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Abstract 

 

Deregulation and growing demand for gas resulted in a global, transparent and growing gas market. This is 

followed by growing investments in gas storages. In recent years valuation techniques are developed to price 

these storages. In response to these valuations, prices have to be audited for regulatory purpose. This study 

supports audit work on the valuation of gas storages.  

 

A valuation method often used is the spot approach of Boogert and De Jong (2008). This method uses simulated 

spot price paths based on an Ornstein-Uhlenbeck process and Least Squares Monte Carlo to value gas storages. 

By an econometric analysis on the spot price, existence of seasonality and volatility updating is shown. We 

present two techniques to incorporate these price characteristics in the spot approach. The objective of this study 

is therefore: Investigate and incorporate seasonality and volatility updating in gas storage valuation for the 

purpose of validation.  

 

The first technique relates to the equilibrium level parameter of the Ornstein-Uhlenbeck process. We take 

seasonality into account by smoothing a forward curve with daily granularity to form a time-dependent 

equilibrium level. The second technique is the incorporation of volatility updating in the simulation of future gas 

prices. By doing so we take account for the presence of volatility clustering in gas spot prices. We simulate 

volatility updating by a GARCH model.  

 

The impact of both techniques on the distribution of values of the Least Squares Monte Carlo method is shown. 

Incorporating forward curve information to represent seasonality result in slightly higher values but gain is 

obtained by the fact that the equilibrium level is in line with market expectations. Using a GARCH model to 

incorporate volatility updating results in much higher values. This is because more extreme price movements are 

present in the price paths simulated by a GARCH model. These extreme price movements are profitable for gas 

storage holders. We also show the impact of these two extensions on the ‘bad’ left tail of the distribution of 

values. We conclude that the 5th percentile point, to represent the left tail, is stable from a mean reverting rate 

of 0.02 and higher. A lower rate will cause a much fatter left tail which corresponds to more risk.  

 

We conclude that the two presented techniques to extend the spot approach are appropriate for the purpose of 

model validation. If these techniques are used for having a claim on the one and ‘true’ value, they should be 

handled with care. This is because of the underlying assumptions and the impact of the mean reverting rate as 

shown by our sensitivity analysis.   
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1 Introduction  
Firstly, a quick overview of the gas market is given. Second, the rationale of gas storages and validation is 

explained. Furthermore, the methods currently used to value gas storages are presented. At last, the outline and 

the sub-questions of this study are pointed out.   

 

1.1 Quick overview of the current gas market  
Natural gas is a hot topic in national and international political and economic news. Gas extraction at one of 

Europe’s biggest gas fields (Groningen, the Netherlands) causes a lot of discussion. Proponents of this extraction 

highlight the positive impact on the Dutch economy, whereas opponents focus on damaged houses as a result of 

the extraction. Meanwhile, Russia is continuously threatening gas-dependent Europe to cut off its supply of 

natural gas to enforce political power. On the other side of the planet, the US are reshaping their energy-import 

dependent economy into a self-sustaining one through the development of shale gas. Currently, they are 

exporting energy in the form of Liquefied Natural Gas. These examples show the gas market is changing 

continuously.  

 Gas market conditions are also influenced by deregulation in the US and Europe. Under this pressure, 

the natural gas storage service is unbundled from the sales and infrastructure service. This creates a totally 

separated service of gas storage, making it possible to adjust storage trading decisions to price conditions 

(Boogert & De Jong, 2008). Similarly, the EU aims to integrate the European energy market in order to provide 

customers with more choice and competitive pricing (GasTerra, 2014). The total demand for natural gas is growing 

each year according to the International Energy Agency (2011). It estimates the demand for gas will grow more 

than 50% by 2035, providing over 25% of world energy consumption. Cumulative investments in this sector 

amounts to around 8 trillion dollars. 

 These developments result in a global, transparent, and growing gas market and require appropriate 

valuation techniques to analyse investments. One form of investment in the gas sector is gas storages. These 

storages create economic value for its owner by benefitting from changes in price, generally caused by seasonal 

effects.  

 

1.2 The rationale of gas storages and validation 
Traditionally, the existence of gas storages can be linked to the winter-summer spread of gas prices. During the 

year production capacity is constant, whereas demand fluctuates due to the heating of houses in the winter. 

Storage value is created by injecting gas during the summer and selling gas in the winter, when demand and prices 

are high. To clarify, the potential of these gas storages to benefit from changes in gas prices is valued, not the 

current gas in storage.   

 Besides the annual seasonality in natural gas prices, other characteristics can be found from the field 

of commodity pricing in general (Back & Prokopczuk, 2013; Bessembinder, Coughenour, Seguin, & Smoller, 1995; 

Pindyck, 2001; E. Schwartz & Smith, 2000). Other characteristics mentioned by these authors are mean-reversion, 

jumps or price spikes and volatility clustering.  

 The economic intuition behind mean reversion can be explained by the law of supply and demand 

made famous by Adam Smith in his book The wealth of Nations (Smith & Nicholson, 1887).  

If prices exceeds marginal costs, new investments and new producers will enter the market, which leads to higher 

supply over time. The higher supply, and constant demand, will push prices back down, intensify competition, 

and will shrink margins. Producers will leave the unprofitable market, and this process continues. The 

characteristic of jumps or price spikes is related to the existence of sudden shortages in the market while the 

commodity is irreplaceable for its users in the short-term. In this scenario buyers have to pay the highly increased 

price for only a very short period.  

 Gas storage holders take these characteristics into account to determine their operating strategy. 

Here, the operating strategy means for a gas storage holder how much gas to inject/buy or withdrawal/sell at 

each point in time and at each volume level to maximize its storage value. This means the valuation of gas storages 

itself is influenced by these gas price characteristics. 
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Now the rationale for gas storages is known, there is also a rationale for validation. Owners of gas storages need 

to value their gas storages for accountancy purposes. This value is for example presented at the asset-side of the 

company’s balance sheet. In turn, this balance sheet (together with other financial statements) needs, for 

regulatory purposes, to be checked by an assurance firm. So, the rationale of gas storages also creates from 

regulatory perspective a rationale for its value validation by accountants.  

 Accountants do in general not have the same sector related knowledge as their clients since it is not 

their core business. The validation of asset prices is therefore done in two ways. The first possibility is to only 

validate the model used by their clients to find the asset-value. Another, more extensive, way is to find the asset-

value themselves and to check if the corresponding clients-price is reasonable. This study will attribute to the 

ability of accountants to validate the gas storage value in both ways. First, it investigates the need to incorporate 

seasonality and volatility updating in gas storage valuation so the clients model can be challenged. Secondly, this 

study shows how seasonality and volatility updating can be incorporated in gas storage valuation to determine 

whether the client’s value is reasonable. Finding an own value is influenced by a lot of uncertainty and 

assumptions so the outcome should be handled with care.  

 Storage valuation and therefore validation is not restricted to the gas market. It plays an important 

role as well in other commodity markets. Take for instance the electricity, oil and other soft commodity markets. 

The principle here is that there should exist a reasonable liquid spot market and the spot price should exhibit 

mean-reversion.  

 

1.3 Methods to price gas storages 
In the liberalized and more transparent gas market, the objective of gas storage owners is to maximize the value 

of the gas storage. In practice four methods are used to price a gas storage (Breslin, Clewlow, Elbert, Kwok, & 

Strickland, 2008):  

 The Intrinsic approach 

 The rolling intrinsic approach 

 The basket of spread options 

 The spot approach 

These four methods all uses market information on gas-contracts to find the value of the possibility to store 

natural gas. For example, spot prices, forward prices and gas option prices are used.  

 

The intrinsic approach 

The intrinsic approach derives a value from seasonal or time spread in the price of gas. It assumes the value of 

the storage is given by the optimal set of long and short positions of forward and/or future 1 contracts over the 

period of the storage. This initial position is entered at the first day and held to maturity. Since this position is 

fixed it can be seen as a static hedging strategy.  

 

The rolling intrinsic approach 

This approach adjusts the position in long and short forward contracts over time when additional value can be 

created. It recognises the changing value in the intrinsic spread as the forward curve evolves. Over time 

unprofitable positions are liquidated and new contracts are entered to lock in higher overall value. How much 

additional money can be created depends on the movements of the forward curve and especially on switches in 

the curve (Boogert & de Jong, 2011).  

                                                                        
1 In commodity pricing literature the terms ‘forward’ and ‘futures’ are used interchangeably. Bloomberg uses the term forward 

contracts for the OTC market and futures for the ICE market. Despite the difference in naming they both represent a contract 

between two parties to buy/sell an asset at a specified future time at a price agreed upon today. For the remainder of this 

paper the term ‘forward’ is used.   
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The basket of spread options 

A third approach is the basket of spread options. A spread option is an option on the difference between two 

prices with a positive strike price (Lai, Margot, & Secomandi, 2010). This strategy looks at the storage as a long 

position in an optimal basket of calendar spread options. A Monte Carlo simulation can be used to calculate the 

expected value and to obtain a distribution of values. The rolling intrinsic and the basket of spread approaches 

capture additional value when prices evolve. However, they are still suboptimal, since they take no account of 

potential future trades (Breslin et al., 2008).  

 

The spot approach 

In this study the spot approach is chosen. This approach creates value by trading only in the spot. This technique 

regards storage as an American-style option with constraints determined by the storage characteristics like 

inject/withdrawal rate and capacity (Gray & Khandelwal, 2004). Gas spot prices are highly volatile and exhibits 

mean-reversion (Boogert & de Jong, 2011).  

 

Focus of this paper 

The spot optimisation approach is the focus of this study because it is the most flexible method to deal with the 

complex decisions a storage holder has to make. Besides, according to Maragos and Ronn (2002) the spot 

approach generally results in higher returns compared to the rolling intrinsic method. The spot approach is 

therefore often used in the field of gas storage valuation. In general two perspectives on the spot approach can 

be separated: stochastic control and Monte Carlo. In the perspective of stochastic control there exist a direct link 

between the price process and the optimal operating strategy. In this study the perspective of Monte Carlo is 

chosen because the two are separated here. This means we can experiment with different price processes. 

Another advantage is that Monte Carlo is able to deal with complex gas storage characteristics.  

 When following the Monte Carlo perspective the spot approach is divided into two parts: pricing and 

optimizing. The pricing part deals with the price dynamics and the simulation of future spot prices. The optimizing 

part determines the optimal operating strategy given these price paths. In Figure 1 the research structure is 

presented in which the pricing and optimizing part are clearly separated.  

 

 
FIGURE 1: Research Structure  
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In the remainder of this study we will point out what the focus of each (sub) section is and how it relates to the 

overall research structure.  

 

1.4 Research Outline 
In this study the spot approach methodology presented by Boogert and De Jong (2008) to value gas is extended 

to take into account seasonality and volatility updating of the underlying gas spot price. The option pricing 

technique of Least Squares Monte Carlo (LSCM) of Longstaff and Schwartz (2001) is adapted. The LSMC method 

is particularly suited because it can handle complex constraints of the physical storage and it separates the pricing 

process of the underlying asset from the optimizing part of operating decisions. The perspective of validation is 

chosen to support audit work on energy companies in general.  

 

The objective of this research is as follows: Investigate and incorporate seasonality and volatility updating in gas 

storage valuation using the spot approach for the purpose of validation. So the main research question is: How 

to incorporate seasonality and volatility updating in gas storage valuation for the purpose of validation?  

 

 

The research is divided into three sub-questions: 

1. How can spot price paths be simulated? 

a. How to describe the behaviour of gas spot prices? 

b. How can existing stochastic processes be used? 

c. How to incorporate seasonality in the simulation of gas spot prices? 

d. How to incorporate volatility updating in the simulation of gas spot prices? 

2. What is the principle to find the optimal operating strategy for a gas storage using the spot approach? 

3. How to obtain a value and interpret the value of gas storages using the spot approach? 

 

As can be seen from the questions above, the separating of the spot approach into a pricing and optimizing part 

is also present in the sub-questions. The first sub-question covers the pricing part. The second sub-question 

handles the optimizing part. The third sub-question uses the answers on the first two sub-questions to find a 

value of gas storages and a way to interpret this value. An overview of the research structure is given in appendix 

A.  

 

The remainder of this paper is organized as follows: Chapter 2 discusses the context of this study. Chapter 3 

provides theory related to the research questions. Chapter 4 uses this theory to answer the sub-questions. 

Chapter 5 addresses a sensitivity analysis. Chapter 6 concludes and presents suggestions for further research.   
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2 Context Analysis 
In this chapter the context is analysed in which this research is done. First, the research context is discussed. 

Sections 2.2 and 2.3 outlines the assumptions which are made to execute and demarcate this study. Section 2.4 

explains which datasets are used in this study. The ethical perspective is discussed in Section 2.5.  

 

2.1 Research Context 
In this section we will point out the context of each sub-question and how it relates to the purpose of validation. 

After that, the pricing model and the corresponding parameters are stated. At last, a distribution of gas storage 

value(s) is presented which acts as a baseline.   

 

The focus of this study is to incorporate seasonality and volatility updating in the price process which relates to 

sub-question 1 and show the effect of these pricing characteristics on the distribution of values in sub-question 

3. The second sub-question deals with the algorithm of Boogert and De Jong (2008). This algorithm finds the 

operating strategy of the gas storage and a gas storage value per price path. This algorithm is programmed in the 

software environment of R. The corresponding code is presented in Appendix D. In this way it is determined 

whether or not seasonality and volatility updating should be taken into account in the validation of gas storage 

value(s).   

   

To answer sub-question 1 a pricing model is needed to generate price paths. In this study the pricing model is an 

Ornstein-Uhlenbeck process. The log spot price follows (E. S. Schwartz, 1997): 

 

 
dX = κ [μ −  

σ2

2κ
− X] dt +  σdz 

( 1 ) 

 

Here, X represents the log spot price, μ the equilibrium level, κ the mean reverting rate, σ the volatility, and dz  

the increment of a Wiener process. Hence, the equilibrium level, volatility and mean reverting rate are the three 

input parameters of this pricing model. By an econometric analysis on the gas spot price, two price characteristics 

are shown that relate to two of these parameters.  

 The first price characteristic is about seasonality in gas spot prices. A time-dependent equilibrium level 

is implemented in the Ornstein-Uhlenbeck process to represent seasonality. This means that the equilibrium level 

parameter µ, is different per time step in the simulation of price paths. This equilibrium level will in general be 

higher in winter-periods and lower in summer-periods due to the traditionally winter-summer spread. The 

starting point of this gas price characteristic is to construct a smoothed forward curve with daily granularity from 

monthly forward contracts. After that, a day-week profile is added to the smoothed curve. At last, an attempt is 

made to simulate future forward curves to construct a stochastic equilibrium level. 

 The second price characteristics is about volatility updating or clustering in gas spot prices. In the 

methodology of Boogert and De Jong (2008) volatility is treated as a constant parameter whereas this study 

shows that volatility is not stationary. This implies that the second moment evolution of a price process should 

not be neglected. This means that in the above price model the volatility parameter is set by a volatility model so 

that the volatility per price step is different.  Volatility clustering will be implemented in the simulation of future 

time series by the use of a generalized autoregressive conditional heteroskedasticity model (GARCH). 

 

The price paths from the pricing part are an input of the optimizing algorithm in sub-question 2. This algorithm 

generates a gas storage value per price path. Sub-question 3 uses these values per price path to construct a 

distribution of values. To further explain this last step, a baseline distribution generated with all constant input 

parameters is presented in Figure 2. The corresponding input parameters are given in Table 1 and the 

interpretation of the distribution is stated in Table 2. 
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Mean reverting rate; 𝑘 0.0137 

Equilibrium price; μ 56.8330 

Volatility; 𝜎 3,45% 

  

Storage value 32.12 million 

TABLE 1: Gas Storage Input Parameters and Value 

 
FIGURE 2: Gas Storage Value Distribution with Constant Parameters 

5th Percentile 6.98 million 

Expected Shortfall -0.64 million 

Standard deviation 14.76 million 

TABLE 2: Interpretation of Value Distribution 

In the figure above, a histogram of the value per price path is presented. In the remainder of this study the effect 

of changing the equilibrium level and volatility parameters on this histogram or distribution of values is shown. 

Since we use risk-neutral pricing the probabilities in Figure 2 are risk-neutral probabilities, not to be confused 

with real-world probabilities. Moreover, we follow the fundamental theorem of asset pricing which implies that 

the gas storage value is the expected value of discounted future payoffs under the risk-neutral measure. These 

assumptions are further discussed in Section 2.2.  

 

2.2 Gas Storage Valuation and Option Theory 
The valuation of gas storages can be looked upon from an option valuation perspective. In a very simple form, 

there sometimes exists an analytical, closed form solution to value an option. Under the Black-Scholes 

assumptions (Black & Scholes, 1973), this solution delivers the ‘fair’ price of the option with respect to the various 

input parameters (Richardson, 2009a). However, not all required assumptions are satisfied here to find a closed 

form solution. Firstly, markets are not complete. Secondly, a gas storage is as a very complex and path-dependent 

option. Hence, we have to make some simplifying assumptions. These assumptions are explained below.  

 

Fundamental theorem of asset pricing 

In this study the fundamental theory of asset pricing is followed which plays an important role in the modern 

theory of mathematical finance (Björk, 2004). The theorem provides two conditions which are pointed out 

shortly. The first condition is that markets are free of arbitrage. An arbitrage opportunity is a zero-cost strategy 

which has a nonnegative pay-off in all states and at least one positive pay-off in at least one state. The second 

condition is that markets are complete. This indicates that every portfolio of assets can be hedged perfectly at 
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every point in time with a portfolio consisting of different assets. Under these assumptions and the risk-neutral 

measure, a derivative’s price is the expected value of discounted future payoffs.  

 

Risk-Neutral valuation 

Now the two conditions of the fundamental theory of asset pricing are assumed we can use risk-neutral valuation. 

This valuation technique is widely used in quantitative finance to compute derivative prices. Usually, probabilities 

on events are expressed in terms of the so-called “real world” probabilities. However, computing a price of a 

financial asset requires discounting future cash flows. The problem here is that each financial asset should be 

discounted by its associated risk-profile. This requires an adjustment which is different per risk profile. Using risk-

neutral valuation, all investments would return the risk-free interest rate. This means that to find the present 

value an investment all cash flows should be discounted by the risk-free interest rate.  

 

In the commodity markets, risk-neutral valuation implies that  the expected future spot price is represented by 

the forward curve (E. S. Schwartz, 1997).  

 

 𝐹(0, 𝑇) = 𝐸0[𝑆(𝑇)] ( 2 ) 

 

Here, F represents the price of a forward contract at time t=0 for delivery at t=T, and 𝐸0[𝑆(𝑇)] represents the 

expectation of the spot price at time t=0 for t=T. From this it can be concluded that the risk-free interest rate is 

already taken into account by forward prices. When we relate this to our pricing model, the equilibrium level 

parameter of the Ornstein-Uhlenbeck process should be set according to the forward curve.  

 

The present value of any cash flow can be obtained by discounting its expected value at the risk-free rate. The 

risk-neutral valuation method simplifies the analysis of derivatives considerably. Now the expected return of each 

investment is the risk-free interest rate, r. By risk-neutral valuation the real world probabilities are adjusted given 

a certain model and the corresponding real world ‘prices’ so that the return on investment is the risk-free interest 

rate. It cannot be emphasized enough that risk-neutral probabilities are therefore no claim on real world 

probabilities. Besides, the assumptions underlying risk-neutral valuation do not hold in the real world. Risks 

cannot be hedged away in full and markets are not complete.  

 

Monte Carlo Simulation 

A closed form solution cannot be found because gas storages are path-dependent. We therefore have to use a 

numerical method to approximate the value. The chosen numerical method is Monte Carlo simulation. This is a 

process by which a large number of price paths are generated that evolve according to a particular stochastic 

process. The option payoff for each path is determined and the ‘fair’ value is calculated by taking the average of 

these ‘fair’ values.   

 Note that other numerical methods such as finite difference and binominal trees could also be used 

for approximating the value of gas storages. However, they are not as flexible to deal with the large complexity 

of gas storages (Felix & Weber, 2008). Besides, the price process is separated from the optimizing part so it is 

possible to experiment easily with different stochastic price processes. This is why in the remainder of this study 

Monte Carlo simulation is used to approximate the value of gas storages. A disadvantage of Monte Carlo 

Simulation is that it is relatively time-consuming.  

 Since risk-neutral pricing is used, the average of the simulated price paths at each point in time should 

approximate the equilibrium level. This equilibrium level is, in turn, set by the forward curve in which the risk-

free interest rate is taken into account.  

 

Efficient-Market Hypothesis 

Another assumption is to follow the efficient-market hypothesis. In finance, the assumption that the market 

always incorporate and reflect all relevant information is called the efficient-market hypothesis (EMH). Related 

to the gas market, all information about for example weather expectations, demand shifts, and expectations 
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about development of new technologies are already incorporated in the gas spot and forward prices. 

Consequently and in line with the fundamental theorem of asset pricing, an investor cannot consistently achieve 

returns in excess of average market returns on a risk-adjusted basis because assets always trade at their fair value. 

Following this theory, the only way an investor can possibly obtain higher expected returns is by taking more risk. 

The efficient market hypothesis is seen as a cornerstone of modern finance but it is also controversial and often 

disputed by practitioners. It is assumed in this thesis that markets are efficient. Together with the EMH it is also 

assumed that the market will not be influenced by our trades. 

 

2.3 Data 
This sub-section explains how the data used in this study are obtained. It also points out the restrictions 

associated with the data. 

 In the pricing part, market data is used to calibrate parameters of the stochastic processes and to 

analyse the natural gas market. Three datasets are retrieved from Bloomberg (2014) on three different markets: 

 The US Henry Hub 

 The UK NBP 

 The Dutch TTF 

These three markets differ in terms of geographic area (affects seasonal patterns), liquidity, and availability of 

data. Each dataset consist of the daily last traded spot price over the years 2010-2014. Data about available 

forward or future contracts are also retrieved from Bloomberg but only for a period of one year: 2014.  

 The period covered by these data sets, five years for spot prices and one year for forward contracts, 

are similar to periods used in comparable studies (Bjerksund, Stensland, & Vagstad, 2011; Zhao & van Wijnbergen, 

2013). At a 95% confidence level, no significant difference is found between the datasets on the 2001-2014 period 

and the 2010-2014 period by performing an analysis of variance. The five and one year periods are therefore 

considered to be appropriate and reasonable.  

 In section 4 the day-week profile of gas spot prices is analysed. In order to find the gas prices related 

to the corresponding weekdays the following conversion is applied. Five years of day ahead and weekend ahead 

prices are retrieved from Bloomberg (2014). Here the day ahead price on Monday indicates the spot price of 

Tuesday, the day ahead price on Tuesday indicates the spot price of Wednesday and so on. However, the day 

ahead price on Friday stands for the spot price of the Monday of the next week. The spot price of Saturday and 

Sunday is given by the weekend ahead price on Friday and are therefore the same.  

 This study demonstrates its methodology on the UK NBP gas market because it is the most liquid gas 

market in Europe. Additional techniques to enable the methodology to work for the other gas markets are 

presented when needed. For example, the correlation between NBP forward contracts and TTF forward contracts 

is analysed in Section 4.1.3. Natural gas trades at the UK NBP market in Pence per therm whereas at the other 

two markets other units are used. We therefore consider the unit of gas as irrelevant for the remainder of this 

study. This is because the purpose of this study is to present techniques that can be used for validation, not the 

actual pricing of gas storages.  

 

2.4 Ethical perspective 
Investing in the commodity sector is for the most part uncontroversial. Under the condition that these 

investments are in companies or services that create value for customers and society. This is because commodity 

prices are in the long run driven by investments in production technology which lead to stable or declining real 

prices over time (Rohrbein, 2011). Nevertheless, there is controversy about speculation on commodity prices. A 

debate is going on whether or not this can be seen as ethical.  

 

Historically, commodity contracts like futures and forwards are used by producers to manage the volatility of 

earnings in the future. This makes it easier to manage operations and plan investments. Nowadays this is still the 

case, but there are also other motives. Asset managers use these commodity contracts to gain exposure to 

commodities for three reasons. Diversification benefits and protection against inflation are seen as legit whereas 

pure speculation is seen as unethical and is therefore the focus of the debate. It is stated that speculation causes 
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higher volatility and higher commodity prices in general to the disadvantage of import dependent third-world 

countries (Rohrbein, 2011). An argument in defence of speculators is that they do not take physical delivery of 

commodities and can therefore not affect the physical market. At the other side, the argument is stated that 

speculation definitely moves prices making physical delivery more dependent on the, very volatile, spot market.  

 This debate is particularly relevant for agricultural commodities. However, energy commodities also 

influences food prices by their effect on production and shipping costs. Besides, oil and gas prices will have an 

impact on everyone’s purchasing power. This makes the ethical discussion also relevant for the gas market: The 

pursuit of profit in the gas sector versus the purchasing power of customers. One can say that investing in gas 

storages is unethical because investors tend to benefit from ordinary customers. On the other hand, it is argued 

that by investing in gas storages the spread between winter and summer gas prices will become smaller.  

 

In this study the above ethical discussion is taken into account. Nevertheless, no point of view is chosen in this 

discussion. This is because the purpose of this study is not to support holders of gas storages to maximise their 

profit. The purpose is to validate gas storage value(s) and thereby support audit work.  
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3 Literature Study 
This section discusses the literature per research question. Section 3.1 introduces and discusses the theory 

needed for the pricing part. This includes spot price analysis, potential stochastic processes, the analysis of the 

forward curve, and generalized autoregressive conditional heteroskedasticity (GARCH). Section 3.2 states the 

theory used for finding the optimal operating strategy, the optimizing part. Also, an example is given to 

demonstrate the corresponding algorithm. At last, section 3.3 describes the theory used for valuing gas storages 

and how to interpret this value. 

 Literature presented here per sub-section corresponds to the same sub-section in Section 4. In this 

way, relevant theory can directly be linked to its application.  

 

3.1 Simulating Future Gas Prices – Pricing 
In this sub-section all the relevant theory needed for sub-question 1 is presented, i.e.: 

 

Sub-question 1: How to simulate gas spot price paths? 

 

Theory to analyse and describe gas spot prices is presented first. Secondly, three stochastic models to simulate 

gas spot prices are introduced. After that, methods to analyse the forward curve are mentioned. At last, theory 

to incorporate volatility updating in the simulation of gas spot prices is discussed. In the figure below the focus 

of this section is encircled. The outcome on this sub-question will be the general input for the optimizing part. 

 

 

 
FIGURE 3: From Overall Research Structure; Section 3.1 
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3.1.1 Spot Price Analysis 

This section relates to the econometric analysis. The focus is encircled in Figure 4.  

 

 
FIGURE 4: From Overall Research Structure; Section 3.1.1 

Descriptive Statistics 

For analysing the spot price and its behaviour, descriptive statistics are provided of 5 year historical data for the 

three datasets: UK NBP, US HH, and Dutch TTF. This is done so general understanding of gas spot price is obtained. 

The spot price process itself, together with the ‘simple’ return and the log returns are visualized. Visualization of 

the NBP gas spot price and its returns are given in section 4.1.1. The HH and TTF are annualized in respectively 

Appendix B and C. 

 Traditionally the ‘simple’ returns are denoted with a capital R and calculated as follows: 

 

 
𝑅𝑡 =

(𝑆𝑡 − 𝑆𝑡−1)

𝑆𝑡−1

=  
𝑆𝑡

𝑆𝑡−1

− 1 

 

( 3 )  

In the equation above 𝑆𝑡 represents the price at time t and 𝑆𝑡−1 the price at time t-1. 

 

In finance the use of log returns is popular because it is often assumed that asset prices follow a lognormal 

distribution. An advantage of this assumption is that a lognormal distribution has a lower bound of zero and that 

the distribution is skewed to the right so it has a long right tail. Another advantage is that it takes account for 

continuous compounding. Log returns are denoted with a lowercase r and calculated as follows: 

 

 
𝑟𝑡 = log (

𝑆𝑡

𝑆𝑡−1

) =  log(𝑆𝑡) −  log(𝑆𝑡−1) 

 

 ( 4 ) 

Again, 𝑆𝑡 represents the price at time t and 𝑆𝑡−1 the price at time t-1. Besides, log indicates here the natural 

logarithm.  

 

Below it is explained how the skewness and kurtosis are calculated. 

 

Skewness is a measure of the degree of asymmetry of a distribution. The skewness of a normal distribution is 

zero. A positive skewness indicates the variable is skewed to the right meaning the right tail is longer as compared 

to the left tail (Kholopova, 2006). The skewness is calculated as follows: 

 
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝑆) =  

1

(𝑛 − 1) ∗  𝜎3
  ∑(𝑆𝑘 − 𝑀𝑒𝑎𝑛)3

𝑛

𝑘=1

 

 

( 5 ) 

Here, n represents the number of data-points, 𝜎 the standard deviation, and 𝑆𝑘  the kth  data-point.  
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Kurtosis is a measure of the ‘fatness’ of tails of the probability distribution. It shows whether the distribution is 

peaked or flat relative to the normal distribution. The kurtosis of a normal distribution is three. High kurtosis 

indicates a peak near the mean and a heavy tail (Kholopova, 2006). The kurtosis is calculated as follows: 

 

 
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝐾) =  

1

(𝑛 − 1) ∗  𝜎4
 ∑(𝑆𝑘 −  𝑀𝑒𝑎𝑛)4

𝑛

𝑘=1

 

 

( 6 ) 

Quantile-Quantile plots 

An appropriate way to verify the skewness and the kurtosis according its ability to detect normality is to construct 

a Q-Q plot. This quantile-quantile (QQ) plot is a graphical technique to determine whether or not two data sets 

come from populations with a common distribution. To test for normality, the normal QQ plot graphically 

compares the distribution of a given variable to the normal distribution which is represented by a straight line 

(Kholopova, 2006). It plots the quantiles of the first data set against the quantiles of the fitted normally distributed 

data set. In section 4.1.1 the QQ plot of the simple returns and the log returns of gas spot prices are given.  

 To complement a QQ plot the Jarque-Bera and Shapiro-Wilk statistical tests are conducted to test for 

normality.  

 

The Jarque-Bera test is a goodness-of-fit test that uses the above Skewness and Kurtosis to test if the data are 

sample drawn from a normal population. The null hypothesis of normality, e.g. skweness equal to zero and 

skewness equal to three, is tested. The Jarque-bera test statistic is calculated as follows (Jarque, 2011): 

 
𝐽𝐵 =  

𝑛

6
 [𝑆2 +  

1

4
 (𝐾 − 3)2] 

 

( 7 ) 

In addition to the Jarque-Bera test, the Shapiro-Wilk test is performed. This test also utilizes the null hypothesis 

to check whether the sample is drawn from a normal population. This test uses ordered data (from small to large)  

to calculate the test statistic. The corresponding equation is as follows (Shapiro & Wilk, 1965): 

 

 
𝑊 =  

(∑ 𝛼𝑖𝑥𝑖)
𝑛
𝑖=1

2

∑ (𝑥𝑖 −𝑛
𝑖=1 𝑀𝑒𝑎𝑛)

 
( 8 ) 

 

Here, 𝑥𝑖  is the i-th smallest number in the sample and the constants 𝛼𝑖  are given by 

 

 
(𝛼1, … . , 𝛼𝑛) =  

𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)1/2
 

( 9 ) 

 

Where, in turn,  

 

 𝑚 =  (𝑚1, … , 𝑚𝑛)𝑇 ( 10 ) 

 

𝑚𝑖  are the expected values of the order statistics of independent and identically distributed random variables 

samples from a standard normal distribution, 𝑉 is the covariance matrix of those order statistics. Again, the null 

hypothesis is rejected when the statistics are below a certain threshold or p- value.  

 

Seasonality 

The existence of  seasonality in the gas spot prices and in commodity prices in general is extensively described in 

commodity pricing literature (Back & Prokopczuk, 2013; Back, Prokopczuk, & Rudolf, 2013; Bernard, Khalaf, 

Kichian, & McMahon, 2008; Mirantes, Poblacion, & Serna, 2013). At first, there seems to be some sort of winter-

summer seasonality present in gas spot prices. To prove the existence of seasonality the data points are separated 

by months and analysed for significant differences. This is done in section 4.1.1. A way to test for significant 

differences over the year is to perform an Analysis of Variance (ANOVA) of the data-points per month over the 

five-year period. These 12 datasets are visualized by boxplots and in addition the mutual relationships are tested 



N.A.J. Roelofs  13 

by using the Tukey’s Honest Significant Difference test. This test is used to find means that are significantly 

different from each other (Tukey, 1949). 

 

Volatility clustering 

Findings in finance and especially the commodity pricing literature show that the second moment evolution of a 

price process should not be neglected. Pindyck (2003) was one of the first to predict commodity prices and 

volatility with GARCH (Generalized Autoregressive conditional Heteroskedascity) models to incorporate clustering 

in volatility. In response to Pindyck (2003) several authors found that a GARCH model outperforms more 

sophisticated models in predicting volatility of commodity returns (Bates, 2003; Hansen & Lunde, 2005; Sadorsky, 

2006). These models are originally introduced in the eighties of the last century (Bollerslev, 1986; Engle, 1982).  

 Before implementing a GARCH model, the existence of volatility clustering is shown by a unit root 

tests and a stationarity test: respectively the Phillips-Perron (PP) test the Augmented Dickey-Fuller (DF) test, and 

the Kwiatowski-Phillips-Schmidt-Shin (KPSS) test. The  PP and DF tests have as null hypothesis the presence of a 

unit root whereas the KPSS test has as null hypothesis a stationary process. The KPSS test is used to complement 

the first test and should give similar results.  

 Both tests are programmed in the statistical software and environment of R based on Hamilton (1994), 

and Zivot (2006). The results are given in section 4.1.1. 

 Besides testing for a unit root the DF statistical test also tests for no mean reversion. As null hypothesis 

the DF has a mean reverting process. If the p-value is below the critical threshold for the spot price, it cannot be 

concluded that there is no mean reversion in the spot price. The same can be done for the return process of the 

spot price (Kim & Park, 2013). 

 

3.1.2 Stochastic Processes  

In this sub-section three stochastic processes are introduced which can be used in the Monte Carlo simulation of 

future price paths. These price paths are in turn used as an input in the optimizing part of this study. This can be 

seen from the research structure in Appendix A.  First, a stochastic process itself is introduced. The three 

stochastic processes are as follows: 

 The Geometric Brownian Motion (GBM) 

 The Geometric Ornstein-Uhlenbeck (GOU)  

 The Log-Normal Ornstein-Uhlenbeck (LNOU)  

 

A variable whose value changes over time in an uncertain way can be represented by a stochastic process. 

Stochastic processes are often used to represent the evolution of some system of random values over time. In 

the field of mathematical finance these models are used to simulate prices of for example shares, bonds, and 

commodities. In many cases, the starting point of the process is known and many directions are possible in which 

the process may evolve.  

 The objective of this section is to provide stochastic price processes that can be used for the simulation 

of future gas prices. Ideally, the stochastic process represents the characteristics of gas spot prices known from 

literature and our econometric analysis. However, these characteristics may vary over time and may be 

commodity specific (Back & Prokopczuk, 2013).  

 In this section the three stochastic processes are described as a price model for gas spot prices.  At 

first, the corresponding parameters of these processes are treated as constants. Later, these models are extended 

by implementing time-varying equilibrium level and volatility updating. 

 The decision which stochastic process to use in the simulation of gas spot prices depends on the 

econometric analysis of the gas spot prices over five year of historical data together with the possibilities to 

incorporate gas price characteristics like time-varying equilibrium level and volatility updating. In Figure 5 the 

focus of this section in relation to the overall research structure is given.  
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FIGURE 5: From Overall Research Structure; Section 3.1.2  

Geometric Brownian Motion 

This is a standard stochastic process often assumed for asset prices where the logarithm of the underlying follows 

a generalized Wiener process (J. C. Hull, 2006, p. 270). The process is defined by the following stochastic 

differential equation: 

 

 dS =  μSdt +  σSdz ( 11 ) 

 

Here μ represents the drift, dt the change in time, σ the volatility, and dz the increment of a Wiener process 

 

The conditional distribution of S at time t is (Dixit & Pindyck, 1994):  

 

 E[St+w|St] = Steμw ( 14 ) 

 

 Var(St+w|St) =  St
2 e2μw(eσ2w − 1) ( 15 ) 

 

Following the last condition, the variance of the process increases over time without bound. 

 

Geometric Ornstein-Uhlenbeck 

The Ornstein-Uhlenbeck stochastic process is used a lot in the field of commodity pricing since the process tends 

to drift towards an equilibrium level, taking account for mean-reverting behaviour of many commodity prices 

(Bessembinder et al., 1995). The standard Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) is: 

 dS = k[μ − S]dt +  σdz ( 16 ) 

 

Where k ≥ 0 measures the speed of mean reversion, µ is the equilibrium price level, σ the volatility, and dz is the 

increment of a Wiener process. This process is stationary, Gaussian and Markovian.  

 

Many variations of this stochastic process are since then developed to make the volatility price-dependent. The 

following process is suggested by Dixit and Pindyck (1994) and is known as the Geometric Ornstein-Uhlenbeck 

process.  

 

 dS = k[μ − S]dt +  σSdz ( 17 ) 

 

Following this process, the percentage change per time unit is normally distributed.  

 

The conditional distribution is as follows: 

 

 E[St+w|St] =  μ + e−kw (St − μ) ( 19 ) 
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Var(St+w|St) =  

σ2St

2k
 (1 − e−2kw) 

( 20 ) 

Log-Normal Ornstein-Uhlenbeck 

This process is introduced by E. S. Schwartz (1997) and is often used in commodity pricing literature. It describes 

a stochastic mean reverting process to a constant mean. The difference with the Geometric Ornstein-Uhlenbeck 

process is that ito’s lemma is applied to the commodity spot price. The (natural) log price is characterized by an 

Ornstein-Uhlenbeck stochastic process instead of the spot price itself. The commodity spot price follows the 

stochastic process: 

 

 dS = κ[μ − ln S] Sdt +  σSdz ( 21 ) 

 

Applying Ito’s Lemma: 𝑋(𝑇) = ln 𝑆(𝑇) and 𝑆(𝑇) = 𝑒𝑥𝑝{𝑋(𝑇)}  the log price follows an Ornstein-Uhlenbeck 

stochastic process: 

 

 dX = κ[α − X]dt +  σdz ( 22 ) 

 

Where  

 
α =  μ − 

σ2

2k
 

( 23 ) 

 

Again, the magnitude of the speed of adjustment is represented by k > 0 to the long rung mean log price, α. σ is 

the volatility, and dz is the increment of a Wiener process. The conditional distribution of X at time T under the 

equivalent martingale measure is normal: 

 

 E0[X(T)] =  e−kTX(0) + (1 − e−kT)α∗ ( 24 ) 

 

 
Var0[X(T)] =  

σ2

2k
 (1 −  e−2kT) 

( 25 ) 

 

Here, α∗= α-λ and λ is the market price of risk. 

 

Following this process, the first difference of the log price is normally distributed instead of the percentage 

change in the Geometric Ornstein-Uhlenbeck process.   

 

3.1.3 Forward Curve Analysis 

It might be confusing to analyse the forward curve whereas the spot approach is the focus of this study. 

Nevertheless, the forward curve gives valuable information about the expected value of future spot prices. For 

example, the equilibrium level of an Ornstein-Uhlenbeck process to simulate spot prices can be determined by 

its forward curve instead of calibration on historical data. In this way, the equilibrium level is an implied parameter 

and consistent with market data.  

 First, general understanding how forward curve information can be used, together with risk-neutral 

valuation is explained. After that, smoothing of market curves is discussed because commodity forward contracts 

are only settled against an average spot price over the settlement period. At last, the theory of Principal 

Component Analysis (PCA) is stated. PCA is applied in order to simulate future forward curves and potentially 

make the equilibrium level stochastic.  

 From the overall research structure the focus of this section is encircled in the figure below. Smoothing 

the forward curve at the valuation date is done to create a deterministic equilibrium level. After that, an attempt 

is made to make the equilibrium level stochastic given one year of forward curve data.  
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FIGURE 6: From Overall Research Structure; Section 3.1.3  

Forward Contracts and Risk-Neutral Valuation 

In section 3.1.2 the spot price representation is given of the Geometric Brownian Motion, Geometric Ornstein-

Uhlenbeck and the Log-Normal Ornstein-Uhlenbeck to simulate future spot prices. To incorporate seasonality in 

these simulations forward curve information is used. Because the last two processes are mean reverting, forward 

contracts are used to determine a time-dependent equilibrium level. Since the Geometric Brownian Motion is 

not mean reverting this it is not relevant for this section. The dynamics of the spot price process of both Ornstein-

Ulenbeck processes are under the assumption of risk-neutral valuation. Following this approach current forward 

prices represent the expected future spot price (E. S. Schwartz, 1997).  

 

For the Geometric Ornstein-Uhlenbeck process forward prices can be linked directly to future spot prices.  

 

 𝐹(0, 𝑇) = 𝐸0[𝑆(𝑇)] ( 26 ) 

 

And this will set the time-dependent equilibrium level at time T: 

 

 𝜇(𝑇) = 𝐹(0, 𝑇) =  𝐸0[𝑆(𝑇)] ( 27 ) 

Additional steps are needed to set the time-dependent equilibrium level for the Log-Normal Ornstein-Uhlenbeck 

process. This is because it considers the price to be log normal distributed. From the properties of the log-normal 

distribution, we have: 

 

 𝐹(0, 𝑇) = 𝐸0[𝑆(𝑇)] ( 28 ) 

 

 𝐹(0, 𝑇) = 𝐸0[𝑒𝑥𝑝{𝑋(𝑇)} ( 29 ) 

 

 
𝐹(0, 𝑇) = 𝑒𝑥𝑝 {𝐸0[𝑋(𝑇)] +  

1

2
𝑣𝑎𝑟0[𝑋(𝑇)]} 

( 30 ) 

 

 
𝜇(𝑇) = 𝐹(0, 𝑇)  =  𝑒𝑥𝑝 {𝐸0[𝑋(𝑇)] +

1

2
𝑣𝑎𝑟0[𝑋(𝑇)]} 

( 31 ) 

 

Information on forward and future contracts can be retrieved from data sources like Bloomberg. In commodity 

markets typical forward contracts are often settled against an average spot price during the settlement period. 

The delivery rate in the settlement period is constant and the contracts are called average-based forwards. These 

average contracts will create a very blocky forward curve with jumps between contract periods. Using this forward 

curve as the prediction of future spot prices is not in line with the smoothed behaviour of these prices. To 

overcome this problem, the forward curve known from market should be made smoothed and still be consistent 

with market information. By doing so, a forward curve with daily granularity is created. This process is known 

from electricity pricing literature (Koekebakker & Ollmar, 2005) and visualized in Figure 7. 
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Figure 7: Smoothed Forward curve  

Smoothing the Curve  

The smoothing of the forward curve can be done in several ways and in different levels. One of the most 

commonly known theories to do this is the “moving average” principle. Other methods are for example the 

“Kalman filter”, “exponential smoothing” and the fitting of polynomials to the data. The consideration which 

method is most appropriate is considered out of scope for this study. To create a smooth forward curve from 

average-based commodity contracts the method to fit a spline is used as discussed by Benth, Koekkebakker, and 

Ollmar (2007).  

 

Smoothing splines provide a flexible way of estimating the underlying regression function (Tibs, 2014). A spline 

of order k is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of 

order 1,…k-1, at its knot points. Formally, a function 𝑓 is a kth  order spline with knot points at 𝑡1 < ⋯  <  𝑡𝑚 if  

 𝑓 is a polynomial of degree k on each of the intervals (-∞, 𝑡1], [𝑡1, 𝑡2], … [𝑡𝑚, ∞), and 

 𝑓(𝑗), the jth  derivative of 𝑓, is continuous at 𝑡1, … 𝑡𝑚, for each 𝑗 = 0,1 … 𝑘 − 1. 

 

The continuity in all of the lower order derivatives makes splines very smooth, often the location of the knots 

cannot be detected visually.  

 
This study focuses on cubic smoothing splines, k=3. Functions of the form ∑ 𝛽𝑗𝑔𝑗

𝑛
𝑗=1  where 𝑔1, … 𝑔𝑛are the 

truncated power basis functions for natural cubic splines with knots at 𝑥1, … 𝑥𝑛. Specifically, the coefficients are 

chosen to minimize  

 

 (𝑦 − 𝐺𝛽)2
2 +  𝜆𝛽𝑇𝛺𝛽 ( 32 ) 

 

Where 𝐺 is the basis function defined as: 

 

 𝐺𝑖,𝑗 = 𝑔𝑗(𝑥𝑖),   𝑖, 𝑗 = 1, … 𝑛, ( 33 ) 

 

And Ω is the penalty function:  

 

 𝛺𝑖,𝑗 =  ∫ 𝑔𝑖
′′ (𝑡)𝑔𝑗

′′(𝑡)𝑑𝑡,

𝑖, 𝑗 = 1, … 𝑛, 

( 34 ) 

 

Given the optimal coefficients 𝛽^, the smoothing spline estimate at x is: 
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𝑟^ (𝑥) =  ∑ 𝛽^

𝑗
𝑔𝑗(𝑥)

𝑛

𝑗=1

 
( 35 ) 

 

The regularization term 𝜆𝛽𝑇𝛺𝛽 has a tuning parameter, the smoothing parameter: λ. The higher the value of λ, 

the more shrinkage of the spline. There are two ‘philosophical’ approaches to choose the smoothing parameter. 

The first approach is a subjective choice. The second one is an automatic method, so the parameter is chosen by 

data. This method is called cross-validation (Wu, 2004). In this study the first approach is chosen because the 

automatic method is considered out of scope. Calculations related to this section are performed in the software 

environment of R.  

 

Forward Markets with Less Liquidity 

As stated in Section 2.4 about the availability of data, markets differ in the diversity of forward contracts they 

offer. For example there are 24 monthly forward contracts available on the US Henry Hub whereas the Dutch TTF 

market only quotes 4 monthly contracts. The most liquid natural gas market in Europe is the NBP in the UK. The 

International Commodity Exchange (ICE) provides quotes for 12 monthly forward contracts on this market.  

 For simulation purposes as explained in 3.1.2, prices of monthly forward contracts are needed to 

represent the summer-winter seasonality in the simulation of future spot prices. The minimal number of forward 

contracts needed to represent this seasonality is considered to be 12. In that case, 8 monthly forward contracts 

are lacking of the TTF market. A method to overcome this problem is to construct monthly forward contracts out 

of quarterly and seasonally contracts. If there are still monthly contracts missing a ratio analysis is applied. An 

approximation of the ratios between TTF monthly forward contracts and quarterly contract is found from the UK 

NBP market because these markets seems to be highly correlated. In Section 4.1.3 the correlation between the 

Dutch TTF market and the UK NBP market is examined. After determining the correlation between these markets 

in Chapter 4, the method is further discussed.  

 

Principal Component Analysis 

Principal Component Analysis (PCA) is a data reduction technique and is concerned with the identification of 

structure within a set of interrelated variables. Its aim is to determine the relevant factors or principal 

components which explains as much of the total variation in the data as possible (Koekebakker & Ollmar, 2005). 

PCA is a widely used method for simplifying complex data structures. Its application can be found in many fields, 

such as simulation and image analysis. Instead of attempting to describe 100% of the variance within a dataset, 

the idea is to filter out the most important factors and use them to simulate the market (Bjerksund et al., 2011).  

 For the purpose of this study, PCA is used to simulate forward curves conditional on the forward curve 

of the previous day. By simulating forward curves the equilibrium level parameter which is set by forward prices 

is made stochastic. Results are presented and discussed in Section 4.1.3. In this section it is concluded that the 

added value of a stochastic equilibrium level parameter is very low for the purpose of validation. Nevertheless 

the PCA on forward curves is presented for future research.  

 

From a more mathematical perspective the origins of PCA lie in multivariate data analysis. PCA has been called 

one of the most important results from applied linear algebra and its most common use is as the first step in 

analysing large data sets (Richardson, 2009b). PCA uses a vector space transform to reduce the dimensionality of 

data sets. In this way, by using mathematical projection, the original set of data can often be interpreted in just a 

few variables, the so called principal components.  

 

In this study, the application of PCA to gas forward curves is in line with the study of Koekebakker and Ollmar 

(2005). From this paper four different steps are separated: 

1. Construct for every day a forward curve with daily granularity  

2. Find a return function for each day as a function of time to maturity 

3. Perform principal component analysis to find typical curve movements 
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4. Determine the volatility functions from the factor loadings in the PCA 

 

The first step about smoothing the curve is already discussed in Section 3.1.3, the application of this theory is 

stated in Section 4.1.3. In step two a time homogenous model is assumed to obtain manageable input 

estimations: 

 

 𝜎𝑖(𝑡, 𝑇) =  𝜎𝑖(𝑇 − 𝑡) ( 36 ) 

 

This means that the loadings from the PCA depends only on time to delivery. The return function depends on the 

stochastic process that chosen to simulate gas prices. When the Log-Normal Ornstein-Uhlenbeck stochastic 

process (E. S. Schwartz, 1997) is followed the return function is as follows: 

 

 𝑙𝑛[𝑐𝑢𝑟𝑣𝑒2(𝑡1)/𝑐𝑢𝑟𝑣𝑒1(𝑡2)] ( 37 ) 

 

This means that the first day on a curve is compared to the second day of the curve of the previous day, 

corresponding to the same ‘delivery’ date. This return function is applied to all curves and to maturities (one year 

of forward curves with each 365 ‘delivery’ points). Step three consists of the actual execution of the PCA. This is 

done by calculating the “eigenvalues” and corresponding “eigenvectors” of the covariance matrix and to sort 

them in decreasing order. Market practice, and frequently used in finance literature is to use the number of 

factors that are needed to explain 95% of the variance. At last, the volatility functions follow from the factor 

loadings of the eigenvectors.  

 

To perform the simulations of the forward curves the following equation is applied (Bjerksund et al., 2011): 

 

 
𝐹(𝑡 + ∆𝑡, 𝑇) = 𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [∑(𝜎𝑖(𝑇 − 𝑡)√∆𝑡 ∗ εi −

1

2
𝜎𝑖

2(𝑇 − 𝑡) ∗ ∆𝑡)

𝑁

𝑖=1

] 
( 38 ) 

 

This is a discrete time representation because it is used to actually simulate the forward curve at time 𝑡 + ∆𝑡 on 

the forward curve at time t.  Furthermore, F(t,T) represents the forward price at time t for delivery at time T, εi 

are i independent standard normal distributed numbers, and 𝜎𝑖(𝑇 − 𝑡) are the factor loadings.  

 

3.1.4 GARCH 

The generalized autoregressive conditional heteroskedasticity (GARCH) technique is already mentioned shortly 

in Section 3.1.1. The general principle is to include the second moment evolution of a price process in the 

prediction of future prices. Whereas Section 3.1.1 focuses on the need for a GARCH model, its background and 

the way to implement it to a stochastic process is discussed here. The relation of this section to the overall 

research structure is presented in Figure 8.  

 

 
FIGURE 8: From Overall Research Structure; Section 3.1.4  
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At first, together with the other parameters, the volatility parameter is treated as a constant. This sub-section will 

present theory to incorporate volatility updating in the simulation of gas spot prices. Price path simulations using 

this model are presented in Chapter 4.  

 

One of the founders of the volatility-updating principle is Engle (1982). He introduced an autoregressive 

conditional heteroskedasticity (ARCH) model of asset price changes. Four years later, Bollerslev (1986) developed 

upon this ARCH model a generalized version: GARCH. Following this generalization, the conditional variance is 

modelled as an autoregressive moving average (ARMA) process. The basic form of a GARCH (p,q) model is: 

 

 𝑆𝑡 = 𝐸[𝑆𝑡|𝑆𝑡−1] +  𝜎𝑡
2 ∈𝑡  ( 39 ) 

 

Here, the price S at time t  is based on the expectation of price S, conditional on the price at t-1, the volatility 𝜎, 

and error term ∈.  

 

The conditional expectation term can be represented by any stochastic process, including the Geometric 

Brownian Motion, Geometric Ornstein-Uhlenbeck process, and the Log-Normal Geometric Ornstein-Uhlenbeck 

process.  

In the GARCH model the error part is ∈𝑡
𝑖𝑖𝑑.
~

 𝑁(0,1) and 

 
𝜎𝑡

2 =  𝜔 + ∑ 𝛼𝑖𝜖𝑡−𝑖
2

𝑞

𝑖=1

+  ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

 
( 40 ) 

 

In the above equation, 𝛼𝑖  represents q autoregressive terms and 𝛽𝑖  represent p moving average terms.  

 

The GARCH (1,1) model, so with one autoregressive term and one moving average term, is often used as a 

volatility model. Hansen and Lunde (2005) compare this volatility model with 330 other volatility models in their 

extensive study. They conclude as follows: “we cannot reject that none of the competing models are better than 

the GARCH (1,1) model.” Determining which volatility model is most suited to simulate future gas prices is 

considered out of scope for this study. In this study, the volatility is therefore modelled following the GARCH (1,1) 

model. 

 

As stated in Section 2.3, we use 5 year of historical data to calibrate the parameters of the Ornstein-Uhlenbeck 

process and the parameters of the GARCH volatility model. The parameters of the OU process are calibrated by 

the use of linear regression. The parameters of the GARCH volatility model are found by a maximum likelihood 

analysis. At a 95% confidence level, no significant difference is found between the datasets on the 2001-2014 

period and the 2010-2014 period by performing an analysis of variance. We consider therefore this dataset as 

appropriate.   



N.A.J. Roelofs  21 

3.2 Finding the optimal operating strategy – Optimizing 
In this sub-section all the relevant theory needed for sub-question 2 is stated, i.e.: 

 

Sub-question 2: What is the principle to find the optimal operating strategy for a gas storage using the spot 

approach? 

 

First, the Least Square Monte Carlo Method is introduced. This method is used to value American options by 

using regression techniques. Secondly, the LSMC method is implemented in a dynamic programming problem. By 

working backwards, the continuation value of each decision at each point in time can be found. At last, an 

example is given to clarify the corresponding algorithm.  

 From the overall research structure this section is related to the optimizing part. The pricing part at 

the left is an input of finding the optimal operating strategy. In turn, the result of this sub-question is an input of 

sub-question three: valuation and interpretation. The focus of this section and its relationship to the overall 

structure is presented in Figure 9.  

 

 
FIGURE 9: From Overall Research Structure; Section 3.2  

3.2.1 Least Square Monte Carlo Method 

Gas storage valuation can be looked upon from an option valuation perspective. At each point in time the storage 

holder basically has the option to exercise the option (withdrawal gas, inject gas or do nothing). A starting point 

is to set the option as a simple European call/put option. In this way a closed form solution can easily be derived 

using the classical option pricing model of Black and Scholes (1973). However, a European option does not 

account for path-dependency and does not come near the real flexibility of a storage. It has only one decision at 

maturity versus multiple at each time point. This makes a gas storage similar to an American option, or in discrete 

time, a Bermuda option (Zhao & van Wijnbergen, 2013).  

 Now the storage valuation presents itself as a dynamic programming problem to find the decision rule 

at each point in time: inject, do nothing, or withdraw. This choice depends on the immediate payoff and the 

continuation value of each decision. The continuation value in turn, depends on decisions made in the future. 

Consequently, this problem can only be solved working backwards.  

 Because the flexibility of a storage contract is too complex to have a closed form solution, advanced 

numerical techniques are required to solve the dynamic programming problem. Such a technique is the Least 

Square Monte Carlo method (Longstaff & Schwartz, 2001). This is a simple yet powerful approach for 

approximating by simulation the value of American and exotic options. The key of this approach is to use least 

squares regression to estimate the conditional expected payoff from continuation. The Longstaff and Schwartz 

(2001) method estimates the conditional expected option value by simulating a lot of price paths and carrying 

out a regression analysis on the resulting option values. This results in an approximation for the continuation 

values of the different decisions at each point in time.   
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 The LSMC method is in general a relatively simple and easy technique to price complex options but it 

also has some critics. One of the biggest critics is that it is difficult to assess exactly how accurate the method is 

(Johnson, 2012). Other critiques are that the corresponding algorithm depends on the number of sample paths, 

the number of basis functions for the regression, the type of basis functions and the number of observation dates. 

Here, the number of sample paths and the number of basis functions are restricted to computational time and 

power. Besides, the method’s performance is mixed and can often incur unknown approximation errors (Johnson, 

2012). Also, the various polynomial fits and number of basis functions have different effects on performance 

(Moreno & Navas, 2003). Nevertheless, the method will provide good estimates for option values. Estimates are 

considered appropriate for this study because the perspective of validation is chosen.  

 

3.2.2 Optimizing the Operation of the Gas Storage 
At this section the storage contract and its characteristics are presented analytically from the perspective of the 

holder of the contract. The holder faces multiple decisions at every point in time. The value of the storage is the 

expected value of the accumulated future payoffs when following the optimal strategy. The algorithm to find 

these optimizing decisions is also given (Boogert & De Jong, 2008). This algorithm is programmed in the 

programming environment of R. The corresponding code is presented in Appendix D.  

 

The contract is signed at time 𝑡 = 0 and settled at time 𝑡 = 𝑇 + 1. Each day the storage holder faces the decision 

to inject, do nothing, or withdraw gas, under volumetric limitations.  

 

The accumulated volume in storage at the start of day 𝑡 is denoted by 𝑣(𝑡): 

 

 
𝑣(𝑡) = 𝑣(0) +  ∑ ∆(𝑖 − 1)

𝑡

𝑖=1

 
( 41 ) 

 

 

The corresponding payoff at day t is ℎ(𝑆(𝑡), ∆𝑣(𝑡)) for 𝑡 = 0, … , 𝑇: 

 

 

ℎ(𝑆(𝑡), ∆𝑣(𝑡)) = {

−𝑐(𝑆(𝑡))∆𝑣(𝑡)           𝑖𝑛𝑗𝑒𝑐𝑡 𝑎𝑡 𝑑𝑎𝑦 𝑡

0                          𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑎𝑡 𝑑𝑎𝑦 𝑡

−𝑝(𝑆(𝑡))∆𝑣(𝑡)   𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤 𝑎𝑡 𝑑𝑎𝑦 𝑡

 

 

( 42 ) 

 

Here 𝑆(𝑡) represent the gas spot price at time t, ∆𝑣(𝑡) the change in volume level at time t, 𝑐(𝑆(𝑡)) the cost of 

injection, and 𝑝(𝑆(𝑡)) the profit of withdrawal. In Section 2.3 the market is assumed complete and frictionless. 

So in line with this assumption there are no transaction costs and the bid-ask spreads zero. 

 

 

The volume metric and injection/withdrawal limitations are presented as follows: 

 

 𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑡) ≤ 𝑣𝑚𝑎𝑥  

𝑖𝑚𝑖𝑛 ≤ ∆𝑣(𝑡) ≤ 𝑖𝑚𝑎𝑥  

 

( 43 ) 

The scope of this research is to treat these limitations as constants whereas in reality they may depend on time 

and current volume. 𝑖𝑚𝑖𝑛is usually negative and 𝑖𝑚𝑎𝑥  is usually positive. 

 

As stated above, the value of the storage is the expected value of the future payoffs when following the optimal 

strategy 𝜋: 

 

 sup 𝑬

𝜋
[∑ 𝑒−𝛿𝑡ℎ(𝑆(𝑡), ∆𝑣(𝑡)) + 𝑒−𝛿(𝑇+1)𝑞(𝑆(𝑇 + 1), 𝑣(𝑇 + 1))

𝑇

𝑡=0

] 

 

( 44 ) 
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This expectation is assumed to be under a risk-neutral measure. Here, 𝑞(𝑆(𝑇 + 1), 𝑣(𝑇 + 1)) represents a 

penalty function which depend on (the lack of) remaining gas in storage at T+1. 𝑒−𝛿𝑡 the discount-rate, and as 

stated above, ℎ(𝑆(𝑡), ∆𝑣(𝑡)) is the payoff at day t.  

 

The continuation value, the value that is assigned to the contract after taking a specific action ∆𝑣, at time t, 

volume level v  and spot price s,  is defined as follows: 

 

 𝐶(𝑡, 𝑆(𝑡), 𝑣(𝑡), ∆𝑣) = 𝑬[𝑒−𝜹𝑈(𝑡 + 1, 𝑆(𝑡 + 1), 𝑣(𝑡) + ∆𝑣)] ( 45 ) 

 

Were 𝑈(𝑡, 𝑆(𝑡), 𝑣(𝑡)) represents the following dynamic program: 

 

 𝑈(𝑇 + 1, 𝑆(𝑇 + 1), v(T + 1))  

=  q(S(T + 1), v(T + 1)) 

( 46 ) 

 

 𝑈(𝑡, 𝑆(𝑡), 𝑣(𝑡)) = 𝑚𝑎𝑥{ℎ(𝑆(𝑡), ∆𝑣), 𝐶(𝑡, 𝑆(𝑡), 𝑣(𝑡), ∆𝑣)} ( 47 ) 

 

To find the solution for this dynamic problem regression-based simulation will be used. The above introduced 

Least Squares Monte Carlo method is well suited for this part because it can handle a variety of constraints. This 

regression must be calculated for every point in time, discrete volume level, and for each price path; 𝑏 = 1, … , 𝑀. 

mathematically, this results in the following estimation: 

 

 𝐶𝑏(𝑡, 𝑆𝑏(𝑡), 𝑣(𝑡 + 1)

≈  𝑒−𝛿  𝑌𝑏(𝑡 + 1, 𝑆𝑏(𝑡 + 1), 𝑣(𝑡 + 1)) 

( 48 ) 

 

Where 𝑌𝑏(𝑡 + 1, 𝑆𝑏(𝑡 + 1), 𝑣(𝑡 + 1) denotes the accumulated value of future realized cash flows in path b 

following optimal decisions being at volume level v(t+1)  and price 𝑆𝑏(𝑡 + 1).  

 

All of the above can be summarized by the following pricing algorithm (Boogert & De Jong, 2008): 

1. Simulate M independent price paths 𝑆𝑏(1), … , 𝑆𝑏(𝑇 + 1) for 𝑏 = 1 … 𝑀 starting at given 𝑆(0) 

2. Assign a value to the contract at maturity, e.g. a penalty for (lack of) remaining gas in storage 

3. Apply backward induction for 𝑡 = 𝑇, … ,1 for each t, step over N allowed volume levels 𝑣(𝑡; 𝑛) 

a) Run an OLS regression to find an approximation of the continuation value 

b) Combine the different continuation values into a decision rule 

c) Implement the decision rule to calculate the accumulated future cash flows 

4. The storage value is the average accumulated future cash flow over all price paths 

3.2.3 An Example  

At this section an example for step 2 – 4 of the algorithm above is given. Step 1 relates to the simulation of price 

paths (Section 3.1). As stated in the section before, the dynamic problem is solved by working backwards. To 

visualize this process a volume-time grid is presented when needed.  

 

Step 2. Assign a value to the contract at maturity 

Remaining (or lack of) gas in a storage represents value. To stimulate the ending volume level to be in line with 

the starting volume level a penalty function is introduced. This penalty is for example the last gas price times 1.1 

per volume point below the starting volume level and the last gas price times 0.91 (1/1.1) per volume point above 

the starting volume level. At the figure below this step is visualized for an optimizing process of discretized volume 

points: 𝑣 = 0, … ,4 discretized volume change: ∆𝑣 = −1,0,1 and T=4. The P represents a penalty at maturity. The 

starting volume is 2 since no penalty is assigned to that volume level. At the right side, the price paths (b=1,..,5) 

are included creating a 3D-grid.  
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Step 3.a. Run an OLS regression to find an approximation of the continuation value 

Maybe the most important step of this dynamic programming problem. The theory of Least Squares Monte Carlo 

is used to find the continuation value given a certain point in time and volume level. Important to notice is that 

in the following formula: 

 

 𝐶𝑏(𝑡, 𝑆𝑏(𝑡), 𝑣(𝑡 + 1)) ≈  𝑒−𝛿  𝑌𝑏(𝑡 + 1, 𝑆𝑏(𝑡 + 1), 𝑣(𝑡 + 1)) ( 49 ) 

 

𝑣(𝑡 + 1) is used instead of v(t) . This is done so the transition in volume between t and t+1 is irrelevant, decreasing 

the dimensionality of the problem. Back to our example, we regress Y, the accumulated future value (in this case 

the discounted penalties), on X, the price of gas in each price path. In Table 3 the input for the regression is given. 

 

 

Parameters step 3.a b X Y 

t=4 1 21.18913 
𝑒−𝑟∆𝑡 ∗  

1

𝑝
∗ 21.18913 

v=3 2 21.32970 
𝑒−𝑟∆𝑡 ∗  

1

𝑝
∗ 21.32970 

p=1.1 3 19.19480 
𝑒−𝑟∆𝑡 ∗  

1

𝑝
∗ 19.19480 

r=0.04 4 21.16185 
𝑒−𝑟∆𝑡 ∗  

1

𝑝
∗ 21.16185 

∆𝑡 = 0.25 𝑦𝑒𝑎𝑟 5 21.91155 
𝑒−𝑟∆𝑡 ∗  

1

𝑝
∗ 21.91155 

TABLE 3: Input for regression  

Ordinary least square regression is used as the form of regression. This is in line with the numerical example 

presented by (Longstaff and Schwartz (2001)). When following the example, Y is regressed on a constant, X, and 

𝑋2, the result is as follows: 

 

 𝑌 =  −8.008 ∗ 10−13 + 9.087 ∗ 10−1 ∗ 𝑋 − 1.895 ∗ 10−15 ∗ 𝑋2 ( 50 ) 

 

From this formula the continuation value under these parameters for the first time path, so b=1, is equal to 

19.25368. In the above equation Y seems to be a linear function of X. This is because the regression is between 

the last time step of X and the penalty function Y. Here, the penalty is a function itself of the price at the last time 

FIGURE 10: Time-Volume Grid for Assigning Value at Maturity 
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step. At other points in time the regression does not result in a (almost) linear function, this is only the case at 

the regression between the last price and the penalty function.   

Step 3.b. Combine the different continuation values into a decision rule. 

Because in this example the change in volume per time-step is only one, three decisions are possible Inject 1, do 

nothing, and withdraw 1. This decision depends on the cash flow that can be generated at that particular point 

in time and the corresponding future payoffs of continuation. In general, an action with a high immediate payoff 

has a lower expected future payoff, and vice versa. The immediate or direct payoff is determined by the current 

price of gas. In our example the decision to inject gas has an immediate payoff of -1 multiplied by 21.18913 (the 

gas price at the first price path) whereas withdrawal results in a direct payoff of 1 multiplied by 21.18913. The 

direct payoff combined with the continuation value of each decision can be compared. The option that results in 

the highest value will determine the decision. For a visualization of this decision see Figure 11.  

 

 
FIGURE 11: Time-Volume Grid to Determine Decision Rule 

 

As can be seen in the figure above the decision that results in the highest expected payoff is to withdraw gas at 

t=4 for price path b=1.  

 

3.c. Implement the decision rule to calculate the accumulated future cash flows 

Now the accumulated future cash flow for this point can be calculated following the decision rule of withdrawal. 

𝑎𝑐𝑓(𝑡 = 3, 𝑣 = 3, 𝑏 = 1) = 21.18913 + 𝑒−0.03∗0.25 ∗  0 = 21.18913. A commonly mistake here is to confuse 

the accumulated future cash flow with the continuation value. The continuation value is only used to determine 

the decision rule whereas the accumulated future cash flow is determined by the ‘real’ cash flows of that 

particular decision. To avoid misunderstanding, in the described example the continuation value and the 

accumulated future cash flow are the same due to the penalty function at the last time step.  
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3.3 Valuation and Interpretation  
In this sub-section all the relevant theory needed for sub-question 3 is stated, i.e.: 

 

Sub-question 3: How to obtain a value and interpret the value of gas storages? 

 

This last sub-question combines the first two to find a value per simulated price path generating a distribution of 

values. In this section the theory is stated how this distribution of values can be interpreted. This section relates 

to Section 4.3 in which the theory is applied. In Figure 12 the perspective of this section to the overall structure 

can be seen.  

 

 

FIGURE 12: From Overall Research Structure; Section 3.3 

Recall that the focus of this study is not to value gas storages in the sense to find a claim on the ‘real’ value of gas 

storages. Instead, the focus is to support audit work in validating the (client’s) gas storage value. Nevertheless, 

this validating is done by finding a value, or a range of values to enable comparison with the client’s value. So, 

also in the process of validating, values have to be obtained. The big difference is in the claim on the ‘real’ value. 

It is up to the auditors themselves to discuss whether a value is reasonable or not. This study presents the 

following methods to interpret the value distribution: Expected value, standard deviation, 5th percentile point, 

and Expected Shortfall. The first two are traditionally used to describe a distribution. The last two are often used 

for risk management purposes to discuss the tails of a distribution.  

Expected Value 

As stated in Section 3.2, the algorithm of Boogert and De Jong (2008) concludes by averaging all the accumulated 

discounted future cash flows over all price paths. This expected value is under risk-neutral valuation the gas 

storage value. However, by itself this number states nothing about the range of the value distribution.  

 

Standard Deviation 

The standard deviation is along with the expected value traditionally used to describe a distribution. This measure 

is used to describe the amount of variation in a set of data. In relation to this study we can use this measure to 

quantify the wideness of the distribution of values. A very small standard deviation indicates that all values are 

very close to the mean whereas a high number indicates that the values are spread over a wide range.  

5th percentile point 

Stating the 5th percentile point of the distribution of values is an attempt to provide a single number that gives 

intuition about the ‘bad’ left tail. This can be related to the Value at Risk method that summarizes the total risk 

in a portfolio and is therefore often used for risk measurement purposes (Hull, 2012). However, the Value at Risk 

uses real-world probabilities to summarize the total risk of a portfolio whereas our distribution of values 

represent risk-neutral probabilities. Nevertheless, the 5th percentile point is used to provide intuition about the 

‘bad’ left tail of the distribution.  
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 A disadvantage of the 5th percentile point is that it does not state anything of the behaviour or the 

corresponding tail itself. For example, it is irrelevant how worse the values below the 5th percentile point are. A 

way to describe the part of the distribution below this threshold is the expected shortfall.  

Expected Shortfall 

The expected shortfall is an attempt to provide a single number that summarizes the part of the probability 

distribution that is below the 5th percentile point. Again, this technique is used in general with real-world 

probabilities (Hull, 2012). Nevertheless, we use this technique to provide intuition about the behaviour of the 

‘bad’ left tail when incorporating seasonality and volatility updating. A disadvantage is that the expected shortfall 

is a bit more difficult to understand from an intuitively perspective.  
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4 Simulation and Results 
This chapter addresses the simulation of price paths and the effect of these simulations on gas storage value. The 

simulation of future gas prices is addressed in Section 4.1. The algorithm presented by Boogert and De Jong 

(2008) is applied in Section 4.2 to find a ‘value’ per price path. This distribution of values is then interpreted in 

Section 4.3 and can therefore be seen as the results of this study.  

 Each sub-question will be answered by applying the theory provided in Chapter 3. The chapter is 

constructed so that the theory of Section 3.1 is applied in Section 4.1, Section 3.2 relates to Section 4.2 and so 

on. From the overall research structure, first the pricing part is discussed which relates to sub-question 1. After 

that, the optimizing part is presented which relates to sub-question 2. This chapter concludes by answering sub-

question 3 about valuation and interpretation.  

 

4.1 Simulating Future Gas Prices – Pricing 
In this section the first sub-question is answered, i.e.:  

 

1. How can spot price paths be simulated? 

 

The relation of this sub-question to the overall structure is for convenience presented in Figure 13.   

 

 
FIGURE 13: From Overall Research Structure; Section 4.1  

 

As made clear in Chapter 2, all the information needed to simulate gas spot prices following a Monte Carlo 

simulation is presented in this section. First, the spot price is analysed. Secondly, three stochastic processes are 

discussed that can be used in the simulation. Section 4.1.2 also explains how parameters of the corresponding 

stochastic processes can be found by calibration and regression. Furthermore, the gas forward curve and gas spot 

volatility is analysed to incorporate seasonality and volatility updating. The findings on this sub-question are used 

in the simulation of future gas prices.  
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4.1.1 Spot Price Analysis 

The focus of this sub-section is to perform an econometric analysis on the gas spot price. This focus in relation 

with the overall research structure is presented in Figure 14. Here, the existence of seasonality and volatility 

clustering is shown. The gas spot price itself together with the simple returns and the log returns are analysed. 

The simple returns relate to the Geometric Ornstein-Uhlenbeck process whereas the log returns relate to the 

Log-Normal Ornstein-Uhlenbeck process.   

 

 

 
FIGURE 14: From Overall Research Structure; Section 4.1.1  

Descriptive Statistics 

As stated in the literature review, the NBP spot price together with the simple return and the log return are 

analysed. Analysis of the HH and TTF can be found in respectively Appendix B and C. The analysis of the NBP spot, 

simple return and log return is presented in Figure 15. Descriptive statistics are presented in Table 4. 

 

         
 

FIGURE 15: NBP - Spot Price and its returns 2010-2014 
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 National Balancing Point (NBP) 

 Spot Price  

(S) 

‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Mean 55.30 7.01e-4 7.09e-05 

Min 27.95 -0.2935 -0.35 

Max 105.00 0.22 0.21 

Quantile: 

 1% 

 5% 

 10% 

 90% 

 95% 

 99% 

 

31.89 

36.19 

38.75 

67.00 

69.31 

84.97 

 

-0.09 

-0.04 

-0.03 

0.03 

0.05 

0.01 

 

-0.10 

-0.05 

-0.03 

0.03 

0.05 

0.10 

Standard Deviation 11.01 0.03 0.03 

Skewness 0.04 -0.21 -1.00 

Kurtosis 3.88 14.60 18.64 

Number of observations 1258 1257 1257 

TABLE 4: NBP - Descriptive Statistics 2010-2014 

At first sight the NBP spot price seems to move roughly in the range 40 – 70 over 5 years of historical data, except 

for two so called price spikes: the first one in early 2012 and the second one in early 2013. The two return graphs 

show very identical behaviour. As in line with theory, the log returns are always smaller than the simple returns. 

This difference becomes larger when prices fluctuate more. Furthermore, three remarkable features are 

distinguished.  

 Seasonality in prices through the year is visible. Traditionally, this comes from the heating of houses 

in the winter which creates a winter-summer spread. So, gas prices will follow the outside temperature inversely. 

This can be clearly seen at the NBP – Spot Price in the year 2014. Here the beginning and end of the year (winters), 

have higher prices than the mid-2014 period (summer). This seasonality is further analysed in the remainder of 

this section.  

 When evaluating the skweness and kurtosis statistics, the spot price itself seems to be normally 

distributed whereas the two return process show different results. In the GOU and LNOU process the returns are 

assumed to be normally distributed. We present an analysis of the normality of the real returns to determine 

whether these processes are appropriate to simulate future gas prices. The normality of these return processes 

are further investigated by the use of QQ plots and relevant statistical tests in the remainder of this section. 

 The third mentionable feature is that the analysis on the returns suggests changes in variance. For 

example high volatility at the beginning of both 2012 and 2013 and far less volatility at the remaining of the year. 

This volatility clustering is also further investigated in the remainder of this section.  

 

Q-Q plots 

The normal probability plot is a graphical technique for assessing whether or not a data set is approximately 

normally distributed. In a QQ plot the data is plotted against a theoretical normal distribution, represented by a 

straight line. The yellow points represent points from our return data sets and the normal distribution is 

represented by the straight black line.  
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FIGURE 16: NBP - Normal Q-Q Plot of Simple Returns 

 

 
FIGURE 17: NBP – Normal Q-Q Plot of Log Returns 

Again, both return plots show very similar results. As expected, the log returns are always a bit lower than the 

‘simple’ returns. Both graphs reveal that the returns have fat tails and normality should be challenged further by 

statistical tests: the Shapiro-Wilk and Jarque-Bera normality tests. The corresponding p-values of these tests are 

presented in Table 5. 

 

p-values National Balancing Point (NBP) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Shapiro-Wilk 3.7e-16 2.2e-16 2.2e-16 

Jarque-Bera 1.3e-09 2.2e-16 2.2e-16 

TABLE 5: P-values Normality Tests  

Because all p-values are below 0.05 the null hypothesis of normality must be rejected. These results are in line 

with the scores on skewness and kurtosis, and the two QQ plots.  
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Seasonality 

Seasonality in spot prices is extensively described in commodity pricing literature. Besides, it can clearly be seen 

in the year 2014 with high winter prices and a low summer price. In this sub-section the difference between 

winter prices and summer prices is statistically proven by the use of boxplots and an analysis of variance (ANOVA). 

The data set needed to construct the boxplot below is created out of the 5 years of historical NBP spot prices. 

Out of one data set, twelve data sets are constructed to represent the spot prices of each month. To clarify, 

January 2010, January 2011, …, January 2014 are all January prices. As can be seen in the boxplot below, months 

at the beginning (January, February) and at the end (November, December) of the year have higher prices than 

mid-year months (June, July, August).  

 

 

FIGURE 18: Boxplot Year-Profile  

To further analyse the difference between months an analysis of variance (ANOVA) is performed. The results of 

this analysis are presented in Table 6. 

 

Analysis of Variance Month-Year profile  

 

 Df Sum Squares Mean Squares F-Value P-Value 

Month 11 18364 1669.5 15.14 2e-16 

Residuals 1763 194457 110.3   
TABLE 6: Analysis of Variance Month-Year Profile 

The very low p-value of 2e-16 indicates that there is at least one combination of months which is significantly 

different from each other. Out of 66 combinations between months, 302 combinations turn out to be significantly 

different from each other with a 95% confidence level.  

   

                                                                        

2 The Tukey Honest Significant Difference test is conducted for this conclusion.   
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Volatility Clustering 

Here the investigation about volatility clustering is continued. Since Figure 15 shows clear signs of volatility 

clustering three statistical tests are conducted to test this observation. Volatility clustering in the spot price itself 

will result in a price process that is not stationary and has a unit root. As explained in Section 3.1.1 the Phillips-

Perron (PP) test and Augmented Dickey-Fuller test have as null hypothesis the presence of a unit root whereas 

the Kwiatowski-Phillips-Schmidt-Shin (KPSS) test has as null hypothesis a stationary process. So in short, the first 

two tests and the last test ‘try’ to reject the opposite: the presence of a unit root in a process versus a stationary 

process. 

 

 

P-values National Balancing Point (NBP) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Phillips-Perron test 0.21 0.01 0.01 

Augmented Dickey-Fuller test 0.33 0.01 0.01 

KPSS test 0.01 0.1 0.1 

TABLE 7: Statistical Tests Volatility Clustering 

From the test results in Table 7, we conclude that the spot price itself is a non-stationary process, so with the 

presence of a unit root whereas both returns are significant stationary. This is in line with our thoughts at first 

sight as stated in the section about descriptive statistics.   

 

4.1.2 Stochastic Processes  

In this section the three stochastic processes presented in the literature review are evaluated on how suitable 

and appropriate they are in the simulation of future gas spot prices. The evaluation is twofold. First it discusses 

the advantages and disadvantages of the stochastic process in general and in relationship with the econometric 

analysis in section 4.1.1. Secondly, the way to calibrate the corresponding parameters of each process over a 

historical data set is presented. At the end of this section it is discussed which stochastic process to use in the 

remainder of this study.  

 

How this section is related to the overall structure is presented in Figure 19.  

 

 
FIGURE 19: From Overall Research Structure; Section 4.1.2 
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Evaluation and Comparison of Stochastic Processes 

The three stochastic processes are stated here shortly. After that, the Geometric Brownian Motion is evaluated 

and compared to the two Ornstein-Uhlenbeck processes. At the end of this section there is a discussion which 

stochastic process will be used in the remainder of this study.  

 

Recall, from section 3.1.2, that the stochastic differential equation of the Geometric Brownian Motion (GBM) is 

as follows:  

 

 dS =  μSdt +  σSdz ( 11 ) 

 

Here μ represents the drift, dt the change in time, σ the volatility, and dz is the increment of a Wiener process.  

 

The Geometric Ornstein-Uhlenbeck (GOU) process is as follows: 

 

 dS = k[μ − S]dt +  σSdz ( 17 ) 

 

Where k ≥ 0 measures the speed of mean reversion, µ is the equilibrium price level and, σ the volatility, and dz 

is the increment of a Wiener process.  

 

At last, the equation of the Log-Normal Ornstein-Uhlenbeck process can be found below. 

 

 dS = κ[μ − ln S] Sdt +  σSdz ( 21 ) 

 

And after applying Ito’s Lemma the log price follows an Ornstein-Uhlenbeck stochastic process: 

 

 dX = κ[α − X]dt +  σdz ( 22 ) 

Where  

 
α =  μ − 

σ2

2k
 

( 23 ) 

 

Again, the magnitude of the speed of adjustment is represented by k > 0 to the long rung mean log price, α. σ is 

the volatility, and dz is the increment of a Wiener process. 

 

Evaluation and Comparison of the GBM to OU 

The biggest advantage of the GBM process is its ease to understand and to implement in the simulation of price 

paths. Therefore it is used a lot in the field of mathematical finance. Nevertheless, the drawbacks of this model 

for pricing gas spot prices are stated below and are related to the conclusions drawn by the spot price analysis in 

Section 4.1.1. 

 

In the econometric analysis performed in Section 4.1.1, two properties of gas spot prices that are demonstrated 

cannot be captured by the GBM. These properties are as follows: 

 Seasonality; By the use of boxplots and ANOVA the existence of a seasonal pattern in gas spot prices is 

proven. Spot prices in the winter are significantly lower than spot prices in the summer.  In the GOU and 

LNOU this property can be captured by a time-dependent equilibrium level.  

 Mean reversion; Besides the clear presence of mean revering behaviour in commodity pricing known 

from literature, the spot price is tested for no-mean reversion by the Augmented Dickey Fuller test. The 

result on this test was by far not significant. From an intuitive perspective, the gas demand side is of 

cyclical nature and there is long term mean reversion due to the cost of new production capacity.  

Because of these two gas price properties the GOU and LNOU processes are favoured above the GBM. Therefore, 

the calibration of parameters of the GBM is no longer relevant.  
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Calibration of the Geometric Ornstein-Uhlenbeck Parameters 

The calibration of Geometric Ornstein-Uhlenbeck (GOU) parameters is performed by Least Square Regression in 

R over a historical data set of 5 years closing spot prices (the same set as used in the spot price analysis). A study 

of Insley and Rollins (2005) is followed to perform this calibration. Recall that there are three parameters in the 

GOU process: the mean reverting rate 𝑘, the equilibrium level μ, and the standard deviation σ. To perform the 

Regression in R, the GOU equation needs to be rewritten as follows:  

 

 dS = k[μ − S]dt +  σSdz ( 17 ) 

 

 dS = −kS + kμ +  σ S ε ( 52 ) 

 

 
rt =  

St − St−1

St−1

=  −k + kμ
1

S
+  σ ε 

( 53 ) 

 

 

 
r =  α +  β 

1

S
+   ε 

( 54 ) 

 

From the last formula the corresponding parameters can be estimated in the software environment of R using 

linear regression. The minimized 𝑅2 in the NBP case is 0.0061. Here the mean reverting rate is determined by 

−𝛼, the equilibrium level by  
𝛽

−𝛼
, and the volatility by 𝜀. The GOU parameters calibrated over 5 year of respectively 

NBP, HH, and TTF gas spot prices are presented in Table 8. 

 

 NBP HH TTF 

Mean reverting rate; 𝑘 0.0118 0.0086 0.0117 

Equilibrium price; μ 55.8843 3.6805 23.0855 

Standard deviation; 𝜎 3.41% 3.62% 3.31% 

    

Nr. Of observations 1258 1253 1260 
TABLE 8: Parameter Estimation Geometric Ornstein-Uhlenbeck 

 

Calibration of Log-Normal Ornstein Uhlenbeck Parameters 

The calibration of Log-Normal Ornstein Uhlenbeck parameters is done in a very similar way. The only difference 

is that regression is applied on the log price instead of the ‘normal’ spot price. Besides, log returns are used 

instead of ‘simple’ returns. Following the LNOU the commodity log spot price follows: 

 

 dX = κ[α − X]dt +  σdz ( 22 ) 

Where  

 
α =  μ − 

σ2

2k
 

( 23 ) 

 

Again, the equation needs to be rewritten to perform the regression.  

 

 dX = κ[φ − X]dt +  σ ε ( 55 ) 

   

 dX = κφ − κ X +  σ ε ( 56 ) 

 

 R = α + βX +  ε ( 57 ) 
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The corresponding parameters are estimated in the software program of R using linear regression. In the NBP 

case, the minimized 𝑅2 is 0.0062. The mean reverting rate is set by –𝛽, 𝜑 by  
𝛼

−𝛽
, and the volatility by 𝜀. In turn, 

the equilibrium level can be calculated by  𝜑 + 
𝜎2

2𝑘
. The results of this calibration can be found in Table 9.  

 

 NBP HH TTF 

Mean reverting rate; 𝑘 0.0137 0.0139 0.0147 

Equilibrium price; μ 56.8330 3.7641 23.3384 

Standard deviation; 𝜎 3.45% 3.51% 3.33% 

    

Nr. Of observations 1258 1253 1260 
TABLE 9:  Parameter Estimation Log-Normal Ornstein-Uhlenbeck 

Discussion 

So far, three stochastic processes are evaluated and the calibration process for the relevant processes to find the 

corresponding parameters is explained. According to this evaluation, the Geometric Brownian motion is 

considered not appropriate for this study because it cannot handle seasonality and mean reversion. By analysing 

the behaviour of the daily return function it can be concluded that both returns are not normally distributed 

whereas price simulation by both Ornstein-Uhlenbeck processes would result in normally distributed returns. 

Especially the underestimating of fat tails by a normal distribution will cause conflicts. These fat tails represent 

price spikes and clustering of volatility. GARCH is introduced to take account for this volatility clustering, this is 

further explained in Section 4.1.4.  

 

Comparing the parameter estimation by the GOU and the LNOU process very similar results are obtained. As 

expected, calibration by a LNOU results in a slightly higher equilibrium price level because it needs to compensate 

for the lower log returns. This makes sense because the two processes are after all both OU processes. In 

continuous time the results would be exactly the same. The mean reverting rate is surprisingly very low as 

compared to rate used by Boogert and De Jong (2008). These authors use in their study a mean reverting rate of 

0.05. Therefore, in the remainder of this study the rate of 0.0137 as well as the suggested rate of 0.05 is used.  

 

All in all, the discussion should not be about which OU process to choose, it should be about the assumptions 

underlying these processes. The Geometric Ornstein-Uhlenbeck process is particularly suited when gas spot 

prices are assumed to be normally distributed. On the other hand, the Log-Normal Ornstein-Uhlenbeck process 

suits when gas prices are assumed to be lognormal distributed. One of the advantages of the lognormal 

distribution is that it has a lower bound of zero. Intuitively, this is in line with gas price behaviour because one 

can say that a negative price for gas is strange. However, the assumption that prices cannot be negative is 

challenged in other markets like interest rates which also had the persuasion that prices cannot become negative. 

Besides, both processes have a return function that is normally distributed which underestimates the possibilities 

of extreme movements in price. This makes both stochastic processes, under current settings, unsuitable for risk 

management and pricing purposes. Nevertheless, it can be used for validation because it gives an indication of 

gas storage value and can provide a range of reasonable outcomes. For the remainder of this study the LNOU 

process is used to simulate future gas spot prices because of its advantage that no negative gas prices can be 

obtained. But as stated before, this is not a claim on real probabilities and prices, it is just a way to get an 

indication of gas storage value which can be used for validation purposes.  

 

4.1.3 Forward Curve Analysis 

The focus of this section is to analyse whether market information on gas forward contracts can be used to set 

the equilibrium level parameter of an OU process. How this focus relates to the overall research is presented in 

Figure 20. At first, it is presented how information about forward contracts can be observed from the market. 

Secondly, a way to smooth this ‘blocky’ forward curve is presented. Thirdly, a day-week profile is estimated. At 

last, one year of forward curve behaviour is analysed by principal component analysis to simulate future forward 

curves.  
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FIGURE 20:  From Overall Research Structure; Section 4.1.3 

Monthly Forward Contracts 

In the literature review it is explained that the gas forward market consists of multiple average-based forward 

contracts. These contracts represent a constant delivery rate over the settlement period against an average price. 

An example of market information on forward contracts is presented in Figure 21. In this figure, 12 monthly 

forward contracts, and four quarterly contracts are visualized, as of 30-12-20143 on the NBP Gas market. These 

contracts are all represented by straight lines over the settlement period. To clarify, a buyer will receive a constant 

amount of gas over the settlement period for a constant price. Also in the forward market, a clear seasonal 

pattern is visible.  

 

 
FIGURE 21: NBP-Forward Contracts at 30-12-2014  

Forward curve information can be used in the simulation of future gas spot prices. The purpose of this section is 

to use forward curve information to set the equilibrium level of the Ornstein-Uhlenbeck processes. However, 

there is one big flaw in using this ‘blocky’ forward curve directly in the simulation of spot prices. Between the end 

of each contract period and the beginning of the next forward contract there will be a market inconsistent shock 

in the equilibrium level. This shock can cause, for example, a one-day equilibrium level shift of 12 percent 

(between Q1-16 and Q2-16) in the figure above. These shocks are caused by the averaging property of forward 

contracts. Spot prices will move far more gradually when compared to this blocky curve. Therefore, this blocky 

curve is smoothed in section 4.1.3.  

 

                                                                        
3 30-12-2014 was the last trading day of 2014.  
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The NBP gas market is the most liquid market in Europe. It trades up till 12 monthly forward contract, 12 quarterly, 

and 6 seasonal forward contracts whereas the Dutch TTF market trades ‘only’ 4 monthly, 5 quarterly, and 4 

seasonal forward contracts. As stated in Section 2.4, methodology is presented to overcome this lower level of 

market liquidity. One such methodology is the ‘ratio-analysis’ between months and quarters. This analysis is 

based on the correlation between the Dutch TTF gas market and the UK NBP market. This method is pointed out 

in the next section.  

 

Ratio Analysis 

This section presents a technique that makes this study also relevant for less liquid gas markets like the Dutch 

TTF. The NBP market is taken as a reference point with 12 monthly traded forward contracts and the Dutch TTF 

market is used as an example for a less liquid market. The gap between the Dutch and UK gas market is 8 months 

according to liquidity on forward contracts. Information of the NBP market can be used to fill the Dutch gap 

because these markets seems to behave accordingly. To actually test this, the correlation between the NBP and 

TTF market is analysed on two levels: one month ahead forward contracts and one quarter ahead forward 

contracts. The 21-day correlation between the two markets on these two contracts is calculated over a historical 

data set of 5 years. These two correlations are presented in Figure 22.  

 

 
FIGURE 22: Correlation of NBP - TTF 

A correlation coefficient of 1 represents perfect positive correlation whereas -1 indicates perfect negative 

correlation. A correlation coefficient in the middle of this continuum, a score of 0, is an indication of no 

correlation. Above 0.3 refers to low positive correlation and higher than 0.8 is considered as high positive 

correlation.   

 From the graph above we concluded that the Dutch and UK gas markets are highly correlated because 

around half of the time the coefficient is around or above 0.8 and almost always higher than 0.3. Intuitively this 

makes sense because there exist physical pipelines between the UK and the Netherlands. If prices would 

somehow move apart, operators of these pipelines will create value by transporting gas from one country to 

another. Since the UK and Dutch markets are highly correlated, information of NBP gas prices is used when TTF 

prices are not available. How this actually works is discussed in the remainder of this section.  

 

Each day on the TTF market 4 monthly contracts, 5 quarterly, 4 seasons, and 5 yearly contracts are quoted. So 8 

more monthly contracts and 3 more quarterly contracts are needed to have the same dynamics as the NBP market 
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(12 monthly contracts for the first year and four quarterly contracts for the second year). In this analysis 𝑞𝑖  and 

𝑚𝑖   stand for the ith quarter and month respectively. 𝑑𝑖  stands for the number of days of the i-th month.  

 

Four different situations can be distinguished when applying this ratio analysis.  

 

1. Only one of three monthly contracts in a quarter is unknown. 

This is the simplest situation because no information of NBP ratios is needed to find the value of the missing 

month. The situation is visualized in the following figure: 

 

 
FIGURE 23:  Ratio Analysis Scenario 1 

This corresponding value can be found by the following formula: 

 

 
𝑚6 =  

(𝑑4 + 𝑑5 + 𝑑6) ∗  𝑞2 −  𝑑4 ∗  𝑚4 −  𝑑5 ∗  𝑚5

𝑑3

 
( 58 ) 

 

 

2. Two out of three monthly contracts are unknown. 

In this situation one NBP ratio is needed as an approximation for the relationship between two TTF months. 

Otherwise, the formula is unsolvable.  

 
FIGURE 24: Ratio Analysis Scenario 2  

This situation needs two formulas to find 𝑚5 and 𝑚6: one to set the ratio between 𝑚5 and 𝑚6, and one to apply 

this ratio with respect to 𝑞2 and 𝑚4.  

 

 𝑑5 ∗  𝑚5 + 𝑑6 ∗  𝑚6

= (𝑑4 + 𝑑5 + 𝑑6) ∗  𝑞2 −  𝑑4 ∗  𝑚4 

( 59 ) 

 

 𝑚5

𝑚6

=  
𝑚5(𝑁𝐵𝑃)

𝑚6(𝑁𝐵𝑃)
 

( 60 ) 

 

3. Three out of three monthly contracts are unknown. 

This case requires three formulas and two approximations of ratios. The situation: 
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FIGURE 25: Ratio Analysis Scenario 3  

The required formulas: 

 

 𝑑4 ∗ 𝑚4 + 𝑑5 ∗ 𝑚5 + 𝑑6 ∗ 𝑚6

= (𝑑4 + 𝑑5 + 𝑑6) ∗ 𝑞2 

( 61 ) 

 

 𝑚4

𝑚5

=  
𝑚4(𝑁𝐵𝑃)

𝑚5(𝑁𝐵𝑃)
 

( 62 ) 

 

 𝑚5

𝑚6

=  
𝑚5(𝑁𝐵𝑃)

𝑚6(𝑁𝐵𝑃)
 

( 63 ) 

 

4. Two quarterly contracts are unknown whereas the corresponding seasonal contract is known. 

This situation is very similar to situation 2 and 3. Instead, quarters are unknown and seasonal contract is known 

as compared to unknown months and a known quarter. The case: 

 
FIGURE 26: Ratio Analysis Scenario 4 

These formulas are also very similar to situation 3: 

 

(𝑑16 + 𝑑17 + 𝑑18) ∗  𝑞5 + (𝑑19 + 𝑑20 + 𝑑21) ∗ 𝑞6 = (𝑑16 + 𝑑17 + 𝑑18 + 𝑑19 + 𝑑20 + 𝑑21) ∗  𝑆3 ( 64 ) 

 

 𝑞6

𝑞7

=  
𝑞6(𝑁𝐵𝑃)

𝑞7(𝑁𝐵𝑃)
 

( 65 ) 

 

This method can be applied to other gas markets as well when these markets are considered to be positively 

correlated to each other. Not only additional monthly forward contracts can be established, this methodology 

can also be applied on seasons on quarters, years on seasons and so on.  
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Smooth Forward Curve 

The need for smoothing the ‘blocky’ forward curve is discussed in section 4.1.3. In this section the theory of 

smoothing a forward curve as mentioned in the literature review is applied. Actual smoothing is programmed in 

the software environment of R. The smoothing is performed by using cubic splines where the smoothing 

parameter can be set by hand. As mentioned before, the higher this parameter, the more shrinkage of the spline. 

In this study the smoothing parameter is set in a subjective way. This parameter is set to 0.75 because it shows a 

gradually curve without strange, unexpected movements. We consider setting the smoothing parameter by hand 

appropriate for this study. This is because of the purpose of validation in contrast to pricing. The result of a cubic 

spline on top of NBP monthly and quarterly forward contracts at 30-12-14 is given in Figure 27. 

 

 

FIGURE 27: NBP - Smoothed Forward Curve  

The smoothed forward curves goes through the middle of almost every contract and the direction of the spline 

at the edges of the contracts depends on adjacent contracts.  

Day-Week Profile 

The seasonality through the year is not the only type of seasonality discovered in the behavior of gas spot prices. 

From electricty pricing literature (Hildmann, Herzog, Stokic, Cornel, & Andersson, 2011) it is known that 

seasonality may also exist throughout the week. However, we do not know if this is also the case in gas pricing. 

Therefore, potential seasonality through the week is tested in this section.  

 

Seasonality through the year is proven by comparing months of spot prices piecewise with each other, see Section 

4.1.1. To test for seasonality in the week a quite similar methodology is used. However, not ‘absolute’ prices are 

used. Instead, the ratio of the day-price to the average price of the week is used. To clarify an example of the last 

week of 2014 is presented below. 

 

Ratio of Tuesday 25th of December: 

 

  Tuesday′s (25th) spot price

{Monday′s (24th)price + Tuesday′s (25th) price+ , … , +Sunday′s (30th) price}/7
 

( 66 ) 

 

Now, the ratio’s over 5 year historical data are grouped in seven week-days and the analysis is continued in the 

same way as in the analysis on the year-seasonality. This change in procedure is needed so the day-ratio’s can be 

applied directly to the smoothed forward curve. In this way, week seasonality is added to the curve without 

changing the averge price of the week. The results are presented in Figure 28, Table 10, and Table 11.  
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FIGURE 28: Boxplot Day-Week Profile 

 

In Figure 28 boxplots of the day-ratios are shown. A difference between midweek-days and weekend-days can be 

distinguished. Whether or not this difference is significant is determined by ANOVA. The two weekend-days have 

the same boxplot since both prices are set by the weekend ahead prices on Fridays.  

 

 Df Sum Squares Mean Squares F-Value P-Value 

Month 6 0.0463 0.0077 4.653 0.0001 

Residuals 1762 2.9236 0.0017   
TABLE 10: Analysis of Variance Day-Week Profile 

 

The ANOVA shows, with a p-value of 0.0001, that there is at least one piecewise combination between the week-

days that is significant different (even with confidence levels up to 99.9%). By performing a Tukey Honest 

Significance test the combinations are tested individually. The results show that under a 95% confidence level all 

weekend-days differ significantly with Tuesday, Wednesday and Thursday. This is in line with the results obtained 

by the boxplots because Tuesday, Wednesday, and Thursday are the days with the highest mean and the 

weekend-days have the lowest means. The p-values of these combinations can be found in the table below.  

 

 

95% Confidence level P-value 

Saturday - Tuesday 0.0223 

Saturday – Wednesday 0.0045 

Saturday – Thursday 0.0194 

Sunday - Tuesday 0.0223 

Sunday - Wednesday 0.0045 

Sunday - Thursday 0.0194 
TABLE 11: Significant Different Days  

Now it has been shown that besides seasonality through the year, there is also seasonality through the week, the 

ratios can be applied to the smoothed forward curve. The day-week ratios of NBP spot prices, calculated over 5 

year historical data are presented in Table 12. 
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Day Ratio 

Monday 1.0000 

Tuesday 1.0045 

Wednesday 1.0059 

Thursday 1.0044 

Friday 1.0003 

Saturday 0.9927 

Sunday 0.9927 
TABLE 12: Day-Week Ratios 

Now these ratios can be applied to the smoothed forward curve, again on available forward contracts at 30-12-

2014. In the graph below, the ‘blocky’ forward curve retrieved from market data is presented by the yellow flat 

lines, the smoothed forward curve is in blue and the added day-week profile is visualized by the red line. As 

expected, the seasonality through the week is clearly visible by the small up and down movements of the curve. 

Furthermore, the red line follows the smoothed blue curve perfectly.  

 

 
FIGURE 29: NBP – Smoothed Forward Curve with Day-Week Profile 

The seasonality through the year was the motivation to analyse the forward curve. This analysis is used to form 

a time-dependent deterministic forward curve which can be used as the equilibrium level parameter in an 

Ornstein-Uhlenbeck process. The forward curve analysis includes constructing a smoothed forward curve by 

fitting a cubic spline and adding a day-week profile on top of this curve. The three related forward curves at 30-

12-2014 are presented in Figure 29. In the next sub-section an attempt is made to construct a stochastic 

equilibrium level by simulating forward curves over time. 

 

Time-Dependent Equilibrium Level and Monte Carlo Simulation 

In the former sub-section it is shown how a time-dependent equilibrium level can be implemented in the 

simulation of gas spot prices. Here, we will visualise this effect on the simulation of 2 years of gas spot prices. For 

this simulation the parameters are set following the calibration in Section 4.1.2 but the constant equilibrium level 

is substituted by a time-dependent one. In this case the forward curve including day-week profile as presented 

in Figure 29. As stated in section 4.1.2 two mean reverting rates are used: the calibrated rate of 0.0137 and the 

rate used by Boogert and De Jong (2008), 0.05. The results are given in Figure 30 and 31, and discussed below.  
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FIGURE 30: Price Paths with Time-Dependent Equilibrium Level; k=0.0137 

 

 
FIGURE 31: Price Paths with Time-Dependent Equilibrium Level; k=0.05 

 

In the figures above the yellow curve represents the average of the simulated price paths. For this Monte Carlo 

simulation the amount of 1000 price paths is chosen. If one would use Monte Carlo simulation for the purpose 

to have a claim on the ‘real’ price, it can be discussed that 1000 runs are insufficient. Nevertheless, the amount 

of runs are considered reasonable in this study because of computational speed restrictions and the purpose of 

validating instead of pricing.  

 In Figure 30, the average line follows the forward curve in a somewhat squeezed way. Besides, the 

price paths move in a more ‘unrestricted’ way around the equilibrium level as compared to Figure 31. This is of 

course caused by the difference in mean revering rate. If this rate is higher, price paths are more near the 

equilibrium level. The day-week profile is therefore not visible in the average line of Figure 30 whereas it is for a 

bit detectable in Figure 31.  

 From this we can conclude that using a forward curve at the date of valuation is an appropriate way 

to take account for, market consistent, seasonality in the gas spot prices. However, it depends on the mean 

reverting rate in what order the time-dependent equilibrium level is followed by the price paths.  

 

We should take additional care when interpreting the results because we changed one historical calibrated, 

constant, parameter into a forward-looking, time-dependent, parameter. By doing so we end up with a mixture 

of two calibrated parameters (volatility and mean reverting rate) and one market consistent, ‘implied’, parameter. 
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One can state that by changing one parameter, the other two have to be recalibrated. Nevertheless, for the scope 

of this study this mixture of parameters is considered appropriate.   

 

Principal Component Analysis 

The goal of this section is to simulate forward curves in the future based on the most recent known forward curve 

(for example the curve at 30-12-2015). Principal component analysis is used to find the ‘principal components’ 

that are needed to describe at least 95 % of the variance in the forward curve. As discussed in the literature 

review the principals components are used in the following way: 

 

 
𝐹(𝑡 + ∆𝑡, 𝑇) = 𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [∑(𝜎𝑖(𝑇 − 𝑡)√∆𝑡 ∗ εi −

1

2
𝜎𝑖

2(𝑇 − 𝑡) ∗ ∆𝑡)

𝑁

𝑖=1

] 
( 38 ) 

 

This is a discrete time representation because it is used to simulate the forward curve at time 𝑡 + ∆𝑡 on the 

forward curve at time t.  Furthermore, F(t,T) represents the forward price at time t  for delivery at time T, εi′𝑠 are 

i independent standard normal distributed numbers, and 𝜎𝑖(𝑇 − 𝑡) are the factor loadings.  

 

The exponential expression in the above formula indicates that log returns are used. This makes this process 

relevant for the Log-Normal Ornstein-Uhlenbeck. If the Geometric Ornstein Uhlenbeck is followed, the ‘simple’ 

returns have to be calculated. As mentioned in the literature review the log returns are calculated between the 

two contracts corresponding to the same ‘delivery’ date on the forward curve: 

  

 𝑙𝑛[𝑐𝑢𝑟𝑣𝑒2(𝑡1)/𝑐𝑢𝑟𝑣𝑒1(𝑡2)] ( 37 ) 

 

The steps performed in Section 4.1.3 to transform a ‘blocky’ forward curve retrieved from the market into a 

smoothed curve with day-week profile are visualized in Figure 29. Here one year of forward curves, over the year 

2014, are transformed from using only the first year of the curve (up till 365 days to maturity). In Figure 32 the 

curves ‘flow’ from left to right, increasing in days to maturity. The top left 3D plot represents the forward contracts 

retrieved from the market, in the top right plot the forward curves are smoothed. To finalize, the day-week profile 

is added in the lower 3D plot.  
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FIGURE 32: 3D Plots of 2014 Forward Curves 

The seasonality through the year can easily be seen in these 3D plots. There are higher prices related to winter 

periods and lower prices in the summer. This is visualized in the 3D plots by the higher diagonal line from the 

corner in the back, to the front-corner representing the winter periods. See for instance that, the 360 days to 

maturity is high at January curves, 180 days to maturity is high at June curves and at the December curves the 

short period to maturity is high, all representing the same winter period.  

 

From this last 3D plot, the log returns are calculated. Since we are interested in how the returns related to each 

other a covariance matrix is calculated. This 365 times 365 matrix is visualized in Figure 33. As expected the 

covariance show a positive relationship between all days to maturity. This can intuitively be explained by parallel 

shifts in forward curves which causes the most of the variation. Furthermore, the returns are more related at the 

short end of the curve than at the end.  

 

 
FIGURE 33: Covariance Matrix of Log Return (from different angles) 
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The above 3D plots represent the Covariance matrix from two different angels. As can be seen from the peak, the 

covariance between returns on the short end of the forward curve is much higher than between other parts of 

the forward curve.   

 

The next, and final step of the principal component analysis is to actually determine the components that explain 

most of the variance. As in line with the literature review, the eigenvalues and corresponding eigenvectors are 

calculated. After that, these values and vectors are sorted. The bar-plot and table below show the cumulative 

attribution of the first 10 components.  

 

 
FIGURE 34: Bar-plot Cumulative Attribution of the First 10 Components 

 

 

 

To explain 95% of the variance, at least 6 components are needed. Whereas the first component explains already 

almost 70% of the variance, the 6th component only adds around 1.5%. The actual simulation of up to one year 

of forward curves is done in R. The code is presented in Appendix D.  

 

As stated before, the forward curve is the expectation of future spot prices. Therefore, forward curves can be 

used as a time-dependent equilibrium level for the simulation of gas spot prices. In the sub-section above, this 

equilibrium level is set by the forward curve on valuation/validation date. However, forward curves change over 

time. In this sub-section an attempt is made to take this stochastic behaviour of the forward curves into account 

for setting the equilibrium level of gas spot prices. So we are not interested in the forward curves themselves, 

but in equilibrium levels they set. The corresponding process per simulated equilibrium level is as follows. Firstly, 

365 forward curves are simulated based on Equation 38 and the relevant components found by PCA. Now we 

have, similar to Figure 29, up till one year of forward curves, each with 1 till 365 days to maturity. Secondly, we 

take from each forward curve the point on the curve that corresponds with 1 day to maturity. This point 

represents the next day’s equilibrium level. For example, the equilibrium level of the 1st of July is determined by 

the point that represents 1 day to maturity on the forward curve of the 30th of June. At last, we can repeat this 

process for the amount of simulations needed.  

 

An example of 5 simulated equilibrium levels is presented in Figure 37. In this figure the ‘starting’ forward curve 

of 30-12-2014 and the average of the simulated equilibrium levels is also presented. As can be seen, the 

equilibrium paths can differ a lot and the day-week profile is relatively large as compared to the ‘real’ forward 

curve at 30-12-2014. Only five ‘paths’ are shown, otherwise the individual paths cannot be separated. The 

 1 2 3 4 5 6 7 8 9 10 

Cum. Attr. 69.91% 79.67% 86.95% 90.80% 93.73% 95.11% 96.12% 96.69% 97.19% 97.59% 

TABLE 13: Cumulative Attribution of the First 10 Components 
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average of the equilibrium levels is as expected very near to the ‘real’ curve on 30-12-2014. However, we cannot 

obtain a claim on this observation since the very small amount of simulations.  

 

 
FIGURE 37: NBP – Simulated Equilibrium Levels 

When we take a look at the simulations presented in Figure 37, the relatively large fluctuation within the week 

of each ‘path’ is a point of concern. As stated before, these equilibrium ‘paths’ are an input parameter in the 

Ornstein-Uhlenbeck process for the simulation of gas spot prices. Due to the large fluctuation within a week, it 

may happen that the equilibrium level moves up with 10% and returns in the same week. This is not in line with 

our findings regarding the spot price. One of the reasons of the large within week fluctuation we can think of, is 

that only the 1 day to maturity prices on the forward curves are used in the simulation. On this, very short end 

the forward curve is most volatile.  

 Besides the large within week fluctuation of the equilibrium levels, we conclude that there may be 

discrepancy between the movements of the spot price, and the forward curves over time. In the figure above, 

the equilibrium level is independent of spot price movements whereas the curve should fit with the spot price at 

the short end fluently. For example, the one-day to maturity price on the forward curve may move up with 5 

points whereas the simulated spot price can move in the opposite direction.  

 All in all, we consider the advancements made by a stochastic equilibrium level in comparison to a 

deterministic equilibrium level insufficient regarding the additional points of concern. Especially because of the 

large within week fluctuations, we will not use the stochastic equilibrium levels in the remainder of this study.  

 

4.1.4 GARCH 

In the section before, methodology is presented to transform the equilibrium level from a constant parameter to 

a time-dependent parameter. The focus of this section is also to transform a constant parameter: the volatility 

parameter. How this is related to the overall structure of this study is presented in Figure 38. 
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FIGURE 38: From Overall Research Structure; Section 4.1.4  

The need for a non-constant volatility parameter is pointed out in section 4.1.1. The return functions of the spot 

price show obvious signs of volatility clustering which are also demonstrated by statistical tests. GARCH models 

are used to extent stochastic processes to capture the non-constant behaviour of its underlier. As mentioned in 

the literature review, in a GARCH model the conditional expectation term can be represented by any stochastic 

process, only the volatility part is transformed from a constant parameter to one that can handle volatility 

updating. Recall that the conditional variance is modelled by an autoregressive moving average process. The basic 

form of a GARCH (p,q) model is: 

 

 𝑆𝑡 = 𝐸[𝑆𝑡|𝑆𝑡−1] +  𝜎𝑡
2 ∈𝑡  ( 39 ) 

 

Here, the price S at time t  is based on the expectation of price S, conditional on the price at t-1, the volatility 𝜎, 

and error term ∈.  

In the GARCH model the error part is ∈𝑡
𝑖𝑖𝑑.
~

 𝑁(0,1) and 

 

 
𝜎𝑡

2 =  𝜔 + ∑ 𝛼𝑖𝜖𝑡−𝑖
2

𝑞

𝑖=1

+  ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

 
( 40 ) 

 

In line with Hansen and Lunde (2005) a GARCH (1,1) is chosen to set the volatility of the Ornstein-Uhlenbeck 

process. This results in the following volatility: 

 

 𝜎𝑡
2 =  𝜔 +  𝛼𝜖𝑡−𝑖

2 +  𝛽𝜎𝑡−𝑖
2  ( 67 ) 

A maximum likelihood analysis over 5 year historical data is performed to find the corresponding parameters. The 

related code used for this calibration is presented in Appendix D.  

Volatility Updating and Monte Carlo Simulation 

In the sub-section before it is showed how volatility updating can be used in the simulation of gas spot prices. In 

this sub-section we will provide two figures to visualise this effect on the simulation of gas spot prices. Again the 

parameters are set following the calibration in section 4.1.2, except for the volatility. The volatility is set according 

to Equation 67. Also two mean reverting rates are used: the calibrated rate of 0.0137 and the rate used by Boogert 

and De Jong (2008), 0.05. The results are shown in Figure 34 and Figure 35, and discussed below.  

 

In comparison with the price paths in Figure 30 and 31 the figures below have a much larger price range on the 

y-axis. As expected this is due to extreme price movements caused by the clustering of volatility. Again, 1000 

price paths are simulated. As can be seen the price spikes are sometimes even higher than the range of the y-

axis. This maximum is chosen so the ‘main’ part (price range of 30-70) of the price paths is still observable. If we 

take a look at the historical price path of the NBP gas spot two price spikes can be distinguished. Both of these 
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price spikes reach price levels of 100 whereas the simulated price paths reach levels of 300-400. This is not 

surprisingly because the GARCH parameters are calibrated over the historical price paths which includes price 

spikes up till 100.  So even higher price spikes can be expected when simulating 1000 paths.   

 

 
FIGURE 39: Price Paths with Volatility Clustering; k=0.0137 

 

 

FIGURE 40: Price Paths with Volatility Clustering; k=0.05 

The difference between Figure 39 and Figure 40 seems to be very small. However, this can be caused by the 

misleading greater price range of both figures. If we take a close look at the ‘main’ part of the price paths we can 

still see a difference in the price paths. The price paths with a mean reverting rate of 0.05 tend to move somewhat 

closer to the equilibrium level as compared to the price paths in Figure 39.  

 

For the simulation of price paths under volatility updating we used a GARCH (1,1) model. Hansen and Lunde 

(2005) did not find much evidence that another model outperformed a (1,1) model.  We follow this conclusion 

that from a general perspective the GARCH (1,1) model is appropriate. Nevertheless, we do not claim that a (1,1) 

model is most suited for the simulation of gas spot prices. Other models perform potentially better. However, it 

is considered out of scope for this study to find the best suited. Besides, the gain of a ‘better’ GARCH model is 

considered very small in the context of validation.  
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4.2 Finding the optimal operating strategy – Optimizing 
In this section the second sub-question is answered, i.e.: 

 

2. What is the principle to find the optimal operating strategy for a gas storage when following the spot 

approach? 

 

The relation of this sub-question to the overall structure is for convenience presented in Figure 41.   

 

 

 
FIGURE 41: From Overall Research Structure; Section 4.2  

The theory used in this section is given in the literature review, section 3.2. The general principle to find the 

optimal operating strategy is already discussed. As also mentioned in section 3.2, part of finding the optimal 

strategy is determining the decision rule per point in time and per volume point. If these decision rules are found, 

the optimal strategy can be found by going through all time steps and related volume levels from the starting 

volume level.  

 From the picture above, it can be distinguished that two sources of data and one regression technique 

are needed for determining the decision rules and to find the corresponding optimal strategy. The first data 

source is about spot price paths that can be used in the Monte Carlo simulation. These spot price paths are the 

result of section 4.1. The second source of data is about the physical characteristics of the gas storage itself. For 

example, the capacity and injection/withdrawal rate of the gas storage. These characteristics determine for 

example how fast the storage can inject/reject gas, how much gas it can handle in total, and therefore how much 

value can be created. The mentioned regression technique is the Least-Square Monte Carlo technique. This 

technique is used to find the continuation value in the optimizing algorithm as discussed in section 3.2.  

 

Since the constructing of gas spot price paths and the Least-Square technique are already discussed, the gas 

storages characteristics remains to be pointed out in this section. These characteristics are different from one 

storage to another. That is why we use a fictional gas storage to analyse and evaluate the techniques used in this 

study. An attempt is made to stick as much as possible to the gas storage characteristics as presented in the paper 

of Bjerksund et al. (2011). As stated before, the focus of this study is not to value gas storages, its focus is to 

validate gas storage value(s). Besides, the effect of a time-dependent equilibrium level and volatility updating in 

the simulation of gas spot prices on the probability distribution of gas storages is analysed. The reference point 

in Section 4.3 is just the distribution of values with all constant parameters. From this point, time-dependent 

equilibrium level and volatility updating is incorporated in the simulation of gas spot prices and the effect on the 

value distribution is discussed.   
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The gas storage characteristics are programmed in R as input variables. By doing so, these characteristics can 

easily be adjusted for valuing other storage facilities. The programming code is presented in Appendix D. 

 

The gas storage characteristics are presented in the Table below. The corresponding gas market is UK NBP. 

Therefore, the unit of gas is therm and it trades in GBP. Corresponding spot and forward prices relate to pence 

per therm, i.e. GBP per therm. 

 

Initial storage 125 million therms 

Terminal storage 125 million therms 

Max storage 250 million therms 

Injection  2.5 million therms per day 

Deletion  2.5 million therms per day  

TABLE 14: Gas Storage Characteristics  

The contract period is one year. Furthermore it is assumed that there are no transaction costs, and the interest 

rate is set to zero (by chance this is actually the case in May 2015)4.  

 

According to the gas storage characteristics one restriction is programmed for computational speed purposes. 

The maximum injection rate is 2.5 million therms per day and the deletion rate is also 2.5 million therms per day. 

This results in many different possible changes in volume level per day, so much that the time needed to perform 

the optimizing strategy is not considered reasonable. To overcome this problem the change in volume level is 

restricted and discretised to only three possibilities: inject the maximum of 2.5 million therms, do nothing, or 

deplete 2.5 million therms. This restriction has significant, positive, impact on computational time but it has a 

negative impact on the gas storage value. Intuitively, this can be understood when other possible volume changes 

become available additional value can be created when these changes lead to higher payoffs.  

 

 

 

  

                                                                        
4 In May 2015 the Euribor 3 months is -0.01%, Euribor 6 months is 0.058%, and the Euribor 12 months is 0.167%. Therefore, 

it is reasonable to set the interest rate at 0.  
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4.3 Valuation and Interpretation – The Results 
In this section the third sub-question is answered, i.e.: 

 

3. How to obtain a value and interpret the value of gas storages using the spot approach? 

 

The relation of this sub-question to the overall structure is for convenience presented in Figure 42.   

 

 
FIGURE 42: From Overall Research Structure; Section 4.3  

Recall that the focus of this study is to support the validation of gas storage value(s). In Section 4.1, it is showed 

that client’s valuation models can be challenged to incorporate seasonality and volatility updating in their 

valuation. This section combines the outcome on sub-question one and sub-question two in order to find a gas 

storage value. This value is not a claim on the ‘real’ value but it can be used to determine whether or not the 

client’s value can be considered as reasonable.  

 By presenting a histogram of the values per price path the effect of a time-dependent equilibrium 

level (Section 4.1.3) and volatility updating (Section 4.1.4) is shown. For further interpretation the expected value, 

standard deviation, 5th percentile point, and Expected Shortfall of each distribution are given. As in line with 

Section 4.1.3 and 4.1.4, 1000 runs per simulation are used. According to computational restrictions and the 

purpose of validation this is considered appropriate. Recall that the distribution of values represent the risk-

neutral probabilities and can therefore not be interpreted as real-world probabilities.  

 We will first present the distribution when three constant parameters are used as the input of the 

Ornstein-Uhlenbeck process to simulate future gas spot prices. This distribution is the same as the example used 

in Section 2.2. So without a time-dependent equilibrium level and volatility updating. This can be used as the 

baseline of this study. These three constant parameters are calibrated over 5 year of historical data (Section 4.1.2) 

and are therefore all three backward looking (no market or implied information is taken into account). As stated 

in Section 4.1.2, both the calibrated mean reverting rate of 0.0137 and rate of 0.05 suggested by Boogert and De 

Jong (2008) are used. In risk-neutral pricing the equilibrium level is set by the forward curve. We assume in this 

baseline simulation that the forward curve is the same as the calibrated equilibrium level.  

 Secondly, the constant equilibrium level is changed to a time-dependent (deterministic) equilibrium 

level in the Monte Carlo simulation of future gas spot prices. The resulting distribution of gas storage values (one 

per price path) is visualized in Figure 44. Thirdly, volatility-updating is implemented in the simulation instead of a 

constant volatility parameter. The other two parameters are constants. The result of this process is shown in 

Figure 45. At last, both the time-dependent equilibrium level and volatility updating are incorporated in the 

Monte Carlo simulation of future gas spot prices. The remaining mean reverting parameter is still constant. The 

result is presented in Figure 46.  
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Simulation with constant parameters 

The three parameters of the Ornstein-Uhlebeck process are here treated as constants. Table 15 presents the input 

parameters and the expected value. Figure 43 shows the two corresponding histograms, and Table 16 states the 

5th percentile point, Expected Shortfall (ES), and standard deviation (sd).   

 

Mean reverting rate; 𝑘 0.0137  Mean reverting rate; 𝑘 0.05 

Equilibrium price; μ 56.8330  Equilibrium price; μ 56.8330 

Volatility; 𝜎 3,45%  Volatility; 𝜎 3,45% 

     

Storage value 32.12 million  Storage value 34.38 million 

TABLE 15: Gas Storage Input Parameters and Value 

FIGURE 43: Gas Storage Value Distribution with Constant Parameters 

5th percentile point  6.98 million  5th percentile point 23.49 million 

Expected Shortfall -0.64 million  Expected Shortfall 19.47 million 

Standard deviation 14.76 million  Standard deviation 7.05 million 

TABLE 16: Interpretation of Value Distribution 

The above results can be seen as the baseline of this study. These results are obtained by using three constant 

parameters in the Ornstein-Uhlenbeck process. In Figure 43 a histogram of the values per price path is presented. 

The left figure presents the results with a mean reverting rate of 0.0137, whereas the right figure presents the 

results with a mean reverting rate of 0.05. The underlying assumption of the OU process is that the returns are 

normally distributed. Both figures also seems to represent a normal distribution. The expected value of both 

simulations are quite similar: 32 million versus 34 million. On the other hand, the numbers that give an indication 

of how the values are distributed give different results. As can be expected, the values of the simulation with the 

higher mean revering rate are distributed much closer to the mean. This is indicated by a higher 5th percentile 

point, and ES, and a lower sd. A mean reverting rate of 0.0137 results in twice the sd, a much lower 5th percentile 

point and a negative ES. 

 A remarkable effect in relationship with option pricing theory can be obtained from above results. 

When comparing the storage values in Figure 43, the distribution obtained by a higher mean reverting rate results 

in a somewhat higher storage value. An higher mean reverting rate would in turn imply a less volatile gas spot 

price. We see this as quite remarkable because according to option pricing theory, higher volatility in the 

underlying would result in an higher option price. Using the spot approach with Least Squares Monte Carlo this 

is not the case.  

 

Discussion: What is a reasonable mean reverting rate?  

In the simulations presented in the former sub-section, two mean reverting rates are used. One is obtained by 

calibration on historical data and one is suggested by literature. In the following simulations we will discuss the 

effect of changing the equilibrium level and the volatility parameters. Changing these parameters would also have 

an effect on the mean reverting rate. However, it is hard to determine exactly what this effect would be since we 

mix-up parameters that are historical (backward-looking) parameters and market consistent (forward-looking) 
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parameters. Further research is needed to quantify this effect. For this study, we regard to this problem from an 

intuitively perspective.  

 We implemented a time-dependent equilibrium level to not only represent market expectations but 

also seasonality in the gas spot price. If seasonality is taken into account in the calibration on historical data, the 

difference between the observed spot prices and the equilibrium level would be smaller as compared to a 

constant equilibrium level. This would imply that the mean reverting rate is higher than the number found by 

calibration on a constant level. We can therefore conclude that the equilibrium level should be higher than 0.0137 

for the NBP price. As an upper bound of the mean reverting rate we take the rate of 0.05 as suggested by 

literature. We consider the mean reverting rate to be somewhere in between. The following simulations are 

therefore also performed with both mean reverting rates.  

 

Simulation with time-dependent equilibrium level 

In the following two simulations, the constant equilibrium level is changed to a time-dependent equilibrium level 

which is in line with market expectations. The corresponding method is pointed out in Section 4.1.3.  Again, the 

results at the left side relate to a mean reverting rate of 0.0137 and at the right side the results are presented 

using a mean reverting rate of 0.05.  

 

Mean reverting rate; 𝑘 0.0137  Mean reverting rate; 𝑘 0.05 

Equilibrium price; μ time-dependent  Equilibrium price; μ time-dependent 

Volatility; 𝜎 3,45%  Volatility; 𝜎 3,45% 

     

Storage value 28.12 million   Storage value  31.56 million  

TABLE 17: Gas Storage Input Parameters and Value 

FIGURE 44: Gas Storage Value Distributions with Time-Dependent Equilibrium Level 

5th percentile point 6.69 million   5th percentile point 21.44 million  

Expected Shortfall -0.52 million   Expected Shortfall 18.73 million  

Standard deviation 12.72 million   Standard deviation 6.59 million  

TABLE 18: Interpretation of Value Distribution 

The time-dependent equilibrium level used in the above simulations is the same as the forward curve in Figure 

29. Instead of a constant level of 56.83, the equilibrium level fluctuates roughly between 46 and 56. By using this 

forward curve as an equilibrium level, the seasonality throughout the year and throughout the week is 

incorporated in the simulation of future gas spot prices. Besides, the equilibrium level is in line with market 

expectations and can therefore be seen as implied.  

 The, on average, lower equilibrium level results in a somewhat lower expected value. The numbers to 

describe the tail give very similar results as compared to the simulation with a constant equilibrium level. 

Remarkable is that incorporating seasonality does not seems to create additional storage value whereas this is 

traditionally seen as the rationale behind gas storages. This can however not be claimed because the average of 

the time-dependent equilibrium level is also lower than the one calibrated on historical data (48.9960 versus 

56.8330). This is further studied by comparing the results of the time-dependent simulations with simulations in 
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which the equilibrium level is the average of the forward curve in Figure 29. In this way, the equilibrium level is 

again a constant parameter but instead it is in line with market expectations. The results of these simulations are 

presented in Table 19:    

 

Mean reverting rate; 𝑘 0.0137  Mean reverting rate; 𝑘 0.05 

Equilibrium price; μ 48.9960  Equilibrium price; μ 48.9960 

Volatility; 𝜎 3,45%  Volatility; 𝜎 3,45% 

     

Storage value 27.76 million  Storage value 29.58 million 

TABLE 19: Gas Storage Value with Constant Equilibrium Level in Line with Market Expectation 

The time-dependent simulations result in a slightly higher storage value. We can therefore conclude that taking 

account for seasonality will result in a higher storage value. However, the difference is small and it can be 

discussed whether the time-dependent equilibrium level will lead to significantly different conclusions according 

to the purpose of validation. Nevertheless, the discussed method is a very easy way to incorporate seasonality 

and market expectations in the simulation of gas spot prices. We can therefore conclude that using forward curve 

information in the simulation of future gas spot prices to incorporate seasonality and market expectations is 

appropriate for validation purposes.  

Simulation with volatility updating 

The following two simulations take account for volatility updating in the underlying gas spot price. The remaining 

two parameters are taken as constants as discussed in Section 4.1.2. The updating of volatility is performed by 

the use of GARCH as explained in Section 4.1.4. 

 

Mean reverting rate; 𝑘 0.0137  Mean reverting rate; 𝑘 0.05 

Equilibrium price; μ 56.8330  Equilibrium price; μ 56.8330 

Volatility; 𝜎 Volatility updating  Volatility; 𝜎 Volatility updating 

     

Storage value 41.84 million  Storage value 40.62 million 

TABLE 20: Gas Storage Input Parameters and Value 

FIGURE 45: Gas Storage Value Distributions with Volatility Updating 

 

5th percentile point 8.83 million   5th percentile point 20.60 million  

Expected Shortfall 2.61 million   Expected Shortfall 18.64 million  

Standard deviation 30.61 million   Standard deviation 19.68 million  

TABLE 21: Gas Storage Input Parameters and Value 

When analyzing the above results two remarkable insights are obtained. Firstly, the simulation with a lower mean 

reverting rate results in a higher expected value whereas our baseline simulation with three constant parameters 

resulted in the opposite.  

 Secondly, the 5th percentile point and ES are higher with a mean reverting rate of 0.0137 as compared 

to the simulation with three constant parameters. As can be seen in Figures 34 and 35, the updating of volatility 
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results in large up and down movements in the simulated future gas spot prices. As in line with expectations this 

leads to a higher standard deviation in the distribution value of gas storages in comparison with the simulations 

with constant volatility. A remarkable finding however is that a higher standard deviation in the distribution of 

gas storage value(s) does not directly relate to a lower 5th percentile point or a lower ES. Instead, for the lower 

mean reverting rate the 5th percentile point goes up from 7 to 9 million. At the right side, simulations with a 

higher mean reverting rate, the 5th percentile point is somewhat lower in comparison with constant volatility.  

 

From this we conclude that the optimizing strategy, as discussed in Section 3.2 and Section 4.2, is able to detect 

up and down price spikes and use it in its advantage. By doing so, the effect of selling gas when prices are high 

and buying gas when prices are low is higher in these two simulations than in the simulations with constant 

volatility. Therefore, we can state that when the mean reverting rate is lower the price spikes (up and down) can 

be exploited more intensively.  

 

Simulation with time-dependent equilibrium level and volatility updating 

In this last simulation we incorporate both a time-dependent equilibrium level and volatility updating in the 

simulation of future gas spot prices. Again, we visualize the effect of these two price characteristics on the 

distribution of gas storage value(s).  

 

Mean reverting rate; 𝑘 0.0137  Mean reverting rate; 𝑘 0.05 

Equilibrium price; μ time-dependent  Equilibrium price; μ time-dependent 

Volatility; 𝜎 Volatility updating  Volatility; 𝜎 Volatility updating 

     

Storage value 39.34 million  Storage value 37.97 million 

TABLE 22: Gas Storage Input Parameters and Value 

FIGURE 46: Value Distributions with Time-Dependent Equilibrium Level and Volatility Updating 

5th percentile point 7.23 million  5th percentile point 19.33 million 

Expected Shortfall 2.79 million  Expected Shortfall 16.71 million 

Standard deviation 27.62 million  Standard deviation 17.61 million 

TABLE 23: Interpretation of Value Distribution 

The remarkable insights of the simulation before are also present in the outcome of the above two simulations. 

Since the time-dependent equilibrium level is on average lower than the constant level, all the values are 

somewhat lower than the simulations with only volatility updating. The somewhat higher risk associated with the 

lower mean reverting rate is here rewarded by a higher storage as compared to the simulation with a mean 

reverting rate of 0.05. The difference is however much smaller.  

 

In these last two simulations both price seasonality and volatility updating are incorporated in the simulation of 

future gas spot prices. As is discussed before, a reasonable mean reverting rate would be between the calibrated 

rate of 0.0137 and the suggested rate by literature of 0.05. The effect of this mean reverting rate on the storage 
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value becomes smaller by incorporating volatility updating and a time-dependent equilibrium level. The 

sensitivity of this rate is further analysed in Section 5.  

 

All in all we conclude that the following aspects can be incorporated in the validation process of gas storages 

value(s) when using the spot approach: 

 Seasonality in the gas spot price 

 Market expectations of future gas spot prices 

 Volatility clustering in the gas spot price 

 

The first two aspects are taken into account for by the time-dependent equilibrium level. The volatility clustering 

is implemented in the simulation of gas spot prices by GARCH. By taking account of volatility clustering we also 

deal with the existence of price spikes in gas prices. The optimizing part of the spot approach is able to take these 

(extreme) price movements into account as can be seen by the big, positive, right tail in the distribution of gas 

storage value(s).  
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5 Sensitivity Analysis 
In this section we perform two sensitivity analyses. Both are related to an in-model parameter of the Ornstein-

Uhlenbeck process: the mean reverting rate. By using the spot approach to ‘value’ gas storages the behaviour of 

the underlying gas spot price is important. For simulating this spot price an Ornstein-Uhlenbeck process is used 

with three parameters. Two of these parameters are adjusted to represent seasonality and volatility clustering in 

spot prices. The third one, the mean reverting rate, is in this study treated as a constant. As stated in Section 4.1.2 

and 4.3, it is hard to determine what the mean reverting rate should be when changing the other two parameters 

of the Ornstein-Uhlenbeck process. We therefore used two mean reverting rates: the calibrated rate of 0.0137 

found by calibration on historical data and the rate of 0.05 suggested by Boogert and De Jong (2008). We stated 

that the relevant rate would be somewhere in between those two boundary-rates. The sensitivity of this mean 

reverting rate to the gas storage value and its tail is therefore analysed in this section. We present two plots with 

the gas storage value (its expected value) and the 5th percentile point at both axes. Each plot relates to one price 

characteristic that is used in the simulation of future gas prices. The first characteristic is the time-dependent 

equilibrium level to take account for seasonality and market expectations. The second characteristic is volatility 

updating to take account for the clustering of volatility.  

 

The Sensitivity of the Mean Reverting Rate and Time-Dependent Equilibrium Level 

As stated above, the sensitivity of the mean reverting rate on the gas storage value and the 5th percentile point is 

calculated. At this sub-section the smoothed forward curve is used to represent a time-dependent equilibrium 

level to take account for the seasonality of gas spot prices in a way which is consistent with market expectations. 

The corresponding plot is presented below.  

 

 
FIGURE 47: Sensitivity of the Mean Reverting Rate – Equilibrium Level 

In the above figure the range of the mean reverting rate is between 0.005 and 0.07 with steps of 0.005. The 

graphs should be interpreted with care since different axes are used. The expected value corresponds with the 

left axis whereas the 5th percentile point relates to the right one.  

 As can be seen in Figure 47, the expected value has an upward slope until it reaches its maximum 

around 0.035. After that, the expected value slightly decreases. This makes sense because the ability of the gas 

storage to profit from price changes shrinks when the mean reverting rate becomes larger. The 5th percentile 

point behaves exactly as expected, it is positively related to the mean reverting rate. A higher mean reverting rate 

indicates that price paths do not fluctuate much, so all the gas storage values are more near to the mean. 
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The Sensitivity of the Mean Reverting rate and Volatility Updating 

At this sub-section the sensitivity of the mean reverting rate is tested when volatility updating is used in the 

simulation of gas spot prices.  Again, the mean reverting rate ranges from 0.005 to 0.07 with steps of 0.005 and 

two different axis are used. The left axis corresponds with the expected value and the right axes relates to the 5th 

percentile point.  

 

 

FIGURE 48: Sensitivity of the Mean Reverting Rate – Volatility Updating 

In Figure 48 the graph that represents the expected value is not as stable as it is in Figure 47. It has the same 

upward slope as in Figure 47, but after it reaches it maximum around 0.03, it decreases a lot faster. On the other 

hand, the 5th percentile point moves in a very identical way. This quite unstable behaviour may be due to the 

limited amount of runs per simulation. However, if we imagine a more smoothed curve, the difference in value 

would still be around 10% in the reasonable range (0.0137 – 0.05).  

 

Conclusion 

We conclude that the sensitivity of the mean reverting rate to the 5th percentile point is quite low in the 

reasonable range. However, when taking volatility updating into account in the simulation of future gas prices, 

the mean reverting rate can have an impact on the expected value of the storage. Our findings indicate a 

difference up to 10% of the storage value. Since the mean reverting rate was not the focus of our study we cannot 

state this by heart. We can only state that in the validation of gas storage value(s) the sensitivity of the mean 

reverting rate should be taken into account. How to set an appropriate mean reverting rate is therefore a good 

subject for future research. 
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6 Conclusions and recommendations 
In this study we presented two extensions to the method of Boogert and De Jong (2008) to value gas storages 

using the spot approach. This is done from a validation perspective to support audit work on assets like gas 

storages. The first extension is to incorporate seasonality in the simulation of future gas prices. The second 

extension relates to the clustering of volatility present in gas spot prices.  The main research question is therefore 

as follows:  

 

How to incorporate seasonality and volatility updating in gas storage valuation 

for the purpose of validation? 

 

We will first discuss our findings followed by suggestions for future research.  

6.1 Conclusions 
We focused on the pricing side of the spot approach and found two extensions to the method of Boogert and De 

Jong (2008) for the purpose of validation. The corresponding optimizing algorithm is used to show the effect of 

these extensions on the value distribution of gas storages. By performing an econometric analysis on historical 

spot prices the existence of seasonality and the clustering of volatility is shown. Each extension relates to a 

parameter of the mean reverting Ornstein-Uhlenbeck process (E. S. Schwartz, 1997).  

 

The first extension is the implementation of a time-dependent equilibrium level to take account for the 

seasonality of the gas spot price. The forward curve at validation date is used to set an equilibrium level that is 

consistent with market expectations. Smoothing a spline through this forward curve is needed to transform this 

curve of average-based forward prices to a curve with daily granularity. On top of that, a day-week profile is added 

to also take account for the significant seasonality through the week.  

 The implementations of a GARCH model to represents clustering in volatility is the second extension. 

As shown by the econometric analysis, returns on the gas spot prices are not normally distributed and subjected 

to fat tails. Since gas storage holders profit from extreme movements in price a simulation conditional on normally 

distributed returns underestimates gas storage value. We showed that by using a GARCH (1,1) model extreme 

price movements can be taken into account in the valuation and validation of gas storages.  

 

To analyse the impact of above improvements on the valuation and validation of gas storages a baseline is 

created. As baseline we used a distribution of values when simulating future gas pricing with three constant 

parameters in the Ornstein-Uhlenbeck process. These constants are found by calibration on historical data.   

 A time-dependent equilibrium level results in a higher storage value as compared to a constant 

equilibrium level. However, this difference can be quite small. Nevertheless, this is a welcome extension because 

in this way market expectations are taken into account in the valuation, and validation. If market expectations 

show a much larger seasonal effect, this effect is automatically accounted for.  

 When a GARCH model is used to take account for volatility updating much higher storage values are 

obtained. This is because the optimizing algorithm is able to use extreme price movements in its advantage. 

Intuitively this makes sense because storage holders profit from large price movements. The effect of volatility 

updating is best shown by big, positive, right tails in the corresponding value distribution. We conclude that this 

is an appropriate improvement because the baseline method underestimates extreme price movements and 

therefore gas storage value.  

 All in all we conclude that the following aspects can be incorporated in the validation process of gas 

storages value(s) when using the spot approach: 

 Seasonality in the gas spot price 

 Market expectations of future gas spot prices 

 Volatility clustering in the gas spot price 

 

These aspects can be used for model validation. If these techniques are used for having a claim on the one and 

‘true’ value, they should be handled with care. This is because of the underlying assumptions and the impact of 

the mean reverting rate. Nevertheless, it can be used for obtaining an intuition about reasonable values.  
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The parameter that is untouched in this study is the mean reverting rate. We cannot state by heart how to set an 

appropriate rate since it was not the focus of this study. Nevertheless, our sensitivity analysis showed that the 

mean reverting rate can have an impact on the expected value and the 5th percentile point. Validation on gas 

storages based on this study should therefore take account for this potential impact. We find the mean reverting 

rate an interesting topic for further research.  

 

6.2 Further Research 
While conducting this study we found interesting topics related to gas storage valuation and validation that are 

not covered by this study. The first one relates to the mean reverting rate which is one of the three parameters 

in the Ornstein-Uhlebeck process. The discussed extensions in this study corresponds to the other two 

parameters. However, the impact of changing these parameters on the mean reverting rate is unknown. Further 

research is needed to determine how to set an appropriate mean reverting rate conditional on the changes in 

the other parameters.  

 Secondly, there are possibilities to make the volatility parameter market consistent. In this study the 

volatility is calibrated on historical data whereas the equilibrium level parameter is ‘looking-forward’ by using 

market consistent, forward prices. We suggest further research on this topic to use for example implied volatility 

in simulation of future gas prices.  

 Another possibility is to use simulated forward curves by principal component analysis for setting the 

time-dependent equilibrium level. A first suggestion is already made in this study from witch further research can 

be continued. Although, we consider the potential advancements for the purpose of validation quite small.  

 Fourthly, we suggest further research on the discounting rate to be used in this study. We used the 

risk-free interest rate as the discounting factor because we used risk neutral valuation. Following this technique 

we assumed that discounting by the risk-free rate is incorporated in forward prices. However, in literature it is 

discussed that the market price of risk is incorporated in forward prices (E. Schwartz & Smith, 2000). Further 

research on this topic will therefore help in setting an appropriate discounting factor.  

 The last suggestions for further research relates to the GARCH model. We used the (1,1) model to 

simulate volatility updating and found satisfying results for the purpose of validation. However, we did not 

determine if this model is the most suited one. Furthermore, by using GARCH the chance of a positive price spike 

is of equal magnitude as a negative price spike. This seems not to be in line with our empirical analysis because 

only positive price spikes are detected. A potential way to improve GARCH volatility forecasts is by a regime-

switching model. Research on this topic is relevant since the impact of volatility updating on gas storage value(s) 

is high.  
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A.  Research Structure 
The overall structure of this research is visually presented in the figure below.  

 

 
FIGURE 49:  Overall Research Structure 
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B. Econometric Analysis HH Spot Price 
The econometric analysis performed on the NBP spot price is also applied on the US Henry Hub spot price. The results can be 

seen in the following figures and tables.  

 

 
FIGURE 50:  HH - Spot Price and its Returns 

 

 

 Henry Hub (HH) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Mean 3.8405 6.4245e-05 -0.0006 

Min 1.8198 -0.2359 -0.2691 

Max 7.9247 0.4604 0.3787 

Quantile: 

 1% 

 5% 

 10% 

 90% 

 95% 

 99% 

 

1.9836 

2.3788 

2.7357 

4.6840 

5.0136 

6.1815 

 

-0.0783 

-0.0449 

-0.0326 

0.0322 

0.0445 

0.0884 

 

-0.0815 

-0.0459 

-0.0331 

0.0317 

0.0436 

0.0847 

Standard Deviation 0.8220 0.0362 0.0353 

Skewness 0.4040 2.4974 0.9983 

Kurtosis 5.1939 40.3301 27.7459 

Number of observations 1253 1252 1252 

TABLE 24: HH – Descriptive Statistics 2010 - 2014   
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FIGURE 51: HH - Normal Q-Q Plot of Simple Returns 

 
FIGURE 52: HH – Normal Q-Q Plot of Log Returns 

 

 Henry Hub (HH) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Shapiro-Wilk 2.2e-16 2.2e-16 2.2e-16 

Jarque-Bera 2.2e-16 2.2e-16 2.2e-16 

TABLE 25: HH - P-values Normality Tests 

 

 Henry Hub (HH) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Phillips-Perron test 0.0261 0.01 0.01 

KPSS test 0.0132 0.1 0.1 

TABLE 26: HH - Statistical Tests Volatility Clustering 
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C. Econometric Analysis TTF Spot Price 
The econometric analysis performed on the NBP spot price is also applied on the Dutch Title Transfer Facility spot price. The 

results can be seen in the following figures and tables.  

 

 

 
FIGURE 53:  TTF - Spot Price and its Returns 

 

 Title transfer Facility (TTF) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Mean 22.6115 0.0007 0.0002 

Min 10.50 -0.2763 -0.3234 

Max 39.50 0.2138 0.1938 

Quantile: 

 1% 

 5% 

 10% 

 90% 

 95% 

 99% 

 

12.2000 

14.1975 

16.9500 

26.9820 

27.6000 

32.8525 

 

-0.0999 

-0.0460 

-0.0290 

0.0336 

0.0518 

0.0996 

 

-0.1052 

-0.0471 

-0.0294 

0.0330 

0.0505 

0.0949 

Standard Deviation 4.1568 0.0332 0.0334 

Skewness -0.3670 -0.1005 -0.7613 

Kurtosis 3.7640 13.0515 15.8343 

Number of observations 1260 1259 1259 

TABLE 27: TTF – Descriptive Statistics 2010 - 2014   
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FIGURE 54: TTF - Normal Q-Q Plot of Simple Returns 

 
FIGURE 55: TTF – Normal Q-Q Plot of Log Returns 

 

 Title transfer Facility (TTF) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Shapiro-Wilk 2.2e-16 2.2e-16 2.2e-16 

Jarque-Bera 1.6e-13 2.2e-16 2.2e-16 

TABLE 28: TTF - P-values Normality Tests 

 Title transfer Facility (TTF) 

 Spot Price (S) ‘simple’ returns 

(%∆S) 

Log returns (∆ln(S)) 

Phillips-Perron test 0.1873 0.01 0.01 

KPSS test 0.01 0.1 0.1 

TABLE 29: TTF - Statistical Tests Volatility Clustering 
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D. Programming Code 
This appendix presents the relevant R code per section.  

Section 4.1.1 Spot Price Analysis 

#Month-Year Profile; Section 4.1.1 

 

############# Now a boxplot of the months 

Data=read.csv("", header=T, sep=";",dec=",") 

 

######## Sort 

Data$Month <-factor(Data$Month, levels=c("December","November","October","September", 

"August","July","June","May","April","March","February","January")) 

 

######## Set margins of par 

par(mar=c(3.8,5.5,2,2)) 

par(mgp=c(2.2,1,0)) 

 

########### EY Colors 

EYY=c(255,210,0) 

EYG=c(128,128,128) 

#BB=rbind(rep(EYY,length(Data[,2]))) 

########### 

 

####### create a boxplot of the year-profile 

BB=rbind(EYY,EYY,EYY,EYY,EYY,EYY,EYY,EYY,EYY,EYY,EYY,EYY) 

boxplot(Data$Price ~ Data$Month, horizontal=TRUE,las=1, ylim=c(30,80)) 

rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "gray") 

boxplot(Data$Price ~ Data$Month, horizontal=TRUE,las=1,main="Boxplot Year-Profile", col=EYG, 

border=BB,add=TRUE,xaxt='n',yaxt='n',lwd=2,xlab="Price") 

abline(v=c(30,40,50,60,70,80), lwd=1, col="white", lty="dotted") 

abline(h=c(1,2,3,4,5,6,7,8,9,10,11,12),lwd=1, col="white",lty="dotted") 

 

####### create an ANOVA table 

ratio.aov<-aov(Data$Price~Data$Month) 

summary(ratio.aov) 

 

#difference exists because P-value is very small 

###### Conduct a Turkey's multiple comparison procedure to find the differences 

TukeyHSD(ratio.aov) 

 

#Statistical tests to test for unit root and/or stationarity. 

#section 4.1.1.  

 

#Load data 

MR=HH[,2] 

MR=NBP[,2] 

MR=TTF[,2] 

 

MR=log(MR) 

MR=diff(MR) 

 

#MEAN REVERSION 

library(tseries) 

library(fUnitRoots) 

 

MR=DST 

 

#Augemted Dickey-Fuller (ADF) to test mean reversion in a timeserie 

adf.test(MR)  #Here a constant and a linear trend is used(!), whereas only a constant is 

needed.  

#May be a good proxi for the lag 

adfTest(MR, type="c", lags=10)   #set type to "nc" ,"c", or "ct", for no constant, constant, 

and constant & trend 

#KPSS Test for Stationarity 

kpss.test(MR, null="Level", lshort=F)   #null hypothesis should be level or 'trend', in this 

case level. 

#Phillips-Perron Test for Unit Roots 

PP.test(MR, lshort=F) 
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Section 4.1.2 Stochastic Processes 

#Log-Normal Ornstein Uhlenbeck parameter estimation and simulation 

#Section 4.1.2 

 

#Read in Data 

prices=read.csv("", header=T, sep=";",dec=",") 

NBP=prices[1:1258,3:4] 

 

#Load data 

price.HH=ts(HH[,2]) 

price.NBP=ts(NBP[,2]) 

price.TTF=ts(TTF[,2]) 

 

ts.plot(price.HH,price.NBP,price.TTF, lwd=1, col=c("blue","red","orange")) 

 

######### Set which price process to simulate ###### 

price=price.NBP 

######### 

 

######### Make it log prices 

price=log(price) 

######### 

 

######### Estimation of OU parameters using linear model##### !!!!! Following regression on 

lnprices after Ito's Lemma Schwartz (1997) 

D=diff(price) 

S=price[-length(price)] 

list=summary(lm(D~S))       #Simple linear regression 

Eta=-list$coefficients[2] 

Sigma=list$sigma 

alpha=list$coefficients[1]/Eta 

Mu=alpha+(Sigma^2/(2*Eta)) 

######### 

 

##### SET T ##### 

T=365 

 

###### Simulation of the OU process following Schwartz (1997) ####### 

OU.sim <- function(t=T+1, mu=Mu, eta=Eta, sigma =Sigma){ 

  P_0=price[length(price)] 

  P=rep(P_0,t) 

  for(i in 2:t){ 

    P[i]=P[i-1] + eta * (mu - (sigma^2/(2*eta)) - P[i-1]) + sigma * rnorm(1) 

  } 

  return(P) 

}  

##### 

 

############ function for multiple runs of OU.Sim into a matrix ######### 

OU.Simulations=function(runs){ 

  X=matrix(1:((T+1)*runs),nrow=(T+1),ncol=runs) 

for(i in 1:runs){ 

  X[,i]=exp(OU.sim()) 

} 

X 

return(X)  

} 

############# 

 

X=OU.Simulations(3) #5 simulations of OU.Sim() 

ts.plot(X) 

 

############# Plot ########### 

 

Y=matrix(nrow=T+1, ncol=ncol(X)+1) 

Y[,1:(ncol(X))]=X 

Y[,(ncol(X))+1]=rowMeans(X) # calc average and add it to matrix 

ts.plot(Y,xlab="Time", ylab="Price", 

col=c(rep("black",ncol(X)),"blue"),lwd=c(rep(1,ncol(X)),2)) 

########### 
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Section 4.1.3 Forward Curve Analysis 

#Smoothing forward curve by a spline + Day-week Profile 

#Section 4.1.3 

 

Data=read.csv("", header=T, sep=";",dec=",") 

library(timeDate) 

library(timeSeries) 

library(zoo) 

 

########### Set timeSeries 

fwd=timeSeries(Data[,2]) 

plot(fwd) 

########### 

 

########### EY Colors 

EYY=c(255,210,0) 

EYG=c(128,128,128) 

BB=rbind(rep(EYY,length(Data[,2]))) 

########### 

######## Set margins of par 

par(mar=c(4,4,2,2)) 

par(mgp=c(2.5,1,0)) 

 

########### Plot 

Data.ts=ts(Data[,2]) 

plot(Data.ts,type="p",xaxt="n",pch=20,col=EYY,main="NBP-Forward 

Contracts",xlab="Date",ylab="Price",ylim=c(46,56),xlim=c(1,705)) 

rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "gray") 

points(Data.ts,col="yellow",pch=20) 

axis(1, at=c(1,91,182,274,366,457,548,640),labels=c("Jan-15","Apr-15","Jul-15","Oct-15","Q1-

2016","Q2-16","Q3-16","Q4-16")) 

abline(v=c(1,91,182,274,366,457,548,640), lwd=2, col="white", lty="dotted") 

abline(h=c(46,48,50,52,54,56),lwd=2, col="white",lty="dotted") 

########## 

 

#######smoothSpline 

fwd.Spline<- smoothSpline(fwd, spar=0.75) 

plot(fwd.Spline, main="forward curve - Spline Smoothed") 

fwd.m<-as.matrix(fwd.Spline[,2]) 

##### 

 

######## day-week ratios 

Mo=1.0000 

Tu=1.0045 

We=1.0059 

Th=1.0044 

Fr=1.0003 

Sa=0.9927 

Su=0.9927 

 

##### loop to add day-week profile to fwd SET PERIOD 1 OR 2 YEAR 

fwd.dw<-fwd.m 

for (i in 1:731){ 

  if ((i+3)%%7==1) {     # 1-jan is on a Thursday 

      fwd.dw[i]=fwd.dw[i]*Mo 

  } 

  else if ((i+3)%%7==2){ 

      fwd.dw[i]=fwd.dw[i]*Tu 

  } 

  else if ((i+3)%%7==3){ 

    fwd.dw[i]=fwd.dw[i]*We 

  }   

  else if ((i+3)%%7==4){ 

    fwd.dw[i]=fwd.dw[i]*Th 

  } 

  else if ((i+3)%%7==5){ 

    fwd.dw[i]=fwd.dw[i]*Fr 

  } 

  else if ((i+3)%%7==6){ 

    fwd.dw[i]=fwd.dw[i]*Sa 

  } 

  else if ((i+3)%%7==0){ 

    fwd.dw[i]=fwd.dw[i]*Su 

  } 

} 
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###### 

 

###### Plot all curves 

fwd.ts=as.timeSeries(Data[,2]) 

fwd.m.ts=as.timeSeries(fwd.m) 

fwd.dw.ts=as.timeSeries(fwd.dw) 

##### 

 

#####show plotjes in [3,1] frame 

par(mfrow=c(3,1)) 

plot(fwd.ts) 

plot(fwd.m.ts) 

plot(fwd.dw.ts) 

par(mfrow=c(1,1)) 

####### 

 

####### graphs in same plot 

plot(fwd.ts, ylim=c(45,56)) 

lines(fwd.m.ts,type="l", col="blue") 

lines(fwd.dw.ts,type="l",col="red") 

##### 

 

########### Plot 

Data.ts=ts(Data[,2]) 

plot(Data.ts,type="p",xaxt="n",pch=20,col=EYY,main="NBP Smoothed Forward Curve with Day-Week 

Profile",xlab="Date",ylab="Price",ylim=c(46,56),xlim=c(1,705)) 

rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "gray") 

points(Data.ts,col="yellow",pch=20) 

axis(1, at=c(1,91,182,274,366,457,548,640),labels=c("Jan-15","Apr-15","Jul-15","Oct-15","Q1-

2016","Q2-16","Q3-16","Q4-16")) 

abline(v=c(1,91,182,274,366,457,548,640), lwd=2, col="white", lty="dotted") 

abline(h=c(46,48,50,52,54,56),lwd=2, col="white",lty="dotted") 

lines(fwd.m.ts,type="l", lwd=2, col="blue") 

lines(fwd.dw.ts,type="l",col="red") 

########## 

 

 

#PCA 

#Section 4.1.3 

library(rgl) 

 

#Load Data 

Data=read.csv("",header=T,sep=";",dec=",") 

 

#########LAY-OUT 

EYY=c(255,210,0) 

EYG=c(128,128,128) 

colvec<-rbind("yellow","blue") 

# 

# Set par 

par(mar=c(3.8,3.8,2,2)) 

par(mgp=c(2.2,1,0)) 

######### 

 

######### Annualized Volatility Term Structure 

ldr=matrix(1:(256*365),c(256,365)) 

 

for (i in 1:365){ 

  for (j in 1:256){ 

    ldr[j,i]=(Data[i+1,j*4]) # Don't take spot into account 

  } 

} 

 

yvol=array(1:365) 

for (i in 1:365){ 

  yvol[i]=sd(ldr[,i])*252^0.5 

} 

 

######### PLOT 

yvol.ts=as.ts(yvol) 

plot(yvol.ts, type="l", col=EYY, main="Annualized Volatility Term Structure",xlab="Days to 

Maturity", ylab="Volatility") 

rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "gray") 

abline(h=c(0.2, 0.25, 0.3, 0.35, 0.4), col="white", lwd=2, lty="dotted")  

abline(v=c(0,100, 200, 300), lwd=2, col="white", lty="dotted") 

points(yvol.ts,col="yellow",type="l",lwd=2) 

######### 
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##### Create TMatrix 

TMatrix=matrix(1:(365*257),c(365,257)) 

for (j in 1:257){ 

  for (i in 1:365){ 

    TMatrix[i,j]=Data[i,j*4-2] 

  } 

} 

####### 

 

####### 3D PLOT TMatrix 

persp3d(1:365,1:257,TMatrix,col="yellow") 

persp3d(1:365,1:256,ldr,col="yellow") 

Cov=cov((ldr)) 

persp3d(1:365,1:365,Cor,col="yellow") 

persp3d(1:365,1:365,Cov,col="yellow") 

###### 

 

###############################  3D PLOT 

nbcol = 6 

color = rev(rainbow(nbcol, v= 1, start = 0/6, end = 1/6)) 

zcol  = cut(Cov, nbcol) 

persp3d(1:365,1:365,Cov, col=color[zcol],ticktype="detailed",axes=FALSE, 

xlab="M",ylab="M",zlab="",box=TRUE) 

# Use custom labels 

axis3d(edge= 'y--', at =c(0,100,200,300)) 

axis3d(edge= 'x--', at = c(0,100,200,300)) 

axis3d(edge= 'z-+', at = c(0,0.0002,0.0004,0.0006)) 

mtext3d("Covariance", edge='z-+', line=2) # put in z-axis label by hand  

# Set-up background (BOX) 

bbox3d(col="grey",labels=NULL, xlen=0,ylen=0,zlen=0, nticks=0,xat=500,yat=500,zat=500) 

# Add grid 

grid3d("x+",col="white", lwd=2) 

grid3d("y+",col="white", lwd=2,lty="100") 

grid3d("z-",col="white", lwd=2,lty="dotted") 

##EXPORT 

#GIF & PNG 

movie3d(spin3d(axis = c(0,0,1), rpm = 1),duration=10,  type = "GIF", convert=FALSE) 

############################### 

 

# Set par 

par(mar=c(3,4,3,1)) 

par(mgp=c(3,1,0)) 

######### 

 

################# cov by EIG - Relevant Factors to explain 95% of the variance 

eig=eigen(Cov,only.values=FALSE) 

m=365 

 

bp=array(1:m) 

bp=eig$values/sum(eig$values) 

barplot(bp) 

 

bp.cum=array(1:m) 

 

for (i in 1:m){ 

  if(i==1){ 

    bp.cum[1]=bp[1] 

  } 

  else if(i>1){ 

    bp.cum[i]=bp.cum[i-1]+bp[i] 

  } 

} 

bp.cum=bp.cum[1:10] 

barplot(bp.cum,xlim=c(1,9),ylim=c(0,1),yaxt="n", main="Cumulative Attribution of the First 10 

Components", width=0.5, xpd=TRUE, 

space=c(2,rep(0.6,9)),names.arg=c("1","2","3","4","5","6","7","8","9","10")) 

axis(2,at=c(0,0.2,0.4,0.6,0.8,1),labels=c("0 %","20 %","40 %","60 %","80 %","100 %"),las=1) 

 

abline(h=0.95,lty="dotted") 

bp.cum[1:10] 

###################### 6 components are needed 

 

 

#Simulate 365 forward curves to create stochastic equilibrium level 

#Section 4.1.3 
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##############Load 

#incl spot incl d-profile option B 

Data=read.csv("", header=T, sep=";",dec=",") 

 

#ldr 

ldr=matrix(1:(256*365),c(256,365)) 

for (i in 1:365){ 

  for (j in 1:256){ 

    ldr[j,i]=(Data[i+1,j*4]) 

  } 

} 

#TMatrix 

TMatrix=matrix(1:(365*257),c(365,257)) 

for (j in 1:257){ 

  for (i in 1:365){ 

    TMatrix[i,j]=Data[i,j*4-2] 

  } 

} 

#Cov 

Cov=cov((ldr)) 

#eig 

eig=eigen(Cov,only.values=FALSE) 

#vectors 

temp=eig$vectors[,1:6] 

####################### 

 

################ SIM fwd curves t+dt conditional on fwd curve t 

 

#Create 365*366, in first column fwd curve at t=0 

FWDCurves=matrix(1:(365*366),c(365,366)) 

FWDCurves[,1]=TMatrix[,1] 

 

dt=1 

for (F in 1:365){ 

  e1=rnorm(1)  

  e2=rnorm(1) 

  e3=rnorm(1) 

  e4=rnorm(1) 

  e5=rnorm(1) 

  e6=rnorm(1) 

  e7=rnorm(1) 

  TArrayNew=array(1:365) 

  for (T in 1:365){ 

    Tot=0 

    for (i in 1:6){ 

      if (i==1){ 

        Tot=temp[T,i]*sqrt(eig$value[i]*dt)*e1-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

      if (i==2){ 

        Tot=Tot+temp[T,i]*sqrt(eig$value[i]*dt)*e2-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

      if (i==3){ 

        Tot=Tot+temp[T,i]*sqrt(eig$value[i]*dt)*e3-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

      if (i==4){ 

        Tot=Tot+temp[T,i]*sqrt(eig$value[i]*dt)*e4-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

      if (i==5){ 

        Tot=Tot+temp[T,i]*sqrt(eig$value[i]*dt)*e5-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

      if (i==6){ 

        Tot=Tot+temp[T,i]*sqrt(eig$value[i]*dt)*e6-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

      if (i==7){ 

        Tot=Tot+temp[T,i]*sqrt(eig$value[i]*dt)*e7-0.5*(temp[T,i]^2)*eig$value[i]*dt 

      } 

    } 

    TArrayNew[T]=FWDCurves[T,F]*exp(Tot) 

  } 

  FWDCurves[,F+1]=TArrayNew   

} 

 

EQ=array(1:365) 

for (T in 1:365){ 

  EQ[T]=FWDCurves[T,T+1] 

} 
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plot(EQ,type="l",col="blue") 

lines(FWDCurves[,1],type="l",col="red") 

######################## 

#slow 

 

 

Section 4.1.4 GARCH 

#Estimation of GARCH for c OU process 

#Section 4.1.4 

 

#######load libraries 

library(fGarch) 

library(rugarch) 

 

######## Import data 

prices=read.csv("", header=T, sep=";",dec=",") 

NBP=prices[1:1258,3:4] 

######## 

#Load data 

price.NBP=ts(NBP[,2]) 

ts.plot(price.NBP, lwd=2, col="red") 

 

######### Set which price process to simulate ###### 

price=price.NBP 

######### 

 

######## function to calculate percentage price change (GOU) #### 

pct.diff=function(price){ 

  PCT =rep(0,length(price)) 

  d=diff(price) 

  for(t in 1:length(price)){ 

    PCT[t]=d[t]/price[t] 

  } 

  PCT=PCT[-length(PCT)] 

  return(PCT) 

} 

######### 

 

######## function to calculate log returns (LNOU) #### 

pct.diff=function(price){ 

  PCT =rep(0,length(price)) 

   

  for(t in 1:length(price)){ 

    PCT[t]=log(price[t+1]/price[t]) 

  } 

  PCT=PCT[-length(PCT)] 

  return(PCT) 

} 

######### 

 

######### Return function 

R=pct.diff(price) 

########################## 

 

######### ugarchfit #smaller unconditional variance than garchFit 

UR=ugarchfit(ugarchspec(variance.model= 

list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(1,1), include.mean=FALSE), 

distribution.model="norm"),R, fit.control = list(stationarity = 1)) 

UR@fit$coef 

omega<-UR@fit$coef[3] 

alpha<-UR@fit$coef[4] 

beta<-UR@fit$coef[5] 

UnVar=omega/(1-alpha-beta) 

sqrt(UnVar) 

Omega=omega 

Alpha=alpha 

Beta=beta 

 

############### LNOU + GARCH 

T=731 

#process parameters 

eta = 0.0137 #eta = 0 is equivalent to Geometric Brownian Motion 

mu = log(56.8330) #the mean of the process 

Sigma=0.0345 
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#dubble for-loop 

F=100 # amount of simulations 

X=matrix(nrow=T+1,ncol=F) 

for(j in 1:F){ 

 

#GARCH volatility model 

specs = garchSpec(model = list(omega = Omega, alpha = Alpha, beta = Beta))  

sigma = garchSim(spec = specs, n = T+1) 

 

P_0 = log(48.65) #starting price, known 

P = rep(P_0,T+1) 

 

for(i in 1:T+1){ 

  P[i] = P[i-1] + eta * (mu - (Sigma^2/(2*eta)) - P[i-1]) + sigma[i] 

} 

X[,j]=exp(P) 

} 

# 

ts.plot(X) 

 

############# Plot ########### 

 

Y=matrix(nrow=T+1, ncol=ncol(X)+1) 

Y[,1:(ncol(X))]=X 

Y[,(ncol(X))+1]=rowMeans(X) # calc average and add it to matrix 

ts.plot(Y,xlab="Time", ylab="Price", 

col=c(rep("black",ncol(X)),"blue"),lwd=c(rep(1,ncol(X)),2)) 

########### 

 

#prices and returns 

par(mfrow=c(1,1))        

plot(P,type="l",xlab="Time", main="", ylab = "Price") 

plot(diff(P), type = 'l', ylab = 'Price Changes', xlab = 'Time') 

################# 

 

########### Plot 

plot(Y[,1],type="l",xlab="Time",ylab="Price",main="NBP - Price Paths with Volatility 

Clustering",ylim=c(0,200),xaxt="n") 

rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "gray") 

for (i in 201:400){ 

  points(as.ts(Y[,i]),type="l") 

} 

points(as.ts(Y[,501]),col=EYY,type="l",lwd=2) 

 

axis(1, at=c(1,91,182,274,366,457,548,640),labels=c("Jan-15","Apr-15","Jul-15","Oct-15","Jan-

16","Apr-16","Jul-16","Oct-16")) 

abline(v=c(1,91,182,274,366,457,548,640), lwd=1, col="white", lty="dotted") 

abline(h=c(0,50,100,150,200),lwd=1, col="white",lty="dotted") 

########## 

 

 

Section 4.2 and 4.3 

#LSMC Running Script together with related functions 

#Following Boogert & De jong (2006) and Longstaff & Schwartz (2001) 

#Section 4.2 

 

rm(list=setdiff(ls(), c("X","Y"))) 

 

#Start simple, add complexity 

#Time-Volume grid 

#l volume points: 1 represents 0 

#Injection and Withdrawal rate: 1 per t.  

#Start volume: 51 

#End volume: 51 

#X: spotprice paths from OU constant Mu 20-02 with T=11, T[1]=P_0, s0 10 timesteps 

#Continuation value at T+1 (=11) =penalty function, (lack of)remaining gas in storage 

#Matrix V represents all possible volume levels at each t, continuation value must be 

implemented 

  

#Set parameters 

#Number of independent price pahts 

m=ncol(X) 

#Length of T 

T=nrow(X)-1 

#Total possible volume levels (including zero) 



N.A.J. Roelofs  79 

l=101 

#penalty function: 1.5* average last price * volumedifference. 

p=1.1 

#start volume 

v.s=51 

#end volume 

v.e=51 

#injection/withdrawal rate 3 possible options per point; withdraw 1, do nothing, inject 1 

dv=1 

#discount rate 

r=0 

 

### Create 3D matrix to represent accumulated future cashflow at each volume, time, and for 

each price path 

afc=array(rep(0,(l*m*(T+1))), dim=c(l,m,T+1)) 

### Create 3D matrix to represent continuation values at each volume, time, and price path 

cv=array(rep(0,(l*m*T)),dim=c(l,m,T)) 

### Create 4D matrix to represent decision rule per volume, time and price path 

dec=array(rep(0,(l*m*T*3)),dim=c(l,m,T,3)) #For now, three possible decisions per point 

 

############## Load in functions ##################### 

 

################################### For-loop to apply backward induction for t=T...,1.  

afc[,,T+1]=P.matrix(p) 

for (i in T:1){ 

    cv[,,i]=Calc.cv(i) 

    dec[,,i,]=Det.dec(i) 

    afc[,,i]=Calc.afc(i) 

  } 

##################################  

 

GSV=mean(afc[v.s+1,1:m,1]) 

GSV 

EV=(GSV*2.5)/100 #Transform for sake of unity of NBP market 

EV 

S.H.GSV=sort((afc[v.s+1,1:m,1]*2.5)/100) 

plot(S.H.GSV,type="l") 

VaR=mean(S.H.GSV[50:51]) #VaR 95% 

ES=mean(S.H.GSV[1:50]) #ES 95% 

sd(S.H.GSV) 

 

############## histogram of Gas Storage Value per Price Path 

### EY Colors 

EYY=c(255,210,0) 

EYG=c(128,128,128) 

BB=rbind(rep(EYY,4)) 

### 

###Set margins of par 

par(mar=c(4,4,2,2)) 

par(mgp=c(2.5,1,0)) 

### 

 

# histogram Section 4.3 

H.GSV=(afc[v.s+1,1:m,1]*2.5)/100 

H.GSV=hist(H.GSV,breaks=50,main="Gas Storage Value per Price Path",xlab="Million GBP") 

rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "Gray") 

lines(H.GSV,col="yellow",main="Histogram of values") 

abline(v=c(VaR,EV),lwd=2,col=c("red","blue"),lty="dotted") 

axis(1, at=VaR,labels="8.10") 

axis(1, at=EV, labels="50.87") 

legend(x="topright",c("Expected Value","VaR 

95%"),lty=c("dotted","dotted"),lwd=c(2,2),col=rbind("blue","red"),bg="gray") 

# 

############## 

 

#Supporitng functionf for LSMC 

#Section 4.2 

 

###################### Functions to create  Penalties at T+1 for each b and V 

################## 

###Function to set penalty values at T+1, for given b 

penalty=function(p,b){ 

  X.b=X[T+1,b] 

  V=matrix(data= NA,nrow=l,ncol=T+1) 

  for(i in 1:l) {  #l represents total possible volume levels (including zero) 
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    if (i<(v.e+1)){ 

      V[i,ncol(V)]=((i-1)-v.e)*X.b*p 

    } 

    else if (i==(v.e+1)){ 

      V[i,ncol(V)]=0 

    } 

    else if (i>(v.e+1)){ 

      V[i,ncol(V)]=((i-1)-v.e)*X.b*(1/p)   

    } 

  } 

  return(V[,T+1])     

} 

### 

 

### Function to calculate new matrix that gives penalty for each v and b  

P.matrix=function(p){ 

  M=matrix(data=NA, nrow=l,ncol=m) 

  for(i in 1:ncol(X)){ 

    M[,i]=penalty(p,i) 

  } 

  return(M) 

} 

### 

##################################################################### 

 

###################### Function to calculate continuation values at t=10 input is afc at t+1   

############### 

Calc.cv=function(t){ 

  C_t=matrix(data=NA,nrow=l,ncol=m) 

  Xt=X[t+1,]              #X starts at 2 so this represents 10 

  for (i in 1:l) { 

    Y0=exp(-r*(T/252))*afc[i,(1:m),t+1] 

    list=coef(lm(Y0~poly(Xt,2,raw=TRUE))) 

    C_t[i,]=list[1]+list[2]*Xt+list[3]*Xt^2 

  } 

  return(C_t) 

} 

##################################################################### 

 

########################## Function to find decision rule, given the continuation values + 

transfer costs ######### 

Det.dec=function(t){ 

  for (i in 1:m){     #price path 

    for (j in 1:l){   #volume level 

      if (j==1){ 

        #a=X[t+1,i]+cv[j-1,i,t]     #withdraw, not possible  

        b=0+cv[j,i,t]               #Do nothing 

        c=-X[t+1,i]+cv[j+1,i,t]     #Inject 

        max=max(b,c) 

        dec[j,i,t,1:3]=c(0,b==max,c==max) 

      } 

      else if (j>1 & j<l){ 

        a=X[t+1,i]+cv[j-1,i,t]      #withdraw 

        b=0+cv[j,i,t]               #Do nothing 

        c=-X[t+1,i]+cv[j+1,i,t]     #Inject 

        max=max(a,b,c) 

        dec[j,i,t,1:3]=c(a==max,b==max,c==max) 

      } 

      else if(j==l){ 

        a=X[t+1,i]+cv[j-1,i,t]      #withdraw 

        b=0+cv[j,i,t]               #Do nothing 

        #c=-X[t+1,m]+cv[j+1,i,t]    #Inject, not possible 

        max=max(a,b) 

        dec[j,i,t,1:3]=c(a==max,b==max,0) 

      } 

      } 

  } 

  return(dec[,,t,]) 

} 

######################################################################### 

 

########################## Function to find accumulated future cashflow, given the decision 

rule ######### 

Calc.afc=function(t){ 

  for (i in 1:m){        #price path 

    for (j in 1:l){      #volume level 

      for (k in 1:3){    #decision rule 
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        if (dec[j,i,t,k]==1){ 

          afc[j,i,t]=-(k-2)*X[t+1,i]+exp(-r*(T/252))*afc[j+(k-2),i,t+1] 

        } 

         

      } 

    } 

  } 

  return(afc[,,t]) 

} 

######################################################################### 

 

 

 

 


