
University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
(EEMCS)

Master Thesis

Behavioral Analysis of
Obfuscated Code

Federico Scrinzi
1610481
f.scrinzi@student.utwente.nl

Graduation Committee:

Prof. Dr. Sandro Etalle (1st supervisor)

Dr. Emmanuele Zambon

Dr. Damiano Bolzoni

Abstract

Classically, the procedure for reverse engineering binary code is
to use a disassembler and to manually reconstruct the logic of
the original program. Unfortunately, this is not always practi-
cal as obfuscation can make the binary extremely large by over-
complicating the program logic or adding bogus code.

We present a novel approach, based on extracting semantic infor-
mation by analyzing the behavior of the execution of a program.
As obfuscation consists in manipulating the program while keep-
ing its functionality, we argue that there are some characteristics
of the execution that are strictly correlated with the underlying
logic of the code and are invariant after applying obfuscation.

We aim at highlighting these patterns, by introducing different
techniques for processing memory and execution traces.

Our goal is to identify interesting portions of the traces by finding
patterns that depend on the original semantics of the program.
Using this approach the high-level information about the business
logic is revealed and the amount of binary code to be analyze is
considerable reduced.

For testing and simulations we used obfuscated code of crypto-
graphic algorithms, as our focus are DRM system and mobile bank-
ing applications. We argue however that the methods presented in
this work are generic and apply to other domains were obfuscated
code is used.

2

Acknowledgments

I would like to thank my supervisors Damiano Bolzoni and Eloi
Sanfelix Gonzalez for their encouragement and support during the
writing of this report. My work would have never been carried out
without the help of Ileana Buhan (R&D Coordinator at Riscure
B.V.) and all the amazing people working at Riscure B.V., that
gave me the opportunity to carry out my final project and grow
professionally and personally. They provided excellent feedback
and support throughout the development of the project and I really
enjoyed the atmosphere in the company during my internship. I
would also like to thank my friends and fellow students of the EIT
ICTLabs Master School for their encouragement during this two
years of studying and all the fun moments spent together.

3

Contents

1 Introduction 6
1.1 Research objectives . 8
1.2 Outline . 8

2 State of the art 9
2.1 Classification of Obfuscation Techniques 9

2.1.1 Control-based Obfuscation 9
2.1.2 Data-based Obfuscation 11
2.1.3 Hybrid techniques . 11

2.2 Obfuscators in the real world 14
2.3 Advances in De-obfuscation 15

3 Behavior analysis of memory and execution traces 20
3.1 Data-flow analysis methods 22

3.1.1 Visualizing the memory trace 23
3.1.2 Data-flow tainting and diff of memory traces 26
3.1.3 Entropy and randomness of the data-flow 27
3.1.4 Auto-correlation of memory accesses 29

3.2 Control-flow analysis methods 31
3.2.1 Visualizing the execution trace 32
3.2.2 Analysis of the execution graph for countering control-

flow flattening . 32
3.3 Implementation . 37

4 Evaluation 39
4.1 Introduction of the benchmarks 39

4.1.1 Obfuscators configuration 40

4

Contents

4.1.2 Data-flow analysis evaluation benchmark 41
4.1.3 Control-flow unflattening evaluation benchmark 42

4.2 Data-flow recovery results . 43
4.3 Control-flow recovery results 52
4.4 Analysis of shortcomings . 54

5 Conclusions 56
5.1 Future work . 57

5

CHAPTER 1

Introduction

In the last years, obfuscation techniques became popular and widely used in
many commercial products. Namely, they are methods to create a program
P ′ that is semantically equivalent to the original program P , but “unintel-
ligible” in some way and more difficult to interpret by a reverse engineer.
There are different reasons why a software engineer would prefer to protect
the result of his or her work against adversaries, some examples include the
following:

• Protecting intellectual property (IP): as algorithms and protocols are
difficult to protect with legal measures [1], also technical ones needs
to be employed to ensure unauthorized creation of program clones.
Examples of software that include additional protection are iTunes,
Skype, Dropbox or Spotify.

• Digital Rights Management (DRM): DRM are employed to ensure a
controlled spreading of media content after sale. Using this kind of
technologies, the data is usually offered encrypted and the distribu-
tion of the key for decrypting is controlled by the selling entity (e.g.:
the movie distributor or the pay-tv company). Sometimes the usage
of proprietary hardware solutions that implement DRM technologies
is possible but often it is not. In these situations there is the need of
implementing everything in software. Nevertheless, in both cases tech-
nical measures for protecting against reverse engineering are employed,
in order to protect algorithm implementations and cryptographic keys.

• Malware: criminals that produce malware to create botnets, receive
ransoms or steal private information, as well as agencies that offer

6

Chapter 1: Introduction

their expertise on the development of surveillance software, need to
protect their products against reversing. This is important in order to
keep being effective, undetected by anti-viruses and act undisturbed.

These use-cases have all a common interest: research and invention of
more and more powerful techniques to prevent reverse engineering.

The job of understanding what a binary, output of a common compiler,
does is not always a trivial task. When additional measures to harden the
process are in place this could become a nightmare. Reverse engineers strive
to find new and easier ways of achieving their final goal: understanding every
or most of the details of what a program is doing when is running on our
CPUs. In the last years, an arms race has been going on between developers,
willing to protect their software, and analysts, willing to unveil the algorithm
behind the binary code.

There are different reasons why it would be interesting or useful to un-
derstand how effective these techniques are and how it would be possible
to break them and somehow retrieve an understandable pseudocode from
an obfuscated binary. The most obvious one is in the case of malware: as
security researchers the public safety is important and we want to protect
Internet users from criminals that illegally take control of other people’s
machines. Understanding how a malware works means also preventing its
spreading.

On the other hand one could think that in general de-obfuscation of
proprietary programs is unethical or even criminal [2], but this in not always
the case. There are good and acceptable reasons to break the protections
employed by commercial software. One example is to prove how secure the
protection is and how much effort it requires to be broken, through security
evaluations. This is useful especially for the developers of DRM solutions.
Another interesting use case for reverse engineering of protected commercial
software is to know if it includes backdoors, critical vulnerabilities or is
simply doing operations that could be considered malicious. For a concrete
example we could refer to the Sony BMG scandal: between 2005 and 2007
the company developed a rootkit that infected every user that inserted an
audio CD distributed by Sony in a Windows computer. This rootkit was
preventing any unauthorized copy of the CD but was also modifying the
operating system and was later even exploited by other malware [3].

7

Chapter 1: Introduction

1.1 Research objectives

State-of-the-art obfuscators can add various layers of transformations and
heavily complicate the process of reverse engineering the semantics of binary
code. In most cases it is unpractical to obtain a complete understanding of
the underlying logic of a program. For an analyst, there is often the need
to first collect high-level information and identify interesting parts, in order
to restrict the scope of the analysis.

From our experiments we observed that there are distinctive high-level
patterns in the execution that are strictly bounded to the underlying logic
of the program and are invariant after most transformation that preserve
semantic equivalency, such as obfuscation. We argue that it is possible to
highlight these patterns by analyzing the behavior of an execution.

The objective of this thesis is to develop a novel methodology for reverse
engineering obfuscated binary code, based on the analysis of the behavior
of the program. As a program can be defined as a sequence of instructions
that perform computation using memory, we can describe its behavior by
recording in which sequence the instructions are executed and which memory
accesses are performed. These traces can be collected using dynamic analysis
methods. Thus, we aim at processing these traces and extract insightful
information for the analyst.

Analysis of the behavior of obfuscated code is a new method for extract-
ing information from the output of dynamic analysis, therefore to under-
stand the strength of this approach we test its effectiveness against sample
programs. Next, to show the invariance after obfuscation: we compare the
observed behavior of state-of-the-art obfuscated samples with the one of the
same samples in a non-obfuscated form.

1.2 Outline

This report is organized as follows: in Chapter 2, a classification of obfusca-
tion techniques will be presented, introducing state-of-the-art-research in the
protection of software. Then, advances in its counterpart, de-obfuscation,
will be discussed. In Chapter 3, techniques for analyzing memory and exe-
cution traces in order to extract semantic information of the target program
will be presented. Chapter 4 will introduce an evaluation benchmark for
these methods and results will be discussed. Finally, Chapter 5 will present
some final remarks and observations for future developments.

8

CHAPTER 2

State of the art

2.1 Classification of Obfuscation Techniques

Even though an ideal obfuscator is proven by Barak et al. not to exist [4],
many techniques were developed to try to make the reversing process ex-
tremely costly and economically challenging. Informally speaking we can
say that a program is difficult to analyze if it performs a lot of instructions
for a simple operation or it’s flow it’s not logical for a human. These de-
scriptions however lack of rigorousness and are dubious. For these reasons
many theoreticians tried to categorize these techniques and several models
were proposed to describe both an obfuscator and a de-obfuscator [5, 6].

For our purposes we will base our categorization on the work of Collberg
et al. from 1997 [6], augmenting it with more recent developments in the field
[7, 8, 9, 10]. First we will introduce control-based and data-based obfuscation.
Later more advanced hybrid techniques will be presented.

2.1.1 Control-based Obfuscation

By basing the analysis on assumptions about how the compiler translates
common constructs (for and while loops, if constructs, etc.), it is often pos-
sible to reliably obtain an higher level view of the control flow structure of
the original code. In a pure compiled program spatial and temporal locality
properties are usually respected: the code belonging to the same basic block
will in most cases be sequentially located and basic blocks referenced by
other ones are often close together. Moreover we can infer additional prop-
erties: a prologue and epilogue will probably mean the beginning and the

9

Chapter 2: State of the art

end of a function, a call instruction will generally invoke a function while a
ret will most likely return to the caller.

Control flow obfuscation is defined as altering “the flow of control within
the code, e.g. reordering statements, methods, loops and hiding the actual
control flow behind irrelevant conditional statements” [11], therefore the
assumptions mentioned earlier do not hold anymore.

The following are examples of control-based obfuscation techniques.

Ordering transformations Compiled code follows the principle of spa-
tial locality of logically related basic blocks. Also, blocks that are usually
executed near in time are placed adjacent in the code. Even though this is
good for performance reasons thanks to caching, it can also provide useful
clues to a reverse engineer. Transformations that involve reordering and
unconditional branches break these properties.

Clearly this does not provide any change in the semantics of the program,
however the analysis performed by a human would be slowed down.

Opaque predicates An opaque predicate is a special conditional expres-
sion whose value is known to the obfuscator, but is difficult for an adversary
to deduce statically. Ideally its value should be only known at obfusca-
tion time. This construct can be used in combination with a conditional
jump: the correct branch will lead to semantically relevant code, the other
one to junk code, a dead end or uselessly complicated cycles in the control
graph. In practice, a conditional jump with an opaque predicate looks like
a conditional jump but in practice it acts as an unconditional jump. For
implementing these predicates, complex mathematical operations or values
that are fixed, but are only known at runtime, can be used.

Functions In/Out-lining As from a call graph it is possible to infer some
information on the underlying logic of the program, it is sometimes desirable
to confuse the reverse engineer with an apparently illogic and unmeaningful
graph. Functions inlining is the process of including a subroutine into the
code of its caller. On the other hand function outlining means separating a
function into smaller independent parts.

Control indirection Using control flow constructs in an uncommon way
is an effective way for making a control graph not very meaningful to an
analyst. For example instead of using a call instruction it is possible to
dynamically compute the address at runtime and jump there, also ret in-
structions can be used as branches instead of returns from functions.

A more subtle approach is to use exception or interrupt/trap handling as
control flow constructs. In detail, first the obfuscated program triggers an
exception, then the exception handler is called. This can be controlled by the

10

Chapter 2: State of the art

program and perform some computation, or simply redirect the instruction
pointer somewhere else or change the registers.

It is also possible to further exploit these features: Bangert et al. devel-
oped a Turing-complete machine using the page faults handling mechanisms,
switching from MMU to CPU computation using control indirection tech-
niques [12].

2.1.2 Data-based Obfuscation

This category of techniques deals with the obfuscation of data structures
used by the program. The following are examples of data-based obfuscation
techniques.

Encoding For many common data types we can think of “natural” en-
codings: for example for strings we would use arrays of bytes using ASCII
as a mapping between the actual byte and a character, on the other hand
for an integer we would interpret 101010 as 42. Of course these are mere
conventions that can be broken to confuse the reverse engineer. Another
approach is to use a custom mapping between the actual values and the
values processed by the program. It is also possible to use homomorphic
mappings, so we can perform computation on the encoded data and decode
it later [13].

Constant unfolding While compilers, for efficiency purposes, substitute
calculations whose result is known at compile time with the actual result, we
can use the very same technique in the reverse way for obfuscation. Instead
of using constants we can substitute them with a possibly overcomplicated
operation whose result is the constant itself.

Identities For every instruction we can find other semantically equivalent
code that makes them look less “natural” and more difficult to understand.
Some examples include the use of “push addr; ret” instead of a “jmp addr”,
“xor reg, 0xFFFFFFFF” instead of “not reg” or arithmetic identities such
as “∼ −x” instead of “x+ 1”

2.1.3 Hybrid techniques

For clarity and orderliness first control-based and data-based obfuscation
techniques were presented. In practice these techniques are combined to
reach higher levels of obfuscation and make the reversing process more and
more difficult.

The following sections will present some advanced techniques, employed
in the real world in many commercial applications.

11

Chapter 2: State of the art

Figure 2.1: A control flow graph before and after code flattening

Source: N. Eyrolles et al. (Quarkslab)

Control-flow flattening Control-flow flattening (or code flattening) is
an advanced control-flow obfuscation technique that is usually applied at
function-level. The function is modified such that, basically, every branch-
ing construct is replaced with a big switch statement (different implementa-
tions use if-else constructs, calling of sub-functions, etc. but the underlying
principle remains unaltered). All edges between basic blocks are redirected
to a dispatcher node and before every branch an artificial variable (i.e. the
dispatcher context) needs to be set. This variable is used by the dispatcher
to decide which is the next block where to jump.

Clearly, by applying this technique any relationship between basic blocks
is hidden in the dispatcher context. The control flow graph doesn’t help
much in understanding the logic behind the program as all basic blocks have
the same set of ancestors and children. To harden even more the program
other techniques can be included: complex operations or opaque predicates
to generate the context, junk states or dependencies between the different
basic blocks.

This technique was first introduced by C. Wang [14] and later improved
by other researchers and especially by the industry. Figure 2.1 shows an
example of the control flow graphs of a program before and after the code
flattening obfuscation. This transformation is used in many commercial
products, some examples include Apple FairPlay or Adobe Flash.

Virtual machines An even more advanced transformation consists in the
implementation of a custom virtual machine. In practice, an ad-hoc instruc-
tion set is defined and selected parts of the program are converted to opcodes
for this VM. At runtime the newly created bytecode will be interpreted by
the virtual machine, achieving a semantically equivalent program.

Even though this technique implies a significant overhead it is effective

12

Chapter 2: State of the art

Figure 2.2: An overview of white-box cryptography

Source: Wyseur et al.

in obfuscating the program. In fact, an adversary needs to first reverse
engineer the virtual machine implementation and understand the behavior
of each opcode. Only after these operations it will be possible to decompile
the bytecode to actual machine code.

White-Box Cryptography Cryptography is constantly deployed in many
products where there is no secure element or other trusted hardware, a typi-
cal example are software DRM. In these contexts the adversaries control the
environment where the program runs, therefore, if no protection is in place,
it is trivial to extract the secret key used by the algorithm. A possible ap-
proach is for instance setting a breakpoint just before the invocation of the
cryptographic function and intercept its parameters. Implementing crypto-
graphic algorithms in a white-box attack context, namely a context where
the software implementation is visible and alterable and even the execution
platform is controlled by an adversary, is definitely a challenge. There the
implementation itself is the only line of defense and needs to well protect
the confidentiality of the secret key.

White-box cryptography (WBC) tries to propose a solution to this prob-
lem. In a nutshell, B. Wyseur describes it as following: “The challenge that
white-box cryptography aims to address is to implement a cryptographic
algorithm in software in such a way that cryptographic assets remain secure
even when subject to white-box attacks” [15]. In practice, the main idea is
to perform cryptographic operations without revealing any secret by merg-
ing the algorithm with the key and random data, in such a way that the
random data cannot be distinguished from the confidential data (see Figure
2.2).

As demonstrated by Barak et al. [4] a general implementation of an
obfuscator that is resilient to a white-box attack does not exist. However
it remains of interest for researchers to investigate on possible white-box
implementations of specific algorithms, such as DES or AES [16, 17]. Chow
et al. proposed as first a white-box DES implementation in 2002. Even

13

Chapter 2: State of the art

though it was broken in 2007 by Wyseur et al. [18] and Goubin et al. [19],
it laid the foundation for research in this field.

In the real world WBC is implemented in different commercial prod-
ucts by many companies such as Microsoft, Apple, Sony or NAGRA. They
deployed state-of-the-art obfuscation techniques by creating software imple-
mentations that embody the cryptographic key.

2.2 Obfuscators in the real world

Even though, for economic reasons, the most research in the area of obfus-
cation is carried out by companies and is often kept private, we can find in
literature different examples of obfuscators. Those are mainly used as proof
of concepts for validating research hypothesis and rarely used in practice,
also because the fact that the obfuscator is public poses a threat in the
security-by-obscurity of this protection mechanism.

Some of the most interesting approaches to this problem that can be
found in literature are based on LLVM. It is one of the most popular compi-
lation frameworks thanks to the plethora of supported languages and archi-
tectures. Additionally, its Intermediate Representation (IR) allows to have
a common language that is independent from the starting code and the
target architecture. This enables researchers to develop obfuscators that
just manipulate the IR code and consequently obtain support for all lan-
guages and platforms that are supported by LLVM, without any additional
effort. Confuse [20] is one simple attempt to build an obfuscator based on
LLVM implementing different widespread techniques. This tool offers ba-
sic functionalities like data obfuscation, insertion of irrelevant code, opaque
predicates and control flow indirection. An interesting description about
how LLVM works and how it is possible to exploit its features for software
protection are explained in detail in the white paper by A. Souchet [21]. He
developed Kryptonite, a proof-of-concept obfuscator for showing the poten-
tiality of LLVM IR.

One of the most interesting advances in open source obfuscation tools is
given by Obfuscator-LLVM (OLLVM) [22], an open implementation based
on the LLVM compilation suite developed by the information security group
of the University of Applied Sciences and Arts Western Switzerland of
Yverdon-les-Bains (HEIG-VD). The goal of this project is to provide soft-
ware security through code obfuscation and experiment with tamper-proof
binaries. It currently implements instructions substitution, bogus control,
control flow flattening and functions annotations. Additional features are
under development while others are planned for the future.

Recently, University of Arizona released Tigress [23], a free diversifying
source-to-source obfuscator that implements different kind of protections
against both static and dynamic analysis. The authors claim that their

14

Chapter 2: State of the art

technology is similar to the one employed in commercial obfuscators, such
as Cloakware/IRDETO’s Transcoder. Features offered by Tigress include
virtualization with a randomly-generated instruction set, control flow flat-
tening with different dispatching techniques, function splitting and merging,
data encoding and countermeasures against data tainting and alias analysis.

On the market there are many commercial obfuscation solutions. The
most famous include Morpher [24], Arxan [25] and Whitecryption [26].
Purely considering technical aspects, the availability of open source solu-
tions is of great significance not only for academics but also for companies.
Firstly, the fact of having access to the code makes it much easier to spot
the injection of backdoors or security vulnerabilities in the final binary. Sec-
ondly, such a tool allows to experiment with new techniques, benchmark
them against reverse engineering and develop more sophisticated protection
mechanisms. Lastly, obfuscation tools can be used as a mitigation for ex-
ploitation: if each obfuscation is randomized it will be possible to easily
and cheaply produce customized binaries, one for each customer, making
the development of mass exploits very difficult. Clearly, as stated earlier
closed source implementations might provide better protection as the obfus-
cation process is unknown. Nevertheless there are many advantages in open
source solutions as well and probably a combination of these two different
approaches can lead to higher quality results.

2.3 Advances in De-obfuscation

In the previous chapter we presented some widely deployed as well as effec-
tive techniques for software obfuscation. Now we can start asking ourselves
different questions, in particular Udupa et al. [7] in their work addressed
the following: “What sorts of techniques are useful for understanding ob-
fuscated code?” and “What are the weaknesses of current code obfuscation
techniques, and how can we address them?”. The answers to those questions
are important for different reasons. Firstly it is useful to know more about
what the code we run on our machines is actually doing (e.g.: it could be a
malware), secondly obfuscation techniques that are not really effective are
not only useless but actually worse than useless: they increase the size of
the program, decrease performance and also offer a false sense of security.

We need therefore to elaborate models and criteria to develop and eval-
uate de-obfuscation techniques. For this we can base our research on pre-
vious studies in the field of formal methods, compilers and optimizations.
A first possible classification is given by Smaragdakis and Csallner [27], di-
viding static and dynamic techniques. With static analysis we mean the
discipline of identifying specific behavior or, more generally, inferring infor-
mation about a program without actually running it but by only analyzing
the code. On the other hand dynamic analysis consists in all the techniques

15

Chapter 2: State of the art

that require running a program (often in a debugger, sandbox or other con-
trolled environment) for the purpose of extracting information about it. In
practice, dynamic and static techniques are combined together, their syn-
ergy enhances the precision of static approaches and the coverage of dynamic
ones.

The following paragraphs will briefly present various approaches to the
de-obfuscation problem, introducing state-of-the-art general-purpose tech-
niques that can help the reverse engineering process. Many attempts were
made to develop automatic de-obfuscators [28, 29], however there is no “sil-
ver bullet” for solving this problem and currently most of the work needs
to be carried out manually by the analyst. Nevertheless, the following tech-
niques propose a defined methodology and basic tools to tackle an obfuscated
binary.

Constants identification and pattern matching A simple static anal-
ysis technique consists in finding known patterns in the code. If the target
binary implements some cryptographic primitive like SHA-1, MD5 or AES
we can try to identify strings, numbers or structures that are peculiar of
those algorithms. For a block cipher based on substitution-permutation
networks it could be easy to recognize S-Boxes while for instance for public
key cryptography it might be possible to find unique headers (e.g.: “BEGIN
PUBLIC KEY”).

Also in the case of function inlining it is possible to use pattern match-
ing techniques in order to identify similar blocks and therefore unveil the
replication of the same subroutine. Replacing each occurrence if the pattern
with the call of a function will hopefully lead to a more understandable code.
The same can be applied against opaque predicates and constants unfolding:
once a pattern is found and its final value is known we can substitute it with
the obfuscated code.

Another similar technique that we can leverage is slicing. Introduced by
Weiser [30], it consists in finding parts of the program that correspond to
the mental abstraction that people make when they are debugging it.

Data tainting and slicing Dynamic analysis allows us to monitor code
as it executes and thus perform analysis on information available only at
run-time. As defined by Schwartz et al., “dynamic taint analysis runs a
program and observes which computations are affected by predefined taint
sources such as user input” [31]. In other words the purpose of taint analysis
is to track the flow of specific data, from its source to its sink. We can decide
to taint some parts of the memory, then any computation performed on that
data will be also considered tainted, all the rest of the data is considered
untainted. This operation allows us to track every flow of the data we want
to target and all its derivations computed at run-time. It is particularly

16

Chapter 2: State of the art

interesting in the case of malware analysis as we can for instance taint per-
sonal data present on our system and see if it is processed by the program
and maybe exfiltrated to a “Command & Control” server.

To give an example, an implementation of this technique is present in
Anubis, a popular malware analysis platform developed by the “Interna-
tional Secure Systems Lab” [32]. In the case of Android applications the
system taints sensitive information such as the IMEI, phone number, Google
account and so on, and runs the program in a sandbox, checking if tainted
data is processed.

Data slicing is a similar technique. While tainting attempts to find all
derivations of a selected piece of information and their flow, slicing works
backwards: starting from an output we try to find all elements that influ-
enced it [33].

Symbolic and concolic execution A simple approach for dynamic anal-
ysis is the generation of test-cases, execute the program with those inputs
and check its output. This naive technique is not very effective and the
coverage of all possible execution paths is usually not very high. A better
approach is given by symbolic execution, a means of analyzing which inputs
of a program lead to each possible execution path [34]. The binary is instru-
mented and, instead of actual input, symbolic values are assigned to each
data that depends on external input. From constraints posed by conditional
branches in the program an expression in terms of those symbols is derived.
At each step of the execution is then possible to use a constraint solver to
determine which concrete input satisfies all the constraints and thus allows
to reach that specific program instruction.

Unfortunately symbolic execution is not always an option: there are
many cases in which there are too many possible paths and we will reach a
state explosion or the constraints are too complex to be solved, that makes
the computation infeasible. For avoiding this problem we can apply concolic
execution [35]. The idea is to combine symbolic and concrete execution of a
program to solve a constraint path, maximizing the code coverage. Basically,
concrete information is used to simplify the constraint, replacing symbolic
values with real values.

Dynamic tracing Following the idea of symbolic and concolic execution
it is also interesting, from a reverse engineering point of view, to obtain
a concrete trace of the execution of a program. This allows us to have
a recording of the execution and perform further offline analysis, visualize
the instructions and the memory, show an overview of the invoked system
calls or API calls and so on. This approach has also the advantage that we
have to deal with only one execution of the program, so we only have one
sequence of instructions. The analyst does not have to deal with branches,

17

Chapter 2: State of the art

control-flow graphs or dead code, thus the reverse engineering process can
be easier. Of course, we need to take into account that the trace might not
include all the needed information.

Qira by George Hotz offers an implementation of this technique. It is
introduced by the author as a “timeless debugger” [36] as it allows to go
navigate the execution trace and see the computation performed by each
instruction and how it modifies the memory. A different approach is offered
by PANDA [37] which among other features allows to record an execution
of a full system and replay it. The advantage of it is that it is possible to
first record a trace with minor overhead, later we can run computationally
intensive analysis on the recording without incurring in network timeouts or
anti-debugging checks caused by a very slow execution.

Statistical analysis of I/O An alternative and innovative approach for
automatically bypassing DRM protection in streaming services is introduced
by Wang et al. [38]. They analyzed input and outputs from memory dur-
ing the execution of a cryptographic process and determined the following
assumptions:

• An encoded media file (e.g.: an MP3 music file) has high entropy but
low randomness

• An encrypted stream has high entropy and high randomness

• Other data has low entropy and low randomness

Using these guidelines it is possible to identify cryptographic functions
and intercepting its plaintext output by just analyzing I/O and treating the
program as a black-box. There is no need of reversing the cryptographic
algorithm nor knowing which is the decryption key, the only requirement is
being able to instrument the binary and intercept the data read and written
at each instruction in RAM. Their approach was shown to automatically
break the DRM protection and get the high quality decrypted stream of dif-
ferent commercial applications such as Amazon Instant Video, Hulu, Spotify,
and Netflix.

This work was later improved by Dolan-Gavitt et al. by showing how
PANDA (Platform for Architecture-Neutral Dynamic Analysis) can be used
to automatically and efficiently determine interesting memory location to
monitor (i.e.: tap-points) [39, 40].

It is interesting to notice that this approach allows the completely au-
tomatic extraction of decrypted content from a binary employing different
obfuscation techniques, only by leveraging statistical properties of I/O.

Advanced fuzzers Another approach that was recently developed is based
on instrumentation-guided genetic fuzzers. Fuzzers are usually used for find-

18

Chapter 2: State of the art

ing vulnerabilities by crafting peculiar inputs. These could have been un-
expected by the developer of the program and could lead to unintended
behavior. More advanced fuzzers leverage symbolic execution and advances
in artificial intelligence to automatically understand which inputs trigger
different conditions and follow different execution paths. M. Zalewsky de-
veloped american fuzzy lop (afl), “a security-oriented fuzzer that employs
a novel type of compile-time instrumentation and genetic algorithms to au-
tomatically discover clean, interesting test cases that trigger new internal
states in the targeted binary”. He showed how it is possible to use afl
against djpeg, an utility processing a JPEG image as input. His tool was
able to create a valid image without knowing anything about the JPEG
format but by only fuzzing the program and analyzing its internal states
[41].

Decompilers Instead of dealing with assembly it is sometimes preferable
to have a higher abstraction and handle pseudo-code. In the last years new
tools were released to allow to obtain readable code from a binary: some
examples are Hopper, IDA Pro HexRays which supports Intel x86 32bit and
64bit and ARM or JD-GUI for Java decompilation.

Unfortunately these tools rely on common translations of high-level con-
structs, thus some simple obfuscation techniques or the usage of packers
could easily neutralize them. Even though they are not really resilient, it is
worth employing them when there is the need to reverse engineer secondary
parts of the code that are not heavily obfuscated or after some initial de-
obfuscation preprocessing.

19

CHAPTER 3

Behavior analysis of memory and execution
traces

Reverse engineering obfuscated binaries is a very difficult and time consum-
ing operation. Analysts need to be highly skilled and the learning curve is
very steep. Moreover, in the common case of reversing of large binaries, it
is unpractical to analyze the whole program. There is the need to identify
interesting parts in order to narrow down the analysis. On top of this, ob-
fuscation can heavily complicate the situation by adding spurious code and
additional complexity.

As the amount of information collected using static and dynamic analysis
can be overwhelming, we need effective techniques to gather high-level in-
formation on the program. Especially in the case of DRM implementations,
it is important to understand which cryptographic algorithms are used and
which parts of the code deal with the encryption process. This is needed, for
instance, to collect information about the intermediate values to infer infor-
mation on the secret key or to successfully perform fault injection attacks
on the cryptographic implementation.

We argue that there are characteristics of the behavior of a program
that heavily depend on the structure of the source code and can be revealed
by an analysis of the execution. Furthermore, we show that these prop-
erties are invariant after transformations performed by obfuscators. This
is intrinsic in the concept of obfuscator: as semantic equivalency needs to
be guaranteed, most of the original structure needs to be preserved. More-
over, obfuscators are usually conservative while applying transformations to
reduce failures to a minimum. We can exploit these properties for the pur-

20

Chapter 3: Behavior analysis of memory and execution traces

pose of reverse engineering, exploring side effects of the execution to gather
insightful information.

A program is formed by a sequence of instructions that are executed by
the processor, these instructions operate on the memory. Following from
this, we derive the observation that the behavior of a program is well de-
scribed by recording executed instructions and memory operations over time.
We can collect this data through dynamic analysis, the extraction of useful
information from these traces will be the focus of this report.

In summary, the underlying hypothesis of this project is that distinctive
patterns in the logic of the program are reflected in the output of dynamic
analysis, regardless of the complexity of the implementation or possible ob-
fuscation transformations.

Continuing on these lines, from the side-channel analysis world we know
that interesting information can be extracted from the analysis of differ-
ent phenomenons, such as power consumption, electromagnetic emissions or
even the sound produced during a computation. These methods are mostly
not dependent on a specific implementation of the target algorithm and are
not bounded to strong assumptions on the underlying logic, thus are appli-
cable in a black-box context. We inspired our work to these techniques and
we adapted them to reverse engineering of software. Compared to physical
side channels, we can collect perfect traces of memory accesses and executed
instructions. As we can completely control the execution environment, we
do not have to to deal with imprecise data or issues due to the recording
setups, like noise. On the other hand, the targets are usually much more
complex and possibly obfuscated.

The main advantage of the proposed approach is that we can infer in-
formation about the target program without manually looking at the code.
This fact highly simplifies the reverse engineering and allows the extraction
of the semantics of almost arbitrary complex binaries. Also, the process is
not bounded to a specific architecture, the same methods can be applied
to any target. The main problem remains how to effectively process and
show the collected data, in such a way that patterns are identifiable and are
beneficial for the purpose of reverse engineering.

As already shown by related studies, data visualization can be a valuable
and effective tool for tackling this kind of issues, especially when dealing with
information buried together with other less meaningful data. In literature
we can find different applications of visualization to the purpose of reverse
engineering. Conti et al [42] showed different techniques and examples for
the analysis of unknown binary file formats containing images, audio or
other data. They claim that ”carefully crafted visualizations provide big
picture context and facilitate rapid analysis of both medium (on the order
of hundreds of kilobytes) and large (on the order of tens of megabytes and
larger) binary files”. It is possible to find similar research results in the
field of software reversing, especially regarding malware analysis. Quist

21

Chapter 3: Behavior analysis of memory and execution traces

et al. used visualization of execution traces for better understanding the
behavior of packed malware samples [43]. Trinius et al. instead focused on
the visualization of library calls performed by the target program in order to
infer information about the semantics of the code [44]. Also in the forensics
world we can find attempts to use visual techniques, for example to identify
rootkits [45] or to collect digital forensics evidence [46].

As these results show, visualization is a powerful companion for the
analyst. Compared to other possible solutions, such as pattern recognition
based on machine learning or other automatic approaches, it is generally
applicable, it does not require fine tuning or ad-hoc training and the result
of the analysis can be quickly interpreted by the analyst and enhanced with
other findings.

Following from these premises, in our work we want to address the fol-
lowing research questions:

• Which information is inferable from memory and execution traces that
is attributable to the behavior of the program and reveals information
on its semantics, regardless of obfuscation?

• Which techniques are effective in highlighting this information and
give useful insights in the business logic of the target program?

For this research project we developed different methods to extract in-
formation about the semantics of a program by analyzing its behavior. This
section will introduce these techniques, divided in two categories: data-flow
analysis and control-flow analysis. The former is focused on visualization of
memory accesses, the discovery of repeating or distinctive patterns in the
data-flow and the analysis of statistical properties of the data. The latter
aims at giving information about the logic of the program by visualizing
an execution graph, loops or repetitions of basic blocks and by using graph
analysis to counter obfuscations of the control-flow.

In our work we recorded every memory access and every execution of
basic blocks produced by target binary during one concrete execution. For
the instruction trace we only record basic blocks addresses in order to keep
the trace smaller and more manageable, it is implicit that every instruction
in the basic block was executed. Table 3.1 shows the data that is recorded
for every entry in the traces.

3.1 Data-flow analysis methods

The main rationale behind this category of analysis techniques is that se-
quences of memory accesses are tightly coupled with the semantics of the
program. Most obfuscation methods are concerned of concealing the pro-
gram logic by substituting instructions with equivalent (but more complex)

22

Chapter 3: Behavior analysis of memory and execution traces

Memory Trace Entry

Type (Read/Write)
Memory address
Data
Program Counter (PC)
Instruction count

Execution Trace Entry

Basic block address
Instruction count

Table 3.1: Description of the data recorded for each entry of the memory and
execution traces.

ones or by tweaking the control-flow. However, distinctive patterns in the
memory accesses remain unvaried and part of the data that flows to and
from the memory is also unchanged. Moreover, when dealing with pro-
grams that process confidential data (e.g. cryptographic algorithms), we
can use memory traces to extract secret information.

For all these reasons, we explored different possibilities in the analysis
of the memory trace. The most simple technique is the visualization of
memory accesses on an interactive chart. As the information showed by this
method can be overwhelming, we present possible solutions to this problem.
Different techniques will be discussed to reduce the scope of the analysis by
focusing on parts of the execution that depend on user input.

Later, we move deeper in the analysis of the actual data that flows to and
from the memory. We exploit statistical properties of the content of memory
accesses, in terms of entropy and randomness, to unveil information from
the execution. Next, we analyze the trace in terms of location of memory
accesses, instead of their content. By applying auto-correlation analysis we
aim at identifying repeated patterns in the accesses. These two techniques
allow to take into account two diametrically opposed types of data, content
and location of memory accesses, and thus gather a more complete picture
of the behavior of the target program.

3.1.1 Visualizing the memory trace

As a first step, the memory trace is displayed in an interactive chart, where
the x-axis represents the instruction count while the y-axis the address space.
Every memory access performed by the target program is represented as a
point in this 2D space.

This allows the analyst to visually identify memory segments (data, heap,
libraries and stack) and explore the trace for finding interesting patterns or
accesses that leak confidential information. Even though this technique is
very simple, it can provide an insightful overview of parts of the execution,
as well as allowing analysis similar to the ones performed with Simple Power

23

Chapter 3: Behavior analysis of memory and execution traces

Figure 3.1: Memory reads and writes on the stack during a DES encryption. The
16 repeated patterns that represent the encryption rounds are highlighted.

Analysis (SPA).
A straightforward example is given by Figure 3.1, the plot of memory

accesses during a DES encryption 1. By interactively navigating the trace is
possible to easily identify the part of the execution that performs the encryp-
tion operation. From the chart we can notice 16 similar patterns, composed
by read and writes in different buffers. Only by using this information we
can elaborate accurate hypotheses on the semantics of the code: each one
of the 16 patterns probably represents one encryption round, buffers that
are read and written are for the left and right halves of the Feistel Network
or temporary arrays for the F function. Later, an analysis of the code can
confirm these hypotheses.

Recovering an RSA key from OpenSSL A more complex practical
application of this technique is given by the following example. We analyzed
the memory accesses of OpenSSL while encrypting data using RSA. As we
will show, the RSA implementation offered by OpenSSL (version 1.0.2a -
latest at the moment of writing) reads from an array where the index is
key-dependent. By simply visualizing these accesses we can recover the key.

OpenSSL uses by default a constant-time sliding-window exponentiation
algorithm 2, an optimization of the square-and-multiply algorithm. Briefly,
the exponent is divided in chunks of k bits, where k is the size of the window.
At each iteration one chunk is processed, so, instead of considering one bit
at a time as in the square-and-multiply, several bits are processed at once.

This algorithm requires the pre-computation of a table, that is later
used for calculating the result. Indexes to access this table are chunks of
the exponent. The pseudocode in Listing 3.1 describes a simplified version

1The target program used for this test is available at https://github.com/tarequeh/
DES

2For additional details refer to the implementation of the BN mod exp mont consttime

function in openssl/crypto/bn/bn exp.c in the OpenSSL source code

24

Chapter 3: Behavior analysis of memory and execution traces

of the sliding-window algorithm that we analyzed. Furthermore, OpenSSL
uses as default the Chinese Remainder Theorem (CRT) to compute the
result modulo p and q separately, to later combine them for obtaining the
final result. For this reason we aim at finding two exponentiation operations
during one encryption.

The result of the attack is shown in Figure 3.2. As a countermeasure
against cache timing attacks discovered by C. Percival [47] is implemented,
the precomputed values are not placed sequentially in the table. Basically,
the table contains the first byte of every value one after each other, then the
second byte and so on. Thus, for reading the ith byte of the jth precomputed
value we need to access table[i ∗ window size + j]. As we are interested in
getting the index of the value that is being accessed we can just consider the
offset of the first byte of the value, as highlighted in the picture. For ease
of demonstration we used a very short RSA key (128 bits). In this case the
window size is 3, so we leak 3 bits of the key at every access of the array.
If we convert these indexes in binary and concatenate them, we obtain the
private exponents dp and dq which in our example are 0x7c549e013545278b
and 0x4af98ac085990e5.

def exponentiate(a, p, n): # compute a^p mod n

winsize = get_winsize () # in our test it is 3

Precomputation

val = [1, a, a * a]

for i = 3 .. 2^ winsize - 1:

val[i] = a * val[i-1]

divide p in chunks of winsize bits

window_values = get_chunks(p, winsize)

length of p in bytes , divided by winsize and

rounded up to the next integer

l = ceiling(byte_len(p) / winsize)

Square and multiply

tmp = val[l-1]

for i = l-2 .. 0:

for j = 1 .. winsize:

tmp = tmp * tmp % n

tmp = tmp * val[window_values[i]] % n

return tmp

Listing 3.1: OpenSSL’s implementation of the sliding-window exponentiation.

This example demonstrated how visualization of memory accesses can
reveal information about the execution and can be used in a similar way as

25

Chapter 3: Behavior analysis of memory and execution traces

7 6 1 2 4 4 7 4 0 0 4 6 5 2 1 2 2 3 6 1 3 2 2 5 7 4 6 1 2 6 0 1 0 2 6 3 1 0 3 4 5

Figure 3.2: Memory accesses in the pre-computed tables used by OpenSSL during
one RSA encryption. Locations of reads from this memory area leak the secret key.
For demonstration purposes a very short key (128 bits) was used.

it is done with SPA in order to extract secret keys.

3.1.2 Data-flow tainting and diff of memory traces

Identifying which parts of the execution depend on our input can be helpful
in order to isolate smaller parts of the code that will later be analyzed in
detail. For achieving this goal we used two different techniques: data-flow
tainting and diff of memory traces.

We based our work on tools offered by PANDA. It implements a tainting
engine [48] that can be applied during replays of executions. It is architec-
ture independent, thanks to the fact that it relies first on QEMU for bi-
nary translation and later on LLVM as an intermediate representation upon
which the actual analysis is performed. Information-flow tainting offered by
PANDA works at a byte level, it can be applied to different ISAs and does
not require source code. As the literature regarding taint analysis is ample
we will not present details here, we refer the reader to consult the work of
Schwartz at al. [31].

In some cases, tainting is computationally expensive and due to state
explosion it might not always be applicable. Moreover, in some tests the
implementation offered by PANDA is requiring too much memory and thus
the analysis can be unfeasible. As an alternative we propose the compu-
tation of the difference between memory traces, recorded with different in-
puts. Even though there are multiple implementation issues, it is a possible
lightweight solution to the problem. However, there are some restrictions
that we need to consider. First, we need to assume that the control flow
of the program does not depend on the data, this is a valid assumption for
many algorithms, cryptographic functions in particular. Second, we need
the traces to be aligned: for achieving this goal the recorded trace needs
to be filtered in order not to consider context switches, interferences with

26

Chapter 3: Behavior analysis of memory and execution traces

Figure 3.3: Identification of OpenSSL AES T-Tables by using diff of memory
traces during encryption with different plaintexts.

other processes, operations in kernel space and I/O operations with variable
time. We use a shadow instruction counter to normalize the trace and have
it aligned. Also, when recording traces, the address space layout randomiza-
tion (ASLR) features of the kernel need to be switched off, on the contrary
the accessed memory locations would not match. For more details on the
implementation refer to section 3.3. We experimented with different diff
algorithms: visualizing accesses where the data differs, where the memory
location differs or both.

An application of this technique is shown in Figure 3.3, obtained from the
difference of two traces recorded during an AES encryption with OpenSSL
with different plaintexts of the same length. In this case, by plotting memory
accesses that differ in location, we clearly identify the T-Tables used in this
AES implementation [49]. These tables are used for efficiency, they allow
to perform and AES encryption by only leveraging XOR, shift and lookup
operations. As indexes of these lookups are data-dependent and the rest of
the computation does not differ in memory location the result is accurate.

By focusing on differences in the data content, it is possible to calcu-
late the Hamming distance between the data-flow of two memory traces.
This can be helpful, for instance, in detecting cryptographic operations and
buffers containing ciphertext-related data. Two ciphertexts with different
plaintexts and their intermediate values during the computation should be
unrelated, thus their Hamming distance should be, on average, half of the
bit-length of the data.

3.1.3 Entropy and randomness of the data-flow

Extending the work of Wang et al. [38] presented in section 2.3, we propose
the use of statistical properties of the data-flow also to identify parts of the
binary that deal with data with distinctive characteristics, not only to ex-
tract decrypted media streams. This is particularly useful for programs that

27

Chapter 3: Behavior analysis of memory and execution traces

involve cryptographic operations, such as DRM implementations. However,
there are other possible use-cases for this approach, for example compression
algorithms.

Entropy expresses the average amount of information that is contained
in a specific data stream. We can conclude that encrypted or compressed
data has very high entropy. On the contrary, a BMP image, a text or
pointers to memory have lower entropy. We can then use this property to
effectively locate parts of the code that deal with high-entropy data. In our
experiments, we group the memory accesses in chunks of selectable length.
For each chunk the probability distribution of each possible byte value, from
0x00 to 0xFF , is computed. Later the entropy level H is calculated with the
following formula, where P (xi) is the frequency of each byte in the observed
data.

H(X) = −
∑
i

P (xi) logP (xi).

One important property of encrypted data is that it is indistinguishable
from random data, on the other hand compressed streams or other kind of
data have bad randomness [50]. The Chi-Square test (χ2) is one example
of test that gives us an indication of how much the byte distribution in our
data-stream is similar to a another distribution, in our case the uniform
distribution. It is computed as follows, where Oi is the observed frequency
and Ei the expected frequency of each byte:

χ2 =

n∑
i=1

(Oi − Ei)
2

Ei

It is worth noticing that other randomness tests can be used, the Chi-
Square is just one possible solution. For our work we chose this algorithm as
it was previously used for similar purposes, among others also by Wang et
al. Moreover, it is a common and validated choice for randomness testing,
its effectiveness was presented by L’Ecuyer in his research [51].

According to our observations, values of entropy of the data-flow during
cryptographic algorithms have usually values close to 4.0 while the Chi-
Square test returns values that are close to 1.0. On the other hand, while
performing general purpose computations the values of entropy are usually
around 2.0 while the Chi-Square test returns values in the range of thou-
sands.

An application of this technique is shown in Figure 3.4. The target
program is a reversing challenge from the security competition Nuit du Hack
2015. The binary is calling 7 times a function that decrypts the code of a
second function using AES and later executes it. From the graph it is
easily possible to identify the parts of the execution where the cryptographic
operation takes place.

28

Chapter 3: Behavior analysis of memory and execution traces

Figure 3.4: Data-flow entropy and randomness of the memory trace of a crackme
from Nuit du Hack Quals CTF 2015. From the graph we can see that a crypto-
graphic operation is performed 7 times.

In many cases, the visualization of entropy and randomness of the data
flow can reveal patterns that enable the identification of distinctive opera-
tions performed by the code. We thus extend the observations of Wang et
al. by using statistical properties of I/O, not only to identify peaks that
could indicate the presence of cryptographic operations, but also to infer
semantics of the code by using an SPA-like approach. An example is pro-
vided by Figure 3.5, which shows the entropy and randomness plots of the
execution of the K-Means++ algorithm 3. K-Means++ is a probabilistic
clustering algorithm that is executed multiple times until a good solution is
found. We run the test with 100 randomly generated points, in this case the
function was executed 5 times, as it is possible to infer from the chart.

3.1.4 Auto-correlation of memory accesses

Auto-correlation, i.e. the cross-correlation of a sequence with itself at differ-
ent points in time, is a common technique used in side-channel analysis of
power traces. It is used to identify repeating patterns in time series of power
consumption. In our project we adapted the same technique to work in the
context of reverse engineering, in particular we applied auto-correlation to
locations of memory accesses.

First of all, the memory trace needs to be transformed in a time series,
on which we can apply the analysis. As we are interested in finding re-
peating patterns in the memory accesses, we consider locations that were

3The source code used in this test is available on RosettaCode at http://rosettacode.
org/wiki/K-means++_clustering

29

Chapter 3: Behavior analysis of memory and execution traces

Figure 3.5: Data-flow entropy and randomness of memory accesses during an
execution of the K-Means++ algorithm. The 5 iterations of the algorithm are
highlighted in the graph.

accessed over time. This can reveal if computations with distinctive memory
operations are performed multiple times. For distinctive operations we in-
tend specific sequences of read or writes: an example could be a part of the
program that sequentially accesses a buffer on the stack, then reads a word
from the heap and eventually writes on the buffer on the stack. If this oper-
ation is repeated multiple times we would be able to identify patterns in the
auto-correlation matrix computed from this sequence of memory accesses.

We compute the auto-correlation matrix P as follows:

Pij =
Cij√

Cii ∗ Cjj

where C is the covariance matrix. Every Cij indicates the level to which
two variables xi and xj vary together. In our case every variable xi is a
chunk of the time series of adjustable length. Covariance σ(X,Y) is defined
as follows, where E[X] is the expected value of X.

σ(X,Y) = E
[
(X − E[X])(Y − E[Y])

]
We later display the auto-correlation matrix in a chart, where each value

is represented by a dot with a color that varies from white (1.0, positive
correlation) to black (−1.0, negative correlation).

An example of the application of this technique is given by Figure 3.6,
which shows the auto-correlation matrix computed on the memory accesses
in the whole address space during one AES128 encryption. It is possible to
easily notice 9 repeating patterns that represent 9 rounds of the algorithm
(the 10th round is different from the others).

30

Chapter 3: Behavior analysis of memory and execution traces

Figure 3.6: Auto-correlation matrix of memory accesses during one AES128 en-
cryption. White corresponds to a correlation of 1.0 while black to -1.0.

3.2 Control-flow analysis methods

After obfuscation transformations, the control flow is often heavily modified
in order to make static analysis more difficult. By recording concrete traces
of the execution we intrinsically filter out all the dead/junk code and can only
focus on the parts of the program that were actually executed, at the expense
of not reaching complete coverage of the possible execution paths. We also
don’t have to deal with deductions of values of opaque predicates as they
are computed during the execution. Even though for the general case we
should perform multiple recordings in order to achieve a reasonable degree
of coverage, when analyzing cryptographic implementations one or very few
traces are often enough as the control-flow of a cryptographic function should
not depend on the input data (i.e.: there should not be conditional branches
that depend on confidential data), as this would leak information.

The rationale behind this kind of analysis is the assumption that even
though the original control-flow of the program is transformed, there are
still some patterns in the execution trace that remain. Some examples are
multiple executions of parts of the code (caused by loops) or distinctive
sequences of blocks that are run one after each other. We will first introduces
methods to visualize these patterns while later techniques to counter control-
flow obfuscation will be discussed.

31

Chapter 3: Behavior analysis of memory and execution traces

A

B

A

B

[...]

A

B

A

C

A

B C
1

10 10

Figure 3.7: Example of visualization of the execution trace. Labels on the edges
represent the number of edges between the two blocks.

3.2.1 Visualizing the execution trace

In order to visualize the collected data for the analyst, a graph is built from
the execution trace. This graph is a subset of the control-flow graph (CFG)
of the original binary, considering only executed parts of it. This directed
graph G(V,E) is such that the nodes are the basic blocks in the execution
trace while edges represent a transition from one basic block to another (i.e.:
if there is an edge from blocka to blockb it means that blockb was executed
after blocka). More formally, the graph is composed as follows:

V = {basic block | basic block ∈ execution trace}

E = {{blocka, blockb} | blockb follows blocka in the execution trace}

This allows us to visualize sequentiality of basic blocks. Moreover the
number of edges between two blocks highlights which parts of the binary
are executed multiple times and thus allows to identify loops.

Figure 3.7 shows an example of visualizing a sequence of blocks that
were executed one after the other. It is possible to notice that blocks A and
B are part of a loop that was executed 10 times while C is the block that is
executed after the loop.

3.2.2 Analysis of the execution graph for countering control-
flow flattening

A common obfuscation technique for camouflaging the CFG of a program is
control-flow flattening. This technique is very effective as it radically changes
the shape of the control-flow graph. Other techniques like control indirection
or function splitting/merging do not significantly change the execution flow:
in fact if we only consider basic blocks and we build a graph as described in
the previous section, we would obtain very similar results with an obfuscated
and non-obfuscated binary. These methods make static analysis harder as
the concept of function in the binary becomes less related to the one of

32

Chapter 3: Behavior analysis of memory and execution traces

A

C

D

B

E

S

CBA D E

T

Figure 3.8: Original and flattened control-flow graph.

functions in the original code, however this can be defeated with dynamic
analysis. On the other hand, control-flow flattening makes the execution
graph completely different from the one of the original code: sequentiality
of basic blocks is obfuscated by the state variable and it is really difficult to
statically get information about the original semantics.

The rationales behind our decision to counter control-flow flattening are
diverse: firstly, it is a widespread technique in commercial tools, secondly,
it is effective in obfuscating the CFG and, thirdly, it is computationally
lighter than other other transformations, such as virtualization, and thus it
is applicable in different contexts. Furthermore, in literature it is possible to
find various efforts in de-obfuscation of control-flow flattening [7, 52]. Our
work differs from other proposed techniques as it is only based on graph
analysis and does not require processing of the program code.

An example of control-flow flattening is given by Figure 3.8: as it is pos-
sible to notice, from the obfuscated graph only it is not possible to obtain
any information of the original program flow. Instead, the logic and sequen-
tiality of execution is hidden in the ”artificial” blocks S and T and in the
last instructions of blocks A to E.

Through the rest of the document we will refer to block S as the dis-
patcher block, block T as the pre-dispatcher block while A to E as relevant
blocks. For our goals we focus, first of all, in categorizing each block us-
ing graph analysis. Later we reconstruct the original flow graph with the
support of the execution trace.

Types of control-flow flattening

Control-flow flattening can be implemented in different ways and we need
to adjust our techniques in order to better support different cases. In this
section we will present common solutions implemented in the obfuscators
we analyzed.

The solution proposed by C. Wang [14] in the paper where control-flow
flattening was first introduced is based on switch statements. The resulting
graph will be similar to the one in Figure 3.8, where the switch statement is

33

Chapter 3: Behavior analysis of memory and execution traces

Figure 3.9: The same program obfuscated with two different implementations of
control-flow flattening. The graph on the left shows a switch-based flattening while
the one on the right is if-else-based.

compiled in the dispatcher block. A register is used as index in a jump table
to reach the correct relevant block. All relevant blocks would then set this
register to point to the location in the table with the address of the following
relevant block to execute. Relevant blocks point to the pre-dispatcher that
would redirect the execution flow according to the jump table. A variation
of this technique consists in the creation of a function for each relevant block
and an array of pointers to these functions, a register is used as index for
this array. However, after compilation the switch statement gets converted
in code similar to the one based on indirect calls. Also, instead of using a
register, a variable in main memory can be used.

This technique (switch-based or indirect call-based) is implemented in
Tigress as well as in other commercial obfuscators.

Another possibility is to use if-else constructs and a local variable or a
register as state. A cascade of if-else performs multiple checks on the state
variable and leads to the correct relevant block. This technique is available
in the OLLVM obfuscator.

Optimizations or different implementations of this technique can lead
to binaries with a slightly different structure. For example, as the pre-
dispatcher always directly jumps to the dispatcher sometimes these two
blocks are merged. Also, if multiple relevant blocks set the state variable to
the same value, these logic can be isolated in a different block and make the
multiple relevant blocks to point there before reaching the pre-dispatcher.

In Figure 3.9 it is possible to notice the difference between an obfuscation
based on switch statements and one based on if-else constructs. As we can
see the resulting CFGs are really different, nevertheless similar techniques
can be applied for de-obfuscation.

34

Chapter 3: Behavior analysis of memory and execution traces

Un-flattening the CFG

The first step in the un-flattening technique that we developed is to identify
the dispatchers and the relevant blocks. For achieving this goal techniques of
graph analysis are used. Different algorithms were implemented according to
the type of obfuscation that was applied to the binary. In case of variations
or custom implementations of control-flow flattening the analysis needs to
be adjusted, for this reason these algorithms are included as plugins to the
project. For handling special corner cases, new ones can be developed and
applied to the analysis.

The key observations for identifying interesting blocks are the following:

• The dispatcher block has a high number of outgoing edges (high out-
degree)

• The pre-dispatcher block has a high number of incoming edges (high
in-degree)

• The pre-dispatcher has only one outgoing edge to the dispatcher (un-
less they are merged in the same block)

• In the case of a switch-based flattening, relevant blocks are all blocks
in between the dispatcher and the pre-dispatcher. In the case of an
if-else-based flattening, relevant blocks are only the parents of the
pre-dispatcher (the depth in the parent search can depend on the ob-
fuscation, we might need to consider more than the direct parent of
the pre-dispatcher)

Using this remarks we developed different algorithms for supporting var-
ious kinds of obfuscations. Example pseudocode is presented in Listing 3.2.

Once the basic blocks are categorized, our approach consists in filtering
the execution trace by removing the entries related to the dispatching in-
troduced by the obfuscation. In this way only relevant blocks remain and
the original execution flow is reconstructed. In summary, the de-obfuscation
algorithm works as follows:

• Generate a graph from the execution trace as presented in 3.2.1

• Apply graph analysis to find dispatcher and relevant blocks (the anal-
ysis depends on the flattening technique)

• Filter the trace by considering only relevant blocks when executing
blocks between the dispatcher and the pre-dispatcher

• Generate a de-obfuscated graph from the filtered execution trace

35

Chapter 3: Behavior analysis of memory and execution traces

def categorize_blocks_ifelse(graph):

predispatcher = node with highest indegree

dispatcher = node with highest outdegree

relevant_blocks = set()

consider as relevant only parents of the predispatcher

for block in predispatcher.parents ():

relevant_blocks.add(block)

return dispatcher , predispatcher , relevant_blocks

def categorize_blocks_switch(graph):

predispatcher = node with highest indegree

dispatcher = node with highest outdegree

relevant_blocks = set()

consider as relevant all the blocks between the

dispatcher and the predispatcher

for path in paths(from=dispatcher , to=predispatcher):

for block in path:

relevant_blocks.add(block)

return dispatcher , predispatcher , relevant_blocks

Listing 3.2: Pseudocode for identifying dispatcher, pre-dispatcher and relevant
blocks with different control-flow flattening implementations.

It is worth remarking that only techniques of graph analysis were em-
ployed, without the need to actually understand the semantics of the code.
This is a great advantage as the code for manipulating the control flow can be
arbitrarily complex, however once again the side-channel information leaked
by the sequence of blocks executed one after the other reveals information
of the original semantics of the code.

Clearly, we cannot obtain the same basic blocks of the original CFG
as other transformations in the binary code or computations of the state
variable might remain. Nevertheless, with this technique it is possible to
reconstruct sequentiality of basic blocks, loops and branches. Moreover, our
implementation also offers integration with static analysis tools such as IDA
Pro to help analysts in better understanding the semantics of the code.

An example is shown in Figure 3.10: the target is a Base64 encoding
function, whose CFG was flattened using Tigress. The figure shows the
original, the obfuscated and the recovered CFGs using the proposed tech-
nique.

36

Chapter 3: Behavior analysis of memory and execution traces

(a) Original (b) Obfuscated (c) Recovered

Figure 3.10: Example of control-flow flattening and recovery of the original CFG
of a Base64 encoding implementation.

3.3 Implementation

The software developed for this research project can be decoupled in different
parts: firstly, of all traces of memory accesses and executed instructions need
to be recorded. Secondly, those traces need to be stored in such a way that
it is possible to query them efficiently and apply filtering or aggregation.
Thirdly, we need an interface to enable the analyst to interactively browse
the collected data, filter it and use it in combination with other tools. Lastly,
an analysis framework accessible from the interface is essential to apply
transformations on the data, process it and extract insightful information.

Acquisition of memory and execution traces For our research we
based the acquisition of memory and execution traces on PANDA (Platform
for Architecture-Neutral Dynamic Analysis) [37], a project resulted from the
collaboration of MIT Lincoln Laboratory, Georgia Tech and Northeastern
University. PANDA is built on top of the QEMU system emulator and it
consists of a framework that allows to instrument it with custom plugins. It
supports different architectures: i386, x86 64 and ARM (also with Android
support).

When analyzing protected software we need to often face anti-debugging
techniques. Those can help the binary detect if it is running in a sandbox
or a debugging environment and act differently, or even refuse to execute.
If there are just few simple checks we can patch the code to skip them,
however if integrity checks or thousands of anti-debugging conditions are in
place this can be particularly tedious. For these reasons it would be very
helpful to create controlled execution environments that are indistinguish-
able from a normal execution for the program itself. PANDA, by offering
instrumentation at the emulator level, allows us to not interfere with the
userland and evade common anti-debugging tricks like checks for ptrace on
Unix systems or IsDebuggerPresent on Windows.

Clearly, this is not an infallible solution: some binaries can use different
checks to detect the fact of being run in an emulator. One example for
ARM programs is to check the behavior of the data and instruction caches,

37

Chapter 3: Behavior analysis of memory and execution traces

which on ARM architectures are separated. If the host is running on an
Intel architecture they are unified and thus the emulated caches behave dif-
ferently compared to the real ones. Moreover, system-level instrumentation
is more challenging as we need to isolate the process that we want to ana-
lyze from the others and detect and handle context switches from kernel and
user spaces. However, we consider this approach as a reasonable trade-off
between resilience to anti-debugging and complexity.

Even though PANDA supports record and replay of executions, only
non deterministic input/output is recorded in order to optimize traces for
size. Furthermore, it records at a system level, without having the notion
of processes. As we are interested in all memory accesses and instructions
that are executed by one single process, we developed ad-hoc plugins for our
goals: one for recording memory traces and one for execution traces. In order
to isolate the target process from others running on the same system we use
the ASID (Address-Space Identifier) register, as it determines the location of
the page table associated to a process and it is univocally corresponding to
it. To handle jumps to kernel space correctly, recording is paused whenever
the user-space of our target program is left and resumed afterwards. For
performance and interoperability reasons we chose to store the output of
the plugins in the Google Protobuf format.

It is worth remarking that the recording tools are not coupled with other
parts of the project. As long as the traces are in the correct format they
can be recorded with other platforms as well, if desired also with tools that
operate at a user-level.

Datastore In order to efficiently query the traces, they are moved in a
Postgresql database. Each trace is saved in a different table. Common data
that is present in every trace and needs to be indexed (e.g.: instruction
count, current pc, etc.) is saved in a normal column. Other attributes,
whose schema could change from trace to trace, the JSON datatype offered
by Postgresql is used. As data does not need to be modified after import in
the database, every column is indexed to make querying more efficient.

Interface and analysis tools The interface is a web application devel-
oped using Python and the Django framework. The GUI was built using
HTML5 and Javascript. A REST API is used to communicate with the
datastore and query and retrieve the traces. Analysis scripts can be inter-
actively invoked from the interface on the selected part of the trace. The
Python libraries Scipy and Numpy are used as a support for running the
analysis.

38

CHAPTER 4

Evaluation

4.1 Introduction of the benchmarks

The evaluation of the techniques proposed in this report is based on tests
carried out on sample programs, obfuscated with publicly available obfusca-
tors. We decided to rely on publicly available obfuscators for reproducibility
of our work and for the unrestricted access to these tools.

For our experiments we employed OLLVM by HEIG-VD and Tigress by
the University of Arizona. This choice was guided by the fact that these two
obfuscators were recently released and thus implement state-of-the-art and
modern techniques, they are highly configurable and flexible. Furthermore,
in recent literature we can find other research outcomes based on these two
tools, such as [53, 54].

Regarding the target programs, our tests were carried out on implemen-
tations of common cryptographic algorithms. This is due to the fact that the
main application of our research is the analysis of heavily obfuscated DRM
solutions, which are often based on widely tested algorithms such as AES
or DES. Moreover, we target programs of which we also have the original
source code, in order to have the possibility to compare the original behavior
of the program with the obfuscated one. This is essential to evaluate how
much information is leaked from the side-channels that we are considering
and how well the techniques we propose reveal this information.

The programs used in our experiments are the following:

• An implementation of AES128 that encrypts 4 blocks of data.

• A program encrypting 2 blocks of data using DES.

39

Chapter 4: Evaluation

• An HMAC-SHA1 implementation that computes one message authen-
tication code.

4.1.1 Obfuscators configuration

OLLVM

Obfuscator-LLVM offers three main features for the obfuscation of a target
binary:

• Instruction Substitution: replaces standard binary operations (e.g.:
addition, division, bitwise operations, etc.) with semantically equiva-
lent but more complicated sequences of instructions. This feature adds
diversity in the resulting binary thanks to random constants added to
the code.

• Bogus Control Flow: when applied to a basic block, it modifies the
control flow by adding a spurious block that conditionally jumps either
to the legitimate basic block or to junk code. The condition is an
opaque predicate that always results in a jump to the original block,
but its result is difficult to determine statically. It applies by default
to 30% of basic blocks. It also adds diversity to the binary as the dead
code is randomly generated.

• Control-flow flattening: it fully flattens the control flow graph by using
a sequence of conditional statements.

OLLVM integrates with clang and works at the LLVM intermediate rep-
resentation level. For this reason the output of the obfuscator is either
LLVM bitcode or a binary. For our experiments, OLLVM version 3.5 was
used. The command used to compile the test programs, that enables all the
available obfuscation techniques, is the following:

$OLLVM/bin/clang -mllvm -sub -mllvm -fla -mllvm -bcf

source.c -o obfuscated_bin

Tigress

Tigress offers a wide variety of obfuscation techniques, for our experiments
we apply common general-purpose features. In detail, the following trans-
formations are employed:

• EncodeLiterals: substitutes integer and string literals with opaque
expressions that evaluate to the original value at run-time.

• EncodeArithmetic: obfuscates arithmetic operations with more com-
plex but functionally equivalent ones. For each operation there are

40

Chapter 4: Evaluation

multiple encodings available, one of them is selected randomly creat-
ing diversity in the output.

• AddOpaque: splits the control-flow by adding conditional jumps based
on opaque predicates. At run-time the evaluation of the predicate will
always result in a jump to the original code, however dead code is
added to make static analysis more complex. Tigress offers different
possibilities for generating junk code: generation of a buggified ver-
sion of the original code, calls to random or non-existing functions or
insertion of randomly generated assembly.

• AntiTaintAnalysis: disrupts taint analysis tools that rely on dynamic
analysis. It uses two different methods to copy a value, such that it
is more complex for the engine to detect the taint propagation. The
first method is to use a for-loop and increment the destination variable
according to the original value, while the second consists in a bit-by-bit
copy of the original value using if-constructs.

• Flatten: control-flow flattening using different techniques. Switch-
based and indirect call-based flattening methods are used in our tests.
Tigress also offers a goto-based flattening transformation, however in
that case the code is flattened only at the source code level. When
compiled, gotos are converted to unconditional jumps so the shape
of the CFG stays unchanged. This obfuscation is only effective in
thwarting decompilers, so it was not considered in our tests.

Tigress is a code-to-code obfuscator. For this reason, the output is still
C source code that needs to be compiled. For our tests we use gcc 4.8.2 on
Ubuntu Linux with Tigress version 2 (Purple Nuple). The command used
to obfuscate the target source code is the following:

tigress --Transform=InitEntropy --Functions=main

--Transform=InitOpaque --Functions=main

--Transform=EncodeLiterals --Functions =*

--Transform=EncodeArithmetic --Functions =*

--Transform=AddOpaque --Functions =*

--Transform=AntiTaintAnalysis --Functions =*

--Transform=Flatten --Functions =*

--Transform=CleanUp

--out=obfuscated_source.c source.c

4.1.2 Data-flow analysis evaluation benchmark

The effectiveness and the resilience of the proposed data-flow de-obfuscation
techniques are evaluated by comparing the results of the analysis on the
original and the obfuscated targets. In this way we can better understand
how much information is revealed by the behavior of the program, in terms

41

Chapter 4: Evaluation

of memory accesses. Moreover, we can validate the hypothesis that some
patterns in the memory reads and writes are preserved after obfuscation
transformations and allow us to infer the original semantics of the code.

For every target binary different tests are presented: statistical analysis
of the I/O in terms of entropy and randomness and results of auto-correlation
analysis. These two methods are both based on memory accesses, however
they take into account very different aspects of the same data. The former
is based on the analysis of the content of the data-flow. The latter instead
only considers the locations of reads and writes in memory.

4.1.3 Control-flow unflattening evaluation benchmark

To evaluate the proposed de-obfuscation techniques against control-flow flat-
tening, different experiments were carried out. Sample programs are obfus-
cated using OLLVM and Tigress obfuscators. For Tigress, the switch-based
and indirect call-based flattening methods is used. Later, a similarity score
between the execution flow graph of the original code and the one of the ob-
fuscated code is computed. For completeness also a similarity score between
the original and the obfuscated graph is shown.

In literature we can find different approaches to quantify similarity be-
tween two CFGs. In particular, Udupa et al. [7], in their work regard-
ing control-flow de-obfuscation, measure the number of spurious edges in
the CFG that were added by the obfuscator and later deleted by the de-
obfuscator. They also consider false positives and false negatives as a sepa-
rate measure of the error. On the other hand, Yadegari et al. [55] propose
a different approach, based on the computation of an approximation of the
edit distance between the two graphs. This benchmark takes into account
spurious nodes that are added by the obfuscation transformation, as well as
edges. In detail, the similarity algorithm computes the number of vertexes
and edges that need to be added or removed to transform one graph in the
other. The computation of the graph edit distance is an NP-hard problem,
for this reason an approximation proposed by Hu et al. [56] is used.

For our experiments we opted for the graph edit distance as a measure
of similarity between the original and the obfuscated execution graphs. This
decision is supported by the work of Chan et al. [57], that compared dif-
ferent algorithms for computing the similarity of control flow graphs. The
algorithm proposed by Hu et al. was shown to be the most accurate.

To compare CFGs of different sizes the distance value is normalized
according to the total size of the graphs being compared, with the following
formula, where δ(G1, G2) is the edit distance and |G| is the size (i.e.: number
of nodes and edges) of graph G.

sim(G1, G2) = 1− δ(G1, G2)

|G1|+ |G2|

42

Chapter 4: Evaluation

A

D

E

B

C

F

A

D
B
C

E
F

Figure 4.1: Example of graph normalization. The graph on the left is the original
one while the one on the right is normalized.

As obfuscation tools add spurious code that make the binary more com-
plex, it can happen that the same logic that is contained in one basic block
in the original code is spread in multiple subsequent basic blocks in the ob-
fuscated code. However, this is not relevant for the matter of comparing the
shape of the CFG. For this reason, before computing the similarity score,
the graphs are normalized in such a way that basic blocks that are always
unconditionally executed one after the other are merged in the same block.
In detail, every node that has only one parent and no siblings is merged
with the parent. An example is given by Figure 4.1.

4.2 Data-flow recovery results

From the graphs regarding statistical analysis of I/O (Figures 4.2, 4.3 and
4.4) we can gather interesting information on the underlying business logic
of the targets. For AES128 it is possible to clearly notice that the program
is executing the encryption algorithm 4 times. For each run, the 10 rounds
of AES128 are identifiable. This is possible for the data gathered for the
non-obfuscated target, as well as for obfuscated ones. Regarding DES, we
can easily see from the graph that the encryption function was executed two
times, each composed by 16 rounds. Additionally, for both AES128 and
DES, we can infer that the part of the chart before the encryption functions
includes the key scheduling algorithm.

For the HMAC-SHA1 target, we can see 4 repeated patterns with a
particular shape. This is due to the fact that the compression function
of the algorithm is called 4 times, for one HMAC. The following formula
summarizes the computation of an HMAC, given an hash function H, where
opad and ipad are XOR masks, K is the secret key and m the message.

HMAC(K,m) = H ((K ⊕ opad)|H((K ⊕ ipad)|m))

43

Chapter 4: Evaluation

(a) Original

(b) OLLVM

(c) Tigress

Figure 4.2: AES128: Entropy and randomness of the data flow

44

Chapter 4: Evaluation

Thus, for the first hash K⊕ ipad is first added to the internal state, then
m is concatenated to it. Later a second hash is computed with K ⊕ opad,
then the result of the previous operation is added. This makes 4 calls to the
SHA1 update function for one HMAC computation, which is what we can
see from the charts.

It is peculiar that OLLVM makes the identification of the repeated pat-
terns even easier, compared to the original binary. This can be caused by
spurious instructions are added to the program, for obfuscating the under-
lying logic. The increasing number of memory accesses helps in making
distinctive patterns standing out.

The absolute values of entropy and randomness change very much from
the original program to the obfuscated ones. This can be caused for instance
by the computation of opaque predicates, control-flow flattening dispatching
instructions or decoding of literals. Even though spurious operations add
significant noise, patterns still remain and can be easily identified. From this
results we can notice that OLLVM highly contributes in increasing the levels
of entropy and randomness, because of the usage of values with this char-
acteristics in the computation of opaque predicates and for instruction sub-
stitution. On the other hand, in all our tests, the obfuscation layers added
by Tigress contribute in lowering entropy and randomness levels, possibly
because of different values used for encoding of literals or opaque predi-
cates. For future research, these obfuscator-dependent characteristics could
be exploited for initial reconnaissance in a black-box context, for advancing
hypothesis on the obfuscator that was employed.

The results of the auto-correlation analysis (Figures 4.5, 4.6 and 4.7)
match very well with the outcomes of the study of entropy and randomness
of the data-flow. This is a very interesting result as auto-correlation only
takes into account the location of memory accesses without looking at the
content of the data that was read and written. On the contrary, statistical
analysis of I/O only considers the data that was exchanged, without taking
into account locations of buffers.

Regarding AES128 we obtained very good results, as the 4 executions
of the encryption function are very clear and the 10 rounds of each run are
distinguishable. Curiously, the auto-correlation matrix resulted from the
execution of the target obfuscated with OLLVM is even more clear than the
one obtained from the non-obfuscated binary. Again, this can be due to
the additional computation introduced by the obfuscation, that make the
memory accesses dependent on the actual logic of the program prevalent on
memory operations made by library functions or other less relevant accesses
(e.g.: zeroing of buffers, saving of register values on the stack or management
of heap structures). Moreover, obfuscation often forces the usage of memory
for saving intermediate results, on the other hand, for the original binary,
an heavier use of registers can be preferred by the compiler for performance
reasons.

45

Chapter 4: Evaluation

(a) Original

(b) OLLVM

(c) Tigress

Figure 4.3: DES: Entropy and randomness of the data flow

46

Chapter 4: Evaluation

In the case of DES, using auto-correlation the key scheduling algorithm
part becomes evident. From the figures, it is possible to distinguish a square
in the bottom-left corner that represents it. Again, the two encryption
functions, each one with 16 rounds, are distinguishable. In this test, the
results obtained from obfuscated targets are noisier, compared to the non-
obfuscated target. However, it is still possible to recognize patterns.

In the third experiment, we can see that part of the information revealed
from the auto-correlation matrix of the original target is not observable in
the obfuscated ones. In the former, it is possible to notice that there are 4
repeated operations, nonetheless they differ. In the obfuscated programs we
can still recognize 4 repeated operations, however they look all very similar.
Tigress in this case managed to make the results of auto-correlation sig-
nificantly noisy. The squares representing the SHA1 compression functions
are considerably smaller and the rest of the image shows little correlation.
Despite this, the patterns are still identifiable.

47

Chapter 4: Evaluation

(a) Original

(b) OLLVM

(c) Tigress

Figure 4.4: HMAC-SHA1: Entropy and randomness of the data flow

48

Chapter 4: Evaluation

(a) Original

(b) OLLVM

(c) Tigress

Figure 4.5: AES128: Autocorrelation of memory accesses

49

Chapter 4: Evaluation

(a) Original

(b) OLLVM

(c) Tigress

Figure 4.6: DES: Autocorrelation of memory accesses

50

Chapter 4: Evaluation

(a) Original

(b) OLLVM

(c) Tigress

Figure 4.7: HMAC-SHA1: Autocorrelation of memory accesses

51

Chapter 4: Evaluation

4.3 Control-flow recovery results

In order to evaluate the resilience of our approach against changes to the
control-flow, we also consider compiler optimized versions of the target pro-
grams. These optimizations can cause the merging of basic blocks and thus
modify the structure of the code outputted by the obfuscator. To enable
them we added the compilation flag “-O3” to the commands of clang in the
case of OLLVM or gcc in the case of Tigress. We use this additional test to
show that our graph-based analysis is resilient to these changes. However, it
is worth remarking that in a real-world scenario it is not desirable to apply
compiler optimizations to obfuscated code: some transformations such as
constant unfolding or instruction substitutions could be simplified and the
protection offered by the obfuscation layers could be compromised.

The results of our experiments are shown in Table 4.1. Every target
program was obfuscated using different features of Tigress and OLLVM,
as presented in 4.1.1. For every obfuscated binary, the table shows the
similarity scores between the obfuscated CFG and the original one, as well
as the similarity score between the recovered CFG and the original one.

Our graph analysis-based approach has shown to produce high-quality
results in recovering the original control flow from obfuscated target pro-
grams, even with very diverse control-flow flattening techniques. In few
cases we obtained a lower similarity score, this is due to the fact that com-
pilation optimizations or other obfuscation methods tweaked the control
flow of the program, for example by unrolling loops or by transforming a
for-loop into a do-while loop. Nevertheless, even in those cases an analysis
of the CFG revealed structures of the original code. In some tests with
optimized indirect-based control flow flattening we could not apply our al-
gorithm, as the obfuscation was removed by the compiler and the resulting
binary was not actually flattened. In fact, the similarity score between the
obfuscated and the original CFG is considerably high. In the HMAC-SHA1,
even though the compiler removed part of the obfuscation, the CFG was
still partially flattened so we could still apply our techniques.

These tests show that valuable information can be extracted only by
using a trace of execution, that records the sequence in which basic blocks
are executed. Compared to other studies, the proposed method only relies on
graph analysis and is generally applicable to different control flow flattening
obfuscations, without the need to reverse engineer the code or parse it in any
way. This is a considerable advantage as our analysis is more lightweight,
resilient against any obfuscation of the basic blocks and not dependent on a
specific architecture or ISA.

52

Chapter 4: Evaluation

AES128

Obfuscated Recovered

OLLVM 0.011 1.000
OLLVM -O3 0.054 0.995
Tigress switch 0.249 1.000
Tigress switch -O3 0.342 1.000
Tigress indirect 0.314 1.000
Tigress indirect -O3 0.670 N/A

DES

Obfuscated Recovered

OLLVM 0.020 1.000
OLLVM -O3 0.046 1.000
Tigress switch 0.174 1.000
Tigress switch -O3 0.245 1.000
Tigress indirect 0.228 0.789
Tigress indirect -O3 0.670 N/A

HMAC-SHA1

Obfuscated Recovered

OLLVM 0.046 0.817
OLLVM -O3 0.111 0.963
Tigress switch 0.143 0.956
Tigress switch -O3 0.255 0.968
Tigress indirect 0.237 0.934
Tigress indirect -O3 0.604 0.933

Table 4.1: Similarity scores of obfuscated and de-obfuscated CFGs, compared to
the original one.

53

Chapter 4: Evaluation

4.4 Analysis of shortcomings

We presented different techniques that exploit side-channel information pro-
duced by the execution of the target program, for the purpose of reverse en-
gineering. For recording this information there is the basic assumption that
we can execute the binary in a controlled environment, such as a full-system
emulator like PANDA or a userspace DBI (e.g.: Intel Pin, Miasm, etc.). In
case the target employs some countermeasures to obstruct this operation,
we need to first address those protections and find a way to overcome them
before running our analysis. This is a common problem for every approach
based on dynamic analysis, therefore we will not discuss further this issue.
Different advances in this area can be found in literature.

Another limitation is given by the code coverage of concrete traces. As
we mostly rely on dynamic analysis of one execution, only one execution path
is considered. Even though this could be enough in many cases, especially
when considering cryptographic functions, it can often be a problem. As
a further enhancement of our work, symbolic execution could be applied
to obtain complete code coverage and explore every possible branch. Also,
fuzzers (e.g. afl-fuzz) could be used in order to produce inputs that trigger
interesting code branches. Later, recording the execution with these inputs
can lead to the desired results.

In the case of large binaries or programs that perform a huge amount
of memory accesses or instructions it might not be desirable to record a
full trace of the execution, as it would be impractical to process because
of its size. It is possible to overcome this problem by narrowing down the
focus of the trace to a reduced part of the execution or to specific memory
areas. Regarding memory accesses, for instance, it might be possible to
restrict the recording to accesses on the heap as the analyst suspects that
the cryptographic operations use mostly that memory area. In other cases it
might be possible to reduce the trace by filtering out operations performed
by dynamically loaded libraries and only consider code from the binary itself,
or even parts of it. Another possible solution would be to aggregate the data
on-the-fly during the execution, if possible. This would allow for instance to
compute partial results of the analysis during execution, instead of recording
a full trace that would be later processed.

To further confuse the analysis and complicate the reverse engineering,
binaries can be compiled to extensively use registers and don’t hit the mem-
ory very often. This would cause our techniques based on memory accesses to
fail, however the issue is easily solvable as we can add register changes to the
trace by enhancing the recoding engine. In our tests we did not conducted
experiments in this direction, as the use of registers is not a widespread
obfuscation method and it can be easily overcome for our purposes.

Müller et al. proposed TRESOR [58], a patch for the Linux kernel for
running disk encryption without storing the keys in RAM and using Intel

54

Chapter 4: Evaluation

AES extensions of the CPU. This approach is resilient against cold-boot
attacks for countering disk encryption. However, in the context of DRM
solutions, it is not effective as it can be easily defeated by running the target
in an emulator, hooking the implementation of the encryption instructions
and thus extracting the secret keys.

55

CHAPTER 5

Conclusions

Software protections can be a valuable and effective mean of securing intel-
lectual property or create a robust DRM solution. On the other hand, they
can also be used for hide malicious activities in malware. For the purpose
of evaluating the level of security offered by these protections or unveiling
harmful code, it is worthwhile to analyze them and test their resilience.

Reverse engineering of obfuscated software is a very challenging task that
requires outstanding skills and can be extremely time consuming. In this
report we presented a novel methodology to collect high-level information
from the execution of a program, in order to provide the analyst with an
insightful overview of the logic and to narrow down the study to small por-
tions of the code. Instead of basing our analysis on the understanding of
the disassembled binary, we study the behavior of the target program. This
behavior is well described by the sequence of instructions that are executed
after each other and by accesses to memory. This information is collected
using dynamic analysis techniques and later these traces are processed using
different methods.

For the study of memory accesses, we propose interactive visualizations
to assist the analyst in finding patterns in the execution. Furthermore, the
use of data tainting or the computation of the difference between traces can
be used to find which parts of the program are dependent on user input
and thus restrict the scope of the analysis. To collect information from
the content exchanged to and from the memory, we propose the analysis
of statistical properties of the data-flow. Similarly, the information about
location of memory accesses alone can give valuable information, as shown
with results of auto-correlation analysis.

56

Chapter 5: Conclusions

Regarding instruction traces, CFG reconstruction methods and visual-
ization of the executed basic blocks are introduced. We also show how to
process this data in order to counter a common obfuscation technique: con-
trol flow flattening. The proposed method is only based on graph analysis
techniques and allows to recover the original control-flow graph from differ-
ent implementations of flattening obfuscation, without the need to analyze
the code of the target program.

An evaluation and discussion of the proposed techniques was presented.
We show how the analysis of behavior of executions is effective for the pur-
pose of unveiling the original semantics of the program. We also showed
the resilience of these methods by testing them with different settings of
state-of-the-art obfuscators.

From these results we can affirm that current obfuscation techniques are
not effective in hiding side-channel information that is revealed with the
methods proposed in this report. From our evaluation we managed in all
tests to extract insightful information from the samples and, even though
some noise was present, patterns were clearly identifiable. It is also remark-
able that in our tests we did not perform any pre-processing or filtering of
the trace, analysis were run on the full execution. With additional knowl-
edge about the target logic and a more accurate selection of specific memory
and time regions it would be possible to extract even more accurate results.

We also argue that concealing the behavior of a program is a hard and
computationally expensive task. Regarding statistical analysis of the data
flow, it is really hard to mask these properties as pointers have intrinsically
less entropy and randomness, compared to other data. Even if all literals
and intermediate values are encoded to there would still be a considerable
difference between those randomized values and pointers. A similar obser-
vation applies to the analysis of location of memory accesses. In some cases
it might be possible to reorder operations that read or write into memory
in order to disguise repeated operations. This is however not applicable in
the general case.

Concealing the original semantics of the control-flow graph is an easier
task. It can be hardened with different techniques: for example by dupli-
cating pieces of code, to hide operations that repeat, or by adding useless
operations. This is unfortunately not always possible: it can be unpractical
in terms of performance and size of the binary.

5.1 Future work

The analysis of behavior of obfuscated code proposed in this report has its
limitations, as discussed in section 4.4. As a first step in this area we ob-
tained promising results, however further work can be done. In this section
we propose different directions for future research.

57

Chapter 5: Conclusions

Regarding execution traces and CFG recovery, further developments are
needed in order to provide de-obfuscation methods for other techniques than
control-flow flattening, such as virtualization. It would also be interesting to
apply graph isomorphism techniques in order to automatically understand
which algorithm is being executed. Moreover, possibly detect if it is derived
from common implementations, such as the OpenSSL codebase. In 2015,
Lestringant et al. worked in this direction by applying graph isomorphism
techniques to data-flow graphs [59].

For the analysis of memory accesses we suggest to expand the visualiza-
tion methods proposed in this report, as well as the experimentation with
different techniques for identifying patterns. In particular, it would be in-
teresting to test the effectiveness of 3D interactive visualization, possibly
supported by virtual reality appliance as proposed by Stefan et al. [60].

In addition, more tests should be carried out in order to improve the
proposed techniques. We suggest to analyze binaries produced by differ-
ent obfuscators in order to further test the robustness and resilience of the
proposed methods.

Finally, in this work we highlighted weaknesses of state-of-the-art obfus-
cators. In different commercial applications, software obfuscation is crucial
for the economical sustainability of the firm. We believe there is the need
to further investigate in developing obfuscation methods that are robust
against behavior analysis. Considerable work in this direction was done for
the hardware world in order to prevent side-channel analysis, similar efforts
are needed also for software.

58

Bibliography

[1] Julie E Cohen and Mark A Lemley. Patent scope and innovation in the
software industry. California Law Review, pages 1–57, 2001.

[2] T. Grimm. Reverse engineering is criminal. Time-Compression Tech-
nologies, 2004.

[3] Alorie Gilbert. Attack targets Sony ’rootkit’ fix. CNET News, 2005.

[4] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscat-
ing programs. In Advances in Cryptology—CRYPTO 2001, pages 1–18.
Springer, 2001.

[5] Mila Dalla Preda. Code obfuscation and malware detection by abstract
interpretation. PhD thesis, PhD thesis, Dipartimento di Informatica,
University of Verona (February 2007), 2007.

[6] Christian Collberg, Clark Thomborson, and Douglas Low. A taxon-
omy of obfuscating transformations. Technical report, Department of
Computer Science, The University of Auckland, New Zealand, 1997.

[7] Sharath K Udupa, Saumya K Debray, and Matias Madou. Deobfus-
cation: Reverse engineering obfuscated code. In Reverse Engineering,
12th Working Conference on, pages 10–pp. IEEE, 2005.

[8] Jean-Marie Borello and Ludovic Mé. Code obfuscation techniques for
metamorphic viruses. Journal in Computer Virology, 4(3):211–220,
2008.

[9] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief
survey. In BWCCA, pages 297–300, 2010.

59

Bibliography

[10] Cullen Linn and Saumya Debray. Obfuscation of executable code to im-
prove resistance to static disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security, pages 290–299.
ACM, 2003.

[11] Anirban Majumdar, Clark Thomborson, and Stephen Drape. A survey
of control-flow obfuscations. In Information Systems Security, pages
353–356. Springer, 2006.

[12] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W Smith.
The page-fault weird machine: Lessons in instruction-less computation.
In WOOT, 2013.

[13] William Zhu, Clark Thomborson, and Fei-Yue Wang. Applications of
homomorphic functions to software obfuscation. In Intelligence and
Security Informatics, pages 152–153. Springer, 2006.

[14] Chenxi Wang. A security architecture for survivability mechanisms.
PhD thesis, University of Virginia, 2001.

[15] W Brecht. White-box cryptography: hiding keys in software. NAGRA
Kudelski Group, 2012.

[16] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C Van Oorschot.
A white-box DES implementation for DRM applications. In Digital
Rights Management, pages 1–15. Springer, 2003.

[17] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot.
White-box cryptography and an AES implementation. In Selected Areas
in Cryptography, pages 250–270. Springer, 2003.

[18] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Crypt-
analysis of white-box DES implementations with arbitrary external en-
codings. In Selected Areas in Cryptography, pages 264–277. Springer,
2007.

[19] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Crypt-
analysis of white box DES implementations. In Selected Areas in Cryp-
tography, pages 278–295. Springer, 2007.

[20] Chih-Fan Chen, Theofilos Petsios, Marios Pomonis, and Adrian Tang.
Confuse: LLVM-based Code Obfuscation.

[21] Axel Souchet. Obfuscation of steel: meet my Kryptonite.

[22] University of Applied Sciences and Arts Western Switzerland
of Yverdon-les Bains (HEIG-VD). Obfuscator-LLVM. http://o-llvm.
org.

60

Bibliography

[23] C Collberg. The Tigress Diversifying C Virtualizer. http://tigress.
cs.arizona.edu/.

[24] Morpher. Crypt the script. http://morpher.com/.

[25] Arxan Technologies Inc. Application protection. https://www.arxan.
com/products/application-protection/.

[26] whiteCryption. Code protection. http://www.whitecryption.com/

code-protection/.

[27] Yannis Smaragdakis and Christoph Csallner. Combining static and
dynamic reasoning for bug detection. In Tests and Proofs, pages 1–16.
Springer, 2007.

[28] Yoann Guillot and Alexandre Gazet. Automatic binary deobfuscation.
Journal in computer virology, 6(3):261–276, 2010.

[29] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Auto-
matic reverse engineering of malware emulators. In Security and Pri-
vacy, 2009 30th IEEE Symposium on, pages 94–109. IEEE, 2009.

[30] Mark Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press, 1981.

[31] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you
ever wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask). In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 317–331. IEEE, 2010.

[32] International Secure Systems Lab. Anubis - Malware Analysis for Un-
known Binaries. http://anubis.iseclab.org/.

[33] QuarksLab. DRM obfuscation versus auxiliary attacks. http://recon.
cx/2014/schedule/events/44.html.

[34] Robert S Boyer, Bernard Elspas, and Karl N Levitt. SELECT—a for-
mal system for testing and debugging programs by symbolic execution.
ACM SigPlan Notices, 10(6):234–245, 1975.

[35] Koushik Sen. Concolic testing. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing, pages 571–572. ACM, 2007.

[36] George Hotz. qira. http://qira.me/.

[37] Brendan F Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. Repeatable Reverse Engineering for the Greater Good
with PANDA. 2014.

61

Bibliography

[38] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Steal This Movie: Automatically Bypassing DRM Protection in
Streaming Media Services. In USENIX Security, pages 687–702, 2013.

[39] Brendan Dolan-Gavitt. Breaking Spotify DRM with PANDA. http://
moyix.blogspot.it/2014/07/breaking-spotify-drm-with-panda.

html.

[40] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee. Tap-
pan zee (north) bridge: mining memory accesses for introspection. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security, pages 839–850. ACM, 2013.

[41] M. Zalewsky ”lcamtuf”. Pulling JPEGs out of thin air. http://

lcamtuf.blogspot.it/2014/11/pulling-jpegs-out-of-thin-air.

html.

[42] Gregory Conti, Erik Dean, Matthew Sinda, and Benjamin Sangster.
Visual reverse engineering of binary and data files. In Visualization for
Computer Security, pages 1–17. Springer, 2008.

[43] Daniel A Quist and Lorie M Liebrock. Visualizing compiled executables
for malware analysis. In Visualization for Cyber Security, 2009. VizSec
2009. 6th International Workshop on, pages 27–32. IEEE, 2009.

[44] Philipp Trinius, Thorsten Holz, Jan Gobel, and Felix C Freiling. Visual
analysis of malware behavior using treemaps and thread graphs. In
Visualization for Cyber Security, 2009. VizSec 2009. 6th International
Workshop on, pages 33–38. IEEE, 2009.

[45] Stefan Vomel and Hermann Lenz. Visualizing indicators of rootkit in-
fections in memory forensics. In IT Security Incident Management and
IT Forensics (IMF), 2013 Seventh International Conference on, pages
122–139. IEEE, 2013.

[46] James B Baum. Windows memory forensic data visualization. Technical
report, DTIC Document, 2014.

[47] Colin Percival. Cache missing for fun and profit, 2005.

[48] Ryan Whelan, Tim Leek, and David Kaeli. Architecture-independent
dynamic information flow tracking. In Compiler Construction, pages
144–163. Springer, 2013.

[49] PUB FIPS. 197, Advanced Encryption Standard (AES), Na-
tional Institute of Standards and Technology, US Department
of Commerce (November 2001). Link in: http://csrc. nist.
gov/publications/fips/fips197/fips-197. pdf.

62

Bibliography

[50] Weiling Chang, Binxing Fang, Xiaochun Yun, Shupeng Wang, and Xi-
angzhan Yu. Randomness testing of compressed data. arXiv preprint
arXiv:1001.3485, 2010.

[51] Pierre L’Ecuyer. Testing random number generators. In Winter Simu-
lation Conference, pages 305–313, 1992.

[52] Matias Madou, Bertrand Anckaert, and Koen De Bosschere. Code
(de) obfuscation. Advanced Computer Architecture and Compilation
for Embedded Systems (ACACES 2005), pages 291–294, 2005.

[53] Sebastian Banescu, Martın Ochoa, and Alexander Pretschner. A frame-
work for measuring software obfuscation resilience against automated
attacks.

[54] Yuichiro Kanzaki, Akito Monden, and Christian Collberg. Code Arti-
ficiality: A Metric for the Code Stealth Based on an N-gram Model.

[55] Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya
Debray. A generic approach to automatic deobfuscation of executable
code. Technical report, Technical report, Department of Computer
Science, The University of Arizona, 2014.

[56] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-scale malware in-
dexing using function-call graphs. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 611–620.
ACM, 2009.

[57] Patrick PF Chan and Christian Collberg. A Method to Evaluate CFG
Comparison Algorithms. In Quality Software (QSIC), 2014 14th Inter-
national Conference on, pages 95–104. IEEE, 2014.

[58] Tilo Müller, Felix C Freiling, and Andreas Dewald. Tresor runs en-
cryption securely outside ram. In USENIX Security Symposium, pages
17–17, 2011.

[59] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. Auto-
mated identification of cryptographic primitives in binary code with
data flow graph isomorphism. In Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications Security, pages
203–214. ACM, 2015.

[60] Stefan Marks, Javier E Estevez, and Andy M Connor. Towards the
holodeck: fully immersive virtual reality visualisation of scientific and
engineering data. In Proceedings of the 29th International Conference
on Image and Vision Computing New Zealand, page 42. ACM, 2014.

63

