
MASTER OF SCIENCE – THESIS IN BUSINESS ADMINISTRATION

Improving Flowmanager

Providing recommendations on the improvement of

workflow commissioning and semantic checking

Jens Rothman

April 8, 2015

Jens Rothman | 2015 2/67

Jens Rothman | 2015 3/67

Improving Flowmanager - Providing recommendations on

the improvement of workflow commissioning and

semantic checking

MASTER OF SCIENCE - THESIS IN BUSINESS ADMINISTRATION

Author
Name: Herrald Jan (Jens) Rothman
Student number: 0208183
Contact: jensrothman@gmail.com
Programme: Master Business Administration
Track: Information Management
Faculty: Behavioural, Management and Social sciences

Supervisors University of Twente
Name: Prof. Dr. J. (Jos) van Hillegersberg
Faculty: Industrial Engineering and Business Information Systems
Department: Information Systems and Change Management

Name: Dr. M.E. (Maria-Eugenia) Iacob
Faculty: Industrial Engineering and Business Information Systems
Department: Information Systems and Change Management

Jens Rothman | 2015 4/67

Jens Rothman | 2015 5/67

Management Summary
This is a public version of this thesis. Due to confidentiality, the name of the company involved has been

changed to BuildIT and the name of the product has been changed to Flowmanager. Also, some parts

of the thesis are marked as confidential and therefore are not included in this public version.

A workflow management system (WfMS) is an information system which controls transactions

between activities within a workflow (Stohr & Zhao, 2001). WfMS’s are often used by several parties

such as banks and insurers to manage the difficult financial processes these companies encounter.

BuildIT is looking to improve their own WfMS called Flowmanager. More specifically, BuildIT wants to

know how they can improve the workflow commissioning and semantic checking properties of

Flowmanager. This request has been the basis on which this thesis is built and has led to the following

research question:

How can workflow commissioning and semantic checking in Flowmanager be improved to meet the

demands of clients, by applying best practices and standards derived from the theory?

In order to answer this question a literature review and a Delphi panel were conducted. The literature

has shown that the field of business rules can be divided in two categories, as stated by Iacob and

Jonkers (2009). The first category focuses on operational process rules and entails the topic of

workflow commissioning. The second category is about constraints and includes the topic of semantic

checking.

Based on these findings, two literature frameworks have been formed for workflow commissioning

and semantic checking. For workflow commissioning, the article by van der Aalst, ter Hofstede,

Kiepuszewski, and Barros (2003) has been used to create a foundation for the Delphi panel. For

semantic checking, the same has been done with the article by Ly, Rinderle, and Dadam (2008).

Based on these literary findings, a Delphi panel has been conducted among 11 experts. These experts

are involved daily with Flowmanager´s workflow commissioning options. In three rounds, the experts

have created a prioritization for workflow commissioning additions and have indicated the need for

semantic checks in several situations.

This thesis concludes its research by discussing the results of the Delphi panel and placing them in the

perspective of Flowmanager. For workflow commissioning, this thesis concludes that five workflow

patterns should be developed and introduced in Flowmanager in the following order: Multi choice

combined with Synchronizing merge, Parallel split combined with Synchronization and Multi merge.

For semantic checking, it is concluded that due to the gap between theory and the practice of

Flowmanager, and the technical nature of this topic which remains underexposed in this thesis, no

direct recommendations can be made for the implementation of semantic checking in Flowmanager.

However, semantic checking does play an important role in the introduction of Multi choice and

Synchronizing merge in Flowmanager. These two patterns introduce flexibility that is new to

Flowmanager. In order to properly manage the implementation of Multi choice and Synchronizing

merge in Flowmanager, the implementation should be accompanied by the introduction of the

principles of workflow templates and instances by Ly et al. (2008).

Finally, two suggestions for future academic research are made. First, it is suggested that for both

workflow commissioning and semantic checking research needs to be done on the implementation of

these theoretical concepts into practice. This can lead to the development of a roadmap for the

implementation of new workflow patterns and semantic checking. Second, it is suggested to research

the presence of the methodology by Ly et al. (2008) in other Workflow Management Systems. This

Jens Rothman | 2015 6/67

research assesses the practical relevance of the theory and can provide guidance for further

introduction into Flowmanager.

Jens Rothman | 2015 7/67

Acknowledgements
In front of you lies the thesis titled “Improving Flowmanager - Providing recommendations on the

improvement of workflow commissioning and semantic checking”. This thesis is the final assignment

of the Master program Business Administration at the University of Twente. I have created this thesis

in the period from September 2014 up to and including February 2015.

I have written this thesis at the request of BuildIT B.V. The exact assignment outline has been created

in association with my external supervisors. At this point I would like to show my gratitude towards

them for their constant advice, feedback and assistance throughout the entire process the last six

months.

I would also like to thank my supervisors at the University of Twente, Jos van Hillegersberg and Maria

Iacob. Jos has provided me with a lot of useful feedback which improved the overall quality and scope

of my thesis. Maria has really assisted me in structuring the thesis and improving the literature review.

Both of the supervisors were always available for questions, either at their offices or online through

Skype. Also, I would like to thank Ton Spil for his feedback on my research proposal, helping me

narrowing down my research project.

The performed research has proven to be challenging due to the technical aspect, which was pretty

far out of my comfort zone as a Business Administration student. Nonetheless, with the guidance of

Jos and Maria on the research topics, I managed to gain a lot of knowledge on the topics as discussed

in this thesis.

I would like to thank Spilter for letting me use their decision making software free of charge. The

software saved me a lot of time by providing a ready to use format for the Delphi panel.

Finally, I would like to thank BuildIT and its employees for providing me with a great environment in

which I could execute my thesis. I was working between the other employees and really had the

opportunity to see what it is like to work at BuildIT. Also, several employees have assisted me in the

selection of relevant participants among the clients of BuildIT. From day one I felt at home and valued

by BuildIT.

Jens Rothman

Hengelo, 23rd of February 2015

Jens Rothman | 2015 8/67

Table of contents

1. Introduction ... 9

1.1. About BuildIT, Flowmanager, workflow commissioning and semantic checking 9

1.2. Problem Description ... 9

1.3. Goal, research question and sub questions ... 9

1.4 Methodologies used in Thesis ... 10

1.5. Relevance of Thesis .. 11

1.6. Thesis Outline ... 11

2. Literature review on business rules .. 13

2.1. Grounded Theory Literature Review Method .. 13

2.2. Literature review .. 17

3. Literature frameworks on workflow commissioning and semantic checking 21

3.1. Literature framework on workflow commissioning ... 21

3.2. Literature framework on semantic checking ... 33

4. Delphi Panel ... 41

4.1. About Delphi Panels ... 41

4.2. Methodology of a Delphi Panel .. 42

4.3. Methodology of the Flowmanager Delphi Panel ... 43

4.4. Results of the Flowmanager Delphi Panel .. 46

5. Discussion .. 55

5.1. Analysis of the Delphi panel results ... 55

5.2. Comparing theoretical concepts to Delphi panel results ... 55

5.3. Combined implementation .. 58

6. Conclusion ... 61

6.1. Answering the research question ... 61

6.2. Recommendations to BuildIT ... 62

6.3. Limitations .. 62

6.4. Future academic research .. 63

7. Bibliography ... 64

8. Appendices .. 67

Jens Rothman | 2015 9/67

1. Introduction
This is a public version of this thesis. Due to confidentiality, the name of the company involved has been

changed to BuildIT and the name of the product has been changed to Flowmanager. Also, some parts

of the thesis are marked as confidential and therefore are not included in this public version.

This chapter provides an introduction to several subjects which are essential to a complete

understanding of the context in which this thesis is completed. Firstly, a comprehensive overview of

BuildIT, the Flowmanager platform, workflow commissioning and semantic checking is created.

Secondly, the assignment on which this thesis is based, is described. Thirdly, the goal, research

question and sub question are portrayed. Fourthly, the methods used in this thesis are briefly

described. Fifthly, the relevance of this thesis is discussed. Finally, the outline for the rest of this thesis

is provided.

1.1. About BuildIT, Flowmanager, workflow commissioning and semantic

checking

1.1.1. About BuildIT
This part of the thesis has been marked as confidential.

1.1.2. About Flowmanager
This part of the thesis has been marked as confidential.

1.1.3. About workflow commissioning and semantic checking
This part of the thesis has been marked as confidential.

1.2. Problem Description
BuildIT regularly gets requests from clients for improvements of the functionalities of Flowmanager,

including additions to workflow commissioning and semantic checks. These request vary from client

to client, depending on their needs and their usage of Flowmanager. This variety makes it difficult for

BuildIT to determine which improvement of Flowmanager should receive priority. It is also unclear

whether additions of Flowmanager are supported amongst multiple clients, since different

departments of BuildIT each communicate with their own client. Taking these issues and the expenses

of developing these new features into account, there is a clear need of guidance and structural decision

making in the development of new workflow commissioning features.

The second issue which is addressed in this thesis, is the development of semantic checking in the

workflow environment of Flowmanager. At this point, no functionality of semantic checking exists in

Flowmanager, although it is a much desired feature, both by clients and BuildIT. With semantic

checking, the workflow commissioning capabilities of clients improves and BuildIT has a more

complete product to sell. Before BuildIT can initiate the development and implementation of semantic

checking in Flowmanager, it is necessary to know in which situations semantic checks can provide

added value. Researching this issue creates a scope for the development of semantic checking tools.

1.3. Goal, research question and sub questions
Based on the provided information and the problem description in paragraph 1.2, the goal, research

question and sub questions for this thesis have been created, as described in this paragraph.

Jens Rothman | 2015 10/67

1.3.1. Goal
Summarizing these research topics, the goal of this research is advising on the improvement of

workflow commissioning and semantic checking in Flowmanager by applying best practices and

standards derived from theory and aligning them with the demands of BuildIT’ clients.

1.3.2. Research question and sub questions
The described goal can be translated to the following research question:

How can workflow commissioning and semantic checking in Flowmanager be improved to meet the

demands of clients, by applying best practices and standards derived from the theory?

In order to answer the research question, the following sub-questions are addressed:

1. How does Flowmanager work? Explaining the platform, its workflow and semantic checking.

2. What are the best practices of workflow commissioning and semantic checking?

3. How does the workflow commissioning and semantic checking of Flowmanager compare with

the best practices, what are possible improvements?

4. What is the opinion of clients about the possible improvements of workflow commissioning

and semantic checking in the context of Flowmanager?

5. How do possible improvements of workflow commissioning and semantic checking in

Flowmanager, derived from the theory, compare with the opinions of clients?

6. Which found improvements of Flowmanager have the highest priority of implementation?

1.4 Methodologies used in Thesis

1.4.1. Structure method
The structure of this thesis has been created based on the Design Science Research Methodology

(DSRM) as provided by Peffers, Tuunanen, Rothenberger, and Chatterjee (2007). In their paper, Peffers

et al. (2007) emphasize the need for a widely held “methodology for conducting design science

research” in the field of Information Systems. As a response to this need Peffers et al. (2007) present

DSRM, a commonly accepted method of executing design science in the field of Information Systems.

Peffers et al. (2007) make a distinction between four types of research in the field of IS. This thesis is

classified as an Objective-centered solution, since the incentive for this thesis is based on a need

coming from BuildIT.

DSRM consists of six consecutive activities, which are implemented in this thesis. Figure 2 shows how

the model by Peffers et al. (2007) is applied to this thesis. The Design & Development and the

Demonstration stages require additional explanation which can be found in the next two paragraphs.

Identify problem
and motivate

Chapter 1.1 and
1.2: Introduction
including basic

information and
problem

definition.

Define Objectives
of a Solution

Chapter 1.3: Goal,
research question
and sub qeustions.

Design &
Development

Chapter 2 and 3:
Literature review

and Literature
frameworks

Demonstration

Chapter 4: Delphi
Panel

Evaluation

Chapter 5:
Discussion

Communication

Chapter 6:
Conclusion

T
h

e
o

ry

In
fe

re
n

ce

H
o

w
 to

K

n
o

w
le

d
ge

M
e

trics,
A

n
alysis

K
n

o
w

le
d

ge

D
iscip

lin
a

ry
K

n
o

w
le

d
ge

Figure 1: Application of DSRM by Peffers et al. (2007) to thesis.

1.4.2. Literature review method
As stated in figure 2, a literature review and literature frameworks on the topics of business rules,

workflow commissioning and semantic checking are presented in chapter 2 and 3. For the selection

and processing of the relevant literature, the Grounded Theory Literature Review Method (GTLRM) is

Jens Rothman | 2015 11/67

used, as illustrated by Wolfswinkel, Furtmueller, and Wilderom (2013). Due to the double research

agenda of the literature review, this thesis is in need of structure and an efficient method for analyzing

sources. GTLRM meets this need for structure and efficiency by introducing five phases for a literature

review: define, search, select, analyze and present. Paragraph 2.1.1 elaborates further on GTLRM and

its associated methods.

1.4.3. Empirical method
For the empirical part of this thesis, the Delphi panel is selected as the method to use. A Delphi panel’s

goal is to measure and possibly improve the consensus of participants on a certain subject by providing

room for discussion and interpretation of each other’s choices and opinions. These properties match

the requirements of the empirical research for this thesis: input needs to be gathered on the usability

of the theoretical concepts in the context of Flowmanager. The group of experts exists of persons who

use Flowmanager daily for workflow commissioning.

Other properties of a Delphi Panel match the requirements for this thesis as well. A Delphi panel

requires a relatively small number of participants, something which is the case for this thesis (11

participants). A Delphi panel is also flexible in its setup (time and location), which is useful taking into

account the spread of the participants over the Netherlands and their busy schedules. Chapter three

elaborates further on the motivation and set up of the Delphi panel in this thesis.

1.5. Relevance of Thesis

1.5.1. Academic
The academic relevance of this thesis can be found in the empirical aspect. As stated in the research

question and sub questions, theories are compared with a system which operates on a daily basis. This

gives us an indication which theories can actively contribute to the day to day works of businesses.

This comparison also shows if certain theories are outdated, should receive some additions or should

even be completely reviewed in order to be in line with the current developments. It also tells what

specific parts of said theories should undergo these potential changes. Overall, this thesis outlines

which theories can be used in practice and which are less useful, it indicates the usability of the

discussed theory in practice.

1.5.2. BuildIT
The relevance of this thesis for BuildIT is logical: it gives BuildIT the opportunity to cross the t’s and dot

the i’s for workflow commissioning of the Flowmanager framework. This thesis also provides guidelines

for the first implementations of semantic checking. The advice leads to a more complete, user friendly

and attractive product for the client. In its turn, this could lead to a higher rate of client satisfaction

with the current clients. Also, when the proposed changes are implemented based on the surveys

amongst clients, the clients feel like being listened to. This improves the relationship between BuildIT

and the clients.

Finally, from an academic point of view, BuildIT has the opportunity to compare their work on semantic

checking and controls with relevant and recent theory. This gives them insight into where they stand

compared to the standard and best practices and it provides them with specific guidelines on which

improvements can be made.

1.6. Thesis Outline
This paragraph describes the structure of the remainder of this thesis, as displayed in figure 3. Chapter

two describes the literature review and the used methodologies. In chapter three, two literature

frameworks provide an in depth analysis on the subjects workflow commissioning and semantic

checking. In chapter four the Delphi Panel is presented. This chapter provides a brief explanation on

Jens Rothman | 2015 12/67

Delphi Panels, describes the used methodology and set-up of the panel, followed by a presentation of

the results. Chapter 5 presents the discussion of a comparison of the literature review with the results

of the Delphi Panel. Finally, Chapter 6 provides a conclusion for this thesis, among which

recommendations are made to BuildIT.

Chapter 2:
Literature review

Chapter 3:
Literature

frameworks

Chapter 4:
Delphi panel

Chapter 5:
Discussion

Chapter 6:
Conclusion

Figure 2: Thesis outline.

Jens Rothman | 2015 13/67

2. Literature review on business rules
This chapter aims at creating a scientific foundation which is required for the upcoming chapters of

this thesis. As stated in the introduction, the following chapters focus on conducting a Delphi panel

and the analysis of this panel. The theory presented and discussed in this chapter provides contents

for the execution and analysis process of the Delphi Panel. In order to create a proper foundation, the

literature review is created based on the ‘Grounded Theory Literature Review Method’ as described

by Wolfswinkel et al. (2013).

The remainder of the chapter is structured as follows: Firstly, an elaboration of the Grounded Theory

Literature Review Method is provided. Secondly, the methodology for the literature review of this

thesis based on the Grounded Theory Literature Review is described. Finally, the field of business rules

and its connection to workflow commissioning and semantic checking is presented by comparing

several articles on the topic of business rules.

2.1. Grounded Theory Literature Review Method

2.1.1. Explaining Grounded Theory Literature Review Method
This thesis requires a broad literature review since advice on improvements is given in two different

fields. Such an extensive review needs a lot of structure in order to create well-argued and concrete

guidelines and best practices for each of the discussed topics. The Grounded Theory Literature Review

Method (GTLRM) can provide such a structure: “The aim of using a Grounded Theory approach to

literature reviewing is to reach a thorough and theoretically relevant analysis of a topic.” (Wolfswinkel

et al., 2013). GTLRM does this by introducing five stages which guide the composition of the literature

review, as can be seen in figure 4:

Figure 3: GTLRM stages (Wolfswinkel et al., 2013).

Define
The first of the five steps has its emphasis on increasing the efficiency by forming a clear scope for the

consecutive search phase. In the Define stage, criteria are defined for the inclusion or exclusion of

Jens Rothman | 2015 14/67

certain articles (for example limitations in publication date and types of publications). The next task is

to guide the search to the correct research field, for instance information systems or workflow

management. The third task provides a scope in the selection of academic sources. Researchers should

ask themselves questions such as: Which fields are interesting for my research? Which fields have

overlap with my fields? The final task of the Define step is the selection of search terms, which should

“cover the entire scope of the research area.” (Wolfswinkel et al., 2013).

Search
Based on the Define stage, the search can be initiated. During this stage it can become apparent that

certain terms were missing or obsolete. It is important to keep track of the changes made in this stage,

as they might have consequences for other parts of the thesis.

Select
In the Select stage, choices are made about which articles to include or exclude. As shown in figure 5,

every article has to go through several ‘filters’. Articles are checked for doubles, after which they are

filtered based on title and abstract: if criteria as formulated in the Define stage are not met, sources

are excluded. The next step is to read the full text

and repeat the inclusion / exclusion process. Also,

citations need to be checked in order to find more

relevant and closely linked articles. If new articles

arise, the entire process has to be executed again.

Analyze
“The procedures of grounded theory are designed to

develop a well-integrated set of concepts that

provide a thorough theoretical explanation of social

phenomena under study.” (Corbin & Strauss, 1990).

In their article, Corbin and Strauss (1990) state that

grounded theory is not just descriptive, it also has

an explanative aspect. In contrary to other

methods, the grounded theory approach takes into

account and explains specific conditions of single

cases and uses these conditions to create a

complete and detailed overview of all the relevant

concepts.

Other methods often focus on a specific article and

provide an overview of what each article entails.

Grounded theory on the other hand, is a continuous

review process which makes an analysis based on

the concepts found in the various information

sources. The concepts are grouped in categories,

which can be compared with each other, eventually

leading to a core category, which “represents the

central phenomenon of the study.” (Corbin &

Strauss, 1990).

Grounded theory‘s end goal is to provide a

complete overview of concepts in a specific

theoretical field around a core category, whilst
Figure 4: Select stage in reviewing the literature in an
area.

Jens Rothman | 2015 15/67

keeping their respective context in mind. This end goals makes grounded theory an appropriate

method to use for the literature review of this thesis, since the output should consist of best practices

and guidelines in two specific fields.

In order to achieve this end goal, grounded theory makes use of a number of canons and procedures,

basic laws about data collection and analysis which need to be followed in order to perform a

successful grounded theory method. Among these canons several topics are discussed, such as the

interrelation of data collection and analysis, development of concept categories and comparisons of

cases and categories (Corbin & Strauss, 1990).

The successful arrival at the end goal of grounded theory is guided by three types of coding, being open

coding, axial coding and selective coding. Babbie (2007) defines coding as “the process whereby raw

data are transformed into standardized form suitable machine processing and analysis.”

Open coding is the first step in the coding process. Its emphasis lies on a first analysis, classification

and labelling of concepts which are derived from the data (Babbie, 2007). By open coding, researchers

can break down data for a better understanding and the creation of new insights. The concepts which

are found by this type of coding are given a preliminary label and are placed into categories (Corbin &

Strauss, 1990).

The next step, axial coding, makes use of the categories formed in the open coding process. Its goal is

to detect the concepts which are the most important for the research. The transition from open coding

to axial coding is not very strict. Open coding can still occur next to the axial coding process, should

new theory emerge. Thus, new (sub)categories can still be formed and data can still be relocated to

other categories (Babbie, 2007). In addition, Corbin and Strauss (1990) state that “categories are

related to their sub categories and the relationships tested against data” in the axial coding stage. After

the process of labelling data and concepts in the open coding stage, the input in categories is compared

and checked for similarities. These core concepts, which can be found in multiple sources, provide a

first glance at the best practices which are required for the rest of this thesis (Corbin & Strauss, 1990).

During the selective coding process, one central core category is selected to which all the other

categories, sub categories and their concepts are related. Selective coding usually occurs in the final

phase of analyzing the data. It is this category which can answer questions such as: “What is the main

analytic idea presented in this research? What does all the action/interaction seem to be about?”

(Babbie, 2007).

Present
The final stage of the GTLRM is the presenting of the findings from the previous steps. The type of

presentation depends on the findings that have been done. Emphasis can be on a diversity of subjects,

such as the core category in case of clear relations among the various categories. On the other hand,

if there are a lot of exceptions which differ from the category, emphasis could be on these exceptions.

Presentations of findings often benefit from visual output, such as tables and diagrams (Wolfswinkel

et al., 2013).

2.1.2. Applying GTLRM
This chapter describes the application of the previously mentioned methods in this chapter.

2.1.2.1. Inclusion / Exclusion criteria for literature

An important step in the creation of a solid literature review is the inclusion / exclusion of sources. The

following criteria have been used in the development of the review as described in paragraph 2.2.2:

Jens Rothman | 2015 16/67

- The scientific fields surrounding the topics of information services are subject to a high degree

of change due to innovations in the respective fields. In order to cope with these

transformations, a guideline has been set for acquiring literature: sources dating from before

2000 are excluded, unless the amount of citations exceeds 250.

- In order to be included, the selected study has to contain best practices and/or guidelines for

either semantic checking, business rules and/or workflow management. The following

definitions apply for these search terms:

o Semantic checking: verification of the semantic correctness of a process in a workflow,

by monitoring the correct application of constraints in a workflow process (Ly et al.,

2008).

o Workflow management: “An approach to the problem of controlling, monitoring,

optimizing and supporting business processes.” (Salimifard & Wright, 2001).

o Business Rules: “A statement that defines or constrains some aspect of the business.“

(Charfi & Mezini, 2004).

- Schwarz and Russo (2004) have created a list of the top 50 journals in the field of Information

Systems, presented in figure 6. Although publication in one of these journals is not essential,

it provides a good indication of the quality of the document.

2.1.2.2. Search methodology

In order to retrieve the required articles, the renowned academic search engine Web of Science by

Thomson & Reuters1 has been used. This engine is known for delivering results from highly regarded

sources and their filtering options. One issue with Web of Science is that it occasionally is unable to

deliver the required articles. In these cases, Google Scholar has assisted by delivering the articles which

were originally found with Web of Science.

Another important part of the methodology are the search terms which were used for finding results.

The search terms are based on the previously stated disciplines and on the research questions, as

suggested by Schwarz and Russo (2004).

1 http://www.isiknowledge.com

Figure 5: Top 50 in IS Journals.

Jens Rothman | 2015 17/67

The following search terms have been used:

Table 1: Search terms per literature review topic.

2.1.4.5. Presentation of relevant literature

The coding procedure as illustrated in the previous paragraph, requires a constant revision of the

concepts and categories in order to provide a well-founded and complete overview of best practices

and guidelines for each of the two topics. This thesis however only entails the end results of the

literature review and coding procedure: only the articles which make a contribution to this thesis are

discussed. Presenting the separate stages of the literature review results in clutter, confusion and

irrelevant information.

2.2. Literature review
This paragraph centers on a literature review of the research fields relevant to this thesis. First, a

number of definitions is provided which aids to a full understanding of the literature review and

literature frameworks. Second, the comprehensive field of business rules is introduced, which provides

valuable information on both the topics of workflow commissioning and semantic checking. Finally, a

conclusion is provided, connecting business rules to workflow commissioning to semantic checking.

2.2.1. Definitions for literature review
- Business process: A process consisting of a “sequence of activities. It has distinct inputs and

outputs and serves a meaningful purpose within an organization or between organizations.”

(van der Aalst et al., 2003).

- Business process management: The collection of tools and methods used by organizations in

understanding, managing and improving their process portfolio, and in identifying and

quantifying processes with outsourcing potential (zur Muehlen & Indulska, 2010).

- Business rules management: The identification, definition and management of business rules

using technology such as Business Rules Management Systems (zur Muehlen & Indulska,

2010).

- Activity: “A discrete process step performed either by a machine or a human agent. An activity

may consist of one or more tasks.” (van der Aalst et al., 2003).

- Workflow: A workflow “is a process in which documents, information or tasks are passed from

one participant to another. It is a set of activities involving the coordinated execution of

multiple tasks performed by different processing entities and covers the flow of information

and control within and between organizations.” (Salimifard & Wright, 2001).

- Workflow Management System (WfMS): An information system which controls transactions

between activities within a workflow (Stohr & Zhao, 2001).

- Workflow instance: A single case in a workflow process (Verbeek, Basten, & van der Aalst,

2001).

- Semantic correctness: The analysis of the logical relations between two or more activities in a

workflow process (Ly et al., 2008).

Workflow Semantic checking

IT Process management Continuous auditing

Workflow management Continuous monitoring

Model checking Semantic checking

Business rules Automatic compliance

Automatic compliance Semantic controls

 Conformance analysis

Jens Rothman | 2015 18/67

- Semantic conflict: A situation where two or more activities in a workflow process collide with

each other, based on conditions defined in the constraints (Ly et al., 2008).

- Semantic checking: Verification of the semantic correctness of a process in a workflow, by

monitoring the correct application of constraints in a workflow process (Ly et al., 2008).

2.2.2. Literature review on business rules
A key subject for this thesis is business rules, a field which encompasses both workflow commissioning

and semantic checking. In this section, an overview is provided of several properties of business rules.

In the next chapter, two articles which provide an in-depth view on workflow commissioning and

semantic checking are explained.

In their article, Charfi and Mezini (2004) describe a business rule as “a statement that defines or

constrains some aspect of the business.” Having business rules provides a company structure and the

opportunity to control its business processes. Also, by applying business rules, parts of a process can

be updated or adapted without influencing the entire process (Charfi & Mezini, 2004).

Many different papers have categorized business rules in their own way. These various methods show

similarities in the way business rules are classified. Four different papers are briefly discussed after

which one method is selected which is most appropriate for this thesis.

First of all, The Business Rules Group (2000) describes four categories of business rules. The first

category is definition of business terms and entails business rules that put emphasis on describing the

various aspects of a business rule so that it can be categorized and interpreted properly. The second

category is facts relating terms to each other and consist of business rules focusing on describing the

structure of a process. The third category is known as constraints. Business rules in this category

provide limitations for the commissioning of a workflow. The fourth and final category is derivations.

These business rules focus on the derivation of business rules from other business rules (The Business

Rules Group, 2000).

Both Charfi and Mezini (2004) and Iacob and Jonkers (2009) make a distinction between two types of

business rules. Charfi and Mezini (2004) describe these types as (1) constraints and (2) if conditions

then action. Iacob and Jonkers (2009) refer to them as (1) constraints and (2) rules that influence the

operational process. The first type of business rules provides limitations for the business process, the

latter type focuses on structuring the business process. Since these two articles provide nearly similar

definitions, this thesis will make use of the categorization by Iacob and Jonkers (2009). This

categorization fits well with the two remaining research topics of workflow commissioning and

semantic checking.

In their article, zur Muehlen and Indulska (2010) also make a distinction between different types of

business rules, but provide more specific categories to which a business rule can be allocated: Integrity,

transformation, derivation, reaction and production rules. These categories show similarities with the

categories as described by The Business Rules Group (2000) and Iacob and Jonkers (2009). A

comparison of the categories is displayed in table 2.

Jens Rothman | 2015 19/67

 Categories by Iacob and Jonkers (2009)

Constraints Operational process rules

Categories by The Business
Rules Group (2000)

Constraints Definition of business terms

Derivations Facts relating terms to each other

Categories by zur Muehlen
and Indulska (2010)

Integrity rules Derivation rules

Transformation rules Reaction rules

 Production rules

zur Muehlen and Indulska (2010) acknowledge two modeling types of Workflow Management Systems

(WfMS’s). These are characterized by the way they represent a workflow and the business rules. Both

types have the same goal: presenting a business process as realistic and complete as possible. Although

they have the same goal, their properties are very different. These two types show resemblances with

the two categories of business rules identified by Iacob and Jonkers (2009).

The first model type of WfMS’s is the process modeling language and shows resemblances to the rules

that influence the operational process as described by Iacob and Jonkers (2009). This type of WfMS is

known for its focus on creating the sequence in which activities take place and the different paths

which can be taken. The process modeling language has difficulties dealing with constraints and

conditions. This is where the second model type comes in: the rule modeling language can fill this gap.

The rule modeling language puts emphasis on defining constraints and conditions, similar to the

constraints category as described by Iacob and Jonkers (2009).

In their article, zur Muehlen and Indulska (2010) conclude that there is no simple way of implementing

properties of the rule modeling language into process modeling language. Further research needs to

be conducted in this field. This conclusion suggests that it is more feasible to conduct two separate

literature reviews for workflow commissioning and semantic checking.

Conclusively, business rules can fall in two different categories. The first category entails business rules

that focus on the creation of structure and sequences in a workflow process, so called operational

process rules (Iacob & Jonkers, 2009). These can be classified as an aspect of the process modelling

language (zur Muehlen & Indulska, 2010). The second category consists of business rules focusing on

relations between different aspects of a workflow process, so called constraints (Iacob & Jonkers,

2009), which fit in the rule modeling language (zur Muehlen & Indulska, 2010).

Workflow commissioning and semantic checking are two practical applications of the two modeling

types as previously described. Workflow commissioning is a typical example of an activity which is

associated with process modeling language: the focus lies on creating sequences and structure.

Paragraph 3.1 elaborates further on a large variety of ways of commissioning workflows by discussing

a review article by van der Aalst et al. (2003). Although Flowmanager appears to be a system which

makes uses of the process modeling language, there is a need for influences from the rule modeling

language in the form of semantic checks as described in the introduction. Therefore, the application

of semantic checks in a variety of situations as described by Ly et al. (2008) is discussed in paragraph

3.2.

Table 2: Comparing categories of zur Muehlen and Indulska (2010) and The Business Rules Group (2000) with Iacob and
Jonkers (2009).

Jens Rothman | 2015 20/67

Jens Rothman | 2015 21/67

3. Literature frameworks on workflow commissioning and semantic

checking
This chapter elaborates on the usage of the two practical applications belonging to two different types

of business rules, as described in the previous chapter. First, emphasis is put on the subject of workflow

commissioning by discussing the most important findings of van der Aalst et al. (2003). Second, the

paper by Ly et al. (2008) is discussed by presenting their findings on the application of semantic checks

in six different situations.

3.1. Literature framework on workflow commissioning
The search for best practices in the field of workflow commissioning by applying the Grounded Theory

Literature Review Method, delivered two articles which include a review of several WfMS´s and their

properties.

Workflow Management Systems analysis

First of all, Georgakopoulos, Hornick, and Sheth (1995) made a comparison of five WfMS’s which were

considered best practices at that time. However, this method focuses on describing the properties

concerning the end results which can be achieved with the method, instead of describing the actual

commissioning of the workflow. van der Aalst et al. (2003) provide us with a more recent comparison

of WfMS’s. In their article, they use 20 workflow commissioning patterns to distinguish between 15

WfMS´s. van der Aalst et al. (2003): “The challenge, which we undertake in this paper, is to

systematically address workflow requirements, from basic to complex, in order to (1) identify useful

routing constructs and (2) to establish to what extent these requirements are addressed in the current

state of the art.” The following two tables represent the results accomplished by van der Aalst et al.

(2003):

Table 3: Main results of van der Aalst et al. (2003), part 1.

Jens Rothman | 2015 22/67

Table 4: Main results of van der Aalst et al. (2003), part 2.

On the top of both tables, respectively eight and seven WfMS can be found. On the left, 20 workflow

commissioning patterns are displayed. The explanation of all these patterns is provided in this

paragraph and examples are given as well. The + symbol indicates that a certain WfMS has the

possibility to commission the associated pattern. The – symbol indicates that a WfMS lacks the

possibility to commission the associated pattern. A combination of both symbols (+/-) shows that a

pattern is not directly available in the WfMS, but by combining other patterns such a pattern can be

simulated.

Each of these WfMS’s has their own interpretation on how a workflow is commissioned. Every WfMS

has their own specific language which in most cases is developed specifically for the WfMS. This makes

it difficult to compare WfMS languages and to learn from each other. If a certain pattern is missing, it

does not mean that it can easily be copied from another WfMS. What is possible on the other hand is

to analyze the differences in performance of the different WfMS’s by using the tool provided by van

der Aalst et al. (2003). Flowmanager can also be analyzed with this performance measurement tool,

which indicates what patterns currently are not implemented yet.

At first sight, the article of van der Aalst et al. (2003) may seem outdated, due to the large span in time

between the publishing of their article and the writing of this thesis. However, there are several

arguments why this article is still relevant and up to date for this thesis. First of all, many of the

workflow management systems mentioned are still used today and still contain the same possibilities

in workflow commissioning. van der Aalst et al. (2003): “[…], we have found that most new versions of

workflow products bring new features in areas of performance, integration approaches, new platform

support, etc. and feature minimal changes to the workflow modeling language which forms the core of

the product. Therefore, many of the results presented in this paper will also hold for future versions of

this product.” In short, the various uses of a WfMS may alter or improve over time, the basic foundation

of workflow commissioning has reached a state of maturity and will most likely remain the same.

Jens Rothman | 2015 23/67

Secondly, the article by van der Aalst et al. (2003) is still cited frequently and is the most recent

available analysis of workflow commissioning to date. According to Web of Science, the article is cited

690 times of which 72 citations date from the years 2013 and 2014, all in relevant journals in the field

of Information Systems. Web of Science provides us with the following graph:

Figure 6: Citations of van der Aalst et al. (2003) (Thomson & Reuters, 2014).

Authors of articles often use the findings of van der Aalst et al. (2003) as part of the foundation of their

research. Examples are often cited articles such as Ludascher et al. (2006), Russell, van der Aalst, ter

Hofstede, and Edmond (2005) and recent publications such as Viriyasitavat, Xu, and Martin (2012) and

Xu, Viriyasitavat, Ruchikachorn, and Martin (2012). Also, in recent articles Haddar, Makni, and Ben

Abdallah (2014), Lanz, Weber, and Reichert (2014) and many others have acknowledged that the

research done by van der Aalst et al. (2003) still provides a solid foundation for researching and

analyzing WfMS’s. Therefore, the article provides a useful tool for the analysis of Flowmanager.

The final remark concerns the usage of the results as provided by van der Aalst et al. (2003): Some of

the WfMS’s which were involved in the analysis have seized to exist or have become outdated. These

WfMS’s are excluded, a full explanation is located at the end of this paragraph, where the framework

is adapted.

Workflow Patterns

In this section, the 20 patterns as used by van der Aalst et al. (2003) are briefly described and associated

examples are provided. Each pattern is illustrated by a figure. The examples and figures have been

devised specifically for this thesis. The examples and figures are based on the information provided by

van der Aalst et al. (2003) and are applied to relevant situations from the financial sector. The patterns

are classified into six groups: basic control flow patterns, advanced branching and synchronization

patterns, structural patterns, patterns involving multiple instances, state based patterns and

cancellation patterns.

Basic control flow patterns

This section describes the fundamentals, the basic straightforward patterns which can be found in

WfMS’s.

Pattern 1 – Sequence (seq)

After the completion of an activity in a process, the subsequent activity is initiated.

Jens Rothman | 2015 24/67

Example: After the a mortgage request is completed by an applicant (complete_mortgage_request),

the bank checks the applicants details, such as social security number, name, birth date, etc.

(verify_applicant).

complete_
mortgage_request

verify_applicant

Figure 7: Example of a sequence pattern.

Pattern 2 – Parallel split (par-spl)

After the completion of an activity in a process, two or more subsequent independent activities are

initiated.

Example: After the applicant is verified, a confirmation is sent to the applicant that his request is

processed (inform_applicant) and the process of determining the maximum of the mortgage

(assess_maximum_mortgage) is initiated.

verify_applicant

inform_applicant

assess_maximum_
mortgage

Figure 8: Example of a parallel split pattern with two subsequent independent activities.

Pattern 3 – Synchronization (synch)

An activity in a workflow process where multiple prior activities converge to, the activity synchronizes

two or more preceding activities. Assumed is that the preceding activities only have one occurrence.

Example: After an applicant for a loan has been assessed as a suitable candidate (applicant_approved)

and the applicant has agreed to the proposal (proposal_agreement), a contract needs to be signed

(sign_contract).

sign_contract

applicant_approved

proposal_
agreement

Figure 9: Example of a synchronization pattern with two preceding activities.

Jens Rothman | 2015 25/67

Pattern 4 – Exclusive choice (ex-ch)

A point in a workflow where, based on preceding activities, a decision is made between two or multiple

subsequent activities. The decision can either be based on the judgment of an employee or on data

from the preceding activities of the workflow process. In this pattern, only one of the alternatives can

be selected. This is also known as a XOR-split. A XOR-split can be defined as an activity of a workflow

process, where the process is forced to proceed in only one particular direction. XOR splits consist of

multiple (at least two) potentially interesting paths (van der Aalst et al., 2003).

Example: When someone applies for a loan, the next activity depends on whether the applicant is

known by the bank (customer_recognition). If the bank knows the applicant, only an internal check

needs to be applied. If the applicant is new to the bank, an external check needs to be executed.

customer
_recognition

XOR

internal_check

external_check

Figure 10: Example of an exclusive choice pattern.

Pattern 5 – Simple merge (simple-m)

Two or more activities come together in an activity without synchronization. van der Aalst et al. (2003):

“It is an assumption of this pattern that none of the alternative branches is ever executed in parallel.”

This pattern is also known as a XOR-join. Pattern 8 and pattern 9 provide alternatives in which branches

are executed at the same time.

Example: An applicant has to provide a copy of either a passport (id_passport), ID card (id_card) or a

driver’s license (id_drive) for verification purposes.

id_verificationid_card

id_passport

id_drive

XOR

Figure 11: Example of a simple merge pattern.

Jens Rothman | 2015 26/67

Advanced branching and synchronization patterns

The patterns in this section are more advanced than the patterns in the previous section. The upcoming

patterns provide specific options to the user in commissioning a workflow.

Pattern 6 – Multi-choice (m-choice)

Where Pattern 4 puts emphasis on making a decision between two or more activities (XOR-split), the

Multi-choice pattern is less strict. It is possible to select multiple subsequent activities, which can

operate independently (also called the OR-split). An OR-split is defined as an activity of a workflow

process, where the process can proceed in multiple directions if required (van der Aalst et al., 2003).

Example: If the activity of verifying the identification has failed (id_failed) due to for instance a bad

scan of the document or a scan of the wrong document, several subsequent activities could be

executed. The client could be sent an e-mail (contact_mail) or given a phone call (contact_phone). If

the employee of the bank has serious doubts about the reliability for the document, he could also

involve the fraud department (involve_fraud_dept). Multiple activities could be selected, depending

on the urgency of the case.

id_failed

contact_mail

contact_phone

involve_fraud_dept

OR

Figure 12: Example of a multi-choice pattern.

Pattern 7 – Synchronizing merge (sync-m)

Two or more activities come together towards one activity. It is possible that only one of the activities

is completed, in that case the other simultaneous activities will converge. It is also possible that two or

more activities are completed. Should this occur, then the activities which were executed need to be

synchronized.

Example: After the applicant of pattern 6 has been contacted through phone and mail, he hands in a

better copy of his ID by e-mail. This ID card is approved (id_approved) and the three activities are

converged and no longer require actions to be undertaken.

Jens Rothman | 2015 27/67

id_approved

contact_mail

contact_phone

involve_fraud_dept

OR

Figure 13: An example of a synchronizing merge pattern.

Pattern 8 – Multi-merge (multi-m)

A multi merge pattern occurs when two activities emerge from a single previous activity and converge

towards a single activity, without being synchronized. This can happen when synchronization is

irrelevant for the two activities, but they share the same subsequent activities.

Example: In order to make a final decision for an application of a loan (approve_application), various

types of checks need to be executed. For instance: A creditworthiness check (credit_check) and a check

for personal details (personal_check). Both these paths require an extra round of checking

(final_check) in order to minimize the possibility of human errors.

application_
completed

credit_check

personal_check

AND MERGE final_check
approve_

application

Figure 14: An example of a multi-merge pattern.

Pattern 9 – Discriminator (disc)

The discriminator pattern is a function in a workflow which waits for one of the preceding activities to

complete itself, after which it triggers the next activity. The function does not wait for all the preceding

activities to complete and provide data. It is also possible to gather data from multiple preceding

activities. For instance, the next activity can be initiated if two out of three preceding activities are

completed.

Example: For checking the credit worthiness of an applicant, three checks are conducted

(credit_check_1, credit_check_2 and credit_check_3). If a client passes two out of three checks, he has

passed the credit check.

Jens Rothman | 2015 28/67

applicant_credit_
data

credit_check_1

credit_check_3

AND
credit_checks_

approved
credit_check_2

AND

AND

AND AND

AND

AND

DISCRIMINATOR

Figure 15: An example of a two out of three discriminator. Every combination of the three checks is possible.

Structural patterns

This section introduces two patterns that have a focus on implementing structure in an arbitrary

environment. These two patterns show how difficult procedures can be structured, including the

structuring of judgment issues and the exclusion of irrelevant processes.

Pattern 10 – Arbitrary cycles (arb-c)

The ability in a workflow to generate a loop, enabling patterns to repeat themselves. This can be done

by making use of Pattern 4, Exclusive choice, one of the exclusive choices in this case will loop back.

Example: An employee of a bank notices during a check that some details of the applicant are

incomplete. He sends feedback towards the client and the client has to alter the information. This loop

can continue until the employee judges that the entered information is sufficient.

applicant_approvedpersonal_checkapplication_request XOR

alter_information

Figure 16: An example of an arbitrary cycle pattern.

Pattern 11 – Implicit termination (impl-t)

This pattern terminates a sub-process, when there are no running activities left in the workflow, nor

are there activities available whose status can be changed to an operating one. The pattern is relevant

for workflows which are not in ‘deadlock’.

Example: Consider the example of the improved scan of the ID (pattern 6). The scan is approved and

the next activity in the workflow can be initiated. After contacting the client through phone, he sends

in an implicit termination, the activities contact_mail and involve_fraud_dept can be cancelled.

Jens Rothman | 2015 29/67

Patterns involving multiple instances

These patterns put emphasis on enabling the execution of multiple paths running simultaneously. The

focus is on the converging of one activity to multiple concurrent activities with or without a priori

knowledge and the diverging of multiple concurrent activities towards one activity.

Pattern 12 – Multiple instances without synchronization (mi-no-s)

Within a single path of a workflow, multiple instances of an activity can be generated which follow the

same procedures. These activities operate independently and do not require synchronization.

Example: A customer of a bank applies for a mortgage and a loan at the same time

(double_application). In the workflow, two threads are created (thread_controller) for each of the

applications (mortgage_application and loan_application). Both of the paths require a

creditworthiness check (credit_check) before proceeding to creating an offer for the customer

(create_offer).

thread_controllerdouble_application

mortgage_applicati
on

loan_application

AND credit_check create_offer

Figure 17: An example of a multiple instances without synchronization pattern with two instances.

Pattern 13 – Multiple instances with a priori design time knowledge (mi-dt)

For a single process, an activity has to be executed multiple times. The number of recurrences is known

beforehand.

Example: Before making an offer (create_offer) to a loan applicant, the data provided by the applicant

needs to be checked (check_1 and check_2) by two different employees in order to rule out human

errors (four-eye principle).

applicant_data

check_2

check_1

make_offerAND

Figure 18: An example of a multiple instances with a priori design time knowledge pattern.

Pattern 14 – Multiple instances with a priori runtime knowledge (mi-rt)

For a single process, an activity has to be executed multiple times. The number of recurrences is not

known before the process is initiated, but is known before the instances have to be created.

Jens Rothman | 2015 30/67

Example: If company A decides to apply for a loan, its financial status is checked. Depending on the

provided information and status of the company, several checks can be executed, like liquidity

(check_liquidity), solvability (check_solvability), return on investment (check_roi), etc. The number of

activities is determined before they are generated and executed.

determine_checks check_sol

check_liq

make_offerANDapplicant_data

check_roi

Figure 19: An example of multiple instances with a priori runtime knowledge, with two performed checks.

Pattern 15 – Multiple instances without a priori runtime knowledge (mi-no)

This pattern is similar to pattern 13 and 14, with the difference that no prediction can be made if and

when new activities arise.

Example: van der Aalst et al. (2003) provide a good example: If an insurance claim is issued, it is possible

to include reports of eye witnesses. Beforehand and during the processing of these reports it is not

possible to predict the amount of witnesses.

A visual representation for this example is equal to figure 20, with the addition that the amount of

activities cannot be predicted.

State based patterns

The patterns in this section put emphasis on making a choice between activities. Where the previous

section had activities running simultaneously, the next three patterns are about selecting and

activating the appropriate activity.

Pattern 16 – Deferred choice (def-c)

By using this pattern, a style of decision making is introduced in a workflow, which is not as explicit as

the use of a XOR-split. Eventually, a choice is made between two or more alternative paths and the

patterns which are not used are withdrawn. The choice between paths is postponed as long as

possible, there is no strict deadline and the choice is made based on availability between the paths.

Example: A credit check (credit_check) for a mortgage application (mortgage_application) can be

executed by two employees (employee_a and employee_b). The decision for either of the employees

is based on availability, the path of the employee not executing the check is cancelled.

Jens Rothman | 2015 31/67

credit_check
mortgage_applicati

on

employee_a

employee_b

AND report_outcome

ca
nc

el

cancel

MERGE

Figure 20: An example of a deferred choice pattern.

Pattern 17 – Interleaved parallel routing (int-par)

A pattern where two or more activities are executed in no particular order. The activities cannot be

executed at the same time. In order to prevent simultaneous execution, tools managing interleaved

sequences are used.

Example: After a first version of a mortgage proposal has been created (first_proposal) based on an

application, its details have to be checked by two different employees (employee_a and employee_b).

Both employees have the ability to edit the details of the mortgage, thus both employees need to

execute their tasks non-simultaneously.

first_proposal

employee_a

employee_b

second_version
end_interleaved_

sequence
start_interleaved

_sequence

Figure 21: An example of an interleaved parallel routing pattern.

Pattern 18 – Milestone (milest)

The milestone pattern only initiates activities, if certain conditions have been reached or if certain

preceding activities have been completed.

Example: A customer has applied for a loan (loan_application) at a bank. The bank has various actions

to perform before it can issue an offer towards the customer. Among these actions are a liquidity check

(check_liquidity) and a solvability check (check_solvability). If the application passes the liquidity check

(M), it is a good indication that they will also pass the solvability check, thus another employee can

start creating the offer (create_offer). The status M, indicates a milestone which has to be completed

in order for create_offer to be initiated.

check_liquidity

create_offer

Mloan_application check_solvability complete_offer

Jens Rothman | 2015 32/67

Figure 22: An example of a milestone pattern.

Cancellation patterns

The final category of patterns describes patterns that are created for canceling an activity or an entire

workflow entry.

Pattern 19 – Cancel activity (can-a)

Activities that have been initiated, can be cancelled if their execution is no longer of use.

Example: A client has applied for a loan and a mortgage. However, the client has decided to withdraw

their application for the loan. Activities concerning the loan have to be cancelled.

Pattern 20 – Cancel case (can-c)

The complete cancellation and removal of a case. Pattern 20 takes the cancellation a step further than

pattern 19, since none of the details involved in the case are required in other parts of the workflow.

Example: After a client has put in a request for a loan and a credit check has been initiated, the client

has changed their mind and has decided to cancel the application. Therefore, the entire case

concerning the application has to be cancelled.

Conclusion

The framework provided by van der Aalst et al. (2003) provides an analysis tool for WfMS’s which is

essential for this thesis. Based on this tool, a new model is generated which is used to analyze

Flowmanager. Some of the products mentioned by van der Aalst et al. (2003) are excluded in the new

model. This dismissal of a workflow management system can have two reasons: either the system no

longer exists or the system is no longer supported by its creator. For these reasons, the following six

WfMS’s are excluded: Inconcert, Eastman, Meteor, Mobile, Forté and Change. The rest of the WfMS´s

remain in the table since they provide an indication to the current performance of Flowmanager.

The exclusion of these systems has led to the table as displayed at table 5. In this table, two changes

have occurred. First, the six WfMS´s as described in the previous paragraph have been excluded.

Second, a column has been included for Flowmanager for illustration purposes, since it is analyzed

based on the twenty patterns as described by van der Aalst et al. (2003).

Jens Rothman | 2015 33/67

 Systems

 St
af

fw
ar

e

C
O

SA

FL
O

W
er

D
o

m
in

o

M
Q

Se
ri

es

V
er

ve

V
is

u
al

 W
F

I-
Fl

o
w

SA
P

/R
3

Fl
o

w
m

an
ag

er

P
at

te
rn

s

1 - Sequence + + + + + + + + +

2 - Parallel split + + + + + + + + +

3 - Synchronization + + + + + + + + +

4 - Exclusive choice + + + + + + + + +

5 - Simple merge + + + + + + + + +

6 - Multi choice - + - + + + + + +

7- Synchronizing merge - +/- - + + - - - -

8 - Multi merge - - +/- +/- - + - - -

9 - Discriminator - - +/- - - + - - +

10 - Arbitrary cycles + + - + - + +/- + -

11 - Implicit termination + - - + + - - - -

12 - M.i.* without synchronization - +/- + +/- - + + + -

13 - M.i. with a priori design time knowledge + + + + + + + + +

14 - M.i. with a priori runtime knowledge - - + - - - - - +/-

15 - M.i. without a priori runtime knowledge - - + - - - - - -

16 - Deferred choice - + +/- - - - - - -

17 - Interleaved parallel routing - + +/- - - - - - -

18 - Milestone - + +/- - - - - - -

19 - Cancel activity + + +/- - - - - - +

20 - Cancel case - - +/- + - + - - +

Table 5: Analysis table for Flowmanager, partially derived from van der Aalst et al. (2003). *: M.i. = Multiple instances.

3.2. Literature framework on semantic checking
The importance of flexibility and adaptivity in the usage of WfMS’s is acknowledged by a number of

articles. First of all, Ly et al. (2008) recognize that companies need to keep up with their business

processes, due to frequently changing conditions in the global market: “… adaptivity is the key factor

for the successful application of process management technology in practice.” (Ly et al., 2008). This

point of view is shared by other authors, including Rinderle, Reichert, and Dadam (2004a) and Verbeek

et al. (2001). These two articles focus on providing tools for the diagnosis of dynamic changes in

WfMS’s.

The main article used for this part of the literature review is provided by Ly et al. (2008). In their paper

a framework is presented which aims at “supporting semantic knowledge integration and semantic

process verification in the context of changes at the process instance and at process template level”.

Process template level is defined as an overarching layer which contains underlying instances. Changes

at template level are dominant, underlying instances have to follow the changes (Ly et al., 2008).

For the answering of the research question, we need to look at the current state of development on

the field of semantic checking in Flowmanager. As stated in the introduction, BuildIT is still trying to

figure out how and when to use semantic checks. From a Business Administration perspective,

emphasis in this stage of development lies on indicating what semantic checks are and when semantic

Jens Rothman | 2015 34/67

checks can contribute to the functioning of a workflow process. Even though the principles of a

template level and associated instances by Ly et al. (2008) cannot be applied directly to Flowmanager

(Flowmanager does not work with a template or instances), the article provides input for these two

research topics. This article is relatively rare in its context since it provides information on semantic

checking which can also be interpreted from a Business Administration point of view. The nature of

the vast majority of articles covering semantic checks is far more technical, discussing topics such as

the development and implementation of semantic check systems as described by for example Reichert

and Dadam (1998) and Rozinat and van der Aalst (2008).

As stated, Ly et al. (2008) emphasize the importance of an adaptive WfMS and acknowledge the

progress which has been made in the development in these systems thus far. On the other hand, Ly et

al. (2008) recognize the difficult situation WfMS’s are in: it is impossible to predict and model all

exceptions for a WfMS. This leads to the modification of single instances in the workflow process.

These exceptions could be semantically incorrect, regardless of their syntactical (in)correctness.

Syntactical correctness is defined as the analysis of the syntax correctness of a workflow process (Ly et

al., 2008).

This is one of the issues which Ly et al. (2008) address with their framework. An example is provided

in figure 24. On the left, a number of constraints are provided. These requirements show certain

demands an instance has to meet in order to be implemented successfully. When transforming

instance I1 into instance I1’, a new activity is introduced: Activity F is implemented between B and C.

The constraints however, indicate that this is semantically incorrect, since Constraint 2 (C2) tells us

that activity F cannot precede activity D.

A B C D E A B C D EF

Constraints:
C1: (Dependency,B,A,pre,)
C2: (Dependency,F,D,post,)
C3: (Exclusion,F,G,NotSpecified,...)

I1: I1':

 I1:
Insert(I1,F,post)

Figure 23: Example of a semantic issue at the instance level.

The second issue for which the framework is designed, is located at the template level. When a process

template is updated (this could happen for several reasons, for instance new regulations or a change

in strategy), this could have consequences for the existing instances, especially when these instances

have been edited with an exception. An example is provided in figure 25.

When template S1 is updated to S2, this could have consequences for the (modified) instances which

have been commissioned under the template and constraints of S1. Template S2 differs from template

S1 in the addition of the activities F and G. This could lead to semantic issues, as can be deduced from

the constraints: if activity F occurs, then activity B cannot be executed. Instance I1 does not encounter

any semantic issues, since this instance takes the path of C instead of B. Instance I2 on the other hand

experiences these issues, since the path of this instance in S1 included activity B and now activity F has

been added.

Jens Rothman | 2015 35/67

A C D E A F C D E

Constraints:
C1: (Dependency,B,A,pre,)
C2: (Dependency,G,D,pre,)
C3: (Exclusion, B,F,NotSpecified,...)

I1: I1':

A

B

C

D ES1: S2: F

B

C

D EA G

G

A B D E A F D EBI2: I2': G

 I1:
Insert(I1,F,Pos)
Insert(I1,G,Pos)

 S1:
Insert(S1,F,Pos)
Insert(S1,G,Pos)

 I2:
Insert(I2,F,Pos)
Insert(I2,G,Pos)

Figure 24: Example of a semantic issue at the template level.

The remainder of this paragraph presents the framework as created by Ly et al. (2008). Firstly, two

important factors are discussed, dependence and mutual exclusion constraints. This elaboration is

followed by a description of semantic correctness and how instances and templates can be checked

for semantic correctness.

Dependence and mutual exclusion constraints

In their article, Ly et al. (2008) make a distinction between two types of constraints. The first of the

two is the dependency constraint. Dependency constraints are defined as constraints in a workflow

process which indicate set relations between two or more activities (Ly et al., 2008). This type of

constraint states that the execution of an activity depends on the execution of another activity, in

other words the two activities need to be carried out together. An example is the requirement of a

credit check before making a mortgage offer to a client.

The second option is the mutual exclusion constraint. Mutual exclusion constraints are defined as

constraints in a workflow process which prevent two or more activities from occurring together (Ly et

al., 2008). This type of constraint indicates that two activities cannot be executed together. An example

of this type of constraint is that a patient in a hospital waiting for brain surgery cannot be admitted

aspirin, since this could interfere with the operation. These two types of constraints are used to shape

the workflow process and to identify limitations in the commissioning.

A number of variations can be created of the two mentioned constraints. The syntax for the constraints

is as follows: cX: (Type, Source, Target, Position, UserDefined), whereas:

- cX is constraint number X.

- Source is the original activity where the constraint refers to.

- Target is the activity to which the original activity is linked to by the constraint.

Jens Rothman | 2015 36/67

- Position is the determination of the order of the Source and Target in the process. Three

alternatives can be issued, being Pre (Target precedes Source), Post (Source precedes Target)

and NotSpecified (The positions are not relevant or unknown).

- UserDefined are comments from the creator of the constraint which can assist in the

understanding and the correct implementation of the constraint.

Semantic correctness on the instance and template level

Ly et al. (2008) provide procedures for the semantic verification for two types of changes as stated

previously in this paragraph: process instance changes and process template changes. An instance or

process is semantically correct if all the demands defined by the dependency and mutual exclusion

constraints are met.

On the level of process instance changes, three types of changes in instances can lead to semantic

issues: inserting, deleting and moving of activities. The syntax of these changes is similar to the syntax

of the constraints: ∆IX: Task(IX,a,Position), whereas:

- ∆IX is the change in Instance X,

- Task is one of the tasks insert, delete or move,

- IX stands for instance number X,

- a is the activity for which the change is relevant and

- Position is the new position of the new activity in the instance.

This notation of changes has great benefits for the detection of semantic issues. The examples in this

thesis are simple and short workflow processes. In reality, workflow processes can have a number of

activities much larger than the 5-10 which have been used in the examples, running up to over a 100

activities. Checking all these activities for semantic correctness would obviously take up a lot of time.

The inspection of the entire process can be prevented by the notation of changes. Each of the three

types of changes has its own need for checks which can be derived from the syntax (Ly et al., 2008).

Insert

When inserting an activity, the dependency constraints containing the a variable from the Task syntax

as source need to be checked. Dependency constraints which indicate the a variable as the target also

require a check for semantic issues, since the target has influence on the source. A distinction between

the mutual exclusion constraints cannot be made, since both the source and target could influence the

end result of a constraint. Both of the mutual exclusions types need to be included in the check.

Assuming that the rest of the process has been commissioned in a syntactic and semantic correct way,

the remainder of the constraints (not using the a variable) can be excluded from the semantic check,

since they experience no influence from the a variable (Ly et al., 2008).

From a practical point of view, the number of constraints which need to undergo the semantic check

can be limited even further. If a constraint has included the a variable and the other involved task

(either source or target) is a task that is not included in the running instances (for example instances

taking only one path where multiple are available in a process), there is no direct need to mark this

constraint as violated. This approach meets the demand of the present, but does not take into account

future instances in this process which may alter from the current instances. If an instance is altered to

follow a different path in the process, one which contains activities which are affected by a constraint

previously ignored, a new check for semantic issues has to be executed.

Jens Rothman | 2015 37/67

Delete

When deleting variable a from an instance, the dependency constraints which have variable a as a

source will have no issues with the alterations, since the constraints only have an effect on the deleted

activity. These constraints can be excluded from the check. Ly et al. (2008) state that similar to inserting

a new activity, the dependency constraints with variable a as a target need to be included. Mutual

exclusion constraints cannot encounter issues by deleting an activity, since one of the two affected

variables is deleted from the instance. Thus, mutual exclusion constraints can be excluded from the

check. The same exclusion for constraints based on usage by current instances -as discussed with the

inserting of a new activity- can be applied when looking for constraints to include in the semantic

checking.

Moving

When a task is moved, it is actually being deleted and inserted in a new location. Therefore, all the

constraints which need to be checked according to the Insert and Delete changes, need to be taken

into account when moving a task to a new location (Ly et al., 2008).

Semantic correctness of instances in a changing template environment

As stated, one of the two types of changes which can be made in processes in a WfMS, are changes in

templates. The previous paragraph presents how a change in process template can semantically be

verified. This paragraph elaborates on a more complex question: When a process template is changed,

how can running instances of a process be checked for semantic issues when they follow the same

change paths?

In order to answer this question, a distinction is made between six different instance types, as

described by Rinderle (2004) and Rinderle, Reichert, and Dadam (2004b). In their articles, these

authors used the models as presented in figure 26 to detect issues in syntactical compliance between

instances and templates. Since semantic checks investigate the same basic data as syntactical checks,

the same model can be used. Ly et al. (2008) state that applying the model to all the instances involved

in the template change can be very time consuming and in many cases irrelevant. The following

paragraphs discuss the different types of instances. Afterwards a table is presented that determines

which additional semantic checks should be executed, followed by a brief explanation.

The first distinction is made between biased and unbiased instances. Instances are unbiased if they

have not received any individual alternations, for example I1 in figure 26. Obviously, these instances

do not require any additional semantic checks in addition to the ones executed in the template change.

The biased instances can be divided into the disjoint bias and the overlapping bias, based on the

overlap between the template and the instance. If an instance is altered in such a way that these

changes differ completely from the changes made on the template level (I6), it is characterized as a

disjoint bias.

Instances whose changes do not differ completely from the changes on template level are placed in

the overlapping bias. In its turn, the overlapping bias can be divided into three biases: the equivalent

bias, subsumption equivalent bias and the partially equivalent bias. The equivalent bias (I2) has the

exact same changes as the template. The subsumption equivalent bias is divided in two biases (I3 and

I4): one where the changes in the instance (∆I) subsume the changes in the template (∆S) and vice

versa. The final bias is the partially equivalent bias, which has one or more changes which are in line

with the changes at the template level, but also has changes which differ from the changes on template

level.

Jens Rothman | 2015 38/67

Figure 25: A template change for six different instance types (Ly et al., 2008).

The following table shows which biases require additional semantic checks compared to the checks

already performed, followed by an explanation.

Instance type Additional checks to be performed

Unbiased None

Equivalent bias None

∆I subsumes ∆S None

∆S subsumes ∆I None

Partially equivalent bias ∆S

Disjoint bias ∆S\∆I
Table 6: Additional semantic checks for different biases, based on Ly et al. (2008).

As stated, the instances which can be characterized as unbiased, require no additional checks.

Instances in the equivalent bias have the exact same changes as the template and do not require any

extra checks. The instances which fall under the ∆I subsumes ∆S bias basically contain the equivalent

bias and the addition of tasks which are not included in the changes of the template. The equivalent

bias requires no additional checks and neither does the addition of a new task, since it is assumed that

a modification of a single instance is semantically checked when it is originally implemented. As stated

in the name of the ∆S subsumes ∆I bias, all the changes of I are included in ∆S and additional changes

in I will be made based on ∆S. No additional checks are required.

The first type of instance changes which requires additional checks, is the partially equivalent bias. This

type of instance has (a number of) changes in common with the template change but also has some

unique alterations. If these instances are updated to the new template version, semantic conflicts

could arise, caused by applying the changes made in S on the individual changes of the instance. Only

Jens Rothman | 2015 39/67

the constraints which contain changes in S which are new to the instance need to be semantically

checked.

The second type of instance changes in need of supplementary checks is the disjoint bias. Given that

the changes of an instance and the changes of a template differ completely, additional semantic checks

need to be executed. All the constraints which contain either the instance modification or template

modification need to be checked (Ly et al., 2008).

This part of the thesis has been marked as confidential.

Figure 26: Illustrating template changes in the context of Flowmanager.

As stated, the partially equivalent bias and the disjoint bias are the only two biases which need

additional semantic checks. The following table by Ly et al. (2008) provides an overview of which

constraints need to be checked when modifications are made to the two aforementioned biases.

Alterations in the instances can be found on top, alterations in the template can be found at the left.

Table 7: Summary of constraints to check, based on applied changes in template and instances (Ly et al., 2008).

Summary

This section has provided a framework which describes how to determine what parts of a workflow

process need to be checked for semantic issues. Semantic checks can be executed by analyzing the

constraints which are included on the template and instance level.

Two different types of constraints are defined: mutual exclusion and dependency constraints. Changes

at the instance level can occur in three different ways: by inserting, deleting or moving one or multiple

tasks. Each of this three modifications has its own consequences with their associated semantic checks

which need to be performed. Changes at the template level follow the same procedure. But the

adaption of the related instances follows a different procedure, since some instances can be

individually modified. When updating these individual cases to the new template, six different types

of biases of instances can be distinguished: unbiased, equivalent bias, ∆I subsumes ∆S bias, ∆S

subsumes ∆I bias, partially equivalent bias and the disjoint bias. The last two types of biases require

additional semantic checks. The partially equivalent bias only needs to check the alterations which

differ from the template changes and which affect the involved constraints. Instances in the disjoint

bias need semantic checks for all the alterations which affect the involved constraints.

Jens Rothman | 2015 40/67

Jens Rothman | 2015 41/67

4. Delphi Panel
This chapter elaborates on the Delphi Panel performed for the empirical input of this thesis. As stated

in paragraph 1.4.3, the properties of a Delphi panel match the requirements of the empirical research

of this thesis. The ability to measure and improve consensus amongst the participants, the room for

discussion and the flexibility are a few of these properties which advocate for the use of a Delphi panel.

Additional motivation for the selection of the Delphi panel is provided in paragraph 4.1.2.

The questioning in this Delphi Panel is based on the literature frameworks on workflow commissioning

and semantic checking as presented in chapter 3. The workflow patterns as described by van der Aalst

et al. (2003) are used to analyze the improvement opportunities in Flowmanager. The six different

situations in workflow processes and their associated degree of semantic checking as described Ly et

al. (2008) are used to map the opinions of the daily users of Flowmanager on the application of

semantic checks in practice.

This chapter has the following outline. First, basic information about the use of Delphi Panels is

provided followed by a motivation on the application in this thesis. Second, the method provided by

Okoli and Pawlowski (2004) is displayed, which is used for the Flowmanager Delphi Panel. Third, the

configuration of the Flowmanager Delphi Panel is provided. Fourth and finally, the results of the

Flowmanager Delphi Panel are presented followed by an analysis of these results.

4.1. About Delphi Panels
In this section, basic information is provided on the properties of Delphi Panels.

4.1.1. Basic information
In their article, Okoli and Pawlowski (2004) provide a description of Delphi Panels which hold most of

the characteristics of a Delphi Panel: “Delphi may be characterized as a method for structuring a group

communication process so that the process is effective in allowing a group of individuals, as a whole,

to deal with a complex problem. To accomplish this “structured communication” there is provided:

some feedback of individual contributions of information and knowledge; some assessment of the

group judgment or view; some opportunity for individuals to revise views; and some degree of

anonymity for the individual responses.”

A Delphi Panel is a “widely used method to obtain input from a group of experts” (Diamond et al., 2014).

In short, a Delphi Panel is a qualitative empirical research method which uses a series of questionnaires

and controlled feedback to let a group of experts arrive at consensus about a specific subject.

4.1.2. Motivation
A number of reasons have led to the selection of the Delphi Panel method:

- This thesis is in need of a consensus of clients on improvements of Flowmanager in order to

answer the research question. A Delphi Panel provides room for discussion and the needed

methodology, in contrary to a panel study. A panel study tends to focus more on the changes

in individuals’ opinions without discussing the subjects at hand (Okoli & Pawlowski, 2004).

- A Delphi Panel matches the number of experts available, it is designed for relatively small

groups. Okoli and Pawlowski (2004) and Worrell, Di Gangi, and Bush (2013) both indicate that

ten is the minimum number of participants for a Delphi panel. It is very difficult for smaller

group to reach consensus.

- From a practical point of view, it is not necessary for the experts to meet physically. Taking

into account the diverse locations of the experts and the limited time they have available, a

Delphi Panel is a suitable solution.

Jens Rothman | 2015 42/67

- Delphi Panel are flexible in their design, there is a wide variety of tools available.

- Delphi Panels are flexible in their duration, the rounds can be executed in one afternoon or

once a week.

- Delphi panels can be executed anonymously easily, which improves contribution of

participants.

As stated by Diamond et al. (2014) in their conclusion, there is no commonly accepted definition of

achieving consensus with a Delphi Panel. Okoli and Pawlowski (2004) indicate that using Kendall’s W

(a statistical method for measuring consensus in a group) could be a valuable measurement of the

level of consensus. However, this method requires a number of participants which is higher than the

eleven participants available for the Flowmanager Delphi Panel. Paragraph 3.3.1 elaborates further on

the participating experts. Although it is not possible to prove statistical significance with such a small

number of participants, the outcome of this Delphi Panel provides valuable information about the

improvements of Flowmanager desired by the customers.

4.2. Methodology of a Delphi Panel
In this section, the methodology is described which is used to execute the Delphi Panel, based on the

design by Okoli and Pawlowski (2004). The following procedures need to be completed in the execution

of a Delphi Panel:

Selection of experts

Okoli and Pawlowski (2004) provide an extensive method for selecting the appropriate experts and

placing them into different panels, based on their skills, possessed knowledge on the subject at hand

and the type of organization they are involved in (Academics, Practitioners, Government and NGO’s).

Next, the authors provide steps for approaching the experts for the first time and eventually inviting

them for the Delphi Panel.

Data collection configuration

Two important configuration steps are discussed in this section. First a selection has to be made of the

mechanisms which assist in the execution of the Delphi Panel. These mechanisms can vary from

specific software to a simple e-mail or even a fax. Second, the design of the questionnaire is selected

and put into place.

Administration phases

During the administration phases, the Delphi Panel is executed. Three different phases can be

distinguished:

Phase 1: Brainstorming

In this phase two questionnaires need to be filled out by the participants. In the first questionnaire,

the experts are asked to provide factors they find relevant for the subject at hand. The second

questionnaire has grouped the answers of the first round and asks the experts if their answers have

been interpreted correctly.

Phase 2: Narrowing down factors

In the second phase, the experts are asked to make a selection of answers of the lists that previously

have been composed. After completion, the researcher selects answers based on the frequency of

selection of the items (50% is often used as a minimum). The number of items selected for the next

round is limited, depending on the Delphi Panel, subject and total number of possible answers.

Jens Rothman | 2015 43/67

Phase 3: Ranking relevant factors

In the third phase, the experts are presented the results of the previous round and they are asked to

prioritize the items based on their own preferences. The experts also need to provide comments to

justify their rank.

At this stage, Kendall’s W (value between 0 and 1) is used to measure consensus. A Kendall’s W value

of 0.7 or greater indicates that consensus has been reached, the Delphi Panel can be marked as

completed. If Kendall’s W is lower than 0.7, the questionnaire has to be resent to the experts. For this

thesis, Kendall´s W is not a useful indication of consensus achievement, due to the relatively small

amount of participants. The results of this Delphi panel cannot be assessed on their significance.

Therefore, estimates on the amount of consensus are made based on logic reasoning and analysis of

the answer provided by the experts.

If resent, the questionnaire is accompanied by additional information which can aid the experts in the

revision of their rankings:

- The average ranks of the items of the panel,

- The expert’s own ranking in last round,

- The comments provided by all the experts and

- An indication of current consensus (normally Kendall’s W, in our case an estimate) (Okoli &

Pawlowski, 2004).

This process repeats itself until one of the following three stopping criteria has been met:

- Kendall’s W reaches a value of 0.7 or more,

- The amount of revision rounds exceeds the amount of rounds stated as a maximum at the

beginning of the panel, or

- The value of W does not improve substantially between the rounds (Okoli & Pawlowski, 2004).

4.3. Methodology of the Flowmanager Delphi Panel
Applying the method of Okoli and Pawlowski (2004) to the Flowmanager Delphi Panel leads to the

following configuration.

4.3.1. Selection of experts
The selection process of the Flowmanager Delphi Panel experts was relatively simple compared to the

complex procedure as described by Okoli and Pawlowski (2004). An expert for the Flowmanager Delphi

Panel should have experience with the commissioning of workflows in Flowmanager and should have

some basic knowledge about semantic checking. With the assistance of several BuildIT employees, a

number of experts have been selected. All of the experts have agreed in participating in the Delphi

Panel. In total five internal experts (employed at BuildIT) and six external experts (employed at

customers of BuildIT) are participating in the Flowmanager Delphi Panel. The daily tasks of the internal

experts that are participating is to commission workflows for customers of BuildIT, since some

customers do not have the knowledge to perform these tasks. This makes the internal experts

appropriate participants to the Delphi panel.

Taking into account the limited amount of experts, all the experts are placed in the same panel. This

means that they receive the exact same questions.

Jens Rothman | 2015 44/67

4.3.2. Data collection configuration
Spilter

For the collection of data in the Flowmanager Delphi Panel, the Spilter Decision room software2 is used

(www.spilter.nl). Spilter is a company specialized in providing a large variety of group decision making

software to small and large companies (Spilter). Due to the connections of Dr. J. van Hillegersberg and

the University of Twente, Spilter is available free of charge for research purposes and thus for the

execution of the Flowmanager Delphi Panel3.

Spilter provides a promising environment in which a Delphi Panel can be conducted:

- Multiple rounds can be created.

- A large variety of different questionnaires is available, ranging from open question to

prioritization questions.

- Every participant has his own account.

- Participants can be contacted through Spilter’s e-mail feature.

- Typical Delphi Panel aspects can be put into practice, such as comparing personal answers with

other expert’s answers.

- Results are presented in reports which can easily be adapted and implemented.

Overall, it can be concluded that Spilter is easy to use in the managing of a Delphi Panel and its

participants.

Design

The Flowmanager Delphi Panel is executed as follows. The Flowmanager Delphi Panel consists of three

rounds. In the first round Flowmanager is analyzed on possible additions that can be made in the field

of workflow commissioning. In the second round experts need to make a selection of the most useful

additions to Flowmanager for workflow commissioning and need to select the situations which require

semantic checks. In the third round experts need to prioritize the selections they have made in the

second round. The third round can be repeated if no consensus has been reached. The ‘Administration

phases’ section in paragraph 4.3.3 provides a further elaboration on the three phases.

Furthermore, the following design decisions are implemented:

- Due to the limited availability of the experts, the rounds of the Flowmanager Delphi Panel are

open for experts for an entire week. Experts are free to participate when it is most convenient

for them.

- Due to the limited availability of the experts, the amount of revisions of the third round is

limited to three.

- The topics of workflow commissioning and semantic checking are processed separately.

- The stopping criteria as described by Okoli and Pawlowski (2004) in paragraph 3.2 apply to the

Flowmanager Delphi Panel.

4.3.3. Administration phases
Phase 1: Brainstorming

After thorough consideration, the decision has been made not to let the experts execute this phase for

the Flowmanager Delphi Panel. The Delphi Panel is already very time consuming for the experts even

without including this phase. So, in order not to be too demanding, I have carried out this phase with

2 http://www.spilter.nl
3 http://ut.spilter.nl

http://www.spilter.nl/

Jens Rothman | 2015 45/67

my supervisors at BuildIT. Both supervisors work with Flowmanager daily and have plenty of

knowledge on the topics at hand.

Only the subject of workflow commissioning is relevant for the brainstorming phase. Flowmanager

needs to be analyzed on its functionalities, based on the different patterns as described by van der

Aalst et al. (2003). The literature review on semantic checking has provided a list of six suggestions for

implementing semantic checking which is ready for phase 2.

Phase 2: Narrowing down factors

For both the topics of workflow commissioning and semantic checking, the participants are asked to

indicate whether they find the provided additions to Flowmanager useful or not. Obviously, first of all

experts receive an e-mail with instructions and their login details. The first thing experts see after

logging in, is a welcoming message and a repeating of the most important instructions, as shown in

Appendix E.

After clicking on Next, the experts are provided with a short introduction into Workflow patterns, after

which they are presented ten separate questions. Each question is tied to one of the ten workflow

patterns concluded from the previous phase. The question is accompanied by an explanation of the

pattern and a simplified example. An example of a question is provided in Appendix F.

After answering these ten questions, the experts move on to the topic of semantic checking. The same

structure is used as with workflow patterns: The subject is introduced and followed by six questions,

matching the situations as described by Ly et al. (2008). The questions are again accompanied by a

situation description and an example. Experts were provided a process on template level and several

instances which fall under the template level and were modified individually. The template level

required an update, which could have consequences for the modified instances. Experts needed to

indicate whether they would make use of semantic checking in the described situations.

Phase 3: Ranking relevant factors

After phase two is concluded and an analysis is performed on the results, phase three is initiated. In

this phase, experts need to prioritize the workflow patterns and semantic checks which were seen as

most relevant in phase 2 (more than 50%). Both topics have the same type of questions. In order to

prevent the presence of abundant information in this section, only the setting of workflow patterns is

illustrated. The setting of semantic checking has the same properties.

Again, experts receive an e-mail containing instructions. When logging in, a welcoming message

repeats the most relevant instructions. After the experts have read the introduction they can proceed

to the first task: the prioritization of additions to the workflow commissioning of Flowmanager and

providing a motivation for the made prioritization. In order to aid the experts with the answering of

the questions in the first round of this phase, additional information on the subject at hand is provided

as a reminder. An example of a prioritization question can be found in Appendix G.

After the completion of the prioritization on workflow patterns, experts are asked to perform a

MoSCoW analysis on the workflow patterns. Where the prioritization provides useful information on

relative importance of the additional of certain workflow patterns, it does not indicate the individual

need for a certain solution (Hatton & Society, 2008). The MoSCoW method is a commonly used method

in the field of information systems, indicating the importance of a feature. Experts need to place the

patterns in one of the following four groups as indicated by Hatton and Society (2008):

- ‘Must have’: An absolute essential feature.

Jens Rothman | 2015 46/67

- ‘Should have’: Features in this group would be nice to have.

- ‘Could have’: Features in this group are interesting, but have no priority.

- ‘Won’t have’: Features which are not unimportant.

An example of a MoSCoW analysis question is provided in Appendix H. After the completion of the

MoSCoW analysis of workflow patterns, the experts move on to semantic checking. For this topic, the

exact same type questions need to be answered as for workflow patterns, as stated in the introduction

of this paragraph.

After the first round of phase three, one or possibly two additional rounds can be performed,

depending on the outcome of the first round (indication on the amount of consensus). Should the

second and third round take place, they will merely consist of prioritization, since the MoSCoW analysis

has already been completed. In order to aid the experts with the revision of their rankings, they receive

additional information as stated by Okoli and Pawlowski (2004) in paragraph 4.2.

4.4. Results of the Flowmanager Delphi Panel
This section presents the results of the conducted Delphi Panel, based on the methodology as provided

by Okoli and Pawlowski (2004). The results are supported by various quotes, provided by the experts.

4.4.1. Phase 1: Brainstorming
The analysis as described in phase one of paragraph 4.3.3, delivers the following results for

Flowmanager, as presented in table 8. A + indicates that a pattern is available in Flowmanager. A –

indicates that a pattern is absent in Flowmanager. Conclusively, ten of the twenty patterns are not

available in Flowmanager, these are shown in bold. These patterns are used in the next phases of the

Delphi Panel.

 Se
q

u
en

ce

P
ar

al
le

l s
p

lit

Sy
n

ch
ro

n
iz

at
io

n

Ex
cl

u
si

ve
 c

h
o

ic
e

Si
m

p
le

 m
er

ge

M
u

lt
i c

h
o

ic
e

Sy
n

ch
ro

n
iz

in
g

m
e

rg
e

M
u

lt
i m

e
rg

e

D
is

cr
im

in
at

o
r

A
rb

it
ra

ry
 c

yc
le

s

Im
p

lic
it

 t
er

m
in

at
io

n

M
.i

. w
/o

 s
yn

ch
ro

n
iz

at
io

n

M
.i

. w
/

a
p

ri
o

ri
 d

es
ig

n
 t

im
e

M
.i

. w
/

a
p

ri
o

ri
 r

u
n

ti
m

e

M
.i

. w
/o

 a
 p

ri
o

ri
 r

u
n

ti
m

e

D
ef

er
re

d
 c

h
o

ic
e

In
te

rl
ea

ve
d

 p
ar

al
le

l r
o

u
ti

n
g

M
ile

st
o

n
e

C
an

ce
l a

ct
iv

it
y

C
an

ce
l c

as
e

Flowmanager + - - + + - - - - + + - - - - + + + + +
Table 8: Applying the framework by van der Aalst et al. (2003) to Flowmanager.

4.4.2. Phase 2: Narrowing down factors
As described in paragraph 4.3.2, the Delphi Panel is divided in two sections: workflow commissioning

and semantic checking. First, the results of the workflow commissioning part are discussed, followed

by semantic checking.

Workflow commissioning

The experts were asked to indicate whether the patterns selected in phase 1 would be of added value

to the commissioning of workflows in Flowmanager. Figure 28 shows the results provided by the

participants. A clear division between two groups of possible additions can be observed. The first five

additions in figure 28 are rated as useful additions to Flowmanager by at least 5 of the 11 experts: “A

parallel split can be useful when you need to wait for another person (customer, middleman or internal

department), the process will be able to continue instead of being paused.” The latter five additions

Jens Rothman | 2015 47/67

are graded as non-relevant additions to Flowmanager, experts see no relevance or use for an

implementation in Flowmanager: “There is no added value for this addition.” “There is no situation

where this type of additions can be applied.”

Figure 27: Results of the workflow commissioning questionnaire in phase 2.

For Parallel split, Synchronization and Multi merge a clear case can be made for including them in the

next phase of the Delphi panel. A majority of the experts has indicated these three options as useful

additions to Flowmanager. Although both Multi choice and Synchronizing merge are selected by just

five experts, they need to be included in the remainder of the Delphi panel. The experts which

answered with ´No opinion´ indicate in their motivation that a combination of these patterns can

provide a useful addition: “This addition is necessary when Multi choice is introduced.” “This option is

only relevant when Multi choice is introduced.” This correction of the results of the experts answering

‘No opinion’ based on their provided motivation, results in a majority acknowledging the potential of

Multi choice and Synchronizing merge.

Conclusively, Parallel split, Synchronization, Multi choice, Synchronizing merge and Multi merge are

selected for the next phase of the Delphi Panel. Although some experts have indicated that certain

patterns are only useful when they are combined (as stated in the previous paragraph), the different

patterns are handled separately in the next phases. Reason for this choice in configuration is that the

majority of experts have indicated the relevance of patterns individually. However, the combination

of two relevant patterns as indicated by a number of experts should be taken into account in the

discussion and recommendations to BuildIT.

Semantic checking

For semantic checking, the experts needed to answer six questions which are related to the six

situations for potential semantic checking as described by Ly et al. (2008). Background information on

the functioning and reasoning of semantic checks can be found in paragraph 3.2 of this thesis. The

experts were asked to indicate whether they would use semantic checking in the different situations.

Figure 29 shows the results provided by the participants.

0 2 4 6 8 10 12

M.i. without a priori runtime knowledge

M.i. with a priori runtime knowledge

M.i. with a priori design time knowledge

M.i. without synchchronization

Discriminator

Multi merge

Synchronizing merge

Multi choice

Synchronization

Parallel Split

Number of experts

A
d

d
it

io
n

s

Results workflow patterns phase 2

Yes No No opinion

Jens Rothman | 2015 48/67

Figure 28: Results of the semantic checking questionnaire in phase 2.

The first observation that really stands out is the large number of experts that have selected the ‘No

opinion’ option for all of the six questions. For every situation, at least five of the eleven experts

indicated that they have no opinion. An examination of the motivation for their choice provides results

which can be summarized in the following quotes:

- “I have not yet indulged myself in semantic checking.”

- “I cannot imagine how this feature could be applied in practice.”

- “I do not understand the subject/question.”

Although the experts have been selected for their knowledge on the subjects at hand, the subject of

semantic checking appears to be too complex for five of the eleven experts. With almost 50% of the

respondents not being able to answer the questions due to the aforementioned reasons, the results

have become blurred. The results of the experts who do have knowledge about semantic checks

cannot be assessed properly.

If we take out the experts which answered ‘No opinion’ and merely focus on the ones which either

provided ‘Yes’ or ‘No’, the results as shown in figure 30 emerge. However, these results represent a

limited group of experts. For the remainder of the Delphi Panel and this thesis, the limited number of

participants in this part of the Delphi panel needs to be taken into account when conclusions are

drawn.

Looking at figure 30, a distinction can be made between two groups. The first group consists of

situations in which semantic checks appear to be redundant: A majority of the answered ‘No’ for these

situations. Two types of instances are situated in this group, being Unbiased and Equivalent bias. The

second group logically consists of situations in which semantic checks are desired, a majority answered

‘Yes’ for these situations. The remaining four types of instances are placed into this group: ∆I subsumes

∆S, ∆S subsumes ∆I, Partially equivalent bias and the Disjoint bias.

0 2 4 6 8 10 12

Disjoint bias

Partially equivalent bias

∆S subsumes ∆I

∆I subsumes ∆S

Equivalent bias

Unbiased

Results semantic checking phase 2

Yes No No opinion

Jens Rothman | 2015 49/67

Figure 29: Results of the semantic checking questionnaire in phase 2, excluding no opinion.

These results provide some interesting data for the discussion. In their article Ly et al. (2008) suggest

that semantic checks are only useful for instances following the Partially equivalent bias and the

Disjoint bias. The participants of the Delphi panel however, indicate that there are two additional

situations that should be accompanied by semantic checks, being ∆I subsumes ∆S and ∆S subsumes ∆I.

These differences are discussed in chapter 5.

Conclusively, the group containing ∆I subsumes ∆S, ∆S subsumes ∆I, Partially equivalent bias and the

Disjoint bias is selected for the next phase of the Delphi Panel. As stated by Okoli and Pawlowski (2004)

and Worrell et al. (2013), it is difficult to achieve consensus with a panel with less than 10 participants.

However, the prioritization of the four previously mentioned situations is a low effort task for the

experts. Therefore, the six participants who were able to answer either a ‘Yes’ or a ‘No’ in this round,

are asked to participate in the prioritization in the next round for semantic checking. The other

participants will skip this part of the panel. After the first round of phase three an evaluation takes

place on the usefulness of this prioritization. This evaluation indicates whether the prioritization of

situations is continued or cancelled for the succeeding round(s).

4.4.3. Phase 3: Ranking relevant factors
In this phase, the experts were asked to create a prioritization and perform a MoSCoW analysis for

both the research topics workflow commissioning and semantic checking. Two rounds of prioritization

were executed in this phase. The results of each round are discussed separately.

For the remainder of the Delphi Panel, the number of respondents is decreased from eleven to ten,

one of the experts failed to respond to the rounds of phase three.

Round 1

Workflow commissioning

The prioritization of the five possible workflow additions as described in the previous phase has led to

the results as presented in figure 31. On the left, the different possible additions are displayed. The

0

1

2

3

4

5

6

Unbiased Equivalent bias ∆I subsumes ∆S ∆S subsumes ∆I Partially
equivalent bias

Disjoint bias

Results semantic checking Phase 2, excluding No opinion

Yes No

Jens Rothman | 2015 50/67

yellow bars represent a graphical ranking of the additions. The additions are ranked as follows: Multi

choice is at the top and has the highest average ranking of 2.3 out of 5. Multi merge comes in last with

a ranking of 3.5.

Figure 30: Results prioritization workflow additions (phase three, round one).

The results of the first round do not provide a clear ranking yet. One can clearly tell that Multi choice

is the mostly preferred addition: “I have ranked Multi choice above Parallel split, because it is more

flexible.” “If possible, I would make most use of Multi choice. We have a lot of tasks that could follow

this structure, such as calling and cancelling tasks.” “The Multi choice combined with synchronizing

merge is more versatile than Parallel split combined with synchronization.”

For the positions two and three, there is a tie between Synchronizing merge and Parallel split. Between

position four and five, only a minimal difference exists between Synchronization and Multi merge.

These results call for another round of prioritization, no conclusion can be derived from these minimal

differences.

The MoSCoW analysis which the experts performed in this round is presented in figure 32. The

individual needs for the additions indicated by the experts show resemblances to the relative

prioritization: the higher the average prioritization ranking, the more the addition is seen as a ‘Must

have’ or a ‘Should have’. Multi choice for example is rated as the most important addition in this round

of the prioritization. This addition also received the highest ‘Must have’ ranking. Another example is

Multi merge, ranked last in the prioritization. This addition received no ‘Must have’ indications. The

MoSCoW analysis provides some interesting input for a comparison of its results with the results

derived from the final round of workflow addition prioritization. These results are discussed in chapter

five.

3,5

3,4

2,9

2,9

2,3

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Multi merge

Synchronization

Parallel split

Synchronizing Merge

Multi Choice

Average position

A
d

d
it

io
n

Prioritization workflow commissioning additions

Jens Rothman | 2015 51/67

Figure 31: Results prioritization workflow additions (phase three, round one).

Semantic checking

The prioritization of the four situations as described in the previous phase has led to the results as

displayed in figure 33. As stated in the previous phase, it is difficult to reach consensus with a small

number of experts. Looking at the results in figure 33, this also seems the case for this part of the

Flowmanager Delphi Panel.

Figure 32: Results prioritization semantic checks (phase three, round one).

The experts that were selected to prioritize the situations, answered in such a way that the average

ranking of all the situations are very close to each other. This means that when Expert A gave a high

priority to Situation 3 and a low priority to Situation 6, it is nullified by a complete opposite opinion of

0

1

2

3

4

5

6

Multi choice Synchronizing merge Parallel split Synchronization Multi merge

MoSCoW workflow additions

Must have Should have Could have Won't have

2,6

2,6

2,4

2,4

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

∆S subsumes ∆I

Disjoint

∆I subsumes ∆S

Partially equivalent

Average position

Si
tu

at
io

n

Prioritization semantic checking for different instance types

Jens Rothman | 2015 52/67

Expert B. Whereas the workflow additions prioritization shows some agreement among the experts

and also shows some room for improvement in consensus, the semantic checking prioritization shows

no agreement with every situation ranking between 2.4 and 2.6. This indicates that consensus among

the experts is not achievable for this subject.

Even though the experts have been selected because they have certain knowledge about semantic

checks, four out of six experts exemplify that they are not comfortable enough with the subject of

semantic checking to make a solid judgment on the prioritization. “It is difficult for me to make a

decision, I do not have much experience yet with semantic checking.”, “I don´t know that much about

semantic checking.”

We can conclude that no reliable conclusions can be drawn from this part of the Delphi panel, based

on the following arguments:

- The limited amount of experts.

- The provided ranking with little perspective for better results.

- The associated motivation which describes on what grounds the prioritization has been

executed by the experts.

Therefore, the subject of semantic checking requires no additional prioritization rounds. The next

round of the Flowmanager Delphi panel merely consists of a prioritization round for the workflow

additions.

Round 2

As stated, the experts only execute prioritization for the workflow additions in this round of the Delphi

panel. This prioritization has led to the results as shown in figure 34.

Figure 33: Results prioritization Workflow additions (phase three, round two).

The outcome of this round shows the same ranking as the previous round, with Multi choice as the

addition which has received the highest average ranking and Multi merge at the bottom with the

4,3

3,5

2,8

2,5

1,9

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Multi merge

Synchronization

Parallel split

Synchronizing Merge

Multi Choice

Average position

A
d

d
it

io
n

Prioritization Workflow commissioning additions

Jens Rothman | 2015 53/67

lowest average ranking. However, there is a bigger distinction between the possible additions in this

round. Whereas in the first round the scores of the additions ranked two to five were very close to

each other, the second round shows larger differences and a clearer ranking. The average scores show

a wider spread in the scores. The first round produced scores relatively close to 2.5 (ranging from 2.3

to 3.5). The second round shows scores which are more divergent, ranging from 1.9 to 4.3. This

indicates that the experts have reached a higher degree of consensus, by taking into account the

average ranking and motivations of other experts from the first round in their own prioritization of the

second round.

A good example to explain this principle is the Multi merge addition. In the first round its average score

was 3.5. This means that there was no real consensus on this addition among the experts. Some

experts have probably rated Multi merge as important, some as average and some as not important,

leading to a score relatively close to the middle of 2.5. In the second round, the average score for Multi

merge was 4.3. This shows that overall, more experts have given Multi merge the same relatively low

prioritization which has led to the last position in the ranking.

Conclusively, the second round of phase three of the Delphi panel has provided us with results which

are a useful contribution to the discussion. Several experts have reviewed their prioritization which

has led to a clearer ranking of possible additions. No further rounds of the Delphi panel are executed,

due to the following two reasons:

- Although we have argued that there is a lot of improvement on consensus between the first

and second round, it is unlikely that an extra round provides further improvement. When we

look at the motivations that a number of experts provided, it is stated that despite the

provided information on the average ranking and the associated motivation, several experts

decided not to alter their ranking. Several experts indicated that they were not influenced by

the arguments of others: “I have made the ranking based on the same arguments as the

previous rounds”. “I have entered the same prioritization, despite the motivation of others.”

Since a number of experts already have altered their ranking and others are resolute in

maintaining their original ranking, real improvements in consensus are not to be expected.

- Despite the shortened round (exclusion of semantic checking), it proved to be difficult to get

the experts involved in this round. In order to gather all the prioritizations the second round

of phase three was open for two weeks instead of one week as applied to the previous round

and phase. Experts indicated by e-mail that they did not have enough time to complete the

Flowmanager Delphi panel. An additional round would have two negative consequences. First,

an extended round of two weeks or more needs to be introduced which would delay the

process of this thesis. Second, there is a risk of experts not participating properly in the panel

due to time constraints. This ‘cutting corners’ behavior could negatively influence the results

which are used in the discussion Day and Bobeva (2005).

In short, an additional round of prioritization is not executed for two reasons. First, no significant

improvement is expected, taking into account the limited improvement in consensus between the first

two rounds of prioritization. Second, another round would be too time consuming due to the limited

availability of the experts and could lead to experts not participating properly.

Overall, we can conclude that the Delphi panel has been executed successfully. Experts were involved

in selection and prioritization of workflow patterns in three rounds and in selection and prioritization

of semantic checking in two rounds. The rounds have resulted in a clear prioritization of workflow

patterns which can be introduced for the topic of workflow commissioning. For semantic checking the

Jens Rothman | 2015 54/67

results are less explicit, although input for the discussion has certainly been provided. The next chapter

analyzes and discusses the results of the Flowmanager Delphi panel.

Jens Rothman | 2015 55/67

5. Discussion
The goal of this chapter is to analyze the results of the Flowmanager Delphi panel (paragraph 5.1) and

to discuss the commonalities and differences between the theoretical concepts and the results of the

Flowmanager Delphi panel (paragraph 5.2). Consistent with the previous chapters, the two research

topics of workflows commissioning and semantic checking are discussed separately.

5.1. Analysis of the Delphi panel results
This paragraph presents the findings which can be derived from the results of the executed Delphi

panel as presented in chapter 4.

5.1.1. Workflow commissioning
As stated in the previous chapter, the participants were asked to select and prioritize a number of

workflow patterns provided by van der Aalst et al. (2003), which are currently unavailable in

Flowmanager. After one selection round and two prioritization rounds, the results as displayed in

figure 34 were accomplished. These results are accompanied by the outcome of the MoSCoW analysis,

as presented in figure 32.

The prioritization and the MoSCoW analysis have resulted in the same ranking of additional workflow

patterns. The patterns which were given a higher prioritization, were also given a higher degree of

urgency in the MoSCoW analysis. The combined conclusion of these two methods provides a solid

foundation for recommendations on additions to Flowmanager’s workflow commissioning.

An interesting observation is that the patterns which are related to each other are next to each other

in the ranking. Multi choice is the possible diverging of one activities into several activities,

synchronizing merge is a pattern associated with the possible converging of these activities towards a

single activity. Also, a Parallel split enables multiple processes to be performed simultaneously,

whereas the synchronization patterns synchronizes multiple processes towards one process. The

individual or pairwise implementation of these patterns is discussed in paragraph 5.2.

Overall, a trend can be spotted among the several rounds of the Delphi panel: experts are especially

interested in additions which focus on the simultaneous execution of workflow activities.

5.1.2. Semantic checking
The participants were asked to indicate whether they would add semantic checks in several situations,

as described in chapter 4. The subject of semantic checking has proven to be a difficult subject for the

participants, not all participants were able to answer the questions due to aforementioned reasons.

The Delphi panel for this subject lasted one selection round and one prioritization round. As discussed

in the previous chapter, the results of the prioritization showed no chance of reaching reliable

consensus. However, the results from the selection round provide some interesting discussion

material. As shown in figure 30, a majority of the participants have indicated that in four out of six

situations semantic checks are required. These results differ with the theory by Ly et al. (2008), which

indicates that only the partially equivalent bias and the disjoint bias require additional semantic checks.

This difference is one of the points of discussion in paragraph 5.2.

5.2. Comparing theoretical concepts to Delphi panel results
This section discusses the commonalities and difference between the concepts derived from theory

and the results of the executed Delphi panel.

Jens Rothman | 2015 56/67

5.2.1. Workflow commissioning
As stated in the previous paragraph, a clear prioritization of desired patterns has been derived from

the Delphi panel. The MoSCoW analysis of these patterns supports this prioritization, the higher the

ranking, the more the patterns is determined as a ‘Must have’ or a ‘Should have’.

As mentioned in chapter four, an interesting point of discussion is the combined development of

patterns. Two potential pairs of patterns can be identified among the five patterns which were

prioritized: Multi choice combined with Synchronizing merge and Parallel split combined with

Synchronization. The development and implementation of single patterns should lead to a shorter

delivery time and choosing for a combined development leads to the delivery of a more complete

product.

The decisive factor in this choice is the provided prioritization by the participants combined with the

results of the MoSCoW analysis. These two factors show that the ratings of the two pairs of patterns

are very close to each other, a potential combination of the two sets of patterns is in line with the

provided rankings. On the first and second place of the ranking the combination of Multi choice and

Synchronizing merge can be found. Also, these two patterns have a very similar score in the MoSCoW

analysis, indicating that the importance of their development is close to each other. The same goes for

the second pair of patterns, Parallel split and Synchronization. These are positioned on the third and

fourth place in the prioritization and also have similar MoSCoW ratings.

Based on the argumentation as provided above, the decision is made to combine the two sets of

patterns for recommendations on development and implementation, leading to a prioritization

consisting of three items:

1) A combination of Multi choice and Synchronizing merge.

2) A combination of Parallel split and Synchronization.

3) Multi Merge.

Another argument which needs to be taken into account, is the presence of the presented patterns in

other WfMS’s as indicated in table 5. Two of the five patterns as described above are relatively

uncommon in other WfMS and thus provide BuildIT with an opportunity to distinguish Flowmanager

from other WfMS. These two patterns are Synchronizing merge and Multi merge. Since Synchronizing

merge is already ranked first since the combining of the patterns, there is no need to give this pattern

a higher priority.

For Multi merge, one could argue that it should receive a higher priority due to the distinguishing

opportunities that come along with this pattern. However, we need to take into account the results of

the Delphi panel at this point. The participants have clearly indicated that Multi merge is the least

interesting pattern to add to Flowmanager with an average position of 4.3 out of 5.0. This is also

supported by the MoSCoW analysis: no participants have indicated Multi merge as a ‘Must have’ and

a majority have indicated Multi merge as either ‘Could have’ or ‘Won’t have’. The need for this pattern

as indicated by the MoSCoW analysis is much lower than the needs for other patterns. Taking into

account this strong common opinion of clients on the use of Multi merge, we decide not to alter the

ranking of the patterns as described above.

Conclusively, a case for the combination of two sets of two patterns and one single pattern is made in

this paragraph, after which the prioritization resulting from the Delphi panel is evaluated, based on

the distinguishing possibilities of each pattern as derived from theory. Several questions arise after this

conclusion concerning the next steps that need to be taken in the realization of the implementation of

these patterns. At this moment, Flowmanager is only able to commission workflows which are

Jens Rothman | 2015 57/67

sequential. The use of parallel and/or multiple activities is a new concept. What are the consequences

of the introduction of these patterns? What are the possibilities for the introduction of these patterns

in Flowmanager, taking into account that each WfMS has their own specific configuration and

language? How should these new patterns be introduced? What are the possibilities of introducing

these new patterns in existing workflows? These question are outside the scope of this thesis and are

addressed in the paragraphs 6.2 (recommendations) and 6.4 (future research).

5.2.2. Semantic checking
As concluded in chapter four, a difference in need for additional semantic checks can be observed.

Theory indicates that two situations require additional checks, where the participants of the Delphi

panel indicate that four situations should be accommodated with additional semantic checks. In

contrary to the theory by Ly et al. (2008), the participants state that instances falling under ∆I subsumes

∆S and ∆S subsumes ∆I are also in need of additional semantic checks.

Although the number of participants with expertise in the field of semantic checks is limited, this does

not mean that their answers to the questions in the Delphi panel are not useful. In contrary, the

knowledge of these experts provides useful insights into the practicality of the theoretical concepts by

Ly et al. (2008). Another point which has to be taken into consideration, is that a forward and backward

citation analysis on Web of Science did not find other researchers attempting to bring these principles

into practice. Therefore, at the start of the Delphi panel, the gap between the theory and practice was

unknown. This thesis has confirmed the existence of such a gap by illustrating the difference in opinion

on the use of semantic checks in different situations. In paragraph 6.4 suggestions are presented on

narrowing down the gap between theory and practice.

Even though the participants understand that theoretically the semantic checks for the ∆I subsumes

∆S and ∆S subsumes ∆I biases are basically superfluous, in practice they would still want these

additional checks: “Although this situation does not seem to need additional checks, you will always

want to perform a semantic check when the template is changed and the instance receives additional

checks.” Another participant: “If there is a new version of a template that differs from the changes in

the instance, the instances need to be checked whether they possess the correct activities.”

This shows that not all the principles introduced by Ly et al. (2008) are applicable in this practical

context of Flowmanager. An explanation for this observed difference is that the participants (and thus

the users commissioning the workflows) want to deliver a workflow process to the end users of high

quality with an absolute certainty that no semantic issues will arise. Since the ∆I subsumes ∆S and ∆S

subsumes ∆I patterns are relatively complex and have a difference in variables (in contrary to unbiased

instances and equivalent bias instances), participants can vouch for additional checks for these

instance types under the guise of ‘better safe than sorry’.

Taking into account the opinions of the participants on the topic of semantic checking, we can conclude

that for this situation it is justifiable to include additional checks for workflow process which are placed

in the following situations:

- ∆I subsumes ∆S,

- ∆S subsumes ∆I,

- Partially equivalent bias and

- Disjoint bias.

The gap between theory and practice is also illustrated in the way that workflow processes are

presented. Whereas Ly et al. (2008) differentiate between workflow templates and instances,

Flowmanager does not contain instances. Every workflow pattern in Flowmanager follows the original

Jens Rothman | 2015 58/67

sequence of activities without exceptions. This difference in interpretation of workflow commissioning

has consequences for the application of semantic checks in Flowmanager. Since Flowmanager does

not work with workflow templates and instances, the principles by Ly et al. (2008) are not directly

applicable to Flowmanager. However, in their paper, Ly et al. (2008) assume that the changes at the

template level are semantically correct. This assumption does not apply to the situation of

Flowmanager. At this moment, there is no semantic checking at all, so a change in the workflow

template of Flowmanager is in need of semantic checks.

A principle by Ly et al. (2008) that provides possibilities for Flowmanager, is the use of constraints in

determining the semantic checks. Constraints are used to determine which activities in a workflow

should receive semantic checks. The constraints concerning workflow processes in Flowmanager are

presented in business rules. So, for future research and future implementation of semantic checks in

Flowmanager, the business rules provide guidelines into the correct placement of these checks.

Also, a logical observation can be made if we look at the selected four biases by the participants. What

stands out, is that all the biases which were selected for additional checking, focus on the addition of

one or more activities which are new to the workflow. After that, the constraints of the workflow tell

us which activities require semantic checks. So, for Flowmanager we can conclude that should a new

activity be introduced to the workflow, it should always be accompanied by semantic checks indicated

by the workflow’s business rules.

Conclusively, due to the differences in language between Flowmanager and the theory and the current

state of semantic checks in Flowmanager, it is difficult to provide clear recommendations for semantic

checks in the current state of Flowmanager, which are within the scope of this thesis. For future

activities concerning the research and development of semantic checks in Flowmanager, constraints

provide guidelines for the execution of semantic checks. Further research on the practical

implementation of the theory by Ly et al. (2008) needs to be executed in order to properly assess the

added value of the theory to practice.

Before a concrete proposition can be made on the implementation of semantic checks in

Flowmanager, more research is required. This research requires a more in-depth technical approach,

one which falls out of the scope of this Business Administration thesis. This future research should

address questions such as: How can the concepts on semantic checking from the theory be translated

so that it can be implemented in Flowmanager? Is there added value to the introduction of templates

and instances in the workflow processes of Flowmanager? How can semantic checks be introduced in

existing versions of Flowmanager? Based on these questions, recommendations for future research by

BuildIT are made in paragraph 6.2.

5.3. Combined implementation
Throughout this thesis, the subjects of workflow commissioning and semantic checking have been

discussed separately. In the previous two paragraphs, we have concluded that for workflow

commissioning certain workflow patterns should be introduced in order to improve Flowmanager, and

that for semantic checking no direct recommendations can be made for the current state of

Flowmanager. However, the implementation of the suggested patterns has consequences for the

functioning of Flowmanager. This is where the semantic checking principles as described by Ly et al.

(2008) come in to play. This paragraph elaborates further on this topic.

The previous chapters have discussed five workflow patterns which should be implemented into

Flowmanager: Multi choice, Synchronizing merge, Parallel split, Synchronization and Multi merge.

These patterns provide a certain flexibility which is new to Flowmanager: activities in the workflow

Jens Rothman | 2015 59/67

process can be executed simultaneously. The two patterns which have received the highest

prioritization are Multi choice and Synchronizing merge. The difference between these two patterns

and the other three patterns is that Multi choice and Synchronizing merge do not oblige the process

to execute all the activities which could be executed parallel. This property leads to instances of the

workflow process which differ from each other: the mortgage application of person A needs one credit

check, whereas the mortgage application of person B needs two credit checks.

We can perceive several similarities to the template and instances levels which are part of the

principles presented by Ly et al. (2008). The template is the basic process and the instances may differ

from the original template situation. Instances provide the flexibility which is required for these two

patterns. This type of workflow commissioning is new to Flowmanager and its introduction will

obviously lead to issues which have not occurred before in Flowmanager. These issues can be caused

by changes in the workflow, which can be induced by changes in regulations or a change in the

products offered by the owner of the process. These similarities indicate that the methods by Ly et al.

(2008) are a useful addition for the introduction of Multi choice and Synchronizing merge.

When a process is commissioned in the form of a template accompanied by instances, a change in the

template process could have consequences for the instances which differ from the template. These

instances need to be checked if they are semantically correct before the actual changes are

implemented. Ly et al. (2008) argue that only two of the six possible instance types (partially equivalent

bias and disjoint bias) need to be checked. However, the participants of the Delphi panel have indicated

that on top of these two instance types, instances falling under the ∆I subsumes ∆S bias or the ∆I

subsumes ∆S bias should also receive a semantic check before proceeding.

In practice, this procedure could result in disorder. It is very well possible that hundreds of instances

follow the structure of a single template. Checking all these individual instances (either by hand or

automatically) is very time consuming. In order to prevent this situation, it makes sense to label each

type of instance when the instance is initiated. Ideally this labeling should be done automatically

(Flowmanager checks to what extent the instance differs from the template). It is also an option to

perform this task by hand, if this procedure proves to be too complex or too time consuming to

implement in Flowmanager. However, such a manual procedure leaves room for human error and is

more time consuming in its execution, so an automated system is preferred.

For this paragraph, we can conclude that an introduction of the Multi choice and Synchronizing merge

patterns requires a number of modifications in Flowmanager. The inclusion of these patterns should

be accompanied by the introduction of the principle of workflow templates and instances, since it is a

possibility that instances differ from each other. In order to maintain control of the semantic

correctness of these instances, guidelines are provided by the principles of Ly et al. (2008) combined

with the answers of the participants of the Delphi panel.

Jens Rothman | 2015 60/67

Jens Rothman | 2015 61/67

6. Conclusion
This chapter provides a conclusion for this thesis by elaborating on four different subjects. First, the

research question is answered by describing the several stages of this thesis and the final outcome.

Second, the recommendations to BuildIT which can be derived from this thesis are presented. Third,

the limitations of this thesis are discussed. Fourth and final, based on the results of this thesis and its

limitations, propositions are made for future academic research.

6.1. Answering the research question
The goal of this thesis has been to advise BuildIT on the improvement of workflow commissioning and

semantic checking of Flowmanager, based on input from academic literature and the clients who use

Flowmanager. Flowmanager is a Workflow Management System (WfMS) developed by BuildIT for the

financial services industry. By enabling Flowmanager, these institutions are able improve the

automation of their financial processes by commissioning workflows in Flowmanager.

For the gathering of relevant academic knowledge a literature review has been performed on the

topics of business rules, workflow commissioning and semantic checking by applying the Grounded

Theory Literature Review Method (Wolfswinkel et al., 2013). This resulted in two literature

frameworks: the first framework focuses on workflow commissioning and is based primarily on the

paper by van der Aalst et al. (2003). The second framework discusses semantic checks and is founded

on the article by Ly et al. (2008).

Based on these frameworks, a Delphi panel has been created and executed with the goal of gathering

input on the usability of the theoretical context for Flowmanager. The Delphi panel consisted of

multiple rounds divided over three phases, based on the methodology by Okoli and Pawlowski (2004).

In the first round, for workflow commissioning a selection was made consisting of patterns by van der

Aalst et al. (2003) which are currently not available in Flowmanager.

In the second phase both the topics of workflow commissioning and semantic checking were discussed.

For workflow commissioning, the participants assessed the possible contribution that these patterns

could have to Flowmanager, leading to the selection of five workflow patterns for further analysis:

Multi choice, Synchronizing merge, Parallel split, Synchronization and Multi merge. For semantic

checking, participants answered question concerning the relevance of semantic checks in six

situations. In their answering, they indicated that four situations were in need of semantic checks: ∆I

subsumes ∆S, ∆S subsumes ∆I, Partially equivalent bias and Disjoin bias.

In the third phase, participants made rankings for both of the selections from the previous phase. For

workflow commissioning this has led to a clear prioritization of the selected patterns, which is also

displayed in figure 34:

1) Multi choice,

2) Synchronizing merge,

3) Parallel split,

4) Synchronization and

5) Multi merge.

For semantic checking, the answers of the participants in the third round of the Delphi panel were not

reliable enough to draw conclusions similar to the results of the workflow commissioning part of this

thesis. No distinctions could be made in the average ranking of the four biases.

A comparison of the theoretical concepts with the results of the Delphi panel has led to the following

answer to the research question.

Jens Rothman | 2015 62/67

For workflow commissioning, the following prioritization for the implementation of new patterns
should be used:

1) A combination of Multi choice and Synchronizing merge.
2) A combination of Parallel split and Synchronization.
3) Multi merge.

Two sets of two patterns should be introduced together, based on their relevance to each other, their

ranking in the prioritization as shown in figure 34 and their ranking in the MoSCoW analysis as shown

in figure 32.

For semantic checking, we can conclude that due to the gap between theory and the specific practice

of this thesis, and the technical aspects which remain underexposed in this thesis, no concrete stand-

alone recommendations can be made for the direct implementation of semantic checking in

Flowmanager. On this topic, this thesis provides direction for future research on semantic checking by

concluding that the business rules of Flowmanager prove to be important factors in the further

development of semantic checking.

Although it is not possible to provide stand-alone recommendations for semantic checking in

Flowmanager, semantic checking does play an important role in the introduction of Multi choice and

Synchronizing merge in Flowmanager. These two patterns introduce flexibility that is new to

Flowmanager. Instances can differ in the paths they follow within the process, they are able to entail

different activities of the process. These differences can have consequences for the semantic

correctness of the instances which differ from the main process, should the main process be altered.

In order to prevent these issues, the implementation of Multi choice and Synchronizing merge in

Flowmanager should be accompanied by the introduction of the principles of workflow templates and

instances by Ly et al. (2008). These principles focus on the application of semantic checking in

situations similar to the ones of Multi choice and Synchronizing merge. Finally, the answers of the

participants of the Delphi panel have shown us for which of these instances semantic checks are

required and for which situations semantic checks are irrelevant.

6.2. Recommendations to BuildIT
This part of the thesis has been marked as confidential.

6.3. Limitations
This thesis is subject to a number of limitations which are described in this paragraph.

- First, the focus of this thesis has been to provide BuildIT with an advice on how to improve

Flowmanager. The Delphi panel has been designed and its participants have been selected

specifically to Flowmanager. Therefore, the end results of this thesis are only applicable to

Flowmanager and do not contribute directly to the theory, although several suggestions for

future research can be done based on this thesis.

- Second, although the results of the Delphi panel provide interesting and useful findings for the

context of Flowmanager, no conclusions based on statistical significance can be drawn due to

the limited number of the participants. However, this limitation was known beforehand and

no results based on statistical analysis were expected.

- Third, due to the gap between the used literature and the properties of Flowmanager, the

semantic checking suggestions by the literature are not directly applicable to the current

situation of Flowmanager. Suggestions for future research on this topic are made in this

chapter for both BuildIT and academic research.

Jens Rothman | 2015 63/67

- Finally, this thesis has been written in the context of a Business Administration master

program. Although there certainly has been some deepening in the technical aspects of

business rules, workflow commissioning and semantic checking, the absence of real in depth

knowledge on these topics has limited the degree of direct and concrete implementation

advice delivered to BuildIT.

6.4. Future academic research
In this thesis, theories derived from the literature on workflow commissioning and semantic checks

have been applied in the analysis of Flowmanager. This paragraphs provides two recommendations

for future research.

This thesis has shown that for both workflow commissioning and semantic checks it appears to be

difficult to translate theoretical concepts to useful contributions for Flowmanager. Several issues have

arisen in the interpretation and implementation of the theoretical concepts. An interesting research

topic is to investigate whether this is a common problem for WfMS’s similar to Flowmanager. Research

needs to be done to find out whether there is literature (or even a literature review) available on the

process of implementing these theoretical concepts into practice. An analysis of this literature on both

the topics of workflow commissioning and semantic checking could lead to the development of a

roadmap for the implementation of these two theoretical concepts in Flowmanager.

In this thesis it has been shown that Flowmanager is not familiar to working with templates and

instances as illustrated by Ly et al. (2008). It can be an interesting research topic to see to what extent

other WfMS’s include these principles in their operations. By doing so, we can properly assess the

practical relevance of the methodology by Ly et al. (2008). Also, we can possibly derive useful methods

on implementing these principles from other WfMS’s. These methods can be applied to the

implementation of templates, instances and the associated semantic check logic in Flowmanager.

Jens Rothman | 2015 64/67

7. Bibliography

Babbie, E. (2007). Unobtrusive Research. In E. Babby (Ed.), The practice of Social Research (pp. 325-

388). Belmont, USA: Thomson Wadsworth.

Charfi, A., & Mezini, M. (2004). Hybrid web service composition: business processes meet business rules.

Paper presented at the Proceedings of the 2nd international conference on Service oriented
computing, New York, NY, USA.

Corbin, J., & Strauss, A. (1990). Grounded Theory Research: Procedures, Canons and Evaluative

Criteria. Qualitative Sociology, 13(1), 19.

Day, J., & Bobeva, M. (2005). A Generic Toolkit for the Successful Management of Delphi Studies. The

Electronic Journal of Business Research Methodology, 3(2), 103-116.

Diamond, I. R., Grant, R. C., Feldman, B. M., Pencharz, P. B., Ling, S. C., Moore, A. M., & Wales, P. W.

(2014). Defining consensus: A systematic review recommends methodologic criteria for
reporting of Delphi studies. Journal of Clinical Epidemiology, 67(4), 401-409. doi:
10.1016/j.jclinepi.2013.12.002

Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). AN OVERVIEW OF WORKFLOW MANAGEMENT -

FROM PROCESS MODELING TO WORKFLOW AUTOMATION INFRASTRUCTURE. Distributed and
Parallel Databases, 3(2), 119-153. doi: 10.1007/bf01277643

Group, T. B. R. (2000). Defining Business Rules ~What Are They Really? , 77.

Haddar, N. Z., Makni, L., & Ben Abdallah, H. (2014). Literature review of reuse in business process

modeling. Software and Systems Modeling, 13(3), 975-989. doi: 10.1007/s10270-012-0286-4

Hatton, S., & Society, I. C. (2008). Choosing the "Right" prioritisation method. Los Alamitos: Ieee

Computer Soc.

Iacob, M. E., & Jonkers, H. (2009). A model-driven perspective on the rule-based specification and

analysis of service-based applications. Enterprise Information Systems, 3(3), 279-298. doi:
10.1080/17517570903042762

Lanz, A., Weber, B., & Reichert, M. (2014). Time patterns for process-aware information systems.

Requirements Engineering, 19(2), 113-141. doi: 10.1007/s00766-012-0162-3

Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., . . . Zhao, Y. (2006). Scientific

workflow management and the Kepler system. Concurrency and Computation-Practice &
Experience, 18(10), 1039-1065. doi: 10.1002/cpe.994

Ly, L. T., Rinderle, S., & Dadam, P. (2008). Integration and verification of semantic constraints in

adaptive process management systems. Data & Knowledge Engineering, 64(1), 3-23. doi:
10.1016/j.datak.2007.06.007

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design

considerations and applications. Information & Management, 42(1), 15-29. doi:
10.1016/j.im.2003.11.002

Jens Rothman | 2015 65/67

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research
methodology for Information Systems Research. Journal of Management Information Systems,
24(3), 45-77. doi: 10.2753/mis0742-1222240302

Reichert, M., & Dadam, P. (1998). ADEPT(flex) - Supporting dynamic changes of workflows without

losing control. Journal of Intelligent Information Systems, 10(2), 93-129. doi:
10.1023/a:1008604709862

Rinderle, S. (2004). Schema Evolution in Process Management Systems. (Ph.D. Thesis), University of

Ulm.

Rinderle, S., Reichert, M., & Dadam, P. (2004a). Correctness criteria for dynamic changes in workflow

systems - a survey. Data & Knowledge Engineering, 50(1), 9-34. doi:
10.1016/j.datak.2004.01.002

Rinderle, S., Reichert, M., & Dadam, P. (2004b). Disjoint and overlapping process changes: Challenges,

solutions, applications. In R. Meersman, Z. Tari, W. VanderAalst, C. Bussler, A. Gal, V. Cahill, S.
Vinoski, W. Vogels, T. Gatarci, & K. Sycara (Eds.), On the Move to Meaningful Internet Systems
2004: Coopis, Doa, and Odbase, Pt 1, Proceedings (Vol. 3290, pp. 101-120). Berlin: Springer-
Verlag Berlin.

Rozinat, A., & van der Aalst, W. M. P. (2008). Conformance checking of processes based on monitoring

real behavior. Information Systems, 33(1), 64-95. doi: 10.1016/j.is.2007.07.001

Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., & Edmond, D. (2005). Workflow resource

patterns: Identification, representation and tool support. In O. Pastor & J. F. E. Chunha (Eds.),
Advanced Information Systems Engineering, Proceedings (Vol. 3520, pp. 216-232).

Salimifard, K., & Wright, M. (2001). Petri net-based modelling of workflow systems: An overview.

European Journal of Operational Research, 134(3), 664-676. doi: 10.1016/s0377-
2217(00)00292-7

Schwarz, R. B., & Russo, M. C. (2004). How to Quickly Find ARticles in the Top IS Journals.

Communications of the ACM, 47(2), 4.

Spilter. Over Ons. Retrieved 30-01, 2015, from http://www.spilter.nl/organisatie

Stohr, E. A., & Zhao, J. L. (2001). Workflow automation: Overview and research issues. Information

Systems Frontiers, 3(3), 281-296. doi: 10.1023/a:1011457324641

Thomson, & Reuters. (2014, 2014-11-17). Web of Science [v.5.15] - All Databases Citation Report.

Retrieved 11, 2014, from
http://apps.webofknowledge.com/CitationReport.do?product=UA&search_mode=CitationRe
port&SID=X2ugQSKrWmDoA7fL73f&page=1&cr_pqid=3&viewType=summary

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., & Barros, A. P. (2003). Workflow

patterns. Distributed and Parallel Databases, 14(1), 5-51. doi: 10.1023/a:1022883727209

Verbeek, H. M. W., Basten, T., & van der Aalst, W. M. P. (2001). Diagnosing workflow processes using

Woflan. Computer Journal, 44(4), 246-279. doi: 10.1093/comjnl/44.4.246

http://www.spilter.nl/organisatie
http://apps.webofknowledge.com/CitationReport.do?product=UA&search_mode=CitationReport&SID=X2ugQSKrWmDoA7fL73f&page=1&cr_pqid=3&viewType=summary
http://apps.webofknowledge.com/CitationReport.do?product=UA&search_mode=CitationReport&SID=X2ugQSKrWmDoA7fL73f&page=1&cr_pqid=3&viewType=summary

Jens Rothman | 2015 66/67

Viriyasitavat, W., Xu, L. D., & Martin, A. (2012). SWSpec: The Requirements Specification Language in
Service Workflow Environments. Ieee Transactions on Industrial Informatics, 8(3), 631-638.
doi: 10.1109/tii.2011.2182519

Wolfswinkel, J. F., Furtmueller, E., & Wilderom, C. P. M. (2013). Using grounded theory as a method

for rigorously reviewing literature. European Journal of Information Systems, 22, 11.

Worrell, J. L., Di Gangi, P. M., & Bush, A. A. (2013). Exploring the use of the Delphi method in accounting

information systems research. International Journal of Accounting Information Systems, 14(3),
193-208. doi: 10.1016/j.accinf.2012.03.003

Xu, L. D., Viriyasitavat, W., Ruchikachorn, P., & Martin, A. (2012). Using Propositional Logic for

Requirements Verification of Service Workflow. Ieee Transactions on Industrial Informatics,
8(3), 639-646. doi: 10.1109/tii.2012.2187908

zur Muehlen, M., & Indulska, M. (2010). Modeling languages for business processes and business rules:
A representational analysis. Information Systems, 35(4), 379-390. doi:
10.1016/j.is.2009.02.006

Jens Rothman | 2015 67/67

8. Appendices
This part of the thesis has been marked as confidential.

