
Numerical mathematics on FPGAs using
CλaSH

Martijn Bakker

Committee:
Dr.ir. J. Kuper

Dr. R.M.J. van Damme
Dr.ir. J. Broenink

Computer Architecture for Embedded Systems (CAES),
Electrical Engineering, Mathematics and Computer Science (EEMCS),

University of Twente

This thesis is submitted for the degree of

Bachelor of Science

Advanced Technology July 2nd, 2015

Abstract

Performing computations directly in hardware can be a very challenging task for a scientist
or engineer only familiar with software, but there is much that can be gained in terms
of power reduction and performance improvements using FPGAs. This thesis describes
the process of implementing an accelerator in which the computational part is specified
using the functional hardware description language CλaSH and discusses the feasibility
of performing numerical mathematics on this accelerator by computing approximations to
ordinary differential equations. The accelerator is capable of using the methods of Euler
and Runge-Kutta (second order) to perform the approximations, but due to the use of a
fixed-point number representation the accuracy suffers. The performance of the accelerator,
implemented on a low-power, low-cost development FPGA: the Altera Cyclone V is 40%
worse than an i7-950, but the power usage of the accelerator is 2 orders of magnitude lower.

Acknowledgements
• Jan Kuper - Introducing me to functional programming, CλaSH and giving feedback
• Christiaan Baaij - Creating CλaSH and answering related questions
• Ruud van Damme & Jan Broenink - Feedback
• Rinse Wester - Input on configuring and using the Avalon bridges

Acronyms
ASIC Application-specific integrated circuit
FPGA Field-Programmable Gate Array
CPU Central Processing Unit
DSP Digital Signal Processing
LED Light Emitting Diode
VHDL VHSIC HDL
VHSIC Very High Speed Integrated Circuit
HDL Hardware Description Language
SoC System-on-Chip
ODE Ordinary Differential Equation
HPS Hard Processor System
ARM Advanced RISC Machine (CPU development company)
RISC Reduced Instruction Set Computer
IP Intellectual Property
GUI Graphical User Interface

Table of contents

1 Introduction 1
1.1 Project goals . 1
1.2 FPGAs . 2

1.2.1 What is an FPGA? . 2
1.2.2 How does it work? . 2
1.2.3 System-on-a-chip . 3

1.3 Numerical solvers for ODEs . 3
1.4 Functional programming . 5

1.4.1 What is functional programming? 5
1.4.2 Using FP for numerical mathematics 7
1.4.3 Example: Numerical solutions of ODEs in Haskell 7

1.5 CλaSH . 10
1.5.1 Mealy machines . 11
1.5.2 Advantages of CλaSH . 11

2 Methods 13
2.1 Overall structure . 13
2.2 External types . 15
2.3 Internal types . 16

2.3.1 Internal number representation . 16
2.3.2 SystemConstants and SystemState 17

2.4 Implementation of equations and integration schemes 18
2.5 Simulation . 19
2.6 Synthesis and deployment . 20
2.7 Loading data into the FPGA . 21

2.7.1 Constants . 21
2.7.2 Initial values . 22

2.8 Solving the system and extracting values 23

3 Results 25
3.1 Euler . 25

3.1.1 First oscillation - initial position 25
3.1.2 Second oscillation - initial velocity 28

3.2 Runge-Kutta (second order) . 29

vi Table of contents

3.3 Runge-Kutta (fourth order) . 32
3.4 Euler revisited . 32
3.5 Performance . 32

4 Discussion 35
4.1 Accuracy . 35
4.2 Performance . 35
4.3 Suggestions for further work . 36
4.4 Suggestions for additions to CλaSH . 36

5 Conclusion 39

References 41

Appendix A Haskell source code for numerical solutions of ODEs 43

Appendix B Project structure 49

Appendix C Handling data IO 51

Appendix D Toolchain integration 53

Appendix E Performance benchmark 57

Chapter 1

Introduction

This introduction contains the project goals and some very short introductions on the FPGAs
and how they are used, numerical methods for approximating ODEs, functional programming
and CλaSH. The goal of this report is to be understandable for any technical BSc student
which is not necessarily familiar with functional programming, or numerical mathematics and
therefore the short introductions are included for the sake of completeness and are assumed
knowledge for the rest of the thesis.

1.1 Project goals

From the start, this project has one main goal: obtaining information on the feasibility and
the advantages and disadvantages of performing numerical mathematics (specifically, solving
ODEs 1) directly on (programmable) hardware, the FPGA. As per usual, having a main
goal spawns off several minor goals which support the main part. Both supporting goals
are about simplifying the process of configuring FPGAs: an easy way of setting up projects
with complicated IO requirements and furthermore, developing a toolchain integration which
turns the long process of compiling and deploying your FPGA project into the execution of a
single command.

Alongside these concrete goals the underlying theme is to do as much work as possible
in CλaSH, a library and compiler based on the functional programming language Haskell,
developed by Christiaan Baaij at the CAES group at the University of Twente. Further
elaboration on CλaSH can be found in section 1.5.

1In this thesis, the term ’solving’ will be used for both the process of solving an ODE analytically and for
computing a numerical approximation to an ODE.

2 Introduction

1.2 FPGAs

1.2.1 What is an FPGA?

An FPGA (Field Programmable Gate Array) is a chip in which you can specify the hardware
yourself. In contrast to regular programming in which you generate a long list of instructions
which are executed sequentially on a fixed chip configuration, the FPGA allows you to specify
exactly which wire (signal) leads where and what operation should be applied to that signal.
This approach to programming can have several advantages. The first one arises from the
large opportunities for parallelism. Every part of the FPGA can be executing a meaningful
computation simultaneously, whereas processors are bound by the amount of physical cores
they have in the amount of truly concurrent instruction executions possible. Secondly, a
conventional processor only has a fixed instruction set. Using an FPGA you can define your
own instructions (subcircuits), again providing a possible improvement in computational
speed. According to [14], FPGAs were already capable of outperforming CPUs on very
parallelizable numerical tasks on single and double precision floating point numbers in as
early as 2004. Furthermore, as you are implementing your signal processing directly in
hardware, there will be a fixed bound on the possible latency. This makes FPGAs ideal for
purposes in high-throughput, low-latency signal processing, eg. real-time audio, video or
data stream processing. Lastly, the reconfigurability of FPGAs whilst remaining close to the
actual hardware allows for cost reductions in the verification of ASIC (Application-Specific
Integrated Circuits) designs. It’s cheaper to reprogram your FPGA than to have a new version
of an ASIC manufactured.

However, the FPGA is a trade-off between implementing designs directly in hardware
and being able to run multiple designs (after a reconfiguration). As a consequence of this,
it still loses to ASICs with several orders of magnitude on performance [7] and CPUs still
dominate in terms of versatility and on-the-fly reconfigurability.

1.2.2 How does it work?

An FPGA is built up from several distinct element types, depicted in figure 1.1
1. Logic elements Responsible for the actual signal processing. An FPGA may contain

different types of logic elements, eg. memory, DSP and logic blocks. These blocks
implement some signal processing capability which can be configured up to certain
limits.

2. Programmable interconnects In order to be able to represent complex designs, the
logic elements need to be connected in a certain way. This is what the programmable
interconnects are for. Essentially, those are wires which can be turned on and off by
the user as part of a design specification.

3. IO blocks Finally, the functionality implemented using the logic elements and pro-
grammable interconnects should be exposed to external signals in order to be useful.
IO blocks can be used to control hardware pins, controlling a LED or reading a switch
but also for more intricate IO facilities, eg. external memory controllers.

1.3 Numerical solvers for ODEs 3

Fig. 1.1 FPGA fabric.

It might seem that programming an FPGA involves manually specifying the interconnects
and exact configurations of the logic elements. However, specialized languages have been
developed just for the purpose of describing the FPGA functionality at a higher level of
abstraction and leave the specific routing and assignment of logic elements to the compiler.
The two main advantages of these languages are that you do not have to worry about low-level
problems like how the interconnects will be routed and secondly, your written specification
will be portable across multiple FPGA vendors as long as the vendor supplies you with the
proper compiler from your specification to a file which can be used to program the FPGA.

More information on FPGA functionality can be found in [15].

1.2.3 System-on-a-chip

FPGAs in itself can be useful, but especially for design with IO requirements that are more
complex than just reading out hardware switches and controlling LEDs, more control is
needed. This requirement has led to the rise of SoCs (System-on-Chip). These devices
integrate an FPGA with additional hardware on a single chip. This extra hardware usually
contains a CPU, which can be used to simplify the process of loading and extracting data
from the FPGA. The SoC used for this thesis is the Terasic SoCKit, a development kit
containing an Altera Cyclone V FPGA and a dual-core ARM A9 CPU on a single chip (Altera
5CSXFC6D6F31C6N), alongside a wide variety of IO possibilities. Further information on
the SoC used is available at [9].

1.3 Numerical solvers for ODEs

The field of numerical solvers is a vast and active area of research. Furthermore, there is a lot
of theory on which solver to pick for specific problems, related to stability, computational
efficiency and other factors. However, the goal of this thesis is to get an impression of the

4 Introduction

feasibility of using numerical solvers for ODEs on FPGAs. Therefore, the selection of solvers
will be restricted to some very basic schemes.

The solvers used have some common properties:
• Fixed-step - The solvers compute a value for the ODE at a fixed step size. This means

that in contrary to the continous ’mathematical’ solution of an ODE, the output of the
solver will be an approximate to the actual value of the solution at the discrete set of
values of the independent variable, in which the difference between the values of the
independent variables is defined by the fixed step size.

• Single-step - The approximate value of the ODE xk at tk only depends on tk−1, xk−1
and the ODE that is being approximated.

Both solvers work equally for both vectors and scalars. In case of a vector, the operations
listed in 1.1 and 1.3 should simply be applied to all elements of x⃗.

Euler

The easiest numerical solver, without doubt, is Euler’s method (equation 1.1). For every
discrete point in time, the value of the next point is approximately equal to the derivative
at that point multiplied by the time step added to the current value. The simplicity of the
scheme has a cost: it is not very accurate and the errors accumulate quickly. From [13], the
maximum error of Euler’s method can be shown to be linear in the time step and exponential
in the interval length (eq 1.2), in which M and L are constants depending on the equation to
be solved, b−a is the solution interval length and h is the time step.

sk,1 = f (tk,xk) (1.1)
xk+1 = xk +hsk,1

maximum erroreuler ≤
Mh
L

(eL(b−a)−1) (1.2)

Runge-Kutta

The Runge-Kutta methods are a family of solvers, of which the 4th order version is the
most well-known (RK4). The solver used here will be a second-order Runge-Kutta method,
also known as the improved Euler’s method [13]. This second order method requires the
computation of two slopes (equation 1.3), in contrast to the single one required for Euler’s
method.

sk,1 = f (tk,xk) (1.3)
sk,2 = f (tk +h,xk +hsk,1)

xk+1 = xk +h
sk,1 + sk,2

2

1.4 Functional programming 5

maximum errorRK2 ≤
Mh2

L
(eL(b−a)−1) (1.4)

Note that the maximum error of RK2 is proportional to the square of the time step
(equation 1.4). As the time step decreases by a factor of 2, the maximum error will decrease
by a factor of 4, given that the equation and the range stay the same. However, the maximum
error still depends exponentially on the interval length.

1.4 Functional programming

1.4.1 What is functional programming?
As the name suggests, the functional programming paradigm uses functions. These functions
are used to build up the program and create structure. In contrast to the imperative program-
ming paradigm, there is no assignment - there are only expressions. It is by evaluation of
these expressions that you execute your program. These expressions consist of variables,
constants and operations. However, the name variable may be ill-chosen, as assignment does
not exist and therefore it is impossible for a variable to vary. Once you have bound a value to
a certain variable, this value may not change and the value should be the same at every point
where this variable is referenced (a concept called referential transparency).

The exclusion of assignment from functional languages has several consequences. It
becomes impossible to program using loops. The alternative is the use of recursive (listing
1.1) and higher-order functions (functions that have other functions as parameters or output).
Especially higher-order functions have the side effect that they add clarity about the way
the program functions (listing 1.2). For instance, a map applies the same function to every
element in a list, resulting in a new list. A fold would start at an initial value and element-by-
element combine the list into a single value using a specified function, eg. addition. Both
these operations would be implemented using a for-loop in an imperative language, but their
goal is completely different. The availability of higher-order functions allows for more clarity
in code by being able to specify exactly what kind of operation you want to perform. Another
effect of the lack of assignment is the lack of side effects in functional programming. As
there is no way to modify a variable, there is also no way of accidentally modifying a variable
such that you enter an invalid state and other parts of the program stop functioning correctly.

Listing 1.1 Recursive functions
1 fac :: Num a => a −> a
2 fac 0 = 1
3 fac n = n * fac (n−1)

Listing 1.2 Higher order functions
1 timesTwo :: Num a => [a] −> [a]
2 timesTwo xs = map (*2) xs
3
4 sum :: Num a => [a] −> a

6 Introduction

5 sum xs = foldl (+) 0 xs
6
7 powers :: Num a => a −> a −> [a]
8 powers init power = iterate (\ x −> x * power) init
9

10 powers100 = take 100 $ powers 1 2

The concept of higher-order functions also serves as an introduction to another very
important concept in Haskell: the type system. Everything has a fixed type and often times,
when only looking at the type definition you can already guess what the function is going to
do. Consider the type signature of map in listing 1.3. It requires a (a−>b), a function to turn
something of type a into something of type b. Furthermore, it needs a list of a, [a] (indicated
by the square brackets) and it returns something of type ’list of b’ ([b]). The type signature of
the foldl is slightly harder to understand, but it requires a function which needs an a and a b
to produce a new b. Furthermore, an initial value (a) and a list of b to operate on ([b]) in order
to return the final result, which has again type a. Function type signatures can be daunting
to understand at first, but not all of them are as complicated as the foldl . For instance, a
function which can be used to represent a differential equation, which needs a state of the
system (the ODEState) in order to compute the derivative at that point (the D_ODEState). As a
last example, the type signature of Solver: it requires some integration scheme, settings for
the time (initial time and a time step), it requires an equation and an initial state of the system.
All of this combined results in a list of states: the numerical approximation to the solution of
the ODE. Note that in this example, the integration scheme Scheme itself is a function, for
which understanding the type signature should pose no problem by now.

The last concept in functional programming which is important to understand is so-called
lazy evaluation. In contrast to imperative programming, a value is only evaluated whenever
it is needed. For instance, this allows for the concept of an infinite list, which is definitely
not attainable in imperative programming as it would run out of memory. An example of
this is the higher-order function iterate , shown in listing 1.2, as part of the powers function.
This function generates an infinite list by repeatedly applying a function (in this case a
multiplication by a constant) to its own output, starting at the initial value init . However, it
would be impossible to actually display the entirety of said infinite list and therefore you
apply another function, take n, which only consumes the first n elements of a list. As the
total evaluation only requires the first n elements, these are the only ones that will actually be
computed. [12]

Listing 1.3 Type signatures
1 map :: (a−>b) −> [a] −> [b]
2 foldl :: (a−>b−>a) −> a −> [b] −> a
3
4 type Equation = ODEState −> D_ODEState
5 type Scheme = TimeSettings −> Equation −> ODEState −> ODEState
6 type Solver = Scheme −> TimeSettings −> Equation −> ODEState −> [ODEState]

1.4 Functional programming 7

1.4.2 Using FP for numerical mathematics
Functional languages have several properties which make them suitable for the purpose of
solving problems in numerical mathematics. First and foremost, Haskell, being based on λ -
calculus is very close to mathematics. The useful mathematical properties here are referential
transparency, easy partial function application and being a declarative language. Referential
transparency implies that a variable only has a constant value which is the same everywhere
in the program. This prevents that changing a variable might have influence on another
computation as a side effect and it corresponds to mathematical notation. For instance,
in an imperative programming like C you could write i = i + 1, which is a mathematical
impossibility and therefore not allowed in Haskell. Partial function application is another very
useful concept. Often in numerical mathematics, you want to create or process a function.
You need a function that has another function as return value. For instance, take a function
which requires two arguments. After only applying a single argument, the object returned
still needs the second argument in order to compute the final value. This is exactly according
to the definition of a function: An object that still needs arguments before being able to
return its final value. Being a declarative language means that you write code that specifies
what you want to accomplish, not how to get there. This concept is again borrowed from
mathematics. You put in a set of function definitions and Haskell will figure out how to
actually compute the value you request according to those definitions. This property of
declarativity also has the result that Haskell is a terse language whilst remaining easy to
understand. Secondly, Haskell has a very strong type system. The type system has three main
advantages. It becomes very easy to swap out and replace functions as long as you make
sure that the types are the same. The Haskell compiler will start to assert errors immediately
whenever you feed it something which does not make sense or could be ambiguous which is
very useful when writing programs. By having a look at the types of a Haskell program it
becomes very straightforward to see what the program does and how it works, which is very
useful when attempting to understand your own or someone else’s code. Lastly, a property
which is often very important for numerical mathematics: Haskell is fast. According to the
Computer Language Benchmarks Game [5], Haskell is almost on par with Java and Fortran
but significantly faster than Python and Matlab (not shown), two languages which are often
used for numerical mathematics nowadays. There is still a performance gap of around a
factor 3 between Haskell and C (the reference), hence if speed is of the absolute highest
concern C is still a valid option.

1.4.3 Example: Numerical solutions of ODEs in Haskell
As mentioned before, the types in Haskell reveal lots of information about the structure and
functionality of the program. The three main types constituting the numerical solver for
ordinary differential equations are listed in listing 1.4.

Listing 1.4 Main types for the ODE solver
1 type Equation = ODEState −> D_ODEState
2 type Scheme = TimeSettings −> Equation −> ODEState −> ODEState
3 type Solver = Scheme −> TimeSettings −> Equation −> ODEState −> [ODEState]

8 Introduction

Equation

In essence, a differential equation is a mapping (function) from a certain state of the system
to the change of this system. This is also what the type signature of Equation signifies, a
mapping from an ODEState to a D_ODEState, the change in state or the derivative. This generic
set up allows the specification of any ODE for solving. The implementation in pure Haskell
of a simple ODE is given in listing 1.5, which corresponds to the equation x′ =−x. However,
this representation is not very elegant and a lot of the code is performing unboxing of the
types. Using property that this equation is linear, it is possible to use an utility method which
takes as input a matrix and returns the Haskell differential equation function belonging to
that matrix. The same can be done for heterogeneous linear systems using a different utility
function, which does not only takes a matrix as input but also a list of functions representing
the heterogeneous part of the equation.

Listing 1.5 Example equation for exponential decay
1 eq_exponential :: Equation
2 eq_exponential state = [−x !! 0]
3 where
4 x = xs state

SolveMethod

The SolveMethod performs the actual computations on what the next value of the solution
should be: the integration scheme. In order to obtain this next state, the scheme needs three
input values: It needs information on the timing constraints of the solution, in this case it
needs the time step. Furthermore, it needs the equation itself and it requires the state of the
system at tn in order to be able to determine the state of the system at tn+1 = tn +∆t.

The most straightforward integration scheme is called forward Euler, given in equation 1.1.
Listing 1.6 depicts the translation of the mathematical expression 1.1 to Haskell. Even though
some list operations have been inserted (zipWith and map), the structure is still recognizable.
It computes the change in state, multiplies this with the time step obtained in line 6 and adds
the initial state in line 4. Lastly, the integration scheme returns the new state of the equation,
consisting of a list of x-values and a corresponding time value. Implementations of different
solvers (i.e. 4th order Runge-Kutta) can be found in appendix A.

Listing 1.6 Example code for the Euler integration scheme
1 euler :: Scheme
2 euler time equation initState = ODEState newX newT
3 where
4 newX = zipWith (+) (xs initState) dX
5 dX = map (timestep *) (equation initState)
6 newT = (t initState) + timestep
7 timestep = dt time

1.4 Functional programming 9

Solver

The Solver function in listing 1.7 acts as the main interface to the program. You specify a
SolveMethod, the TimeSettings (containing the time step and the time at which to stop solving),
the equation itself and an initial condition. The Solver will then return a list of states of the
system. This problem could be solved recursively, but a method featuring more clarity is
a higher-order function, in this case iterate . This function keeps applying itself to its own
output, starting with some specified initial value, generating an infinite list. However, we are
not interested in the infinite list of solutions and therefore we only take the first N elements,
in which N depends on the initial time, the final time and the time step used for the solution.

The solutions of a wide range of equations, both linear and non-linear, both homogeneous
and heterogeneous and using the input matrix utility functions have been plot with suitable
initial conditions to show their behavior in figure 1.2.

Listing 1.7 The main controlling function
1 solve :: Solver
2 solve solvemethod time equation initState = states
3 where
4 states = take steps $ iterate (solvemethod time equation) initState
5 steps = ceiling $ (tMax time − t initState)/ dt time

Results

This example of approximating solutions to ODEs using Haskell shows the versatility the
language and especially its type system. Without any trouble, it is possible to exchange solver
schemes, equations, settings and initial conditions by merely changing a single identifier in the
function call. A variety of equations with suitable initial conditions have been approximated:
both linear and non-linear, of multiple orders, both homogeneous and heterogeneous. As an
example, the equations of which the solutions (with suitable initial conditions) are depicted
in figure 1.2 are listed in equations 1.5. The exact Haskell source generating the plot is shown
in A, but depends on an external library for generating the plot [2].

Exponential x(t)′ =−x(t)
Simple harmonic x(t)′′ =−x(t)

Cosine hyperbolic x(t)′ =

√
x(t)2 −a2

a
(1.5)

Simple harmonic x⃗(t)′ =
[

0 1
−1 0

]
x⃗(t)

Simple forced harmonic x⃗(t)′ =
[

0 1
−1 0

]
x⃗(t)+

[
sin(t)

e−t

]

10 Introduction

Haskell solver examples

x

-10

-5

0

5

10

15

0 2 4 6 8 10 12
time

Exponential Sine Cosh Matrix form - homogenous

Matrix form - heterogenous

Fig. 1.2 Plots of the ODE solutions, simulated in Haskell.

1.5 CλaSH

Functional programming has several aspects in common with hardware design, which was
the original reason for the development of CλaSH, a library and special compiler which is
capable of compiling a subset of Haskell into HDL. In CλaSH, every (sufficiently complex)
hardware design consists of two parts: a combinatorial part and a synchronous part. It is the
combinatorial part which can be modeled with few problems in a functional way: there is
no time dependency - the output is merely an evaluation of a certain function of the inputs
and for every input the output will be the same. However, complex hardware designs do not
merely consist of stateless combinatorial circuits, in order to perform work some statefulness
must be included. This is the task of the synchronous part of the design, keeping track of
the state. The state is often implement using latches or memory cells which can get updated
with new values, computed by the combinatorial part, every clock cycle (hence the name
synchronous part). Together, the combinatorial part and the synchronous part of hardware
are called sequential logic: the output depends on both the current input and the past inputs.

1.5 CλaSH 11

Fig. 1.3 A flowchart of the Mealy machine

1.5.1 Mealy machines

It is the synchronous (statefulness) part that cannot be modeled directly in Haskell, but
CλaSH gets around this by use of the Mealy machine [10]. On every clock cycle, based on
the input and the current state the combinational logic computes an output and a new state.
The updated state gets stored in the memory elements, the output forwarded to the external
ports of the hardware. When looking at some CλaSH-Haskell, this structure of generating
an output and a new state based on an input and the current state is still clearly visible, for
example in listing 1.8. After defining a function with the proper type signature for a Mealy
machine you can pass this function to the CλaSH built-in function mealy, which handles the
conversion to a valid topEntity . In this case the specified function is multiply-accumulate,
which, for every clock cycle, multiplies its inputs together and adds it to an internal sum
which gets forwarded to the output. [6]

Listing 1.8 A basic example a multiply-accumulate specification in CλaSH
1 topEntity :: Signal (Signed 9, Signed 9) −> Signal (Signed 9)
2 topEntity = mealy mac initial
3
4 mac state input = (state ’, output)
5 where
6 (x,y) = input −− unpack the two inputs
7 state ’ = state + x*y −− the new state
8 output = state ’ −− output the new state

1.5.2 Advantages of CλaSH

The power of CλaSH is manifold. Firstly, you are writing valid Haskell code, which allows
you to simulate and verify your designs by relying on existing debugging techniques for
Haskell. Secondly, Haskell enables more clarity in code, partially by use of higher-order
functions, partially by use of it’s record syntax, which allows you to easily group signals
together in a meaningful way. This additional clarity is especially useful in complex designs
in combination with the modularity of functional programs (as long as you adhere to the type
signature), which allows you to easily swap out parts of design. Thirdly, notice that the only
location at which the types of the signals has been specified is in the first line (Signed 9, a

12 Introduction

signed integer of length 9). This means that, in order to have our multiply-accumulate circuit
work on, for instance, unsigned integers of length 32, the only place that needs modification
is the topEntity function type signature. The other types are inferred from here.

After specifying your design in CλaSH, you can invoke the CλaSH-compiler to generate
HDL. Both mainstream languages (VHDL and Verilog) are supported. It is then the HDL
which can be compiled by a vendor-specific compiler into a binary file which can be flashed
to the FPGA.

Chapter 2

Methods

This chapter contains a description of the methods used in describing the hardware on the
FPGA side using CλaSH and VHDL. The description of the host-side (HPS) programming is
included in appendix C, as even though this part of the project is crucial for obtaining results,
it is merely tangential to the project goals. The methods are ordered chronologically in order
to properly describe the process that lead to the FPGA side programming used in chapter 3.
This approach has as side effect that the explanation of the source code is evaluated lazily:
only whenever necessary. Therefore the IO system is only covered after testing and synthesis,
as it is not yet needed before.

2.1 Overall structure

In any reasonably complex project it pays off to keep a clear structure: it improves understand-
ability and allows for easier debugging. For simple projects in CλaSH, the structure would
be uniquely determined by the HDL generated by CλaSH, but this project also relies on other
sources of HDL. Most noteworthy, the interface between the HPS and the FPGA (Altera
Avalon); these signals are very specific to the type of the FPGA and the interconnects it has
to the HPS. Luckily, the vendor provides a way to generate HDL (the QSys system) in order
to create a bridge from the host code running on the HPS to the programmable hardware, the
FPGA. This process is described in appendix ??. After configuring the bridge, VHDL can
be generated and we are left with an instantiable VHDL component. However, even though
CλaSH is capable of instantializing external IP components written in VHDL [11], the most
sensible way of implementing such a structure (due to the easy extensibility) is by writing
a specific connecting component in VHDL, which can instantiate the CλaSH-generated
VHDL. The only responsibility of the connecting component is to distribute and forward
signals: it should not perform any computation. It would be a straightforward process of
generating such a connecting component based on the signal names in the top-level entities
of the components it instantiates, however, due to the fact that it does not change for different
designs and it is not very large, the connecting component has been written by hand in VHDL.
Figure 2.1 depicts an overview schematic of the complete system.

14 Methods

sockit

m
em

ory_io
sockit_pll

io_led

com
pute_m

ain

avalon Physical input (clock, reset, keys, sw
itches)

Physical output (LED
s)

internal data transfer buses

H
ost

Ethernet

G
enerated (Q

Sys)

Convert avalon
protocol into
usable signals

M
anual VH

D
L

D
ivide clock

frequency

M
anual VH

D
L

U
pdate the

LED
 status

G
enerated VH

D
L by CλaSH

Perform
 useful operations:

- control the Avalon bridge
 - bidirectional control channel
 - output channel
 - input channel
- read physical input
- w

rite physical output

Linux on A
RM

- M
anage the

avalon bridge
- Receive ssh and
scp connections

D
esktop

Control FPG
A

through H

PS
over ssh

FPG
A

H
PSFig.2.1

A
block

diagram
depicting

the
overallsystem

encapsulating
the

C
λ

aSH
-generated

m
odule

2.2 External types 15

2.2 External types
Usually, one of the first things to do when setting up a Haskell project is defining types, and
using CλaSH forms no difference. It is especially useful to start by defining an input and an
output signal. In a project with simple IO requirements the input and output signals would
map straight to switches, keys and LEDs for testing purposes, but as the goal is to write
data from the host system into the FPGA registers, the input and output signals will be a
lot more complicated. The input and output signals from the CλaSH-generated VHDL top
entity are shown in listing 2.1. The input consists of three separate channels: a bidirectional
control channel, the actual input channel and some input needed for the output channel.
It might appear strange that the output channel requires input, but this is necessary as the
communications adhere to a strict master-slave pattern, in which the HPS is the master and
the FPGA the slave. The HPS has to indicate whenever it wants to receive the FPGA output
(by specifying an address (out_address) and setting the out_read-bit). As a consequence of the
strict master-slave protocol, there are a lot less output signals than input signals: only the
control and output channel can output data. Lastly, there are the keys, switches and LEDs
as additional input and output signals. This concludes the type signatures of the input and
output signals in CλaSH-Haskell. However, as the goal is to generate actual VHDL, CλaSH
requires some additional information for the naming of the ports of the topEntity of the
VHDL module. This is specified using the topEntity -annotation. In this case this annotation
is not very interesting and it’s merely a restatement of the input and output signal names, but
when the CλaSH-generated VHDL should instantiate other VHDL-modules or use multiple
clocks, the annotation can become more complex. It is shown in listing 2.2.

Listing 2.1 Input and output signals for CλaSH
1 data InputSignals = InputSignals { keys_input :: BitVector 4 −− keys_input
2 , switches_input :: BitVector 4 −− switches_input
3 , control_write :: Bit −− control_write
4 , control_writedata :: BitVector 32 −− control_writedata
5 , control_address :: BitVector 8 −− control_address
6 , control_read :: Bit −− control_read
7 , in_write :: Bit −− in_write
8 , in_writedata :: BitVector 32 −− in_writedata
9 , in_address :: BitVector 8 −− in_address

10 , out_address :: BitVector 8 −− out_address
11 , out_read :: Bit
12 } deriving(Show)
13
14 data OutputSignals = OutputSignals { leds_status :: BitVector 4 −− leds_status
15 , control_readdata :: BitVector 32 −− control_readdata
16 , out_readdata :: BitVector 32 −− out_readdata
17 } deriving(Show)

Listing 2.2 Signal names used in the CλaSH-generated topEntity VHDL module
1 {−# ANN topEntity
2 (defTop
3 { t_name = "compute_main"

16 Methods

4 , t_inputs = [" keys_input "
5 , " switches_input "
6 , " control_write "
7 , " control_writedata "
8 , " control_address "
9 , " control_read "

10 , " in_write "
11 , " in_writedata "
12 , "in_address"
13 , "out_address"
14 , "out_read"
15]
16 , t_outputs = [" leds_status "
17 , " control_readdata "
18 , "out_readdata"
19]
20 }
21)
22 #−}

2.3 Internal types

So far the external types of the CλaSH-code have been covered, but the real work is done by
the internal types: the types that keep track of the state of the system and allow it to do useful
work. In order to allow for easy modifications to the types upon which the FPGA operates,
they have been defined once and have been referenced everywhere else. This in combination
with the property of the higher-order functions in CλaSH that they can operate on all vectors,
regardless of length ensures that changing some internal types will not break the program.

2.3.1 Internal number representation

The solvers main data type is type Data = SFixed 8 24. The constructor SFixed 8 24 stands
for a signed fixed-point number, with 8 integer bits and 24 fractional bits. It uses the 2’s
complement signed number representation, meaning that an 8-bit integer part is capable of
representing the integers in the range [−128..127]. The 24 fractional bits give this number
representation a smallest representable unit of 2−24. This results in accuracy up to the 7th
decimal place, which is similar to the IEEE 754 single precision floating point standard when
the magnitude of the number represented is larger than 1. However, in contrast to the floating
point standard, fixed point numbers guarantee precision up to a certain amount of decimal
places, whereas floating point guarantees accuracy for a certain amount of significant figures
(within the bounds of the representation).

The main reason for the use of fixed point integers is that CλaSH does not support
floating point numbers yet, but additionally, fixed point representations are less demanding
on FPGA area and result in a shorter critical path. Furthermore, the reason for choosing the
total width of the number representation to be 32-bits is purely convenience: the input and

2.3 Internal types 17

output bridges are also 32 bits wide which allows for transferring a single number per write
or read.

2.3.2 SystemConstants and SystemState

The SystemConstants keep track of the variables that do not change during the process of
solving the ODE. It consists of a variety of constants that need values for the integration
scheme (maxtime, timestep and maxstep). Furthermore, it may contain custom constants, which
are passed to the equation to be approximated. This setup allows for (limited) changes to the
equation by changing the constants at run-time without the time-consuming requirement of
recompiling the entire FPGA side of the project.

Moving on to the data type which responsible for keeping track of the state of the system:
the SystemState. This type has two fields: the ODEState, which is has the exact same function
as the similarly named type in section 1.4.3: it keeps track of the values and the time in the
numerical solver. It does this using a valueVector (of type Vec 4 Data) and a time variable (of
type Data). The main difference between the type of the ValueVector in this implementation of
ODEState and the one in section 1.4.3 is that this one uses a vector instead of a list. In Haskell,
lists can have any length (including infinite) whereas the CλaSH-vectors have a fixed length.
This property is very important when generating VHDL, as all vector lengths have to be
immutable and known at compile-time in order to compile the higher-order Haskell functions
(eg. map) to VHDL and afterwards to hardware.

The second field of the SystemState is a counter called step . Together with the maxstep field
in SystemConstants, these govern the amount of output generated from the FPGA. A more
elaborate explanation of the generation of output can be found in section 2.8.

Listing 2.3 Internal state variables for CλaSH
1 type Data = SFixed 8 24
2 type UInt = Unsigned 32
3 type ValueVector = Vec 5 Data
4 type ConstantVector = Vec 20 Data
5
6 data ODEState = ODEState { valueVector :: ValueVector
7 , time :: Data
8 } deriving(Show)
9

10 data SystemState = SystemState { odestate :: ODEState
11 , step :: UInt
12 } deriving(Show)
13
14 data SystemConstants = SystemConstants { maxtime :: Data
15 , timestep :: Data
16 , maxstep :: UInt
17 , userconstants :: ConstantVector
18 } deriving (Show)
19
20 uIntMax = 4294967295 :: UInt
21

18 Methods

22 type Equation = (ODEState, ConstantVector) −> ValueVector
23 type Scheme = SystemConstants −> Equation −> ODEState −> ODEState

2.4 Implementation of equations and integration schemes
The CλaSH-implementations of the equations and integration schemes can be very similar
to the implementations in plain Haskell, from section 1.4.3. However, CλaSH does not
support any special operations yet (exponentiation, trigonometry or fractional powers) and
therefore this imposes limitations on the type of equations which are representable, especially
non-linear and heterogeneous equations which use special operations. In order to allow for
easy specification without recompilation of a large range of equations, the default equation
for testing will be a 4 by 4 matrix vector equation (2.1). This set up is capable of representing
any linear and homogeneous fourth order equation with constant coefficients as well as
lower-order equations with constant heterogeneous parts.

x0
x1
x2
x3


′

=


c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15




x0
x1
x2
x3

 (2.1)

In order to implement this equation in Haskell (listing 2.4 shows the 2 by 2 version), it is
certainly possible to use higher order functions, using foldl (+) 0 $ zipWith (*) matrixRow Vector.
However, this would require the construction of additional vectors. Furthermore, as CλaSH
is not yet completely optimizing, in order to obtain the highest possible performance for
this hot-zone of the hardware, the decision was made to manually unroll the higher order
functions into expressions containing only the unpacking of variables from the SystemConstants
and simple arithmetic operators, + and ∗.

Listing 2.4 Implementation of a second order equation with constant coefficients
1 matrix2d :: Equation
2 matrix2d (odestate , constants) = dxs
3 where
4 xs = valueVector odestate
5
6 c1 = constants !! 4
7 c2 = constants !! 5
8 c3 = constants !! 6
9 c4 = constants !! 7

10
11 x0 = c1 * (xs !! 0) + c2 * (xs !! 1)
12 x1 = c3 * (xs !! 0) + c4 * (xs !! 1)
13
14 dxs = fst $ shiftInAt0 xs (x0 :> x1 :> Nil)

As for the integration schemes, these are incredibly similar to the implementations from
section 1.4.3. The first part only contains unpacking of necessary variables from the records.
For Euler’s method, the actual work integration scheme is only a single line, the remaining

2.5 Simulation 19

lines check whether the time is not yet exceeding the maximum simulation time and generate
an ODEState type, which gets used stored as part of the state in the main controlling logic,
from listing 2.8. A reference to the controlling logic (the topEntity), the integration schemes
and the equations can be found in appendix B

Listing 2.5 Euler’s method in CλaSH
1 euler :: Scheme
2 euler constants equation state = state ’
3 where
4 −−Unpack the needed values
5 c_user = userconstants constants
6 c_maxtime = maxtime constants
7
8 h = timestep constants
9 t = time state

10 xs = valueVector state
11
12 −−Apply Euler’s integration scheme
13 eulerxs = zipWith (+) xs $ map (*h) (equation (state , c_user))
14
15 −−Check the time constraints
16 (xs ’, t ’) = if t < c_maxtime then (eulerxs , t + h)
17 else (xs , t) −− already at maximum time
18
19 state ’ = ODEState {valueVector = xs ’, time = t ’}

2.5 Simulation
After writing the Haskell code which is going to be compiled by CλaSH, it is very easy to
simulate your design: CλaSH includes a simulate function which is capable of generating
user-specified signals. Especially in contrast with the process of generating test benches
for VHDL, using Haskell to perform simulations saves a lot of time and typing. However,
choosing to perform the tests in Haskell over a VHDL testbench does have the underlying
assumption that CλaSH properly translates the Haskell specification into VHDL. CλaSH
is also capable of generating VHDL testbenches, but this merely shifts the assumption
of correctness from CλaSH’ ability to generate VHDL to its ability to generate VHDL
testbenches, therefore, this option of directly generating VHDL testbenches has not been
explored further.

Listing 2.6 A simulation in CλaSH
1 dis = defaultInputSignals
2
3 −−write input
4 cis x y = defaultInputSignals { control_write = 1, in_address = x, in_writedata = y }
5 wis x y = defaultInputSignals { in_write = 1, in_address = x, in_writedata = y }
6
7 −− start computation and get output

20 Methods

8 scs = defaultInputSignals { control_write = 1, control_writedata = 1 }
9 fvs x = defaultInputSignals { out_address = x, out_read = 1 }

10
11 is = [cis 4 (−1)
12 , cis 5 7
13 , wis 1 10
14 , wis 2 20
15 , wis 3 30
16 , wis 4 40
17 , scs
18 , dis
19 , dis
20 , fvs 1
21 , fvs 2
22 , fvs 3
23 , fvs 4
24]
25
26 test x = Data.List . take (Data.List . length x) $ Data.List .map out_readdata $ simulate topEntity x

The simulations in CλaSH consist of three parts:
1. Signal definitions - In order to keep the rest of the code concise, it is important to first

define often-used signals. For versatility, these signals can even be functions: some
values still have to be defined in order to return a signal.

2. Signal listings - This is where signals defined in step 1 are put together in order to
create a list of signals: the input of the simulate function.

3. Simulation - The simulate function takes a topEntity and a list inputs and returns a list of
output. Due to the infinite nature of the Signal in CλaSH, which is fed into the topEntity
as input it is necessary to only take a certain amount of elements. However, as Haskell
is evaluated lazily, the infinite lists are not a problem.

The output of the simulation is printed to screen, which was checked by eye for grave
mistakes. If everything appeared to be correct, the design was ready for synthesis. The reason
for such inexactness in verifying by simulation is that (at least for simple) Haskell programs,
that they tend to have the property that they either work correctly or they do not work at all.
Furthermore, the real trouble in debugging lies in the other parts of the FPGA side of the
design: proper clock frequencies and the IO system.

2.6 Synthesis and deployment

After the simulation appears to be correct, CλaSH should generate HDL which can be
compiled by the FPGA vendors tools into a binary file which can be used to program the
FPGA. The process of synthesis and deployment consists of several steps, of which a short
overview is shown below.

1. Generating HDL - The CλaSH compiler contains the optional flags −−vhdl and
−−verilog. These can be used to generate HDL.

2.7 Loading data into the FPGA 21

2. Project creation - Set up the external IO systems. These will not be written in CλaSH-
generated HDL, but will be generated by another tool. In case of Altera this is the QSys
system. Furthermore, add the manually written HDL files, for instance the connecting
component and a frequency divider.

3. Adding CλaSH-generated files to the project - Add all CλaSH-generated files: if both
the connecting component and the CλaSH-Haskell code were written properly then
the connecting component should be able to instantiate the CλaSH-HDL as their ports
match.

4. Compiling - After everything has been added and configured properly, start the compi-
lation. For Altera FPGAs, the result will be a . sof (SDRAM Object File).

5. Deploying - Use the ’Programmer’ feature in order to flash the . sof to the FPGA.

The process depicted above is rather high in manual workload as it uses the Quartus GUI.
A shell script automatizing the process is described in appendix D.

2.7 Loading data into the FPGA

2.7.1 Constants
In order to understand the CλaSH source code, it’s important to know what the variables
mean. In order to keep the lines relatively short, the variable names are rather short, but they
do follow a fixed pattern. All variables starting with i_ indicate input, s_ a state and c_ a
constant value. As for the input variables, those consist further out of 1 or 2 characters. The
first character indicates the source channel of the input (whether it is a real input : i, a control
signal : c or a request for output o). The second optional character is either a, for address,
or s, for ’set’: the boolean indicating that the input is ready to be read. When this second
character is missing, the data itself is meant.

Listing 2.7 Handling the input of the constants
1 systemConstants’ −−Enter the constants into the ConstantVector
2 | i_cs == 1 && i_ca == 1 = systemConstants{ maxtime = i_c_d }
3 | i_cs == 1 && i_ca == 2 = systemConstants{ timestep = i_c_d }
4 | i_cs == 1 && i_ca == 3 = systemConstants{ maxstep = i_c_u }
5 | i_cs == 1 && i_ca >= 4 = systemConstants{ userconstants = c_user’ }
6 | otherwise = systemConstants
7 where
8 c_user’ = replace i_ca (unpack i_c :: Data) c_user
9 i_c_d = unpack i_c :: Data

10 i_c_u = unpack i_c :: UInt

The first step of getting the system to work is loading constants into the FPGA. These
constants govern the time step, the maximum time for simulation, how much output to
generate and it’s possible to specify custom constants which can be used in the equations
you are solving. In order to keep the system simple, these constants are sent over the
control channel as the input channel is reserved for initial values. However, before covering
the specifics of handling the constants, it is important to understand the behaviour of the

22 Methods

signals originating from the bridge between the HPS and the FPGA first. Whenever the HPS
program writes the 32-bits value V to 8-bit address A, three things happen simultaneously,
control_writedata takes on the value V , control_address gets set to address A and control_write
gets set to true. This set up means that it is possible to differentiate the target of the control
input signal based on the value of the address. Only whenever control_write is true the control
input value can be considered valid. Lastly, as Haskell is a strongly typed language, you
cannot simply insert a BitVector 32, originating from control_writedata into a Vec 4 (SFixed 8 24).
You first have to cast or unpack the BitVector 32 into a SFixed 8 24, which luckily does not
pose any problems as they both consist of 32 bits. The protocol for entering constants is
depicted in table 2.1.

Table 2.1 The protocol for entering constant values into the FPGA, based on addresses

Address Function Specifics
0 Signaling flags Writing 1 starts the computation

Writing 2 performs a soft reset
1 Maximal computation time
2 Time step
3 Step limit for blocking
4+ Custom constants

2.7.2 Initial values
The initial values are loaded into the FPGA in the same way as the constants. The address
designates the location at which the value should be stored. In order to understand how the
data gets loaded into the FPGA registers it is important to If this is the case, the valueVector of
ODEState in the SystemState gets updated: the value at in_address gets replaced with in_writedata ,
which gets unpack’ed into the main data type used by the application.

Listing 2.8 State machine responsible for controlling the solver
1 (systemState ’, oul ’, block ’)
2 −−Handle the setup (reset the state , insert input values , start the computation)
3 | i_c == 2 && i_cs == 1 && i_ca == 0 = (initialSystemState , 0, 0)
4 | i_is == 1 = (systemState{ odestate = s_odestate_in ’ }, 0, 1)
5 | i_c == 1 && i_cs == 1 && i_ca == 0 = (systemState{ step = 0 } , 0, 0)
6
7 −−Handle the computation and output:
8 | block == 1 && i_os == 1 = (systemState , pack (xs !! i_oa), block)
9 | block == 0 && s_step < c_maxstep = (systemState_up’ , 0, block)

10 | block == 0 && s_step >= c_maxstep = (systemState{ step = uIntMax}, pack uIntMax, 1)
11
12 −−Default, do nothing
13 | otherwise = (systemState , oul , block)
14 where
15 s_odestate_in ’ = s_odestate {valueVector = replace i_ia (unpack i_i :: Data) xs}
16

2.8 Solving the system and extracting values 23

17 s_odestate_up = scheme systemConstants equation s_odestate
18 valueVector_wt = replace 4 (time s_odestate_up) (valueVector s_odestate_up)
19 s_odestate_up ’ = s_odestate_up {valueVector = valueVector_wt }
20 s_step ’ = s_step + 1
21
22 systemState_up’ = systemState{ odestate = s_odestate_up ’, step = s_step ’}

2.8 Solving the system and extracting values
After sending the command to the FGPA to start solving the ODE over the control channel,
on every clock cycle the FPGA will update the ODEState and the step variable. The ODEState
gets updated by applying an integration scheme to the equation, which results in a new vector
of values and a new value for the time. The step variable gets incremented to indicate that
another step has passed. At some point, the value of step will exceed the value of maxstep,
from SystemConstants. Whenever this happens, the FPGA stops updating the ODEState and
writes all ones to the output port. This indicates that the FPGA is done processing and the
results are ready to be collected by the HPS.

The step of SystemState in listing 2.3 field takes a bit more explanation. Every time the
integration scheme gets applied, the step variable gets incremented. At some point, the
value of step becomes larger or equal than the maxstep field from the data type SystemConstants.
Whenever this happens, the system blocks until you order it to start again by setting the value
of step to 0. During the time that the system does not progress, the values of the system can
be read. This is done by requesting access to an address from the HPS. This request gets
processed by the bridge and the hardware on the FPGA side into a high value for the out_read
input signal, accompanied by a valid address from the out_address input signal. The FPGA is
then responsible for actually writing the requested value to the output channel, in which the
out_address is directly equal to the index in the ValueVector.

Chapter 3

Results

3.1 Euler
One of the first tests for an ODE solver is whether it handles harmonic oscillations properly.
The simple oscillations (shown in 3.1 with their analytical solutions) can be implemented
as a matrix vector equation (3.2), which represents two uncoupled oscillations of different
frequencies. Besides the matrix of constants, the solver also requires initial values. For the
first oscillation the initial position is non-zero, for the second oscillation the initial velocity is
non-zero.

x′′0 =−x0

x′′2 =−4x2 (3.1)

x0(t) = 50cos(t)
x2(t) = 25sin(2t)

x⃗′ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −4 0

 x⃗ with x⃗(t = 0) =


50
0
0

50

 (3.2)

3.1.1 First oscillation - initial position
The plots belonging to the first oscillation (3.1) depict three variations on solving the system.
Firstly, it contains the solution generated by the FPGA. Secondly, it contains the result of
the exact same combination of equation and solver, but implemented in MATLAB. The only
difference between the FPGA and MATLAB implementation is the number representation.
Therefore, if the FPGA solution starts to diverge from the MATLAB solution the reason has to

26 Results

time (s)
0 10 20 30 40 50 60 70 80 90 100

V
al

ue

-100

-50

0

50

100
Solution (! = 1)

FPGA
Matlab-Euler
Analytical

time (s)
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-40

-20

0

20

40
Error

FPGA - analytical
FPGA - matlab euler
Maximum error
Maximum error curve

Fig. 3.1 Simple oscillation using Euler’s method (h = 0.01)

be the reduced accuracy of the 32-bit fixed point representation used in the FPGA. Internally,
MATLAB uses a (64-bit) double precision floating format [8], which is guaranteeing a
precision of 15 significant figures for almost all magnitudes supported by the IEEE 754
double precision floating point standard. Lastly, the plot contains the analytical solution of
the problem.

The plot shows that the FPGA exhibits the expected behaviour of solving a simple oscil-
lation with Euler’s method. Due to the relatively large step size (h = 0.01) the approximation
quickly diverges from the analytical solution. The curvature of the solution is always oppo-
site in sign to the solution itself (x′′ =−x), which results in a self-amplifying effect in the
magnitude of the error: an exponential error growth. This was expected, as the exponential
dependency was already derived by [13] in equation 1.2. However, this does show that
Euler’s method is a particularly bad integration scheme for a simple oscillation. It is possible
to use MATLABs Curve Fitting Tool to fit the equation of the theoretical maximum error
of Euler’s method to the points of maximum error. After combining some constants, 1.2
becomes equal to 3.3. For a = 49.75 and b = 0.00502 this equation achieves a fit of R2 = 1,
which is a perfect fit. The error plot and the curve fit of the maximum errors are shown in 3.1.

erroreuler(t) = a(ebt −1) (3.3)

Lastly, the FPGA solution the solution of Euler’s method implemented in MATLAB
shows that the error due to the fixed point number representation is clearly insignificant when

3.1 Euler 27

compared to the intrinsic error in Euler’s method: the maximum absolute difference between
the two solutions is less than 6×10−5.

Decreasing the time step - improving accuracy?

The expectation based on [13] and equation 1.2 is that the maximum error is indeed propor-
tional to the time step, meaning that a hundred fold decrease of the time step also decreases
the error by a factor 100. The maximum error at t ≈ 100 for h = 0.01 was ≈ 30, whereas the
maximum error for h = 0.0001 is ≈ 0.2, which is an improvement of 150×, 50% more than
expected. However, even though the error relative to the analytical solution has decreased,
the divergence from the MATLAB implementation of Euler’s algorithm has increased to
8×10−4, a factor of 13.

As the time step gets decreased even more, eventually the improvement of having a
shorter time step loses out to the reduction the accuracy in the computation. This can be seen
very clearly in 3.3. Featuring a time step of h = 1 ×10−7, which is approaching the smallest
representable value at 2−24. In this case the MATLAB implementation is still following the
analytical solution with little whereas the solution generated by the FPGA begins to diverge
noticeably.

time (s)
0 10 20 30 40 50 60 70 80 90 100

V
al

ue

-60

-40

-20

0

20

40

60
Solution (! = 1)

FPGA
Matlab-Euler
Analytical

time (s)
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Error

FPGA - analytical
FPGA - matlab euler

Fig. 3.2 Simple oscillation using Euler’s method with a lower time step (h = 1 ×10−4)

28 Results

time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

V
al

ue

40

42

44

46

48

50
Solution (! = 1)

FPGA
Matlab-Euler
Analytical

time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

E
rr

or

-0.4

-0.3

-0.2

-0.1

0
Error

FPGA - analytical
FPGA - matlab euler

Fig. 3.3 Approaching breakdown due to the fixed point number representation (h = 1 ×10−7)

3.1.2 Second oscillation - initial velocity

Similarly to the previous scenario, the error increases exponentially over time and an decrease
in time step is approximately proportional to the decrease in error (figure 3.5 and 3.6).
However, there is an important difference between the two oscillations: the frequency of
oscillation is higher. This has as result that the time step of h = 0.01 which worked fine for
the oscillation with ω = 1 does not work properly any more: it results in figure 3.4. This
figure shows two interesting phenomena. Firstly, even though MATLABs Euler’s method
does diverge from the analytical solution, it only diverges in magnitude: it stays in phase.
However, when looking at the FPGA solution you notice that it diverges from the other two,
not only in magnitude but also in phase. The discrepancy in phase between MATLAB and
FPGA indicates that the number representation is the culprit of the shift.

An attempt to fix this problem was made by changing the relevant part of the matrix from[
0 1
−4 0

]
to

[
0 2
−2 0

]
, which should have the result that the numbers remain smaller internally

as the multiplication by 4 is distributed over two multiplications by 2 in separate vector dot
products. Even though both matrices result in the same second order equation (x′′ =−4x)
and the eigenvalues are the same, the eigenvalues are different which results in different
behaviour for the two matrices.

3.2 Runge-Kutta (second order) 29

time (s)
0 10 20 30 40 50 60 70 80 90 100

V
al

ue

-200

-100

0

100

200
Solution (! = 2)

FPGA
Matlab-Euler
Analytical

time (s)
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-300

-200

-100

0

100

200

300
Error

FPGA - analytical
FPGA - matlab euler

Fig. 3.4 Frequency shifting due to an insufficiently small time step (h = 0.01)

3.2 Runge-Kutta (second order)

The testing of the RK2 method uses a different matrix (equation 3.4) in order to verify
the systems capability to correctly solve a system of 4, coupled, first order equations. The
matrix has been generated randomly in MATLAB under the constraint that all eigenvalues
are negative. The reason as to why this property is necessary is, again, based on the fixed
point number representation. Whenever one of the values (which could even occur internally
as part of a vector dot product, invisible to interface) exceeds the allowed range, the result
becomes invalid. If all elements in the vector described by the ODE tend towards zero, this
problem is less likely to occur (but it might still happen whenever the initial conditions
that have been chosen are too large). Furthermore, the added computational steps of RK2
compared to Euler’s method have the effect that the time step becomes less important - for
the entire range of possible time step values the results and errors are approximately the
same (shown in figure 3.7 and 3.8). Lastly, in contrast to the FPGA solution, MATLAB RK2
and ODE45 do remain close together which, once again, points in the direction of problems
stemming from the fixed point numbers.

x⃗′ =


2 3 2 0
−5 −5 −3 1
3 −1 −2 −3
4 2 2 −3

 x⃗ with x⃗(t = 0) =


7
5
7
5

 (3.4)

30 Results

time (s)
0 10 20 30 40 50 60 70 80 90 100

V
al

ue

-40

-20

0

20

40
Solution (! = 2)

FPGA
Matlab-Euler
Analytical

time (s)
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-6

-4

-2

0

2

4

6
Error

FPGA - analytical
FPGA - matlab euler

Fig. 3.5 Relatively large time steps result in large errors in the long run (h=0.001)

time (s)
0 10 20 30 40 50 60 70 80 90 100

V
al

ue

-30

-20

-10

0

10

20

30
Solution (! = 2)

FPGA
Matlab-Euler
Analytical

time (s)
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-0.05

0

0.05
Error

FPGA - analytical
FPGA - matlab euler

Fig. 3.6 But a decrease in time step goes a long way in reducing the error. Note that the error
due to the fixed point number representation starts to become significant again, in contrast to
figure 3.5 (h = 1 ×10−5)

3.2 Runge-Kutta (second order) 31

time (s)
0 0.5 1 1.5 2 2.5 3

V
al

ue

0

5

10

15

20
Solution

FPGA
Matlab-RK2
ODE45

time (s)
0 0.5 1 1.5 2 2.5 3

E
rr

or

-0.1

0

0.1

0.2

0.3
Error

FPGA - ODE45
FPGA - matlab RK2

Fig. 3.7 The largest possible time step has a maximum error of approximately 0.3, for both
the comparison with the solution of ODE45 and MATLABs RK2 (h=0.01).

time (s)
0 0.5 1 1.5 2 2.5 3 3.5

V
al

ue

0

5

10

15

20
Solution

FPGA
Matlab-RK2
ODE45

time (s)
0 0.5 1 1.5 2 2.5 3 3.5

E
rr

or

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Error

FPGA - ODE45
FPGA - matlab RK2

Fig. 3.8 Considering the other end of the spectrum regarding variety in time steps, the results
do not differ significantly enough for the additional amount of work that has to be put in, a
factor 20000 (h=5×10−7).

32 Results

3.3 Runge-Kutta (fourth order)
The RK4 integration scheme 1 introduces even more computational steps, which leads to
a faster overflow of the internal numbers. This means that at least one of the derivatives
overflows almost immediately, which results in plots as shown in figure 3.9.

time (s)
0 0.5 1 1.5 2 2.5 3

V
al

ue

0

20

40

60

80
Solution

FPGA
Matlab-RK2
ODE45

time (s)
0 0.5 1 1.5 2 2.5 3

E
rr

or

-20

0

20

40

60

80
Error

FPGA - ODE45
FPGA - matlab RK2

Fig. 3.9 For every value of the time step the internal number representations overflow, causing
fixed values for derivatives and straight lines instead of solutions to ODEs (h=1×10−5).

3.4 Euler revisited
So far it appears that accuracy is inversely proportional to the complexity of the integration
scheme, which leads to the question: What accuracy would Euler’s method attain for equation
3.4? As shown in figure 3.10, Euler’s method only results in errors which are 2 orders of
magnitude lower than the best values of the time step for RK2 and of course performs better
than RK4 in this scenario.

3.5 Performance
Performance is one of the main reasons why people use FPGAs over implementations in
software and therefore one would expect that a properly written FPGA solution outperforms
a CPU.

1Which took almost 22 hours or 78894 seconds to synthesize.

3.5 Performance 33

time (s)
0 0.5 1 1.5 2 2.5 3

V
al

ue

0

5

10

15

20
Solution

FPGA
Matlab-Euler
ODE45

time (s)
0 0.5 1 1.5 2 2.5 3

E
rr

or

#10-3

-2

-1.5

-1

-0.5

0

0.5

1
Error

FPGA - ODE45
FPGA - matlab euler

Fig. 3.10 Simplicity prevails: Euler’s method attains better results than RK2 for all different
time steps (h=1×10−4).

The FPGA runs at a clock speed of 50 MHz and it is capable of executing a single iteration
of Euler’s method per clock cycle. In theory this would mean that the FPGA is capable of
50×106 iterations per second. However, there is still quite some overhead stemming from
the system handling the data input and output, which has to wait for the HPS to supply or
request the proper information before the FPGA can move on with the computations.

From table 3.1 it can be seen immediately that the difference between the theoretical and
measured real-world performance is very small (the measurement indicates an 8% decrease
in performance, but keep in mind that the time taken also includes writing the initial values to
the FPGA, a process which is limited by the HPS). Furthermore, as expected, the performance
of the FPGA starts to decrease as there are more and more events that require the HPS to
read the output (output interrupts). Lastly, the most striking rows of this table are ’CPU -
C++’: for floating point, a single core of a stock i7-950 loses out to the FPGA by almost 2
orders of magnitude. However, when performing the computations on integers, a single CPU
core outperforms the FPGA. This could be considered a more fair comparison as performing
operations on fixed point numbers requires the same circuitry as operations on integers (fixed
point numbers with 0 fractional bits).

More details on the testing set up and code which was used can be found in appendix E.

34 Results

Table 3.1 Performance benchmarks: Euler’s method, sorted by iterations per second.

Device Iterations time (s) Output interrupts Iterations per second (×106)
CPU - C++ - int 1×108 1,35 1 74,1
FPGA 1×108 2,18 1 45,8
FPGA 1×108 2,25 1×103 44,4
FPGA 1×108 2,30 1×104 43,4
FPGA 1×108 3,27 1×105 30,6
FPGA 1×107 0,39 1 25,6
FPGA 1×106 0,21 1 4,76
CPU - C++ - float 5×107 58,1 1 0,86
FPGA 1×105 0,19 1 0,53
CPU - Haskell - float 1×106 3,23 1 0,31
CPU - MATLAB - float 1×107 304 1 0,03

Chapter 4

Discussion

4.1 Accuracy
The results presented in this thesis are not highly accurate for all solvers and time steps
used. The reason for this is two-fold. Firstly, the thesis is meant to show whether numerical
mathematics is a topic which is feasible on an FPGA, which it demonstrably is. Secondly, the
number representation used resulted in sub-par results, especially for higher-order integration
schemes like RK4.

However, what has been shown (for certain values of the time step) is an equality between
the same solver schemes, implemented in MATLAB and directly on the FPGA. Therefore, if
more advanced schemes are used, together with a number representation which is suitable
for a wider class of problems these could lead to results which are of high quality. A
more suitable number representation would be double-precision floating point, which has as
disadvantage that it is very expensive, computation-wise. Another option would be to simply
extend the fixed-point representation, for instance to SFixed 24 40 or, if the FPGA allows,
SFixed 32 96.

4.2 Performance
Table 3.1 shows that all FPGA implementations lose out to a modern CPU on performing
the same operations. Does this mean that FPGAs are not useful in performing numerical
mathematics? It certainly doesn’t, as there are quite a few remarks to be made on this
comparison. First and foremost - the FPGA used in this thesis is an Altera Cyclone 5.
According to [4], this series is intended for "low-power, cost-sensitive design needs", whereas
the Stratix series is designed for "high-performance". This suggests that use of a Stratix
FPGA could clearly improve performance, either by supporting higher clock speeds, by
having more hard adders and multipliers or by having more configurable logic elements.
Furthermore, due to limitations in CλaSH, the FPGA design did not use a fractional PLL,
only an integer frequency divider which was written manually. This meant that Quartus
was unable to optimize the clock speed for the design. It may have been possible that the
maximum clock speed the 4x4 matrix vector product (as used in Euler’s method) supported

36 Discussion

was higher than the 50 MHz used in testing, which would again, boost the FPGA performance.
Additionally, in order to reduce compilation time for repeated testing, the optimizations in
the Quartus compiler were disabled, in contrast to the C++ solution, which was produced
with the highest optimization settings (−O3). Without optimizer, the C++ solution performed
approximately 4x worse, which would have moved it to the third quartile of the tested FPGA
solutions. Furthermore, according to the Quartus compiler, the design only took around 10%
of the FPGA fabric. A quick, approximate calculation based on the number of operations
necessary suggests that this FPGA would be capable of performing a 12x12 matrix vector
multiplication using 90% of its area. This would only require a linear decrease in clock speed
(a factor 3), whereas the matrix size has grown quadratically, which means that the CPU has
to perform 9x as much work. Lastly, CPUs are heavily optimized for integer performance.
This can also be seen from table 3.1: merely switching the data type from int to float results
a decrease in performance of almost 2 orders of magnitude, which indicates that it could
be very hard to compete with modern CPUs on integer arithmetic performance. The high
performance of CPUs comes at a cost: the total power associated with running a single CPU
core at 100% will be considerably higher [1] than the maximum power associated with this
FPGA: 1.8W [3].

4.3 Suggestions for further work
This thesis has shown the very basics of solving ODEs on FPGAs. A lot of time has been
spent on ’engineering challenges’, which leaves some topics for future works:

• Including block-ram as data storage - This allows for more data, larger matrices and
possibly even approximations of PDEs, but it could face problems of performance: on
larger FPGAs, all data is needed in every cycle whereas the block-ram interfaces have
limited bandwidth and a delay of a single cycle per read or write.

• Implementations of more advanced integration schemes - Adaptive (variable-step) and
multi-step methods. These should probably be combined with a different number
representation because as shown, for 32-bit fixed point numbers the best implemented
method was still Euler’s method.

• An entirely different application - Improvement of the IO system. The current IO
system is versatile and does not only work for solving ODEs. By changing the CλaSH
code and modifying the host code slightly, the functionality can be flexible: quick
computation of hashes or a hardware-implemented random-number generator are some
of the possibilities.

4.4 Suggestions for additions to CλaSH
• Floating point numbers - When an extremely wide fixed point number representation

is not possible due to FPGA constraints, floating point arithmetic could be a solution.
Furthermore, considering that numerical mathematics is often implemented using
floating-point arithmetic (e.g. MATLAB) it would be important to be able to use
CλaSH to implement MATLAB algorithms with the same results.

4.4 Suggestions for additions to CλaSH 37

• More sample projects - Short code samples can be found in the clash−compiler repository
and the Hackage documentation is very complete, but getting started on complex projects
can still be hard. This report has been written - both as a BSc thesis and an overview
guide on using CλaSH, attempting to cover the process from the beginning: ’What
is functional programming’ to the end: ’Deploying your design on an FPGA’, as my
contribution to CλaSH.

• More flexibility for PLL clocks - Using a single PLL for the CλaSH design works great,
but when the CλaSH design is merely a module of a greater project, things start to get
hairy. Due to some non-deterministic behaviour of the Altera’s own PLL (Altera PLL
in the Quartus IP Library), a frequency divider was implemented manually in VHDL,
which was capable of driving both the IO system as well as the CλaSH design, but
as the PLL was implemented manually, Quartus could not optimize the design for an
optimal frequency which could have resulted in some performance loss. As an addition
to CλaSH it would be very helpful if it would be possible to feed the output clock and
the locked signal, generated by the PLL module, directly into the CλaSH module.

Chapter 5

Conclusion

Despite the current limitations in accuracy it is definitely feasible to perform the process of
solving ODEs directly on hardware, by programming an FPGA. The measured advantage of
performing such computations on an FPGA would be the reduced power usage, however,
the use of high-performance FPGAs will allow for an increase in performance which could
outperform a CPU. Furthermore, an additional advantage of the FPGA is the variable
accuracy, which allows for hardware-level performance on non-standard (more accurate)
number representations whereas a CPU would have to emulate such operations in software.

Previously it was very hard to write programs which could leverage the performance
characteristics of an FPGA without having knowledge of hardware design and/or HDL,
but now CλaSH enables a high-level specification of the hardware which is similar to
mathematics: Haskell. The already set-up IO system for exchanging data (appendix C) and a
toolchain which is entirely integrated (appendix D) ensure an even smoother experience in
moving your design from mathematics onto hardware.

Despite the tremendous advantages offered by this work flow, there are some disad-
vantages. Compared to an implementation in MATLAB, which can be interpreted, the
process of synthesis and deployment takes quite a bit longer due to the step of compiling the
CλaSH-generated HDL into a binary file which can be flashed to the FPGA. This process
has been measured to take anywhere between 10 minutes (Euler’s method) and 22 hours
(RK4). Furthermore, including the additional development time of writing your algorithms
in Haskell over MATLAB (mainly caused by the large advantage MATLAB has in terms of
size of its standard library for numerical mathematics) results in development and synthesis
times which are very much longer for FPGA-solutions.

References

[1] Intel® core™ i7-950 processor (8m cache, 3.06 ghz, 4.80 gt/s intel®
qpi). http://ark.intel.com/products/37150/Intel-Core-i7-950-Processor-8M-Cache-3_
06-GHz-4_80-GTs-Intel-QPI, 2009. [Accessed: June 2015].

[2] Chart: A library for generating 2d charts and plots. https://hackage.haskell.org/package/
Chart, 2014. [Accessed: June 2015].

[3] Cyclone v fpgas & socs. https://www.altera.com/products/fpga/cyclone-series/
cyclone-v/overview.html, 2015. [Accessed: June 2015].

[4] Altera > products > fpgas > overview. https://www.altera.com/products/fpga/overview.
html, 2015. [Accessed: June 2015].

[5] Computer language benchmarks game. http://benchmarksgame.alioth.debian.org/u32q/
which-programs-are-fastest.html, 2015. [Accessed: June 2015].

[6] clash-prelude-0.8.1 - clash.tutorial. http://hackage.haskell.org/package/clash-prelude-0.
8.1/docs/CLaSH-Tutorial.html, 2015. [Accessed: June 2015].

[7] Mining hardware comparison. https://en.bitcoin.it/wiki/Mining_hardware_comparison,
2015. [Accessed: June 2015].

[8] Mathworks: Floating-point numbers. http://nl.mathworks.com/help/matlab/matlab_
prog/floating-point-numbers.html, 2015. [Accessed: June 2015].

[9] Sockit - the development kit for new soc device. http://www.terasic.com.tw/cgi-bin/
page/archive.pl?Language=English&CategoryNo=&No=816, 2015. [Accessed: June
2015].

[10] Christiaan Baaij. CλasH: From Haskell To Hardware. 2009. URL http://essay.utwente.
nl/59482/.

[11] Christiaan Baaij. Cλash fpga starter. http://christiaanb.github.io/posts/
clash-fpga-starter/, 2015. [Accessed: June 2015].

[12] J Kuper. A Short Introduction to Functional Programming. 2015.

[13] J Polking, A Boggess, and D Arnold. Differential Equations with Boundary Value
Problems. Prentice Hall, Upper Saddle River, New Jersey, 2006.

http://ark.intel.com/products/37150/Intel-Core-i7-950-Processor-8M-Cache-3_06-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/products/37150/Intel-Core-i7-950-Processor-8M-Cache-3_06-GHz-4_80-GTs-Intel-QPI
https://hackage.haskell.org/package/Chart
https://hackage.haskell.org/package/Chart
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
http://benchmarksgame.alioth.debian.org/u32q/which-programs-are-fastest.html
http://benchmarksgame.alioth.debian.org/u32q/which-programs-are-fastest.html
http://hackage.haskell.org/package/clash-prelude-0.8.1/docs/CLaSH-Tutorial.html
http://hackage.haskell.org/package/clash-prelude-0.8.1/docs/CLaSH-Tutorial.html
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://nl.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
http://nl.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=&No=816
http://essay.utwente.nl/59482/
http://essay.utwente.nl/59482/
http://christiaanb.github.io/posts/clash-fpga-starter/
http://christiaanb.github.io/posts/clash-fpga-starter/

42 References

[14] Keith Underwood. Fpgas vs. cpus: Trends in peak floating-point performance. As-
sociation for Computing Machinery, 2004. URL http://home.engineering.iastate.edu/
~zambreno/classes/cpre583/2006/documents/Und04A.pdf.

[15] Wayne Wolf. FPGA-Based System Design. Prentice Hall, Upper Saddle River, New
Jersey, 2004.

http://home.engineering.iastate.edu/~zambreno/classes/cpre583/2006/documents/Und04A.pdf
http://home.engineering.iastate.edu/~zambreno/classes/cpre583/2006/documents/Und04A.pdf

Appendix A

Haskell source code for numerical
solutions of ODEs

Listing A.1 SolverTypes.hs - Defining the types that get used in the rest of the application.
This is a good place to start reading if you want to understand the entire system.

1 module SolverTypes where
2
3 import Prelude
4
5 type NumRepr = Float
6 type D_ODEState = [NumRepr]
7
8 data ODEState = ODEState { xs :: [NumRepr]
9 , t :: NumRepr

10 } deriving (Show)
11
12 data TimeSettings = TimeSettings { dt :: NumRepr
13 , tMax :: NumRepr
14 } deriving (Show)
15
16 type SubFunction = (NumRepr −> NumRepr)
17
18 type Equation = ODEState −> D_ODEState
19 type Scheme = TimeSettings −> Equation −> ODEState −> ODEState
20 type Solver = Scheme −> TimeSettings −> Equation −> ODEState −> [ODEState]

Listing A.2 Solver.hs - The main calling code responsible for starting and stopping the
simulation of the proper equations

1
2 module Solver where
3
4 import Prelude
5 import SolverTypes
6
7 import SolverEquations
8 import SolverSolvers

44 Haskell source code for numerical solutions of ODEs

9 import SolverPlotter
10 import SolverPresets
11
12 −−−− CALLERS
13 −− general form, stop after a certain time
14 solve :: Solver
15 solve solvemethod time equation initState = states
16 where
17 states = take steps $ iterate (solvemethod time equation) initState
18 steps = ceiling $ (tMax time − t initState)/ dt time
19
20 sol_start = solve rk4 initTimeSettings
21
22 solution_expo = sol_start eq_exponential initODEState
23 solution_sine = sol_start eq_sine initODEState
24 solution_cosh = solve rk4 initTimeSettings2 eq_cosh initODEState2
25 solution_homo = sol_start (eq_linear_homo_const sinematrix) initODEState2
26 solution_hetr = sol_start (eq_linear_hetr_const sinematrix funcvec) initODEState2
27
28 testPlot = plotSolutions [s1 ,s2 ,s3 ,s4 ,s5] "Haskell solver examples"
29 where
30 s1 = (solution_expo , "Exponential")
31 s2 = (solution_sine , "Sine")
32 s3 = (solution_cosh , "Cosh")
33 s4 = (solution_homo, "Matrix form − homogenous")
34 s5 = (solution_hetr , "Matrix form − heterogenous")

Listing A.3 SolverEquations.hs - Definitions of the equations
1 module SolverEquations where
2
3 import Prelude
4 import SolverTypes
5 import SolverPresets
6
7 −− Exponential : y = A * exp(−t)
8 −− y’ = −y
9

10 −− x0’ = −x0
11 eq_exponential :: Equation
12 eq_exponential state = [−x !! 0]
13 where
14 x = xs state
15
16
17
18 −− Sine : y = A * sin (omega * t)
19 −− y’’ = −y
20
21 −− x0’ = x1
22 −− x1’ = −x0
23 eq_sine :: Equation
24 eq_sine state = [x0,x1]

45

25 where
26 x = xs state
27 x0 = x !! 1
28 x1 = − (x !! 0)
29
30
31
32 −− Hyperbolic cosine : y = a*cosh((x − b)/a)
33 −− y’ = sqrt(y^2 − a^2)/a
34
35 −− x0’ = sqrt(x0^2 − a^2)/a
36 eq_cosh :: Equation
37 eq_cosh state = [x0]
38 where
39 x = xs state
40 x0 = sqrt ((x !! 0)^2 − a^2)/a
41 a = 0.99
42
43 −− Arbitrary homogenous system
44 −− y’ = Ay
45 eq_linear_homo_const :: [[NumRepr]] −> ODEState −> D_ODEState
46 eq_linear_homo_const matrix state = map (rowmult y) matrix
47 where
48 y = xs state
49
50 rowmult :: [NumRepr] −> [NumRepr] −> NumRepr
51 rowmult vec1 vec2 = sum $ zipWith (*) vec1 vec2
52
53 −− Arbitrary heterogenous system
54 −− y’ = Ay + F
55 eq_linear_hetr_const :: [[NumRepr]] −> [SubFunction] −> ODEState −> D_ODEState
56 eq_linear_hetr_const matrix vector state = zipWith (+) (map (rowmult y) matrix) (map ($time) vector)
57 where
58 y = xs state
59 time = t state

Listing A.4 SolverPresets.hs - The definitions of initial values time settings auxiliary vectors
and other necessities

1 module SolverPresets where
2
3 import Prelude
4 import SolverTypes
5
6 unity :: [[NumRepr]]
7 unity = [[1,0,0],[0,1,0],[0,0,1]]
8
9 sinematrix :: [[NumRepr]]

10 sinematrix = [[0,1],[−1,0]];
11
12 vec :: [NumRepr]
13 vec = [4,3,2]
14

46 Haskell source code for numerical solutions of ODEs

15 funcvec :: [SubFunction]
16 funcvec = [(\ t −> sin t),(\ t −> exp (−t))]
17
18 initODEState = ODEState [10, 0.0] 0.0
19 initODEState2 = ODEState [1, −1] 0.0
20
21 initTimeSettings = TimeSettings 0.0001 10
22 initTimeSettings2 = TimeSettings 0.0001 3

Listing A.5 SolverHelper.hs - An auxiliary function used in the RK4 implementation
1 module SolverHelper where
2
3 import Prelude
4 import SolverTypes
5
6 sumLists :: [[NumRepr]] −> [NumRepr] −> [NumRepr]
7 sumLists [] factors = []
8 sumLists (xs :[]) factors = map ((head factors)*) xs
9 sumLists (xs:xss) factors = zipWith (+) (map (head factors*) xs) (sumLists xss (tail factors))

Listing A.6 SolverPlotter.hs - The part responsible for actually creating the plot. This part
can be omitted but the result of the program will be a very long list of ODEState’s

1 module SolverPlotter where
2
3 import Prelude
4 import SolverTypes
5 import GHC.Float
6
7 import Graphics.Rendering.Chart .Easy
8 import Graphics.Rendering.Chart .Backend.Cairo
9

10 outProps = fo_format .~ PDF $ def
11
12 plotSolutions :: [([ODEState] , String)] −> String −> String −> IO()
13 plotSolutions solutions title filename = toFile outProps filename $ do
14 layout_title .= title
15 layout_x_axis . laxis_title .= "time"
16 layout_y_axis . laxis_title .= "x"
17 plotSolutions_help solutions
18
19
20 plotSolutions_help [] = error "empty list "
21 plotSolutions_help [sol] = plotSolution sol
22 plotSolutions_help (sol : sols) = do
23 plotSolution sol
24 plotSolutions_help sols
25
26
27 plotSolution (solution , curveTitle) = plot $ line curveTitle [states]
28 where
29 states = reformData solution

47

30
31
32 reformData :: [ODEState] −> [(Double, Double)]
33 reformData states = map reformState states
34
35 reformState :: ODEState −> (Double, Double)
36 reformState state = (float2Double tVal , float2Double (x !! 0))
37 where
38 x = xs state
39 tVal = t state

Appendix B

Project structure

The entire project is hosted on GitHub - https://github.com/Gladdy/numerical-fpga-thesis

benchmarkPerformance comparisons to C++ and Haskell
c++

haskell

clash

vhdl

SolverThe CλaSH-generated VHDL
controlC++ for controlling the FPGA from the HPS
haskell

imagesReady-made numerical solver images for the Cyclone V FPGA
kernelBootloader and scripts for linux kernel generation
literature

minified Sample project for easy modifictation
clash

control

sockit

minified.zip

sockit ...Full quartus project
thesis

verificationMATLAB result verification scripts

https://github.com/Gladdy/numerical-fpga-thesis

Appendix C

Handling data IO

Due to the library code written, the process of controlling the FPGA could not be more
simple. Listing C.1 shows the user-side interface, in which the comments have made any
further explanation obsolete. The background library written handles all low-level processes,
for instance writing directly to a memory location and converting the doubles to fixed-point
numbers. Comments have been added to explain the code in the important sections. The
code is very object-oriented, improving clarity and comprehensibility. The sources can be
found in the GitHub repository at https://github.com/Gladdy/numerical-fpga-thesis

Listing C.1 Controlling the FPGA
1 #include " fpgacontroller .h"
2 #include " fixedpointconverter .h"
3
4 int main () {
5 FPGAController fpga;
6 double mat [4][4] = {
7 {0, 1, 0, 0}
8 , {−1, 0, 0, 0}
9 , {0, 0, 0, 1}

10 , {0, 0, −4, 0}
11 };
12 // Set the constants
13 fpga . control .writeFP (1,125); // maxtime
14 fpga . control .writeFP (2,0.00001); // timestep
15 fpga . control . write (3,1000); // outputstep
16 fpga . loadMatrix(mat);
17
18 // Set the initial values
19 fpga . input .writeFP (0,50);
20 fpga . input .writeFP (1,0);
21 fpga . input .writeFP (2,0);
22 fpga . input .writeFP (3,50);
23
24 // Fetch the solutions
25 fpga . iterate (1000,4);
26 }

https://github.com/Gladdy/numerical-fpga-thesis

Appendix D

Toolchain integration

A single script has integrated the entire toolchain, from the process of generating HDL
in CλaSH to deploying and running the program on the FPGA. This script has several
dependencies, so make sure that all these commands are available in your $PATH.

• GnuWin32 - The script is written for the bash shell and has been tested using the
GNUWin32 implementation. It also depends on sed, ssh, scp, rm and cp, mv, which are
not available by default on Windows.

• Quartus - For compiling the VHDL into a . sof (SDRAM Object File) and converting
this into a . rbf (Raw Binary File), used to flash the FPGA.

• A linux installation running on the SoC Make sure that the hostname and the port for
SSH access are specified properly and the board is running a correct version of Linux.
The scripts which automate the set-up of a proper Linux image are also located in the
repository, in the folder ./ kernel .

Listing D.1 Full integration of the toolchain
1 #!/ bin /bash −e
2 clear
3
4 HOSTNAME=84.85.97.221
5 PORT=10022
6
7 # Invocation :
8 # bash run.sh [clash synthesis upload run all]
9 # select one of the commands: either a single section or run everything (" all ")

10
11
12 #
13 # CLaSH
14 #
15 # invoke the clash compiler
16 #
17 if [[$1 == clash || $1 == all]]; then
18 cd clash
19 rm −rf vhdl
20 clash −−vhdl Solver.hs

54 Toolchain integration

21 cd ..
22 fi
23
24
25
26
27 #
28 # Quartus
29 #
30 # move over the generated files to the quartus directory
31 # patch the compute_main vhdl file
32 # invoke the quartus compiler to produce a sof
33 #
34 if [[$1 == synthesis || $1 == all]]; then
35 cd sockit
36 rm −rf hdl /*. vhdl # clear all clash−generated .vhdl files (the framework is called . hdl)
37 cp ../ clash /vhdl/ Solver /* hdl
38 sed −i {s /" signal system1000"/"−−signal system1000"/g} hdl/compute_main.vhdl
39
40 # fix up the qsf with all clash−generated files
41 #remove all vhdl files from the qsf
42 cat sockit . qsf | grep −v VHDL_FILE > sockit_removedvhdl.qsf
43 mv sockit_removedvhdl.qsf sockit . qsf
44
45 #preprocess the filenames to be added to the qsf
46 ls hdl | grep .vhd > files . txt
47 sed −i ’s /^/ set_global_assignment −name VHDL_FILE hdl\//’ files. txt
48
49 #add the clash−generated vhdl files to the qsf
50 echo "" >> sockit . qsf
51 cat files . txt >> sockit . qsf
52 rm files . txt
53
54 # start compilation
55 quartus_sh −−flow compile sockit
56 quartus_cpf −c output_files / sockit . sof output_files / sockit . rbf
57 cd ..
58 fi
59
60
61
62
63 #
64 # FPGA
65 #
66 # Upload the binary program to the SoC/FPGA over SCP
67 # Attempt to rebuild the controlling program if possible
68 # If this is not possible on your Windows machine, find an Unix machine
69 # and install the arm−crosscompile version of g++.
70 # Build the controlling executable on that machine and deploy it .
71 # A deployment script can be found in " control /deploy .sh"
72 #

55

73 if [[$1 == upload || $1 == all]]; then
74 cd sockit
75 scp −P $PORT output_files/ sockit . rbf root@$HOSTNAME:~
76 cd ..
77
78 cd control
79
80 if [["‘command −v arm−linux−gnueabihf−g++‘" == "" || "‘command −v make‘" == ""]]; then
81 echo "Cross compiling is currently not supported on Windows."
82 echo "Please build the executable on a system with ’arm−linux−gnueabihf−g++’ and ’make’ installed"
83 else
84 echo "Make’ing and uploading"
85 make
86 scp −P $PORT fpgacontroller root@$HOSTNAME:~
87 scp −P $PORT programFPGA.sh root@$HOSTNAME:~
88 fi
89
90
91 cd ..
92 fi
93
94 if [[$1 == run || $1 == all]]; then
95 ssh root@$HOSTNAME −p $PORT ’ chmod +x programFPGA.sh;
96 ~/programFPGA.sh sockit.rbf
97 ’
98
99 start_time =‘date +%s%N‘

100 ssh root@$HOSTNAME −p $PORT ’~/fpgacontroller > output.txt’
101 end_time=‘date +%s%N‘
102
103 scp −P $PORT root@$HOSTNAME:output.txt verification/output.txt
104 du −h verification / output . txt
105 tail verification / output . txt
106 fi
107
108
109
110
111 echo ""
112 timepassed=$(($end_time − $start_time))
113 echo " Total execution time: $(($timepassed/1000000))ms"

Appendix E

Performance benchmark

Both code samples have been compiled with the highest optimization settings (−O3)

Listing E.1 Matrix multiplication in C++
1 int main () {
2 const unsigned maxTime = 50000000;
3 const unsigned dt = 1;
4 unsigned t = 0;
5
6 int xs [4] = {1,2,3,4};
7 int mat [4][4] = {
8 { 2, 3, 2, 0}
9 , {−5, −5, −3, 1}

10 , { 3, −1, −2, −3}
11 , { 4, 2, 2, −3}
12 };
13
14 while(true) {
15
16 // Perform the matrix−vector multiplication
17 int xs_new [4];
18 for (unsigned i = 0; i<4; i++) {
19 xs_new[i] = xs[1]*mat[i][1] + xs[1]*mat[i][1] + xs[2]*mat[i][2] + xs[3]*mat[i][3];
20 }
21
22 // Euler’s method, multiply with the timestep and add
23 for (unsigned i = 0; i<4; i++) {
24 xs[i] += dt*xs_new[i];
25 }
26
27 t += dt ;
28
29 if (t >= maxTime) {
30 std :: cout << "done" << std :: endl ;
31 return 0;
32 }
33 }
34 }

58 Performance benchmark

Listing E.2 Matrix multiplication in Haskell
1 module Main where
2
3 import Data.Matrix
4
5 mat = fromLists [
6 [2.0, 3.0, 2.0, 0]
7 , [−5.0, −5.0, −3.0, 1]
8 , [3.0, −1.0, −2.0, −3.0]
9 , [4.0, 2.0, 2.0, −3.0]

10]
11
12 initialState = fromLists [
13 [1.0]
14 , [2.0]
15 , [3.0]
16 , [4.0]
17]
18
19 mvecProduct h m v = scaleMatrix h $ multStd m v
20
21 main = do print ((iterate (mvecProduct 0.01 mat) initialState) !! 1000000)

Due to memory limitations (stack overflows) in the naive matrix multiplication test in
Haskell, the limit has been set to 1×106, which was still possible. This should not matter for
the final benchmark results, as those compare iterations per second.

	Table of contents
	1 Introduction
	1.1 Project goals
	1.2 FPGAs
	1.2.1 What is an FPGA?
	1.2.2 How does it work?
	1.2.3 System-on-a-chip

	1.3 Numerical solvers for ODEs
	1.4 Functional programming
	1.4.1 What is functional programming?
	1.4.2 Using FP for numerical mathematics
	1.4.3 Example: Numerical solutions of ODEs in Haskell

	1.5 CaSH
	1.5.1 Mealy machines
	1.5.2 Advantages of CaSH

	2 Methods
	2.1 Overall structure
	2.2 External types
	2.3 Internal types
	2.3.1 Internal number representation
	2.3.2 SystemConstants and SystemState

	2.4 Implementation of equations and integration schemes
	2.5 Simulation
	2.6 Synthesis and deployment
	2.7 Loading data into the FPGA
	2.7.1 Constants
	2.7.2 Initial values

	2.8 Solving the system and extracting values

	3 Results
	3.1 Euler
	3.1.1 First oscillation - initial position
	3.1.2 Second oscillation - initial velocity

	3.2 Runge-Kutta (second order)
	3.3 Runge-Kutta (fourth order)
	3.4 Euler revisited
	3.5 Performance

	4 Discussion
	4.1 Accuracy
	4.2 Performance
	4.3 Suggestions for further work
	4.4 Suggestions for additions to CaSH

	5 Conclusion
	References
	Appendix A Haskell source code for numerical solutions of ODEs
	Appendix B Project structure
	Appendix C Handling data IO
	Appendix D Toolchain integration
	Appendix E Performance benchmark

