
Traffic Assignment with Junction
Modeling in TAPAS

Author:

Oedsen van der Kooi

d

e

Supervisors:

ir. Feike Brandt

dr. Georg Still

prof. dr. Marc Uetz

June 2015

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Research Question . 3

2 Background 5

2.1 Notation . 5

2.2 Commonly Used Formulas . 6

2.3 The Traffic Assignment Problem . 8

2.4 Related Work . 10

2.4.1 Algorithms for TAP . 10

2.4.2 TAP with asymmetric link costs 12

3 A Detailed Description of TAPAS 15

3.1 PAS Construction . 19

3.2 Flow Shifts . 22

3.3 Cost and Flow Effectiveness of PASs 23

3.4 Branch Shift . 26

3.5 Cyclic Flow Removal . 28

3.6 Proportionality . 29

3.7 Proof of Convergence . 33

4 Traffic Assignment Problem with Asymmetric Costs 39

4.1 Junction Modelling in OmniTRANS 39

4.2 Adjustments to TAPAS . 41

4.3 Solutions for Asymmetric Cost Functions 44

4.3.1 Diagonalization . 45

4.3.2 VISUM Solution . 46

4.3.3 Finding Consistent Solutions 47

5 Results 49

5.1 Prototype . 49

5.2 TAPAS without Junction Modeling 51

5.3 TAPAS with Junction Modeling . 51

6 Discussion 55

6.1 Elements of TAP . 55

iii

Contents iv

6.2 Prototype and results . 56

6.3 Recommendations . 57

7 Conclusion 59

A Junction functions 61

B The Cycle Removal Algorithm 65

Abbreviations 68

Symbols 71

Chapter 1

Introduction

1.1 Overview

During the twentieth century the amount of traffic increased all around the world,

resulting in crowded roads and increased travel times. This sparked the need for

research to predict traffic flows. One of the most widely used traffic models is the

four step model. This model is used for various purposes, such as predicting the

impact of road works, calculating the long term effects on the road network of

building new population areas or comparing different solutions for restructuring a

bottleneck in the network. The fourth step of this model (which will be treated

in more detail in section 2.3) is the Traffic Assignment Problem (TAP). The TAP

uses as input a study area divided up into zones, with a graph representing the

road network, and an Origin-Destination (OD) matrix which contains the amount

of traffic that needs to travel over the network from one zone, the origin, to another

zone, the destination. There are different types of Traffic Assignment problems,

based on the assumptions made on the network and the travelers, with different

solution methods for each type. Throughout this study, it is assumed that there

is congestion in the network, which is modeled by link cost functions ca(fa) that

increase monotonically as the flow on the link fa increases. Also all travelers behave

the same, each traveler has complete information on the state of the network and

the decisions of other travelers and each traveler tries to make his travel time as

small as possible.

The TAP can be applied to both static and dynamic models. Each model has

its advantages: in a dynamic model the traffic propagates through the network

as time passes and the temporal behavior of traffic jams and queues at traffic

lights can be modeled precisely, but algorithms for dynamic models take a lot of

1

Chapter 1. Introduction 2

calculation time. Algorithms for static models on the other hand are faster and

can be used for much larger study areas, but are less capable to show the effects

of traffic jams and queues. This study focuses on static models.

The notion of travelers making their own choices and trying to minimize their own

travel time was formalized by Wardrop[1] in 1952 when he stated the principle of

User Equilibrium (UE). A mathematical programming formulation was introduced

by Beckmann et al.[2] and this formulation was used by several algorithms to

solve the TAP. More information on this topic can be found in section 2.3. One

shortcoming of these algorithms is that the travel time of a traveler only depends

on the amount of traffic on the road the traveler uses, whereas in real life situations

a substantial amount of travel time can be attributed to travelers on crossing roads.

An example of this is a junction where the traveler has to wait because he has to

give way to crossing traffic. This behavior can be captured by adjusting certain

link cost functions so that travel time on these links also depend on crossing traffic.

This methodology, called Junction Modeling, adds realism to the traffic model but

it also complicates the model: the User Equilibrium is no longer unique and the

link cost functions that depend on multiple link flows are no longer differentiable

and the Beckmann notation can no longer be used. Several heuristics are available

to tackle these problems.

This master thesis is commissioned by DAT.Mobility. DAT.Mobility, based in De-

venter, the Netherlands, is a software company specialized in traffic and transport.

DAT.Mobility has approximately 30 employees. The company was formed in 2014

when DAT.Mobility’s predecessor Omnitrans International BV merged with sev-

eral departments of Goudappel Coffeng to form DAT.Mobility. While the core

business of DAT.Mobility is developing and marketing software products such as

the transport modelling software package OmniTRANS, a substantial amount of

time is committed to other projects covering different subjects in the field of traffic

modelling and mobility. Consultants and authorities use OmniTRANS for strate-

gic long term planning. OmniTRANS has an extensive Junction Modeling tool:

for each node in the network the user can specify the type of the junction, such as

roundabout or traffic signal, and each type can be further specialized by entering

parameters such as the number of lanes. Two algorithms for solving the TAP are

implemented in OmniTRANS, called Frank Wolfe and Volume Averaging. These

algorithms are known to converge badly and in order to keep up with competi-

tors, DAT.Mobility wants to add a new algorithm to the tool set of OmniTRANS.

Several new algorithms have been introduced in recent years and during an in-

ternship at DAT.Mobility, a comparison was made between the most promising of

these new algorithms. One of these is Traffic Assignment by Paired Alternative

Chapter 1. Introduction 3

Segments (TAPAS), introduced by Bar-Gera in 2009[3]. TAPAS was found to be

the best new suited algorithm for adding to OmniTRANS[4]. However, there is

no Junction Modeling functionality in TAPAS as described in the original paper

by Bar-Gera. So this functionality has to be added to TAPAS so that TAPAS can

use the extensive Junction Modeling tool box available in OmniTRANS and be a

suitable candidate for replacing the algorithms currently implemented in Omni-

TRANS. Also some parts of the algorithm are not described in complete detail or

are left open for interpretation, so these parts need to be filled in.

1.2 Research Question

The main research question of this Master Thesis is:

Can TAPAS be fit with the Junction Modeling functionality of OmniTRANS such

that it can be used in the OmniTRANS software as an improvement of the cur-

rently implemented algorithms?

In order to accurately answer this question it is split up in several sub questions:

• How does TAPAS work? Can we give a detailed and comprehensive descrip-

tion of all components of TAPAS?

• How is Junction Modeling implemented in OmniTRANS?

• What changes need to be made to TAPAS in order to be able to function

with asymmetric cost functions?

• Can we show, using a prototype, that TAPAS with the proposed changes

calculates results that are better than the results calculated by the algorithms

currently implemented in OmniTRANS?

The rest of this thesis is structured as follows: chapter 2 contains the notation

and formulas used throughout the thesis, along with a description of the Traffic

Assignment Problem and an overview of related work on algorithms for TAP,

both with regular and with asymmetric cost functions. Chapter 3 gives a detailed

description of TAPAS, with solutions offered for all elements of the algorithm

that are not clearly described in the original paper. In chapter 4 the Junction

Modeling module of OmniTRANS is described and all changes that need to be

made to TAPAS in order to handle Junction Modeling are treated. Chapter 5 gives

an overview of the prototype that was implemented in OmniTRANS and shows

Chapter 1. Introduction 4

the results acquired with the prototype in the form of a comparison between the

solutions calculated by TAPAS and by OmniTRANS. Chapter 6 points out some

elements that could be added to TAPAS and to the prototype made and gives

recommendations for further research. Chapter 7 contains the conclusions of this

master thesis and recommendations for further research.

Chapter 2

Background

2.1 Notation

The transportation network will be represented by the graph G = {N,A}, where

N is the set of nodes and A is the set of links. No ⊆ N is the set of origins and

for each p ∈ No we define Nd(p) ⊆ N as the set of destinations for origin p. All

links a = (n,m) ∈ A are directed and start at node n and end at node m. A route

segment s is a sequence of distinct nodes [n1, n2, . . . , nx] for some x ∈ N such that

ai = (ni, ni+1) ∈ A for each 1 ≤ i ≤ x− 1. If x = 1 the route segment consists of

just one node n1. If n1 ∈ No and nx ∈ Nd(n1), we call the segment a route, denoted

by r. The first node n1 of a segment s is called the tail, denoted by st and the last

node nx is called the head, denoted by sh. Similarly, the start node n of a link

a = (n,m) is called the tail at and the end node m is called the head ah. The set of

all routes connecting origin p to destination q is called Rpq. The set of all possible

routes connecting an origin to a destination is called R =
⋃
p∈No

⋃
q∈Nd(p)

Rpq. For

a node n we define the set of incoming links as INn = {a ∈ A|ah = n} and the

set of outgoing links as OUTn = {a ∈ A|at = n}. The demand for an OD pair

pq is denoted by dpq. We denote flows by three levels of aggregation. The highest

level of aggregation is the total flow on link a, denoted by fa. The vector of all

link flows is denoted by f . The flows can be disaggregated by routes: the flow

along a route r ∈ R is denoted by hr. The vector of all route flows is denoted

by h. Link flows can also be disaggregated by origin, resulting in an |No| by |A|
vector of origin based (OB) flows f whose elements are denoted by fpa. From the

context it will be clear whether f denotes (fa, a ∈ A), or (fp,a, p ∈ No, a ∈ A).

We denote by Gp = {N,Ap} the subgraph of G with Ap = {a|fpa > 0}. For

origin p, the total incoming origin based flow in a node n is called the node flow,

5

Chapter 2. Background 6

denoted by gpn. If the OB node flow gpn for node n is greater than zero, we can

define for a link a ∈ INn the proportion of gpn that enters node n through link a,

called the approach proportion αpa. The origin based flow on a route segment s is

called the segment flow kps, which can be calculated using formula 2.2.4. We can

calculate link flows, node flows, segment flows and approach proportions given the

OB link flows, these formulas are defined in section 2.2. Link costs are denoted

by ca(f). The cost of a route segment s = [n1, n2, . . . , nx] is the sum of the link

costs of all links in s: cs(f) =
∑x−1

i=1 c(ni,ni+1)(f). Given the current flow pattern

f and corresponding link costs ca(f) we denote the cost of the shortest path from

node n to node m as πnm(f). The main building blocks of the algorithm, Paired

Alternative Segments or PASs, are defined as follows: a PAS consists of two route

segments s1 and s2, where both segments have the same head and tail node and

no other common nodes. The tail node is called the diverge node, the head node

is called the merge node. Throughout this thesis we assume that segment s1 is

the segment with the highest cost, unless explicitly stated otherwise. We define

P as the set of PASs, the set of relevant origins of PAS P is called OP . For quick

reference, please consult the list of abbreviations at the end of this report.

2.2 Commonly Used Formulas

This section introduces a list of formulas that are widely used throughout the rest

of the thesis. Since TAPAS uses the OB flows fpa as the basic solution variable,

all flow variables are expressed as functions of the OB flows. The total flow on a

link is simply the sum of all OB flows on that link:

fa =
∑
p∈No

fpa (2.2.1)

The origin based node flow of a node n is defined as the sum of the OB flow of all

incoming links:

gpn =
∑
a∈INn

fpa (2.2.2)

The origin based approach proportion of a link a for origin p is the fraction of the

total node flow at node ah that enters ah through a:

αpa =
fpa
gpah

(2.2.3)

Chapter 2. Background 7

The origin based segment flow for a route segment s = [n1, n2, . . . , nx] is calculated

as follows:

kps = gpnx ·
x−1∏
i=1

αp(ni,ni+1) (2.2.4)

If we have a route flow solution h that satisfies the proportionality principle (see

also section 3.6), we can also calculate the segment flow for s using route flows by

taking the sum of the route flows for all routes from origin p that contain s:

kps =
∑

q∈Nd(p)

∑
r∈Rpq |s∈r

hr (2.2.5)

The link cost function used most widely is the BPR function, published by the

Bureau of Public Roads:

ca(f) =
La
va

(
1 + α

(
fa
qa

)β)
where

ca(f) Cost of link a (depends only on fa in this function)

La Length of the link

va Free flow speed on the link

fa Flow on the link

qa Maximum capacity of the link

α, β Constants

Here α is usually set to 0.87, β is usually 4. The measure for determining the

convergence of a solution f i calculated in iteration i that is used throughout this

thesis is called the relative duality gap. The relative duality gap calculates the

difference between the total travel time of the solution f i in iteration i and the

travel time of a solution that only used the shortest paths in iteration i, weighted

by the shortest path travel times. It is defined as follows

∑
a∈A f

i
aca(f

i)−
∑

p∈No, q∈Nd(p)
πipqdpq∑

p∈No, q∈Nd(p)
πipqdpq

(2.2.6)

The travel time of a solution that only uses shortest paths is a lower bound for the

travel time in a UE, so the duality gap is an upper bound for the difference in cost

between the current solution and the UE solution. The duality gap is weighted

by the shortest path travel times so that it is possible to compare performance of

algorithms on different networks.

Chapter 2. Background 8

2.3 The Traffic Assignment Problem

The traffic assignment problem is part of the widely used general traffic model

called the four step model, described by Ortuzar and Willumsen [5]. This traffic

model is used to describe and predict traffic flows in a study area. A network that

models the relevant transport infrastructure in the study area is created and the

study area is divided into different zones. For each zone socioeconomic data such

as population, employment, income, car ownership, recreational and economical

facilities is collected. This data is acquired from sources such as questionnaires,

road sensors and local authorities. The data is then processed in four steps:

1. Trip generation

2. Trip distribution

3. Modal split

4. Assignment

In the first step, called trip generation, the socioeconomic data is used to estimate

the total amount of traffic leaving from and going to each zone, using statistical

methods. A unit of flow leaving a zone is called a production, a unit of flow arriving

at a zone is called an attraction. The second step, called trip distribution, links

each production to an attraction, resulting in an Origin-Destination (OD) matrix.

This step is performed using for instance a gravity model or a discrete choice

method. In the third step, the modal split, each trip in the OD matrix is linked to

a mode of transport, such as car or public transport. In the last step, the traffic

assignment, the trips in the OD matrix are assigned to routes in the network. The

study in this report focuses completely on the last step.

In 1952 Wardrop [1] introduced the notion of the User Equilibrium as a means to

describe behavior of travelers. In a User Equilibrium no traveler can reduce his

travel time by deviating from his current route. In this model it is assumed that

all travelers have complete information and travel times on a link increase when

more travelers use the link. Wardrop formalized this notion by stating the User

Equilibrium conditions: a path flow solution h = (hr, r ∈ R) is a UE solution if

Chapter 2. Background 9

it satisfies the following conditions:

hr(cr(h)− πpq) = 0, ∀r ∈ R; (2.3.1)

cr(h) ≥ πpq, ∀r ∈ R; (2.3.2)∑
r∈Rpq

hr = dpq, ∀p ∈ No, q ∈ Nd(p); (2.3.3)

hr ≥ 0, cr(h) ≥ 0, ∀r ∈ R, (2.3.4)

where πpq is the optimal travel time between OD pair p and q. Equation (2.3.1)

states that either the flow on a path between OD pair p and q is zero or, if a route

has flow then the cost of the path is equal to the optimal travel time. Equation

(2.3.2) ensures that no path has lower cost than the optimal travel time. Finally

equation (2.3.3) ensures that all demand is satisfied and equation (2.3.4) are the

nonnegativity constraints.

In 1956 Beckmann et al.[2] introduced a mathematical programming notation that

can be used to find the User Equilibrium for the TAP with link flows f = (fa, a ∈
A):

(BE) min
f ,h

z(f) =
∑
a

∫ fa

0

ca(ω)dω (2.3.5)

s.t.
∑
r∈Rpq

hr = dpq, ∀p ∈ No, q ∈ Nd(p); (2.3.6)

hr ≥ 0, ∀r ∈ R; (2.3.7)

fa =
∑
r∈R

δa,rhr, ∀a ∈ A (2.3.8)

Here equation (2.3.6) ensures that the demand is satisfied, equation (2.3.7) makes

sure that all path flows are non-negative and equation (2.3.8) connects the path

flows to the link flows. Here δa,r is 1 if link a is part of route r, and 0 otherwise. The

link between the Beckmann notation and the User Equilibrium is stated without

proof in the following theorem:

Theorem 2.1. Assume ca(ω) is monotonically increasing and h is a feasible route

solution with corresponding link solution f . Then h is a User Equilibrium solution

if and only if (f ,h) is an optimal solution of (BE)

Remark r1: If the functions ca(ω) are strictly increasing the link flow part f of a

UE (f ,h) is uniquely determined the path flow part h is not.

Chapter 2. Background 10

2.4 Related Work

2.4.1 Algorithms for TAP

In 1975 LeBlanc et al.[6] introduced the Frank Wolfe (FW) algorithm for solving

the Traffic Assignment problem by approximately solving (BE). FW was the first

algorithm that could calculate solutions that are close to the UE solution. FW

stores a link flow vector fn that is improved in each iteration n: first shortest

paths from each origin p to each destination q are calculated, with the link costs

induced by the flow vector of the previous iteration c(fn−1). Then an All or

Nothing assignment is performed on these shortest paths, resulting in a descent

direction wn. Finally the optimal step size 0 ≤ λn ≤ 1 is calculated as minimizer

λn of

min
0≤λn≤1

∑
a

∫ λnf
n−1
a +(1−λn)wn

a

0

ca(ω)dω

Flows are then updated using

fna = λnf
n−1
a + (1− λn)wna∀a ∈ A

FW has the advantage that it is quick and easy to implement and has low memory

usage, but converges badly in later iterations. An algorithm similar to FW is

Volume Averaging (VA). The only difference between FW and VA is the calculation

of the step size, which depends only on the iteration index in VA: λn = 1 − 1
n
.

VA also shares the bad convergence of FW. Both of these algorithms are currently

implemented in OmniTRANS.

For many years, FW and VA were the only algorithms used in practical settings,

due to limitations in memory and processor speeds of computers. When computer

performance increased rapidly during the 90s, research in new algorithms that ex-

ploited these new possibilities started, and several new algorithms were published.

All these new algorithms had in common that they store flows on a more disaggre-

gated level than FW, so that they are able to shift flows across the network much

more precisely. So all algorithms trade off memory usage for shorter calculation

time. In 2002 Bar-Gera[7] started the line of bush-based algorithms by introducing

a new algorithm called Origin Based Algorithm (OBA). Other bush-based algo-

rithms include Algorithm B by Dial [8], introduced in 2006, and the Linear User

Chapter 2. Background 11

Cost Equilibrium Algorithm (LUCE) by Gentile [9], introduced in 2009. This type

of algorithms use origin based flows fpa and introduced the notion of bushes. The

algorithm stores a bush Bp = (V ′, A′) for each origin p. Bp is a subgraph of the

original graph G with V ′ = V and A′ ⊂ A such that Bp is acyclic, rooted at p

and each node that is reachable from p in G is also reachable in Bp. Acyclicity is

important for two reasons: first, it is possible to make a topological ordering of the

nodes in an acyclic graph. In a topological ordering of an acyclic graph with root

p each node i is assigned a number τpi such that if there exists a path from node

i to node j then τpi < τpj. With this topological ordering, finding shortest and

longest paths in an acyclic subnetwork can be done much more efficiently than in

full networks. Second, bush-based algorithms such as OBA use the fact that in a

UE solution the OB flows do not contain cycles. Therefore, if one is able to include

in each bush the links that carry flow in the UE solution, the problem of finding a

User Equilibrium for the whole network reduces to finding a User Equilibrium for

the bushes Bp. All bush based algorithm share the same structure: in each itera-

tion the bush is updated by adding links that could improve the current solution

and removing unneeded links, while still keeping the acyclic structure, and then

flows are shifted on the updated bush such that the new solution is closer to the

User Equilibrium. Each of the bush based algorithms uses a different approach to

updating the bush and shifting flows. For more information on this topic we refer

to the original papers.

The Projected Gradient method was introduced by Florian et al.[10] in 2009. The

main decision variables in PG are path flows hr. For each OD pair pq it stores a

set of paths R′pq. Flow is only shifted between these paths. An iteration of PG

consists of two parts: first for each OD pair pq the set of paths R′pq is updated

by adding paths that could improve the solution and removing paths that are not

used anymore, then flow is shifted between the paths such that the solution is

closer to the UE, using the Projected Gradient Method introduced by Rosen[11].

In 2012 Inoue et al.[12] published a study in which they compared convergence

rates of nine different algorithms for the Traffic Assignment problem, including

TAPAS and all algorithms described above. The results of this study can be seen

in figure 2.1. In this figure OBA is called Bar-Gera’s algorithm and PG is called

DSD/PG. It shows that TAPAS performs best, followed by Alg B, OBA, LUCE

and PG.

Chapter 2. Background 12

Figure 2.1: Speed of convergence of different algorithms

2.4.2 TAP with asymmetric link costs

In 1971 Dafermos [13] starts the research of the field of traffic assignment with

asymmetric link cost functions: in this so called extended traffic assignment model

the cost of traveling across a link becomes a function of the link flows on the

entire network. Dafermos shows that in the extended model a unique UE is only

guaranteed if ∑
a∈A

ca(f) (2.4.1)

is strictly convex, or equivalently if the Jacobian[
∂ca(f)

∂(fb)

]
(2.4.2)

is positive definite for all feasible f . This is a very strong condition which will not

hold in most practical applications. Also a conceptual algorithm for the extended

model is given where flow is shifted from the longest used path between an origin

and destination to the shortest path. This algorithm is not usable in practical

problems, because finding longest paths is an NP-complete problem. In 1980

Dafermos [14] expanded this work by showing the connection between a UE flow

solution f and variational inequalities which will be stated without proof here: a

flow solution f is a user equilibrium if and only if

c(f)(f − f) ≥ 0 ∀ feasiblef (2.4.3)

Chapter 2. Background 13

Dafermos then uses the variational inequality notation to prove that a unique UE

exists if the cost functions are nonconstant and affine. Also another algorithm is

proposed that uses linear estimations of the cost functions to compute its descend

direction, comparable to the Newton method. Smith [15] introduces a concept

algorithm for the asymmetric problem that is similar to FW. A method for finding

a descend direction using the variational inequality is given in a later paper (Smith

[16]). This algorithm works in theory, but needs to store all AON paths calculated,

so it is not usable in a practical setting. Lawphongpanich and Hearn [17] introduces

a similar algorithm that uses simplicial decomposition. It approximately solves the

variational inequality. The algorithm shows decent results on small test networks.

Florian and Spiess [18] proposes a diagonalization method that can be used for

less restrictive cost functions that have an asymmetric Jacobian matrix. In this

method at the beginning of each iteration the cost functions are approximated

by fixing the off-diagonal flow values for each link cost function. This ensures a

Jacobian matrix that has zeroes on all off-diagonal places. Local convergence of

the diagonalization method is proved under the condition that the cost functions

are differentiable in the neighborhood of a local equilibrium f . More information

on this method can be found in 4.3.1. Muijlwijk [19] showed in her master thesis

that multiple equilibria exist when using the junction functions implemented in

OmniTRANS. Some solutions for finding the same equilibrium, regardless of the

starting state, are presented. More information on this subject can be found in

section 4.3.3.

Chapter 3

A Detailed Description of TAPAS

The Traffic Assignment Problem can be seen as an generalized version of the

minimum cost flow problem. A technique widely used in algorithms for the min-

imum cost flow problem is identifying negative cost cycles and reducing flow on

these negative cost cycles. Examples of these algorithms are described by Klein

[20] and Goldberg and Tarjan [21]. A negative cost cycle is a sequence of nodes

C = {n1, n2, . . . , nx} such that n1 = nx and every two consecutive nodes are con-

nected by either a link in the same direction as the cycle, called a forward link

(ni, ni+1) ∈ A or a link in the direction opposite to the direction of the cycle, called

a backward link (ni+1, ni) ∈ A. The set of forward links of a cycle is called F , the

set of backward links is called B. Also each backward link in a negative cost cycle

should have positive flow and the sum of the link costs of the negative cycle cC ,

where cC =
∑

a∈F ca−
∑

a∈B ca, should be negative. If we define δ = mina∈B fa, we

can add δ units of flow to each forward link and subtract δ units of flow from each

backward link. This operation is called sending δ units of flow along the cycle. It

leaves all flow constraints satisfied and reduces the overall cost of the flow, because

cC is negative. An example of a negative cost cycle is given in figure 3.1 by the

clockwise path through the links in bold. Here δ = mina∈B fa = f(10,14) = 2 and

cC = −2. Sending an amount of less than 2 units of flow along the cycle keeps all

flows positive and results in a reduction of the total cost.

In TAPAS flows are saved for each origin separately. Given a flow pattern f =

(fpa, p ∈ No, a ∈ A) that is not converged for at least one origin p, TAPAS improves

the solution by searching the sub graph Gp of all links that carry flow coming

from origin p for two types of negative cost cycles. The first and simplest one is

a cycle C that consists only of backward links. In this case there is cyclic flow

present on the network for origin p. A UE solution can not contain cyclic flow,

so we can take δp = mina∈C fpa and eliminate the cycle by sending δp units of

15

Chapter 3. A Detailed Description of TAPAS 16

Figure 3.1: Example of a negative cost cycle

flow along it. Finding such a cycle can be done efficiently by algorithms such as

Tarjan’s algorithm described in [22] or the path-based strong component algorithm

by Dijkstra [23, Ch. 25]. The second type of negative cost cycle is a Pair of

Alternative Segments: two route segments that have the same diverge node and

merge node, and no other nodes in common, where the segment with the highest

cost has positive flow on each link of the segment. If we choose the direction of

the negative cost cycle such that all links in the lower cost segment are forward

links and all links in the higher cost segment are backward links, we can shift flow

from the high cost segment to the lower cost alternative by sending flow along the

cycle. This results in a decrease of the objective function. The basic steps of the

algorithm are therefore identifying and removing cyclic OB flow, identifying PASs

and shifting OB flow from the high cost segment to the low cost alternative for all

PASs.

TAPAS shares similarities with the bush-based algorithm Algorithm B, introduced

by Dial [8]. Both use solution variables fpa that are disaggregated by origin and

also flow shifts are performed by shifting flow from a high cost route segment to a

low cost alternative. There are also differences: Algorithm B stores an acyclic set

of links called a bush Bp for each origin p. Flow is shifted only between links that

are part of the bush. So the main steps of Algorithm B are adding all links that are

part of the shortest path tree of each origin p to the bushes Bp and equilibriating

all bushes. High cost and low cost segments are found by backtracking over the

bushes, starting at a merge node. Here the acyclic structure of the bushes helps

greatly: shortest and longest paths can be found in one pass over the links. TAPAS

does not use the bush structure so it has more efficient memory usage, since it

Chapter 3. A Detailed Description of TAPAS 17

Figure 3.2: Example of a PAS

does not need to store all bushes. TAPAS uses a different approach and stores

all PASs that are found, so that the algorithm can prevent constructing the same

PAS over and over again. Moreover, TAPAS stores all relevant origins for a PAS.

This way flow shifts can be performed on path segments that are used by several

origins in one calculation.

We can show the strength and flexibility of the PAS structure using the example of

page 1028 of Bar-Gera [3] using the network shown in figure 3.2. Here two routes,

r and r′, from origin A to destination F are depicted. The routes diverge at node

8 and merge at node 29. We assume that in this example route r is the route with

the higher cost. A simple way to shift flow from route r to r′ would be to construct

a PAS with segments [8, 14, 20, 21, 22, 28, 29] and [8, 9, 10, 16, 17, 23, 29]. There are

252 different routes from origin A to destination F , so in the simple approach up

to 252 · 251 = 31, 626 PASs may be needed to perform flow shifts for all pairs of

routes. So while this approach would indeed ensure that flow shifts between any

two routes are possible, a lot of PASs are needed and each PAS can only shift

flow between two routes. Instead, TAPAS uses a different approach where one

PAS can shift flow between many routes for more than one OD pair: instead of

using one PAS with long segments, a set of PASs with short segments is used.

In the example the smallest possible PAS is a set of two routes around a block,

such as {[1, 7, 8], [1, 2, 8]}. This is called a basic PAS. There are 25 basic PASs

in the network. These basic PASs can be used to perform a flow shift between

any two routes from origin A to destination F . For example, a flow shift between

routes r and r′ in figure 3.2 can be achieved by performing six flow shifts on basic

Chapter 3. A Detailed Description of TAPAS 18

PASs in a specific order, as shown in table 3.1. Moreover, a basic PAS such as

{[14, 20, 21], [14, 15, 21]} can also be used for routes between all other OD pairs

in the example. Therefore, the set of 25 basic PASs can be used to perform flow

shifts between any two routes for all nine OD pairs.

As seen in the example it is possible to perform flow shifts between any two routes

in the network using only a small set of PASs. Such a set is called a covering set.

When all PASs in the covering set that have flow on both segments have segments

of equal cost, all pairs of routes using any combination of these PASs have the

same cost and UE is reached. In theory any covering PAS set can be used to

reach equilibrium, but in practice some PASs move flow much more efficient than

others. Therefore in each iteration the algorithm will evaluate the effectiveness

of PASs, which will be covered in detail in section 3.3. So the main iteration

scheme of the algorithm can be divided into two main parts: updating the PAS

list by adding new PASs that lead to an improvement on the current solution and

removing outdated or inefficient PASs, and shifting flow between the segments of

the PASs to reduce the objective function. An overview of the general structure

of TAPAS as presented in [3] is given in algorithm 1, with references to sections

containing more information on each topic in parentheses.

The rest of this chapter is built up as follows: section 3.1 treats PAS removal and

PAS construction, section 3.2 describes flow shifts, in section 3.3 conditions for

effective PASs are treated. Section 3.4 describes branch shifts, which are needed

when no effective new PAS can be found for a certain link. Section 3.5 describes

the cyclic flow removal procedure. In section 3.6 the property of proportionality

is explained and a method for calculating proportionality is described. Finally

section 3.7 gives a formal proof for the convergence of the algorithm.

Used PAS Resulting route
A, 1, 2, 8, 14, 20, 21, 22, 28, 29, 30, 36, F (route r)

{[14, 20, 21], [14, 15, 20]} A, 1, 2, 8, 14, 15, 21, 22, 28, 29, 30, 36, F
{[15, 21, 22], [15, 16, 22]} A, 1, 2, 8, 14, 15, 16, 22, 28, 29, 30, 36, F
{[8, 14, 15], [8, 9, 15]} A, 1, 2, 8, 9, 15, 16, 22, 28, 29, 30, 36, F
{[9, 15, 16], [9, 10, 16]} A, 1, 2, 8, 9, 10, 16, 22, 28, 29, 30, 36, F
{[22, 28, 29], [22, 23, 29]} A, 1, 2, 8, 9, 10, 16, 22, 23, 29, 30, 36, F
{[16, 22, 23], [16, 17, 23]} A, 1, 2, 8, 9, 10, 16, 17, 23, 29, 30, 36, F (route r′)

Table 3.1: Flow shift from route r to r′ using basic PASs

Chapter 3. A Detailed Description of TAPAS 19

Algorithm 1: Overview of TAPAS

Find an initial solution using an AON assignment
Define maximum allowed duality gap ε
Set iteration counter i = 1
Define maximum amount of iterations is
while Duality gap> ε and i <= is do

for each PAS P do
Remove if needed(3.1)
Check for effectiveness(3.3)

end
for each origin p do

Construct the Shortest Path Tree SPTp for origin p using current flow
solution
for each link a where fpa > 0 and a /∈ SPTp do

Construct new PAS or add p as relevant origin to an existing PAS
(3.1)

end

end
for each effective PAS do

Shift flow for all relevant origins (3.2)
end
Remove cyclic flow(3.5)
Perform proportionality iteration (3.6)
Calculate new duality gap
i+ +

end
while not proportionalized do

Perform proportionality iteration (3.6)
end

3.1 PAS Construction

Updating the PAS set consists of three operations:

• remove unused PASs

• check PASs for cost and flow effectiveness (treated in section 3.3)

• constructing new PASs where needed

PAS removal is needed because PASs can be ineffective for several iterations or

PASs can overlap in parts of segments, which may result in one of the PASs not

being used. Removing PASs that have not been used for several iterations keeps

the PAS set small and saves calculation time during the flow shift iterations and

Chapter 3. A Detailed Description of TAPAS 20

effectiveness checks. In the current implementation a PAS is removed if it has not

been used in the last three main iterations.

For PAS construction we first need to introduce the notion of reduced cost. The

reduced cost rcpa is defined for each origin link combination (p, a) as:

rcpa = πpat + ca(f)− πpah

Here πpah is the cost of the shortest route from origin p to node ah when using all

links is allowed, πpat + ca(f) is the cost of the shortest path from p to ah provided

that link a is the last link of the path. The reduced cost can be interpreted as

the penalty in travel cost that is charged for using link a to reach node ah. The

reduced cost is always non-negative and is only equal to zero when link a is part

of the shortest path from p to ah. In each iteration the algorithm checks for each

origin p if PASs are needed. First the shortest path tree (SPT) from p to each

node n is calculated using Dijkstra’s algorithm. In a UE solution each link a that

carries flow from origin p has reduced cost rcpa = 0, so a PAS is needed when there

is a link a that carries flow originating from origin p, but where rcpa > 0. We call

such a link a a critical link. The logical candidate of the low cost segment is (a

part of) the current shortest path from p to ah. The last link of the shortest path

from p to ah is called the shortest path alternative a′ of critical link a. Therefore

we visit all links to check if link a ending at node n has positive OB flow from

origin p and has rcpa > 0. We can achieve an improved solution by shifting flow

from the critical link a to the shortest path alternative link a′ also ending at node

ah. Node ah will be the end node of the segments for the PAS, called the merge

node. We construct a new PAS by backtracking from at over the links that carry

OB flow from origin p using a breadth first search until a node is found that is

part of the shortest path from p to ah. We use a breadth first search to ensure

that the segments will be as short as possible. At some point in the breadth first

search we will meet a node m that is in the shortest path from p to ah. This will

be the begin node of the segments for the PAS, called the diverge node. Segment

s1 will consist of the links traversed in the backtracking search from node ah via

link a to node m, segment s2 will consist of all links connecting node m to node

ah in the SPT.

We will clarify this method using the example in figure 3.3. Here the bold ar-

rows represent links with flow and the shortest path tree is represented by the

dashed arrows. The algorithm will visit all links to see if there are links that

carry flow but are not part of the SPT. The first critical link is link (5, 6). The

SPT alternative is link (2, 6). Now the algorithm will backtrack starting from

Chapter 3. A Detailed Description of TAPAS 21

Figure 3.3: PAS Identification

node 6 over the flow carrying links until it meets a node that is part of the

shortest path from A to 6. In this case there is only one possible route us-

ing the flow carrying links and the backtracking search will meet the shortest

path at node 1, resulting in the PAS {[1, 5, 6], [1, 2, 6]}. Similarly, the critical

link (14, 15) will lead to the PAS {[6, 10, 14, 15], [6, 7, 11, 15]}. The advantage

of using a breadth first search will be demonstrated by critical link (15, 16).

A naive backtracking procedure may result in a needlessly long PAS such as

{[1, 5, 6, 7, 11, 15, 16], [1, 2, 3, 4, 8, 12, 16]}. The breadth first search visits the flow

carrying links in the order (14, 15), (11, 15), (10, 14), (7, 11), (6, 10), (6, 7), (3, 7).

At this point a link contained in the shortest path from the origin to the merge

node is found, resulting in the PAS {[3, 7, 11, 15, 16], [3, 4, 8, 12, 16]}.

On page 1030 of the original paper [3] the procedure for adding an origin as relevant

to an existing PAS is described as follows. When a critical link a and its shortest

path alternative a′ are found, the algorithm searches the PAS list for PASs whose

segments end with links a and a′. If such a PAS is found, the origin is added

as relevant. This method is incomplete, as can be seen in figure 3.4. There is

a positive flow on paths [A, 3, 4, C] and [B, 1, 2, 4, C] and the shortest paths are

again given by the dashed lines. Let’s assume that there currently is one PAS

{[3, 4, C], [3, 2, C]} for origin A and we are searching for a PAS for the critical link

(4, C) and shortest path alternative (2, C) for origin B. According to the method

described above, origin B can be added as relevant to existing PAS. However, links

(3, 4) and (3, 2) can never carry flow from origin B, so this PAS can never be used

for a flow shift for origin B. Therefore we add some extra conditions that must

be satisfied by the PAS for an origin p to be added as relevant: link a should be

part of the high cost segment s1 and all other links in s1 should carry flow from p.

Also the PAS should be cost and flow effective for p, to be defined in section 3.3.

Chapter 3. A Detailed Description of TAPAS 22

Figure 3.4: Origin incorrectly denoted as relevant

If there exists a PAS that satisfies these requirements, we can add p as a relevant

origin to the PAS.

3.2 Flow Shifts

Flow shifts between segments of PASs are the easiest part of the algorithm. Only

effective PASs are considered for flow shifts, so that the algorithm does not spend

any time on ineffective flow shifts. For a flow shift on PAS P with segments s1

and s2 we first need to set segment s1 as the segment with the highest cost. Then

for each relevant origin p ∈ OP we determine the maximal flow f ∗p that can be

shifted, so that all OB flows remain nonnegative:

f ∗p = min
a∈s1

fpa

The total amount of flow that can be shifted is:

fmax =
∑
p∈OP

f ∗p

If the maximum allowed amount of flow is shifted, we would get a new link flow

solution f ′:

f ′a =

fa − fmax a ⊆ s1

fa + fmax a ⊆ s2

fa otherwise

If shifting all allowed flow still leaves segment s2 as shortest segment we can simply

shift all allowed flow. Otherwise, we determine the optimal step size 0 ≤ λ ≤ 1 by

performing a line search. We solve the problem

min
0≤λ≤1

∑
a∈A

∫ (1−λ)fa+λf ′a

0

ca(ω) dω (3.2.1)

Chapter 3. A Detailed Description of TAPAS 23

Flows on links that are not part of one of the segments of the PAS do not change,

so solving equation 3.2.1 is equivalent to solving

min
0≤λ≤1

∑
a∈s1

∫ fa−λfmax

0

ca(ω) dω +
∑
a∈s2

∫ fa+λfmax

0

ca(ω) dω (3.2.2)

This problem can be solved by taking the derivative and finding the root using for

instance Newton’s method. The last step is to update OB flows and link costs:

fpa = fpa − λf ∗p ∀ a ∈ s1

fpa = fpa + λf ∗p ∀ a ∈ s2

Empirical evidence shows that the PAS searching procedure takes much more time

than the flow shifting procedure. Also, in later iterations when the PAS set is al-

most completely covering and the search for new PASs only introduces a few new

PASs, it would be wise to spend more time on flow shifts. Bar-Gera proposes an

inner loop for the flow shifts, as can be seen in the general structure of TAPAS

in algorithm 1. Bar-Gera uses 20 flow shift inner loops per iteration in his imple-

mentation. Our prototype uses a slightly different approach: less time is spent on

flow shifts in early iterations, when the solution is far from being equilibriated.

A substantial amount of flow that is shifted during the early iterations will be

shifted away from the segments of the existing PASs when new ones are found in

later iterations. Therefore the number of inner loops is chosen to be min(i, 20),

where i is the number of iterations, so that the amount of flow shifts is increased

gradually.

3.3 Cost and Flow Effectiveness of PASs

As was pointed out earlier, flow shifts between any pair of routes can be accom-

plished by a covering PAS set. However, during the execution of the algorithm,

flows and link costs may change in such a way that existing PASs may lose their

efficiency. There are two major causes for this to happen: either the cost difference

between the segments is very small and only a small amount of flow can be shifted

before segment costs are equal, or the amount of flow on one of the links of the

high cost segment is very small, so that shifting all allowed flow still leaves a big

cost difference between the critical link and its shortest path alternative. These

two cases, called cost effectiveness and flow effectiveness respectively are treated

in the original paper and solutions for each case are proposed.

Chapter 3. A Detailed Description of TAPAS 24

A PAS is cost effective for origin p if the cost difference between the segments is

large enough. To assess this formally, we again need the reduced cost for the last

link a of segment s1 of the PAS, with ah as the merge node of the PAS. As a

reminder, the reduced cost rcpa is defined for each origin link combination as:

rcpa = πpat + ca(f)− πpah

The reduced cost can be seen as the minimal improvement in travel time that could

be made by a traveler if the traveler stops using the current route that approaches

node ah using link a and instead uses the shortest path from p to ah. If a PAS

with link a as the last link of the high cost segment has a cost difference that is

smaller than a factor µ = 0.5 of the reduced cost, then both segments will have

equal cost when only a small fraction of the maximum allowed flow is shifted. This

is a problem especially when the PAS is part of a sequence of PASs that is used

to shift flow from one path to another. In this case a lot of iterations are needed

to shift large amounts of flow from one path to the other as can be seen in the

example below. The PAS is considered not cost effective and a new PAS has to be

found with a more efficient low cost segment. Formally, a PAS, given by s1 and

s2, with segment s1 as high cost segment and link a as last link of s1 is considered

cost effective for origin p if

cs1 − cs2 ≥ µ · rcpa

For the flow effectiveness of a PAS for origin p we look at the amount of flow fpa

on the last link a of segment s1. We want to be able to shift all or most of the flow

from segment s1 to segment s2. However, the nonnegativity constraints restrict

the maximal flow shift for origin p to the minimal flow f ∗p = mina∈s1 fpa on s1. If

f ∗p is small, we can only shift a very small amount of flow. If this PAS is part of a

chain, we get a so called cascading effect, as can be seen in the example below. To

counter this phenomenon, we define a PAS to be flow effective if the ratio between

the minimal flow f ∗p and the flow fpa on the last link of s1 is greater than a factor

ν = 0.25. We formally define a PAS with segment s1 as high cost segment and

link a as last link of s1 to be flow effective for origin p if

f ∗p ≥ ν · fpa

If a PAS is not flow effective, we have to find a new PAS that uses another high

cost segment.

We can show the problems that arise when flow is shifted using ineffective PASs

Chapter 3. A Detailed Description of TAPAS 25

Figure 3.5: Example of ineffective PASs

with the network shown in figure 3.5 where flow is sent from origin 1 to des-

tination 6. There are three possible PASs: P1 = {[1, 5, 6], [1, 2, 3, 4, 6]}, P2 =

{[1, 5, 6], [1, 2, 4, 6]} and P3 = {[2, 3, 4], [2, 4]}. Any two of these PASs forms a

covering PAS set and be used to perform all flow shifts between routes in this

network. Assume that PAS P2 and P3 are used and links have the following costs:

c(1,5) = c(5,6) = 2, c(1,2) = c(4,5) = 1, c(2,3) = c(3,4) = 0.5 and c(2,4) = (2−m) + f(2,4)

where m is an arbitrary number between 0 and 1. Also assume that there is a flow

of 1 on route [1, 5, 6], the flow is zero everywhere else. In the flow shift procedure

first PAS P2 is used to shift m units of flow from segment [1, 5, 6] to [1, 2, 4, 6].

Now both segments have equal costs and PAS P3 can be used to shift m units of

flow to segment [2, 3, 4]. This sequence will be repeated until all flow is shifted to

route [1, 2, 3, 4, 6]. When m is chosen close to 0, this procedure could in theory

take infinitely many iterations. In this case PAS P2 is not cost effective, because

the reduced cost of link (5, 6) is 1, and cs1 − cs2 = m ≤ µ · 1. The algorithm will

stop using PAS 2 and add PAS 1 which will find the UE solution in one flow shift.

Now we change link costs to 1 for all links except link (2, 4), which will have cost

c(2,4) = (2−m)+f(2,4). There is a flow of 1 on path [1, 2, 3, 4, 6] and zero everywhere

else. Even though both PASs are cost effective we get a similar behavior: first PAS

P3 is used to shift m units of flow to segment [2, 4] and then PAS P2 is only allowed

to shift a maximum of m units of flow to segment [1, 5, 6], because otherwise the

non-negativity constraints are violated. The sequence is then repeated until all

flow is shifted. This process can take arbitrarily long if we choose m small enough.

PAS P2 is not flow effective and the algorithm will use PAS P1 instead.

There are two possible ways to implement cost and flow effectiveness. In the first

method effectiveness is determined on PAS level: when one or more relevant origins

satisfy the effectiveness requirements for both effectiveness measures, the whole

Chapter 3. A Detailed Description of TAPAS 26

Figure 3.6: Example of a branch

PAS is declared effective. Flow shifts are then performed on all relevant origins. In

the second method effectiveness is determined separately for each relevant origin.

Using this method flow shifts are only performed on the relevant origins that are

both cost and flow effective. If a relevant origin fails to satisfy one or both of

the requirements the PAS is declared not effective for that relevant origin and a

new PAS has to be found for the origin. In the original paper this issue is not

addressed, but in our prototype we choose to use the second method. This is

because in the first method a PAS may not meet both effectiveness requirements

for some relevant origins, while it may still be considered effective because there is

another relevant origin that does meet both requirements. This can severely slow

down convergence for the noneffective relevant origins, as shown in the example in

figure 3.5. In such a case we are better of searching a new PAS for these origins.

3.4 Branch Shift

For a new PAS for origin p with critical link a it always holds that cs1−cs2 ≥ rcpa,

so any new PAS generated by the algorithm is always cost effective. This may not

be the case for flow effectiveness. New PASs are checked for flow effectiveness and if

a new PAS is not flow effective, the breadth first search will continue until another

diverge node is found. In later iterations, when flow is highly spread out, there is

a possibility that no flow effective PAS exists for critical link a. This is a scenario

that is likely to happen, since TAPAS attempts to maintain a proportionalized

flow solution (described in section 3.6). In this case a new mechanic called a

branch shift is performed. Unlike a flow shift where flow is shifted from one route

segment to another, in a branch shift flow is shifted from all route segments from

p to ah that carry flow from origin p simultaneously. The set of links that are part

Chapter 3. A Detailed Description of TAPAS 27

of a route segment from an origin p to the merge node ah that carries flow from

p and that has the critical link a as last link is called a branch. An example of a

branch is shown in figure 3.6. Here the critical link is link (18, 24). The least cost

route from origin 1 to node 24 is represented by the dashed line. All links that

are part of any flow carrying route segment that ends with the critical link are in

bold. Note that this is not necessary all flow to node 24; there may be flow that

enters node 24 through link (23, 24). No description of the calculation of a branch

shift is given in [3], so an original method is stated here. We use S to denote the

set of all flow carrying route segments that start at p and enter ah through a. In

a branch shift flow is shifted from all route segments in S. The maximal allowed

flow shift is the OB flow on the critical link: f ∗p = fpa. Using the segment flows for

each route segment s in S, we can calculate the proportion prpa′ of f ∗p that passes

through each link a′ in the branch. We call this proportion the branch proportion

of link a′. We can calculate prpa′ by dividing the sum of the segment flows on all

segments in S that contain a′ by the max flow shift. The flow on each segment s

in S can be calculated using

kps =

(∏
b∈s

αpb

)
· f ∗p

So the proportion of branch flow that is on link a′ is

prpa′ =

∑
(s∈S|a′∈s) kps

f ∗p
(3.4.1)

=

∑
(s∈S|a′∈s)

(∏
b∈s αpb

)
· f ∗p

f ∗p
(3.4.2)

=
∑

(s∈S|a′∈s)

∏
b∈s

αpb (3.4.3)

This formula requires that all possible path segments in the branch are calculated.

Alternatively, we can calculate the branch proportion recursively by setting the

branch proportion to pra = 1 for the critical link and to prb = 0 for all links b that

are not part of the branch. We can then traverse backward through the branch

using

prpa′ = αpa′ ·
∑

asuc∈OUTa′
h

prasuc

Chapter 3. A Detailed Description of TAPAS 28

This way we only need to visit each link once. We can then calculate the optimal

step size λ using

min
0≤λ≤1

∑
a∈A

∫ fpa+δa,sptλf∗p−δa,bλpraf∗p

0

c(ω)dω

where δa,spt is 1 if a is part of the shortest path segment and 0 otherwise, δa,b is 1

if a is part of the branch and 0 otherwise. The flow update is performed using

fpa′,new = fpa′ + δa′,sptλf
∗
p − δa′,bλ pra′f ∗p

3.5 Cyclic Flow Removal

Cyclic flow can be generated in the network due to the structure of PAS flow shifts.

This flow has to be eliminated from the network, because UE can not be achieved

when there is cyclic flow present on the network. Several algorithms that identify

cycles in networks exist. The most efficient of these algorithms is Tarjan’s strongly

connected components algorithm, which has to be altered slightly in order to be

able to identify cycles instead of connected component. A connected component

is a set of nodes N ′ ⊆ N such that each node n ∈ N ′ can be reached by all

other nodes {n′ ∈ N ′|n′ 6= n}. A connected component can contain multiple

cycles and some edges can be included in more than on cycle. Pseudocode for

the adapted version of Tarjan’s algorithm can be found in appendix B. This cyclic

flow removal algorithm differs from Tarjan’s algorithm in that this version visits

links instead of nodes. Another difference is that instead of finding a complete

connected component, this algorithm stops searching when a cycle is found and

removes cyclic flow immediately. After removing the cyclic flow all links in the

cycle are flagged as unvisited so that the procedure can visit these links again in

case they are part of more cycles. The procedure resumes the search for cycles

at the link of the cycle it first encountered. If a flow cycle C = [a1, a2, . . . , ai] is

found for origin p, we determine the total flow to be removed

fmax = min
a∈C

fpa (3.5.1)

The OB flows will be updated using

fpa,new = fpa − fmax (3.5.2)

Now at least one link a in C has OB flow fpa = 0, so the cycle has been removed.

Chapter 3. A Detailed Description of TAPAS 29

Figure 3.7: Proportionality example

3.6 Proportionality

While the User Equilibrium conditions guarantee a unique optimal solution of

Beckmanns problem (BE) in terms of link flows, this is not the case for route

flows (see remark r1 in section 2.3). When there are OD pairs that have a common

pair of flow carrying segments, there are infinitely many route flow solutions, as

can be seen in the example in figure 3.7. Here the flow demand is 1 for OD pairs

(1, 6) and (2, 6) and each link carries one unit of flow in the UE solution. Each

OD pair has two UE routes that have a common pair of segments s1 = [3, 4, 6] and

s2 = [3, 5, 6]. Now any feasible OB flow that has segment flows k1,s1 = 1 − k2,s1
and k1,s2 = 1−k2,s2 is a UE solution. TAPAS tries to find a realistic route solution

h by introducing two properties for route flow solutions: route consistency and

route proportionality. A UE solution is called consistent if for all OD pairs {p, q}
all UE routes, i.e. all routes r between p and q with fa > 0∀a ∈ r, have route flow

hr > 0. This condition is a natural extention to the User Equilibrium principles:

users are indifferent between UE routes, so all of these routes are used by some

portion of the flow. For the proportionality condition we first introduce the notion

of alternative routes. Let r1 be a route from origin p1 to destination q1 and let r2

be a route from p2 to q2. Assume PAS P with segments s1, s2 has equal cost for

both segments and let node d and m be the diverge node and merge node of the

segments of P . The origin based proportion of a PAS is defined as

ρp,s1 =
kp,s1

kp,s1 + kp,s2

Routes r1 and r2 are called a pair of alternative routes if they consist of the

following route segments:

r1 = [rp1,d, s1, rm,q1]

r2 = [rp2,d, s2, rd,q2]

Chapter 3. A Detailed Description of TAPAS 30

Here rp1,d is the route segment from p1 to the diverge node of PAS P and rm,q1
is the route segment from the merge node of PAS P to q1. We define the route

proportion ρr1,r2 as

ρr1,r2 = ρp,s1

We call a UE solution proportional if for any two pairs of alternative routes (r1, r2),

(r3, r4) that use PAS P , with routes r1 and r3 using segment s1 and routes r2 and

r4 using segment s2, we have that ρ(r1, r2) = ρ(r3, r4).

Finding a completely consistent UE solution is difficult, but TAPAS tries to satisfy

the consistency condition by adding many relevant origins to a PAS. This way, each

relevant origin will carry flow on both segments of the PAS by the proportionality

condition. It is well-known that for given UE (f ∗,h) with uniquely determined link

flow f ∗ the corresponding pathflow h satisfies consistency and the proportionality

conditions if (for given f ∗) the part h is a maximizer of the following entropy

maximization problem (see Larsson et al. [24]):

max E(h) = −
∑
r∈R

hr · log
hr
dpq

s.t.
∑
r∈Rpq

hr = dpq ∀p ∈ No, q ∈ Nd(p)∑
r∈R:a⊆r

hr = f ∗a ∀a ∈ A

h ≥ 0

TAPAS solves the proportionality problem approximately on PAS level by itera-

tively applying a flow shift between the relevant origins of a PAS that keeps the

total link flows identical and maximizes entropy for the PAS, as described in Bar-

Gera [3]. We want to find the vector of origin-based PAS adjustments ∆fpa such

that

∆fpa =

δp a ⊆ s1

−δp a ⊆ s2

0 otherwise

Chapter 3. A Detailed Description of TAPAS 31

We can find ∆fpa by calculating the solution to the maximum entropy problem

for a single PAS. Here f is the vector of the OB flows fpa:

max E(f + ∆f) = −
∑
p∈No

∑
a∈A

(fpa + ∆fpa) · log

(
fpa + ∆fpa
gpah(f + ∆f)

)
s.t.

∑
p

δp = 0

f + ∆f ≥ 0

Here the first constraint ensures that the total link flow on each link does not

change. The second constraint ensures that all OB flows remain nonnegative. The

Lagrangian for this problem is

maxL = E(f + ∆f(δ)) + λ ·
(∑

p

δp

)
(3.6.1)

s.t. f + ∆f(δ) ≥ 0 (3.6.2)

To find the derivative of equation 3.6.1 with respect to δp we look at each origin

link combination separately:

Epa(f + ∆f(δ)) = −(fpa + ∆fpa(δ)) · log

(
fpa + ∆fpa(δ)

gpah(f + ∆f(δ))

)
(3.6.3)

E(f + ∆f(δ)) =
∑
p∈No

∑
a∈A

Epa(f + ∆f(δ)) (3.6.4)

First we look at the derivative of the last links of the segments a1 ⊆ s1 and a2 ⊆ s2,

with merge node n = a1h = a2h . Here we have that gpn(f+∆f(δ)) = gpn, because

the adjustment on s1 cancels out the adjustment on s2. So we get

∂Epa1
∂δp

= − log

(
fpa1 + δp
gpn

)
− 1

∂Epa2
∂δp

= log

(
fpa2 + δp
gpn

)
+ 1

All other OB flows on links that have n as head node are unchanged, so the total

contribution to the derivative of links that end at the merge node is

∑
a|ah=n

∂Epa
∂δp

= − log

(
fpa1 + δp
gpn

)
+ log

(
fpa2 − δp
gpn

)
(3.6.5)

For other links a′|a′h = j 6= n in s1 the change in origin based link flow fpa′ and in

the origin based node flow gpj is δp. So the contribution to the derivative of origin

Chapter 3. A Detailed Description of TAPAS 32

link combination pa′ is

∂Epa′

∂δp
= − log

(
fpa′ + δp
gpj + δp

)
− 1 +

fpa′ + δp
gpj + δp

(3.6.6)

All other links a′′ that end at node j also contribute to the derivative, because the

node flow gpj is changed. The contribution of these links is

∂Epa′′

∂δp
=

fpa′′

gpj + δp
(3.6.7)

Adding equations 3.6.6 and 3.6.7 together gives the total contribution of links

ending at j: ∑
a|ah=j

∂Epa
∂δp

= − log

(
fpa′ + δp
gpj + δp

)
(3.6.8)

Along the same line we can get the contribution to the derivative of a link a′ ⊆ s2

and all other links that end at node a′h = j 6= n

∑
a|ah=j

∂Epa
∂δp

= − log

(
fpa′ − δp
gpj − δp

)
(3.6.9)

We can get the total entropy derivative by adding the derivative components of

each node in the PAS using equations 3.6.5, 3.6.8 and 3.6.9:

∂E

∂δp
= −

∑
a⊆s1

log

(
fpa + δp
gpah(δp)

)
+
∑
a⊆s2

log

(
fpa − δp
gpah(δp)

)
= − log

(
kps1(δ)

gps1h(δ)

)
+ log

(
kps2(δ)

gps2h(δ)

)
= − log

(
kps1(δ)

kps2(δ)

)
Here kps(δ) is the flow on segment s from origin p given the adjustment δ. So the

optimality conditions of 3.6.1 are:

∂L
∂δp

= − log
kps1(δp)

kps2(δp)
+ λ = 0

kps1(δp)

kps2(δp)
= exp(λ)

An equivalent system for the unknowns δp, λ is

ρp(δp) :=
kps1(δp)

kps1(δp) + kps2(δp)
= (1 + exp(−λ))−1 ∀p ∈ OP

Chapter 3. A Detailed Description of TAPAS 33

In [3] Bar-Gera proposes a method for solving this system of KKT-conditions for

δp, λ subject to the constraint f + ∆(f) ≥ 0.

3.7 Proof of Convergence

This section gives a formal proof of convergence for TAPAS. This proof is along

the lines of the proof given by Bar-Gera in section 6.4 of [3], but is worked out

in greater detail. For this proof we use a simplified version of TAPAS, shown in

algorithm 2, where in each iteration only critical origin-link combinations (p, a)

that have ξ(fpa, rcpa) > ε are considered. This ε is halved after each iteration

and the algorithm stops if ε becomes smaller than a given εs. For each critical

origin-link combination either a flow shift or a branch shift is performed. This

algorithm is different from the normal version of TAPAS, but it is easier to prove

convergence for. Equilibrium is reached if ε reaches 0, i.e. if there are no more

critical origin-link combinations. In this case, for each origin p and for all flow

carrying links a the reduced cost rcpa = 0, so all flow carrying links are part of the

shortest path tree of p. We show that we can find a lower bound on the reduction

of the objective function for flow shifts and branch shifts for the critical link. For

the proof we assume that the cost functions ca(f) are Lipschitz continuous with

Lipschitz constant L:

|ca(f + δ)− ca(f)| ≤ Lδ ∀a, feasible f (3.7.1)

This is not a strong condition, because demands are finite. Furthermore we use

the objective function z(f) given in equation 2.3.5, the effectiveness definitions

given in section 3.3, the reduced cost defined in section 3.1 and ξ(fpa, rcpa), which

is defined as

ξ(fpa, rcpa) := min

{
µ2rc2pa(f)

8L|A|
,
µν

2
fparcpa(f)

}
(3.7.2)

First we prove that a flow shift on an efficient PAS reduces the objective function

by at least ξ(fpa, rcpa).

Lemma 3.1. Let fk → fk+1 be the result of a flow shift for an efficient PAS for

origin p and critical link a. Then z(fk+1) ≤ z(fk)− ξ(fpa, rcpa)

Chapter 3. A Detailed Description of TAPAS 34

Algorithm 2: Simplified version of TAPAS used for convergence proof

Initialize: set ε = ε0, εs � ε0, find a feasible flow f 0, set µ and ν as described in
3.3
Set k = 0
while ε ≥ εs do

while for fk, ∃a, p such that ξ(fkpa, rcpa) ≥ ε do
if ∃ an efficient PAS P for p and a then

Perform a flow shift for P
end
else

Perform a branch shift for p and a
end
k + +
Set fk as the new flow vector

end
ε = ε/2

end

Proof. Let δ > 0 be the amount of flow shifted on the PAS. Then

f ′pa = fpa − δ ∀a ∈ s1
f ′pa = fpa + δ ∀a ∈ s2

f ′pa = fpa ∀a ∈ A \ (s1 ∪ s2)

We have that

− L|δ| ≤ ca(f + δ)− ca(f) ≤ L|δ| ∀a, f (3.7.3)

By the mean value theorem we get that for each link a ∈ s1 for some f̃a ∈ (fa−δ, fa)∫ fa

fa−δ
ca(ω)dω = ca(f̃a)δ (3.7.4)

≥ δ(ca(fa)− L|f̃a − fa|) (3.7.5)

≥ δ(ca(fa)− Lδ) (3.7.6)

and similarly for each link b ∈ s2∫ fb+δ

fb

cb(ω)dω = cb(f̃b)δ (3.7.7)

≤ δ(cb(fb) + L|f̃b − fb|) (3.7.8)

≤ δ(cb(fb) + Lδ) (3.7.9)

Chapter 3. A Detailed Description of TAPAS 35

So the difference in the objective function is, using 3.7.6 and 3.7.9

∆ := z(f)− z(f ′) = zs1(f) + zs2(f)− zs1(f ′)− zs2(f ′) (3.7.10)

=
∑
a∈s1

∫ fa

fa−δ
ca(ω)dω −

∑
b∈s1

∫ fb+δ

fb

cb(ω)dω (3.7.11)

≥ δ(cs1(f)− cs2(f)− 2|A|δL) (3.7.12)

≥ δ(µrcpa(f)− 2|A|δL) (3.7.13)

Here the last inequality is due to the fact that the PAS is cost effective. Now

define

δ∗ :=
1

2

µ rcpa(f)

2|A|L
(3.7.14)

We can choose our flow shift δ = min{δ∗, f ∗p}, where f ∗p = minb∈s1 fpa. Here we

have that f ∗p ≥ νfpa, due to the fact that the PAS is flow effective. If δ∗ ≤ νfpa, a

flow shift of δ∗ is feasible and yields

∆ ≥ δ∗
1

2
µ rcpa(f) =

µ2 rc2pa(f)

8|A|L
(3.7.15)

Otherwise we can shift νfpa amounts of flow, yielding

∆ ≥ νfpa
µ rcpa(f)

2
(3.7.16)

We will now show that a similar reduction in objective function can be achieved

by a branch shift.

Lemma 3.2. The reduction ∆ in the objective function z of a branch shift is

∆ ≥ min

{
fpa

rcpa(f)

2
,
rc2pa(f)

8|A|L

}
(3.7.17)

Proof. Let a be a critical link for p with respect to flow f and Bp be the branch

spanned by all segments s1, .., sk from p to ah through a. Suppose s2 is a shortest

path segment from p to ah. By definition we have for all si

csi(f)− cs2(f) ≥ rcpa(f) (3.7.18)

Let

f ∗p (i) := min
b∈si

fpb (3.7.19)

Chapter 3. A Detailed Description of TAPAS 36

Now since all flow fpa comes via one of the segments s1, .., sk in Bp we have that

k∑
i=1

f ∗p (i) ≥ fpa (3.7.20)

So we can choose flows f ip for each segment in B such that f ip ≤ f ∗p (i) and
∑

i f
i
p =

fpa. Now consider simultaneous flow shifts δi from si to s2 denoted by f → f ′.

We define δ =
∑

i δi. By the analysis used in the proof of lemma 3.1 and using

equation 3.7.18 we find the difference in objective function values

∆ := z(f)− z(f ′) (3.7.21)

=
∑
i

∑
a∈si

∫ fa

fa−δi
ca(ω)dω −

∑
b∈s2

∫ fb+δ

fb

cb(ω)dω (3.7.22)

≥
∑
i

δi(csi(f)− |A|Lδi)− δ(cs2(f) + |A|Lδ) (3.7.23)

=
∑
i

δi[(csi(f)− cs2(f))− 2|A|Lδ] (3.7.24)

≥
∑
i

δi(rcpa(f)− 2|A|Lδ) (3.7.25)

In order to satisfy nonnegativity constraints, we can choose flow shifts δi such that

δi ≤ f ip, δ ≤ δ∗ :=
1

2

rcpa(f)

2|A|L
(3.7.26)

In case
∑

i f
i
p ≥ δ∗ we can choose δi ≤ f ip such that

∑
i δi = δ∗ and we can shift δi

from si to s2 to obtain

∆ ≥
k∑
i=1

δi
rcpa(f)

2
(3.7.27)

= δ∗
rcpa(f)

2
(3.7.28)

=
rcpa(f)

8|A|L
(3.7.29)

In case
∑

i f
i
p ≤ δ∗ we can choose δi = f ip and perform this shift to obtain

∆ ≥
k∑
i=1

f ip
rcpa(f)

2
(3.7.30)

= fpa
rcpa(f)

2
(3.7.31)

Chapter 3. A Detailed Description of TAPAS 37

Now we arrive at the convergence theorem, which follows from lemmas 3.1 and

3.2.

Theorem 3.3. Let εs = 0, let fk be the sequence of feasible flows generated by

algorithm 2 and let z(fk) be the sequence of objective functions induced by fk.

Then the sequence z(fk) converges to the minimum value of Beckmann’s program

(BE). Moreover the sequence fk has a (at least one) limit point f ∗. Each such

limit point f ∗ is a UE.

Proof. Since the sequence z(fk) is monotonically decreasing we only have to show

that f ∗ is a UE. Suppose that f ∗ is not a UE. Then the value ξ(f ∗pa, rcpa(f
∗)) :=

σ > 0. But then according to algorithm 2 in each step k of this algorithm we have

ξ(fkpa, rcpa(f
∗)) ≥ δ/2 and by lemma 3.1 and 3.2 in each step the value of z(fk)

must be reduced by δ/2. Since we have done infinitely many steps this gives a

contradiction since by assumption a minimizer of (BE) exists, i.e. the minimum

value of z is bounded.

Chapter 4

Traffic Assignment Problem with

Asymmetric Costs

Introducing asymmetric cost functions to TAP makes the problem much more

difficult to solve efficiently, as shown in section 2.4. This chapter describes how

OmniTRANS deals with junction modeling and proposes several methods that

can be added to TAPAS in order to be able to handle asymmetric cost functions.

Section 4.1 explains how junction modeling is treated in OmniTRANS and shows

the mathematical difficulties that arise from asymmetrical cost functions. Section

4.2 describes the changes that need to be made to incorporate junction modeling

in TAPAS. In section 4.3 some heuristics for finding a descent direction using the

asymmetric cost functions are treated.

4.1 Junction Modelling in OmniTRANS

In OmniTRANS junction delays are modeled by expanding each junction node

as can be seen in figure 4.1. Each arm of the junction is represented by a node

and for each possible turn a link between two arms is added, called a turn. Since

OmniTRANS supports both three way junctions and four way junctions, each

junction node will be blown up to at most four nodes and twelve links. The links

that are added when junction nodes are expanded are called turns. When turns

are added we divide the set A in two sets: the set of turns, called At and the

set of regular links, called Al, such that A \ Al = At. OmniTRANS has put

several restictions on paths containing turns: a link entering an junction must be

followed by a turn of that junction and this turn has to be followed by an exit

link of the junction. Illegal turn movements such as traveling along a turn of a

39

Chapter 4. TAP with Asymmetric Costs 40

Figure 4.1: A junction node being expanded

junction and then immediately traveling along another turn in the same junction

are prevented by saving a list of allowed turns for each entry link and for each exit

link of the junction and a list of allowed entry links and a list of allowed exit links

for each turn. Each turn has a cost function that depends on the type of the turn,

the load on the turn itself and conflicting turns and several other user defined

parameters such as number of lanes or free flow speed. OmniTRANS supports

seven types of junctions: equal junctions, priority junctions with the main road

going straight or turning, all stop junctions, signalized junctions and signalized

and unsignalized roundabouts. Some examples of capacity and delay functions of

junctions in OmniTRANS are given in Appendix A.

The objective function of the Beckmann notation, as described in section 2.3, does

not exist anymore if we introduce asymmetric link costs. Therefore most traffic

modeling software developers use approximations of the turn functions in order

to be able to calculate a reasonable solution. Several of these approximations are

described in section 4.3. The current implementation of FW in OmniTRANS uses

a very simple and pragmatic approximation of the turn functions for its step size

calculation: the integral is omitted and instead the turn cost function is used:

z(f) =
∑
a∈Al

∫ fa

0

ca(ω)dω +
∑
a∈At

ca(fa) (4.1.1)

Due to this crude approximation the calculated step size may actually result in

a worse solution. Due to this effect the FW sometimes has problems converging

to an equilibrium, as shown by Muijlwijk [19]. She also showed that VA gives

better results for assignments with junction modeling. This is due to the fact

Chapter 4. TAP with Asymmetric Costs 41

Figure 4.2: Example network with a banned turn

that VA uses predetermined step sizes and as such is not affected by errors in the

approximations of turn cost function.

4.2 Adjustments to TAPAS

In this section we cover all adjustments needed for TAPAS to be implemented in

OmniTRANS. First some examples are given to show the problems that can arise

when the original methods of TAPAS are used. Then a solution is proposed.

One of the problems with using TAPAS on a network that uses Junction Modeling

is that paths generated by PASs as described by Bar-Gera [3] may contain illegal

turn movements. We illustrate this problem using the example in figure 4.2. Here

turn [2, 4, 5] is banned. In this network the demand from node 1 to node 7 is 3

units of flow. Link cost functions are as follows: ca = 2 + fa for a = (1, 2) and

a = (2, 4), ca = 3 + fa for a = (4, 6) and a = (6, 7), and ca = 1 + 2fa for all other

links. The UE solution has 1.5 units of flow on each link. Figure 4.2 shows the

situation just before the first iteration of TAPAS. The initializing AON assignment

is shown as bold arrows, the shortest path from node 1 to 7 after the initialization

is shown by the dashed line. There are two critical links, (3, 4) and (5, 7), leading

to two obvious PASs, P1 = {[1, 2, 4], [1, 3, 4]} and P2 = {[4, 5, 7], [4, 6, 7]}. Both

PASs are allowed by the definitions stated in section 3.1, but when we perform

a flow shift on PAS P1 we may introduce a new path [1, 2, 4, 5, 7] that uses the

banned turn. We can prevent this by requiring that the flow on section [1, 2, 4]

does not exceed the flow on section [4, 6, 7]. But this introduced a new problem

when we want to shift flow. Segment [4, 6, 7] has no flow, so shifting flow on PAS

P1 would create an invalid path and we treat P2 first. Shifting 12
3

units of flow

Chapter 4. TAP with Asymmetric Costs 42

Figure 4.3: Example network of fig 4.2 with expanded node

on PAS P2 equilibriates both segments of the PAS. Now we can perform the shift

on P1. The maximum allowed flow shift is 11
3
, which still leaves segment [1, 2, 4]

the short segment. If we shift this flow TAPAS reaches a deadlock, because P2 is

equilibriated and flow shifts on P1 are limited by the flow on segment [4, 6, 7]. We

can solve this issue by requiring that nodes that have a banned turn are expanded,

so they contain all allowed turns (which have zero cost). This can be seen in figure

4.3. Introducing turns on node 4 has ensured that the flow and the shortest path

cross but don’t meet at node 4. Now there is only one critical link (5, 7), which

leads to the PAS {[1, 3, 4b, 4c, 5, 7], [1, 2, 4a, 4d, 6, 7]} that can reach equilibrium in

one flow shift. With this approach we can circumvent all problems described above

and also any potential problems that could arise in a branch shift.

Another problem that arises in the PAS construction procedure described in sec-

tion 3.1 is finding the incorrect merge node or diverge node. We use the example

in figure 4.4 to show what happens. Figure 4.4(a) contains a simple network with

flow from node 1 to node 8 on the bolded lines and the shortest path tree indicated

with the dashed lines. In this network there are three critical links: (2, 4), (4, 5)

and (7, 8). Note that link (4, 5) is a critical link because the shortest path tree is

on the link in the opposite direction (5, 4). The PAS generation procedure identi-

fies three PASs: {[1, 2, 4], [1, 3, 5, 4]}, {[1, 2, 4, 5], [1, 3, 5]} and {[4, 5, 7, 8], [4, 6, 8]}.
When nodes 4 and 5 are blown up, as shown in figure 4.4(b), the PAS construc-

tion fails. Here link (4a, 5a) is one of the critical links, and the corresponding

PAS is {[1, 2, 4b, 4a, 5], [1, 3, 5b, 5a]}. Shifting flow along this PAS creates the path

Chapter 4. TAP with Asymmetric Costs 43

(a) (b)

Figure 4.4: Example network that identifies the merge node incorrectly

[1, 3, 5b, 5a, 5c, 7, 8] which includes an illegal turn movement. Similar behavior can

occur with selecting a diverge node when the first link of one segment is a link

and the first link of the other segment is a turn. Part of this problem is already

solved by the way the shortest route generation is implemented in OmniTRANS.

OmniTRANS takes a link-based approach to saving shortest paths: for each link a

the cost of the shortest path from the origin to the end node ah via link a is stored

along with the predecessor of link a with this shortest path. So the shortest path

tree in OmniTRANS is not really a tree anymore, because shortest path informa-

tion is stored for all links, so nodes are reachable through multiple paths. We take

advantage of this link-based approach by changing the backtracking phase of the

PAS generation procedure as follows: when link a is visited, instead of checking

whether node at is part of the shortest path from the origin to the critical link, we

check whether one of the predecessor links of link a is part of the shortest path.

This ensures that both segments of the generated PAS are part of an allowed path.

In the example of figure 4.4 we can see this procedure working. Link (5b, 5a) can

not be the shortest path alternative of link (4a, 5a), because none of the successor

links of either link have both (5b, 5a) and (4a, 5a) as predecessor links. In fact, link

(4a, 5a) will no longer be a critical link, because the only shortest path alternative

of link (4a, 5a) is itself, so it will always be part of the shortest path from the

origin to the end node 5a.

Chapter 4. TAP with Asymmetric Costs 44

(a) (b)

Figure 4.5: A network that shows the lost PAS efficiency from introducing
junctions

A disadvantage of TAPAS compared to FW is that TAPAS has higher memory

usage due to the OB flows that are stored: FW uses |A| entries to store its link flows

and TAPAS needs |A|·|O|. Blowing up junctions increases this problem. A possible

solution for this is using a sparse matrix representation for the link flows. Empirical

evidence has shown that up to 80 percent of OB flows are zero, so a sparse matrix

could be a great improvement in memory usage. Blowing up junctions also gives

a problem in the efficiency of PAS construction. In figure 4.5(a) we see a network

without junctions where flow goes from origin 1 to destinations 5 and 6. As always,

the flow is on bolded lines and the shortest path tree is represented by the dashed

lines. Here one PAS {[1, 2, 4], [1, 3, 4]} is needed and flow is shifted from paths

[1, 2, 4, 5] and [1, 2, 4, 6] to paths [1, 3, 4, 5] and [1, 3, 4, 6] simultaneously. If node 4

is blown up, as can be seen in figure 4.5(b), this advantage is lost. Now two PASs

are needed: {[1, 2, 4a, 4c], [1, 3, 4b, 4c]} and {[1, 2, 4a, 4d], [1, 3, 4b, 4d]}. While this

behavior does not compromise the ability of TAPAS to converge, more PASs are

needed and so more memory is needed and computation time goes up.

4.3 Solutions for Asymmetric Cost Functions

As described in section 2.3, adding turn delays to a traffic assignment problem

makes it impossible to solve using the traditional Beckmann formulation, because

the cost functions are asymmetric and the integral objective function does not

Chapter 4. TAP with Asymmetric Costs 45

exist anymore. Subsections 4.3.1 and 4.3.2 cover two heuristics that tackle this

problem. Also multiple User Equilibria may exist, which makes comparing solu-

tions obtained by making small changes to the network or OD matrix or solutions

generated by different algorithms very difficult. In section 4.3.3 a method is de-

scribed that tries to ’push’ the solution to the same equilibrium regardless of the

starting state of the network.

4.3.1 Diagonalization

The diagonalization algorithm for asymmetric cost TAP was introduced by Florian

and Spiess [18]. The idea behind the algorithm is simple: in the cost function for

each link all variables of conflicting junctions are fixed, so the link function only

depends on the flow on the link itself. This way the link cost functions become

separable and we can use the Beckmann program to find an optimal step size given

the fixed costs of conflicting turns. To this end a new cost function is defined for

links with asymmetric costs:

c̃ ia(fa) = ca(f
i−1
1 , f i−12 , . . . , f i−1a−1 , fa, f

i−1
a+1 , . . .) (4.3.1)

Here i is the iteration number and f i−1b is the flow on link b at the end of the

iteration i− 1. In each iteration the UE is approximated by the problem with the

diagonalized turn costs c̃ ia(fa). Then the cost functions are updated, leading to

improved approximations of the cost functions. This is repeated until f ia = f i−1a

for all a ∈ At. Algorithm 3 shows an overview of the diagonalization algorithm. An

alternative approach, called the streamlined diagonalization algorithm was given

by Sheffi [25]. Here only one inner iteration of the used assignment algorithm

is performed between consecutive updates of diagonalized cost functions. This

method saves a lot of calculation time in early iterations, because the difference

between f i−1
a and f i

a is still large, so a lot of time is wasted calculating a converged

solution for the diagonalized turn costs c̃ ia(fa).

A modified version of the streamlined diagonalization algorithm can be used effi-

ciently in TAPAS, due to the structure of flow shifts in PASs. Before a flow shift

we determine the diagonalized cost function c̃a(fa) for each turn that is part of

one of the segments of the PAS. There are never more than two turns of the same

junction that are part of a PAS. When a junction is the merge node or the diverge

node of the PAS, there is one turn a1 that is part of segment 1 and one turn a2

that is part of segment 2, so there are at most two junctions that have two of its

Chapter 4. TAP with Asymmetric Costs 46

Algorithm 3: Diagonalization algorithm

Find an initial solution f 0
a using an AON assignment

Set i = 1
while not converged do

Set turn costs c̃ ia(fa) using equation 4.3.1
Use solution f i−1

a of iteration i− 1 as initial solution for iteration i
Inner iterations
while UE given turn costs c̃ ia(fa) not found do

Perform an iteration of assignment algorithm of your choice
end
Store link flows f ia , update link costs caf
Set i = i+ 1

end

turns in the segments of the PAS. For these turns the diagonalized cost function

c̃ ia1(fa1) differs only from ca1(f) in the term for a2 if flow is shifted from segment 1

to segment 2. For all other junctions that are part of the PAS, there is exactly one

turn a that is part of one of the segments of the PAS, so for turn a we have that

c̃ ia(fa) = ca(f). Therefore the diagonalized turn cost functions will be a reasonable

approximation of the real turn cost functions. We split up the terms in equation

3.2.2 so that for each segments the turns and links are grouped. Before each flow

shift all turn cost functions are diagonalized using equation 4.3.1. This results in

the function that we use to determine the optimal step size:

min
0≤λ≤1

∑
a∈s1|a∈Al

∫ fa−λfmax

0

ca(ω)dω +
∑

a∈s1|a∈At

∫ fa−λfmax

0

c̃a(ω)dω

+
∑

a∈s2|a∈Al

∫ fa+λfmax

0

ca(ω)dω +
∑

a∈s1|a∈At

∫ fa+λfmax

0

c̃a(ω)dω

(4.3.2)

After the flow shift the link flows and costs of all links in the PAS are updated.

This way each flow shift uses a turn cost function that is up to date.

4.3.2 VISUM Solution

An alternative method is implemented in the VISUM traffic modeling software

by PTV [26]. It shares similarities with the diagonalization algorithm in that

flows on conflicting turns are fixed in the turn cost functions during an iteration.

For each turn the cost function is replaced by a piecewise linear function. The

flows on conflicting turns are fixed and three values are calculated by varying the

flow on the turn itself: it uses the current flow, one flow that is lower and one

Chapter 4. TAP with Asymmetric Costs 47

that is higher. These three values yield a simple and easy to use piecewise linear

function that depends only on the flow of the turn itself. VISUM then performs

a few iterations of its assignment algorithm before updating the turn functions.

Calculations using these approximation functions are fast, but the approximations

may not be very good, since only three points are used for the piecewise linear

functions. Therefore this method is not implemented in TAPAS.

4.3.3 Finding Consistent Solutions

One method for tackling the problem of multiple equilibria is already implemented

in OmniTRANS. Ideally we would like to find the same equilibrium every time

we do a traffic assignment, regardless of the initial state of the network. This is

not the case with asymmetric cost functions, as shown by Muijlwijk [19]. This is

particularly problematic for variant studies in which consultants compare solutions

of two networks that differ slightly. We want to be sure that all differences between

the solutions in the variant study are the result of the changes in the network

and not of different equilibria calculated for the variants. So we try to push the

assignment algorithm to the same equilibrium by gradually introducing the turn

delays throughout the iterations of the algorithm. The idea is that during the first

iterations the turn delays are omitted and the algorithm calculates a solution that

is close to the user equilibrium without junction modeling. Then the turn delays

are introduced gradually, so that a UE with junction modeling that is ’close’ to

the UE without junction modeling is found. To achieve this, we introduce a vector

µ = [µ1, µ2, . . . , µn], where n is the maximum number of iterations and 0 ≤ µi ≤ 1,

µi ≤ µi+1 for 1 ≤ i ≤ n− 1 and µn = 1. We then change the objective function in

the i-th iteration to

zi(f) =
∑
a∈Al

∫ fa

0

ca(ω) d ω + µi
∑
a∈At

∫ fa

0

c′a(ω) d ω (4.3.3)

Here c′a is one of the approximation functions described in previous sections, since

the integral of the actual turn delay function does not exist. The values in µ

are project and user specific and can be chosen by the user based on his or her

preferences.

Chapter 5

Results

This chapter contains some results generated by the prototype of TAPAS made

in OmniTRANS. All solutions calculated by TAPAS are compared with solutions

calculated by FW and VA, the algorithms currently available in OmniTRANS.

Section 5.1 contains a description of the prototype, with explanations of some

of the design choices made. Section 5.2 shows some results of TAPAS, FW and

VA without junction delays. In section 5.3 results of the three algorithms with

junction delays incorporated are treated.

5.1 Prototype

A prototype was made in the OmniTRANS software package. Due to time con-

straints only the essential parts of TAPAS described in chapter 3 were implemented

and both the branch shift and proportionality procedures were skipped. This does

not impair the ability of the prototype to converge. Proportionality is an auxil-

iary method that produces more realistic path flow solutions but is not needed for

convergence. Branch shifts are needed for guaranteed speedy convergence, but can

be replaced by using the PAS that least violates the flow effectiveness condition.

As for junction modeling, i.e. for dealing with asymmetric costs the methods de-

scribed in section 4.3 were not implemented. Instead a simpler bisection method

is implemented that iteratively approaches the step size for which the difference

in cost between both segments of the PAS is minimal. The method is outlined in

algorithm 4. As always we determine the maximal allowed flow shift fmax and try

to determine the fraction λ of fmax that is optimal. For this procedure we define

δ(cλ) as the absolute cost difference between segment s1 and s2 if we would shift

the fraction λ of the maximal allowed flow shift fmax. In the iteration scheme we

49

Chapter 5. Results 50

store λlow and λhigh, that are initialized at 0 and 1 respectively, as the current

lower and upper bound of the step size we want to perform. These bounds are

then tightened by calculating δ(cλ) for two points halfway between λlow and λhigh

and then choosing new upper and lower bounds based on the cost differences.

While this method is less precise than a direct calculation using for instance the

diagonalization method, it does fit well in the iteration scheme of TAPAS where

flow is shifted on a PAS multiple times in order to reach equilibrium. The main

drawback of this method is that segment costs need to be calculated many times

in each PAS shift, so calculation time of the algorithm goes up dramatically com-

pared to TAPAS without junctions and therefore this method can only be used

for demonstration purposes.

Algorithm 4: Procedure for finding the step size of flow shifts on a PAS with
junctions

determine maximal allowed flow shift fmax
set i = 0
set λlow = 0
set λhigh = 1
set λ1 = 1/3
set λ2 = 2/3
while i < 20 do

calculate δ(cλlow), δ(cλhigh), δ(cλ1) and δ(cλ2)
determine δmin = min{δ(cλlow), δ(cλhigh), δ(cλ1), δ(cλ2)}
if δmin = δ(cλlow) then

λhigh = λ1
end
else if δmin = δ(cλ1) then

λhigh = λ2
end
else if δmin = δ(cλ2) then

λlow = λ1
end
else

λlow = λ2
end
λ1 = λlow + 1/3(λhigh − λlow)
λ2 = λlow + 2/3(λhigh − λlow)

end
λ = arg min{δ(cλlow), δ(cλhigh), δ(cλ1), δ(cλ2)}

Chapter 5. Results 51

Figure 5.1: Convergence of algorithms in OmniTRANS without junction de-
lays on the Amsterdam network

5.2 TAPAS without Junction Modeling

Figure 5.1 shows the performance of TAPAS, VA and FW on the medium sized

network of Amsterdam. Amsterdam is a network consisting of 280 zones and

4000 links. It contains no junctions. This figure the duality gap achieved by each

algorithm throughout the running time. It can be seen clearly that initially the

performance of all three algorithms is similar, but while the convergence rate of

FW and VA slows down after a few seconds, TAPAS keeps on converging at a fast

rate. It stops after 19.04 seconds when it has reached a duality gap of < 1.0 ·10−12

after 19 iterations. In the same time that TAPAS needed to converge to a duality

gap of 10−12, VA and FW performed 50 iterations each and reached a duality gap

of 4.5 · 10−3 and 1.2 · 10−3 respectively. So, while iterations take more time in

TAPAS than in VA and FW, each iteration is much more efficient. This result is

comparable to results shown by Bar-Gera [3] and Inoue and Maruyama [12].

5.3 TAPAS with Junction Modeling

Figure 5.2 shows the performance of TAPAS, VA and FW on a small rectangular

test network consisting of 4 zones, 60 links and 32 nodes, of which 11 contain

junctions. In this figure we can clearly see that FW performs much worse than

VA due to the bad approximation of the objective function of FW programmed

Chapter 5. Results 52

Figure 5.2: Convergence of algorithms in OmniTRANS with junction delays
on a small test network

in OmniTRANS. FW reaches a duality gap of 1.2 · 10−1 after 8 iterations and

fails to improve upon that in later iterations. Also TAPAS performs less well

when compared to the case without junction modeling. After a few iterations

convergence slows down and TAPAS fails to reach the duality gap 1.0 · 10−12 that

is stated as its stop condition but instead stops after 100 iterations at a duality

gap of 3.2 · 10−9. Also it can be clearly seen that the procedure described in

section 5.1 makes flow shifts much slower in TAPAS. In the case without junction

modeling TAPAS iterations where approximately 2.5 times slower than VA and

FW (19 iterations for TAPAS compared to 50 for FW and VA), with junction

modeling TAPAS needs 10.8 seconds to perform 100 iterations, in the same amount

of time VA can perform 1300 iterations, making iterations of TAPAS 13 times

slower than VA iterations. However, the duality gap achieved by TAPAS is a

great improvement over VA, that reaches a duality gap of 3.2 · 10−4 after 2000

iterations. This result of TAPAS is very promising when considering that this

could be improved both in precision and in calculation time when exact methods

are implemented.

Figure 5.3 shows the performance of TAPAS, VA and FW on the Delft network

which consists of 25 zones, 1172 links and 472 nodes, of which foughly 100 contain

junctions. For this network TAPAS shows the same behavior as FW: in 8 iterations

the final duality gap 8.6 · 10−7 is reached and the algorithm is stuck in a deadlock.

It is not sure if this is due to the way turn functions are defined or to the inaccuracy

of the approximation procedure described in section 5.1, so more research is needed

Chapter 5. Results 53

Figure 5.3: Convergence of algorithms in OmniTRANS with junction delays
on the Delft network

on this topic. The duality gap calculated by TAPAS is still a lot better than VA,

that reaches a duality gap of 1.3 ·10−4 after 1000 iterations, and FW, that reaches

a duality gap of 2.0 · 10−2.

Chapter 6

Discussion

This thesis gives a complete and thorough description of TAPAS, along with pro-

posed changes to incorporate Junction Modeling and results generated with a

prototype. There is still room for improvement though. Section 6.1 describes

some features of the traffic assignment problem that are only partially treated in

this thesis or not at all, but could improve the assignments calculated by TAPAS.

Section 6.2 treats the shortcomings of the prototype and the solutions offered in

this thesis. Finally, section 6.3 gives recommendations for further research.

6.1 Elements of TAP

One of the elements of TAPAS described in this thesis, but not implemented in the

prototype is proportionality. This does not affect the convergence rate of TAPAS,

but this procedure adds paths to the path flow solution, which is a big advantage to

consultants who make great use of path flow solutions in their analyses. Currently

it is not clear how many paths with flow would be added to the path flow solution.

Extra research is needed to find out exactly how many paths the proportionality

procedure adds and how much calculation time is added by this procedure.

OmniTRANS is able to calculate multimodal traffic assignments. It is possible to

define multiple modes of transport, each with their own OD matrix and network

parameters, and also different purposes for each mode. This is used to model

differences in travel incentive and route choice of different travelers: a commuter

may want to choose the quickest way home using the main highways in terms of

travel time, whereas recreational traffic may choose to cross the countryside, and

also some roads are closed for certain kinds of transport. No implementation of

55

Chapter 6. Discussion 56

this is currently available in TAPAS and this topic falls out of the scope of this

thesis, but this could be a topic of further research as it adds realism to the model.

Another question one can ask is what duality gap one wants to achieve. TAPAS

is able to reach highly converged solutions with a duality gap less than 1.0 · 10−12,

but is it worth the calculation time to reach a solution that is this far converged?

This question was addressed by Boyce et al. [27]. In the research of Boyce et al. a

variant study was performed in which one variant used a network that represented

the current road network of a major city and the other variant used a network

with a road that was planned. The differences in the calculated solutions were

used to make an informed decision on whether to add the planned road or not.

The goal of the research was to find the duality gap for which the convergence

of the solutions no longer affected the decision made and all changes in solutions

could be attributed to changes in the network. They found that for duality gaps

lower than 1.0·10−7 the difference between link flows was so small that the decision

was no longer affected and they concluded that solutions converged to this duality

gap were sufficient for all practical analysis.

6.2 Prototype and results

As shown in chapter 5 TAPAS can calculate solutions that are converged much

better than the current methods available in OmniTRANS, but there are still

some issues that need to be dealt with before TAPAS is a viable alternative for

OmniTRANS to use. First of all an improved method for performing flow shifts

for PASs with junctions needs to be implemented. Several alternatives are men-

tioned in section 4.3, and diagonalization appears to be the best option based

on the way the structure of diagonalization fits the flow shift procedure of PASs.

An implementation of all alternatives is needed to make an informed decision on

which option is the best for TAPAS. If these options are implemented it also can

be checked whether the deadlock state, as seen in figure 5.3, is the result of the

approximation procedure described in section 5.1 or of the way the turn func-

tions are defined. Also the branch shift and proportionality procedures need to be

implemented in TAPAS to see how these procedures affect the performance and

calculated solutions of TAPAS. Another point of ongoing research is the applica-

tion of sparse matrices for storing link flows and the effects this implementation

has on memory usage and performance of TAPAS. OmniTRANS is used for cal-

culating assignments for networks of up to 5000 zones and 400000 links, so the

origin based link flows of such a network take up 14.9 Gb of memory space, an

Chapter 6. Discussion 57

amount that is not available on most computers. Empirical evidence on medium

sized networks shows that approximately 80% of OB flows are zero, so a sparse

matrix implementation could make it possible to use TAPAS for networks of such

sizes. This does of course come at the cost of reduced performance, since reading

and writing data in a sparse matrix takes more computation time.

6.3 Recommendations

An interesting branch of research is to see whether the list of PASs that was used

to calculate an equilibrium solution can be used as an analysis tool for consultants.

One example of this is that the PAS list may be used as a memory efficient way

to represent path flows. Path flows are one of the main tools for consultants

to perform analysis with, but FW and VA use aggregated link flows, so path

flows need to be stored explicitly in order to be able to use them for analysis.

Since in theory a covering PAS set can be used to calculate all used paths in a

post processing step, this would result in a more memory efficient method. Some

research is needed on the PAS removal procedure to ensure that TAPAS does not

remove PASs that are part of the covering set of PASs. A second example is when

one wants to compare the differences between two solutions of traffic assignment

problems that have a slightly different network or OD matrix. FW has to calculate

both solutions separately and cannot use information obtained in the calculation of

the first assignment to speed up the calculation of the second assignment. TAPAS

on the other hand can store the PAS list used in the first calculation to get a warm

start for the second assignment. This way TAPAS starts with a nonempty PAS list

in its first iteration and, assuming that the eventual PAS lists for both assignments

have a lot of overlap, a lot less time is needed for managing the PAS list. A similar

approach is described by Dial [8] for algorithm B that uses the bushes created in a

previous assignment to be able to calculate an assignment with a slightly changed

OD matrix in as little as 25% of the time of the first calculation.

Chapter 7

Conclusion

In this thesis the structure of the traffic assignment algorithm TAPAS was stud-

ied and detailed descriptions of each part of the algorithm were given. For all

parts where the original paper gave an incomplete description or left room for

interpretation, a solution was proposed. Also a complete proof of convergence was

given. It was shown that several changes need to be made to TAPAS in order to

be able to deal with junction modeling in OmniTRANS. A prototype of TAPAS

was made in OmniTRANS that was used to compare the performance of TAPAS

to the two algorithms currently implemented in OmniTRANS, Frank Wolfe and

Volume Averaging. The prototype replicated the results of earlier publications on

networks without junction modeling and showed that TAPAS is able to calculate

highly converged solutions with a duality gap of up to 1.0 ·10−12. Using an approx-

imation procedure that could perform flow shifts for PASs that contain junctions,

it was shown that TAPAS is able to calculate solutions that are converged to a

much higher level than VA and FW can. However the approximation method is

slow and not stable enough for practical applications and needs to be replaced

with a more accurate method described in 4.3.

59

Appendix A

Junction functions

There are seven different types of junctions modeled in OmniTRANS: equal junc-

tions, priority junctions with the main road going straight, priority junctions with

the main road turning, all stop junctions, signalized junctions, unsignalized round-

abouts and signalized roundabouts. This appendix shows the structure of junction

functions in OmniTRANS by giving a simplified version of capacity and delay

functions for equal junctions, priority junctions and unsignalized roundabouts,

that keep the structure of the formulas but omit some of the parameters for read-

ability. These three junctions share most of the terms of their functions and differ

only in the calculation of the geometric delay. For a complete overview of the

calculation of all capacity and delay functions for all junction types we refer to the

guide of junction functions in OmniTRANS[28]. For each junction all turns are

numbered, as shown in figure A.1 for an equal junction with four arms. For each

junction a conflict matrix is created. When a turn t conflicts with another turn t′,

the delay function of turn t will contain a term that represents the delay created

by flow on turn t′ for turn t. Turn conflicts need not be symmetrical: traffic on a

minor road of a priority junction does experience delay from traffic on the main

road, but this is not true the other way around.

The effect that traffic on conflicting turns has on the delay of turn t is modeled by

reducing the capacity qt of turn t. The capacity of each turn is calculated using

qt = max(σt −
∑
b∈Yt

fb, qmin,t)

with

61

Appendix A. Junction functions 62

Figure A.1: An equal junction with its turns numbered

qt capacity of turn t

σt saturation flow of turn t

Yt set of conflicting turns for turn t

fb flow on turn b

qmin,t minimal capacity of turn t

Here the saturation flow is the capacity the turn can handle if there are no con-

flicting turn movements. The minimal capacity is used to prevent complete total

congestion. The capacity is then used to calculate the delay for each turn

ct = min(c1,t + c2,t + c3,t, cmax,t)

with

ct delay of turn t

c1,t uniform delay of turn t

c2,t incremental delay of turn t

c3,t geometric delay on turn t

cmax,t maximal delay on turn t

Appendix A. Junction functions 63

The uniform delay is calculated using

c1,t =
1

qt

The incremental delay is calculated using

c2,t =

(
ft
qt
− 1

)
+

√(
ft
qt
− 1

)2

+
ft
q 2
t

if
ft
qt
≥ α

0 if
ft
qt
≤ α

with

ft flow on turn t

qt capacity of turn t

α parameter usually set to 0.5

The geometric delay is calculated differently for each unsignalized junction. For

equal junctions the geometric delay is

c3,t =

1 if ft > 0

0 if ft = 0

For priority junctions the geometric delay is

c3,t =

1 if ft > 0 and turn is on major road
fadj
ft

if ft > 0 and turn is on minor road

0 if ft = 0

For unsignalized roundabouts the geometric delay is

c3,t = β

with

fadj = βfleft + fthrough + βfright

and

Appendix A. Junction functions 64

fleft flow on left turn movement

fthrough flow on straight turn movement

fright flow on right turn movement

ft flow on turn t

β parameter usually set to 7

Appendix B

The Cycle Removal Algorithm

This appendix contains a description in pseudocode for the cycle removal algorithm

described in 3.5.

initialize linkStack

cycleCounter = 0

removeCycles()

{

for (each origin p)

{

for (each link a)

{

a.lowestIndexOfCycle = -1

a.inStack = false

}

for (each link a)

{

if (f(pa) > 0 and a.cycleIndex == -1)

{

findCycleForLink(a, p)

}

}

}

}

65

Appendix B. The Cycle Removal Algorithm 66

findCycleForLink(a, p)

{

a.cycleIndex = cycleCounter

a.lowestIndexOfCycle = cycleCounter

a.inStack = true

cycleCounter++

linkStack.add(a)

for (each successor a’ of a)

{

findCycleForLinkInternal(a, a’, p)

}

if (a.lowestIndexOfCycle == a.cycleIndex)

{

removeLinkFromStack(a, p)

}

}

findCycleForLinkInternal(a, a’, p)

{

if (f(a’,p) > 0)

{

if (a’.inStack == true)

{

a.lowestIndexOfCycle = a’.cycleIndex

}

else if (a’.cycleIndex == -1)

{

findCycleForLink(a’, p)

if (a’.lowestIndexOfCycle >= 0)

{

a.lowestIndexOfCycle = min(a.lowestIndexOfCycle,

a’.lowestIndexOfCycle)

}

}

}

}

Appendix B. The Cycle Removal Algorithm 67

removeLinkFromStack(a, p)

{

initialize cycleList

while (linkStack.back != a)

{

a’ = linkStack.back

cycle.add(a’)

linkStack.remove(a’)

a’.inStack = false

}

if (linksInCycle.size > 1)

{

minFlow = min {f(p,a’)}

for (each a in cycle)

{

f(p,a’) -= minFlow

a’.cycleIndex = -1

a’.lowestIndexOfCycle = -1

}

if (f(p,a) > 0)

{

findCycleForLink}(a, p)

}

}

}

Abbreviations

TAP Traffic Assignment Problem

TAPAS Traffic Assignment by Paired Alternative Segments

PAS Pair of Alternative Segments

OD pair Origin Destination pair

OB flow Origin Based flow

SPT Shortest Path Tree

AON All Or Nothing assignment

VA Volume Averaging

FW Frank Wolfe

OBA Origin Based Algorithm

Alg B Algorithm B

LUCE Linear User Cost Algorithm

PG Projected Gradient Algorithm

69

Symbols

Symbols

N Set of nodes

A Set of links

n Node

a Link

p Origin

q Destination

No Set of origins

Nd(p) Set of destinations for origin p

r Route

s Route segment

Rpq Set of routes connecting origin p to destination q

R Set of all routes connecting any origin to any destinations

INn Set of links that end at node n

OUTn Set of links that start at node n

at Tail (begin node) of link a

ah Head (end node) of link a

dpq Demand for OD pair pq

fa Total flow on link a

fpa Flow on link a coming from origin p

f Vector of OB flows fpa

or vector of link flows fa

hr Flow on route r

71

Symbols 72

h Vector of route flows hr

gpn Flow from origin p entering node n

αpa Proportion of flow that enters ah through link a

kps Flow on segment s from origin p

ca(f) Link cost for link a

πnm Cost of shortest path between nodes n and m

P Set of PASs

OP Set of relevant origins for PAS P

At Set of turns

Al Set of regular links

Bibliography

[1] J. Wardrop. Some theoretical aspects of road traffic research. Proceedings of

the Institution of Civil Engineers, Part 2:325–378, 1952.

[2] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the economics

of transportation. Technical report, Yale University, 1956.

[3] H. Bar-Gera. Traffic assignment by paired alternative segments. Transporta-

tion Research Part B: Methodological, 44(89):1022 – 1046, 2010.

[4] O. van der Kooi. Tapas: a new algorithm for traffic assignment. Not published,

2013.

[5] J. Ortúzar and L. G. Willumsen. Modelling Transport. Wiley, 2001.

[6] L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla. An efficient approach to

solving the road network equilibrium traffic assignment problem. Transporta-

tion Research, 9(5):309 – 318, 1975.

[7] H. Bar-Gera. Origin-based algorithm for the traffic assignment problem.

Transportation Science, 36(4):398–417, 2002.

[8] R. B. Dial. A path-based user-equilibrium traffic assignment algorithm that

obviates path storage and enumeration. Transportation Research Part B:

Methodological, 40(10):917 – 936, 2006.

[9] G. Gentile. Linear user cost equilibrium: a new algorithm for traffic assign-

ment. submitted to Transportation Research B, 2009.

73

Bibliography 74

[10] M. Florian, I. Constantin, and D. Florian. A new look at projected gradient

method for equilibrium assignment. Transportation Research Record: Journal

of the Transportation Research Board, 2090(-1):10–16, 2009.

[11] J. Rosen. The gradient projection method for nonlinear programming. part

i. linear constraints. Journal of the Society for Industrial and Applied Math-

ematics, 8(1):181–217, 1960.

[12] S. Inoue and T. Maruyama. Computational experience on advanced algo-

rithms for user equilibrium traffic assignment problem and its convergence

error. Procedia-Social and Behavioral Sciences, 43:445–456, 2012.

[13] S. C. Dafermos. An extended traffic assignment model with applications to

two-way traffic. Transportation Science, 5(4):366–389, 1971.

[14] S. C. Dafermos. Traffic equilibrium and variational inequalities. Transporta-

tion science, 14(1):42–54, 1980.

[15] M. J. Smith. An algorithm for solving asymmetric equilibrium problems with

a continuous cost-flow function. Transportation Research Part B: Method-

ological, 17(5):365–371, 1983.

[16] M. J. Smith. The existence and calculation of traffic equilibria. Transportation

Research Part B: Methodological, 17(4):291–303, 1983.

[17] S. Lawphongpanich and D. W. Hearn. Simplical decomposition of the asym-

metric traffic assignment problem. Transportation Research Part B: Method-

ological, 18(2):123–133, 1984.

[18] M. Florian and H. Spiess. The convergence of diagonalization algorithms for

asymmetric network equilibrium problems. Transportation Research Part B:

Methodological, 16(6):477–483, 1982.

[19] H. Muijlwijk. Static traffic assignment with junction modelling. not published,

2012.

Bibliography 75

[20] M. Klein. A primal method for minimal cost flows with applications to the

assignment and transportation problems. Management Science, 14(3):205–

220, 1967.

[21] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by

successive approximation. Mathematics of Operations Research, 15(3):430–

466, 1990.

[22] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on

computing, 1(2):146–160, 1972.

[23] E. Dijkstra. A discipline of programming, volume 1. Prentice-Hall, Inc., 1976.

[24] T. Larsson, J. T. Lundgren, C. Rydergren, and M. Patriksson. Most likely

traffic equilibrium route flows analysis and computation. In Equilibrium Prob-

lems: Nonsmooth Optimization and Variational Inequality Models, pages 129–

159. Springer, 2004.

[25] Y. Sheffi. Urban transportation networks: equilibrium analysis with mathe-

matical programming methods. Prentice-Hall, Inc., 1985.

[26] PTV. VISUM 12.5 Fundamentals. epubli GmbH, 2012.

[27] D. Boyce, B. Ralevic-Dekic, and H. Bar-Gera. Convergence of traffic assign-

ments: how much is enough? Journal of Transportation Engineering, 130(1):

49–55, 2004.

[28] F. Brandt and M. Schilpzand. Explanation of junction modeling. not pub-

lished, 2007.

	1 Introduction
	1.1 Overview
	1.2 Research Question

	2 Background
	2.1 Notation
	2.2 Commonly Used Formulas
	2.3 The Traffic Assignment Problem
	2.4 Related Work
	2.4.1 Algorithms for TAP
	2.4.2 TAP with asymmetric link costs

	3 A Detailed Description of TAPAS
	3.1 PAS Construction
	3.2 Flow Shifts
	3.3 Cost and Flow Effectiveness of PASs
	3.4 Branch Shift
	3.5 Cyclic Flow Removal
	3.6 Proportionality
	3.7 Proof of Convergence

	4 Traffic Assignment Problem with Asymmetric Costs
	4.1 Junction Modelling in OmniTRANS
	4.2 Adjustments to TAPAS
	4.3 Solutions for Asymmetric Cost Functions
	4.3.1 Diagonalization
	4.3.2 VISUM Solution
	4.3.3 Finding Consistent Solutions

	5 Results
	5.1 Prototype
	5.2 TAPAS without Junction Modeling
	5.3 TAPAS with Junction Modeling

	6 Discussion
	6.1 Elements of TAP
	6.2 Prototype and results
	6.3 Recommendations

	7 Conclusion
	A Junction functions
	B The Cycle Removal Algorithm
	Abbreviations
	Symbols

