
March 31, 2015

BACHELOR ASSIGNMENT

PROTOTYPE FOR NON-
COLLINEAR WAVE MIX-
ING: SOFTWARE IM-
PLEMENTATION

J.J.J.W. Dekker

Faculty of Mechanical Engineering,
TM

Exam committee:
A. de Boer, R. Loendersloot, J.M. Jauregui Becker

Documentnumber
TM — 5751

Contents

1 Introduction 1

2 Non-Collinear Wave Mixing 3

3 Prototype Assembly 5
3.1 Movement . 5
3.2 Watertight . 5
3.3 Concluding remarks . 6

4 Hardware 9
4.1 Switches . 9
4.2 Encoders . 10
4.3 Motor drivers . 11
4.4 Breakout board . 13
4.5 Concluding remarks . 14

5 Software 17
5.1 C++ . 17
5.2 Arduino . 18
5.3 LabVIEW . 20
5.4 Concluding remarks . 20

6 Testing 23
6.1 Test1: 1 Motor . 25
6.2 Conclusion test 1 . 25
6.3 Test2: 2 Motor . 26
6.4 Conclusion test 2 . 28
6.5 Test 3: The Arduino script . 29
6.6 Conclusion test 3 . 31
6.7 Concluding remarks . 32

7 Conclusion and Recommendation 33
7.1 Conclusion . 33
7.2 Recommendation . 34

A Hardware 37
A.1 Switches . 37
A.2 Pins . 37
A.3 Breakout Board . 38
A.4 Wires and connectors . 40

B C++ 41
B.1 Vector library . 43

C Arduino 45

iii

CONTENTS

D LabVIEW 47

E Testing 51
E.1 Test1 script . 51
E.2 Test2 script . 51

iv

Chapter 1

Introduction

The present work is a collaboration project that was carried out between the University Twente and
WETSUS. The objective of the project called Ultrasonic Inspection of Water Distribution Mains was
to develop techniques that could be used for the inline inspection of water distribution mains in the
Netherlands. The water distribution mains in the Netherlands usually are made of PVC, Asbestos
Cement or Cast Iron [1].

The project started with finding an effective technique for detecting material deterioration in the
materials used for water distribution mains in laboratory controlled conditions. Research done by
Demčenko [2] proved NCWM to be suitable for the identification of physical ageing in PVC. With that
technique in mind a prototype has been designed and partially completed by Mainini [3] for testing in
laboratory controlled conditions. This prototype itself will not leave the laboratory, but the concept will
be used for making a inspection device which will be used in water mains. The prototype itself should
also be able to do measurement techniques like diffuse field and pulse-echo however these techniques
will not be discussed in detail since NCWM technique is more complex.

Mainini has finished the holding and moving system for the transducers and the casing around it.
Furthermore most of the control system was finished. The control system can be split up in a hardware
and a software part. For the hardware 1 motor + encoder, 1 motor driver, 12 photo-resistors, an Arduino
and a breakout board to connect all the hardware with each other were prepared. A more detailed
explanation about the hardware will be given in the chapter 4.

The Arduino is a single-board microcontroller, so a script was programmed to make it able to control
things like the motor drivers. Arduino scripting is the same as C++ scripting apart from some simpli-
fication which makes it easier to use for people with little programming knowledge. It also has some
limitations because of tight memory constraints. The bare Arduino environment itself does not have
much functionality. That can be solved by adding libraries in the form of C++ header files. Mainini cre-
ated and found a couple of libraries which made the Arduino have extra functionality in working with the
hardware of the prototype and handling input data. The last component to finish the software part is the
user interface which was made in LabVIEW. Through the LabVIEW UI commands can be given to the
Arduino which gives a corresponding action command to the other hardware components. The Arduino
also returns human readable feedback to the LabVIEW UI. A more detailed explanation of the software
will be given in chapter 5.
In figure 1.1 a scheme can been seen on how all elements are connected and communicate with each
other for the full system. The solid line blocks are hardware components and the dashed line blocks are
software components.

The initial objective of this BSc Assignment was to finalise the prototype assembly and to test if the
system works in laboratory controlled conditions. The assignment can be split up in a section prototype
assembly, control system and testing. According to Mainini [3] the following things still needed to be
done:

• Prototype assembly

– The installation of 5 of the 6 motors encoders and motor drivers (1 of each has already been
installed).

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The hardware scheme for the system with an addition of the software scheme. The blocks
with dashed lines are software components and the blocks with solid lines are the hardware compo-
nents.

– The installation of the 3 ultrasonic transmitters.

– Make the assembly watertight.

• Control system

– Finalize parts of the Arduino script.

– Recheck if LabVIEW is truly and fully coherent with the Arduino software.

– Check if the safety rules are well implemented.

• Testing

– Test if the assembly works with more than one motor and driver attached.

During the first weeks of orientation it was soon discovered that the control system part lacked useful
documentation to fully continue with the testing part. Furthermore the breakout board was seemingly
not completed and the way it worked was also unclear. Because of that the main focus of the assignment
shifted to fixing and completing to control system part so it would be possible to test the prototype after
that. Also proper documentation on this part was necessary for further developments of the system.

The reformulated objective of this assignment is to deliver an operational control system, including
proper documentation of the connection and functions of the system in terms of software and hardware.
To be able to do that it is first required to get some general knowledge of the Non-Collinear Wave Mixing
technique which will be discussed in chapter 2. From the general concept of the NCWM technique the
requirements for the prototype concept can be made. Which can be read in chapter 3. After that the
control system of the assembly will be discussed in chapter 4 and 5. Finally chapter 6 will contain some
tests to check if the control system is working and the report is then finished off with a conclusion and
some recommendations for future work.

2

Chapter 2

Non-Collinear Wave Mixing

Rather than explaining the detailed of the NCWM theory, only the general concept of the NCWM theory
will be explained here. More information about the NCWM theory can be found in the reports of Main-
ini [3] and of Demčenko [2].

Materials generally exhibit non-linear behaviour. Usually these non-linearities tend to be small and
are ignored in most cases because of practicality. However these non-linearities are more sensitive to
subtle changes in the material than the linear material parameters which makes them very useful for
inspecting material degradation or small damages like micro-cracks. A non destructive way to study
these non-linearities is by using ultrasonic techniques. The ultrasonics technique can be spilt up in
linear ultrasonics and nonlinear ultrasonics. Nonlinear ultrasonics is preferable to usual linear ultrasonic
techniques since it is much better at detecting non-linearities in the material [2]. For the nonlinear ul-
trasonics there are several techniques of which NCWM is also preferable compared to some non-linear
ultrasonics like harmonic generation since the interpretation of the measurement are less complex.

Without going too much into the theoretical details of NCWM the techniques working can be seen
in figure 2.1. The technique of NCWM works with the principle that two transducers generate linear

Figure 2.1: The concept of Non-Collinear Wave Mixing. Two generated waves generate under the right
conditions a third wave. The area in where they interact is called the interaction volume. Figure taken
from Mainini [3].

ultrasonic beam which will interact in a non-linear way in the object under inspection to form a new

3

CHAPTER 2. NON-COLLINEAR WAVE MIXING

wave. From the active volume of the material the new wave will propagate in two directions, one in
forward direction and the other one in opposite direction. The wave which propagates forward through
the material has a bigger intensity than the one that is going in the opposite direction however in wa-
ter mains only the single-sided configuration is an option. NCWM is not the most easy technique
since for nonlinear interaction of elastic waves a lot of conditions need to be satisfied which means
that certain types of interactions cannot exist, “only 10 out of the 54 potential interactions are possi-
ble” [2, p.13]. One of the possible interactions to create a new wave is a shear wave and a longitudinal
wave: SV (ω1) + L(ω2)→ L(ω1 + ω2). The frequency of the output wave is the sum or the difference of
the frequency of the parent waves, which depends on the interaction angle and frequency ratio of the
parent waves. Even without knowing the details of the underlying theory it is pretty clear from figure 2.1
that the angle and the position of the transducers with respect to each other and the material is very
important for the creation and the reflection of the non-collinear wave. However since the conditions
for creation of the new wave are so precise it is relatively easy to extract the resonant scattered waves
from the total wave field by narrow-band filtering because you know what kind of waves would be cre-
ated because of the conditions. Furthermore non-linearities or deviations in the signal from the emitting
transducers are not in the new wave, since the do not fulfil the conditions for the generation of the new
wave and are thus not contributing to the newly generated wave.

From this chapter it has become clear how important the angle and the position of the transducers
with respect to each other and the material for the NCWM method is. The need for that precision has
been implemented in the design of the prototype and will be discussed in the next chapter.

4

Chapter 3

Prototype Assembly

From the previous chapter it has become clear that the angle and the position of the transducers with
respect to each other and the material is very important for the NCWM method. The design of the
prototype has been highly driven by those precision requirements and the requirement to operate in
single-sided configuration. The exact design details will not be discussed in here again as they can be
read in the report by Mainini [3]. Mainini took care of the movement issue and made a beginning with
making the assembly watertight however he did not have time to finish that last part. Both parts will be
discussed below to give a quick view on assembly status and the things that still need to be done.

3.1 Movement

To be able to comply with the high accuracy requirement of the angle and the precision a spindle has
been chosen with a small pitch on which the transducers carriages can move. The transducer itself is
held by a transducer holder which is attached to a metal rectangular plate as can be seen in figure 3.1.
One side of the plate with a hole is attached to the lower carriage on the lower spindle, the other side
of the plate with a slit is attached to upper carriage on the other spindle. The reason for that is to make
the rotation point of the transducer as close as possible to tip of the transducer to accurately change
the angle while maintaining the same position of the tip.

3.2 Watertight

The prototype needs to be watertight for the testing in a water main simulated laboratory setting. With
the prototype that has been prepared the construction exist out of two separate compartments, the
transducer compartment and the motor compartment. The motor compartment has three things that
need to be made watertight. Firstly the holes in the compartment’s lid through which the spindles have
to go through to get attached to the motor. Secondly the opening of the compartment box where the lid
in figure 3.2 goes on and lastly the hole through which the (motor encoder) wires need to go through.
For the holes in the compartment’s lid a metal ball-bearing holders have been glued into place to make
that connection watertight. As for the hole in those holders a rubber ring has been glued in place as
can be seen in figure 3.2. When the spindle goes through the ball-bearing holder hole the plastic under
the ball-bearing and the rubber ring will make a seal.

As for the lid opening a rubber band has been prepared as can be seen in figure 3.3. The rubber
band goes over the inner “edge” of the lid and makes a water and airtight seal when the lid and the
motor compartment box are tightly screwed together.

Finally the wire hole solution was a bit more difficult since the wires would also need to go through
and it would be preferred if it would still be possible to de-assembly the whole assembly. After some
research a possible solution called a ‘watertight wire seals’ (WWS) was found (in Dutch ‘kabelwartel’). It
can also be found with the name ‘liquid tight cable glands’ or something similar (a standard name could
not be found). In figure 3.4 a picture can be seen of how they usually look like. Most WWS work with the
principle that they have a rubber which wraps around the wires tightly once the WWS has been turned

5

CHAPTER 3. PROTOTYPE ASSEMBLY

Figure 3.1: The trandsucer holder. If both motors are on the transducer holder will have a translational
movement and the spindle position stays the same. If only the motor of the upper spindle is on the holder
will move around the virtual rotation point and the spindle position of the upper spindle will change.

Figure 3.2: The ball-bearing holder with the rubber ring glued into place.

into place. Common WWS on the market have a maximum size of 1 cm in diameter. Unfortunately the
current wire hole is 1.95 cm in diameter. The possibilities with the WWS as a watertight solutions could
be to find a bigger WWS on specialized websites for wires or WWS. Another option would be to remake
the motor compartment so individual holes for WWS can be made for each motor. The last option would
also solve the difficulty of having to pack all the 6 encoders wires watertight together.

3.3 Concluding remarks

Since the focus of this assignment was shifted to completing the control system the construction of the
prototype has not been finish. This chapter was meant to give an introduction about the construction
of the prototype and to give some input for making the assembly watertight to enable quick future

6

CHAPTER 3. PROTOTYPE ASSEMBLY

Figure 3.3: Rubber sealing band for the compartment lid.

Figure 3.4: Watertight wire seals.

continuation. The only visible change of the assembly status from the starting point of this assignment
is that all 6 motors and encoders are now available and some minor adjustments and assembly things
have been done. For the transducers the ones already available in the testing laboratory will be used,
however for the future it is possible to look into getting traducers with the specifications that Mainini gave
in his report [3].

7

CHAPTER 3. PROTOTYPE ASSEMBLY

8

Chapter 4

Hardware

The hardware components of the prototype consist of the motors and the attached encoders, motor
drivers, photo resistors which work like switches and the Arduino board. In figure 4.1 a diagram can be
seen with arrows indicating in which direction information flows and how the components are connected.
The Arduino itself is connected with the PC and communication goes both ways between the PC and
the Arduino.

Figure 4.1: A schematic of the hardware connections.

In figure 4.1 the hardware connection for the control of one transducer can be seen. The Arduino
gives information to the motor drivers on how to move their motors. The motor drivers are also con-
nected to the motors to tell them to turn. The encoders subsequently tell the Arduino information about
the rotation of the motors. The photo resistors are placed on both ends of the rails and give a signal to
the Arduino to indicate if the carriages have moved over the photo resistors.

4.1 Switches

The switches/photoresistors on the rails work to prevent the carriages which hold the transducers hold-
ers from moving too far and off the rails and they also function as a home reference point. The principle
can be seen in figure 4.2.

R1 and R3 are normal resistors and R2 is the variable resistor which resistance decreases with light
intensity.
When R3 � R1 is taken, then Vout will be almost the same as Vin if the photoresistor gets completely
covered according to the formula 4.1.

Vout = Vin ·
R2 ·R3

R1 · (R2 +R3) +R2 ·R3
(4.1)

9

CHAPTER 4. HARDWARE

Figure 4.2: Photo resistor circuit.

The resistance of R2 will increase with the ‘blockage’ of the light intensity by the carriage which results
in Vout getting closer to the Vin value. With a specified threshold value of Vout the ‘blockage’ of the light
intensity by the carriage is detected by the Arduino as a sign that the motor carriage is on the home
position. On the breakout board the photo resistor circuit looks like figure 4.3 .

Figure 4.3: Photo resistor circuit on breakout board.

4.2 Encoders

The encoder is a two-channel hall effect encoder. The output of both encoders are square waves from
0 V to Vcc, both waves are about 90◦ out of phase. By counting both the rising and falling of the waves
from E A and E B it is possible to get 48 counts per revolution of the motor shaft. Using only one output
results in 12 counts per revolution of the motor shaft [7]. For reading an encoder output an interrupt
(pin) is needed. In this prototype only the output of encoder E A is read by an interrupt pin since the
Arduino Mega 2560 only has 6 interrupt enabled pins. How exactly the encoder can be used to read the
speed of the motor can be found on wikipedia [13].
The encoder has 6 wires with the following function:

Red Motor power A

Black Motor power B

Green Encoder ground

Blue Encoder Vcc (3.5-20V)

Yellow E A/ Encoder A output

10

CHAPTER 4. HARDWARE

White E B/ Encoder B output

The red and the black wire need to be connected to the M a and M b output of the motor driver
respectively. The other wires need to be connected to pins on the Arduino which will be discussed in
the breakout board section.

4.3 Motor drivers

The motor drivers main component is the h-bridge which leads to several pin part of the logical interface.
An H-bridge is an electronic circuit that allows the motor to be able to run forwards and backwards by
changing the value of the EN,DI and DIR pins according to figure 4.4. It enables a voltage to be applied
across the motor in either direction. The H-bridge can be seen in figure 4.5.

Figure 4.4: EN/DI/DIR with the H-bridge [4].

Figure 4.5: Motor driver [16]. The H-bridge is the black chip in the middle.

The yellow pin array in figure 4.5 has the following pins:

Ground (GND) The ground of the chip.

11

CHAPTER 4. HARDWARE

Power (Vcc) The power input of the chip.

Serial Clock (SCK) It is part of the Serial Peripheral Interface (SPI), a synchronous serial communica-
tion interface with a Master-Slave structure. On the SCK pin the output is done by the master [6].

Master Output, Slave Input (SI/MOSI) It is part of the SPI. On the SI pin the output is done by the
master [6].

Master Input, Slave Output (SO/MISO) It is part of the SPI. On the SO pin the output is done by the
slave [6].

Slave/Chip Select (CS) It is part of the SPI. On the CS pin the output is done by the master if the pin
value is put on LOW [6].

Direction input (DIR) . The HIGH/LOW value on this pin decides the direction of the motor.

Disable (DI) Shutdown. With this pin you can shut-down the motor if the value is put on HIGH.

Pulse-width modulation (PWM) It is used to get analogue results with digital means. It changes the
speed of the motor by creating a square wave between 0V and 5V depending on the PWM fre-
quency value which can be given from 0 to 255 with 0=0V and 255=5V.

Enable (EN) With this pin you can turn on the motor if the value is set to HIGH and the DI pin is set to
LOW.

In figure 4.6 it can be seen that DIR, PWM, DI and EN are part of the control logic of the motor
driver. That means that the motor is controlled by the input the motor driver gets from those pins. The
remaining pins apart from the GND and Vcc are for the SPI. SPI can be used to send data between
micro controllers and peripherals. However since the SPI functionality was not implemented in the soft-
ware by Mainini so its functionality will not be discussed in detail. From figure 4.6 it can be seen that
the SPI is linked to, current limitation, over temperature and over- and undervoltage. With the SPI it
is possible to monitor those values and set limitations for them. The Arduino board has a special pin
cluster called ICSP (In-Circuit Serial Programming, which is a protocol for programming micro controller
devices [17]) (figure 4.7) on which the SCK, SI and the SO pins of the motor drivers can be connected
to. The remaining pins are connected to other pins of the Arduino as specified in the PinDef.h file.

Figure 4.6: Motor drivers pin functions [5].

12

CHAPTER 4. HARDWARE

Figure 4.7: ICSP

4.4 Breakout board

To be able to connect these components in a more easy and clear way a breakout board has been
prepared. In figure 4.8 the breakout board schematic can be seen and figure 4.9 shows the finished
product.
Each box indicates a pin. The dotted lines within some pin boxes are an indication that it does not
matter if they are connected, the solid lines mean that the pins are not connected.

Figure 4.8: Breakout board schematic. In the legend can be seen which pins are for which motor. Two
pins with corresponding names mean that those two pins are connected.

The breakout board has several rows of pins as can be seen. Most pins have a name/abbreviation,
the pins with the same name in them are connected with each other. Below each set of columns the

13

CHAPTER 4. HARDWARE

hardware component it is connected to is written. Pins that belong to one motor control system are
highlighted in the same colour as the legend in the same figure also shows. The resistor block on the
side is 12 times the switch circuit mentioned in section 4.1 below each other. The block on the bottom
is the power and ground connector, they should be attached to the 5V and the ground of the Arduino
respectively. A more detailed explanation can be found in Appendix A.

Figure 4.9: Breakout board.

4.5 Concluding remarks

This chapter gave a clear as possible explanation on how to connect the hardware components and
what their functions are. Apart from only the breakout board also the connection wires for the hardware
components were prepared to complete the hardware part of the prototype. The wires can be seen in
Appendix A. The full assembly of the hardware with two motors (without the switch wires) can be seen
in figure 4.10.

14

CHAPTER 4. HARDWARE

(a) Connecting the motor power.

(b) Connecting the yellow in array
of motor driver 6. The connection
on the breakout board should be
on the pin row behind the current
one.

(c) Connecting the motor driver
power (, do this two times).

(d) Connecting motor 5. (e) Connecting the interrupt pins. (f) Connecting pwm pins.

(g) Connecting the motor 6 pins to
the Arduino.

(h) Connecting the motor 5 pins to
the Arduino. (i) The total assembly of 2 motors.

Figure 4.10: The assembly of two motors.

15

CHAPTER 4. HARDWARE

16

Chapter 5

Software

The software of the control system of the prototype consist of several components based on C++,
LabVIEW scripting and Arduino scripting.

Figure 5.1: A schematic of the software components.

In figure 5.1 a schematic of the software components can be seen. The LabVIEW component is the
human interface. Through the LabVIEW UI it is possible to adjust parameters, positions, angles and
communicate things with the Arduino. The C++ scripts are libraries to the Arduino in this case. The
library contains classes, variables and functions that are called on in the Arduino script.

5.1 C++

As mentioned in the introduction the Arduino script uses libraries as an extension on the Arduino envi-
ronment to be able connect other hardware to the Arduino. The libraries contain functions and classes
which can be used in the Arduino script once they are included. These libraries will need to be installed
in the Arduino folder on the computer that is used to control the prototype.

The Arduino is controlled by the user interface which has been made in LabVIEW. To be able to pro-
cess the commands given to the Arduino the library BUFFER2 and COMMAND have been created. The
first library processes the string of data it gets from the Serial and divides them into individual smaller
chunks. The COMMAND library then inspects those chunks and makes a usable command of them.
These command types can be split up into two types. One for controlling the prototype movement and
the other one for data storage.

17

CHAPTER 5. SOFTWARE

To make the Arduino control the system first every pin has to be defined, that is done in the PinDef
library.

The prototype itself has several parameters and variables which are used to control the motor. That
data is stored on the Arduino’s internal memory (EEPROM), the MEMORY and the EEPROMEx library
are both made for storing the data on the Arduino. The MEMORY library specifies how many bytes ev-
ery variable and parameter is allowed to be and the EEPROMEx library is an extension on the standard
EEPROM library to store data in a better and more efficient way.
With each action of the prototype or command given to the Arduino a corresponding board status exist.
The STATUS library was made to define and save that status.

Finally there are some libraries needed to control the position of the system. The TRANSDUCER,
MOTOR2 and PID library are used for that. The TRANSDUCER library is used to set the positions of
the transducers and the corresponding carriage positions. Those carriage positions are converted the
amount of turns the motor would have to make by the TRANSDUCER library and that data is then given
to the MOTOR2 library. The MOTOR2 library is used for turning the motors and specifies the properties
of each motor. When the system is not on manual mode the PID library calculates the speed for the
motors with the PID methode.

Only two libraries now remain the SWITCH library and the ONOFF. The SWITCH library is used
monitoring the switch circuit to know when the carriage is homed. The ONOFF library has as function
to give ON the value 1 and OFF the value 2.
In Appendix B more details can be found on what the libraries do.

5.2 Arduino

The Arduino script is a combination of several functions each with their own purpose. They are all are
part of a main file for controlling the motor called NDT controller b 0 3.ino .

The main file includes the libraries that are used. It defines some of the first variables and it contains
the script below which will be explained bit by bit.

First a serial port is opened and the data rate is set to 19200 bps. Then the SPI bus is initialized by
setting SCK, MOSI, and SS to outputs, pulling SCK and MOSI low, and SS high.

1 void setup () {
S e r i a l . begin (19200) ;

3 SPI . begin () ;

Now the Interupt pins are initialized so that they are associated with the corresponding interrupt func-
tions. The attachInterrupt are meant for making things happen automatically in micro controller pro-
grams and for helping solve timing problems. They are now used to read the encoder A output.

1 a t t a c h I n t e r r u p t (0 , In te r1 , intMode) ;
a t t a c h I n t e r r u p t (1 , In te r2 , intMode) ;

3 a t t a c h I n t e r r u p t (2 , In te r3 , intMode) ;
a t t a c h I n t e r r u p t (3 , In te r4 , intMode) ;

5 a t t a c h I n t e r r u p t (4 , In te r5 , intMode) ;
a t t a c h I n t e r r u p t (5 , In te r6 , intMode) ;

Finally it is checked if it is the first time of start-up. If it is the EEPROM, the internal memory is initialized
else the EEPROM will be read by the readEEPROM function.

i f (EEPROM. readByte (FIRST TIME) == f a l s e) {
2 s ta r tUp () ;

} ;

18

CHAPTER 5. SOFTWARE

4 readEEPROM () ;
}

Once the void setup() part is finished the script will loop the void loop() part.

1 void loop () {

Through the LabVIEW UI it is possible to communicate with the Arduino by giving it commands. That
string is sent to the Serial (port).
The BUFFER2 library reads out the Serial (port) and makes sure that any command messages are
recorded. Then the command is read and the proper action is induced.

1 BUFF. update () ;
command . writeNew (BUFF. b u f f I n E x t r a c t ()) ;

3 ac t i on () ;

The possible actions can be divided in 2 groups. One group is meant for controlling the prototype. The
other group is meant for data saving, manipulation and getting information.

The action group for controlling the prototype:

ABT It switches off all motors.

HOM It puts the status on HOMEING. Which will cause the motors to be sent to the homing
position.

POS It calculates the carriage positions and gives the information to the MOTOR2 library.

CNF It can configure the final positions of the carriages by moving the motor a little bit.

The action group for data saving, manipulation and getting information:

BRN It burns information describing the configurations to the EEPROM of the Arduino.

STS It prints the actual status to the Serial port.

PAR If the command is a question then it will print the motor state of the motor and print all other
parameters. If it is not a question then it sets the parameters of a specified motor.

RPT It returns the previous used command. It does not do anything else apart from that.

UPD It updates the information the LabVIEW UI has on the system.

After that it is checked if the status was put on HOMEING or CONFIG.
If the status is HOMEING the motors will be moved to their home position, if the status is CONFIG
the user is able to configure the motor positions. If the status was not HOMEING or CONFIG the script
will check if the motors are on the right locations and will move the motors to the right location if needed.

1 i f (STATUS==HOMEING) {
homeSet () ;

3 }else i f (STATUS==CONFIG) {
c o n f i g u r a t i o n () ;

5 }else{
switchOnMotors () ;

7 } ;

After that it will print the time to the Serial (port) as human-readable ASCII text.

1 S e r i a l . p r i n t (m i l l i s ()−t ime) ;
S e r i a l . p r i n t (’\n ’) ;

3 t ime= m i l l i s () ;
}

19

CHAPTER 5. SOFTWARE

Figure 5.2: The route of a command CNF given in the LabVIEW UI.

So for example if the configuration command is given to adjust the position of one of the carriages
slightly then the command given in the LabVIEW UI will follow the route which can be seen in figure
5.2. If the command string is longer than one command then it splits it into individual commands else
only the backslash will be removed with the BUFFER2 library. The COMMAND library writes the current
command to be the newCommand and then the action function will check which case corresponds to
the commmand string it is given. After the case CNF is selected the configuration function is started.

The Arduino script functions will be discussed in more detail in the Appendix C.

5.3 LabVIEW

The LabVIEW UI is based on a script which was already available for the XY traverse system available
in the laboratory of the chair of Production Technology. The main differences are that Mainini added a
Configuration panel (figure 5.3a) and an Arduino Control panel (figure 5.3b) to the already existing pan-
els. He also added a small section to the main panel for changing the configuration of the transducers
(figure 5.6). A bigger figure of figure 5.3a and 5.3b can be found in Appendix D. The current LabVIEW
UI does only work on the computer in the lab because of the disk location of some files. However this
problem will not be looked into during this project and further functioning of the LabVIEW script is be-
yond the scope of this assignment.

(a) The Configuration panel in the LabVIEW UI.
(b) The Arduino Command panel in the LabVIEW
UI.

5.4 Concluding remarks

This chapter explained how the basics of the control system work and how the prototype is controlled
by it. The Arduino script and the Library scripts have been debugged, edited and added where it was
needed. The script is compiling without error which means that the Arduino script and the Library
script are now free of bugs(, maybe apart from some hard to find ones). However a few problems have

20

CHAPTER 5. SOFTWARE

(a) The section to change parameters of the trans-
mitters and change the angles and positions.

(b) The section to change the angles and positions
of the transducers.

(c) The section with information about the motor be-
ing homed, being on or off and also the section to
change the PDI values.

(d) The section with scanning information and the
configuration scheme.

Figure 5.4: The Configuration panel in the LabVIEW UI in parts.

been found within the finished script. The problems concern the way the motors are moved which will be
discussed in the next chapter and the method of vector calculations which will be discussed in Appendix
B. Even with those problems the script is functioning, however solving those problems would improve
the script.

21

CHAPTER 5. SOFTWARE

(a) The section initialize the communication and
connection with the Arduino and receives Arduino
errors.

(b) The section to change the default script param-
eters of the prototype.

(c) The section with the command window. With
and output of what has been send to the Serial by
the user and what the Arduino replies in return.

(d) The section with the command dictionary and
the operation string.

Figure 5.5: The Arduino Command panel in the LabVIEW UI in parts.

Figure 5.6: A section of the Home panel in the LabVIEW UI for the configuration scan.

22

Chapter 6

Testing

To finalize the assignment it is needed to know if the hardware and the software are functioning like they
should be since it is not known if the prototype works for certain. To test that the following three tests
will be done:

• Test the breakout board and the hardware by controlling one motor.

• Test the possibility of the system to move two motors at the same time since the current Arduino
script is written in such a way that it will only move one motor at a time.

• Test the Arduino script to see if it works correctly and to find and solve any hidden bugs.

To prepare the Arduino program to upload the scripts (for the tests) the following things have to be done:

• Install the Libraries on the computer that is connected to the Arduino. The guide for that is on the
Arduino website.

• Select the right board in the Arduino program through “Tools-Board-Arduino Mega or Mega2560”.

Communication with the Arduino without using the LabVIEW UI can be done use the Serial monitor
(figure 6.1). Before any communicating can be done it is necessary to select the same data rate in the
bottom left corner as for the Serial.begin() command else only gibberish (,letters and symbols of random
length and order) will appear automatically in the output window.

(a) Serial monitor button. (b) Serial monitor.

Figure 6.1: The Serial Monitor.

23

CHAPTER 6. TESTING

To communicate with the Arduino through the Serial monitor the commands need to have a certain
format. This format can be seen in table 6.1. To make a command like PAR a question (,in this case to
ask the parameters instead of setting them) put a question mark in front of it: ?PAR. For a command like
POS1ANG50 that changes the angle of transducer 1 to 50 degrees the root consists of the first 3 letter
and the branch is everything behind the root. The root can only consist of letters the branch can also
contain numbers. To end a command a ‘\’ is required to be put behind the command. This is needed
for the script to understand that the information before the ‘\’ is a command and it can also be used to
separate multiple command written after each other before sending them.

Q Root Branch End char.
“?” ABC 123DEF “\”

Table 6.1: Table with the command structure.

For testing the whole system the pin defining list of Mainini can be seen in a table in table 6.2.
In figure 6.2 the front side of the Arduino can be seen with the pin (holes) and the corresponding

DI EN DIR PWM SP SELECT E A E B SWITCH 1 SWITCH 2
M 1 10 11 12 4 13 2 14 0 1
M 2 15 16 17 5 22 3 23 2 3
M 3 24 25 26 6 27 18 28 4 5
M 4 29 30 31 7 32 19 33 6 7
M 5 34 35 36 8 37 20 38 8 9
M 6 39 40 41 9 42 21 43 10 11

Table 6.2: The pin definitions put in a table.

numbers/names.

Figure 6.2: The Arduino front side [9].

24

CHAPTER 6. TESTING

6.1 Test1: 1 Motor

To quickly test if the hardware is functioning correctly it is possible to run the Arduino script below which
will move one motor if the hardware is functioning like it should. Through the Serial Monitor mentioned
before it is possible to adjust the speed of the motor.

First the pins on the Arduino where DI, EN, DIR and PWM pins of the motor driver are attached to
are given a name.

/ / on ly the DI ,EN, DIR and PWM pin are necessary to
2 / / c o n t r o l the motors r o t a t i o n

i n t DI 1 = 10;
4 i n t EN 1 = 11;

i n t DIR 1 = 12;
6 i n t PWM 1 = 4;

Then the pins are initialized to be an OUTPUT or INPUT pin.

vo id setup () {
2 pinMode (DI 1 ,OUTPUT) ;

pinMode (EN 1 ,OUTPUT) ;
4 pinMode (DIR 1 ,OUTPUT) ;

pinMode (PWM 1,OUTPUT) ;

After that the pins except the PWM pin are given a HIGH or LOW state to turn on the motor.

1 d i g i t a l W r i t e (DI 1 ,LOW) ;
d i g i t a l W r i t e (EN 1 , HIGH) ;

3 d i g i t a l W r i t e (DIR 1 ,LOW) ;

Now the data rate will be set to 9600 bits per second for serial data transmission and ”speed 0 to
255” is printed to the Serial (monitor).

1 S e r i a l . begin (9600) ;
S e r i a l . p r i n t l n (” Speed 0 to 255”) ;

3 } ;

Finally if any input has been send to the Serial then Serial.parseInt() returns the first valid input
which is then attached to the speed integer. If the speed value is between 0 and 255 then its value will
be written to be the output value of the PWM pin and the motor will start turning.

1 void loop () {
i f (S e r i a l . a v a i l a b l e ()) {

3 i n t speed = S e r i a l . pa rse In t () ;
i f (speed >= 0 && speed <= 255){

5 analogWri te (PWM 1, speed) ;
} ;

7 } ;
} ;

6.2 Conclusion test 1

The motor did move so the hardware is working however sometimes the one row wide pin holes of the
connector wires do not make contact with the pins on the breakout board. This is solvable by wiggling
the connector a bit on the pins till it makes contact, however that freedom of motion is probably also
the cause of the connection problem. Since this problem did not occur that often especially not at the
end of the testing phase (probably because the connectors were not moved anymore) the connectors
were left like that. If the problem returns or if this connection problem is deemed unacceptable then the
solution would be to get crimp connectors with housing (figure 6.3) for the connectors instead of using
single row female pin headers. The crimp connectors make better contact with the pins on the breakout
board and have less movement freedom once they are pinned on the pins.

25

CHAPTER 6. TESTING

Figure 6.3: The crimp connectors can be seen on the right side and the housing on the left side.

6.3 Test2: 2 Motor

It has been noticed that the Arduino script delivered by Mainini only moves one motor at a time when
changing its position or angle and when homing the motors. This is rather inconvenient since there
is a maximum possible distance between two carriages of one transducer holder when the holder is
attached. If one of the new carriage position is further away from the current position than the maximum
possible distance then the movement would have to be in smaller steps or the transducer holders would
have to be removed every time. Neither is a good option.

To test if it is even possible to move to motors at the same time the script of the test 1 will be adapted
for moving two motors. Basically it means taking most of the script of test 1 times two with different
names for the new pins. In theory the motors are switched on after each other since script and hard-
ware wise it is not possible to execute two commands at the same time. To find out how much time it
takes to turn on both motors a stopwatch function was built since it was very difficult to find the speed
of executing code of an Arduino.

As can be seen in figure 6.4 the integer for starting time end elapsed time is made first for the
stopwatch function. Then the script will initialize a few other things and the speed for the motors will
be asked. After that the stopwatch is started and the speed of the motors is written to the drivers and
the motors are turned on. After some time the motors are turned off. The turning on and off can be
repeated several times to be able to calculate an accurate average time it takes to turn the motors on
and off.

Figure 6.4: The stopwatch function.

First the pins are given a name.

/ / Motor 1

26

CHAPTER 6. TESTING

2 i n t DI 1 = 10;
i n t EN 1 = 11;

4 i n t DIR 1 = 12;
i n t PWM 1 = 4;

6 / / Motor 2
i n t DI 2 = 15;

8 i n t EN 2 = 16;
i n t DIR 2 = 17;

10 i n t PWM 2 = 5;

The integer types for the stopwatch function are made.

i n t xt ime =1; / / s t a r t i n g count f o r the whi le loop
2 long s ta r tT ime ; / / s t a r t t ime f o r stop watch

long elapsedTime ; / / elapsed t ime f o r stop watch

Then the pins are initialized to be an OUTPUT or INPUT pin.

1 void setup () {

3 pinMode (DI 1 ,OUTPUT) ;
pinMode (EN 1 ,OUTPUT) ;

5 pinMode (DIR 1 ,OUTPUT) ;
pinMode (PWM 1,OUTPUT) ;

7 pinMode (DI 2 ,OUTPUT) ;
pinMode (EN 2 ,OUTPUT) ;

9 pinMode (DIR 2 ,OUTPUT) ;
pinMode (PWM 2,OUTPUT) ;

The data rate is set to 19200 bits per second for serial data transmission and the script prints “speed
0 to 255” to the Serial (monitor) as long as nothing has been send to the Serial.

S e r i a l . begin (19200) ;
2 wh i le (! S e r i a l) ;

S e r i a l . p r i n t l n (” Speed 0 to 255”) ;

The DI and DIR pins are initialized to be an OUTPUT or INPUT pin.

1 d i g i t a l W r i t e (DI 1 ,LOW) ;
d i g i t a l W r i t e (DIR 1 ,LOW) ;

3 d i g i t a l W r i t e (DI 2 ,LOW) ;
d i g i t a l W r i t e (DIR 2 ,LOW) ;

The script asks the speed for motor 1. While no value has been chosen it will wait till an input has
been given other than ‘a’. That input will be attached to the variable speed1.

vo id loop () {
2 S e r i a l . p r i n t (’\n ’) ;

S e r i a l . p r i n t l n (” Motor1 ”) ;
4 i n t speed1 = ’ a ’ ;

wh i le (speed1== ’a ’) {
6 i f (S e r i a l . a v a i l a b l e ()) {

speed1= S e r i a l . pa rse In t () ;
8 S e r i a l . p r i n t (” speed1 = ”) ;

S e r i a l . p r i n t l n (speed1) ;
10 } ;
} ;

The script asks the speed for motor 2. While no value has been chosen it will wait till an input has
been given other than ‘a’. That input will be attached to the variable speed2.

1 S e r i a l . p r i n t l n (” Motor2 ”) ;
i n t speed2 = ’ a ’ ;

3 wh i le (speed2== ’a ’) {
i f (S e r i a l . a v a i l a b l e ()) {

5 speed2= S e r i a l . pa rse In t () ;
S e r i a l . p r i n t (” speed2 = ”) ;

7 S e r i a l . p r i n t l n (speed2) ;
} ;

9 } ;

27

CHAPTER 6. TESTING

The stopwatch is started. startTime will become the current time since the Arduino board began
running the current script with micros() in microseconds.

1 s ta r tT ime = micros () ;

If both speed values are between 0 and 255 then they are written to be to output value of the
respective PWM pins. After that the motor is turned on for half a second and turned off for half a second
and that is repeated 100 times.

1 i f (speed1 >= 0 && speed1 <= 255){
i f (speed2 >= 0 && speed2 <= 255){

3 analogWri te (PWM 1, speed1) ;
analogWri te (PWM 2, speed2) ;

5 wh i le (xt ime <=100){
d i g i t a l W r i t e (EN 1 , HIGH) ;

7 d i g i t a l W r i t e (EN 2 , HIGH) ;
delay (500) ;

9 d i g i t a l W r i t e (EN 1 ,LOW) ;
d i g i t a l W r i t e (EN 2 ,LOW) ;

11 delay (500) ;
xt ime ++;

13 } ;
} ;

15 } ;

Finally the stopwatch is ended and the elapsedTime time is the time since the Arduino board began
running the current script at that moment minus the startTime from before. It then prints the elapsed-
Time to the Serial (monitor).

1 elapsedTime = micros () − s ta r tT ime ;
S e r i a l . p r i n t (” elapsedTime =”) ;

3 S e r i a l . p r i n t l n (elapsedTime) ;
S e r i a l . p r i n t (’\n ’) ;

5 } ;

6.4 Conclusion test 2

Figure 6.5: A graph of the stopwatch.

With the analogue value of the speeds being set to 70 of the 255 the total elapsed time is 100004116
microseconds. With figure 6.5 the following equation can be made to determine the time ∆t1 + ∆t3 and
how much the carriage moves in that amount of time.

∆ttot = ∆t1tot + ∆t2tot + ∆t3tot + ∆t4tot = 100004116µs (6.1)

∆t2 = ∆t4 = 500000µs (6.2)

28

CHAPTER 6. TESTING

If X is 100 then the total amount of time that the motors were turning and were not turning is:

∆t(2+4)tot = 100 · (∆t2tot + ∆t4tot) = 100000000µs (6.3)

Then the total time it takes to turn the motors on and off is:

∆t(1+2)tot = ∆ttot −∆t(2+4)tot = 100004116− 100000000 = 4116µs (6.4)

So for turning both motors on and off only once the time is:

∆t1+2 = 4, 116µs = 0.04116ms (6.5)

To know how much the carriages could have moved in that time it is necessary to know a few things.
The motor has a maximum speed of 120 revolutions per minute (RPM) when attached to a 6V output [7].

vmax,motor = 120RPM = 2RPs = 0, 002RPms (6.6)

The amount of revolutions that is possible in the ∆t1+2 time is:

Revt1+2
= vmax,motor ·∆t1+2 = 0, 002 · 0, 04116 = 0, 00008232 (6.7)

The spindle has a spindle pitch of 0,3 mm/revolution

spindlepitch = 0, 3mm/rev (6.8)

The total displacement for turning motor 1 and motor 2 on and off in this case would be:

Displacement = spindlepitch ·Revt1+2
= 0, 3 · 0, 00008232 = 0, 000024696mm = 24.7nm (6.9)

That is only about 0,008 % of 0,3 mm and thus can be considered negligible.

This shows that is possible to start two motors at almost the same time. To implement this in
Mainini’s script means that it should be rewritten which will take some time. The most likely reason
Mainini choose to move the motors individually is because he uses the PID methode to calculate the
speeds for the motors. In the controlMotors function script (which is not in use because it should do the
same as the already existing switchOnMotor function) the following was commented by Mainini: “With
the PID approach it is necessary to make sure that only one motor per time is ON”. The PID method is
useful for automatically calculating the speed for the motors however it is not necessary since the user
can also manually select a speed in the same way as in the script above for example. To implement the
two motors turning at the same time at least the MOTOR2 library, homeSet Arduino function and the
switchOnMotor function would need to be adapted. Apart from that it is possible with the script above
to have a transducer translation, rotation or a combination by changing the speed of motor 1 and 2.

6.5 Test 3: The Arduino script

While working on completing the script some bugs were found in the Arduino and library scripts with
using the script verifying option in the Arduino program. This does suggest that Mainini did not fully test
if the Arduino script was working correctly. From that the idea came to test the prototype Arduino script
to see if it works correctly for as far as that is currently possible to test.

The Arduino scripts have partially been tested using the Serial.println() function that prints the value
between the bracket to the Serial monitor. It can be used to print the state or the value of a pin that is
read with digitalRead() or analogRead() or it can be used to print a letter or word to show the script user
that the script is executed completely/correctly by the Arduino. Also some values like position or motor
status were manually written to the corresponding integer to see its effects.

The script has been tested in general with the action function because that one contains all the
commands that will be used. To execute all actions after each other all of them have been filled in the
command window which can be seen in figure 6.6.

29

CHAPTER 6. TESTING

In the Serial monitor all commands that have been send to the Serial have returned their action, sta-
tus or something similar (except NAC because it is the “not a command” action which returns nothing to
the Serial monitor) which indicates that the action function is working correctly. Also the short functions
ABT, STS and RPT are working correctly since they give all the information they should give.

Figure 6.6: All the commands available in the action function will be send to the Serial so the action()
function will execute them one by one.

The only longer command functions that have been tested are the configuration function,the home-
Set function and the setParameter function. The configuration function has been tested with two motors.
In figure 6.7 the Serial monitor can be seen during the execution of the configuration function. According
to the pin states which can be compared with figure 4.4 the script gives the correct information for the
motor to turn forward and backward.

Figure 6.7: The Serial Monitor with the configuration function executed. It shows the states of the
DI,EN,DIR,PWM pins of motor 1 after the function is executed.

The testing of the homeSet function has been done without the feedback of the photo resistors so
it is not sure if the photo resistor feedback works correctly. When comparing the read pin values in
figure 6.8 with the information from figure 4.4 it can be seen that the HIGH and LOW values of the pin
correspond the turning and the breaking of the motor which meaning that the motors receive the correct
signals to turn and to shut off once the motor driver gets the signal that the carriage is at the homing
position.

When wanting to set the position of the motors and thus the transducer the actions in the flowchart
of figure 6.9 happen. In figure 6.9 transducer 1 has to be set to an angle of 15 degrees. The BUFFER2
library will split that command from any other possible commands in the Serial buffer and the COM-
MAND library will split the command in the main command POS and the branch that specifies what the
position change should be. The action function recognizes the POS command and calls the setPosition
function which will figure out which transducer the new configuration is for and if it is for the angle or the
position. The new configuration will be written to the newAngle of the newPos variable in the TRANS-
DUCER library so that it can calculate the new configuration. After that the checkRules function will
check the new configuration for any problems. These problems are collision with the outer walls or with
the other transducers and exceeding the maximum distance between two carriages of one transducer.

30

CHAPTER 6. TESTING

Figure 6.8: The Serial Monitor with the homeSet function executed and the states of the
DI,EN,DIR,PWM pins printed to check if the motors get a signal to turn.

Figure 6.9: A flowchart about setting the position of the motors and transducers.

If the new configuration is correct the carriage positions from the TRANSDUCER library will be given to
the MOTOR2 library. The MOTOR2 library will save that information to calculate to direction and speed
for the motor once the switchOnMotor functions is executed and the motors are turned on.

6.6 Conclusion test 3

From the previous test it can be concluded that at least the basics of all the command functions work.
Some command functions like the configuration function, the homeset function and the set position
function are more complicated and longer than other functions that only have to save parameters and
return asked values. These three functions have been tested more extensively and they now work
correctly like they should for as far as it is possible to test without any automatic position and homing
feedback.

31

CHAPTER 6. TESTING

6.7 Concluding remarks

From all three tests it can be concluded that the prototype is functioning as it currently is however there
is still room left for improvements to the system. The possible hardware and software improvements
have been mentioned before. If it is worth the time to improve the prototype depends on if this is (almost)
the final prototype product or if it is the first one in a series of many more to come. One thing to keep
in mind during the testing is that the connection between the Arduino and the computer can easily get
lost. Usually symptoms are that the Serial monitor does not seem to work/renew any more or that
the commands that are send are not displayed on the Serial monitor screen or that it is not possible
to upload the (new) script. This disconnecting can also happen when a pin or a cable is removed or
attached. The connection is restored again after the USB cable is disconnected and connected again
however this is only solves the problem temporary. For a final solution the real cause of this problem
has to be discovered.

32

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The objective of this assignment was to deliver an operation control system, including proper documen-
tation of the connections and functions of the system in terms of software and hardware. The work
described in this report has resulted in getting the prototype started by Mainini a step closer to test
phase ready. Small details regarding the size of several (aluminium) components of the prototype which
were only noticed at the last moment made it difficult to assemble the whole prototype. However most
of them are solvable by adjusting the size with the cutter in the mechanical engineering workplace.
The starting point of this assignment was a prototype which should have worked however nobody knew
how and any useful documentation for continuation of the project was difficult to find. Some of the hard-
ware components were missing and the software needed some additions and adjustments.
The main assignment goal was to finish the basic control system of the prototype. For that the following
has been done:

• The Arduino script has been completed and debugged

• The libraries have been completed and debugged.

• The breakout board has been made.

• The connection wires/ connectors that are needed to connect the hardware components together
have been prepared.

To check if everything worked properly three tests were done:

The first test was to check if the breakout board and the connectors were working correctly. This
was done by attaching the needed hardware and connectors for controlling one motor and running a
simple script to see if the motor would turn. The result was that the made hardware worked correctly to
turn one motor.

Test two was to see if it is possible to turn two motors at the same time since the current Arduino
script by Mainini moves the other motor after the first one has been turned of. In theory it is not pos-
sible to switch on both motors at the same time. With using a stopwatch function and calculating the
displacement during turning one motor on and then the other the offset was tested. From the test it can
be concluded that a displacement of 24.7 nm during turning both motors on and off can be considered
a negligible offset, so it is possible to start both motors at almost the same time.

Test three was done to check is the script contained any remaining harder to find bugs/errors. This
was done by running several functions and comparing the output shown in the Serial monitor window
with what should have been done/returned according to the script. The remaining bugs that were found
were solved and the final test showed that the current command functions of the Arduino script work
correctly.

33

CHAPTER 7. CONCLUSION AND RECOMMENDATION

During the testing it was noticed that the system had some problems with connectors/cables/wires
that disconnected. It is needed to find a solution for that to improved the system so that it can function
fluently without any interruptions. Any further recommendations and points for attention will be men-
tioned below in the recommendation section.

The last goal of this assignment was to make this prototype project ready for easy future continuation.
For that extensive documentation of the hardware components has been done and the software scripts
have been provided with additional comments. From this point on it should be possible to quickly
understand the workings of the system for further testing of the prototype. Looking back at the final
objective of this assignment and at what has been realized it can be concluded that the objective of this
assignment has been reached.

7.2 Recommendation

While spending some time on the prototype made by Mainini several comments can be given regarding
the prototype.

The first thing that has been noticed is that the motor driver capabilities are too extensive for what it
is actually used for. The drivers have SPI functionality to communicate with the Arduino however in the
script nothing can be found on using this capability apart from starting the SPI. The SPI of the h-bridge
can be used for detailed (failure) diagnostics on each channel and the h-bridge itself. Such diagnostics
include short circuit to battery, short circuit to ground, short circuit overload and about temperature. SPI
is also used to set things like voltage and current slew-rate control for low EMI, SPI current regulation
threshold and the thermal warning bit [4, 5]. In theory it would also be possible to control the motor
drivers through the SPI pins (,exact documentation on how has not been found yet). From the general
examples of the usage of SPI for basic things like blinking LEDs it was noticed that the Arduino writes
the information about the blinking to the SPI pin. Currently the motors are controlled by the values given
to the EN,DIR,DI and PWM pins of the drivers. To implement the SPI method to control the motors the
Arduino script would needs to be rewritten. At the moment controlling the system works fine as it is and
no added value is seen into implementing the SPI for controlling the system.

Furthermore during the testing phase with two motors lots of hardware components and wires were
present including the wires of the switch systems. It gets very messy and unclear. It is the best thing to
omit wires for functions that are not used (like the SPI wires) and maybe think of another way to connect
all the components (without a breakout board).

Another thing that has been noticed is that the motors need to be homed every time for having a
reference point so that they can accurately be moved to the new position. The only place where it is
possible to home the motors is the ends of the rails of the carriage which is not convenient. This is be-
cause the transducer holders need to be remove else the transducers would collide. It would be better
to have several reference points along the moving axis of the carriages by placing more photo resistors
in the rails. Having more reference points would take less time with referencing the position of the car-
riages for the next position. It would also take away the hassle of removing the transducer holders every
time the motors need to home. It is also possible to choose another way of referencing/measuring the
carriage positions like attaching a linear displacement sensor to the carriages.

The comments above are all things to consider for later since it would require the current prototype
to be adjusted. There are also several things that should be considered before assembling the prototype
completely.

The first things is the ball-bearings which are too big for the spindles. Currently plastic rings and iso-
lation tape is put over the spindle ends to keep the ball-bearings in place. It is not sure how watertight
that temporary solution is and getting the right sized ball-bearings should be considered.

34

CHAPTER 7. CONCLUSION AND RECOMMENDATION

Another problem with those plastic rings and isolation tape is that they are the ones that make a seal
with the rubber rings that are placed in the ball-bearing holders seen in figure 3.2. It is not sure if this
seal is watertight enough. Getting smaller rubber rings that do make a seal with the spindle itself would
be more logical and would also probably be better to assure a watertight seal instead of the current seal.

In addition to the rubber-rings is has also been noticed that there are other another problem with
the motor compartment lid of figure 3.2. The ball bearing holders have been glued into place however
they were not glued properly which caused openings between the hole in the plastic for the ball-bearing
holders and the exterior of the ball-bearing holder. It is even possible to put a wire through that hole so
water should also be able to go through. Furthermore the two ball bearing holders on the right side of
the lid do not have the right size causing the ball-bearing not to fit in.
Possibilities to fix this could be to use the cutter in the workplace to adjust the size of the two ball-bearing
holders which are too small. Then try to remove all the rubber rings and replacing them by smaller ones
and to add some glue to the holes between the holders and the holder openings in the lid. However it is
not sure if that is easily done. Especially the rubber rings changing part may be difficult. Remaking this
lid might possibly be easier.

35

CHAPTER 7. CONCLUSION AND RECOMMENDATION

36

Appendix A

Hardware

The hardware components of the prototype consist of:

• switches/photoresistors

• encoders

• motor drivers

• Arduino

All the components are connected to the breakout board with connectors and wires which have been
prepared and can be seen in figure A.4. The details of the individual components and the layout of the
breakout board are discussed below.

A.1 Switches

Figure A.1: Photo resistor circuit on breakout board.

From left to right the 1MOhm resistors front side can be seen. The vertical row next to that is the
Vin line on the other side of the breakout board. After that at the place of the resistors back side the
pin below and above the pin hole of the resistors back side are soldered together. From there it splits
up in a 10MOhm resistor, the pin hole for the Vout which goes to a corresponding Arduino pin and the
pin hole to connect the one of the wires of a photo resistor with the hole for the other wire opposite to it.
The two resistors in parallel then come together to be connected to the ground by the brown wire.

A.2 Pins

Something to keep in mind while looking at the pin definition file is that the Arduino mega 2560 has a
few functions pre-assigned pins, like the interrupts and the PWM. The external interrupts are located at

37

APPENDIX A. HARDWARE

pin 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2).
The PWM is located on pin 2 to 13 and 44 to 46. That is the reason for the strange placements of some
motor pins.

A.3 Breakout Board

With the old breakout board it was unclear what each pin should be connected to and which wires
connected with which pins. To avoid the same problem a schematic has been prepared for the pins and
also a schematic has been prepared for some of the wires, they can be seen in figure A.2 and figure
A.3 respectively.

Figure A.2: Schematic of the breakout board.

The wire schematic does not show most wire connection because that would make the picture only
messy and most of the connections should be relatively clear from the previous scheme. The lines
in the background are a representation of the backside of the breakout board. The vertical solid lines
(after every 3 holes) indicate that the two holes on both side are not connected by the same copper strip.

38

APPENDIX A. HARDWARE

Figure A.3: Breakout board wire schematic.

The rows as you can see are numbered from 1 to 9 from left to right.

Row 1 Contains all the Ma and Mb, they are connected to the Motor power output of the motor drivers.
The small line to the right of the boxes of Ma and Mb indicate that they should be connected to
the respective pins of row 2.

Row 2 and 3 Connected to the motor encoder. Ma and Mb of row 2 are connected to the respective
pins of the motor encoder. All the E B pins are connected to the encoder output B pins and all
the E A pins are connected to the encoder output A of the respective motor encoder.

Row 4 and 5 Connected to other corresponding pins on the breakout board and the Arduino.

Row 6 and 7 Meant for the motor drivers. The cable in figure A.4b is provided for the connection of the
motor driver to the breakout board.

Row 8 and 9 Cconnected to the Arduino again. The top pin row of 2x3 is connected to the ICPS of the
Arduino. Keep in mind to put SO on the SO and etc.

39

APPENDIX A. HARDWARE

Apart from the straight line in the drawing we have three other things, the black boxes which are pin
headers or pin connectors, the blue box on the bottom which is the power connector and the gray
rounded boxes on the right which are resistors. Along the top and the bottom of the figure the number-
ing that corresponds with the schematic drawing has been added to be able to compare.

A.4 Wires and connectors

Several wires in figure A.4 have been prepared to connect the breakout board pins to the other hardware
components and to the Arduino. The heat shrink on the connectors for the motor drivers in figure A.4b
have a different colour for the power and ground wire to make it easier to connect to the pins. For the
cables for the encoders the wire colour have been kept the same as the colours of the wires of the
encoder except for the yellow wire which has been made orange in the prepared cable in figure A.4d.

(a) The wire that goes in M a and
M b.

(b) Connector for the motor driver
to the breakout board.

(c) Connector for four of the six in-
terrupt pins.

(d) The wire for the encoder cable.
(e) One of the six connector for the
pins in row 5 of figure 4.8.

(f) Connector for four of the six
pwm pins.

(g) Wire for the ICSP connection.

Figure A.4: Wires

40

Appendix B

C++

The libraries used for this prototype are extensions of the basic Arduino environment to be able to work
better with the hardware components and to do the calculations. To be able to use them they first will
need to be installed in the Arduino folder on the computer that is used to control the prototype. On the
Arduino library page can be found how to install them [8] .
For the prototype the following libraries are used. A small explanation of the function of each library is
included below.

BUFFER2 It initializes the buffer for for the input the serial port gives. It also splits the buffer string into
the individual commands.

COMMAND It initializes the possible command types.

TRANSDUCER It contains the transducer movement parameters script. It also contains the rules for
the movement restrictions which are: transducer-wall interactions, transducer-transducer interac-
tions and the carriage distance of one transducer. Figure B.1a describes the transducer outlining
that was included in the report by Mainini, however this picture is not correctly lettered when
compared with the script. Figure B.1b contains the correct lettering.

(a) Old outlining. (b) New outlining.

Figure B.1: Transducer outlining.

MOTOR2 It initializes each motor and it contains the motor controlling parameters script which works
according the switch map which can be seen in figure B.2. The script also links the PinDef.h
information to a script variable so it can be read and written.

SWITCH The switches/photo resistors are the homing positions for the motors so the switch script
contains functions to check if the carriage is on the homing positions or not by comparing Vout to
the threshold. Since there probably would be an error with this library if the function checkStatus()
was ran for the first time the script was edited a bit.

41

APPENDIX B. C++

Figure B.2: EN/DI/DIR switch map [4].

PID It is the PID controller script which is a basic Arduino PID library. More detailed information can be
read on the page of the maker of this library [10].

ONOFF It is a enumeration of ON and OFF, making ON 1 and OFF 2.

MEMORY The memory library is only used to specify how much memory space each variable is allowed
to take, it contains the registry addresses.

PinDef It defines to which pin of the Arduino the pins of the breakout board should be connected.

EEPROMEx It is an extension of the standard Arduino EEPROM library. It writes and reads basic types
like bytes, longs, ints, floats & doubles. It can also read/write single bits, arbitrary data-formats and
arrays. It adds debug functionality to identify and stop writing outside of the EEPROM memory
size and excessive writing to prevent memory wear. More information can be found on the website
of the maker [11]. There is also a new version available of the EEPROMEx code with some small
changes, it has not been implemented in the others scripts yet.

STATUS It saves the current status of the board and returns the current status.

As a side note: Currently pointers are being used to do vector calculations in a few libraries. (At
least in TRANSDUCER,SWITCH and MOTOR2.) Pointers shortly explained are variables that store the
address of another variable, so not its value but its address. Pointer can be used to access the variable
they point towards directly to change its value indirect however they are difficult to understand and to
work with. For better understanding of how pointers work it is advised to read a tutorial about pointers.
The main problem however is that Mainini seems to mistakenly calculate values in the libraries using
the address of the variable itself instead of the variable. Mainini also switches a lot between attaching a
pointer to a variable and using the address of that variable to calculate something which will result in an
address, he then takes the value of that address to calculate a value to take the address of that value
again etc. Probably from the previous sentence can be understood how confusing Mainini has used the
pointer. Currently it is not known if the pointers work correctly for the vector calculations and that gives
another thing wrong with pointer.
When pointers have been used wrong no warning of the bug will be given, “debugging will have to be
done manually and it will be very difficult because the pointer is connected to the rest of the program as

42

APPENDIX B. C++

it contains the memory locations” [12]. The easiest solutions would be to use a Vector class for those
vector calculations. However it is not sure how much that would influence the other scripts therefore an
example will be provided in section B.1 if implementation is deemed necessary.

B.1 Vector library

1 Vector2D . h
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 # i f n d e f Vector2D h
def ine Vector2D h

5
inc lude <math . h>

7 # inc lude <vector>

9 c lass Vector2D{
p u b l i c :

11 double X,Y :

13 Vector2D () ;
Vector2D (double x , double y) ;

15 double getLength () ;
double getLengthSquared () ;

17 } ;

19 # end i f

21 Vector2D . cpp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 # inc lude ” math . h ”
inc lude ” vec to r ”

25 # inc lude ” Vector2D . h ”

27 / / I f no arguments are given , i t i s an empty vec to r
Vector2D : : Vector2D () {

29 X=0;
Y=0;

31 } ;

33 / / Creates Vector2D wi th given inpu t
Vector2D : : Vector2D (double x , double y) {

35 X=x ;
Y=y ;

37 } ;

39 / / Gives the leng th o f the vec to r
double Vector2D : : getLength () {

41 r e t u r n s q r t (X∗X+Y∗Y) ;
} ;

43
/ / Gives the leng th squared o f the vec to r

45 double Vector2D : : getLengthSquared () {
r e t u r n X∗X+Y∗Y;

47 } ;

49 / / Add i t i on + Sub t rac t ion
Vector2D opera tor +(Vector2D a , Vector2D b) {

51 r e t u r n {a .X+b .X, a .Y+b .Y} ;
} ;

53 Vector2D operator−(Vector2D a , Vector2D b) {
r e t u r n {a .X−b .X, a .Y−b .Y} ;

55 } ;

57 / / M u l t i p l i c a t i o n , both s ides
Vector2D opera tor ∗ (double d , Vector2D v) {

59 r e t u r n {d∗v .X, d∗v .Y} ;
} ;

61 Vector2D opera tor ∗ (Vector2D v , double d) {

43

APPENDIX B. C++

r e t u r n {d∗v .X, d∗v .Y} ;
63 } ;

65 / / D i v i s i o n by number
Vector2D opera tor / (Vector2D v , double d) {

67 r e t u r n {v .X / d , v .Y / d} ;
} ;

69
/ / Negate the vec to r

71 Vector2D operator−(Vector2D v) {
r e t u r n{−v .X,−v .Y} ;

73 } ;

75 / / Give the dot product
double dot (Vector2D a , Vector2D b) {

77 r e t u r n {a .X∗b .X+a .Y∗b .Y} ;
} ;

44

Appendix C

Arduino

The Arduino script consist of a main file with several supporting files with functions to control the proto-
type. Only the functions that have been edited will be discussed below the other ones can be read in
the report by Mainini [3].

action
It regulates the commands that are given and executes the corresponding actions associated with that
command.

checkRules
It checks the rules for the new configuration and gives a Boolean (true false) feedback confirming or
rejecting the new configuration.
The rules are written in the Transducer library and are:
Rule 1: The transducers do not touch the outer walls.
Rule 2 and 3: The transducers do not touch each other.
Rule 4: The carriages of a transducer do not move apart more than the safety distance.

configuration
It puts the Arduino in configuration mode and makes it possible to manually modify parameters on the
board from LABVIEW. It is meant to be a back-door to have direct and full control over the tool. The
implementation of this function was a bit difficult without knowing what parameters would want to be
changed because the setPar function to set parameters already existed. The configuration function
currently only allows to tune the motor positions however more configuration options could be added for
more possibilities.

homeSet
It drives the motors to their home condition. It does this task for each motor individually which is not
convenient if the transducer holders are still attached. Currently a safety rule has been implemented to
make sure that to motors of one transducer do not move too far apart because of the transducer holders
length causing the motor to stop the homing movement if the safety distance is met. To actually home
the motors with this script it would be needed to run it several times which takes more time than should
be necessary. The best thing is to rewrite the function so the motors of a transducer move at almost the
same time to the homing position. For that it is useful to know that M1 and M2 are for transducer 1, M3
and M4 for transducer 2 and M5 and M6 for transducer 3.

setPar
It sets a parameter to a value. The parameter and the value should be contained in the branch of the
command. The command itself should be in the form of PAR1POS. . . / PAR1ANG. . . / PAR1CT1. . . /
PAR1CT2. . . for the position, angle and the positions of motor1 and motor2 of transducer. Changing the
first number to 2 or 3 would be the commands for transducer 2 and 3
By ommitting the number and everything what comes behind it is possible to adjust other parameters
by adding one of the 3 letter combinations below to the PAR.

45

APPENDIX C. ARDUINO

ENR encoder resolution

SPL spindle length

SPP spindle pitch

CAL carriage length

SAD safety distance

PRD proximity distance

THD threshold distance

WAC wait cycle

MAP max pulse

46

Appendix D

LabVIEW

47

APPENDIX D. LABVIEW

Figure
D

.1:
A

rduino
C

om
m

and
LabV

IE
W

U
Ipanel.

48

APPENDIX D. LABVIEW

Fi
gu

re
D

.2
:

C
on

fig
ur

at
io

n
La

bV
IE

W
U

Ip
an

el
.

49

APPENDIX D. LABVIEW

50

Appendix E

Testing

E.1 Test1 script

i n t DI 1 = 10;
2 i n t EN 1 = 11;

i n t DIR 1 = 12;
4 i n t PWM 1 = 4;

6 vo id setup () {
pinMode (DI 1 ,OUTPUT) ;

8 pinMode (EN 1 ,OUTPUT) ;
pinMode (DIR 1 ,OUTPUT) ;

10 pinMode (PWM 1,OUTPUT) ;

12 d i g i t a l W r i t e (DI 1 ,LOW) ;
d i g i t a l W r i t e (EN 1 , HIGH) ;

14 d i g i t a l W r i t e (DIR 1 ,LOW) ;

16 S e r i a l . begin (9600) ;

18 S e r i a l . p r i n t l n (” Speed 0 to 255”) ;

20 } ;
vo id loop () {

22 i f (S e r i a l . a v a i l a b l e ()) {
i n t speed = S e r i a l . pa rse In t () ;

24 i f (speed >= 0 && speed <= 255){
analogWri te (PWM 1, speed) ;

26 } ;
} ;

28
} ;

E.2 Test2 script

1 / / Motor 1
i n t DI 1 = 10;

3 i n t EN 1 = 11;
i n t DIR 1 = 12;

5 i n t PWM 1 = 4;

7 / / Motor 2
i n t DI 2 = 15;

9 i n t EN 2 = 16;
i n t DIR 2 = 17;

11 i n t PWM 2 = 5;
i n t xt ime =1;

51

APPENDIX E. TESTING

13 long s ta r tT ime ; / / s t a r t t ime f o r stop watch
long elapsedTime ; / / elapsed t ime f o r stop watch

15 void setup () {

17 pinMode (DI 1 ,OUTPUT) ;
pinMode (EN 1 ,OUTPUT) ;

19 pinMode (DIR 1 ,OUTPUT) ;
pinMode (PWM 1,OUTPUT) ;

21 pinMode (DI 2 ,OUTPUT) ;
pinMode (EN 2 ,OUTPUT) ;

23 pinMode (DIR 2 ,OUTPUT) ;
pinMode (PWM 2,OUTPUT) ;

25
S e r i a l . begin (19200) ;

27 whi le (! S e r i a l) ;
S e r i a l . p r i n t l n (” Speed 0 to 255”) ;

29 d i g i t a l W r i t e (DI 1 ,LOW) ;
d i g i t a l W r i t e (DIR 1 ,LOW) ;

31 d i g i t a l W r i t e (DI 2 ,LOW) ;
d i g i t a l W r i t e (DIR 2 ,LOW) ;

33
} ;

35
vo id loop () {

37
S e r i a l . p r i n t (’\n ’) ;

39 S e r i a l . p r i n t l n (” Motor1 ”) ;
i n t speed1 = ’ a ’ ;

41 whi le (speed1== ’a ’) {
i f (S e r i a l . a v a i l a b l e ()) {

43 speed1= S e r i a l . pa rse In t () ;
S e r i a l . p r i n t (” speed1 = ”) ;

45 S e r i a l . p r i n t l n (speed1) ;
} ;

47 } ;

49 S e r i a l . p r i n t l n (” Motor2 ”) ;
i n t speed2 = ’ a ’ ;

51 whi le (speed2== ’a ’) {
i f (S e r i a l . a v a i l a b l e ()) {

53 speed2= S e r i a l . pa rse In t () ;
S e r i a l . p r i n t (” speed2 = ”) ;

55 S e r i a l . p r i n t l n (speed2) ;
} ;

57 } ;
s ta r tT ime = micros () ;

59 i f (speed1 >= 0 && speed1 <= 255){
i f (speed2 >= 0 && speed2 <= 255){

61 analogWri te (PWM 1, speed1) ;
analogWri te (PWM 2, speed2) ;

63 whi le (xt ime <=100){
d i g i t a l W r i t e (EN 1 , HIGH) ;

65 d i g i t a l W r i t e (EN 2 , HIGH) ;
delay (500) ;

67 d i g i t a l W r i t e (EN 1 ,LOW) ;
d i g i t a l W r i t e (EN 2 ,LOW) ;

69 delay (500) ;
xt ime ++;

71 } ;
} ;

73 } ;

75 elapsedTime = micros () − s ta r tT ime ;
S e r i a l . p r i n t (” elapsedTime =”) ;

77 S e r i a l . p r i n t l n (elapsedTime) ;
S e r i a l . p r i n t (’\n ’) ;

79 } ;

52

Reference

[1] Vewin, Drinkwater statistieken. PhD thesis, University of Twente, Enschede, The Netherlands
http://www.vewin.nl/SiteCollectionDocuments/Publicaties/Vewin%20Drinkwaterstatistieken%202012
%20lowres.pdf , 2012

[2] Andriejus Demčenko, Development and analysis of non collinear wave mixing techniques for mate-
rial properties evaluation using immersion ultrasonics. PhD thesis, University of Twente, Enschede,
The Netherlands, 2014

[3] L. Mainini, H.A. Visser, R. Loendersloot, R. Akkerman, Prototype for non-collinear wave mixing:
design & software implementation. University of Twente, Enschede, The Netherlands, 2014

[4] UM0759 User manual, http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user
manual/CD00242798.pdf , Last seen on 15-03-2015

[5] L9958: Low RDSON SPI controlled H-Bridge, http://www.st.com/web/catalog/sense power/FM1965/
SC1039/PF246497, Datasheet: http://www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/CD00268302.pdf, Last seen on 15-03-2015

[6] Serial Peripheral Interface Bus, http://en.wikipedia.org/wiki/Serial Peripheral Interface Bus, Last
seen on 17-03-2015

[7] Pololu Robotics & Electronics, http://www.pololu.com/product/2275, Last seen on 03-03-2015

[8] Arduino: Libraries, http://arduino.cc/en/Guide/Libraries, Last seen on 03-03-2015

[9] Arduino Mega 2560, http://arduino.cc/en/Main/ArduinoBoardMega2560, Last seen on 17-03-2015

[10] Improving the Beginners PID Introduction, Brett Beauregard,
http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/, Last seen
on 03-03-2015

[11] Extended EEPROM library for Arduino, Thijs Elenbaas, http://thijs.elenbaas.net/2012/07/extended-
eeprom-library-for-arduino/, Last seen on 03-03-2015

[12] Disadvantages of pointers and errors while using pointers, http://www.moreprocess.com/c-and-
c/disadvantages-of-pointers-and-errors-while-using-pointers, Last seen on 04-03-2015

[13] Rotary encoder, http://en.wikipedia.org/wiki/Rotary encoder#Incremental rotary encoder, Last
seen on 10-03-2015

[14] analogRead() http://arduino.cc/en/Reference/analogRead Last seen on 18-03-2015

[15] H-bridge, http://en.wikipedia.org/wiki/H bridge, Last seen on 10-03-2015

[16] The motor driver that is used for this prototype., http://nl.aliexpress.com/item/Free-
shipping-New-240W-H-bridge-Motor-Driver-Board-Motor-Controller-SPI-for-Arduino-Smart-
Car/984874066.html?recommendVersion=1, Last seen on 10-03-2015

[17] In-system programming, http://en.wikipedia.org/wiki/In-system programming, Last seen on 10-03-
2015

53

	Introduction
	Non-Collinear Wave Mixing
	Prototype Assembly
	Movement
	Watertight
	Concluding remarks

	Hardware
	Switches
	Encoders
	Motor drivers
	Breakout board
	Concluding remarks

	Software
	C++
	Arduino
	LabVIEW
	Concluding remarks

	Testing
	Test1: 1 Motor
	Conclusion test 1
	Test2: 2 Motor
	Conclusion test 2
	Test 3: The Arduino script
	Conclusion test 3
	Concluding remarks

	Conclusion and Recommendation
	Conclusion
	Recommendation

	Hardware
	Switches
	Pins
	Breakout Board
	Wires and connectors

	C++
	Vector library

	Arduino
	LabVIEW
	Testing
	Test1 script
	Test2 script

