasible.
Cloud-enabled programs must query a knowledge cloud for knowledge, commit
changes to the knowledge and handle (remote) updates to the knowledge.

Client programs get knowledge models from the cloud; the cloud ensures this
knowledge remains up-to-date by propagating future changes to the client. Pro-
grams must expect the models they get from the knowledge cloud to change beyond
their control. Managing this volatility may be difficult; we do not specify how pro-
grams should handle updates. As the scope of our demonstration is limited, the
feasibility of implementing more complex cloud-enabled practical programs (with
support for storage and inter-process communication) is uncertain. The demonstra-
tion does adequate illustrate the concrete application of the concept 'knowledge
cloud’.

5.2 THEORETICAL CASE-STUDY: HORDE

Our proposed data management paradigm re-assigns storage logic from programs
to the cloud. To study the feasibility (and wisdom) of this approach, we should
apply this reassignment on existing complex software. Because adapting source
code for this experiment is infeasible, we simulate it by studying the modules and
their interdependencies of an existing software program, and determining which
modules should be implemented in the cloud (rather than in the program).

We hypothesise that using a knowledge cloud for complex programs could sig-
nificantly reduce program complexity. We choose a program to represent the class
of complex programs with rich information models: Horde. We analyse the Horde
groupware product (section §2.5.3) because it is open-source, complex, modular
and has many features common to other programs. Moreover, the application do-
main (Personal Information Management) is very suitable for management by a
knowledge cloud.

5.2.1 Method

Our experiment involves analysing individual Horde-modules and decide for each
whether the module should. ..

o be cloudified: functionally re-implemented in the cloud;
(E.g., modules that implement protocols, data formats or database access.)

o be duplicated: be implemented by both the cloud and Horde;
(E.g., components for exception handling, translations, DNS, HTTP etc)

o be retained: remain implemented by only Horde.
(E.g., user interface modules.)
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By cloudifying modules, we move program logic (and the corresponding complex-
ity) from programs into the cloud. At worst, this extraction only moves complex-
ity—which is still desirable. At best, some complexity may be easier to imple-

We consider the ment in the knowledge cloud or become redundant altogether. Modules may have
dependencies of dependencies on other modules. Cloudifying one module requires the recursive
modules.

cloudification (or duplication) of its dependencies (i.e., the transitive closure). Du-
plicating a module requires the duplication of its dependencies.

To guide our analysis of Horde-modules and their interdependencies, we built

a tool. This tool visualizes a module dependency tree as a Graphviz [z] graph,

We mark modules for as shown for an artificial program in figure 17. The tool also allows us to mark

cloudification or  modules for cloudification (red) or duplication (pale blue), as shown in figure 18.

duplication Of the remaining ‘unmarked” modules (generally white), the tool marks those that
depend on cloudified modules (green) or are depended on by cloudified modules
(orange); these modules are candidates for subsequent cloudification or duplication.
5.2.2 Results
We extracted Horde's module dependency tree using a Horde developer tool [aal.
We marked Horde-modules for cloudification or duplication to our satisfaction in
11 iterations. For each iteration...
o we marked a module for cloudification (generally a module that was marked
as candidate (green) in a previous iteration);
o and recursively cloudified or duplicated all its dependencies (marked or-
ange).
The results of each iteration are summarised in table 2. The graph of Horde-
modules with markings that results from the final iteration is shown in figure 19.
Iteration 1 2 3 4 5 b 7 8 9 10 M
All modules: 147 147 147 147 147 147 147 147 147 147 147
Non-duplicated modules: 137 124 123 122 121 121 120 120 119 116 116
Cloudified modules: 1 2 28 32 33 34 37 38 39 47 49
Duplicated modules: 0 23 24 2% 26 26 27 27 28 31 31
Retained modules: 136 99 9 90 8 8 8 8 80 69 67
Retained modules connecting to cloud: 14 24 22 20 19 18 15 14 13 12 12

Table 2: Summary of the different iterations.
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|_UI-1.08 [pear.myapp.org]
|-AppLogic-1.0 [pear.myapp.org]
|-StorageInterface-1.0 [pear.myapp.org]
|_IOLibrary-1.0 [pear.myapp.org]
|-Model-1.0 [pear.myapp.org]
|-StorageInterface-1.0 [pear.myapp.org]
|-Model-1.0 [pear.myapp.org]
|-Observer-1.0 [pear.myapp.org]
|-Model-1.0 [pear.myapp.org]
|-Model-1.0 [pear.myapp.org]
|-ControllerX-1.0 [pear.myapp.org]
|-StorageInterface-1.0 [pear.myapp.org]
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Figure 17: Our tool transforms a module dependency tree into a Graphviz graph.
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Figure 18: Our tool visualizes modules marked for cloudification or duplication and
marks the incoming and outgoing dependencies of cloudified modules.
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5.2.3 Discussion

Our module analysis proposes that of Horde's 147 modules (100%), 31 (21%) be
duplicated—these modules offer generic functionality and are not particular to
either the knowledge cloud or Horde. Of the remaining modules, 67 (46%) would
be retained by Horde while 49 modules (33%) could be extracted from Horde
and re-implemented in the cloud. Given that those cloudifiable modules tend
to implement complex reusable features (e.g., protocols, services, data formats),
Horde's complexity may be reduced significantly. To cloudify those 49 modules, 12
modules (retained by Horde) would have to be adapted to connect to and use the
cloud. Some of those 12 retained modules already implement intercommunication
services (e.q., Remote Procedure Call, session handlers).

We hypothesised that using a knowledge cloud for complex programs (like
Horde) could significantly reduce program complexity. We find that our analysis
supports our hypothesis. Horde was chosen to represent the class of complex
programs with rich information models. Therefore, we are confident other programs
may benefit from complexity reduction by using a knowledge cloud as well.

5.3 RESULTS

We investigated the the potential use of a knowledge cloud practically with a
demonstration using a knowledge cloud prototype (section §5.1) and theoretic-
ally with a case-study (section §5.2). Their results allow us to assess to what
extent our proposed knowledge cloud yields the claimed benefits (section §3.2.3).
(Our validation efforts are too limited in scope to consider the detailed functional
requirements in section §3.3))

5.3.1 Programs may be less complex

Our validation efforts confirm the knowledge cloud can reduce program complexity
in some cases.

5.3.1.1 Because storage-agnosticism absolves from storage-related con-
cerns

Mostly true, but with significant unknowns.

The case-study shows that Horde (an enterprise-ready groupware application)
has 49 modules (33% of 147) that may be extracted to the cloud. Most of these
modules handle storage-related complexity: protocols, data formats, services. The
case-study indicates that programs can indeed expect a significant complexity
reduction from using the cloud.

We have not validated whether our architecture is adequate for managing trans-
actions and consistency quarantees (section §2.1.3) and therefore cannot claim if
all common storage-related concerns can be dealt with by our proposed architec-
tures.
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5.3.1.2 Because context-adaptivity absolves from program-related con-
cerns

Undetermined for tested cases; unknown for the rest.

The demonstration shows that the knowledge cloud can successfully implement
program-related concerns (such as storage abstraction and interoperability), com-
pletely transparent to the client programs.

The demonstration programs are artificial and knowledge cloud implementation
is a prototype. We implemented two knowledge cloud configurations with opposite
results. One configuration introduced undesirable complexity while the other was
nearly trivial to implement. The demonstration clearly illustrates that using the
cloud is feasible for some programs and some concerns in some configurations but
the scope of our demonstration is too limited to claim more.

5.3.2 Data is more interoperable

Our validation efforts confirm the knowledge cloud can improve data interoperab-
ility.

5.3.2.1 Because storage-agnosticism unifies models from heterogeneous
data sources

Partly true, partly unknown.

The demonstration shows two approaches to synchronize heterogeneous data
models (bookmarks versus favorites). One approach failed and another succeeded,
which reinforces the value of storage-agnosticism to programs and the knowledge
cloud.

The demonstration does not maintain (a federation of) external data sources;
all information models are maintained in-memory. External data sources are fun-
damental to production-ready knowledge clouds and it is unknown how well the
knowledge cloud could expose data from external data sources and deal with their
volatile content and availability.

5.3.2.2 Because context-adaptivity transforms and adapts data to re-
quirements

Mostly true, partly unknown.

The demonstration presented two approaches to model synchronization; each
approach was implemented as a configuration of knowledges, offers, feeds and
agents in the knowledge cloud. With either configuration, the knowledge cloud
built correct knowledge hierarchies to provide the client programs with tailored
information models. Neither the knowledge cloud prototype nor the client programs
required adaptation to the chosen approach.

Our knowledge cloud prototype implements our architecture design. We have
not validated if production environment conditions (e.g, with more complex or
conflicting requirement specifications) can be properly resolved with our current
architecture.
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5.3.3 Users have more control of their data

Our validation efforts confirm the knowledge cloud can improve the user’s control
over their data.

5.3.3.1 Because storage-agnosticism enables users to dictate data stor-
age and storage policies

Mostly true, partly unknown.

The demonstration shows the knowledge cloud supports significant configur-
ational flexibility by supporting two different configurations (RDF-Jena versus
POJO). The user controls and configures the knowledge cloud and therefore dir-
ectly benefits from this flexibility.

We have not investigated what requirements the user has in practice and whether
the demonstrated configurational flexibility is sufficient to meet them. We also have
not investigated if our architecture permits more complex (and possibly conflicting)
configurations.

5.3.3.2 Because context-adaptivity enables users to dictate data usage
and processing policies

Mostly true, partly unknown.

For each knowledge cloud configuration in our demonstration, there exist know-
ledge implementations to simply provide an information model from memory and
implementations to synchronize two heterogeneous models. The user can disable
or install implementations and thereby control how information are used and pro-
cessed in the knowledge cloud.

Our demonstration does not support the installation of custom agents by users.

5.3.4 Developers should write less inessential code

Our validation efforts suggest the knowledge cloud can reduce the amount of
inessential code developers write.

5.3.4.1 Because storage-agnosticism obsoletes data models, storage APls
and exchange protocols

Probably true.

The case-study shows the knowledge cloud effectively absolves client program
Horde from many storage-related concerns. Horde would no longer need to im-
plement data models, storage APIs and exchange protocols as this logic would
re-implemented in the knowledge cloud instead.

While Horde's storage-related components may be obsoleted, other programs
may have storage-related requirements that the knowledge cloud might not easily
satisfy (e.g., streaming multimedia content, peer-to-peer protocols).
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necessary.
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| VALIDATION

5.3.4.2 Because context-adaptivity centralizes reusable logic

Probably true.

The case-study shows the knowledge cloud could extract (ie. centralize) 49
storage-related Horde-modules. These modules implemented data formats, conver-
sions, protocols, services—most of them re-usable for satisfying requirements of
other client programs.

5.3.5 Conclusion

We implemented our knowledge cloud design as a prototype and we investigated
how programs use the knowledge cloud with a theoretical case-study and prac-
tical demonstration. Our validation efforts were limited in scope but nonetheless
insightful. In particular, we found that using a knowledge cloud may shrink pro-
grams significantly. We also found that the knowledge cloud configuration greatly
affects the difficulty of implementing program-related concerns (such as synchron-
izing heterogeneous information models). Some configurations require non-trivial
and cumbersome implementations (RDF-Jena) while others (POJO) are almost
trivial.

Our validation efforts confirm the potential of our proposed data management
paradigm and the knowledge cloud to our satisfaction. Our validation efforts have
not uncovered critical flaws or insurmountable obstacles. However, our valida-
tion efforts can only show the presence, not the absence of weaknesses. We are
particularly wary of how the complexity that the knowledge cloud imports from
programs (i.e, ‘cloudified modules’) should be managed and how practical non-
artificial conditions are handled by our architecture. The best validation of the
knowledge cloud (in concept and architectural design) would be an implementa-
tion for production-use. We are optimistic that such an implementation reinforces
the supposed advantages of the knowledge cloud and improves upon its definition
and our design.



CONCLUSION

A data management paradigm is a set of concepts and thought patterns on data
management. Today, this paradigm requires programs to directly access and man-
age storage; the consequences are significant:

o Programs are unnecessarily complex;

o Data is badly interoperable;

o Users are not in control of their data;
o Developers must write inessential code.

To ameliorate these problems, we proposed a new data management paradigm with
a central information provision and exchange service: the knowledge cloud. In the
new paradigm, programs connect to the knowledge cloud to access information in
a model the program specifies. The knowledge cloud transforms between models
and manages their storage, invisibly to the program.

The knowledge cloud enables two fundamental qualities of the new paradigm:
storage-agnosticism and context-adaptivity.

storage-agnosticism permits users and programs to remain ignorant of
storage concerns. Rather than managing data (in some format from some
data source), a storage-agnostic program specifies an information model
and expects the information from the knowledge cloud to conform.

context-adaptivity permits other parties to invisibly manipulate the inter-
action between programs and storage. By interception and adaptation, other
parties (contexts) could support cross-cutting concerns (authorization, data
transformation) without the program noticing.

We investigated various concerns the knowledge cloud needs to handle: storage-
related concerns, program-related concerns and cloud-specific concerns. We found
there is a lot of related work on modelling, transforming, accessing and integrating
data.

We elaborated on our proposal for a knowledge cloud by reasoning for its ex-
istence, how it enables storage-agnosticism and context-adaptivity, what require-
ments it should satisfy and what the roles of programs, data, users and developers
are in the new data management paradigm.

We designed a generic knowledge cloud architecture with fundamental concepts,
which serves as a reference framework for future comparisons and implementations
of knowledge clouds.

We validated our proposal for a new data management paradigm by simulating
the effects of the proposed paradigm in a case-study of existing software. We valid-
ated the design and demonstrated the use of the knowledge cloud by implementing
a knowledge cloud prototype and demonstration programs.
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| CONCLUSION

6.1 MAIN RESEARCH FINDINGS

The goal of this research project was to present and substantiate our vision for
a data management paradigm in which programs and storage are separated by a
knowledge cloud. Our research question was:

"What are the effects for users and developers if programs interacted
with a single knowledge cloud for information access and storage,
rather than with various storage mechanisms separately?’

Our validation efforts confirm the potential of the proposed knowledge cloud and
the new data management paradigm to ameliorate the identified problems of the
current paradigm for users, their data, developers and their programs. By using a
knowledge cloud. ..

o programs may be less complex;
o data is more interoperable;

e users have more control of their data;

o developers should write less inessential code

Our validation efforts inspire confidence, but additional research on the extent and
conditions of these benefits is necessary.

6.2 FUTURE WORK & RECOMMENDATIONS

We recommend the next step to be the implementation of a production-ready know-
ledge cloud and the implementation of productive programs to use this knowledge
cloud. These efforts should yield insights in various practical and fundamental
matters, such as:

e How should client processes interface with the cloud?
(Some form of Inter-Process Communication, shared memory, system library,
CORBA or network protocol? How do programs share information models?)

o How should human users manage and interface with the knowledge cloud?

o How deep can or should the knowledge cloud be integrated in operating
systems?

o How can a federation of data sources be managed?
o How should atomic (database) transactions be expressed and managed?
o How can the knowledge orchestration process be improved?

o How should the user control the knowledge cloud?
(Should there be a standard knowledge model for 'storage policies”? Should
there be an on-line marketplace to download agents, models and trans-
formers? Should client programs be able to request the installation of
agents?)
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o How should the knowledge cloud handle and recover from errors?

e How can the knowledge cloud manage the complexity it imports from pro-
grams?

o How can the knowledge cloud maintain security and system stability with
various interacting agents and knowledge models?
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VALIDATION

The following listings are related to section §5.1.3.3 (Configuration A: transform-
ation using RDF and Apache Jena).

A.1 JENA TRANSFORMATION FILE

Example of RDF graph data (in the Turtle format) and a transformation rule set
(in @ Jena-particular format). This example transforms a bookmark with two tags
to two equivalent Favorites.

@prefix klowid: <http://eu.klowid/> .

@prefix sync: <http://eu.klowid.demo.hyperlinks2.sync/> .
@prefix ff: <http://eu.klowid.demo.hyperlinks2.myff/> .
@prefix ie: <http://eu.klowid.demo.hyperlinks2.myie/> .

[ bookmark_declare: ... ] // 1+2 statements
[ favorite_declare: ... ] // 1+2 statements
[ folder_declare: ... | // 142 statements
[ favorite_path_components_root: ... ] // 4+2 statements
[ favorite_path_components_subfolders: ... ] // 6+2 statements
[ dangling_favorite_sync: ... ] // 6+3 statements
[ dangling_favorite: ... ] // 4+2 statements
[ folder_creates_tag: // 5+2 statements

(7fd rdf:type ie:Folder)
noValue(?7fd sync:tag)
(?fd ie:name 7name)
(?7fd sync:path 7path)
regex(?path "root:/(.*)" 7tag)
-3
print("folder_creates_tag" 7fd 7tag)
(7fd sync:tag 7tag)
1
[ tag_creates_folder: ... ] // 9+8 statements

[ bookmark_creates_favorites: // 13+10 statements
(?b rdf:type ff:Bookmark)
(?h ff:tags 7tags)
(7tags 7- 7tag)
isDType(?tag, xsd:string)
(7fd sync:tag 7tag)
(7fd rdf:type ie:Folder)
(?fd ie:favorites 7favorites)
(?b ff:uri Zuri)
(7b ff:name ?name)
(?b ff:version ?version)
uriConcat(7?b "#" 7tag 7btag)
noValue(?f sync:with ?htag)
uriConcat(?b ".favorite#" 7tag 7f)
-
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print("bookmark_creates_favorites" 7b 7f)
(7f sync:with 7btag)
(7f sync:with 7b)
(7b sync:with 7f)
(7f ie:lastUpdated 7?version)
(7f ie:title 7name)
(7f ie:url Turi)
have(7?favorites 7f)
(7f ie:folder 7fd)
(?f rdf:type ie:Favorite)
]
[ favorites_create_bookmark: ... ] // 10411 statements

[ bookmark_updates_favorites: ... ] // 8+4 statements
[ favorites_update_bookmark: // 8+4 statements

(?7f rdf:type ie:Favorite)

(7f sync:with 7b)

(7b rdf:type ff:Bookmark)

(7f ie:lastUpdated 7ft)

(7b ff:version 7hbt)

greaterThan(7ft 7bt)

(7f ie:url Furl)

(?7f ie:title 7title)

print("favorites_update_bookmark" 7f 7b)
(7b ff:version 7ft)

reset(?b ff:uri) (?b ff:uri 2url)
reset(?b ff:name) (?b ff:name 7title)

// Deleting not supported

A.2 RDF MODELS
Example of RDF graph data (in the Turtle format) and a transformation rule set

(in a Jena-particular format). This example shows the source and transformation
result of a Bookmark with two tags into two equivalent Favorites.

A.2.1 Source RDF-model

<http://localcloud/bookmarks/2d6d09f9-dblf-460a-94d1-c062b347ac9c>

a ff:Bookmark ;
ff:name "Project Klowid"~"xsd:string ;
ff:tags [ a rdf:Seq ;

rdf:_1 "“Project"~*xsd:string ;
rdf:_2 “Development"""xsd:string
13
ffiuri "http://www.klowid.eu""xsd:string ;
ff:version "2015-04-25T13:28:00.861Z"""xsd:dateTime .

tws:javaclass a owl:AnnotationProperty .

ff:Bookmark a <http://www.w3.0rg/2000/81/rdf-#Class> , rdfs:Class ;
tws:javaclass “"eu.klowid.demo.hyperlinks2.myff.Bookmark" .
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A.2.2 Inferred RDF-model

<http://localcloud/bookmarks/2d6d@9f9-dblf-460a-94d1-c062b347ac9c. favorite#Development>

a ie:Favorite ;

ie:folder <http://localcloud/sync/Development> ;
ie:lastUpdated "20815-04-25T13:28:00.861Z"~"xsd:dateTime ;
ie:title "Project Klowid"~"xsd:string ;

ie:url "http://www.klowid.eu"~"xsd:string .

<http://localcloud/bookmarks/2d6d@9f9-dblf-460a-94d1-c062b347ac9c. favorite#Project>

a ie:Favorite ;

ie:folder <http://localcloud/sync/Project> ;
ie:lastUpdated "20815-04-25T13:28:00.861Z"""xsd:dateTime ;
ie:title "Project Klowid"""xsd:string ;

ie:url "http://www.klowid.eu"~*xsd:string .

<http://localcloud/sync/Project>
a ie:Folder ;
ie:favorites [ rdf:1 <http://localcloud/bookmarks/2d6d09f9-dblf-460a-94d1l-c062b347ac9c
.favorite#Project> ] ;
ie:name "Project"~"xsd:string ;
ie:parent <http://localcloud/favorites/root> ;
ie:subfolders []

<http://localcloud/sync/Development>
a ie:Folder ;
ie:favorites [ rdf:_1 <http://localcloud/bookmarks/2d6d09f9-dblf-460a-94d1l-c062b347acc
.favorite#Development> ] ;
ie:name "Development"~*xsd:string ;
ie:parent <http://localcloud/favorites/root> ;
ie:subfolders []

<http://localcloud/favorites/root>

a ie:Folder ;
ie:favorites [ a rdf:Seq ] ;
ie:name "root:"~"xsd:string ;
ie:subfolders [ a rdf:Seq ;

rdf:_1 <http://localcloud/sync/Project> ;
rdf:_2 <http://localcloud/sync/Development>
1.
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