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Chapter 1

Introduction

Giant magnetoresistance (GMR) refers to an effect that occurs in thin film struc-
tures, composed of alternating ferromagnetic and nonmagnetic layers with thick-
nesses comparable to the spin-diffusion length. If an electric current is passed
through such a structure perpendicular to the layers (which makes it a current-
perpendicular-to-the-plane, or CPP-MR geometry), the total electrical resistance
depends on the alignment of the magnetizations of adjacent layers.
If we now create a so called ’spin valve’: one layer with a magnetic field indepen-
dent magnetization and one with a field dependent magnetization, we have created
a magnetic field sensor, which is the main application of CPP-MR structures.
Magnetic field sensors are then used in hard disk drive read heads, for example.

In 1993, Thierry Valet and Albert Fert (VF) published a paper in which they found
general solutions for the spin-dependent chemical potentials and current densities
in these ferro- and nonmagnetic layers. This has been done before, but VF were
the first to do it without assuming that the layer thickness is much larger than the
spin-diffusion length. Therefore, their results allow for a more accurate calculation
of the spin accumulation in CPP-MR structures and thereby GMR.

This report is about the implementation of a solver, which takes these general
solutions from the VF paper, uses a transfer matrix method to find the system
specific boundary values and thereby obtain a solution to the CPP-MR system. To
simulate the behaviour upon transport through the interfaces between the layers,
three different interface models were implemented. The results of this solver are
analyzed and discussed, with an emphasis on the comparison between the different
interface models.
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Chapter 2

Theory

2.1 Valet-Fert

The paper by VF1 uses a macroscopic approach to solving these CPP-MR geometries
for the spin-dependent chemical potential and current density through the linearized
Boltzmann Equation (LBE). It also shows that this approach is justified for any
layer thickness for the limit where the spin-diffusion length (SDL, lsf) is much
longer than the mean free path (MFP, λsf). We can safely make this assumption,
because the ratio of the SDL and MFP depends on the strength of the spin orbit
coupling in a material, which is usually weak, meaning that spin-flip scattering
occurs far less frequently than momentum scattering, i.e. SDL � MFP.

The Boltzmann equation is a macroscopic equation that describes the statistical
behavior of, in our case, the charge carrier density inside a metal or semiconductor.
Its principle statement for a steady state is as follows:

∂fs
∂t

]
diffusion

+
∂fs
∂t

]
field

+
∂fs
∂t

]
scattering

= 0 (2.1)

with fs(z,v) the charge carrier distribution function with spin s and velocity v at
position z.

The LBE is obtained by filling in the three terms in 2.1 and dropping all the terms
of order E2 and higher. VF1 states the LBE as follows:

diffusion︷ ︸︸ ︷
vz
∂fs
∂z

(z,v)−

field︷ ︸︸ ︷
eE(z)vz

∂f 0

∂ε
(v) =

scattering︷ ︸︸ ︷∫
d3v′δ

[
ε(v′)− ε(v)

]
Ps

[
z, ε(v)

][
fs(z,v

′)− fs(z,v)
]

+

∫
d3v′δ

[
ε(v′)− ε(v)

]
Psf

[
z, ε(v)

][
f−s(z,v

′)− fs(z,v)
]

(2.2)
with ε(v) = 1

2
mv2 the electron energy, E(z) the local electric field and Ps and Psf

respectively the spin conserving and spin-flipping transition probabilities. The two
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integrals on the right-hand side represent the summation over respectively all spin
conserving and spin-flipping scatterings.

The distribution function is then written down by adding up the equilibrium density
(the Fermi-Dirac distribution) and a term for small perturbations:

fs(z,v) = f 0(v) +
∂f 0

∂ε

{[
µ0 − µs(z)

]
+ gs(z,v)

}
(2.3)

with µ0 the equilibrium chemical potential, f 0 the Fermi-Dirac distribution, (∂f 0/∂ε)gs
the anisotropic part of the perturbation and (∂f 0/∂ε)[µ0− µs] the isotropic pertur-
bation due to spin-dependent local variations in the chemical potential, caused by
spin accumulation. Here, µs(z)(= µ±(z)) is the spin-dependent chemical potential
as a function of position.

Using 2.3, one can derive the following macroscopic transport equations from the
LBE, which are valid in the limit λsf/lsf � 1:

e

σs

∂Js
∂z

=
µs − µ−s

l2s
, (2.4a)

Js =
σs
e

∂µs
∂z

(2.4b)

where Js(= J±), σs and ls are the spin-dependent current density, conductivity and
SDL respectively. These two equations can be rewritten to a spin-diffusion type
equation, namely:

∂2∆µ

∂z2
=

∆µ

l2sf
(2.5)

with ∆µ ≡ 1
2
(µ+−µ−). VF then solve 2.5 and obtain the following general solutions:

µ±n (z) = αnJz +K
(n)
1 ± (1± βn)

[
K

(n)
2 ez/l

(n)
sf +K

(n)
3 e−z/l

(n)
sf

]
(2.6a)

J±n (z) = (1∓ βn)
J

2
± 1

r
(n)
sf

[
K

(n)
2 ez/l

(n)
sf −K(n)

3 e−z/l
(n)
sf

]
(2.6b)

with αn ≡ (1 − β2
n)eρ∗n , r

(n)
sf ≡ eρ∗nl

(n)
sf , where βn is the magnetization, αn the

electrical resistivity of the layer and e the elementary charge. K
(n)
1,2,3 are integration

constants and n denotes the layer index. Therefore, all the material-specific
variables are n-dependent.

2.1.1 Change of variables

In this report, two different sets of variables are used. The first one is the set used
in the paper by VF and is denoted with a tilde:

x̃ =


µ+

µ−

J+

J−

 . (2.7)
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The second set is defined as in 2.8 and is denoted without a tilde. These are the
variables we will be working with. We also define a matrix Γ, which transforms
the set used by VF into the new set:

x =


µ

∆µ
∆J
J

 ≡


1
2

(
µ+ + µ−

)
1
2

(
µ+ − µ−

)
J+ − J−
J+ + J−

 =


1
2

1
2

0 0
1
2
−1

2
0 0

0 0 1 −1
0 0 1 1

 x̃ ≡ Γ x̃ (2.8)

so that the solutions from VF become:

µ(n)(z) = αnJz +K
(n)
1 + βn∆µ(n)(z) (2.9a)

∆µ(n)(z) = K
(n)
2 ez/l

(n)
sf +K

(n)
3 e−z/l

(n)
sf (2.9b)

∆J (n)(z) = −βnJ +
1

r
(n)
sf

[
K

(n)
2 ez/l

(n)
sf −K(n)

3 e−z/l
(n)
sf

]
(2.9c)

J (n)(z) = J. (2.9d)

Note that µ = qV = −eV has the same properties as any potential and can be
chosen relative to any arbitrary reference value (i.e. ground). Mathematically, this

is done through the coefficient K
(n)
1 . Also note that the current density J is a

constant since the system is in a steady state and current is conserved.
Secondly, since we are dealing with a steady-state system of a series of layers, the
total current density J has to be constant throughout the system.

2.2 Transfer Matrices

Often the transport equations 2.4 are numerically integrated to simulate the
behavior of magnetic multilayer systems. One could pose this is a bit redundant
for we already possess the general solutions to the system (2.6). In this report,
a possibly smarter and faster method using transfer matrices is developed and
implemented.

Since the general solutions to the system are already known, the goal of our
method is to provide a way to calculate the unknowns in these general solutions
(i.e. integration constants).
In order to do this, our method makes use of the fact that we are working in the
linear response regime, i.e. that the variables in the system only depend linearly
on each other. This means that the state vector, containing those variables on one
side of the system or any component of the system can be expressed as a linear
function of the state vector elements on the other side of that system, which can
be written down as a matrix product:

x2 = W21 x1 (2.10)
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Interface Interface

1 2 N N+1

Layer Layer Layer
InterfaceInterface

x1=xA
x2

x3
x4

x2N-1
x2N

x2N+1
x2N+2=xB

Figure 2.1: Schematic representation of the used system.

where the matrix W21 is called the transfer matrix and xi is the state vector at
some point, indicated by the subscript i, between two components and therefore
contains the boundary values at that point (see figure 2.1).

So we need an expression for the transfer matrix of each layer, and for the transfer
matrix of each interface. In the next section we will consider models for interfaces.
Here we state the result for a layer that we derived from 2.6:

WVF
layer =


1 β (cosh δ − 1) βrsf sinh δ (1− β2)rsfδ + β2rsf sinh δ

0 cosh δ rsf sinh δ βrsf sinh δ

0 1
rsf

sinh δ cosh δ β (cosh δ − 1)

0 0 0 1

 (2.11)

where δ ≡ t/lsf , with t the layer thickness. For nonmagnetic layers β = 0 so the
transfer matrix becomes quite simple.

Note the simple form of the first column and the bottom row. This is no coincidence:
Because the reference for the electrochemical potential is arbitrary and constant,
only µ2 can depend on µ1 and the other variables cannot depend on µ1. Hence the
form of the first column.
Also, J is constant throughout the system. Hence the form of the bottom row.
Finally, note that the contents of the matrix only depend on three constants: β, δ
and rsf = eρ∗l

(n)
sf .

2.3 Interface Models

Determining how the interfaces between the layers affect the variables is less
straight-forward. In this report, we take a look at three different models which
can be used to derive a transfer matrix for the interfaces. The first two of these
interface models are taken from literature, the third one is an original model.
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2.3.1 Valet-Fert

The first interface model is the model used in the paper by VF. This model, also
known as the two-current series resistor (2CSR) model, basically replaces the
interface by a circuit-diagram which can be seen in figure 2.2.

A

B

+

-

1 2

Figure 2.2: Circuit diagram containing two series resistors used in the VF
interface model.

The transfer matrix for the VF model looks as follows:

WVF
int =


1 0 1

4

(
RA −RB

)
1
4

(
RA +RB

)
0 1 1

4

(
RA +RB

)
1
4

(
RA −RB

)
0 0 1 0

0 0 0 1

 (2.12)

with RA and RB the resistances for the up and the down spin current respectively.

The 2CSR model assumes no spin-flipping occurs at the interfaces. This can be seen
in the circuit diagram (figure 2.2) by the absence of connections between the spin
up and spin down nodes. This means that the spin-dependent currents flow through
the interfaces as if they are flowing through a system of two independent, parallel
series connections, meaning that the spin-dependent currents remain constant (i.e.
J±2 = J±1 ).

In other words, the VF interface model describes two channel interface transport
using two independent parameters (RA and RB).

2.3.2 Bass-Pratt

The second interface model is a model introduced by W.P. Pratt and J. Bass3. They
model the behavior of an interface by replacing it by a virtual layer. Mathematically,
this means using the VF layer transfer matrix as the interface transfer matrix
from 2.11. However, we rewrite the elements such that γ = β, r ≡ eρ∗t(1− γ2) =
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rsfδ(1− γ2), and δ. This definition makes r the interface resistance.
These changes lead to the Bass-Pratt interface transfer matrix:

WBP
int =


1 γ (cosh δ − 1) γ r

δ(1−γ2)
sinh δ r + γ2 r

δ(1−γ2)
sinh δ

0 cosh δ r
δ(1−γ2)

sinh δ γ r
δ(1−γ2)

sinh δ

0 δ(1−γ2)
r

sinh δ cosh δ γ (cosh δ − 1)

0 0 0 1

 . (2.13)

This means that the BP interface model describes interface transport three inde-
pendent parameters.

2.3.3 6 Resistances

The third and final interface model is a new model, created by R. Wesselink2. Just
like the VF model, this model behaves as if the interfaces were replaced by an
electrical circuit. However, this time the circuit contains not two but six resistances
(see figure 2.3). Therefore, we call this model the 6 resistances (R6) model.

A

B

D

CE F

+

-

1 2

Figure 2.3: Circuit diagram containing six resistors, used in the R6 interface
model.

By using a modified version of Ohm’s law:

Vdiff. = r · I, r > 0, µ = −eV, J = I/A, (2.14a)

⇒µdiff. = Ri · J, Ri > 0 (2.14b)
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it is possible to write down explicit expressions for the spin-dependent variables
on side 2 in terms of the variables on side 1. Since these expressions are all linear,
they yield the R6 interface transfer matrix:

W̃R6
int =


ξ1++ −ξ1+− R++ −R+−

−ξ1−+ ξ1−− −R−+ R−−

Q −Q ξ2++ −ξ2+−

−Q Q −ξ2−+ ξ2−−

 (2.15)

with:

G =

(
G++ G+−
G−+ G−−

)
≡
(
A D
C B

)
, Gr

1 ≡ E , Gr
2 ≡ F (2.16a)

L1s ≡ Gss +G−s,s +Gr
1 , L2s ≡ Gss +Gs,−s +Gr

2 (2.16b)

ξ1st ≡
1

det G
(G−s,−tL1t +G−s,tG

r
1) (2.16c)

ξ2st ≡
1

det G
(G−s,−tL2s +Gs,−tG

r
1) (2.16d)

Q ≡ 1

4

∑
st

[
ξ1stξ2st

det G

G−s,−t
+ st

(
Gr

1 G
r
2

Gst

−Gst

)]
(2.16e)

Rst ≡
1

det G
G−s,−t. (2.16f)

Here, the definitions A ≡ R−1
A , B ≡ R−1

B , ... were used.

In this model the six parameters can be intuitively related to six different scattering
processes:

1. A is related to the part of the incoming up-spin current that flows through
the interface without spin-flipping.

2. B is related to the part of the incoming down-spin current that flows through
the interface without spin-flipping.

3. C is related to the part of the incoming down-spin current that flows through
the interface and ends up in a spin-flipped state.

4. D is related to the part of the incoming up-spin current that flows through
the interface and ends up in a spin-flipped state

5. E is related to the part of the incident current from the left that undergoes a
spin-flip and is reflected.

6. F is related to the part of the incident current from the right that undergoes
a spin-flip and is reflected.
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Chapter 3

Implementation

So the solver treated in this report takes the general solutions from VF1 (2.6) and
calculates the system-specific integration constants using transfer matrices and
three different models for the interface transfer matrices. In order to do this, the
solver performs four consecutive tasks:
First, the solver multiplies all layer and interface transfer matrices to obtain a
transfer matrix for the entire system. After that, the solver takes the matrix
expression for the entire system, which is an underdetermined linear system, and
transforms it into a solvable one. The third step consists of solving this linear
system and obtain the system boundary values. Finally, the solver uses these
boundary values to calculate the integration constants for all the layers and with
that obtain a solution to the system.

3.1 Multiply layer & interface transfer matrices

The first step the solver performs is calculating the elements of all the layer and
interface transfer matrices. Once all the transfer matrices are known, they are all
multiplied to obtain a single transfer matrix that describes the entire system:

xB =


µ

∆µ
∆J
J


B

= W


µ

∆µ
∆J
J


A

= W xA (3.1)

where xA is the state vector on the far left side of the system and xB the state
vector on the far right side of the system (see figure 2.1). This procedure can be
mathematically described by:

W = W
(N+1)
int

N∏
i=1

[
W

(N+1−i)
layer W

(N+1−i)
int

]
(3.2)
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where the superscripts denote the layer or interface number. The exact forms of
the interface matrices depend on the interface model that is being used. Note that
every system consists of N layers and N + 1 interfaces.

Furthermore, the system is nondimensionalized by dividing our set of variables
(µ,∆µ,∆J, J) by the scaling quantities respectively (e, e, 1, 1). These scaling
quantities were chosen according to the relationship
−e · Vdiff. = µdiff. = −e · r · I and are therefore taking care of the order of magnitude
difference between µ and J , which might become a problem computationally wise
when calculating number in terms of both µ and J on a computer with a finite
precision.

3.2 Set up the linear system

The second step consists of setting up a solvable, linear system of equations for the
entire system and solving it.

The linear system is obtained by taking 3.1. However, this is an underdeter-
mined system, consisting of four equations (four matrix rows) and eight unknowns
(µA, µB,∆µA,∆µB,∆JA,∆JB, JA and JB) and is therefore not (yet) solvable.
To make it solvable, we need to make the number of unknowns equal to the number
of equations. To do this, we start with the total current density J, which is constant
throughout the system:

JA = JB = J. (3.3)

This leaves us with a system containing six unknowns and three equations. Then,
we make use of the fact that µ can be defined to be relative to any reference value
or ground (as long as we are consistent about it). If we define µA as our ground:

µA ≡ 0 (3.4)

we have eliminated one unknown. This leaves us with a system of five unknowns
and three equations.
Finally, we take a look at the general solutions from VF (2.6) and notice that both

∆µ and ∆J contain the same two exponential functions: e+z/l
(n)
sf and e−z/l

(n)
sf . Since

the leads are semi-infinite, the former would blow up in the right lead and the
latter would blow up in the left lead. Because we know that ∆µ and ∆J go to
zero over distance instead of blowing up, we know that this behavior is physically
incorrect and thus that these exponential terms cannot exist. Mathematically, this
means that the integration constants K

(A)
2 and K

(B)
3 are zero. Therefore, we can
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now write for the left lead:

∆µ(A)(z) = K
(A)
2 e+z/l

(A)
sf ⇒∆µA ≡ ∆µ(A)(0) = K

(A)
2 (3.5a)

∆J (A)(z) =
1

rA
K

(A)
2 e+z/l

(A)
sf ⇒∆JA ≡ ∆J (A)(0) =

1

rA
K

(A)
2 (3.5b)

⇒ ∆JA =
1

rA
∆µA (3.5c)

and for the right lead:

∆µ(B)(z) = K
(B)
3 e−z/l

(B)
sf ⇒∆µB ≡ ∆µ(B)(0) = K

(B)
3 (3.6a)

∆J (B)(z) = − 1

rB
K

(B)
3 e−z/l

(B)
sf ⇒∆JB ≡ ∆ J (B)(0) = − 1

rB
K

(B)
3 (3.6b)

⇒ ∆JB = − 1

rB
∆µB . (3.6c)

As can be seen in 3.5c and 3.6c, we have now obtained explicit expressions for
∆JA and ∆JB. If we now substitute these expressions back in our linear system of
equations, we have effectively eliminated ∆JA and ∆JB from our set of unknowns,
leaving us with a system of three equations and three unknowns (µB,∆µA and
∆µB), which is no longer underdetermined and therefore solvable.

Rewriting the system into the form M x = b yields the following linear system:w12 + w13

rA
0 −1

w22 + w23

rA
−1 0

w32 + w33

rA

1
rB

0


∆µA

∆µB

µB

 = −

J · w14

J · w24

J · w34

 (3.7)

where wij are the elements of the transfer matrix of the entire system (i.e. W).

3.3 Calculate boundary values

The third step consists of calculating the boundary values (BVs) of the system,
i.e. the state vectors between all the layers and interfaces xi with i ∈ [1, 2N + 2].
This is done by first solving the linear system (3.7) using an analytical solution
from Mathematica which yields a numerical value for ∆µA. This, combined with
3.4 and 3.5c and the fact that J is known, allows us to calculate xA:

xA =


µA

∆µA

∆JA

JA

 =


0

∆µA

∆µA/rA

J

 . (3.8)

Once xA is known, the rest of the BVs are calculated by propagation through the
layers and interfaces, using their corresponding transfer matrices (2.10).
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Layer, thickness t

zlocal=0 zlocal=t/2zlocal=-t/2

zlocal

1 2

interface interface

Figure 3.1: Definition of a local coordinate system for a layer.

3.4 Calculate integration constants

After the BVs are calculated, the solver performs the fourth and last step. This
step consists of calculating the integration constants from the BVs and with that
obtaining the full spatial solution of the system. As can be seen in 2.9, the general
solutions to the system contain three integration constants. The first of these is
K

(n)
1 . Before calculating K

(n)
1 , we first define local coordinate systems for the layers

like in figure 3.1.

Now that we have our system of reference, we continue by deriving K
(n)
1,2,3 such

that the local solutions in the layer match with the earlier obtained BVs. Since
K

(n)
1 is the only unknown in µ(n)(z) (2.9a), simply substituting z = − tn

2
and

µ(n)(− tn
2

) = µ
(n)
1 (i.e. the BV on the left side of the layer) gives us an expression

which can be solved easily for K
(n)
1 :

K
(n)
1 = µ

(n)
1 +

1

2
αntJ − βn∆µ

(n)
1 . (3.9)

Calculating K
(n)
2 and K

(n)
3 is slightly more complicated, since they both appear in

the expression for ∆µ(n)(z) (2.9b). Two unknowns means we need two expressions:

one is obtained by substituting z = − tn
2

and ∆µ(n)(− tn
2

) = ∆µ
(n)
1 and one by

substituting z = + tn
2

and ∆µ(n)(+ tn
2

) = ∆µ
(n)
2 into 2.9b. Solving this system of

equations yields the expressions for K
(n)
2 and K

(n)
3 :

K
(n)
2 =

1

sinh δn

[
∆µ

(n)
2 eδn/2 −∆µ

(n)
1 e−δn/2

]
,

K
(n)
3 =

1

sinh δn

[
∆µ

(n)
1 eδn/2 −∆µ

(n)
2 e−δn/2

]
.

(3.10a)

(3.10b)

Now we can simply substitute these integration constants into 2.9 to obtain the
final solutions for µ,∆µ and ∆J inside the layers.
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3.5 Precision

One major issue that occurred with this transfer matrix method has to do with the
precision at which the floating points are handled. When the solver steps, described
in the sections above, were implemented correctly, the results showed incorrect
behavior for a lot of system setups, mainly ones with relatively thick layers, or ones
with a relatively high number of layers.
As can be seen in 3.11, the element WVF

layer,14 consists of two parts: one linear in
δ and one hyperbolic in δ, i.e. WVF

layer,14 = A · δ + B sinh δ. Upon investigation,
it turned out that the failure of the solver occurred when the relative difference
between these linear and hyperbolic terms became of 19 orders of magnitude, i.e.
sinh δ/δ ∼ 1019

WVF
layer =


1 β (cosh δ − 1) βr sinh δ (1− β2)rsfδ + β2rsf sinh δ

0 cosh δ rsf sinh δ βrsf sinh δ

0 1
rsf

sinh δ cosh δ β (cosh δ − 1)

0 0 0 1

 . (3.11)

At this point, a 80-bit container with a 63-bit mantissa 1 was used to store floating
point variables. Calculating the precision of the datatype yields:

263 = 9.223372036854776 · 1018 ≈ 1019 (3.12)

or a precision of 19 orders of magnitude. This coincidence led to the hypothesis,
that the loss of the linear term in WVF

layer,14 due to a lack of precision led to the
failure of the solver.

In order to increase the precision and thereby solve this issue, an arbitrary precision
container for floats, following the IEEE 754-2008 standard, was implemented. This
container allows all bitwidths which are a multiple of 32.
After implementing this arbitrary precision model and increasing the bitwidth, the
output of the solver turned out to be physically correct (see chapter 4). All the
results in chapter 4 were obtained using a bitwidth of 1856.

1The mantissa is the part of the container used to store the actual number. The rest is used
for the sign and the exponent.

17





Chapter 4

Results

Now that it is clear what the solver calculates and with which methods, we can
take a look at the results the solver produces. What the solver basically does is it
calculates µ,∆µ and ∆J for the given system, returns these calculated values and,
if asked for, produces plots of these values throughout the system.

4.1 Identity Interface Model

4.1.1 NFN

First, the solver was tested on different systems using the identity matrix for all
the interface transfer matrices. One of these systems is an NFN geometry (a
ferromagnetic layer, sandwiched between two nonmagnetic layers) and its solutions
can be seen in figure 4.1. Please note that a vector notation was used here to
denote layer numbers (i.e. β = (β1, β2, β3)). Also, ρ∗ and lsf in the leads need to be
known for the calculation of rsf in the leads (3.5c and 3.6c). They are defined to be
equal to ρ∗ and lsf in the adjacent N layers. The layers are separated by vertical,
dotted lines. The solid lines represent the solution curves, the triangles the BVs.
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Figure 4.1: Solver results for an NFN geometry with t = (5, 5, 5),
β = (0, 0.9, 0),ρ∗ = (1, 1, 1), lsf = (1, 1, 1) and J = 1.
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Looking at figure 4.1, we see first of all that the solution curves match the BVs at
the boundaries and that µ(z = 0) = 0, as defined in 3.4. It can also be seen, that
the derivative of the chemical potential is always positive. This is correct, since
µ is proportional to V, with proportionality constant e < 0, and the voltage in a
passive system in steady state never spontaneously rises. Also note the fact that
the curve for µ is a straight line in the N layers, which is correct since J and ρ∗ are
constant within the layers. Further note the lack of discontinuities at the interfaces,
which should be the case when using the identity interface model.

Furthermore, we can see that our system is symmetric around the center of the F
layer (zlocal = 0). We take this point as the origin of our global frame of reference.
If we now do a thought experiment in which we reverse the direction of the total
current density (i.e. Jnew = −Jold), we can imagine that the behaviour of the
system would remain exactly the same (since the system is symmetric), except
for the reversed current direction. Mathematically, this means we can write the
spin-dependent chemical potential and current density as functions of the global
position z and J:

µ±(z, J) = µ±(−z,−J), (4.1a)

J±(z, J) = −J±(−z,−J). (4.1b)

If we now imagine sending in both the positive and the negative current, the total
current density would become zero and the solutions for µ± and J± would be
superpositions of the solutions for both currents. Since the total current would
become zero, the solutions for µ+(z) and µ−(z) would be equal and constant:

µ±(z, J) + µ±(z,−J) = const. ≡ α, (4.2a)

⇒ µ±(z, J) = α− µ±(−z, J) , (4.2b)

with α = 2 · µ±(0, J)⇒ µ+(0) = µ−(0). (4.2c)

J±(z, J) + J±(z,−J) = J±(z, J)− J±(−z, J) = 0, (4.2d)

⇒ J(z, J) = J(−z, J) . (4.2e)

With this, we can now prove the symmetries in µ,∆µ and ∆J , using the same,
constant J throughout the derivation:

µ(z) ≡ 1

2

(
µ(z)+ + µ(z)−

)
(4.3a)

⇒ µ(−z) =
1

2

(
µ(−z)+ + µ(−z)−

)
=

1

2

(
α + α− µ(z)+ − µ(z)−

)
(4.3b)

⇒ µ(−z) = 2µ(0)− µ(z) ⇒ antisymmetric with an offset. (4.3c)
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∆µ(z) ≡ 1

2

(
µ(z)+ − µ(z)−

)
(4.3d)

⇒ ∆µ(−z) =
1

2

(
µ(−z)+ − µ(−z)−

)
=

1

2

(
α− α− µ(z)+ + µ(z)−

)
(4.3e)

⇒ ∆µ(−z) = −∆µ(z)⇒⇒ antisymmetric. (4.3f)

∆J(z) ≡ J(z)+ − J(z)− (4.3g)

⇒ ∆J(−z) = J(−z)+ − J(−z)− = J(z)+ − J(z)− (4.3h)

⇒ ∆J(−z) = ∆J(z) ⇒ symmetric. (4.3i)

A similar derivation can be used to show that in an antisymmetrical geometry, µ(z)
should be antisymmetric with an offset, ∆µ(z) symmetric and ∆J(z) antisymmetric.
As can be seen in figures 4.1 and 4.2, the predicted symmetries are present in the
solver result.

Lastly, note that both ∆µ and ∆J have an exponential form in the nonmagnetic
layers and go to zero as we go away from the F-N interface. This is correct since
the N layers have the same properties (ρ∗, lsf , β) as the leads, and inside the leads
any deviations from equilibrium should decay exponentially, since the system is
governed by a spin-diffusion type equation (2.5).

4.1.2 Spin Valves

In addition to the NFN system, the solver was also tested on the parallel (P) and
antiparallel (AP) spin valves, which are NFNFN geometries where the magnetiza-
tions in the F layers point respectively in equal and opposite directions.
The results of these spin valves can be seen in figure 4.2. Here it can be seen
that all the signs of correctness that were checked with the NFN geometry also
hold for the two spin valves. Note that for the AP spin valve the magnetization
is antisymmetric in z around the center of the geometry, whereas for the P spin
valve it is symmetric. This can be seen in figure 4.2 by the fact that ∆µ has an
antisymmetric solution and ∆J a symmetric one in the P case, while ∆µ has a
symmetric solution and ∆J an antisymmetric one in the AP case.

The idea of a spin valve is that only one of the F layers is susceptible to external
magnetic fields. If the direction of the to-be-measured magnetic field is known
beforehand, the spin valve can be constructed in such a way, that a lack of a
(sufficiently strong) field yields a P state, while the to-be detected field would yield
an AP state. This state difference can then be detected through the effect that
an AP spin valve has a different electrical resistance compared to a P valve. This
effect is called giant magnetoresistance (GMR) and can be seen in figure 4.3: in
this figure, the solutions to a P (black) and an AP (red) spin valve are plotted in
the same graphs. In figure 4.6a it can be seen that the AP state indeed yields a
larger increase in the chemical potential and therefore a larger potential drop then
the P state.
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Figure 4.2: Solver results for the P and AP spin valve geometries with
t = (5, 5, 5, 5, 5), β± = (0, 0.9, 0,±0.9, 0), ρ∗ = (1, 1, 1, 1, 1), lsf = (1, 1, 1, 1, 1)
and J = 1.

0 1 2 3 4 5
z

0
1
2
3
4
5

µ

µ vs. z; black=P, red=AP

(a) µ

0 1 2 3 4 5
z

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

∆
µ

∆µ vs. z; black=P, red=AP

(b) ∆µ

0 1 2 3 4 5
z

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3

∆
J

(c) ∆J

Figure 4.3: Solver results for the P and AP spin valve geometries to show
the effect of GMR. t = (1, 1, 1, 1, 1), β± = (0, 0.9, 0,±0.9, 0), ρ∗ = (1, 1, 1, 1, 1),
lsf = (1, 1, 1, 1, 1) and J = 1.

4.2 Non-identity Interface Models

After this, the solver was tested on the NFN geometry, using different interface
models. All the following results, including this section and the next one, are ob-
tained using the following parameters: t=(1,1,1), β = (0, 0.9, 0), ρ∗ = (1, 1, 1, 1, 1),
lsf = (1, 1, 1, 1, 1) and J = 1.
The first interface model is the Valet-Fert (VF) interface model and the results can
be seen in figure 4.4. These results show the same signs of correctness as in figure
4.1: µ(0) = 0, ∂µ

∂z
> 0, curves that match the BVs, ∆µ(±∞) = 0,∆J(±∞) = 0,

similar forms and (anti)symmetry. However, this time there is a step in µ and
∆µ at the interfaces. On the contrary, ∆J is still continuous, albeit non-smooth.
Looking back at figure 2.2, we see that these results are in line with the theory,
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since in a series circuit the voltage can drop but the current will be conserved.
The fact that there is a step in ∆µ, even though RA = RB, can be explained with
the fact that the incident ∆J is not zero, as can be seen in figure 4.4c. Since
µ±2 − µ±1 = R · J±1,2, the drops in µ+ and µ− are not equal and thus there is a step
in ∆µ at the interface.
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Figure 4.4: Solver results for the NFN geometries. im=VF, RA = 5, RB = 5.

The results for the Bass-Pratt (BP) and 6 resistance (R6) interface models can be
found respectively in figures 4.5 and 4.6. Again, the same signs of correctness can
be seen as in the previous figures. Apart from that, we can see that this time there
are steps at the interfaces in all the variables.
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Figure 4.5: Solver results for the NFN geometries. im=BP, γ = 0.9, δint = 1,
rint = 5.
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Figure 4.6: Solver results for the NFN geometries. im=R6,
RA = 0.1,RB = 0.1,RC = 1,RD = 1,RE = 1,RF = 1.
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4.3 Interface Parameter Dependent Step Sizes

So when using a non-identity interface model, we get steps in µ,∆µ,∆J at the
interfaces. This fact, however, is not a very interesting result. What is more inter-
esting is how those interface step sizes depend on the interface model parameters.
In order to study these dependencies, we define ∆µavg. and ∆µstep according to 4.4.

∆µ4 ≡ ∆µavg. + ∆µstep, (4.4a)

∆µ3 ≡ ∆µavg. −∆µstep. (4.4b)

We conduct similar definitions for µavg., µstep, ∆Javg. and ∆Jstep. The values for
the NF interface, containing the 3rd and 4th BVs (see figure 2.1), were used.

4.3.1 Valet-Fert

The parameter space of the Valet-Fert interface model (VFIM) spans only two
dimensions: RA and RB. However, since we are also interested in the effects of
spin accumulation, the layer thickness over the spin-diffusion length of the F layer
(i.e. t2/l

(2)
sf ) was added as a third dimension. In plot sheets, we are able to visualize

four dimensions: two on the plots axes and two on the plot grid on the sheet. The
fourth and last dimension was used to portray either the values for both spins or
the values for both the step and the average in the same plot (see figure 4.7).

Looking at figure 4.7a, that µstep goes to zero as RA and RB go to zero. This
is correct, since two parallel, resistanceless channels let the incoming signal pass
through unchanged. Also note that as RA and RB increase, µstep and µavg. seem
to evolve as [R−1

A +R−1
B ]−1. This is correct, since that is the formula for the total

resistance of two parallel resistances.

Looking at figure 4.7b, we see that ∆µstep increases as RA increases. This seems
correct, since if RA increases we expect (µ+

4 −µ+
4 ) to increases, meaning that ∆µstep

increases. The opposite holds for RB and ∆µstep. Also note that when RA and RB

are equal, ∆µstep does not become zero. This is due to the fact that the spin-up
current encounters more resistance in the F layer than the spin-down current (i.e.
ρ↑ < ρ↓), meaning that J+ 6= J− when RA = RB, causing a difference in the two
spin-dependent chemical potential steps.
Furthermore, when we compare 4.7b to 4.7c, we see that
∆µstep(β2 = 0.9) > ∆µstep(β2 = −0.9). This effect seems logical if we think of
the NF interface and the F layer as two parallel series circuits, neglecting spin-
flipping (which is a relatively small effect anyways). If β2 = 0.9 ⇒ ρ↑ < ρ↓
in the F layer, causing (µ+

4 − µ+
4 ) to increase and (µ+

3 − µ+
3 ) to decrease and

thus ∆µstep(β2 = 0.9) to increase. Since the opposite is true for β2 = −0.9,
∆µstep(β2 = 0.9) > ∆µstep(β2 = −0.9) seems correct.
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represents the result of one simulation.
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Figure 4.8: Step sizes in and average interface values of µ plotted vs. γ, r, δ

and t2/l
(2)
sf for β2 = 0.9 for the BPIM. Every dot represents the result of one

simulation.

If we look at figures 4.7d and 4.7e, we see that an increase in RA leads to an
decrease in J+ and an increase in J− and that the opposite hold for an increase
in RB. This is correct, since the current drops as the resistance increases and
J = J+ + J− = const.

Finally, increasing t2/l
(2)
sf basically represses the effects caused by the difference

in ρ↑ and ρ↓. This can be seen in figures 4.7d and 4.7e, where for β2 = 0.9, J+

decreases and J− increases, while ρ↑ < ρ↓. For β2 = −0.9, J+ increases and J−

decreases, while ρ↓ < ρ↑.

4.3.2 Bass-Pratt

The parameter space of the Bass-Pratt interface model (BPIM) spans three dimen-
sions: γ, rint and δint, equivalent to β, rsf and δ for the VF layer transfer matrix.
Since we are again also interested in the effects of spin accumulation, the layer
thickness over the spin-diffusion length of the F layer (i.e. t2/l

(2)
sf ) was added as a

fourth dimension. In plot sheets, we are able to visualize four dimensions: two on
the plots axes and two on the plot grid on the sheet. (see figures 4.8 and 4.9).
Looking at figure 4.8b, we see that as γ increases µstep decreases, which was to be
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Figure 4.9: Step sizes in and average interface values of ∆J plotted vs. γ, r, δ

and t2/l
(2)
sf for β2 = 0.9 for the BPIM. Every dot represents the result of one

simulation.
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Figure 4.10: J+
4 and J−4 plotted vs. RA, RB, C,D for t2/l

(2)
sf = 1, β2 = 0.9 and

E,F = 0 for the R6IM. Every dot represents the result of one simulation.

expected since the virtual layer resistance r = rsfδ(1− γ2). Also since the BPIM
uses a virtual layer to describe an interface one would expect to see some coupling
between γ and β2, just the coupling that the principle of GMR is based upon. As
can be seen in the plots by comparing the result for γ = 0.9 and γ = −0.9 or
γ = 0.45 and γ = −0.45, when γ is positive (i.e. aligned with β2) the step in µ is
slightly smaller, but the effect is very minimal.
By looking at the figure, we can see that the plots confirm that WBP

int is equal
to the identity matrix for δint = 0, which is correct, since a layer with thickness
zero can not have any effects. We could continue this kind of explanation for all
the effects of the BPIM and pointing out that they are indeed equivalent to the
effects an actual F or N layer. However, the most important point to notice when
examining the BPIM is that its behaviour is more complicated (see figures 4.9a
and 4.9b) and less directly correlated to its parameters in comparison to the VFIM
and (as will become clear in the next subsection) the 6 resistances model.

4.3.3 6 Resistances

The parameter space of the 6 resistances interface model (R6IM) spans six dimen-
sions: A,B,C,D,E and F. Since the reciprocals of A and B (A−1 = RA, B

−1 = RB)
are equivalent to to RA and RB in the VFIM, RA and RB were varied on the
x- and y-axis respectively, just as was done for the VFIM. This way, the plots
of the R6IM can be compared easily to those of the VFIM. When we compare
figures 4.10b and 4.10b to 4.7d, we see first of all that the results for the R6IM
for conductances C,D,E,F=0 are equivalent to the result obtained from the VFIM.
This is correct, since when we equate the conductances C,D,E,F to zero (i.e. remove
those connections from the R6IM), we are simply left with the VFIM.
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Figure 4.11: J+
4 and J−4 plotted vs. RA, RB, C,D for t2/l

(2)
sf = 1, β2 = 0.9 and

E,F = 0.05 for the R6IM. Every dot represents the result of one simulation.

Furthermore, by looking at the figure, we see that J+
4 increases and J−4 decreases as

we increase C. This inverse is the case as we increases D. This is in agreement with
the expected behaviour from the electrical circuit (see figure 2.3). However, we can
also see in the figure that J+

4 and J−4 show similar behaviour when we increase
both C and as when C,D=0, but mirrored around the line RA = RB. Why this is,
is not entirely clear.
Finally, by comparing figures 4.11a and 4.11b to 4.10a and 4.10b we see that
increases E and F decreases the differences between the two spin currents. This is
correct, since increasing the conductivity of E and F, both the spin accumulation
on the left side (i.e. the difference between µ+

3 and µ−3 ) and on the right side (i.e.
the difference between µ+

4 and µ−4 ) of the interface are allowed to relax out more.
When we also increase C, it can be seen in the figure that J+

4 and J−4 become less
dependent on RA. The same is the case for increased D and less dependence on
RB.
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Chapter 5

Conclusions

First of all, we can conclude that the solver created for this report allows for the
correct calculation of spin transport through magnetic multilayers according to the
theory from the VF paper, when using the identity interface model. The other
interface models seem to be implemented correctly as well, since the results seem
to behave as expected.

As for the behaviour of the the three interface models, the Valet-Fert interface
model proved to be a simple and relatively easy to understand interface model.
However, as was known beforehand, it is not able to model spin-flipping at the
interfaces.
The Bass-Pratt interface model is able to model more complicated behaviour. Also,
since it behaves just as a (ferro)magnetic layer, we can simply apply all acquired
knowledge of the VF theory of spin transport to predict the behaviour of this
interface model. However, since it models more complicated behaviour with only
three parameters, its behaviour seems to be less directly correlated to its parameters,
which might make it harder to match the interface model to actual (theoretically
of experimentally determined) behaviour at an interface.
The 6 resistances interface model is able to model a relatively large amount of
interface transport behaviours (interface reflection and transmission, spin-flipping
and spin-conserving). Also, the way individual parameters affect the behaviour of
the interface model are relatively easy to predict by simply applying Ohm’s law.
However, since it uses a quite complicated electrical circuit to model the behaviour,
the model itself would need an in-depth analysis to be understood fully.
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Chapter 6

Future Recommendations

First of all, the solver created for this report is still in a very user-unfriendly state.
Some pieces of interface codes were written in order to be able to call the solver
back-end more easily, to be able to change the solver input without having to write
them into the solver code itself and to be able to comfortably perform parameter
sweeps with the solver to create plot sheets like the one in figure 4.7. However,
most tasks still require the user to edit the back-end, which is not practical for
anyone who has not written the code itself.
Therefore, the first recommendation would be to improve the interface codes to
the point were one could use the solver without ever having to touch the back-end.

Furthermore, all the plot sheets that can be seen in this report were created using
simulations on NFN geometries. In order to gain a deeper understanding of the
behaviour of the interface models, plot sheets would have to be created and analyzed
using different geometries (e.g. spin valves).
Also, most results in this report are about the properties of the different interface
models and the dependencies of their behaviour on their parameters. Some com-
ments on the differences between the models were made, but a final conclusion on
the limits of the models and on what model is capable of modelling what is not
reached. Therefore, further analysis on the limits of the different interface models
is recommended.
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