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1. Introduction

Throughout the ages, mankind developed skills in controlling the properties of materials.
While people first only tried to work with different natural materials, they soon started
to create artificial ones with a large range of mechanical features. Further technological
developments were possible as men were able to even control electrical properties of
materials. In the last few decades, research has spread to the field of optical characteristics.
Controlling these would enable us to engineer materials that could e. g. reflect light
perfectly over a desired range of frequencies or allow the light waves to propagate in
predefined directions. One possibility to do so are manipulations of photonic crystals at
the nano-scale [10].
The arrangement of atoms or molecules in a repetitive lattice is called a crystal, through
which electrons propagate as waves. When organising macroscopic media with different
dielectric constants in the same way, we obtain photonic crystals. Instead of the periodic
potential we consider now the dielectric function within these metamaterials, which
varies periodically with the position at length scales smaller than the wavelength of light.
Photons in these structures behave similarly to electrons in traditional crystals [10].
Due to the periodicity of the structure, photonic crystals have a discrete translation
symmetry, which means that they are invariant under translations of lengths that are
multiples of a fixed step-size. This size, the lattice constant a, depends on the lattice
structure and thus on the employed materials. The vector describing such a basic step is
called the primitive lattice vector a. Then, for the dielectric function, it holds that

ε(r) = ε(r + l · a) = ε(r + R),

where r denotes the position, R is any lattice vector and l an integer. If the symmetry
occurs in one direction only, we speak of a one-dimensional photonic crystal. For symmetry
in two or three directions, we obtain two- or three-dimensional crystals, respectively. In
a three-dimensional grid, a lattice vector is given by

R = l1 · a1 + l2 · a2 + l3 · a3,

where a1, a2 and a3 are the components of the lattice vectors for the corresponding
dimensions and l1, l2, l3 are integers. Based on these considerations, we can regard the
crystal to be built by the repetition of a smallest possible dielectric unit, the so-called
unit cell [10].
When analysing periodic functions, the Fourier transform is a common tool. As the
dielectric function is repetitive within the lattice, the values of its Fourier transform
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equal zero unless eiG·R = 1 for some lattice vector R. Therefore, only those terms with
a reciprocal lattice vector G have to be considered, where G is determined by

R ·G = 2πN.

The vectors G also form a lattice.
A translation symmetry offers the possibility to classify the transverse electromagnetic
modes. Modes are patterns of the electromagnetic field considered in a plane orthogonal
to the propagation direction of the initial beam. They behave differently under the
translation operator Td for a displacement d. It can be shown that a mode of the
functional form eikz is an eigenfunction of the translation operating in the z-direction with
corresponding eigenvalue e−ikd. Therefore, we can choose the modes of an electromagnetic
system to be the eigenfunctions of Td and distinguish them by the values of the wave
vector k. If the photonic crystal possesses a continuous translation symmetry in all
directions, it is said to be an homogeneous medium. It is noticeable that we do not
necessarily obtain distinct modes for different values of k. In particular, a mode with the
wave vector k is the same as one with a wave vector of k + G. It is thus advantageous
to restrict the investigations to a domain in the reciprocal space in which we cannot
move from one part of the volume to another by adding G. These domains are so-called
Brillouin zones and the one closest to k = 0 is the first Brillouin zone (BZ1). General
considerations are often restricted to this domain [10].
To classify the modes, first consider the wave vector. Sort all modes with the same k by
their frequency ω in increasing order. A number n can then be assigned to the modes
corresponding to their place in this list. The discrete or continuous values of n are called
the band number or band index. A diagram demonstrating the dependence of the mode
frequency on the wave vector shows uniformly rising lines, the so-called bands. Such a
plot is called a dispersion relation or band structure [10].
If light enters a photonic crystal, it is scattered and reflected. The resulting beams
interfere with each other. The path of the light depends on the structure of the crystal.
Thus, examining the medium itself leads to new ways of manipulating the behaviour
of photons. Mirrors, cavities (producing a pattern of standing waves) and waveguides
(leading waves in one dimension, while preventing a loss of power) have interesting
and useful properties. Photonic crystals can be constructed to not only exploit these
properties, but also generalise them. For that purpose, we can use the fact that the
lattice of a photonic crystal can prohibit the propagation of light with a certain frequency
range. This produces gaps in the band structure of the system. If the propagation
of electromagnetic waves of a particular frequency range with any polarisation and
traveling in any direction is totally prevented, we speak of a photonic band gap. This
is only possible in three-dimensional photonic crystals [10]. Another tool for changing
the photonic properties of structures are crystallographic defects. They are disturbances
in the lattice of a (photonic) crystal. Intentionally placing such defects at particular
positions alters the behaviour of light inside the structure.
Nowadays, there exists a large range of applications for photonic crystals. For example,
the effectiveness of solar panels can be improved by reflecting the incident light-beam,
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1. Introduction

(a) Fibers that are coated by photonic crys-
tals trap the light inside cables. This
possible arrangement is described in [10].

(b) Picture of the path of light through a
waveguide using defects of a photonic
crystal. Here, the y-shape as explained
in [13] is seen.

Figure 1.1.: Visualisation of some of the applications of photonic crystals.

optic fibers are coated with band gap materials to trap the light inside the cable (see
Figure 1.1a) or the focus of light can be improved by passing it through photonic material
and steering the light by interference. Furthermore, defects in a crystal do not only
enable us to guide electromagnetic waves straight into one direction, but also along angles
of up to 90◦ without losing any power (see Figure 1.1b). It is moreover possible to build
antennas and photonic integrated circuits or to construct sources with a broad spectrum
or high-power fiber lasers [19].
Band gap materials could lead to a localisation of light and strong alterations in the rate
of spontaneous emission. In order to improve applications it is important to be able to
control changes in the light emission inside a photonic crystal. Therefore, we consider the
local density of states (LDOS), which is proportional to the emission rate in a material.
The LDOS gives a value for the number of the electromagnetic states present at a certain
frequency and for a given orientation of the dipolar emitters. To be able to evaluate
experiments regarding the spontaneous emission in constructed photonic crystals we need
to be able to perform LDOS calculations [16]. It is, however, problematic to compute
the LDOS accurately, as it is directly related to a Green’s function.
Three-dimensional photonic crystals can have different basic structures, like the simple
assembly of colloidal nanoparticles, opal, inverse opal, woodpile and inverse woodpile.
Some of these can be seen in Figure 1.2. When fabricating photonic crystals we require
them to have a high photonic strength. This means that we expect a high contrast between
the refractive indices of the used materials and the high index-material should only take
up a small part of the volume. Additionally, a low absorption and the interconnection of
the various materials are desirable [24]. The inverse woodpile structure has the benefits
to be robust to imperfections and to provide the possibility for broad band gaps and
an excellent ordering. With the etching fabrication method we are able to produce
high-quality photonic crystals [23].
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(a) The structures woodpile and opal.
Source: http://www.photonic-lattice.com/en/technology/photoniccrystal/,
May 14, 2015.

(b) The inverse woodpile structure, [23]. (c) The inverse opal structure, [4].

Figure 1.2.: Different geometries or basic structures of photonic crystals.

Both the geometry of the crystal and the different materials influence the propagation
properties of light. A photonic crystal is subject to the physics of solid-states (crystal
structures) and electromagnetics (electromagnetic waves represent electrons). As the pro-
duction of three-dimensional photonic crystals is complex, it is advantageous to determine
and optimise its influence on the propagation of light before it is manufactured. In order
to study the optical behaviour, we consider the propagation of light as electromagnetic
waves.
In the Chapter 2 the mathematical model for light propagation in photonic crystals is
explained. To that end, Maxwell’s equations are presented and simplified. They are four
partial differential equations (PDEs), which, together with Lorentz’ force law, express
the complete theory of electromagnetics [6]. Within this framework, we will only consider
the time-harmonic case. Furthermore, we can assume that we have an inhomogeneous,
macroscopic, isotropic and linear material. With these restrictions we obtain a PDE
that describes our problem mathematically. Finally, boundary conditions are discussed
shortly.
In Chapter 3 the numerical method used in this study, the discontinuous Galerkin finite
element method (DG FEM) on tetrahedral meshes, is described and examined. Definitions
and properties of the needed function space H (curl; Ω), of the finite element space of
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1. Introduction

consideration (such as curl-conformity and unisolvency) and of the finite elements are
presented. We also introduce the concept of a reference element. Computations are first
carried out on this element before an affine map transforms the results to the physical
element. In the end, the advantages of Nédélec’s basis functions of the first family are
discussed and a technique is established that provides the basis functions of any order
and in any dimension. Computations for order p = 1 are performed as example.
Following the general description of the DG FEM, we apply it to the problem equation
discussed in Chapter 2. The discretisation of the PDE is shown in Chapter 4. Step
by step, we transform the second order PDE into a system of first-order equations and
determine their weak formulation. Introducing numerical fluxes with penalty terms and
applying the Galerkin method, we can then solve a linear system for the discontinuous
Galerkin coefficients in the separate elements. The overall solution is finally obtained by
the assembly of the elementwise solutions.
Chapter 5 shortly introduces the C++ software package hpGEM and its application DG-Max.
This implementation helps to numerically solve Maxwell’s equations as described in this
framework. However, the toolkit uses the basis function set by Ainsworth and Coyle
[1], which might produce non-physical results. Therefore, the described set of Nédélec’s
basis functions will be included into the code. Then tests have to be run to prove the
functionality of the modified implementation.
As mentioned before, the calculations of the LDOS are of great interest. Hence, in
Chapter 6, we concentrate on determining it more accurately. Different formulas for the
computation of the LDOS are explained. Then, we present a numerical technique for the
calculation, which was introduced in [26] and looks promising for the implementation in
DG-Max.
The results will be summarised and an outlook on future work will be given in Chapter 7.

5





2. The mathematical model of
electromagnetism – Maxwell’s equations

In this chapter the problem setting, given by Maxwell’s equations, is described. The
full problem is then reduced to a simpler one, the time-harmonic Maxwell system for
linear media, which is relevant to nanophotonic crystals. After deriving the differential
equations describing the problem, boundary conditions have to be chosen to complete
the model.

2.1. Problem modeling

Maxwell’s equations are a set of four partial differential equations in position and time
that summarise (together with the Lorentz force law) the entire theory of classical
electrodynamics. Actually, Maxwell only resolved a theoretical inconsistency in Ampère’s
law and joined the equations to the compact system that was later named after him [6].
The physical content was, however, already known in his time.
Let us consider the domain Ω ⊆ R3, where E and H are the electric and magnetic field
intensities, respectively, D is the electric displacement and B the magnetic induction.
The distribution of the charges is given by the charge density function ρ and the currents
by a corresponding density function J . All of these variables depend on the position r
and the time t. Then we can introduce the notion of the normalised equations, where
the fields are on the left hand side and the source terms on the right hand side:

∂B
∂t

+∇× E = 0 Faraday’s law

∇ · D = ρ Gauß’ law
∂D
∂t
−∇×H =−J Ampère’s circuital law

∇ · B = 0 magnetic induction is solenoidal.

(2.1)

This form clearly demonstrates that electromagnetic fields are imputable to charges and
currents [6].
With the help of constitutive relations, which depend on the properties of the materials,
D and H can be expressed in terms of E and B, respectively. To specify such a law, we
have to establish assumptions for the matter, which is inside the electromagnetic field. As
in practice we often have several different materials inside a domain, we therefore presume
inhomogeneity. The materials should also be macroscopic and isotropic, where the latter
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2.1. Problem modeling

means that its properties do not depend on the direction of the field. Additionally, we
assume linearity. This restriction is justifiable, as it results already in a large number of
interesting observations [10]. Thus, we obtain

D = εE

H = 1
µ
B

(2.2)

as constitutive relations. Here, ε is the dielectric constant and µ the permeability of the
material. We can assume that both are only depending on the position x.
As we study linear Maxwell equations, we can separate the time dependence from the
spatial dependence. This can be done by considering time-harmonic modes of the fields.
Combining these, all solutions of the equations can be obtained. The described harmonic
modes of the fields are given by

E (r, t) = Re
(
e−iωtÊ (r)

)
, D (r, t) = Re

(
e−iωtD̂ (r)

)
,

H (r, t) = Re
(
e−iωtĤ (r)

)
, B (r, t) = Re

(
e−iωtB̂ (r)

)
,

(2.3)

where Ê, D̂, Ĥ and B̂ are complex-valued vector functions that represent the space-
dependent component of Maxwell’s equations. Taking the real part results in the physical
functions. We can find corresponding expressions for J and ρ:

J (r, t) = Re
(
e−iωtĴ (r)

)
, ρ (r, t) = Re

(
e−iωtρ̂ (r)

)
.

Since iωρ̂ = ∇ · Ĵ, where Ĵ = σÊ + Ĵa by Ohm’s law with the conductivity σ and a given
current density Ĵa, and by using the constitutive relations (2.2) and the variables (2.3),
we can find the time-harmonic version of Maxwell’s equations in differential form to be

−iωµĤ +∇× Ê = 0

∇ ·
(
εÊ
)

= 1
iω
∇ · Ĵ

−iωεÊ−∇× Ĥ =−Ĵ

∇ ·
(
µĤ

)
= 0.

(2.4)

Note that we write Ĥ, Ê and Ĵ for the position-dependent terms.
Following [14], we can express the fields E and H by

E = √ε0Ê and H = √µ0Ĥ (2.5)

and define the relative permittivity and permeability as

εr = 1
ε0

(
ε+ iσ

ω

)
and µr = µ

µ0
. (2.6)

We suppose that both functions are piecewise smooth, positive and do not depend on
time.

8



2. The mathematical model of electromagnetism – Maxwell’s equations

When plugging (2.5) and (2.6) into the harmonic system (2.4), a new system is obtained:



−ikµrH +∇×E = 0

∇ · (εrE) =− 1
k2∇ ·E

−ikεrE−∇×H =− 1
ik

(ik√µ0Ja)︸ ︷︷ ︸
F

∇ · (µrH) = 0,

(2.7)

where k = ω
√
ε0µ0 = ω

c is the wavenumber, which is the magnitude of the wave vector,
and ω2 should not be a Maxwell eigenvalue.
Now, we can eliminate either the magnetic field H or the electric field E by solving the
first or the third equation of system (2.7), respectively, and substitute the result into the
other one. Here, we express the system as a second order Maxwell equation depending
only on E and obtain the final PDE:

∇× (µ−1
r ∇×E)− k2εrE = F. (2.8)

Note that, in the considered case of conserved charges, ρ and J are connected by
∇ · J + ∂ρ

∂t = 0. Thus, equations two and four of the system of Maxwell’s equations (2.4)
and also of the transformed version (2.7) hold for all time.
When setting the source term F to zero we can compute the n-th Maxwell eigenvalue ωn
and corresponding eigenfunction En by solving the following problem:
Find (ωn,En) 6= (0,0) such that

∇×
(
µ−1
r ∇×En

)
− k2

nεrEn = ∇×
(
µ−1
r ∇×En

)
− ω2

n

c2 εrEn = 0 in Ω. (2.9)

2.2. Periodicity and boundary conditions

If we consider a perfectly periodic medium that is extended infinitely into all directions,
the domain Ω equals R3 and no boundary conditions are needed. However, for the
computation of a numerical solution, we have to restrict the problem to a finite domain.
As the photonic crystal is built by the repetition of unit cells, we can choose boundaries
of a finite crystals to coincide with those of some unit cells. Fundamental computations
for the Maxwell system (2.8) can then be performed on a unit cell with periodic boundary
conditions in the interior of the finite crystal and e. g. Dirichlet conditions at outer faces:

n×E = g on ∂Ω.

For g = 0 we call these boundary conditions homogeneous.
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3. Nédélec’s basis functions for
discontinuous Galerkin finite element
methods

In this chapter, the basic idea of finite element methods and in particular of the dis-
continuous Galerkin version is presented. Moreover, it is described why this method
is beneficial when solving Maxwell’s equations numerically. After the introduction to
this approach, some features regarding the mesh construction as well as the function
spaces and elements, which are used in this study, are discussed. We will then consider
the curl-conforming Nédélec basis functions on edge elements. This includes not only
their properties, but also why they are applied in the considered case. At the end of this
chapter, we establish a technique for the determination of these basis functions.

3.1. Discontinuous Galerkin finite element methods

Finite element methods (FEM) are a class of numerical methods for the solution of partial
differential equations where the domain of computation is divided into subdomains
(elements). The solution is then approximated elementwise by previously chosen basis
functions which are not related to the specific problem. This is done using only local
information and without considering neighbouring elements (see [11]). The advantage of
these methods, as explained in [7, 8, 11], is that they can handle complex geometries
with high-order accuracy. The strictly local character allows the usage of unstructured
grids and a straightforward implementation.
Galerkin finite element methods can be applied to all kinds of PDEs. The procedure
consists of three major steps. First, a weak formulation of the problem has to be derived.
To do so, we take the inner product of each of the equations with a test function.
Subsequent integration by parts (to get rid of higher-order derivatives) and the given
boundary conditions can be used to further simplify the result. Next, Galerkin’s method
is applied, meaning that the solution function is expressed in terms of a linear combination
of a finite set of basis functions. Finally, the domain is divided into elements by a mesh.
The linear system resulting from the previous step can then be solved numerically for
each sub-domain, leading to a global approximate solution of the problem [11].
For the discontinuous Galerkin (DG) FEM the normal and tangential components do
not have to be continuous across element faces[8]. As a main drawback, the continuous
case is difficult to combine with a local mesh refinement, which is beneficial for capturing
singularities at corners, edges and material interfaces. Furthermore, Maxwell’s equations
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3.1. Discontinuous Galerkin finite element methods

problematic due to complex geometries and material discontinuities [20]. Discontinuous
methods are well suited to the problems of electromagnetism as they offer a great flexibility
in the mesh design and a larger choice of basis functions [3, 7]. Thus, they are a good
choice for time-harmonic Maxwell equations in periodic media.
In the following, we will have a closer look on some of the features of DG FEM. As this
section should only give a short insight to the theory, we will present selected issues that
are adopted from [14]. This book is a good reference for a more detailed discussion of
the topic and for proofs, which will not be shown here.

3.1.1. The mesh

As mentioned before, the domain of consideration, Ω, has to be divided into a finite
number of subdomains that form the set Th = {K}. Such a mesh has to fulfill the
following geometric constraints for FEM:

1. Ω̄ =
⋃

K∈Th

K̄, where ·̄ denotes the closure.

2. For each K ∈ Th, K is an open set with a positive volume.
3. If K1 and K2 are distinct elements in Th, then they are disjoint (K1 ∩K2 = ∅).
4. Each K ∈ Th is a Lipschitz domain (i. e. boundaries are sufficiently regular).

For elements we can define the following parameters and properties:

Definition 3.1. We call hK , the diameter of the smallest sphere that contains K̄, the
diameter of the element. Then, h = max

K∈Th

hK denotes the maximal diameter of all elements

K ∈ Th. Let further ρK be the diameter of the largest sphere contained in K̄.
The relationship between hK and ρK can be expressed through σK = hK

ρK
. Similarly,

define σh = max
K∈Th

σK as a parameter of the mesh.

Suppose we have a family of meshes {Th | h > 0}. We speak of the standard h-version,
when analysing the error of a numerical method on these meshes with decreasing parameter
h.
Such a family of meshes is called regular as h→ 0 if we can find constants σmin > 0 and
h0 > 0 such that

σh ≥ σmin ∀h with 0 < h ≤ h0.

For good approximations of the solution, regular meshes are desirable. Irregular ones
with σmin ≈ 0 lead to ill-conditioned linear systems.
Generating a grid requires a geometric model of the domain Ω and a fixed value for
h. For the process of the finite element discretisation, it is necessary that, during the
creation of the mesh, a list of all vertices, edges and faces is provided. It is also important
to indicate which vertices belong to the various elements and to label boundary nodes.
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3. Nédélec’s basis functions for discontinuous Galerkin finite element methods

Before the grid is used, it has to be checked whether it is non-degenerate and satisfies
the geometric constraints.
The simplest three-dimensional mesh that can be built is a tetrahedral mesh of a
polyhedral domain. Therefore, we will restrict ourselves to a regular-shaped grid of
tetrahedra. To obtain a well-defined finite element mesh, next to the general constraints
of FEM, we can find that elements K ∈ Th have to satisfy one of the following geometric
restrictions:

• Two elements meet at a single point that is vertex of both elements.
• Two elements meet along a common edge and the endpoints of this edge are vertices

of both of the elements.
• Two elements meet at a common face and the vertices of the face are vertices of

both elements.
Families of grids of this kind are regular if the tetrahedra do not flatten out when
decreasing h.
Tetrahedral meshes are in general unstructured. That means that the arrangement of
the elements does not follow a fixed pattern. This setting is suitable for more complex
domains. However, due to a simpler implementation and a better performance, structured
grids are often preferred.

3.1.2. The reference element and affine mappings

Often it is easier to consider a reference element K̂ of simple shape and given size. All
operations are first defined on this element and general results are then obtained by
mapping from the reference element to the physical one.
In the case of tetrahedra, the reference element is defined by the vertices v̂1 = (0, 0, 0)T ,
v̂2 = (1, 0, 0)T , v̂3 = (0, 1, 0)T and v̂4 = (0, 0, 1)T . Directed edges êj point from a
node vi1 to another one vi2 , where i1 < i2. Here, τ j denotes the corresponding unit
tangential vector. For the faces f̂1, . . . , f̂4 have outward pointing normal vectors n1, . . . ,n4,
respectively. The tetrahedron can be seen in Figure 3.1.

Definition 3.2. For any K ∈ Th there is an affine mapping FK : K̂ 7→ K, such that

FK
(
K̂
)

= K and FK x̂ = BK x̂ + bK ,

where bK is a vector, BK a non-singular (3× 3)-matrix and x̂ a point in the reference
element. K has a non-empty interior and its volume is given by |det(BK)|

6 , as the volume
of the reference element is 1

6 . The properties of BK define the effects of the mapping FK .
Both bK and BK are easy to compute. Let the vertices of K be v1, . . . , v4. Choose the
affine mapping FK such that FK (v̂i) = vi, where 1 ≤ i ≤ 4. Then

bk = v1 and BK is the matrix with j-th column given by vj+1 − v1.
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3.1. Discontinuous Galerkin finite element methods

v̂1

v̂3

v̂4

v̂2

y

z

x

ê1

ê3

ê2

ê4

ê5

ê6

Figure 3.1.: The reference tetrahedron that is used in the finite element discretisation
is shown here. The vertices and directed edges are labeled. For clarity, the
outward pointing normals of the faces are not pictured.

The affine mapping between the reference element and the element in the physical space
also induces functions defined on the corresponding vertices.

Lemma 3.3. Scalar functions experience a change of variables. When q̂ is a scalar
function on K̂, we can determine the function q on the physical element by

q (FK (x̂)) = q̂ (x̂) , (or q ◦ FK = q̂).

The transformation of gradients is given by

(∇q) ◦ FK = B−TK ∇̂q̂,

where ∇̂ is the gradient with respect to x̂.

3.1.3. The considered function spaces

We need a finite element space that is suitable for discretising Maxwell’s equations.
That means that the space has to provide elements that can deal with geometric com-
plexities and their consequences as well as discontinuous electromagnetic properties.
H (curl; Ω), corresponding to the space of finite-energy solutions, is of great importance
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3. Nédélec’s basis functions for discontinuous Galerkin finite element methods

for problem (2.8). As mentioned before, only some relations (without proof) will be
presented here. However, a wide range of mathematical properties of H (curl; Ω) and
their consequences are discussed in detail in [14].
Let us first recall some definitions of simple functional spaces and establish the corre-
sponding notions. We consider Ω ⊆ RN for N ∈ N open.

Definition 3.4. Ck (Ω) denotes the space of all k times continuously differentiable
functions, Ck

0 (Ω) is the set of functions in Ck (Ω) with compact support and Lp (Ω),
1 ≤ p < ∞ is the space of functions u on Ω with

∫
Ω
|u|p dV < ∞. For p = 2 we obtain

the square-integrable functions.
Consider two locally integrable functions u,v ∈ L1

loc (Ω). Let α be a multi-index. Then
v is called the α-th weak partial derivative of u, written Dαu = v, if∫

Ω

uDαψ dV = (−1)|α|
∫
Ω

vψ dV

for all test functions ψ ∈ C∞0 (Ω).
Sobolov spaces for s being a non-negative integer, 1 ≤ p <∞, are defined as

Ws,p (Ω) = {Lp (Ω) | v = Dαu ∈ Lp (Ω) , ∀|α| ≤ s} .

Their norms are given by

‖u‖Ws,p(Ω) =

∑
|α|≤s

∫
Ω

|Dα|p dV 1/p.

Particularly important is again the case of p = 2. Denote Ws,2 (Ω) by Hs (Ω). Hs
0 (Ω) is

the closure of C∞0 (Ω) in the Hs (Ω)-norm.

With that basis in mind we can specify the space of interest:

Definition 3.5. The energy space for Maxwell’s equations is given by

H (curl; Ω) =
{

v ∈
(
L2 (Ω)

)3
| ∇ × v ∈

(
L2 (Ω)

)3
}

with norm

‖v‖H(curl;Ω) =
(
‖v‖(L2(Ω))3 + ‖∇ × v‖(L2(Ω))3

)1/2
.

We denote with H0 (curl; Ω) the closure of (C∞0 (Ω))3 in H (curl; Ω).

In the following, let Ω be a bounded Lipschitz domain in R3.
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3.1. Discontinuous Galerkin finite element methods

Lemma 3.6. Choose u ∈ H (curl; Ω) such that

∀φ ∈
(
C∞

(
Ω̄
))3

: (∇× u, φ)− (u,∇× φ) = 0.

Then, u ∈ H0 (curl; Ω).

The energy space of Maxwell’s equations is subject to the physical requirement that well-
defined electric fields need a tangential trace. Therefore, trace properties of H (curl; Ω)
have to be considered.

Definition 3.7. Let v ∈
(
C∞

(
Ω̄
))3

be a smooth vector function and n the unit outward
normal to Ω. Then two trace functions can be defined:

γt (v) = n× v|∂Ω

γT (v) = (n× v|∂Ω)× n

The trace space is given by

Y (∂Ω) =
{

f ∈
(
H− 1/2 (∂Ω)

)3
| ∃u ∈ H (curl; Ω) with γt (u) = f

}
and provides the norm

‖f‖Y(∂Ω) = inf
u∈H(curl;Ω),γt(u)=f

‖u‖H(curl;Ω).

The trace space Y (∂Ω) is a Hilbert space and the mapping γt : H (curl; Ω) 7→ Y (∂Ω) is
surjective.

Lemma 3.8. Let v ∈ H (curl; Ω) and φ ∈
(
H1 (Ω)

)3. Then, the following version of
Green’s theorem holds:

(∇× v, φ)− (v,∇× φ) = 〈γt (v), φ〉∂Ω.

Lemma 3.9. With the former result, an alternative definition for the space H0 (curl; Ω)
can be found:

H0 (curl; Ω) = {v ∈ H (curl; Ω) | γt (v) = 0}

=
{

v ∈ H (curl; Ω) | (u,∇× φ) = (∇× u, φ) , ∀φ ∈
(
C∞

(
Ω̄
))3

}
.

This energy space and its properties are of importance when discretising Maxwell’s
equations.
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3. Nédélec’s basis functions for discontinuous Galerkin finite element methods

3.1.4. Finite elements

Following a common approach, we describe finite elements with the triple (K,PK ,ΣK),
where

• K is the geometric domain (in our case a tetrahedron),
• PK is a space of functions (polynomials) on K and
• ΣK is a set of linear functionals on PK , called the degrees of freedom of the FE.

We will now examine general finite elements by considering features that influence the
FEM.

Definition 3.10. A finite element is called unisolvent, if each function in PK is uniquely
determined by the corresponding degrees of freedom.
Then the degrees of freedom can be used to construct a basis for PK :
Consider a general FE with degrees of freedom ΣK = {ln, 1 ≤ n ≤ m}, m ≥ 1, m, n ∈
Z+. Unisolvency requires that the space PK is of dimension m. We can then find a
consistent well-defined basis {ϕj}mj=1 of PK and ln (ϕj) = δnj , 1 ≤ n ≤ m. Then all
q ∈ PK can be expressed by

q (x) =
m∑
j=1

lj (q)φj (x).

The interpolant of a FE can be used to estimate the error in the solution of FEM.

Definition 3.11. Let (K,PK ,ΣK) be a finite element and u a suitably smooth function.
Then the interpolant πKu on K is a unique function such that

l (πKu− u) = 0 ∀l ∈ ΣK .

The operator πK : C (K) 7→ PK is the interpolation operator.

As the definition of the interpolant shows, the properties of a finite element depend on
its degrees of freedom. Thus, when constructing a space of functions not only on one
element K, but on the whole domain Ω with a set of elements Th, we have to consider
the global degrees of freedom. They are obtained by uniting ΣK for all K ∈ Th:

Σ =
⋃

K∈Th

ΣK .

Reversely, the values for all the degrees of freedom in Σ also specify the ones on each
element. Computing the degrees of freedom, we can determine the global FE functions.
A global interpolant πhu in the FE space can be computed for a suitably smooth function
u based on πKu on K. Then

πhu ∈ Sh = {uh ∈ C (Ω) | uh |K∈ PK for every element K in the mesh}.

An estimate helps to determine the rate at which the interpolation error decreases (and
thus at which the approximation error does) as the mesh is refined.
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3.1. Discontinuous Galerkin finite element methods

Definition 3.12. Let W be a space of functions. The FE (K,PK ,ΣK) is said to be
W-conforming if the corresponding global finite element space is a subspace of W.

Lemma 3.13. Suppose K1 and K2 are non-overlapping Lipschitz domains that meet at
a common surface, Σ, of non-zero measure. Assume further that K̄1 ∩ K̄2 = Σ.

1. Let q1 ∈ H1 (K1) , q2 ∈ H1 (K2). Define q ∈ L2 (K1 ∪K2 ∪ Σ) by

q =
{
q1 on K1,

q2 on K2.

If q1 = q2 on Σ, then q ∈ H1 (K1 ∪K2 ∪ Σ).

2. Let u1 ∈ H (curl;K1), u2 ∈ H (curl;K2). Define u ∈
(
L2 (K1 ∪K2 ∪ Σ)

)3 by

u =
{

u1 on K1,

u2 on K2.

Then, if u1 × n = u2 × n on Σ and for n being the unit normal to Σ, we have

u ∈ H (curl;K1 ∪K2 ∪ Σ) .

3.1.5. Curl-conforming edge elements

In this section we will discuss a type of elements that are appropriate for the discretisation
of Maxwell’s equations, the so-called curl-conforming edge elements. Edge elements owe
their name to the fact that the degrees of freedom at lowest order (p = 1) are associated
with the edges of the mesh. They are created such that tangential continuity between
neighbouring elements is provided. This feature simplifies the handling of boundary and
interface conditions as well as the modeling of field singularities. Curl-conformity relates
to the fact that these elements are H (curl; Ω)-conforming.
As finite element spaces are built using piecewise polynomial functions, we define some
sets of polynomials. These will be used for the construction of the curl-conforming
elements.

Definition 3.14. Let

Pp = {polynomials of maximum total degree p in x1, x2, x3}

and

P̃p = {homogeneous polynomials of total degree exactly p in x1, x2, x3} .

The subspace of homogeneous vector polynomials of degree p is given by

Sp =
{

q ∈
(
P̃p
)3
| x · q = 0

}

18



3. Nédélec’s basis functions for discontinuous Galerkin finite element methods

with dimension

dimSp = 3 ·dim
(
P̃p
)
−dim

(
P̃p+1

)
= 3

2 (p+ 2) (p+ 1)− 1
2 (p+ 3) (p+ 2) = p (p+ 2) .

Define the Nédélec space, a special space of polynomials, by

Rp = (Pp−1)3 ⊕ Sp,

where ⊕ denotes the direct sum, with dimension

dim (Rp) = 3 · dim (Pp−1) + dim (Sp) = 1
2 (p+ 3) (p+ 2) p.

Then the following algebraic decomposition holds:

(Pp)3 = Rp ⊕∇P̃p+1.

Lemma 3.15. If u ∈ Rp satisfies ∇× u = 0, then u = ∇q for some q ∈ Pk.

The curl-conforming element on the reference tetrahedron can then be defined using the
special polynomial space.

Definition 3.16. A curl-conforming element is defined by
• K̂, the reference tetrahedron
• PK̂ = Rp, the polynomial space
• degrees of freedom of three types: those associated with the edges ê, those associated

with the faces f̂ and those associated with the element K̂.
For the unit vector τ̂ in the direction of ê and the outward pointing normal n̂ at the face
f̂ , the degrees of freedom are defined as follows:

1. degrees of freedom associated to edges

Mê (û) =
{∫

ê
û · τ̂ q̂ d ŝ, ∀q̂ ∈ Pp−1 (ê) for each edge ê of K̂

}

2. degrees of freedom associated to faces

Mf̂ (û) =
{ 1
area

(
f̂
) ∫

f̂
û · q̂ d Â, for each face f̂ of K̂,

q̂ ∈
(
Pp−2

(
f̂
))3

and q̂ · n̂ = 0
}

3. degrees of freedom associated to the element

MK̂ (û) =
{∫

K̂
û · q̂ d V̂ , ∀q̂ ∈

(
Pp−3

(
K̂
))3

}
.
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3.1. Discontinuous Galerkin finite element methods

Then, the degrees of freedom are given by

ΣK̂ = Mê (û) ∪Mf̂ (û) ∪MK̂ (û) .

To obtain the finite elements on a general tetrahedron in H
(
curl; K̂

)
, we have to apply

a special transformation:
• Let û ∈ Rp be a vector function on K̂. Define u on K in the special case of an

affine map FK by the transformation

u ◦ FK =
(
BK

T
)−1

û.

• Curls of u and û are then related through

∇× u = 1
det (BK)BK∇̂ × û.

• Also, the tangent vectors have to be transformed under the affine map. Let τ̂ be
the tangential to ê in the reference element. Then

τ = BK τ̂

|BK τ̂ |

is tangent vector to the edge e of element K.

Lemma 3.17. Rp is invariant under this special transformation.

Definition 3.18. The curl conforming element on a general tetrahedron K are defined
by

• K, the tetrahedron
• PK = Rp, the polynomial space
• degrees of freedom associated with edges e of K, the faces f of K and the element
K.

Let τ be the unit vector in the direction of e. The degrees of freedom are given by
1. degrees of freedom associated with edges

Me (u) =
{∫

e
u · τ q d s, ∀q ∈ Pp−1 (e) for each edge e of K

}

2. degrees of freedom associated with faces

Mf (u) =
{ 1
area (f)

∫
f

u · q dA, for each face f of K

and for all q = BK q̂, q̂ ∈
(
Pk−2

(
f̂
))3

, q̂ · n̂ = 0
}
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3. Nédélec’s basis functions for discontinuous Galerkin finite element methods

3. degrees of freedom associated with volume

MK (u) =
{∫

K
u · q dV, ∀q obtained by mapping q̂ ∈ (Pk−3)3

by q ◦ FK = 1
det (BK)BK q̂

}
.

Then

ΣK = Me (u) ∪Mf (u) ∪MK (u) .

We can relate the curl-conforming elements on the reference element to those on a general
tetrahedron by considering the degrees of freedom.

Lemma 3.19. Suppose det (BK) > 0. Let τ be the tangent vectors on the edges of
K obtained from K̂ under the affine mapping FK . Then each of the sets of degrees of
freedom for u on K is identical to degrees of freedom for û on K̂.

Lemma 3.20. The finite elements described in Definitions 3.16 and 3.18 are H (curl; Ω)-
conforming and unisolvent (see Definitions 3.10 and 3.12).

Definition 3.21. The corresponding global finite element space on the mesh Th for the
curl-conforming elements is given by

Vh = {u ∈ H (curl; Ω) | u|K ∈ Rk for all K ∈ Th} .

Definition 3.22. For a necessarily smooth function u, the interpolant rKu is in Rk for
K ∈ Th and characterized by the vanishing of the degrees of freedom on u− rKu,

Me (u− rKu) = Mf (u− rKu) = MK (u− rKu) = {0}.

Thus, the global interpolant rhu ∈ Vh can be defined using rhu |K= rKu for all K ∈ Th.

3.2. Nédélec basis functions

As described before, the DG FEM is advantageous for problems in electromagnetism (see
[3]). It provides a good performance combined with an easy implementation. However,
the quality of a FEM does also depend on the selected basis functions. Finite element
methods in general and thus also DG FEM can suffer from spurious modes. These are
numerical but nonphysical solutions of a problem. Yet, when choosing appropriate basis
functions, these modes can be prevented. Buffa and Perugia proved that the DG FEM
solution is spurious-free when using elementwise Nédélec elements of the first family
(conforming in H (curl; Ω)) for the DG approximation [3].
Nédélec’s idea is based on the fact that in electromagnetics the curl of the field and
the field itself are often of similar importance. The convergence of the method is then
dominated by the order of the approximation of the curl. Thus, to obtain a better balance
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3.2. Nédélec basis functions

in accuracy of the representation of the field and its curl, the degrees of freedom that do
not affect the curl are removed.
For the order p = 1 basis functions of this kind were already known and discussed in the
1970s. However, the most important publication was, and still is [15], in which Nédélec
introduces a whole family of new basis functions in R3.
Only in 2005 a general way of finding Nédélec’s basis functions in affine coordinates of
any order and in any dimension was established [5]. This construction process in general
and for the example of p = 1 will be described in the next section.

3.2.1. Construction of Nédélec’s basis functions

The main property that general basis functions have to fulfill is to be non-zero in a very
limited number of elements. As further requirements, the basis functions have to be
linearly independent and span the complete target space Σ. The test functions that
are used to obtain the weak formulation of the problem should also be a member of
this space. Additionally, the basis functions should be nearly orthogonal such that any
function in Σ can be approximated accurately by the superposition of a limited number
of basis functions [11].
In [5], a way is shown to construct such basis functions for the Nédélec space of dimension
N and order p. In this process, we will use notations for multi-indexing: The considered
set of multi-indices is given by

I(N, p) =
{
α = (α1, . . . , αN ) | αi ≥ 0,

N∑
i=1

αi = p

}
,

where xα = xα1
1 · . . . · x

αN
N for x ∈ RN and αi ∈ N, i = 1, . . . , N . There is a partition of

this set into p disjoint subsets

Ij(N, p) = {β ∈ I(N, p) | exactly j components of the vector β are non-zero} ,

where Ij(N, p) = ∅ if j > p.
We know that the set Sp contains all homogeneous polynomials q of Rp. Let q be of the
form

q =
N∑
l=1

 ∑
α∈I(N,p)

 cα,lxαel, (3.1)

where el denotes the l-th unit vector.
Then the space Sp can be characterised with the help of the following theorem:

Theorem 3.23. A homogeneous polynomial with the representation (3.1) is in Rp if and
only if

N∑
l=1

cβ−el,l = 0 ∀β ∈ I(N, p+ 1). (3.2)
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3. Nédélec’s basis functions for discontinuous Galerkin finite element methods

Equation (3.2) characterises the space Sp as defined in Definition 3.14. Thus, solving the
null space for this equation yields a basis of the space of homogeneous polynomials.
Consider a vector β ∈ Ij(N, p+ 1) and choose integers l(1), . . . , l(j) such that

βl(m)

{
> 0 for all m ∈ {1, . . . , j},
= 0 otherwise.

We can then find a collection of j − 1 functions for each of these vectors β by

Bβp = {xβ−el(m)el(m) − xβ−el(m+1)el(m+1), m = 1, . . . , j − 1}.

For each j we have

Bj
p =

⋃
β∈Ij(N,p+1)

Bβp

and the set

Bp = B2
p ∪ . . . ∪BN

p ,

which is a basis of Sp. The proof can be done by showing the linear independence of the
vectors in this set and by comparing the dimension of the set with the one of Sp. Details
can be found in [5].
Now, we can concentrate on N -simplicial elements. They have N + 1 vertices vj , where
j = 1, . . . , N + 1, with Lagrangian basis functions λi, where i = 1, . . . , N + 1, such that
λi(vj) = δij . Let us write λ = (λ1, . . . , λN+1)t.
When determining the basis of Sp in the dimension N + 1, we can perform a substitution.
For that purpose, select any basis function

bβ(x, el(m), el(m+1)) = xβ−el(m) − xβ−el(m+1) ,β ∈ I(N + 1, p+ 1).

Then replace x by λ, el(m) by ∇λl(m) and el(m+1) by ∇λl(m+1). A new set of functions

Λjp = {bβ(λ,∇λl(m),∇λl(m+1)) | bβ(x, el(m), el(m+1))}

is obtained, which now consists of functions in RN .
The set Λp =

⋃
j=2,...,N+1

Λjp is then a basis of the Nédélec space.

Note that there is a natural correspondence between Ij(N, p + 1) and Nédélec’s edge,
face and interior degrees of freedom for j = 1, 2, 3, respectively, when choosing N = 3.

3.2.2. Basis functions of order p = 1

The established process for the determination of Nédélec’s basis functions will be shown
by the example of N = 3 and p = 1. That means that we compute first-order functions
on tetrahedral elements. The results for higher orders can be found in the Appendix A.3.
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3.2. Nédélec basis functions

As a first step we have to determine the set of multi-indices I(N + 1, p+ 1) = I(4, 2) by
the union of its partition into

I1(4, 2) =




2
0
0
0

 ,


0
2
0
0

 ,


0
0
2
0

 ,


0
0
0
2




and

I2(4, 2) =




1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1

 ,


0
1
1
0

 ,


0
1
0
1

 ,


0
0
1
1


 .

Next, consider the vectors in I2(4, 2) step by step. As an example let us look at

β =


1
1
0
0

 ∈ I2(4, 2). Choose integers l(1) = 1 and l(2) = 2. Then a basis function of Sp

in dimension N + 1 = 4 is given by

bβ = xβ−e1e1 − xβ−e2e2 = x2e1 − x1e2.

Rewrite this function by substituting the variables as described above to obtain

bβ(λ,∇λ1,∇λ2) = λ2∇λ1 − λ1∇λ2.

Repeating this procedure for all β ∈ I(4, 2) = I2(4, 2), we find the set of basis functions

Λ1 = {λj∇λi − λi∇λj , i, j = 1, 2, 3, 4, i < j}.

We will need the curl of the basis functions when discretising the problem using the DG
FEM. For the computation of the curl we use the identities

∇× (fA) = f · (∇×A)−A× (∇f)

and

∇ (f · g) = f∇g + g∇f.

For the general basis function of order p = 1, we get

ψij =λj∇λi − λi∇λj
∇× ψij =∇× λj∇λi −∇× λi∇λj

=λj (∇×∇λi)︸ ︷︷ ︸
=0

−∇λi ×∇λj − λi (∇×∇λj)︸ ︷︷ ︸
=0

+∇λj ×∇λi

=∇λj ×∇λi +∇λj ×∇λi
=2 (∇λj ×∇λi) .

The curl for the higher-order functions can be found in Appendix A.3.
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4. Discretisation of the time-harmonic
Maxwell equations

The DG FEM with Nédélec basis functions on tetrahedra, which were described in the
previous chapter, will now be applied to the time-harmonic Maxwell equation (2.8). After
the determination of the weak formulation, we can find elementwise solutions that can
be assembled to an overall solution.

4.1. Notation

Let us start with the presentation of some sets and notations that will be used. For the
FEM we divide the domain Ω ⊂ R3 into a set of tetrahedra Th = {K}. Remember, that
h stands for the maximal diameter of the elements in the set. Denote the set of all faces
of the elements by Fh = {F} with the partition Fh = F ih ∪ F bh, where the first subset
consists of the interior and the second of the boundary faces.
When considering one element K, we use vi for the vertices, si as a notation for the faces,
i = 1, . . . , 4, and ej , j = 1, . . . , 6, for the edges. τ j is the unit tangential vector on the
edge ej .
Define the considered FEM space by

Σp
h := {u ∈ [L2(Ω)]3 | u is Nédélec function of order p in each elementK ∈ Th}.

The test functions that we use for the determination of the weak formulation are also
members of this space.
For the DG FEM we need the following definitions:

Definition 4.1. Let F ∈ Fh be the face between two elements KL and KR in Th, where
nL and nR are the respective outward pointing normal unit vectors at that face. We
define the tangential jump by

JuK = nL × uL + nR × uR

and the average

{{u}} = uL + uR

2 ,

where uL and uR are the values of the trace of u at ∂KL and ∂KR, respectively.
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4.2. Weak formulation

At the boundary Γ of Ω, we set

JuK = u and {{u}} = n× u.

Definition 4.2. For u ∈ Σp
h, we define two lifting operators. The global lifting operator

L : [L2 (F ih)]3 7→ Σp
h is given by

(L(u),v) =
∫
Fi

h

u · JvK dA, ∀v ∈ Σp
h

and the local lifting operator RF : [L2(F )]3 7→ Σp
h by

(RF (u),v) =
∫
F

u · {{v}} dA, ∀v ∈ Σp
h.

RF vanishes outside the elements connected to the face F such that we can write

R(u) =
∑
F∈Fh

RF (u), ∀u ∈ [L2 (Fh)]3

for the global lifting operator R : [L2(Fh)]3 7→ Σp
h, which is defined by

(R(u),v) =
∫
Fh

u · {{v}} dA, ∀v ∈ Σp
h.

With these definitions we can proceed with applying the DG FEM.

4.2. Weak formulation

We want to find the weak formulation for the curl-curl operator as described in (2.8).
To simplify the problem, we transform the second-order PDE into a system of first-order
equations. For that purpose, we introduce the vector q = ∇×E and rewrite (2.8) as

{
∇× µ−1

r q − k2εrE =F
q =∇×E.

(4.1)

We now can determine the weak formulation of the system (4.1) by following the standard
procedure for a Galerkin approach. First, we multiply the equations by arbitrary test
functions ϕ,π ∈ Σp

h:
(
∇h × µ−1

r qh,ϕ
)
− k2εr (Eh,ϕ) = (F,ϕ)

(qh,π) = (∇h ×Eh,π) .
(4.2)
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4. Discretisation of the time-harmonic Maxwell equations

Here, the index h indicates that we consider the finite element approximation and ∇h is
the elementwise application of the gradient operator.
Using Green’s theorem as stated in Lemma 3.8, we can modify the following two expres-
sions by partial integration:(

∇h × µ−1
r qh,ϕ

)
=
(
µ−1
r qh,∇h ×ϕ

)
+ 〈γt(µ−1

r qh),ϕ〉∂Ω

=
(
µ−1
r qh,∇h ×ϕ

)
+
∑
K∈Th

∫
∂K

(
n×

(
µ−1
r q∗h

))
·ϕdA (4.3)

and similarly

(∇h ×Eh,π) = (Eh,∇h × π) + 〈γt(Eh),π〉∂Ω

= (Eh,∇h × π) +
∑
K∈Th

∫
∂K

(n×E∗h) · π dA.

Applying the identity (∇ × A) · B = ∇ · (A×B) + (∇×B ·A) and after another
integration by parts, we find

(∇h ×Eh,π) =
∫
Ω

(∇h ×Eh) · π dV +
∑
K∈Th

∫
∂K

(n× (E∗h −Eh)) · π dA. (4.4)

Due to discontinuities at the faces, the trace γt(·) of qh and Eh is not well-defined at the
element boundaries ∂K. Thus, the flux notation (E∗h and q∗h) is used there.
By directly evaluating the sum over all faces of the elements, we find the identity∑

K∈Th

∫
∂K

(n× u) · v dA = −
∫
F i

h

{{u}} · JvK dA+
∫
Fi

h

{{v}} · JuK dA+
∫
Fb

h

(n× u) · v dA.

Using this relation and the former two considerations (4.3) and (4.4), we obtain the
system

(
µ−1
r qh,∇h ×ϕ

)
− k2εr (Eh,ϕ) +

∫
Fb

h

(
n×

(
µ−1
r q∗h

))
·ϕ dA

+
∫
F i

h

{{µ−1
r q∗h}} · JϕK dA+

∫
Fi

h

{{ϕ}} · Jµ−1
r q∗hK dA = (F,ϕ)

(∇h ×Eh,π) +
∫
Fb

h

(n× (E∗h −Eh)) · π dA

−
∫
Fi

h

{{E∗h −Eh}} · JπK dA+
∫
F i

h

{{π}} · JE∗h −EhK dA = (qh,π) .

(4.5)

27



4.3. Numerical Fluxes

With the help of the definition of the global lifting operators and the jump and average
at the boundary we can express qh in terms of Eh

qh = ∇h ×Eh − L ({{E∗h −Eh}}) +R (JE∗h −EhK)

and insert this result into the first equation of (4.5). This gives us the following weak
formulation:
Find Eh ∈ Σp

h such that for all ϕ ∈ Σp
h

B (Eh,ϕ) :=
(
µ−1
r (∇h ×Eh),∇h ×ϕ

)
− k2εr (Eh,ϕ)

−
∫
F i

h

{{E∗h −Eh}} · Jµ−1
r (∇h ×ϕ)K dA−

∫
Fi

h

{{µ−1
r q∗h}} · JϕK dA

+
∫
F i

h

JE∗h −EhK · {{µ−1
r (∇h ×ϕ)}} dA+

∫
F i

h

Jµ−1
r q∗hK · {{ϕ}} dA

+
∫
Fb

h

(n× (E∗h −Eh)) · (∇h ×ϕ) dA−
∫
Fb

h

µ−1
r q∗h · (n×ϕ) dA = (F,ϕ) ,

(4.6)

with the bilinear form B (Eh,ϕ).

4.3. Numerical Fluxes

The weak formulation does not yet specify the numerical flux. Following [20], two different
versions are presented within this framework. For reasons of simplicity we will only
consider the case of vacuum or dry air, which corresponds to µr = εr = 1.

4.3.1. The interior penalty flux

The interior penalty flux penalises jumps at interior faces with a penalty term containing
the parameter αF and is defined by:

E∗h = {{Eh}}, q∗h = {{∇h ×Eh}} − αF JEhK if F ∈ F ih
n×E∗h = g, q∗h = ∇h ×Eh − αF (n×Eh) + αFg if F ∈ Fbh
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4. Discretisation of the time-harmonic Maxwell equations

Using this flux, the face integrals in the bilinear form can be transformed, where some of
the terms drop out. The weak formulation (4.6) can be rewritten as

BIP (Eh,ϕ) := (∇h ×Eh,∇h ×ϕ)− k2 (Eh,ϕ)

−
∫
Fh

JEhK · {{∇h ×ϕ}} dA−
∫
Fh

{{∇h ×Eh}} · JϕK dA

+
∫
Fh

αF JEhK · JϕK dA

= (F,ϕ)−
∫
Fb

h

g · (∇h ×ϕ) dA+
∫
Fb

h

αFg · (n×ϕ) dA =: IIP .

(4.7)

Here, BIP is a bilinear and IIP a linear form. Note that, due to the definition of the
average and jump at the boundaries, we do not have to distinguish between interior and
boundary faces any more. Instead we can generalise the equations to all faces Fh.
We obtain the weak formulation with the IP flux for the time-harmonic Maxwell equations
which can be formulated as follows:
Find Eh ∈ Σp

h such that for all ϕ ∈ Σp
h equation (4.7) is satisfied.

4.3.2. The Brezzi formulation for the flux

Alternatively, we can use the numerical flux presented by Brezzi et al. [2]:

E∗h = {{Eh}}, q∗h = {{qh}} − β (JEhK) if F ∈ F ih
n×E∗h = g, q∗h = qh − β (n×Eh) + β (g) if F ∈ Fbh,

where β (uh) = ηF {{RF (uh)}} for F ∈ Fh and parameter ηF ∈ R.
As done for the IP flux, the bilinear form can be transformed to

B (Eh,ϕ) = (∇h ×Eh,∇h ×ϕ)− k2 (Eh,ϕ)

−
∫
Fh

JEhK · {{∇h ×ϕ}} dA−
∫
Fh

{{∇h ×Eh}} · JϕK dA

−
∫
Fh

{{R (JE∗h −EhK)}} · JϕK dA+
∑
F∈Fh

∫
F

ηF {{R (JEhK)}} · JϕK dA

+
∫
Fb

h

g · (∇h ×ϕ) dA−
∑
F∈Fb

h

∫
F

ηFRF (g) · (n×ϕ) dA
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4.4. Discontinuous Galerkin

Using nf , the number of faces of an element, we can approximate the following integral∫
Fh

{{R (JE∗h −EhK)}} · JϕK dA = (R (JE∗h −EhK),R (JϕK))

≈ nf
∑
F∈Fh

(RF (JE∗h −EhK),RF (JϕK))

= −nf
∑
F∈Fh

(RF (JEhK),RF (JϕK)) + nf
∑
F∈Fh

(RF (g),RF (JϕK))

We can then rewrite the weak formulation: Find Eh ∈ Σp
h such that for all ϕ ∈ Σp

h

BBR (Eh,ϕ) := (∇h ×Eh,∇h ×ϕ)− k2 (Eh,ϕ)

−
∫
Fh

JEhK · {{∇h ×ϕ}} dA−
∫
Fh

{{∇h ×Eh}} · JϕK dA

+
∑
F∈Fh

(ηF + nf ) (RF (JEhK),RF (JϕK))

= (F,ϕ)−
∫
Fb

h

g (∇h ×ϕ) dA

+
∑
F∈Fb

h

(ηF + nf ) (RF (g),RF (n×ϕ)) =:IBR.

(4.8)

4.4. Discontinuous Galerkin

The discontinuous Galerkin method uses an expansion in spatial basis functions to
approximate the unknown electric field:

E(r) ≈ Eh(r) =
N∑
j=1

Ej(r)ϕj(r) (4.9)

with ϕj ∈ Σp
h being the Nédélec basis functions as defined in Section 3.2.

This expansion (4.9) is, together with the test functions ϕi ∈ Σp
h from the basis function

set, inserted into the weak formulations for the two numerical fluxes (4.7) and (4.8).
Subsequently, we have to solve the following linear system

N∑
j=1

EjSij = fi. (4.10)

To solve eigenvalue problems, we have to consider the 0-source wave equation (see (2.9)).
Then fi in the system (4.10) has to be modified such that the term containing the source
F has to be set to zero.
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4. Discretisation of the time-harmonic Maxwell equations

4.4.1. Interior penalty flux

We first apply the Galerkin discretisation to the weak formulation of the Maxwell problem
using the interior penalty flux. This results in the equations

N∑
j=1

Ej

((
∇h ×ϕj ,∇h ×ϕi

)
− k2

(
ϕj ,ϕi

)

−
∫
Fh

JϕjK · {{∇h ×ϕi}} dA−
∫
Fh

{{∇h ×ϕk}} · JϕiK dA+
∫
Fh

αF JϕjK · JϕiK dA


= (F,ϕi)−

∫
Fb

h

g · (∇h ×ϕi) dA+
∫
Fb

h

αFg · (n×ϕi) dA

for i = 1, . . . , N .
As stated before, we can rewrite this to obtain a linear system of the form (4.10). For
the IP DG method we find that

Sij =
∫
Ω

(
∇h ×ϕj

)
· (∇h ×ϕi) dV − k2

∫
Ω

ϕj ·ϕi dV

−
∫
Fh

JϕjK · {{∇h ×ϕi}} dA−
∫
Fh

{{∇h ×ϕk}} · JϕiK dA+
∫
Fh

αF JϕjK · JϕiK dA

=
∑
K∈Th

∫
K

(
∇h ×ϕj

)
· (∇h ×ϕi) dV − k2

∫
K

ϕj ·ϕi dV


+
∑
F∈Fh

− ∫
F

JϕjK · {{∇h ×ϕi}} dA−
∫
F

{{∇h ×ϕk}} · JϕiK dA+
∫
F

αF JϕjK · JϕiK dA



and

fi =
∫
Ω

F ·ϕi dV −
∫
Fb

h

g · (∇h ×ϕi) dA+
∫
Fb

h

αF g · (n×ϕi) dA

=
∑
K∈Th

∫
K

F ·ϕi dV +
∑
F∈Fb

h

− ∫
F

g · (∇h ×ϕi) dA+
∫
F

αFg · (n×ϕi) dA

 .
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4.5. Computation of the numerical solution

4.4.2. Brezzi flux formulation

Similarly, we can find a system of type (4.10) for the Brezzi formulation of the flux, where

Sij =
∑
K∈Th

∫
K

(
∇h ×ϕj

)
· (∇h ×ϕi) dV − k2

∫
K

ϕj ·ϕi dV


−
∑
F∈Fh

(∫
F

JϕjK · {{∇h ×ϕi}} dA−
∫
Fh

{{∇h ×ϕj}} · JϕiK dA

+ (ηF + nf )
(
RF

(
JϕjK

)
,RF ({{ϕi}})

))

and

fi =
∑
K∈Th

∫
K

F ·ϕi dV −
∑
F∈Fh

∫
F

g · (∇h ×ϕi) dA

+
∑
F∈Fb

h

(ηF + nf ) (RF (g),RF (n×ϕi)).

4.5. Computation of the numerical solution

Finally, the linear system (4.10) allows us to compute a solution per element. These
results are in the end assembled to find a general solution of the problem. As we work
on the reference element, the integrals that were described in the previous section have
to be transformed to that element and its faces. Furthermore, we have to apply Gauß
quadrature for the numerical evaluation of the integrals. More information on these
topics can be found in the Appendices A.1 and A.2, respectively.
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5. Application of Nédélec’s basis functions
to hpGEM

As an extension of the C++ software package hpGEM, the Nédélec basis functions are
implemented. Thus, they can be used to solve Maxwell’s equations numerically. Also,
the functionality of the new code is tested.

5.1. The software package hpGEM

The C++ software package hpGEM (see [18]) was developed by the chair of Mathematics
in Computational Science (MaCS) at the University of Twente, Netherlands, to apply
discontinuous Galerkin methods to a variety of physical problems. It helps particularly
to numerically solve partial differential equations from the fields of fluid mechanics and
electromagnetism, among which we also find the Maxwell equations. The toolkits PETSc
and SLEPc are used to solve linear systems and eigenvalue problems, respectively. The
hpGEM package provides a wide range of features. Some of them are:

• It handles various mesh geometries in one, two and three dimensions. Even
hybrid grids that involve different shapes of elements are supported. Furthermore,
periodic and moving meshes are possible. For complicated domains and meshes the
commercial packages Rhinoceros and Centaur are needed.

• Sample applications are available that provide examples of space and space-time
discontinuous Galerkin routines for nonlinear hyperbolic equations.

• Gauß integration rules up to at least order seven for all supported polytopes are
included to build higher-order finite element discretisations.

• It includes a global algebraic system assembly.
• Both p- and h-refinement are possible.
• Predefined sets of basis functions are used.

One of the applications of the package is DG-Max. It implements the Maxwell discretisation
according to the numerical technique described in this work. This includes the mesh
generation, and the finite element method. It enables one to deal with different kinds
of problems, such as the computation of the smallest eigenvalues and the solutions of
the time-dependent or -harmonic Maxwell system. Further, the setup can be changed
regarding features like the boundary conditions, the type of the used numerical flux and
the values of the piecewise constant dielectric function εr.
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5.2. The accuracy of the numerical solution

DG-Max currently uses the basis functions of Ainsworth and Coyle [1]. These can,
however, produce spurious modes in our setting. Thus, it is of great interest to in-
clude the Nédélec basis functions, presented in Section 3.2, into the code. The files
BasisFunctionCollection_Curl.cpp and BasisFunctionCollection_Curl.hpp have
to adapted corresponding to Nédélec’s approach. Buffa and Perugia showed that these
functions do not lead to spurious modes [3]. However, we still have to test if the order
of accuracy of the new basis functions is satisfactory and comparable to the ones of
Ainsworth and Coyle.
We will now present some examples to show the correct functionality of the application
DG-Max with Nédélec basis functions. The settings that we use within this framework are
default features of the application. They are typically used for numerical experiments as
done for example in [20]. We test basis functions up to polynomial order p = 4.

5.2. The accuracy of the numerical solution to the
time-harmonic Maxwell problem

In a first step, the error of the numerical solution to the problem (2.8) is determined. It
can then be used to find the order of accuracy, while decreasing h.
To be able to compute the error of the numerical solution, the exact solution is defined
to be a combination of sine and cosine waves. The initial conditions and source term in
the code are then adjusted to fit this result. The error is given by

max
t
‖E(r, t)−Eh(r, t)‖,

where E is the analytical and Eh the numerical solution for the mesh parameter h as
specified in Definition 3.1.
Let us now consider a refinement of the mesh resulting in a sequence h1 > h2 > h3 > . . .
of maximal diameters of the tetrahedra. The FEM is said to converge with order s to the
exact solution if we can find a constant C, which is independent of the mesh parameter
and the solution, such that

‖E−Ehn‖ ≤ C · hns ∀hn, n = 1, 2, 3, . . . .

In the Landau notation, this can be written as

‖E−Ehn‖ ∈ O (hns) .

When taking the logarithm on both sides of this inequality, we can determine s by
computing the slope of

log (‖E−Ehn‖) ≤ log (C) + s log (hn) .

Using two different points (hi,Ehi
) and (hj ,Ehj

), we obtain

q =
log

(
‖E−Ehj

‖
)
− log (‖E−Ehi

‖)
log (hj)− log (hi)

, i < j.
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5. Application of Nédélec’s basis functions to hpGEM

For the realisation of these computations, some of the variables have to be discussed.
Running the code we can specify two natural numbers: the order of the basis functions p,
and n. To understand the meaning of the latter, we have to give a short overview of how
the structured tetrahedral mesh is constructed for our tests. We consider a unit cube as
the domain of computation. It is divided into several congruent subcubes, which are then
split into five tetrahedra each. This is done by forming an inner tetrahedron of which
the edges are the diagonals of the faces of the brick. Four smaller tetrahedra emerge as a
consequence at the corners of the cubes. In this setup, n defines in how many pieces of
the same length each of the edges of the unit cube has to be split to obtain n3 smaller
bricks. This results in a total number of N = n3 · 5 elements. Their maximal diameter
h equals two times the radius of the circumcircle of the equilateral tetrahedra at the
interior of each brick. It is given by h = 2

√
6

4 · a, where a is the length of the edges. Using
Pythagoras’ identity, a can be computed based on the size of the smaller cubes, leading
to a =

√
2 · 1

n . Finally, we find that

h =
√

3
n
.

When solving the time-harmonic problem, the output of DG-Max provides us with the
L2-, the H (curl)-, and the DG-norm for the chosen values of n and p. Thus, we have all
information needed to compute the order of accuracy of the method. In each refinement
step we will double the number n.
In [9] the DG-norm is defined. For h being the diameter of the face that is considered,
we obtain the this norm by

‖u‖2DG := ‖u‖20 + |u|2DG, where |u|2DG := ‖∇h × u‖20 + ‖h1/2{{u}}‖20,Fh
.

Furthermore, Houston et al. established the orders of convergence for the DG-norm and
the L2-norm and proved them. Following their considerations, we can expect the order s
of the error to be equal to p in the case of the DG-norm and p+ 1 for the L2-norm when
considering smooth solutions on convex domains [9].
In [20] the optimal parameters for both kinds of fluxes are determined. However, in
order to simplify this relations, these values are slightly modified. This hardly has any
influence on the convergence rate of the DG methods. For our examples we choose a
parameter of αF = 140 for the IP flux and ηF = 1.4 for the formulation of Brezzi.
We will apply DG-Max to the domain Ω = [0, 1]3. The values εr and µr are set to 1,
corresponding to vacuum or dry air. Also, we will fix the wave vector to be k2 = 1. In
the following, further settings for our tests are described.

5.2.1. Homogeneous boundaries

We first want to examine the setting with homogeneous boundary conditions n×E = 0.
This represents a solid walls of the domain made of perfectly conducting material.
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5.2. The accuracy of the numerical solution

In this case, the exact solution for the general time-dependent system (2.8) at a position
r = (x, y, z)t is given by

E(r, t) =

sin (πy) sin (πz)
sin (πz) sin (πx)
sin (πx) sin (πy)

 cos
(√

2πt
)
.

The cosine term, however, is not needed for the time-harmonic problem.
By plugging this solution into the partial differential equations, we find a source term

F =

sin (πy) sin (πz)
sin (πz) sin (πx)
sin (πx) sin (πy)

(2π2 − 1
)
.

The initial condition is only of interest when considering the behaviour of the field
depending on the time t and would be given by E(r, t = 0).

Observations and results

The output of the code for Ainsworth-Coyle and Nédélec basis functions and for both
fluxes are given in the Tables B.1 and B.3. Unfortunately, long computational times limit
us to only few possibilities for the parameter n and thus to a small number of values for
our evaluations. This problem appears throughout the whole testing process.
We know that the DG-Max application performs well with the basis functions by Ainsworth
and Coyle. Thus, in a first step, let us compare the values of the errors of the numerical
solution with Nédélec’s basis function set to the results with the well-tested ones. For
both kinds of numerical fluxes and all choices of p and n one can see that the values
of the DG-norm (and also of the H (curl)-norm, which is not listed) are quite similar.
Different results are found for the L2-norm, where the error values are of same magnitude,
but still differ between the basis functions of Ainsworth-Coyle and Nédélec.
Based on the measured values, we can determine the order of accuracy of the methods.
This is done as described at the beginning of this chapter. The refinement of the mesh is
performed by increasing m so that n = 2m. The number of tetrahedra is thus multiplied
with 8 in each refinement step. We compute the order based on the L2-norm and the
DG-norm.
The order of accuracy is computed for both the Brezzi flux formulation (see Table B.2)
and the IP flux (see Table B.4). Again, we compare the Ainsworth-Coyle basis functions
with those proposed by Nédélec. We considered a convex domain and found smooth
numerical solutions in all cases so that we can expect the accuracy of the methods to
be as proven in [9]. Our tests confirm the correct order for the already tested functions
of Ainsworth and Coyle. The set of Nédélec converges with O (hp) in the DG-norm for
the maximal diameter h of the mesh and the order of the basis functions p. For the
error in the L2-norm we can observe convergence, whose order is, however, not optimal.
Consistently, it performs with one order less than expected. Hence, s = p instead of
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5. Application of Nédélec’s basis functions to hpGEM

s = p + 1. As the H (curl)- and DG-norms are more accurate and cover more details
of the function space of consideration, for the moment, we can still assume that the
new basis functions show the correct functionality. Nonetheless, the reduction of the
convergence rate needs to be analysed.
These observations do not depend on the choice of the numerical flux. Yet, it is found
that the IP flux suffers more from varying values of the penalty parameter, while the
Brezzi formulation leads to a more robust performance.

5.2.2. Periodic boundary conditions

Let us now consider periodic boundary conditions. In this case, the exact solution is
defined to be

E(r) =

sin (πy) sin (πz)
sin (πz) sin (πx)
sin (πx) sin (πy)


resulting in a source term of

F =

sin (πy) sin (πz)
sin (πz) sin (πx)
sin (πx) sin (πy)

(8π2 − 1
)
.

Note that only even numbers for n are possible for periodic boundary conditions.

Observations and results

The computed errors for this setting are shown in Tables B.5 and B.7. A direct comparison
shows the same results as in the case of homogeneous boundary conditions.
The order of accuracy for the DG FEM on the domain of a unit cell with periodic
boundary conditions is calculated for the Brezzi and the IP flux. For the Brezzi flux,
only a few data points were attained so that no representative convergence rate could be
obtained (see Table B.6). For the IP flux (Table B.8) we get the same result as for the
homogeneous boundary conditions. While the Ainsworth-Coyle basis functions perform
as expected, those of Nédélec reach the predicted order of accuracy only for the DG-norm.
In the L2-norm, the convergence rate is by one order less than expected.

5.3. The accuracy of the eigenvalue computations for the
time-harmonic Maxwell equations

Next, we examine the computation of eigenvalues. Our main goal is to determine the
accuracy when refining the mesh, but it is also of interest to confirm our expectations
that no spurious modes are obtained.
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5.3. The accuracy of the eigenvalue computations

Similar to the accuracy computations for the time-harmonic solution (see Section 5.2),
we take the unit cube Ω = [0, 1]3 as domain, choose µr = εr = 1 and compare the
Ainsworth-Coyle and Nédélec basis functions for both homogeneous and periodic boundary
conditions. We want to concentrate on the default eigenvalues for the wave vector k = 0.
The eigenvalue solver is set to find the 24 positive eigenvalues that are the closest to a
chosen target value. This value can be determined by prior knowledge of the expected
eigenvalues. In our case, we chose it to be 60 (≈ 5π2). In all cases we were able to
find the 17 smallest positive eigenvalues for the problem with homogeneous boundary
conditions and twelve for periodic boundaries. Eigenvalues equal to zero have to be
filtered out manually.
Eigenvalues, as given in [20], can be written as

ω2 = π2(l2 +m2 + n2),

where l, m and n are non-negative integers satisfying lm + ln + mn > 0. For all
three variables being positive, two identical eigenvalues can be associated with linearly
independent eigenfunctions. To simplify the comparison, we will list the eigenvalues after
dividing them by π2.

The errors in the eigenvalues are computed as ‖ω
2−ω2

h‖L2
ω2 , where ω2

h are the results of the
numerical calculations. Again, we refine the mesh and can, similar to the considerations
in Section 5.2, compute the accuracy.
The order of accuracy for the eigenvalue computations is proven to be O(h2p). This is
shown in [3] and [9].

Observations and results

As mentioned before, the eigenvalues are divided by π2 for simplicity. The values for both
sets of basis functions, both types of boundary conditions and the two different kinds
of numerical fluxes are listed in the appendix. In particular, check Tables B.9 to B.12
(homogeneous boundaries, Brezzi flux), B.17 to B.20 (homogeneous boundaries, IP flux),
B.25 to B.27 (periodic boundaries, Brezzi flux) and B.31 to B.33 (periodic boundaries,
IP flux).
We can observe that the values get closer to the exact values when increasing the
polynomial order of the basis functions and the number of elements for both basis
function sets. Thus, we can conclude that the eigenvalues converge to the correct values.
Often, the results for n = 1, which means N = 5, are not listed. This is due to the
fact that the very coarse grid does not allow for accurate eigenvalue computations. The
results can therefore hardly be matched to the expected eigenvalues. While for a small
numbers of elements, some spurious modes were detected for the Ainsworth-Coyle basis
functions, we could not make the same observations for the set of Nédélec. These modes
were filtered out manually before creating the tables. Furthermore, not always the correct
multiplicity of the eigenvalues is found. This happens for both kinds of basis functions,
however, more often for Nédélec’s functions. Reasons for this are possibly the non-optimal
penalty parameter of the fluxes and the relatively coarse meshes. It shows that these
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5. Application of Nédélec’s basis functions to hpGEM

missing values occur more often when using the IP flux, which is more susceptible to
changes in the parameter.
Tables B.13 to B.16 (homogeneous boundaries, Brezzi flux), B.21 to B.24 (homogeneous
boundaries, IP flux), B.28 to B.30 (periodic boundaries, Brezzi flux) and B.34 to B.36
(periodic boundaries, IP flux) show the error and resulting order of accuracy for Nédélec’s
basis functions. During the tests, it was not possible to obtain the results for large values
of n within reasonable computational times. This also makes it hardly possible to find
reliable values for the order of accuracy. Therefore, we abstain from comparing them to
the expected values.
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6. Accurate computations of the local
density of states

Light sources contain particles in excited states. These can spontaneously drop to a lower
level of energy. The difference in energy is released in the form of photons. The number
of these decays in a unit time step is called the light emission rate. The occurrence of
the various phenomena inside a photonic crystal depends on whether this rate changes
and, if it does, on the speed of these changes. Thus, to control the behaviour of light in
a structure, it is of interest to consider the local density of states (LDOS). This value,
a count of the electromagnetic states present at a certain frequency and for a given
orientation of the dipolar emitters, is proportional to the emission rate.
As the LDOS directly depends on a Green’s function, for which analytical calculations
are not possible due to the complex structure of photonic crystals, accurate numerical
approximations are necessary. In this chapter, the formula for the LDOS is given and a
version which is related to the eigenfunctions is derived. Finally, we present the method
that was introduced in [26]. It applies a delta-convergent sequence and linear interpolation
and provides an alternative formulation for the computation of the LDOS.

6.1. The local density of states

Within a given frequency interval a wave can only occupy certain energy states. The
corresponding wave vectors and propagation directions depend on the medium in which
the wave propagates. The density of states (DOS) is the number of available states of a
quantum system for a given frequency range:

N(ω) = 1
(2π)3

∑
n

∫
BZ1

δ (ω − ωn,K) d K,

where n enumerates the states, K is the wave vector, ωn,K the eigenmode that is specified
by n and K, and ω is a given frequency. The integration is performed over the first
Brillouin zone. A high DOS value means that the wave can occupy many states, while
with a DOS of zero no states are available. In that case, we have a band gap [19]. In this
context, δ stands for the Dirac delta distribution, which will be discussed shortly.

Definition 6.1. A continuous linear functional on the space of test functions D is called
a distribution.
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6.1. The local density of states

The space of distributions is the dual space D′ of the space of smooth test functions D.
It forms a generalisation of the class of locally integrable functions.

As distributions, in a way, extend the notion of functions, they are also called generalised
functions. Thus, they characterise a kind of solution for differential equations that is no
solution in the classical sense.
Interpretations of Dirac’s delta distribution are that it describes either an instantaneous
action or a charge, which is concentrated at one point ξ. The following properties
characterise the behaviour of δ(x− ξ):

1. δ(x− ξ) = 0 x 6= ξ

2.
b∫
a
δ(x− ξ) dx =

{
0 a, b < ξ or ξ < a, b

1 a ≤ ξ ≤ b

3.
∞∫
−∞

δ(x− ξ) dx = 1

4.
∞∫
−∞

δ(x− ξ) · f(x) dx = f(ξ) (6.1)

(sifting/reproducing property)
The local density of states (LDOS) is the local variation of the DOS and is given by

N(ω, r, ed) = 3
(2π)3

∑
n

(
etd · |En,K|2 · ed

)
δ (ωn,K − ω), (6.2)

where r is the position of the emitter, ed is the orientation of the dipole moment and
En,K(r) denote the eigenfunctions of the quantised electric field at a position r for the
n-th eigenstate and the wave vector K [16]. n is the band index. For suboptimal cases
with finite crystals, the LDOS does not go down to zero at band gaps. However, light
inside these gaps is attenuated.
In quantum physics, Fermi’s Golden Rule provides the possibility to calculate the
transition rate. In other words, the probability for transitions from an initial state to
another state is determined for a given time interval. It can be written as

Γ (ω) = πd2ω

}ε0
N (ω, r, ed) ,

where Γ is the spontaneous emission rate, ed is the orientation and d the amplitude of
the dipole moment, ε0 is the permittivity or dielectric constant and } the reduced Planck
constant [21]. The LDOS N is the density of the final states of such transitions that
happen due to perturbations. A proportionality between the spontaneous emission rate
Γ and the LDOS is now clearly visible.
In [21], the position-dependent spontaneous emission rate is defined by

Γ (ω, r, ed) = 6d2ω2

}ε0c2

(
etd · Im (G (r, r;ω)) · ed

)
,
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6. Accurate computations of the local density of states

with Im (() ·) denoting the imaginary part and G (·, ·;ω) the Greens function for the
time-harmonic Maxwell equations. By applying Fermi’s Golden Rule, we can find another
version of the LDOS which directly depends on Green’s function:

N (ω, r, ed) = 6ω
πc2

(
etd · Im (G (r, r;ω)) · ed

)
= 2ω
πc2 Im (Tr (G (r, r;ω))) . (6.3)

To evaluate this term, numerical calculations are necessary [19].
Similar to the presentation in [17], it will now be shown how Equation (6.2) can be
derived from the term for the LDOS (6.2), which is based on the emission rate. One
method to numerically approximate Green’s function is the expansion in eigenfunctions.
Since the crystals underlie a discrete translation symmetry, we can apply the Bloch-
Floquet theorem. It states that normal modes can be written as

E = EK(r) · e−iK·r,

where K · r implies the inner product of the two vectors. EK is periodic with the
structures periodicity and K the so-called Bloch wave vector. The frequency ω and K
are connected by a dispersion relation ω = ω(K) [25]. We say that EK are modes of the
quantised or K-shifted electric field. The latter name refers to the fact that the term
e−iK·r describes a shift of the periodic function.
The wave operator of the final form of the problem (2.8) is self-adjoint (or Hermitian).
Thus, the eigenfunctions of the Maxwell system are orthogonal to each other and, by the
above mentioned theorem of Bloch and Floquet, we can represent them by

En = En,K(r) · e−iK·r

for each band index n. In the case of a finite crystal, the eigenfunctions become normal
quasi-modes with a finite width such that this representation is still valid.
The functions En,K satisfy the wave equation with a zero source (see (2.9)) and fulfill
the orthogonality relation∫

Ω

En,K(r) ·Et
n,K′(r) d r = δK,K′ , (6.4)

where t stands for the complex transposed and δK,K′ is the Kronecker delta symbol.
We now denote by (ωn,K,En,K) the n-th eigenvalue and -function of an eigenproblem
for a shift by K. Considering a fixed frequency ω, which is no eigenvalue, the Green’s
function can be expanded into

G
(
r, r′;ω

)
=
∫

BZ1

∑
n

An,K
(
r′, ω

)
En,K (r) d K, (6.5)

with expansion coefficients An,K depending on the position r′ and the frequency ω.
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6.1. The local density of states

Recall that the Green’s function is the solution of the wave equation (2.8) with δ-function
source

∇2G
(
r, r′;ω

)
− k2G

(
r, r′;ω

)
= ∇2G

(
r, r′;ω

)
− ω2

c2 G
(
r, r′;ω

)
= δ

(
r− r′

)
. (6.6)

To determine the expansion coefficients, we plug the approximation of the Green’s
function (6.5) into (6.6) and obtain

∫
BZ1

∑
n

An,K
(
r′, ω

)(
∇×∇×En,K (r)− ω2

c2 En,K (r)
)

d K = δ
(
r− r′

)
.

As the eigenfunctions satisfy the wave equation (2.9), we can rewrite this term as

∫
BZ1

∑
n

An,K
(
r′, ω

)(ω2
n,K
c2 − ω2

c2

)
En,K (r) d K = δ

(
r− r′

)
.

Then we take the L2 inner product with Et
n,K′(r) on both sides. Using the orthogonality

condition (6.4) and applying an inverse Fourier transform on the left hand side as well as
employing the sifting property of the delta distribution, see equation (6.1), on the right
hand side, the coefficients can be specified to be

An,K′
(
r′, ω

)
= c2

ω2
n,K′ − ω2 Et

n,K′
(
r′
)
. (6.7)

The result (6.7) can be plugged into the expansion (6.5):

G
(
r, r′;ω

)
= 1

(2π)3

∑
n

c2
∫

BZ1

En,K(r)Et
n,K(r′)

ω2
n,K − ω2 d K. (6.8)

For the LDOS, we need to determine the imaginary part of the Green’s function. It
is obvious that En,K(r)Et

n,K(r′) is real and 1
ω2

n,K−ω2 is real for all ω2
n,K 6= ω2. Thus,

we can only have imaginary parts for −ωn,K = ω or ωn,K = ω, which are poles of the
function (6.8). For the evaluation of the integral

∫
BZ1

1
ω2

n,K−ω2 d K we have to use complex

analysis. All different modes and thus all possible values of K are covered while restricting
the examinations to the first Brillouin zone, as we did. By a dispersion relation, ω directly
depends on K such that all frequencies can be reached. We can therefore similarly observe
the integral

∞∫
−∞

1
ω2
n,K − ω2 dω =

∞∫
−∞

f(ω) dω. (6.9)
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6. Accurate computations of the local density of states

Re

Im

r−r p1 p2

Kε1 Kε2

Kr

Figure 6.1.: The positively oriented simple closed integration path for solving (6.9) with
complex analysis.

For solving (6.9), we can apply the residue theorem from complex analysis. For that
purpose, we consider the positively oriented simple closed integration path that is shown
in Figure 6.1. Then, the integral along that curve is given by∮

γ
f(ω) dω =

(∮ p1−ε1

−r
−
∮
Kε1

+
∮ p2−ε2

p1+ε1
−
∮
Kε2

+
∮ r

p2+ε2
+
∮
Kr

)
f(ω) dω

= 2πi
∑
m

resωm(f),

where m counts the singularities inside the contour and ress(f) stands for the residue of
the function f at a given singularity s. In this case, the only singularities are given by the
two poles, which were already mentioned. However, the integration path was constructed
such that these singularities are not enclosed. The integral over Kr converges to 0 for
r →∞. Hence, for this limit consideration, we obtain(∮ p1−ε1

−∞
+
∮ p2−ε2

p1+ε1
+
∮ ∞
p2+ε2

)
f(ω) dω =

(∮
Kε1

+
∮
Kε2

)
f(ω) dω.

For p1,2 being poles of the function and Kε1,2(t) = p1,2 + ε1,2 · eiπt, 0 ≤ t ≤ 1, the limit
is given by

lim
ε1,2→0

∮
Kε1,2

f(ω) dω = πiresp1,2(f).

The residue at a pole p of order l can be computed by

resp(f) = 1
(l − 1)!

dl−1

dωl−1

(
(p− ω)l f(ω)

) ∣∣
ω=p,
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such that for p1 = −ωn,K and p2 = ωn,K, both of order l1,2 = 1, the residues can be
computed to be

resp1=−ωn,K = ωn,K − ω
(ωn,K − ω) (ωn,K + ω)

∣∣
ω=−ωn,K

= −1
2ωn,K

and resp2=ωn,K = 1
2ωn,K

.

As these imaginary parts can only be obtained for ω2 6= ω2
n,K, we can use the Dirac

distribution to express this instantaneous event. After applying the limits of r→∞ and
ε1,2 → 0, the integral (6.9) can be represented in the following way:

∞∫
−∞

f(ω) dω = lim
r→∞

(
lim

ε1,ε2→0

(∮
γ
f(ω) dω

))

= iπ

2ωn,K
(δ (ωn,K − ω)− δ (ωn,K + ω)) .

We can drop the term that corresponds to the negative pole ω = −ωn,K, as it is reasonable
to consider only positive frequencies in this context. Finally, the imaginary part of the
Green’s function can be written as

Im (G (r, r;ω)) = 1
(2π)3

πc2

2ω
∑
n

|En,K|2δ (ωn,K − ω).

Then, this result can be used in the expression (6.2) to find the formulation of the LDOS
given in Equation (6.2). When the orientation of the emitter is not fixed, we can average
over all orientations to obtain

N(ω, r) = 1
(2π)3

∑
n

∫
BZ1

|En,K(r)|2δ (ω − ωn,K) d K.

6.2. Computations

Next, we have to find a way to compute the LDOS given in Equation (6.2) as accurately
as possible. For the case of an infinite crystal, the Green’s function can be computed ana-
lytically. However, for real photonic crystals with a limited size, we have to approximate
the formula. To that end, we have to find an expression for the Brillouin zone integral∫

BZ1

f(K)δ (ω − ω(K)) d K. (6.10)

One option to evaluate the integral is the linear tetrahedron method. A detailed
description can be found in [4]. For this technique, we split the integral over the
first Brillouin zone into integrals over non-overlapping tetrahedra to substitute (6.10).
Inside each of the solids, f(K) and ω(K) are then interpolated linearly. The corners of
the tetrahedra are expressed in terms of K and named K0, K1, K2 and K3. Approximate
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6. Accurate computations of the local density of states

ω(K) by ω0 + a (K−K0). The evaluation of the integrals over the disjoint tetrahedra is
then straightforward. The drawback of this method is the restriction of the accuracy of
the computations by the linear interpolation. This problem is of particular importance,
when the solution of the Maxwell equations is obtained using higher-order accurate finite
element methods.
Alternatively, consider the identity

δ(g(x)) =
n∑

m=1

δ(x− xm)
|g′(xm)|

for the delta distribution, where xm runs through the simple zeros of g(x) [12]. In our case,
g(x) is given by the function (ω−ω(K)). If we could find an expression for the dispersion
relation, it would be possible to find its zeros. Then, we could evaluate the integral (6.10)
analytically. However, the relation ω(K) is complicated for three-dimensional photonic
crystals where any direction of propagation is possible, as it depends on the polarization
state. Furthermore, the dielectric function εr has to be known for the calculations. In
[25], the dispersion relation for light travelling in only one direction is given by(

K2 − ω2µrεr,0)
) (

(K−G)2 − ω2µrεr,0
)
−
(
ω2µr|εr,1|

)2
= 0.

Here, εr,0, εr,1 denote the zeroth and first Fourier component of the periodic dielectric
tensor εr, G corresponds to the reciprocal lattice vector in the direction of propagation.
Although the formula is not even accurate, it is already complex. A more general setup
would thus make it necessary to impose even larger assumptions. Still, the term for ω(K)
would get even more involved.
Additionally, the computation of the LDOS is used as an alternative to an explicit
representation of the dispersion relation. The complexity of this ansatz as well as the
paradoxical usage of an expression for ω(K) make this method impractical for our
purposes.
Hence, we are going to use another possibility to describe the Dirac delta distribution
by expressing it in terms of a converging sequence. All elements of the sequence should
have their maximum at a fixed point and this value should increase while the graph gets
narrower when moving along the sequence [12]. These properties are ensured by the
following definition:

Definition 6.2. A sequence sj(x) is called a delta-convergent sequence if

lim
j→∞

∞∫
−∞

sj(x)f(x) dx = f(0)

for all functions f(x) that are sufficiently smooth for −∞ < x < ∞. Thus, delta-
convergent sequences satisfy

lim
j→∞

sj = δ(x).
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If the charge is located at a point x = ξ instead of x = 0, these equations have to be
modified to

lim
j→∞

∞∫
−∞

sj(x− ξ)f(x) dx = f(ξ) and lim
j→∞

sj(x− ξ) = δ(x− ξ).

Such sequences are for example the Gaussian sequence

sj(x) =
√
j

π
e−jx

2

or Lorentzian functions

sj(x) = 1
π

j

1 + j2x2 .

A modified version of the latter one is

sj(x) = 1
2π

j
1
4 + j2x2 .

The Complex Photonic Systems group (CoPS) in the Department of Science and Tech-
nology at the University of Twente focuses its research on controlling light and optical
processes in nanophotonic structures. Regarding the solution of Maxwell’s equations
in photonic crystals, they cooperate with the MaCS group. In 2014, members of CoPS
introduced a new approach for the computation of the LDOS. We will now present the
idea that is explained in [26].
In [26] the ansatz of delta-convergent sequences is applied, which supports our own
conclusions. They decide on using modified Loretzians, because these functions describe
well how the frequency width of the modes increases based on the finite size of the
photonic crystal. Further, the value m is chosen to be L

a , where L is the size of the
crystal and a the lattice constant in the corresponding direction. Then, m is equal to the
number of wave vectors in the Brillouin zone. The LDOS can thus be written as

N(ω, r) = 1
(2π)3

∑
n

 lim
j→∞

1
2π

∫
BZ1

j
1
4 + j2 (ω − ωn,K)2 |En,K|2 d K


≈ 1

(2π)3

∑
n

 lim
j→m

1
2π

∫
BZ1

j
1
4 + j2 (ω − ωn,K)2 |En,K|2 d K


≈ 1

(2π)3
1
m

∑
n

m∑
j=1

1
2π

j
1
4 + j2 (ω − ωn,K)2 |En,K|2.

In the first step, the finite size of the crystal is taken into account by limiting j as
mentioned above. The second approximation shows the quadrature of the integral. This
is possible as we integrate over all wave vectors in the first Brillouin zone, which are
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6. Accurate computations of the local density of states

enumerated by the values of j = 1, . . . ,m. From a computational view, that leaves us
with an easy sum instead of the integral over the whole Brillouin zone.
In a next step, the eigenfunctions are approximated. To that end, we represent the Bloch
wave vector by its real and imaginary parts Re (K) and Im (K), respectively. Within
bands, we have propagating Bloch modes and thus Im (K) = 0 and K is real. But in a
band gap, light is damped and K becomes complex. While the real part of the vector is
fixed at the value it has at the Brillouin zone edge, namely Re (K) = π

a , the imaginary
part depends on the frequency. Starting at zero at both edges of the gap it increases to a
maximum value at its center.
Let us consider the wave vector K = Re (K) + iIm (K) inside a band gap. There, the
waves are damped exponentially as a result of Bragg diffraction:

En = En,K(r) · e−iK·r = En,K(r) · ei(Re(K)+iIm(K))·r = En,K(r) · eiRe(K)·r · e−Im(K)·r

= Ên,K(r) · e−Im(K)·r,

where Ên,K is periodic and interpolates the field En,K between the edges of Bloch modes.
The imaginary part of the Bloch wave vector is obtained from band structure calculations.
To obtain Ên,K, the field values and amplitudes are approximated inside the gap. For
that purpose, we use the fact that waves propagate at the edges of the gap. Therefore,
the absolute value of the field has the same period as the crystal in these places. The
position of the maximum of the field is interpolated linearly into the gap by taking the
values at both edges into account. The amplitude is obtained by linear interpolation
between the values at the two edges of the gap. This provides a technique to approximate
En,K.
The attenuation of the resulting field Ên,K is then expressed by multiplying the value by
the corresponding decaying factor. Finally, the local density of states can be approximated
by

N(ω, r) ≈ 1
(2π)4

1
m

n∑
i=1

m∑
j=1

j
1
4 + j2 (ω − ωn,K)2 |Ên,K|2e−2Im(K)r.

This model is a promising approach for finding a highly accurate numerical method to
compute the LDOS.
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7. Conclusion and outlook

In this work, a method for computing the light propagation in photonic crystals was
presented. First, a mathematical model for the time-harmonic Maxwell equations, which
describe light propagation, was developed. The usage of the discontinuous Galerkin finite
element method was motivated and applied to the problem. As a main achievement,
Nédélec basis functions are employed to the DG discretization of the problem. Since they
are free of spurious modes, they are an improvement compared to the basis functions of
Ainsworth and Coyle. This is interesting for the software package hpGEM, which provides
the tools to solve PDEs from the fields of fluid mechanics and electromagnetism with
the DG FEM. Its application DG-Max implements the discretisation and solution of the
considered problem. Up to now, the basis functions only the basis functions of Ainsworth
and Coyle were available in hpGEM. Here, Nédélec’s functions were included to and tested
in the software environment. This includes the evaluation of the errors and the accuracy
of the solution and the eigenvalue computations for the time-harmonic Maxwell equations.
Furthermore, the local density of states is discussed, which is closely linked to the
behaviour of light in a photonic crystal. An approach for the computation of these values
are described.

7.1. Nédélec’s basis functions

Due to its mathematical properties, the basis function set introduced by Nédélec in 1980
is beneficial for solving the time-harmonic Maxwell equations with the DG FEM. As far as
tests were possible during this study taking the memory and computing time limitations
into account, we can assume that Nédélec’s basis functions perform as expected. This
holds only for the special problems considered in our case. Before adding the basis
functions of Nédélec to the general package hpGEM, advantages of these basis functions
as well as those of Ainsworth and Coyle have to be analysed in more detail. The choice
of basis functions should be left open for the general case, because the benefits, which
Nédélec’s set of functions provides for the Maxwell problem, do not necessarily hold for
other applications.
The approval of the functionality of the described basis functions must be seen as
preliminary decision, rather than a final one. The tests were carried out with a computer
with a quite low performance. This led to strong restrictions regarding the tests. Due to
long computational times, only a small amount of data could be collected. This made
the evaluation difficult. The determination of the order of accuracy was hardly possible
for the time-harmonic solution and not at all for the eigenvalue calculations.
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At any rate, all tests that were performed should be rerun and expanded to finer meshes.
This will hopefully confirm the obtained results. The sub-optimal accuracy of the time-
harmonic solution in the L2-norm, which we observed, has to be checked. If these results
prove to be true also for more detailed tests, further analysis on that topic is necessary,
including also theoretical investigations.
Moreover, more complicated test cases should be considered. As an example, it should
be tested if the code for the eigenvalue computations performs correctly for all choices of
the wave vector k. This would enable us to plot the band structure of the considered
structure. The DG-Max-code provides a possibility to compute the eigenvalues for 61
different values of the wave vector inside the first Brillouin zone. The value of k is
changed in the three directions separately. Taking steps of π

20 k moves from (0, 0, 0)t to
(π, 0, 0)t, from (π, 0, 0)t to (π, π, 0)t and from (π, π, 0)t to (π, π, π)t. Due to the limited
possibilities during this study, these expensive computations could be carried out for n
being maximal two. n is connected to the mesh size, in particular being the parameter
for the code which influences the number of elements N of the mesh by N = n3 · 5. The
coarse mesh prohibited a meaningful evaluation. Future work, however, could include
these tests for larger values of n. In this setting, not only single-material structures
should be observed. Additionally, the examination of simple layered structures, like the
Bragg stack, would be possible. The Bragg stack describes a structure containing of two
layers, e. g. both half as wide as the unit cube and with εr = 1 in the first layer and
εr = 13 in the second.
Even though a lot of work still remains, first results showed that Nédélec’s basis functions
are a convincing choice for the DG FEM for time-harmonic Maxwell equations.

7.2. The local density of states

The approach, which was presented for the computations of the local density of states,
needs further analysis. The CoPS group tested it for the one-dimensional case, resulting in
a first verification of the model. However, own examinations would be necessary. It would
be of importance to check the compatibility with the DG-Max application. The accuracy
in that framework should not be below the accuracy of the eigenvalue computations. It
might be a good idea to include only the usage of the Lorentzians, first. This would take
the finite crystal size into account, but leaves the approximation of the eigenfunctions for
later considerations. With a more reliable eigenvalue solver the first step could already
yield good results. It should be checked if the model is able to handle band crossings,
which can appear for higher frequencies or when considering large parts of the Brillouin
zone.
Of course, future work should also include a broadly based research for alternative
techniques.
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7.3. Improvement of the algorithm in general

In general, the whole algorithm could be improved in several directions. For instance,
the code could be sped up by removing the null space of the curl-curl operator or by
preconditioning. As another possibility the flexibility of the mesh could be increased or
the refinement of the mesh could be automated. Furthermore, the algorithm could be
extended to being able to handle defects in the crystal instead of only perfect unit cells.
This would give a large improvement for designing photonic crystals for applications like
waveguides. These are just some examples on the large amount of future work that still
needs to be done in this field.
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A. Further information

A.1. Coordinate transformations of integrals

In Chapter 3, the idea of using a reference element was introduced. Computations are
performed on this simple domain and the results are then transformed to the physical
element of consideration by an affine mapping. Later in that chapter, the special
curl-conforming transformation is explained.
However, not only the basis functions have to be transformed. When developing the
DG FEM, the weak formulation of the partial differential equation has to be considered
considered as well. This results in integrals over the elements. Thus, a transformation
from an integral over a reference element to one which considers the domain of the
physical element has to be applied. Therefore, we use the standard identity∫

K

u dK =
∫
K̂

(u ◦ FK) |BK | d K̂.

A.2. Quadrature of the integrals

While solving the PDE with a finite element method, we have to evaluate integrals
numerically. A general form for the quadrature of integrals using order N is∫

A

f(x) d x =
N∑
i=1

wif(ξi),

where wi are the so-called weights, ξi denote distinct nodes and A is the domain of
integration. Different rules vary in the choice of the nodes and weights and are available
for various types of reference elements.
It is necessary to find suitable integration points and weights. We can use any system
of linearly independent functions satisfying two conditions. First, we should be able
to determine their integrals analytically and, secondly, the order of accuracy should be
reasonably good. For Gauß-type quadrature rules we take the sum over weighted function
values of non-equidistantly distributed integration points. Nodes and weights can be
determined by solving the system of non-linear algebraic equations that is obtained after
inserting a sufficient number of linearly dependent functions of known integral [22].
For the DG FEM with a tetrahedral mesh, we want to apply quadrature rules for
triangles (for the boundaries of the elements) and on tetrahedra (for the interior). They
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are obtained by transforming the integrated function to the reference quadrilateral or
brick, respectively. Consequently, composite Gauß quadrature rules are applied [22].
To find rules that are exact up to the order p of our basis functions, we have to choose
N to be large enough. The most restrictive term regarding the order N in the weak
formulation (4.6) of the Maxwell problem is the multiplication of two basis functions.
Therefore, taking N ≤ 2p for the quadrature rule provides us with sufficient accuracy.
For tables of weights and nodes for the Gauß quadrature on triangles and tetrahedra,
please check [22, chapter4].

A.3. Basis functions of higher order

With the same method as described in Section 3.2, the basis functions for orders p = 2
to p = 5 are determined. In addition, the curl of the basis functions is computed. The
results of order p = 2 are shown in the following section. After calculating the edge, face
and element basis functions of several different orders, we can find a pattern and thus
find general expressions for any p.

Order p = 2

We find basis functions on directed edges eij between vertices vi and vj , i < j,

Λ2 =
{
λ2
j∇λi − λiλj∇λj , λiλj∇λj − λ2

i∇λi
}

and on faces fijk with vertices vi, vj and vk, i < j < k,

Λ3 = {λjλk∇λi − λiλk∇λj , λiλk∇λj − λiλj∇λk}

The total set of basis functions is then given by Λ = Λ2
⋃Λ3.

The gradients can be computed to be (in order of appearance of the basis functions Ψij

and Ψijk):

∇Ψij = 3λj (∇λj ×∇λi)

∇Ψij = 3λi (∇λj ×∇λi)

∇Ψijk = 2λk (∇λj ×∇λi) + (λi∇λj − λj∇λi)×∇λk

∇Ψijk = 2λi (∇λk ×∇λj) + (λj∇λk − λk∇λj)×∇λi

General order p

For each the edges, faces and elements, we can find a general form of writing the basis
functions for all p.
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On the directed edge between vertices vi and vj , i < j (as can already be assumed based
on p = 1 and p = 2) the basis functions are given by

Ψij = λliλ
m
j (λj∇λi − λi∇λj) ,

where 0 ≤ l,m ≤ p−1, l+m = p−1. They appear for all orders p ≥ 1. The corresponding
curl can be determined to be

∇Ψij = (l +m+ 2)λliλmj (∇λj ×∇λi) .

For the faces between the vertices vi, vj and vk, i < j < k, we can find the basis functions

Ψ1,ijk =λliλmj λn+1
k (λj∇λi − λi∇λj)

Ψ2,ijk =λl+1
i λmj λ

n
k (λk∇λj − λj∇λi) ,

where 0 ≤ l,m, n ≤ p− 2, l +m+ n = p− 2. The curl is given by

∇Ψ1,ijk = (l +m+ 2)λliλmj λn+1
k (∇λj ×∇λi)

+ (n+ 1)λliλmj λnk (∇λk × (λj∇λi − λi∇λj))
∇Ψ2,ijk = (m+ n+ 2)λl+1

i λmj λ
n
k (∇λk ×∇λj)

+ (l + 1)λliλmj λnk (∇λk × (λj∇λi − λi∇λj)) .

The basis functions for the entire element exist for order p ≥ 3. They are expressed with
the help of the Lagrange basis functions for all four vertices:

Ψ1,1234 =λl1λm2 λn+1
3 λr+1

4 (λ2∇λ1 − λ1∇λ2)
Ψ2,1234 =λl+1

1 λm2 λ
n
3λ

r+1
4 (λ3∇λ2 − λ2∇λ3)

Ψ3,1234 =λl+1
1 λm+1

2 λn3λ
r
4 (λ4∇λ3 − λ3∇λ4) ,

where 0 ≤ l,m, n, r ≤ p− 3, l +m+ n+ r = p− 3. We can find the curls to be

∇Ψ1,1234 = (l +m+ 2)λl1λm2 λn+1
3 λr+1

4 (∇λ2 ×∇λ1)
+ (n+ 1)λl1λm2 λn3λr+1

4 (∇λ3 × (λ2∇λ1 − λ1∇λ2))
+ (r + 1)λl1λm2 λn+1

3 λr4 (∇λ4 × (λ2∇λ1 − λ1∇λ2))
∇Ψ2,1234 = (m+ n+ 2)λl+1

1 λm2 λ
n
3λ

r+1
4 (∇λ3 ×∇λ2)

+ (l + 1)λl1λm2 λn3λr+1
4 (∇λ1 × (λ3∇λ2 − λ2∇λ3))

+ (r + 1)λl+1
1 λm2 λ

n
3λ

r
4 (∇λ4 × (λ3∇λ2 − λ2∇λ3))

∇Ψ1,1234 = (n+ r + 2)λl+1
1 λm+1

2 λn3λ
r
4 (∇λ4 ×∇λ3)

+ (l + 1)λl1λm+1
2 λn3λ

r
4 (∇λ1 × (λ4∇λ3 − λ3∇λ4))

+ (m+ 1)λl+1
1 λm2 λ

n
3λ

r
4 (∇λ2 × (λ4∇λ3 − λ3∇λ4)) .

These results are used for the changes of the hpGEM-code discussed in Chapter 5.
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B. Tables

Here, all tables containing the values and results discussed throughout the testing of the
hpGEM package can be found.

B.1. The accuracy of the numerical solution to the
time-harmonic Maxwell problem

In this section the errors of the numerical solutions and the corresponding computed
orders of accuracy as described in Section 5.2 are listed. This includes homogeneous and
periodic boundary conditions, the Brezzi and IP flux formulations and the basis function
sets of Ainsworth-Coyle as well as those of Nédélec.

B.1.1. Homogeneous boundary conditions

First, homogeneous boundary conditions are considered.
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Ainsworth-Coyle Nédélec
‖E−Eh‖L2 ‖E−Eh‖DG ‖E−Eh‖L2 ‖E−Eh‖H(curl) ‖E−Eh‖DG

p = 1
N = 5 2.9160E-01 4.0233E-00 3.2771E-01 4.0487E-00 4.0627E-00
N = 40 2.5192E-01 1.8536E-00 4.3000E-01 1.9286E-00 1.9345E-00
N = 320 5.2906E-02 9.5273E-01 2.3367E-01 1.0066E-00 1.0079E-00
N = 2560 – – 1.1937E-01 5.0824E-01 5.0852E-01
p = 2
N = 5 2.6768E-01 1.2834E-00 3.5889E-01 1.2443E-00 1.2715E-00
N = 40 2.9329E-02 4.8757E-01 1.0782E-01 4.9609E-01 4.9767E-01
p = 3
N = 5 5.4841E-02 8.6251E-01 1.1784E-01 8.7221E-01 8.7358E-01
N = 40 4.3092E-03 9.6475E-02 1.7124E-02 9.8274E-02 9.8398E-02
p = 4
N = 5 2.2580E-02 1.0833E-01 3.4513E-02 1.0719E-01 1.0813E-01
N = 40 5.2082E-04 1.5244E-02 2.1707E-03 1.5645E-02 1.5655E-02

Table B.1.: Error in the numerical solution for different norms computed on the unit cell
with homogeneous boundary conditions and using the Brezzi flux formulation
in the DG FEM. Calculations are carried out for Ainsworth-Coyle and Nédélec
basis functions.

Ainsworth-Coyle Nédélec
order (L2) order (DG) order (L2) order (DG)

p = 1
N = 5 → N = 40 0.221 1.118 -0.392 1.070
N = 40 → N = 320 2.462 0.960 0.880 0.941
N = 320 → N = 2560 – – 0.969 0.987
p = 2
N = 5 → N = 40 3.190 1.396 1.735 1.353
p = 3
N = 5 → N = 40 3.670 3.160 3.381 3.150
p = 4
N = 5 → N = 40 5.438 2.829 3.991 2.788

Table B.2.: The order of accuracy of the DG FEM calculated as described at the beginning
of Section 5.2. The computations are conducted for the domain of a unit cell
with homogeneous boundary conditions and using the Brezzi flux formulation.
Ainsworth-Coyle and Nédélec basis functions are compared.
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B.1. The accuracy of the numerical solution

Ainsworth-Coyle Nédélec
‖E−Eh‖L2 ‖E−Eh‖DG ‖E−Eh‖L2 ‖E−Eh‖H(curl) ‖E−Eh‖DG

p = 1
N = 5 5.2299E-01 4.2613E-00 5.5907E-01 4.3084E-00 4.3089E-00
N = 40 2.9434E-01 1.9557E-00 4.4632E-01 2.0383E-00 2.0385E-00
N = 320 6.2216E-02 9.9251E-01 2.3532E-01 1.0600E-00 1.0602E-00
N = 2560 1.2202E-02 4.8571E-01 1.1942E-01 5.2871E-01 5.2882E-01
p = 2
N = 5 3.0592E-01 1.4829E-00 4.2563E-01 1.5581E-00 1.5587E-00
N = 40 3.1428E-02 5.0528E-01 1.0890E-01 5.2703E-01 5.2721E-01
N = 320 3.2844E-03 1.3116E-01 2.8747E-02 1.3844E-01 1.3853E-01
p = 3
N = 5 5.9269E-02 8.8299E-01 1.2072E-01 8.9685E-01 8.9709E-01
N = 40 4.2700E-03 9.8680E-02 1.7258E-02 1.0198E-01 1.0203E-01
N = 320 1.8923E-04 1.3096E-02 2.2374E-03 1.3510E-02 1.3552E-02
p = 4
N = 5 2.2916E-02 1.1691E-01 3.5682E-02 1.2199E-01 1.2209E-01
N = 40 4.8469E-04 1.5657E-02 2.1674E-03 1.5997E-02 1.6007E-02

Table B.3.: Error in the numerical solution of different norms computed on the unit cell
with homogeneous boundary conditions and using the IP flux in the DG
FEM. Calculations are carried out for Ainsworth-Coyle and Nédélec basis
functions.

Ainsworth-Coyle Nédélec
order (L2) order (DG) order (L2) order (DG)

p = 1
N = 5 → N = 40 0.829 1.124 3.593 1.080
N = 40 → N = 320 2.242 0.979 0.923 0.943
N = 320 → N = 2560 2.350 1.031 0.979 1.003
p = 2
N = 5 → N = 40 3.283 1.553 1.967 1.564
N = 40 → N = 320 3.258 1.946 1.921 1.928
p = 3
N = 5 → N = 40 3.795 3.161 2.806 3.136
N = 40 → N = 320 4.496 2.914 2.947 2.912
p = 4
N = 5 → N = 40 5.563 2.901 4.041 2.931

Table B.4.: The order of accuracy of the DG FEM calculated as described at the beginning
of Section 5.2. The computations are conducted for the domain of a unit cell
with homogeneous boundary conditions and using the IP flux. Ainsworth-
Coyle and Nédélec basis functions are compared.
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B.1.2. Periodic boundary conditions

Then, the functionality of the periodic boundary conditions is tested.

Ainsworth-Coyle Nédélec
‖E−Eh‖L2 ‖E−Eh‖DG ‖E−Eh‖L2 ‖E−Eh‖H(curl) ‖E−Eh‖DG

p = 1
N = 40 2.8315E-01 8.0153E-00 3.1674E-01 8.0157E-00 8.0410E-00
N = 320 7.8529E-01 3.7502E-00 4.2904E-01 3.7820E-00 3.7907E-00
N = 2560 – – 2.3354E-01 1.9718E-00 1.9733E-00
p = 2
N = 40 8.7998E-01 2.6575E-00 3.5652E-01 2.4062E-00 2.4614E-00
p = 3
N = 40 9.3049E-02 1.7210E-00 1.3268E-01 1.7345E-01 1.7367E-01
p = 4
N = 40 8.4310E-02 2.2801E-01 – – –

Table B.5.: Error in the numerical solution of different norms computed on the unit cell
with periodic boundary conditions and using the Brezzi flux formulation in
the DG FEM. Calculations are carried out for Ainsworth-Coyle and Nédélec
basis functions.

Ainsworth-Coyle Nédélec
order (L2) order (DG) order (L2) order (DG)

p = 1
N = 40 → N = 320 -1.472 1.096 -0.438 1.085
N = 320 → N = 2560 – – 0.877 0.942

Table B.6.: The order of accuracy of the DG FEM calculated as described at the beginning
of Section 5.2. The computations are conducted for the domain of a unit
cell with periodic boundary conditions and using the Brezzi flux formulation.
Ainsworth-Coyle and Nédélec basis functions are compared.
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Ainsworth-Coyle Nédélec
‖E−Eh‖L2 ‖E−Eh‖DG ‖E−Eh‖L2 ‖E−Eh‖H(curl) ‖E−Eh‖DG

p = 1
N = 40 5.1160E-01 8.4678E-00 5.4757E-01 8.5588E-00 8.5600E-00
N = 320 7.9627E-01 3.9248E-00 4.4358E-01 3.9909E-00 3.9914E-00
N = 2560 1.1043E-01 1.9392E-00 2.3431E-01 2.0574E-00 2.0578E-00
N = 20480 1.5009E-02 9.4445E-01 1.1911E-01 1.0111E-00 1.0115E-00
p = 2
N = 40 8.9083E-01 3.0170E-00 4.2431E-01 3.0121E-00 3.0135E-00
N = 320 7.5562E-02 1.0087E-00 1.0901E-01 1.0383E-00 1.0388E-00
N = 2560 5.4339E-03 3.6719E-01 2.8663E-02 2.7845E-01 2.7877E-01
p = 3
N = 40 9.4595E-02 1.7625E-00 1.3475E-01 1.7814E-00 1.7820E-00
N = 320 1.2577E-02 1.9873E-01 1.7198E-02 2.0308E-01 2.0344E-01
p = 4
N = 40 8.4366E-02 2.4471E-01 3.5718E-02 2.3634E-01 2.3662E-01

Table B.7.: Error in the numerical solution of different norms computed on the unit cell
with periodic boundary conditions and using the IP flux in the DG FEM.
Calculations are carried out for Ainsworth-Coyle and Nédélec basis functions.
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Ainsworth-Coyle Nédélec
order (L2) order (DG) order (L2) order (DG)

p = 1
N = 40 → N = 320 -0.638 1.109 -0.392 1.101
N = 320 → N = 2560 2.850 1.017 0.880 0.956
N = 2560 → N = 20480 2.879 1.458 1.038 1.025
p = 2
N = 40 → N = 320 2.911 1.581 1.968 1.537
N = 320 → N = 2560 3.798 1.458 1.927 1.898
p = 3
N = 40 → N = 320 3.149 2.970 3.131

Table B.8.: The order of accuracy of the DG FEM calculated as described at the beginning
of Section 5.2. The computations are conducted for the domain of a unit cell
with periodic boundary conditions and using the IP flux. Ainsworth-Coyle
and Nédélec basis functions are compared.
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B.2. The accuracy of the eigenvalue computations for the
Maxwell problem

The eigenvalues for both types of numerical fluxes are listed. Furthermore, the errors of
the eigenvalue computations and the corresponding order of accuracy for Nédélec’s basis
functions are presented.

Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 320 N = 40 N = 320

2 3.989517 2.325243 2.092188 1.921157 1.986089
2 3.989517 2.325243 2.092188 1.921157 1.986089
2 3.989517 2.325243 2.092188 1.921157 1.986089
3 7.347626 4.066462 3.203803 4.333374 3.012086
3 7.347626 4.066462 3.203803 4.333374 3.012086
5 11.481380 5.744246 5.544179 5.707445 4.827141
5 11.481380 5.744246 5.544179 5.707445 4.827141
5 11.481380 5.744246 5.544179 5.707445 4.827141
5 12.193098 8.390553 5.544179 7.632618 4.827141
5 12.193098 8.390553 7.632618 4.827141
5 12.193098 8.390553 7.632618 4.827141
6 15.727188 10.510892 6.762504 8.127985 5.841230
6 15.727188 10.510892 6.762504 8.127985 5.841230
6 15.727188 10.510892 6.762504 8.127985 5.841230
6 23.609118 10.648430 6.790371 8.872788 5.917906
6 23.609118 10.648430 6.790371 8.872788 5.917906
6 23.609118 10.648430 6.790371 9.510186 5.917906

Table B.9.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
homogeneous boundary conditions and the Brezzi flux formulation. We
consider the Ainsworth-Coyle basis functions as well as those of Nédélec,
both of order p = 1.
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Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 320 N = 5 N = 40

2 2.173152 2.023379 2.001676 1.832689 1.995802
2 2.173152 2.023379 2.001676 1.832689 1.995802
2 2.173152 2.023379 2.001676 1.832689 1.995802
3 4.003570 4.066462 3.005611 3.720219 2.936346
3 4.003570 4.066462 3.005611 3.720219 2.936346
5 6.406003 5.164960 5.023303 4.418297 4.560061
5 6.406003 5.164960 5.023303 4.560061
5 6.406003 5.164960 5.023303 4.560061
5 8.921440 5.303728 5.023303 4.440845 5.087234
5 8.921440 5.303728 4.440845 5.087234
5 8.921440 5.303728 4.440845 5.087234
6 11.657019 6.376197 6.039846 6.135862 6.068820
6 11.657019 6.376197 6.039846 6.135862 6.068820
6 11.657019 6.376197 6.039846 6.135862 6.068820
6 11.676408 6.488295 6.041019 8.300746 6.112407
6 11.676408 6.488295 6.041019 8.300746 6.112407
6 11.676408 6.488295 6.041019 8.300746 6.112407

Table B.10.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
homogeneous boundary conditions and the Brezzi flux formulation. We
consider the Ainsworth-Coyle basis functions as well as those of Nédélec,
both of order p = 2.
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Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 5 N = 40

2 2.056822 2.000934 2.031045 2.000324
2 2.056822 2.000934 2.031045 2.000324
2 2.056822 2.000934 2.031045 2.000324
3 3.229837 3.007847 3.217972 3.007244
3 3.229837 3.007847 3.217972 3.007244
5 5.265708 5.030104 4.229326 5.016980
5 5.265708 5.030104 4.229326 5.016980
5 5.265708 5.030104 4.229326 5.016980
5 5.532334 5.030104 5.029418 5.001425
5 5.532334 5.030104 5.029418 5.001425
5 5.532334 5.030104 5.029418 5.001425
6 6.764523 6.053528 6.376072 5.999523
6 6.764523 6.053528 6.376072 5.999523
6 6.764523 6.053528 6.376072 5.999523
6 7.366976 6.053528 6.031114
6 7.366976 6.053528 6.031114
6 7.366976 6.053528 6.031114

Table B.11.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
homogeneous boundary conditions and the Brezzi flux formulation. We
consider the Ainsworth-Coyle basis functions as well as those of Nédélec,
both of order p = 3.
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Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 5 N = 40

2 2.001482 2.000024 1.998178 2.000016
2 2.001482 2.000024 1.998178 2.000016
2 2.001482 2.000024 1.998178 2.000016
3 3.012553 3.000023 2.997333 2.999904
3 3.012553 3.000023 2.997333 2.999904
5 5.224655 5.001617 5.085339 5.000597
5 5.224655 5.001617 5.085339 5.000597
5 5.224655 5.001617 5.085339 5.000597
5 5.224655 5.001617 5.165563 5.000773
5 5.224655 5.001617 5.165563 5.000773
5 5.224655 5.001617 5.165563 5.000773
6 6.436586 6.004116 6.081371 6.001560
6 6.436586 6.004116 6.081371 6.001560
6 6.436586 6.004116 6.081371 6.001560
6 6.563491 6.004116 6.410231 6.002695
6 6.563491 6.004116 6.410231 6.002695
6 6.563491 6.004116 6.410231 6.002695

Table B.12.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
homogeneous boundary conditions and the Brezzi flux formulation. We
consider the Ainsworth-Coyle basis functions as well as those of Nédélec,
both of order p = 4.
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N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 3.94215E-02 – 6.95554E-03 2.503
2π2 3.94215E-02 – 6.95554E-03 2.503
2π2 3.94215E-02 – 6.95554E-03 2.503
3π2 4.44458E-01 – 4.02869E-03 6.786
3π2 4.44458E-01 – 4.02869E-03 6.786
5π2 1.41489E-01 – 3.45718E-02 2.033
5π2 1.41489E-01 – 3.45718E-02 2.033
5π2 1.41489E-01 – 3.45718E-02 2.033
5π2 5.26524E-01 – 3.45718E-02 3.929
5π2 5.26524E-01 – 3.45718E-02 3.929
5π2 5.26524E-01 – 3.45718E-02 3.929
6π2 3.54664E-01 – 2.64618E-02 3.744
6π2 3.54664E-01 – 2.64618E-02 3.744
6π2 3.54664E-01 – 2.64618E-02 3.744
6π2 4.78798E-01 – 1.36824E-02 5.129
6π2 4.78798E-01 – 1.36824E-02 5.129
6π2 5.85031E-01 – 1.36824E-02 5.418

Table B.13.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the Brezzi flux
formulation. We consider Nédélec basis functions of order p = 1.
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N = 5 N = 40
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 8.36556E-02 – 2.09921E-03 5.317
2π2 8.36556E-02 – 2.09921E-03 5.317
3π2 2.40073E-01 – 2.12179E-02 3.500
3π2 2.40073E-01 – 2.12179E-02 3.500
5π2 1.16341E-01 – 8.79878E-02 0.403
5π2 1.16341E-01 – 8.79878E-02 0.403
5π2 1.16341E-01 – 8.79878E-02 0.403
5π2 1.11831E-01 – 1.74467E-02 2.680
5π2 1.11831E-01 – 1.74467E-02 2.680
5π2 1.11831E-01 – 1.74467E-02 2.680
6π2 2.26437E-02 – 1.14694E-02 0.981
6π2 2.26437E-02 – 1.14694E-02 0.981
6π2 2.26437E-02 – 1.14694E-02 0.981
6π2 3.83458E-01 – 1.87344E-02 4.355
6π2 3.83458E-01 – 1.87344E-02 4.355
6π2 3.83458E-01 – 1.87344E-02 4.355

Table B.14.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the Brezzi flux
formulation. We consider Nédélec basis functions of order p = 2.
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B.2. The accuracy of the eigenvalue computations

N = 5 N = 40
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 1.55227E-02 – 1.62073E-04 6.582
2π2 1.55227E-02 – 1.62073E-04 6.582
2π2 1.55227E-02 – 1.62073E-04 6.582
3π2 7.26563E-02 – 2.41478E-03 4.911
3π2 7.26563E-02 – 2.41478E-03 4.911
5π2 1.54135E-01 – 2.85057E-04 9.079
5π2 1.54135E-01 – 2.85057E-04 9.079
5π2 1.54135E-01 – 2.85057E-04 9.079
5π2 5.88356E-03 – 3.39600E-03 0.793
5π2 5.88356E-03 – 3.39600E-03 0.793
5π2 5.88356E-03 – 3.39600E-03 0.793
6π2 6.26786E-02 – 7.95609E-05 9.622
6π2 6.26786E-02 – 7.95609E-05 9.622
6π2 6.26786E-02 – 7.95609E-05 9.622
6π2 – – 5.18570E-03 –
6π2 – – 5.18570E-03 –
6π2 – – 5.18570E-03 –

Table B.15.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the Brezzi flux
formulation. We consider Nédélec basis functions of order p = 3.
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N = 5 N = 40
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 9.11273E-04 – 8.06506E-06 6.820
2π2 9.11273E-04 – 8.06506E-06 6.820
2π2 9.11273E-04 – 8.06506E-06 6.820
3π2 8.88134E-04 – 3.19568E-05 4.798
3π2 8.88134E-04 – 3.19568E-05 4.798
5π2 1.70678E-02 – 1.19295E-04 7.161
5π2 1.70678E-02 – 1.19295E-04 7.161
5π2 1.70678E-02 – 1.19295E-04 7.161
5π2 3.31126E-02 – 1.54657E-04 7.742
5π2 3.31126E-02 – 1.54657E-04 7.742
5π2 3.31126E-02 – 1.54657E-04 7.742
6π2 1.35618E-02 – 2.59590E-04 5.707
6π2 1.35618E-02 – 2.59590E-04 5.707
6π2 1.35618E-02 – 2.59590E-04 5.707
6π2 6.83718E-02 – 4.49167E-04 7.250
6π2 6.83718E-02 – 4.49167E-04 7.250
6π2 6.83718E-02 – 4.49167E-04 7.250

Table B.16.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the Brezzi flux
formulation. We consider Nédélec basis functions of order p = 4.
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B.2. The accuracy of the eigenvalue computations

Ainsworth-Coyle Nédélec
expected N = 40 N = 320 N = 40 N = 320

2 2.462907 2.115748 1.960473 1.993534
2 2.462907 2.115748 1.960473 1.993534
2 2.462907 2.115748 1.960473 1.993534
3 4.642731 3.248040 4.547980 3.032881
3 4.642731 3.248040 4.547980 3.032881
5 6.243371 5.680280 6.388551 4.880312
5 6.243371 5.680280 6.388551 4.880312
5 6.243371 5.680280 6.388551 4.880312
5 5.680098 4.880337
5 5.680098 4.880337
5 5.680098 4.880337
6 9.376376 6.970310 8.862083 5.923920
6 9.376376 6.970310 8.862083 5.923920
6 9.376376 6.970310 8.862083 5.923920
6 6.918196 9.047705 6.010060
6 6.918196 9.047705 6.010060
6 6.918196 9.047705 6.010060

Table B.17.: The eigenvalues of the time-harmonic Maxwell equations divided by π2

for homogeneous boundary conditions and the IP flux. We consider the
Ainsworth-Coyle basis functions as well as those of Nédélec, both of order
p = 1.
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B. Tables

Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 320 N = 5 N = 40 N = 320

2 2.299003 2.029092 2.001730 1.895775 2.001562 2.000001
2 2.299003 2.029092 2.001730 1.895775 2.001562 2.000001
2 2.299003 2.029092 2.001730 1.895775 2.001562 2.000001
3 4.368109 3.026672 3.005740 4.448459 2.944495 3.003401
3 4.368109 3.026672 3.005740 4.448459 2.944495 3.003401
5 7.622032 5.202780 5.023878 7.986376 4.627896 5.001013
5 7.622032 5.202780 5.023878 7.986376 4.627896 5.001013
5 7.622032 5.202780 5.023878 7.986376 4.627896 5.001013
5 5.392528 5.023880 5.124574 5.001014
5 5.392528 5.023880 5.124574 5.001014
5 5.392528 5.023880 5.124574 5.001014
6 6.472326 6.040603 6.223178 6.011078
6 6.472326 6.040603 6.223178 6.011078
6 6.472326 6.040603 6.223178 6.011078
6 6.600697 6.041408 6.259462 6.021748
6 6.600697 6.041408 6.259462 6.021748
6 6.600697 6.041408 6.259462 6.021748

Table B.18.: The eigenvalues of the time-harmonic Maxwell equations divided by π2

for homogeneous boundary conditions and the IP flux. We consider the
Ainsworth-Coyle basis functions as well as those of Nédélec, both of order
p = 2.
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B.2. The accuracy of the eigenvalue computations

Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 5 N = 40

2 2.069669 2.000992 2.041764 2.000390
2 2.069669 2.000992 2.041764 2.000390
2 2.069669 2.000992 2.041764 2.000390
3 3.320226 3.008612 3.337336 3.009536
3 3.320226 3.008612 3.337336 3.009536
5 5.335751 5.028795 4.407611 5.006151
5 5.335751 5.028795 4.407611 5.006151
5 5.335751 5.028795 4.407611 5.006151
5 5.627701 5.033064 5.104582 5.023819
5 5.627701 5.033064 5.104582 5.023819
5 5.627701 5.033064 5.104582 5.023819
6 6.901687 6.055216 6.642249 6.018554
6 6.901687 6.055216 6.642249 6.018554
6 6.901687 6.055216 6.642249 6.018554
6 7.607924 6.057801 7.225726 6.035535
6 7.607924 6.057801 6.035535
6 7.607924 6.057801 6.035535

Table B.19.: The eigenvalues of the time-harmonic Maxwell equations divided by π2

for homogeneous boundary conditions and the IP flux. We consider the
Ainsworth-Coyle basis functions as well as those of Nédélec, both of order
p = 3.
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Ainsworth-Coyle Nédélec
expected N = 5 N = 40 N = 5 N = 40

2 2.001799 2.000024 1.998822 2.000015
2 2.001799 2.000024 1.998822 2.000015
2 2.001799 2.000024 1.998822 2.000015
3 3.013596 3.000022 2.799304 2.999907
3 3.013596 3.000022 2.799304 2.999907
5 5.231505 5.001408 5.171833 5.000812
5 5.231505 5.001408 5.171833 5.000812
5 5.231505 5.001408 5.171833 5.000812
5 5.261293 5.001614 5.232830 5.000807
5 5.261293 5.001614 5.232830 5.000807
5 5.261293 5.001614 5.232830 5.000807
6 6.555025 6.003727 6.432361 6.002661
6 6.555025 6.003727 6.432361 6.002661
6 6.555025 6.003727 6.432361 6.002661
6 6.629222 6.004006 6.490984 6.002966
6 6.629222 6.004006 6.490984 6.002966
6 6.629222 6.004006 6.490984 6.002966

Table B.20.: The eigenvalues of the time-harmonic Maxwell equations divided by π2

for homogeneous boundary conditions and the IP flux. We consider the
Ainsworth-Coyle basis functions as well as those of Nédélec, both of order
p = 4.
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B.2. The accuracy of the eigenvalue computations

N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 1.97637E-02 – 3.23279E-03 2.612
2π2 1.97637E-02 – 3.23279E-03 2.612
2π2 1.97637E-02 – 3.23279E-03 2.612
3π2 5.15993E-01 – 1.09604E-02 5.557
3π2 5.15993E-01 – 1.09604E-02 5.557
5π2 2.77710E-01 – 2.39376E-02 3.536
5π2 2.77710E-01 – 2.39376E-02 3.536
5π2 2.77710E-01 – 2.39376E-02 3.536
5π2 – – 2.39325E-02 –
5π2 – – 2.39325E-02 –
5π2 – – 2.39325E-02 –
6π2 4.77014E-01 – 1.26801E-02 5.233
6π2 4.77014E-01 – 1.26801E-02 5.233
6π2 4.77014E-01 – 1.26801E-02 5.233
6π2 5.07951E-01 – 1.67661E-03 8.243
6π2 5.07951E-01 – 1.67661E-03 8.243
6π2 5.07951E-01 – 1.67661E-03 8.243

Table B.21.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the IP flux.
We consider Nédélec basis functions of order p = 1.
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B. Tables

N = 5 N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 5.21125E-02 – 7.80910E-04 6.060 5.67288E-07 10.427
2π2 5.21125E-02 – 7.80910E-04 6.060 5.67288E-07 10.427
2π2 5.21125E-02 – 7.80910E-04 6.060 5.67288E-07 10.427
3π2 4.82820E-01 – 1.85016E-02 4.706 1.13364E-03 4.029
3π2 4.82820E-01 – 1.85016E-02 4.706 1.13364E-03 4.029
5π2 5.97275E-01 – 7.44208E-02 3.005 2.02764E-04 8.520
5π2 5.97275E-01 – 7.44208E-02 3.005 2.02764E-04 8.520
5π2 5.97275E-01 – 7.44208E-02 3.005 2.02764E-04 8.520
5π2 – – 2.49148E-02 – 2.02825E-04 6.941
5π2 – – 2.49148E-02 – 2.02825E-04 6.941
5π2 – – 2.49148E-02 – 2.02825E-04 6.941
6π2 – – 3.71963E-02 – 1.84639E-03 4.332
6π2 – – 3.71963E-02 – 1.84639E-03 4.332
6π2 – – 3.71963E-02 – 1.84639E-03 4.332
6π2 – – 4.32437E-02 – 3.62466E-03 3.577
6π2 – – 4.32437E-02 – 3.62466E-03 3.577
6π2 – – 4.32437E-02 – 3.62466E-03 3.577

Table B.22.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the IP flux.
We consider Nédélec basis functions of order p = 2.
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B.2. The accuracy of the eigenvalue computations

N = 5 N = 40
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 2.08821E-02 – 1.94952E-04 6.743
2π2 2.08821E-02 – 1.94952E-04 6.743
2π2 2.08821E-02 – 1.94952E-04 6.743
3π2 1.12445E-01 – 3.17861E-03 5.145
3π2 1.12445E-01 – 3.17861E-03 5.145
5π2 1.18478E-01 – 1.23012E-03 6.590
5π2 1.18478E-01 – 1.23012E-03 6.590
5π2 1.18478E-01 – 1.23012E-03 6.590
5π2 2.09163E-02 – 4.76370E-03 2.134
5π2 2.09163E-02 – 4.76370E-03 2.134
5π2 2.09163E-02 – 4.76370E-03 2.134
6π2 1.07042E-01 – 3.09238E-03 5.113
6π2 1.07042E-01 – 3.09238E-03 5.113
6π2 1.07042E-01 – 3.09238E-03 5.113
6π2 2.04288E-01 – 5.92252E-03 5.108
6π2 2.04288E-01 – 5.92252E-03 5.108
6π2 2.04288E-01 – 5.92252E-03 5.108

Table B.23.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the IP flux.
We consider Nédélec basis functions of order p = 3.
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N = 5 N = 40
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

2π2 5.88970E-04 – 7.71043E-06 6.255
2π2 5.88970E-04 – 7.71043E-06 6.255
2π2 5.88970E-04 – 7.71043E-06 6.255
3π2 6.68987E-02 – 3.09774E-05 11.077
3π2 6.68987E-02 – 3.09774E-05 11.077
5π2 3.43666E-02 – 1.61465E-04 7.734
5π2 3.43666E-02 – 1.61465E-04 7.734
5π2 3.43666E-02 – 1.61465E-04 7.734
5π2 4.65655E-02 – 1.62418E-04 8.163
5π2 4.65655E-02 – 1.62418E-04 8.163
5π2 4.65655E-02 – 1.62418E-04 8.163
6π2 7.20601E-01 – 4.43459E-04 10.666
6π2 7.20601E-01 – 4.43459E-04 10.666
6π2 7.20601E-01 – 4.43459E-04 10.666
6π2 8.18307E-02 – 4.94289E-04 7.371
6π2 8.18307E-02 – 4.94289E-04 7.371
6π2 8.18307E-02 – 4.94289E-04 7.371

Table B.24.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for homogeneous boundary conditions and the IP flux.
We consider Nédélec basis functions of order p = 4.
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B.2. The accuracy of the eigenvalue computations

Ainsworth-Coyle Nédélec
expected N = 40 N = 320 N = 40 N = 320

4 4.737702 4.347081 2.629281 3.814782
4 4.737702 4.347081 2.629281 3.814782
4 4.737702 4.347081 2.629281 3.814782
4 4.737702 4.347081 2.629281 3.814782
4 4.737702 4.347081 2.629281 3.814782
4 4.737702 4.347081 2.629281 3.814782
4 5.454062 4.347081 5.690690 3.814782
4 5.454062 4.347081 5.690690 3.814782
4 5.454062 4.347081 5.690690 3.814782
4 5.454062 4.347081 5.690690 3.814782
4 5.454062 4.347081 5.690690
4 5.454062 4.347081 5.690690

Table B.25.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
periodic boundary conditions and the Brezzi flux formulation. We consider
the Ainsworth-Coyle basis functions as well as those of Nédélec, both of
order p = 1.

Ainsworth-Coyle Nédélec
expected N = 40 N = 40 N = 320

4 4.038316 3.761830 3.999209
4 4.038316 3.761830 3.999209
4 4.038316 3.761830 3.999209
4 4.038316 3.761830 3.999209
4 4.038316 3.761830 3.999209
4 4.038316 3.761830 3.999209
4 4.268175 4.233741 3.999209
4 4.268175 4.233741 3.999209
4 4.268175 4.233741 3.999209
4 4.268175 4.233741 3.999209
4 4.268175 4.233741 3.999209
4 4.268175 4.233741 3.999209

Table B.26.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
periodic boundary conditions and the Brezzi flux formulation. We consider
the Ainsworth-Coyle basis functions as well as those of Nédélec, both of
order p = 2.
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B. Tables

Ainsworth-Coyle Nédélec Ainsworth-Coyle Nédélec
expected p = 3, N = 40 p = 3, N = 40 p = 4, N = 40 p = 4, N = 40

4 4.001863 3.988441 4.000043 3.999587
4 4.001863 3.988441 4.000043 3.999587
4 4.001863 3.988441 4.000043 3.999587
4 4.001863 3.988441 4.000043 3.999587
4 4.001863 3.988441 4.000043 3.999587
4 4.001863 3.988441 4.000043 3.999587
4 4.017457 4.014236 4.000725 4.000545
4 4.017457 4.014236 4.000725 4.000545
4 4.017457 4.014236 4.000725 4.000545
4 4.017457 4.014236 4.000725 4.000545
4 4.017457 4.014236 4.000725 4.000545
4 4.017457 4.014236 4.000725 4.000545

Table B.27.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
periodic boundary conditions and the Brezzi flux formulation. We consider
the Ainsworth-Coyle basis functions as well as those of Nédélec, both of
order p = 3 and p = 4.

N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

4π2 3.42680E-01 – 4.63044E-02 2.888
4π2 3.42680E-01 – 4.63044E-02 2.888
4π2 3.42680E-01 – 4.63044E-02 2.888
4π2 3.42680E-01 – 4.63044E-02 2.888
4π2 3.42680E-01 – 4.63044E-02 2.888
4π2 3.42680E-01 – 4.63044E-02 2.888
4π2 4.22672E-01 – 4.63044E-02 3.190
4π2 4.22672E-01 – 4.63044E-02 3.190
4π2 4.22672E-01 – 4.63044E-02 3.190
4π2 4.22672E-01 – 4.63044E-02 3.190
4π2 4.22672E-01 – – –
4π2 4.22672E-01 – – –

Table B.28.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for periodic boundary conditions and the Brezzi flux
formulation. We consider Nédélec basis functions of order p = 1.
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B.2. The accuracy of the eigenvalue computations

N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

4π2 5.95425E-02 – 1.97820E-04 8.234
4π2 5.95425E-02 – 1.97820E-04 8.234
4π2 5.95425E-02 – 1.97820E-04 8.234
4π2 5.95425E-02 – 1.97820E-04 8.234
4π2 5.95425E-02 – 1.97820E-04 8.234
4π2 5.95425E-02 – 1.97820E-04 8.234
4π2 5.84352E-02 – 1.97820E-04 8.207
4π2 5.84352E-02 – 1.97820E-04 8.207
4π2 5.84352E-02 – 1.97820E-04 8.207
4π2 5.84352E-02 – 1.97820E-04 8.207
4π2 5.84352E-02 – 1.97820E-04 8.207
4π2 5.84352E-02 – 1.97820E-04 8.207

Table B.29.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for periodic boundary conditions and the Brezzi flux
formulation. We consider Nédélec basis functions of order p = 2.

p = 3, N = 40 p = 4 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2

‖ω2−ω2
h‖L2

ω2

4π2 3.55897E-03 1.03388E-04
4π2 3.55897E-03 1.03388E-04
4π2 3.55897E-03 1.03388E-04
4π2 3.55897E-03 1.03388E-04
4π2 3.55897E-03 1.03388E-04
4π2 3.55897E-03 1.03388E-04
4π2 2.88970E-03 1.36135E-04
4π2 2.88970E-03 1.36135E-04
4π2 2.88970E-03 1.36135E-04
4π2 2.88970E-03 1.36135E-04
4π2 2.88970E-03 1.36135E-04
4π2 2.88970E-03 1.36135E-04

Table B.30.: The error in the eigenvalues of the Maxwell problem for periodic boundary
conditions and the Brezzi flux formulation. We consider Nédélec basis
functions of order p = 3 and p = 4.
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B. Tables

Ainsworth-Coyle Nédélec
expected N = 40 N = 320 N = 40 N = 320

4 4.805947 4.428548 2.723988 3.859787
4 4.805947 4.428548 2.723988 3.859787
4 4.805947 4.428548 2.723988 3.859787
4 4.805947 4.428548 2.723988 3.859787
4 4.805947 4.428548 2.723988 3.859787
4 4.805947 4.428548 2.723988 3.859787
4 6.240312 6.408342 3.859787
4 6.240312 6.408342 3.859787
4 6.240312 6.408342
4 6.240312 6.408342
4 6.240312 6.408342
4 6.240312

Table B.31.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
periodic boundary conditions and the IP flux. We consider the Ainsworth-
Coyle basis functions as well as those of Nédélec, both of order p = 1.

Ainsworth-Coyle Nédélec
expected N = 40 N = 320 N = 40 N = 320

4 4.044400 4.011886 3.791082 4.002704
4 4.044400 4.011886 3.791082 4.002704
4 4.044400 4.011886 3.791082 4.002704
4 4.044400 4.011886 3.791082 4.002704
4 4.044400 4.011886 3.791082 4.002704
4 4.044400 4.011886 4.002704
4 4.342215 4.011886 4.345547 4.002704
4 4.342215 4.011886 4.345547 4.002704
4 4.342215 4.011886 4.345547 4.002704
4 4.342215 4.011886 4.345547 4.002704
4 4.342215 4.011886 4.345547 4.002704
4 4.342215 4.011886

Table B.32.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
periodic boundary conditions and the IP flux. We consider the Ainsworth-
Coyle basis functions as well as those of Nédélec, both of order p = 2.
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B.2. The accuracy of the eigenvalue computations

Ainsworth-Coyle Nédélec Ainsworth-Coyle Nédélec
expected p = 3, N = 40 p = 3, N = 40 p = 4, N = 40 p = 4, N = 40

4 4.001953 3.989216 4.000800 3.999597
4 4.001953 3.989216 4.000800 3.999597
4 4.001953 3.989216 4.000800 3.999597
4 4.001953 3.989216 4.000800 3.999597
4 4.001953 3.989216 4.000800 3.999597
4 4.001953 3.989216 4.000800 3.999597
4 4.020750 4.022007 4.000801 4.000842
4 4.020750 4.022007 4.000801 4.000842
4 4.020750 4.022007 4.000801 4.000842
4 4.020750 4.022007 4.000801 4.000842
4 4.020750 4.022007 4.000801 4.000842
4 4.020750 4.022007 4.000801 4.000842

Table B.33.: The eigenvalues of the time-harmonic Maxwell equations divided by π2 for
periodic boundary conditions and the IP flux. We consider the Ainsworth-
Coyle basis functions as well as those of Nédélec, both of order p = 3 and
p = 4.

N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

4π2 3.19003E-01 – 3.50532E-02 3.186
4π2 3.19003E-01 – 3.50532E-02 3.186
4π2 3.19003E-01 – 3.50532E-02 3.186
4π2 3.19003E-01 – 3.50532E-02 3.186
4π2 3.19003E-01 – 3.50532E-02 3.186
4π2 3.19003E-01 – 3.50532E-02 3.186
4π2 6.02085E-01 – 3.50532E-02 4.102
4π2 6.02085E-01 – 3.50532E-02 4.102
4π2 6.02085E-01 – – –
4π2 6.02085E-01 – – –
4π2 6.02085E-01 – – –
4π2 6.02085E-01 – – –

Table B.34.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for periodic boundary conditions and the IP flux. We
consider Nédélec basis functions of order p = 1.
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N = 40 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2 order ‖ω2−ω2

h‖L2
ω2 order

4π2 5.22296E-02 – 6.76000E-04 6.285
4π2 5.22296E-02 – 6.76000E-04 6.285
4π2 5.22296E-02 – 6.76000E-04 6.285
4π2 5.22296E-02 – 6.76000E-04 6.285
4π2 5.22296E-02 – 6.76000E-04 6.285
4π2 – – 6.76000E-04 –
4π2 8.63868E-02 – 6.76000E-04 7.011
4π2 8.63868E-02 – 6.76000E-04 7.011
4π2 8.63868E-02 – 6.76000E-04 7.011
4π2 8.63868E-02 – 6.76000E-04 7.011
4π2 8.63868E-02 – 6.76000E-04 7.011
4π2 – – – –

Table B.35.: The error in the eigenvalues of the Maxwell problem and the corresponding
order of accuracy for periodic boundary conditions and the IP flux. We
consider Nédélec basis functions of order p = 2.

p = 3, N = 40 p = 4 N = 320
eigenvalue ‖ω2−ω2

h‖L2
ω2

‖ω2−ω2
h‖L2

ω2

4π2 2.69607E-03 1.00703E-04
4π2 2.69607E-03 1.00703E-04
4π2 2.69607E-03 1.00703E-04
4π2 2.69607E-03 1.00703E-04
4π2 2.69607E-03 1.00703E-04
4π2 2.69607E-03 1.00703E-04
4π2 5.50185E-03 2.10475E-04
4π2 5.50185E-03 2.10475E-04
4π2 5.50185E-03 2.10475E-04
4π2 5.50185E-03 2.10475E-04
4π2 5.50185E-03 2.10475E-04
4π2 5.50185E-03 2.10475E-04

Table B.36.: The error in the eigenvalues of the Maxwell problem for periodic boundary
conditions and the IP flux. We consider Nédélec basis functions of order
p = 3 and p = 4.
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