Preconditioners based on splitting for time domain photonic
crystal modeling by matrix exponential Krylov subspace
methods

Jeroen de Cloet
Jasper Marissen
Ties Westendorp

Tutor: Dr. M.A. Botchev
June 22, 2015

Abstract

Today the Maxwell equations of electrodynamics are still solved using the finite-difference
time-domain method, because of the relative simplicity of the method. In order to solve these
equations on an infinite domain, absorbing boundary conditions need to be imposed. We
consider Maxwell’s equations discretized in space only (using the Yee scheme) with a PML
on the boundary to absorb outgoing waves. To solve the resulting system of ODEs we use
exponential time integration. Because we solve the Maxwell equations in 3D, direct sparse
linear solvers are not efficient for these systems. Therefore we have to use preconditioned
iterative solvers based on the Krylov subspace methods. These methods require a solution
of a linear system with shifted Maxwell operator. In this work we compare the accuracy
and speed (in terms of computation time) of different splitting-based predontitioners of the
discretized Maxwell operator for several interesting test cases.

Keywords: Maxwell equations, photonic crystal modeling, finite-difference time-domain,
exponential time integration, Krylov SAI, preconditioning, splitting.

Contents
1 Introduction

2 Maxwell equations

2.1 Solving the Maxwell equations

2.2 Perfectly matched layer
3 Spatial discretization

3.1 Yeescheme

3.2 Numerical test of the convergence order

3.3 Definition of peand oo

3.4 Numerical test for numerical reflections of PML

4 Time integrators

4.1 expokit package L
4.2 Krylov SAT . . o . o o e

4.2.1 Direct solver

4.2.2 GMRES and BiCGSTAB iterative solvers
4.3 TITR . . . e e

5 Preconditioning

5.1 Alternating Direction Implicit splitting
5.2 Field splitting e

6 Numerical tests
6.1 Computation time
6.1.1 Results with
6.1.2 Results with
6.2 Fill-in factors . . .
6.3 Optimal value for ~

7 Applications
7.1 Line defect
7.2 A closed line defect
7.3 Around the corner

8 Conclusion
A PML derivation

B Matlab Codes

uniform epsilon L L
3D epsilon (spheres) L

14
14
15

16
16
17
18
20
20

22
22
22
22

26

28

29

1 Introduction

The behavior of several interesting structures, such as photonic crystals with point defects or
wave guides (linear defects), can be analyzed by solving the Maxwell equations of electrodynam-
ics.

First we will state the Maxwell equations without source terms and derive a perfectly matched
layer in three dimensions. We will do a numerical check to see if the perfectly matched layer
works using an existing solver. Next we propose another way to solve the Maxwell equations
numerically using the Krylov Shift-And-Invert method and generalized minimal residual method
(GMRES). GMRES can be used with of without preconditioning. We look at three different
cases: no preconditioning, ADI-splitting and field-splitting. Also we use BiICGSTAB instead of
GMRES for the same three cases. For each different case we check the computational time and
compare this with the existing solver.

Finally we look at how a Gaussian pulse propagates through a photonic crystal with a line
defect. In one case the line defect has no boundaries. We expect that the waves decay inside
the perfectly matched layer and therefore decay completely. In the other case the line defect has
atoms on both ends. Here we expect that the most of the waves stay between these atoms and
some of the waves propagate through the crystal and enter the perfectly matched layer.

2 Maxwell equations

At the core of any physical theory, there is typically some mathematical model upon which all
analysis is done in order to derive meaningful results. For electrodynamics this model comes in
the form of four differential equations collectively known as the Maxwell equations (or Maxwell’s
equations). They describe how the electric vector field E = [E,(z,y, z,t) Ey(z,y,2,t) E.(2,y, z,t)]T
and the magnetic vector field H = [H,(z,y, 2,t) Hy(z,y,2,t) H,(z,y, 2,t)]7 change with time.

In fact they tell us that both fields propagate as waves and that in vacuum these waves travel at
the speed of light, implying that the waves themselves must be light waves [1,2]. The Maxwell
equations without source terms are given below:

Maxwell equations

V-D =0, (Gauss’s law)
V-B =0, (Gauss’s law for magnetism)
V xE = —puoH, (Maxwell-Faraday equation)
VxH= €)E, (Ampere’s circuital law)

where we have the electric flux density D = €E and the magnetic flux density B = uH.

Gauss’s law states that the divergence of the electric flux density D is constant. This means
that there can be some stationary source or sink and in case there is no charge the divergence is
zero. Gauss’s law of magnetism says that the same does not apply to the magnetic flux density
B; the divergence of the magnetic flux density is zero everywhere, implying that there is no
beginning or end. In other words: magnetic monopoles (magnetic sources or sinks) do not exist.
The Maxwell-Faraday equation tells us that a changing magnetic field H induces an electrical
current. Finally, Ampeére’s circuital law states that a change in the electric field E produces a
magnetic current.

2.1 Solving the Maxwell equations

It can easily be shown that if the initial conditions for H and E satisfy Gauss’s law and Gauss’s
law for magnetism, then the solution will satisfy them for all time [3]. Hence we are only
interested in solving the Maxwell-Faraday equation and Ampere’s circuital law. These two
equations can be rewritten to:
OH = —p YV x E), (1)
OE= €1 (VxH). (2)

These equations can be brought to a compact form (with y = [H, H, H, E, E, EZ]T):
0 —-1lvx
Y1) =4y = (1, ")y, (3)
where p = u(z,y, 2z) and € = e(x,y, 2).
In Section 3, when we have discretized the curl in the Maxwell operator A, this system of PDEs
will be reduced to a system of ODEs with general solution: y(t) = e*y(0). If we have some

way of approximating the matrix exponential (or its action), then we have a way to approximate
solutions to our system of PDEs (as an alternative to discretizing both space and time).

2.2 Perfectly matched layer

Since our purpose is to simulate electromagnetic waves in an unbounded domain, we need to
find a way to bound our domain without influencing the solution within some region of interest.
To that end we will add a perfectly matched layer (PML) absorbing boundary [4]. In his initial
paper, Bérenger derived the so-called split-field PML. Better techniques are used now, such as
the stretched coordinate PML [2, 5, 6]. When performing a complex coordinate stretching, the
following transformation is done to (1),(2) along all directions for which a PML is desired:

Oy — (1+ia—x) 0z,
w

d, — (1+z‘%)_1ay7

0, — (1+i2)_lﬁz.
w

When the transformations are applied in all directions, we get a system of PDEs that describe
the Maxwell equations with PML boundaries at all sides (see appendix A for the derivation).
Such a system takes the following form (when we introduce auxiliary differential equations for
the integration terms):

OH= " (Vx(E+P)-MH+R,
HE = ' (VxH+Q)) - M,E+S,
0P = diag(0)E,
9,Q = diag(o)H,

o:R = M,H,
S = M,E,
oy+o. 0 0 oyo, O 0
with M, = 0 ozt+0. O and M, = 0 o,0. O .
0 0 Oxt+0y 0 0 o0y

In order to obtain a system with one or more PML boundaries discarded, we can simply set
the corresponding o to zero. An additional constraint is required for consistency, namely:
Pi—o = Qi—0 = Ri—p = S;—9 = 0. Under this extra condition, if all the transformations
are discarded (o, = 0, = 0, = 0), the transformed system reduces to the traditional Maxwell
equations.

The given transformations change wave-like solutions to exponentially decaying waves in the
regions where o > 0. Therefore, we will choose our ¢’s such that they are greater than zero

outside our region of interest. A precise definition will be given in Section 3.3.

Now that we have the final form of our system of PDEs, we can start solving it numerically.

3 Spatial discretization

The first step in solving the system of PDEs is a discretization the curl operators in the Maxwell
operator A, effectively turning our system of PDEs into a system of ODEs. For this, we use the
well known Yee scheme [7] (a finite-difference discretization). We test the order of convergence of
our Maxwell operator A, which according to the Yee scheme should be two. Finally we perform
a test to see if our PML regions are working.

3.1 Yee scheme

The main idea of the Yee scheme is that the grids for the H and E fields are staggered; the grid
points where the fields are defined are shifted half a grid step size with respect to each other.
The entire numerical domain Q = [ay, b,] X [ay, by] X [az,b.] is divided into respectively ng, n,
and n, pieces in every direction, creating a total of ng - n, - n, cubic cells. According to the
Yee scheme spatial discretization, the electric field E is evaluated on the edges and the magnetic
field H on the center of the faces of a given cell, as illustrated in Figure 1.

H.

E;

Figure 1: Position of the vector components of the electric and magnetic field with respect to a
cubic cell.

With the current setup, there are a total of (n,+1)(ny+1)n, E,-components, because E, resides
on the edges. For convenience, we add an artificial component in the z-direction. Now there
are N = (ny + 1)(ny + 1)(n; + 1) components. This is done analogously for all other directions
such that all vector components of H and E have N components. As the (vector) variables
contain information about points on a 3D grid, it is important to define how to enumerate all
its components; firstly we iterate over the z-direction, secondly over the y-direction and finally
over the z-direction:

E. = (E.(1,1,1), E.(2,1,1), ... E.((nz +1),1,1), E.(1,2,1), ...)".

To compute a derivative of one of the variables F,, H,, ..., we apply a differential operator to
it. These operators, given the chosen ordering and the spatial discretization, have the following

form:

5.’E,E =I,® Iy & Da;,E’a
6y,E =I.® Dy7E 0 I;va
5Z,E = Dz,E & Iy & IZL’?

Here I, I, en I, are the identity matrices of size n, + 1, ny, + 1 and n, +

5.’,8,H - Iz ® Iy ® Dz,Ha
6y,H =I.® Dy,H & I:m
521}[= Dz,H 024 Iy ® I,.

1 respectively, ®

denotes the Kronecker product and D; ; are 1D operators defined as follows:

-1 1 0
1 _
* 0 0 -1
1 0 0
1 —
Dop = 7 L Ny + 1.
* 0 -1 1

Note that these differential operators correspond to a central difference scheme because of the
staggering of the grid (and the fact that the spacial derivatives of one field contribute only to
the time derivative of the other). Figure 2 gives an explanation of the difference between the
given matrices. The remaining differential operators are defined analogously. A simple relation
holds: D, g = =D . From this it follows directly that: 6,z = —6. 5. Thus the discretized
curl operators take the form:

0 —d.r dyE 0 5ZT,E =

B
Vg = 0,6 0 —0zE |, Vu=|-6l% 0 59%,12
045 Owp O o~y 0

and the discretized Maxwell operator with the PML conditions reads:

—M, —,u‘lvE —,u‘lvE 0 I 0
e Vg —M, 0 e Vg 0 I
i 0 diag(o) 0 0 0 0
~ | diag(o) 0 0 0 0 0
—M, 0 0 0 0 0
0 — M, 0 0 0 0
B, % ~ Ez};E1 Fy 88% ~ E3;E2
O------- O O—> =
Hy T H,y O ~ Moy Hy

Figure 2: A single line from the grid. Hy is a ghost cell; the value in this point is set to zero.

3.2 Numerical test of the convergence order

We perform a simple numerical check to confirm that our spatial discretization indeed has
convergence order two. We consider a bounded region where ¢ = p = 1 (the uniform case)

without the PML absorbing boundary conditions. We choose test functions:

H™ = sin(cyx)sin(ca(y + hy/2))sin(cz(z + h./2)),
H;“ = sin(c1(z + ha/2))sin(cay)sin(cs(z + h2/2)),
HI™ = sin(ea(z + e /2))sinealy + hy /2))sinesz),
E™ = sin(c; (z + hy/2))sin(coy)sin(csz),

E) = sin(c12)sin(ca(y + hy/2))sin(csz),

Eizn = sin(cyz)sin(cay)sin(es(z + by /2),

and compare their analytical derivative with their numerical approximations on increasingly
finer grids. Here ¢; = 27 and ¢y = ¢3 = w. The shifts with half the grid size are necessary due
to the staggering of the grid. The error is computed with the Ls-norm of all the components.
The amount of cells in each direction is varied between 10 and 100. In Figure 3 the results of
this test are presented. For comparison, a line with slope 2 is plotted alongside the error plots.
We conclude from this figure that the order of convergence of our spatial discretization is indeed
2. Here y represents all the components of the magnetic and electric field, but not the PML

||Hnum-Han”L ”Enum-Ean”L2

y
Slope = 2
10
S
w
10
10
10 102
n=n =n
X y z
Figure 3: The errors of all the components compared with a line with slope 2.
variables.

3.3 Definition of yu, e and o

When a PML absorbing boundary is present, the domain €2, where the Maxwell equations are
solved numerically, contains a physical domain (our region of interest) surrounded by a PML
region as shown in Figure 4. Everywhere in 2 we take 4 = 1 and e varies according to the
photonic crystal structure. For the setup shown in Figure 4 we take e; = 1 and e; = 8.9. Also,
we require o,, # 0 due to the PML conditions for points outside the physical domain in the

w-direction (w = x,y). In the analytical case, any choice of o,, > 0 would suffice. However,
because of numerical considerations we want it to increase gradually, rather than discontinuously.
We take our o, as follows (and o, analogously):

(x — agm)2 , X € [ag,am,)
o.(x) =140, x € [agg, byl -
(= byo)? @ € (bag, b
In our tests presented in this report, we have a PML only in the x- and y-directions. The z-

direction will not require a PML, because in this direction all waves will be reflected back by a
photonic crystal. Therefore no significant reflections occur at the boundary.

by

,,,,_%by

@0® | |
@@ | |4~
@@@ | I

Physical domain

0

| | e ayo
- Perfectly matched layer | -
| % L % | Ay
am a(L‘o h/a; nz beO bm

Figure 4: A 2D slice of the numerical domain with a photonic crystal structure.

3.4 Numerical test for numerical reflections of PML

To check whether the PML regions works correctly we perform a simple test. We compare the
E, field for a region with PML and without PML, with ¢ = 1. Our computational domain for the
test with PML is [0, 5] x [0, 5] x [0, 3] with our region of interest being [1,4] x [1,4] x [0, 3] (there
is no PML region in the z-direction). When we consider the computational domain without
PML regions, we should ensure that the waves do not get reflected at the z- and y-boundaries.
Therefore, we make our computational domain three times as big in those directions and set it
to: [=2,7] x [=2,7] x [0,3]. We set the initial condition for E, to be a Gaussian pulse and zero
for all the other components of both fields. The FE, field at a time T' = 2 is shown in Figure 5.

In this figure we see that the pulse decays in the PML region and that the two cases look
qualitatively the same int the region of interest.

Without PML

o

-0.02

-0.04

-0.06

-0.08

-0.1

X

>

With PML

N

w

X

5
2.I
1

0 -
0 1 2 3 4 5

o

-0.02

-0.04

-0.06

-0.08

Figure 5: Numerical check for a photonic crystal with and without the PML region.

4 Time integrators

To solve the linear system of (3), a variety of different methods can be used. We will focus on
using exponential time integration, which relies on computing approximations to the exponent
matrix to get numerical results. We will employ the expokit package to calculate a reference
solution. We will focus on using Krylov shift-and-inverse (Krylov SAI) exponential time integra-
tion, which allows for different choices of solvers for linear systems. For this we will use a direct
solver and two iterative solvers: the generalized minimal residual method (GMRES) and the
biconjugate gradient stabilized method (BiCGSTAB). Finally we will also use a time-stepping
method, namely the implicit trapezoidal rule method (ITR).

4.1 expokit package

One of the exponential time integration methods we have used is the expokit Matlab package [9].
This package can be employed to compute actions of the matrix exponential. We will compare
the performance of Krylov SAI with this method.

4.2 Krylov SAI

To compute the exponential of a matrix the Krylov SAT method [10] can also be used. First
we will explain the Krylov subspace method (without SAI) and argue why this method is not
always suitable. Then we will describe the incorporation of SAI.

We consider the solution of 3 given by the matrix exponential:
y(t) = v, (4)

Here A is the result of an FDTD discretization, this is the same matrix as we used before for
the Maxwell equations. The Krylov subspace of A and v is defined as:

Icm(A) V) = Span{\’7 AV7 142‘/7 R A’HL—lv}.

In the Krylov subspace method the orthogonal basis {vi,va,..., vy} of K, (A4, V) is computed
and stored column wise in the matrix V,, = [viva...v,,]. We compute this matrix with the
Arnoldi (or Arnoldi SAT) process. The matrix V;, satisfies the Arnoldi relation:

Avm - m+1Hm+1,m~ (5)

Here Hyq1,m € R™TH™ is an upper Hessenberg matrix. This is a matrix with all zero elements
below the subdiagonal, so h; ; = 0 for ¢ > j + 1. Define H,, ,, as the first m rows of Hy, 1 m,
then we can rewrite (5) as:

AVm = VmHm,m + Vnz+1hm+1,7rLe?na (6)

where el is the canonical vector [0,...,0,1] of length m. This relation tells us that the matrix
A times any vector of the basis of the Krylov subspace is another vector in the Krylov subspace
plus a multiple of the next basis vector v,,4+1. We can use this to approximate y(t) of (4). We
set B = ||v| and choose vi = v/§ as the first basis vector and V,,, and H,, ,, can be computed
using the Arnoldi process. Hence, the approximation y,,(t) of y(¢) can be used [11,12,13]:

y(t) = ev = "V, Bey,
ym (t) — VmetH'm,'mﬁel.
Here we apply the Arnoldi relation to e*4 instead of A. This is possible because the matrix
exponential is just a polynomial function in A. This is a good approximation as long as the term

Vit 1hmi1,mel, is small. Computing y,,(t) is much faster than computing y(¢) because m < n
(n being the size of A) and m is usually around one hundred. The matrix e*#=.m can therefore

10

be calculated using standard solvers for the matrix exponential.
The stopping criterion is based on the residual of the approximation with respect to the ODE:

T (t) = Yo (t) — Aym(t).
By taking the derivative of y,,(¢) and using equation (6) the residual is
T ~tHpm
™ per.

rm(t) = *Vm+1hm+1,memei

When the norm of the residual gets smaller than some given tolerance the Arnoldi process is
stopped.

One problem with the Krylov subspace method can exhibit a slow convergence to yt¢. This
is because the matrix can have a wide spectrum with both small and large eigenvalues. The
eigenvalues of H,, ,, give a good approximation for the larger eigenvalues of A, but these are
not important for the computation of the matrix exponential. Therefore we use the shifted and
inverse matrix of A: (I —~yA)~!, to build the Krylov subspace, with 7 > 0 a parameter that can
be chosen. The Arnoldi SAI relation holds:

(I - ’YA)_IVm = m+1ﬁm+1,mv
= Vmﬁm,m + Vm+1ilm+1,me;z;7,~ (7)

We can now use the same approximation y,,(t) = V,,etffmm Be; with [14,15]
1 ~_

The algorithm for the Krylov SAI method is given in algorithm 1 (see [16]). Computing
(I —~A)~" directly is not possible for a large A such as our Maxwell operator. Therefore
we solve the system (I —~yA)w = v;. This can be done by either a direct or iterative solver
(where the latter allows for preconditioning). Later on we will look at some preconditioning
methods and compare them.

The stopping criterion is now more important because it also affects the amount of times we
have to solve the system (I —vA)w = v;. Computing the residual of the Krylov SAI method is
a bit more complicated than in the conventional Krylov subspace method. First we rewrite the
Arnoldi SAT relation of (7) as:

Avm = VmHm,m + % (I - ’YA) Vm+1hm+1,meT H71

m*tm,m*

Then we can use the same definition for the residual and it follows that [17]:

! T Ir—
rm(t) == (I - ’YA) Vm+1hm+1’meTH 1 ethmlBe1~

m*-m,m

4.2.1 Direct solver

The easiest method of solving linear systems is by using a direct solver. In our case, we will use
a sparse LU factorization using the UMFPACK in Matlab. This method factorizes the a matrix
A into matrices L, U, P, @ and R such that:

PR YAQ = LU,
= A=RP'LUQ'.

Here L and U are respectively lower and upper triangular matrices, P and @ are permutation
matrices, which are used to minimize the fill-in (the number of non-zero elements in L and U
relative to the number of non-zero elements in A) and R is a diagonal matrix. To solve the linear
system Ax = b, we can rewrite this as:

LUx = PR™'bQ =b.

Now we can solve LUx = b by using forward and backward substitution. For large sparse
matrices, coming from discretization of 3D PDEs, LU factorization is an expensive process, in
terms of computation time and in memory.

11

Algorithm 1 Arnoldi SAT process for y = e~ *4v

L B=|vl,vi=v/B
2: for j=1,2,...,m do

3: =(I—~vA)""v

4: fori=1,2,...,j do
5: Hi,j =w'l. Vi

6: W =W — Hi,jv,’

7 end for

8 Hjp;=|wl

9 EZ(I_nylu)/'V
0. =1 —AA)w]

11: u = expm(—tH)ey

12: rn(t) = C’eJTHl_:;)l:ju/fy
13: resnorm = |1, (¢)||

14: if resnorm < toler then stop
15: end if

16: Vg1 =w/Hjp,

17: end for

18: y = Vmﬂu

4.2.2 GMRES and BiCGSTAB iterative solvers

For large linear systems direct methods are too expensive. Therefore we will use an iterative
process to solve the system (I —yA) w = v; in the Arnoldi SAI process. We start with an initial
guess wq and for each iteration m we take a search direction z,,, such that:

W, = Wo + Zy, -

The question now is: how can we find a good search direction? One option is to choose z,, from
the Krylov subspace of A=1- ~vA and rg = v; — Awo Note that the Krylov subspace for A
and A are identical.
Now suppose that {vy, va, ..., v} is a basis of the Krylov subspace and let V,,, = [v1,va, ..., Vy].
Then for every element z,, from IC,,(A,rg) there is a vector x such that z,, = V;,x. So the
problem of finding a search direction in the Krylov subspace can be reduced to finding a vector
xX. To find the best search direction, the solver GMRES finds x such that the residual r,, is
minimal. GMRES uses the Arnoldi process.

Another Krylov subspace method which we will use is BICGSTAB [18]. In this method we
change the Arnoldi relation (5) in such a way that H,, ., is tridiagonal. The new relation is:

A‘/m, = Wm,Hm,m .

The orthogonal columns of W, spans a second Krylov subspace, namely C,,, (AT, ¥), where T is
an arbitrary vector. In BICGSTAB, the search direction is chosen such that the residual vector
r,, is orthogonal to the second Krylov subspace: Wlr,, = 0.

4.3 ITR

To compare the performance of the Krylov subspace methods described above with the conven-
tional time stepping integration methods, we include the ITR method in our tests. At every
time step k, ITR calculates the vector yj =~ y(k7) using the following formula:

Vi =Yk-1+ = (AYk 1+ Ayy) .

Here 7 is the time step. To obtain yj, we need to solve the system:

(1= 5= (14 5

12

On coarse grids we can use LU factorization to solve this system. However, for larger grids, the
same problems arise as in solving the original system (3). To do this, we can again use iterative
methods.

13

5 Preconditioning

To obtain accurate results, we need to use relatively fine grids. However, this leads to a large
size of the matrix and thus to high computation time and memory costs. We can combat this
by using two-sided preconditioning. This means that, instead of the system Ax = b , we solve
an equivalent system Af = 5, on which iterative solvers converge faster. For this, we use a
preconditioner matrix M = MM, such that M resembles A, but linear systems with M7 and
M are easy to solve. In the case of two-sided preconditioning, we get the system:

M = My AMy ! Mo, (8)
A= MTAM;
T = Msx,
b= M;"b.

Since our solver should work for matrices of the form I — A for some positive v, we need to
find matrices M; and Mj such that the product approximates I — vA. We use preconditioner
matrices based on splitting, i.e., we define A; and A5 such that A = Ay + Ay and M; = [—vA;,
so that

I —yAr (I —-~A1)I —vA2). 9)

5.1 Alternating Direction Implicit splitting

The first splitting we will look at is based on the Alternating Direction Implicit (ADI) method
(see e.g. [8]). The idea is to split the curl operator in the original Maxwell equations into two
components:

0 0 4, 0 6. 0
Bi=[(6. 0 0|,B,=[0 0 4,|,V=B—B,.
0 6, 0 5, 0 0

This means that, if we ignore the o-terms in our original matrix, we have
0 1By,-B
A= (1 w (B2 1)) .
;(Bl - BQ) 0

Now we can choose A; and A, as follows:

0 iB, 0 1B,
=, %)= (s,)
The diagonal terms of A have been evenly divided amongst A; and As. Lastly, the curl-PML

terms are split according to the description given above and all other terms are evenly divided
as well:

—M, /2 w 1By 1w 1By 0 /2 0

e 'B; —My/2 0 e'By 0 I/2

A — 0 diag(c)/2 0 0 0 0
17 | diag(o)/2 0 0 0 0o 0|’

—M, /2 0 0 0 0 0

0 —M, /2 0 0 0 0

7M+/2 7,uilB1 7#7131 0 I/2 0

—EilBQ —M+/2 0 —EilBQ 0 I/2

A= 0 diag(c)/2 0 0 0 0

27 | diag(0)/2 0 0 0 0 0

—M, /2 0 0 0 0 0

0 —M, /2 0 0 0 0

14

5.2 Field splitting

The second splitting is based on separation of the contributions of the H and E fields into the
two matrices A; and As. In other words, all components involved in the time integration of H
are in one matrix and all other components in the other:

—-My —p Ve —plvge 0 I 0
0 0 0 0 0
Ay = 0 diag(o) 0 0 0 0 ,
0 0 0 0 0 0
— M. 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
eV —My 0 e 'Vy 0 I
0 0 0 0 0 0
Ay = diag(o) 0 0 0 0 0
0 0 0 0 0 0
0 —M, 0 0 0 0

15

6 Numerical tests

To compare the different solvers and splitting methods we create a test case. The total domain
is [0,5] x [0, 5] x [0, 3] and the region of the photonic crystal is [1,4] x [1,4] x [0, 3]. So the PML
region is [0,1] and [4, 5] for both the a- and y-direction. Inside the photonic crystal we place 27
spheres (3 x 3 x 3) with radius 0.4. Inside these spheres the electrical permittivity € is set to 8.9
and e isl outside the spheres. The permeability u is taken as 1 everywhere in the domain. The
initial values for the magnetic and electric field are all zero except of E,, which reads

E, = ¢~ 30((@=20)’+(y=y0)*+10(z=20)*) (10)

Here xg,yo and zg are at the center of the domain, so g = yg = 2.5 and zy = 1.5.

6.1 Computation time

We compare expokit, ITR and Krylov SAI methods. For the linear system in the Krylov SAI
method we use different solvers: the direct sparse solver, GMRES and BiCGSTAB. In GMRES
and BiCGSTAB we use none, ADI- or field-splitting preconditioners. When using a precon-
ditioner we also look at the influence of v on the computation time by taking two different
values: 7 = 0.012 and v = 0.035. The results are presented in Tables 1-6. When there is an
‘~’in the table, it means that we were not able to compute that value due to hardware limitations.

We compare the CPU times for all of the solvers. This is done for the final physical time T" = 1.
Then for larger values of T" we only use the solvers that are faster or equally fast than expokit
to check if they also perform well for higher final times T. The following conclusions can be
drawn from the tests

e ITR is not faster than expokit or Krylov SAI in any case.

e A direct solver in Krylov SAI is both slower and less efficient on finer grids than GMRES
and BiCGSTAB.

e Using a preconditioner is effective and Field splitting is faster than ADI-splitting.
e v = 0.012 is more efficient than v = 0.035 (also for higher T values). See also Section 6.3.
e BiCGSTAB is faster than GMRES.

e BiCGSTAB and GMRES, both with Field splitting, are faster than expokit for the final
time 7' = 1. However, for larger final times 7" expokit is faster than either one of them.

e These conclusions hold for both choices of €. This means that we can use the best solver
(in computation time) for different cases of ¢, like the line defect in chapter 7.1.

16

6.1.1 Results with uniform epsilon

Table 1: The CPU times in seconds for different methods for ¢ = 1 everywhere. Final time

T=1.

Mesh [ng, ny, n;]

Solver
[10,10,6] | [20,20,12] | [40,40,24] | [80,80, 48]
expokit 0.25 1.15 16.6 229
ITR 0.39 3.03 73.7 831
Direct 0.13 1.41 68.9 -
GMRES without | 0.44 4.11 60.0 611
preconditioning
GMRES with | 0.22 1.72 25.4 454
ADI-splitting
& | GMRES with field- | 0.14 0.85 11.9 152
g splitting
II'l BiICGSTAB with- | 0.25 1.74 30.3 332
<1 out precondition-
ing
BiCGSTAB with | 0.16 0.75 9.98 131
ADI-splitting
BiCGSTAB with | 0.12 0.57 8.07 105
field-splitting
Direct 0.10 1.19 67.9 -
GMRES without | 0.91 5.69 136 2003
preconditioning
GMRES with | 0.16 1.29 28.9 622
ADI-splitting
2 | GMRES with field- | 0.11 0.64 16.4 318
g splitting
II'l BICGSTAB with- | 0.27 2.63 56.0 809
| out precondition-
ing
BiCGSTAB with | 0.12 0.65 12.8 209
ADI-splitting
BiCGSTAB with | 0.08 0.46 11.0 203
field-splitting

17

6.1.2 Results with 3D epsilon (spheres)

Mesh [ng, ny, n;]
Solver y
[10,10,6] | [20,20,12] | [40,40,24] | [80,80, 48]
expokit 0.26 1.16 17.3 234
ITR 0.46 2.85 69.1 812
Direct 0.13 1.30 67.9 -
GMRES without | 0.40 3.49 57.8 796
preconditioning
GMRES with | 0.22 1.42 25.6 479
ADI-splitting
A | GMRES with field- | 0.13 0.66 11.7 168
g splitting
II'| BICGSTAB with- | 0.22 1.60 29.3 388
| out precondition-
ing
BiCGSTAB with | 0.16 0.64 9.82 147
ADI-splitting
BiCGSTAB with | 0.11 0.47 8.11 113
field-splitting
Direct 0.10 1.22 66.6 -
GMRES without | 0.81 6.51 113 2617
preconditioning
GMRES with | 0.18 1.29 28.9 907
ADI-splitting
2 | GMRES with field- | 0.11 0.65 15.2 393
g splitting
II'l BICGSTAB with- | 0.24 2.19 51.7 930
<1 out precondition-
ing
BiCGSTAB with | 0.11 0.61 11.9 276
ADI-splitting
BiCGSTAB with | 0.09 0.47 10.5 233
field-splitting

Table 2: The CPU times in seconds for different methods for e = 8.9 inside the spheres and 1
elsewhere. Final time T = 1.

18

Mesh [ng, ny, n;]

Solver [10,10,6] | [20,20,12] | [40,40,24] | [80,80, 48]
expokit 0.25 1.73 33.5 389

o | GMRES with field- | 0.18 1.15 24.0 458

< | splitting

? BiCGSTAB with | 0.15 0.88 16.6 299

& | field-splitting

2 GMRES with field- | 0.17 1.52 55.6 2040

S | splitting

S [BiCGSTAB with | 0.18 1.05 36.4 1264

& | field-splitting

Table 3: The CPU times in seconds for different solving methods for ¢ = 8.9 inside the spheres

and 1 elsewhere. Final time T = 2.

Mesh [ng, ny, n.]

Solver [10,10,6] | [20,20,12] | [40,40,24] | [80,80, 48]
expokit 0.25 1.82 42.2 625

) GMRES with field- | 0.25 1.66 40.3 1052

< | splitting

o

I | BICGSTAB with | 0.19 1.19 27.8 650

| field-splitting

Table 4: The CPU times in seconds for different solving methods for ¢ = 8.9 inside the spheres

and 1 elsewhere. Final time T" = 3.

Mesh [ng, ny, n.]

Solver [10,10,6] | [20,20,12] | [40,40,24] | [80,80, 48]
expokit 0.38 2.29 60.6 845

) GMRES with field- | 0.29 2.54 67.8 2208

< | splitting

? BiCGSTAB with | 0.22 1.75 46.4 1284

& | field-splitting

Table 5: The computation times in seconds for different solving methods for € = 8.9 inside the

spheres and 1 elsewhere. Final time T = 4.

Mesh [ng, ny, n.]

Solver [10,10,6] | [20,20,12] | [40,40,24] | [80,80, 48]
expokit 0.37 2.82 77.5 1010

) GMRES with field- | 0.31 3.34 107 4001

< | splitting

? BiCGSTAB with | 0.46 2.17 71.1 2629

& | field-splitting

Table 6: The CPU times in seconds for different solving methods for € = 8.9 inside the spheres

and 1 elsewhere. Final time T" = 5.

19

6.2 Fill-in factors

An important factor which determines the computation time for preconditioned iterative solvers,
is the fill-in factor. Let [L,U] be the LU factorization of the preconditioner matrix M. The
fill-in factor is defined as

nnz(L + U)
nnz(M)

where nnz() equals the number of non-zero elements in a matrix. Since M is a sparse matrix,
we would like to keep the sparsity intact after the factorization (the more non-zero elements in
a matrix, the more flops are needed to solve the system). A fill-in factor of 1 is ideal, since
this means that there is no fill-in and the sparsity of the matrix remains completely intact. The
bigger the fill-in factor, the more time is needed to solve a linear system with M.

In Table 7, the fill-in factors for the ADI preconditioners are given, for each of the matrices M;
and My. We see that the larger the grid, the more fill-in is needed. For field-splitting however,
all of the fill-in factors are 1. This gives a considerate advantage to field splitting, especially for
larger systems. We can also note that for both preconditioners there is no time dependency for
the fill-in factors. This means that for larger time intervals the fill-in is the same.

[neny,n.] | T=1]T=2|T=3|T=4
[10,10,6] | 1.2582 | 1.2582 | 1.2582 | 1.2582
1.3004 | 1.3004 | 1.3004 | 1.3004
[20,20,12] | 1.3736 | 1.3736 | 1.3736 | 1.3736
1.3947 | 1.3947 | 1.3947 | 1.3947
[40,40,24] | 1.4881 | 1.4881 | 1.4881 | 1.4881
1.4995 | 1.4995 | 1.4995 | 1.4995
[80,80,48] | 1.6006 | 1.6006 | 1.6006 | 1.6006
1.6244 | 1.6244 | 1.6244 | 1.6244

Table 7: Fill-in factors for ADI-splitting

6.3 Optimal value for v

In the previous cases we have set v = 0.012 or v = 0.035 and compared the results of these two
values. We check if there are better values for v than 0.012. Therefore we look for some other
values of v and check the CPU time with BICGSTAB (because it is faster than GMRES) and
field-preconditioning on a [40, 40, 24] grid. If the computation time is close to each other then
we look at the [80, 80, 48] grid. The results of this test are presented in Table 8.

20

~y 40, 40, 24] | [80, 80, 48]
0.008 | 14.03

0.010 | 12.82 183.1
0.012 | 12.38 184.6
0.014 | 12.54 182.9
0.016 | 12.50 215.2
0.018 | 10.60 213.2
0.020 | 12.82 221.5
0.024 | 12.85

0.028 | 16.00

0.032 | 15.44

0.036 | 15.10

0.040 | 15.07

Table 8: The CPU times in seconds of the Krylov SAI method for different values of v with
BiCGSTAB.

From Table 8 we conclude that v = 0.012 is indeed one of the optimal values for v. v = 0.010 or
~ = 0.014 give the same results for the [80, 80, 48] grid and are therefore equally good. Although
~ = 0.018 has a lower computation time for the [40,40, 24] grid, it is not faster for the [80, 80, 48]
grid. We assume that this is a special case and so is not optimal.

We can do the same test for GMRES. For GMRES the results are presented in Table 9. Here we
see that v = 0.012 is indeed optimal for GMRES. Also for v = 0.018 the same lower computation
time occurs for the [40,40, 24] grid.

~ 40, 40, 24] | [80, 80, 48]
0.008 | 22.30

0.010 | 21.37

0.012 | 18.72 267.1
0.014 | 18.20 295.0
0.016 | 18.74 323.6
0.018 | 15.64 339.2
0.020 | 18.86 335.5
0.024 | 21.28

0.028 | 21.95

0.032 | 22.80

0.036 | 22.67

0.040 | 25.96

Table 9: The CPU times in seconds of the Krylov SAI method for different values of v with
GMRES.

21

7 Applications

The numerical solution of the Maxwell equations is useful in, for example, the simulation of
photonic crystal structures. An important real world application in this field is in a design of
electromagnetic waveguides such as optical fibers. Optical fibers are fibers that are used for
communication that relies on the transmission of light to send data. In this section we show
a few structures that have been successfully simulated with our solver. The initial value is a
Gaussian pulse given by (10) in the center of the region of interest. In all cases we consider a
variation of a 3D structure of spheres. The shown results are the F, field plotted in the xy-plane
for z = 1.5 (the middle of the photonic crystal).

7.1 Line defect

A line defect (see Figure 6) is a structure in which a row of spheres has been removed from
the regular lattice of spheres (in our case 3 x 3 x 3 array of spheres). This structure acts as a
waveguide; waves tend to travel along the line defect and not in the other directions. As seen in
Figure 7, the expected behavior is found by the simulation.

7.2 A closed line defect

We now consider the line defect with spheres added at the ends of the line defect (see Figure 8).
As before, the waves are guided, but now they get reflected by the spheres at the end of the line
defect. The difference with the previous case is hard to discern, but is there nevertheless; the
waves get reflected at the added spheres at the edges (see Figure 9).

7.3 Around the corner

Based on the observations of the first case, one might expect similar behavior for any given
path through a photonic crystal. Sadly, this is not the case according to our simulation (see
Figures 10, 11); the waves that are guided through the bend are damped a lot.

22

OO
OO
OO
OO0
OO

OO
OO
OO
OO
OO

Figure 6: A line defect in the photonic crystal

t=0.50
5
0.05
4
0
3
>
2 -0.05
1 0.1
0 -0.15
0 1 2 3 4 5
X
t=1.50
5
0.05
4
0
3
>
2 -0.05
1 0.1
0 -0.15
0 1 2 3 4 5
X
t=2.50
5
0.05
4
0
3
>
2 -0.05
1 0.1
0 -0.15
0 1 2 3 4 5
X
t=3.50
5
0.05
4
0
3
>
2 -0.05
1 0.1
0 -0.15
0 1 2 3 4 5

X

t=1.00

5

-0.15

=)

-0.15

=)

-0.15

t=4.00

5
0.05
4
0
3
>
) -0.05
1 0.1
0
0 1 2 3 4 5

-0.15

X

Figure 7: Gaussian pulse initial condition in line defect photonic crystal structure

23

OO
OO
OO0

00000

OO000

OO
OO
OO

Figure 8: A closed line defect in the photonic crystal

t=0.50

5
0.05
4
0
3
>
2 -0.05
1 -0.1
0 -0.15
0 1 2 3 4 5
X
t=1.50
5
0.05
4
0
3
>
2 -0.05
1 -0.1
0 -0.15
0 1 2 3 4 5
X
t=250
5
0.05
4
0
3
>
2 -0.05
1 -0.1
0 -0.15
0 1 2 3 4 5
X
t=3.50
5
0.05
4
0
3
>
2 -0.05
1 0.1
0 -0.15
0 1 2 3 4 5

X

t=1.00

5

-0.15

=)

-0.15

=)

-0.15

X

t=4.00

5
0.05
4
0
3
>
) -0.05
1 0.1
0
0 1 2 3 4 5

-0.15

X

Figure 9: Gaussian pulse initial condition in bounded line defect photonic crystal structure

24

00000
OCO0000

OO
OO0 OO
OO0 OO

Figure 10: A line defect in two dimensions in the photonic crystal
t=0.00 t=0.50

5
0.05 0.05
4
o o
-0.05 5 -0.05
0.1 -0.1
1 2 3 4 5 %

5
4
3
)2
1

% (] 1 2 3 4 5
t=1.00 t=1.50
5 5
0.05 0.05
4 4
o o
) -0.05 5 -0.05
0.1 0.1
% 1 2 3 4 5 % 1 2 3 4 5
t=2.00 t=250
5
0.05 0.05
4
o o
-0.05 2 -0.05
-0.1 1 -0.1
% 1 2 3 4 5 % 1 2 3 4 5
. «
t=3.00 t=350
5 5
0.05 0.05
4
o o
3
-0.05 s -0.05
0.1 1 -0.1
0 0

0 1 2 3 4 5 0 1 2 3 4 5

Figure 11: Gaussian pulse initial condition in “around-the-corner” photonic crystal structure

25

8 Conclusion

We considered time integration methods for solving the time dependent Maxwell equations as
arise in modeling of photonic crystal structures.

For the space discretized equations we compared the CPU time for a number of different solvers
with the existing expokit package. One solver we used is ITR (Implicit Trapezoidal Rule
method), whereas all of the other solvers, including expokit, are based on approximating matrix
exponential actions. The Krylov SAT method was employed with different linear solvers. We com-
pared the performance of a sparse direct solver and iterative solvers GMRES and BiCGSTAB.
For GMRES and BiCGSTAB we analysed the influence of preconditioning, namely precondi-
tioners based on the ADI- and field-splitting.

The results show that for low values of the final time T" Krylov SAI with BICGSTAB and field-
splitting preconditioner is the fastest method. However for larger final times T', expokit is faster
than Krylov SAI. ITR was in all cases worse than expokit or Krylov SAI. Field-splitting has
no fill in whereas the ADI-splitting has a fill in between 1.3 and 1.6, depending on the grid.

26

References

[1]
2]

3]

[4]

[5]

D.J. Griffiths, Introduction to Electrodynamics, Pearson, 4th edition, p. 398-399, 2013.

A. Taflove, S. Hagness, Computational Electrodynamics: the finite-difference time-domain
method, Artech House, 2nd edition, p. 74-75 & 295-297, 2000.

B. Fornberg, Some Numerical Techniques for Mazwell’s Equations in Different Types of
Geometries, Topics in Computational Wave Propagation, Lecture notes in Computational
Science and Engineering 31, Springer Verlag, p. 265-299, 2003. (p. 3)

J. Bérenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J.
Comput. Phys., vol. 114, no. 1, p. 185-200, 1994.

W.C. Chew, W. Weedon, A 3-D Perfectly Matched Medium from Modified Mazwell’s Equa-
tions with Stretched Corodinates, IEEE Microwave and Guided Wave Letters, Vol. 7, p.
599-604, 1994.

S.G. Johnson, Notes on Perfectly Matched Layers (PMLs), MIT, 2010.

K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Mazwell’s Equa-
tions in Isotropic Media, IEEE Trans. Antennas Propagat. vol. AP-14, p. 302-307, 1966.

M. Hochbruck, T. Jahnke, R. Schnaubelt, Convergence of an ADI Splitting for Mazwell’s
Equations, Numerische Mathematik, vol. 129, issue 3, p. 535-561, 2015.

R.B. Sidje, Ezpokit: A Software Package for Computing Matriz Exponentials, ACM Trans.
Math. Softw. 24, p. 130-156, 1998.

M.A. Botchev, Krylov subspace exponential time domain solution of Mazwell’s equations
in photonic crystal modeling, Journal of Computational and Applied Mathematics (2015),
http://dx.doi.org/10.1016/j.cam.2015.04.022

G. Rodrigue, D. White, A vector finite element time-domain method for solving Mazwell’s
equations on unstructured hexahedral grids, SIAM J. Sci. Comput. 23 (3) (2001) 683706.

M. Hochbruck, A. Ostermann, Ezponential integrators, Acta Numer. 19 (2010) 209286

N.J. Higham, The scaling and squaring method for the matriz exponential revisited, STAM
J. Matrix Anal. Appl. 26 (4) (2005) 11791193

E. Gallopoulos, Y. Saad, Efficient solution of parabolic equations by Krylov approximation
methods, STAM J. Sci. Stat. Comput. 13 (5) (1992) 12361264

J. Niehoff, Projektionsverfahren zur Approrimation wvon Matrizfunktionen mit An-
wendungen auf die Implementierung exponentieller Integratoren , Mathematisch-
Naturwissenschaftlichen Fakultt der Heinrich-Heine-Universitt Dsseldorf, 2006

M.A. Botchev, expmARPACK: matriz exponential actions with Arnoldi methods. Octave /
Matlab software package, version 1.0, 2012. www.math.utwente.nl/ botchevima/expm/.

M.A. Botchev, V. Grimm, M. Hochbruck, Residual, restarting and Richardson iteration for
the matriz exponential, STAM J. Sci. Comput. 35 (3) (2013) A1376A1397

H.A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for
the Solution of Nonsymmetric Linear Systems, STAM Journal on Scientific and Statistical
Computing, 1992, Vol. 13, No. 2 : pp. 631-644, http://dx.doi.org/10.1137/0913035

L.T. Yang, R.P. Brent, The Improved BiCGStab Method for Large and Sparse Unsymmetric
Linear Systems on Parallel Distributed Memory Architectures

27

A PML derivation

As noted in Section 2.1, the stretched coordinate PML 6 can be derived by applying the following
three transformations to the Maxwell equations [6]:

0 — (1 + i%>71 Op,

9, (1 +i@)_lay,
w
0.~ (1+ iﬁ)_l 9.
w
Below is the system that is obtained by applying those transformations:
OHy = —iwH, = —p~*
OH, = —iwH, = —p~!

(— (1 +ios/w) " 0, Ey,+ (1 +ioy/w
(
O H, = —iwH, = —p~ ' (—
(=
(
(=

()
YO.E, — (140, /w)”
1+ i0y/w 8E + (140, /w)” Lo, y
()
—()

(

(1+io,/w)”

()

(I+io,/w)” 3H + (14 ioy/w
(1)

(1)~

OB, = —iwE, = ¢!
OE, = —iwE, = et
OE, = —iwE, = ¢!

+i0,/w
+ioy/w

1+i0,/w
OyHy + (1 +ioy/w)” 18wHy)
Multiplying left and right by the reciprocal of the transformations, we obtain:

—(1 +ioy /w)(1 +i0, /w)iwH, = —pu~ (= (1 +ioy/w) 0, Ey + (1 +i0, /w) O, E,),
—(1 +i0, /w)(1 +io, Jw)iwH, = —p~*((1 +io,/w)0.Ey — (1 +i0,/w) 0, E.,),
—(1+io, /W) +io, /w)iwH, = —p~ (= (1 +io, /w) Oy FEy + (1 +i0, /w) 0. E,)
—(1+io, /w)(1 +i0, /w)iwE, = € (= (1+ioy,/w)0.H, + (1 +i0,/w)0,H.,),
—(1+io,/w)(1+io, /w)iwE, = ¢! ((1+i0,/w)0. 1+i0,/w) 0. H,),
—(1+i0, /w)(1 +ioy /w)iwE, = € (= (1+io,/w)OyHy + (1 +ioy/w) 0. H,).
Writing out the factors on the left hand side of these equations and taking the reciprocal of the
transformation inside the differential operator on the right hand side result in:

)

(1
(
—
(1

—iwH, + (Uy + O'Z)H + (/W)O'yO'sz — _’u—l _
—iwHy + (04 + 0 (i

((i) +

JHy + (i/w) (0:(Ex + (i/w)osEx) +
—iwH, + (0, + 0, H, + (i/w)o,0,H, = =~ (=0 (Ey + (i/w)o.Ey) + 0:(Ey + (i/w)o, Ey)),
—iwE, 4+ (0 + 0,)Ey + (i/w)o,0.E, = € ' (—0,(Hy + (i/w)o,H,) + 0,(H, + (i/w)o, H,)),
—iwEy + (04 +0.)Ey + (i/w)o,0.B, = €' (0,(Hy + (i/w)orHy) — 0 (H, + (i/w)o. H.)),
—iwE, + (05 + 0,)E, + (i/w)o,o,E, = €' (=0y(Hy + (i/w)o,Hy) + 0p(Hy + (i/w)o, Hy))

These relations can then be written in vector form as:

oy+o; 0 0
OH = —,ufl(v x (E+P))— < 8 J:c‘ga'z _?_) H+ R,

oy+o. 0 0
OtE = 6_1 (v X (H + Q)) — < 8 oz-(&)-az 0) E + S,

oxtoy
P = (i/w)diag(0)E & —iwP = 0;P = diag(o)E
Q = (i/w)diag(c)H & —iwQ = 0;Q = diag(c)H,

) oyo, O 0 crycrz 0 0
R=(i/w)| 0 owo. 0 |HS —iwR=0R= oz0. 0 | H,
0 0 og0y 0 0 og0y
. oyo, O 0 ayoz 0 0
S=(/w)| 0 o0. 0 |E & —iwS =08 = ozo. 0 | E.
0 0 o0y 0 0 og0y

28

© W N U A W N =

Q@ o 0 e O g oU UG C oot gt on ot A A A AR A R R R R A LW W W W W W W W W NNNNNNNNNNRS B e e e E e e e
BN =2 O 0 ® N0 0k N = O 0 K000k N~ O© KN 0o 0 h ®E 2O 0 XN 0E N RO ©® KN oW N RO

B Matlab Codes

The Matlab code computes the Maxwell operator and the preconditioner matrices.

function [A,Al,A2] = Maxwell_blocks3D (nx,ny,nz,pars,precond-type)
The cuboid domain [ax,bx]lxlay,bylx[az,bz] is divided into nx x ny x nz cells
The whole domain [ax,bx] x [ay,by] x [az,bz] includes the PML regions.

The boundary conditions are homogeneous Dirichlet (outside of the PML
regions)

pars.feval_mesh handle for

[x,v,2z,hx,hy,hz] = feval (pars.feval.mesh,nx,ny,nz);
pars.feval_domain handle for

[ax,bx,ay,by,az,bz] = feval (pars.feval_domain,ok_pml);
pars.feval_sigma handle for

sigmaXY¥Z = feval (pars.feval_sigma,X,Y,Z,what)

where "what" can be "Ex", "Hx", "Hy",
pars.feval_mu handle for

muXYZ = feval (pars.fevalmu,X,Y,Z7)
pars.what 'no.pml' or '2D' or '3D'. 1If pars.what=='no_pml'

then only the Maxwell operator itself is computed.
Otherwise the matrix is computed, including the PML
parts in x and y directions for 2D and x,y,z for 3D.

o0 o0 o o A A A A° A0 0 IO O o I IO A° A° o o

[x,¥,2,hx,hy,hz] = feval (pars.fevalmesh, nx, ny, nz);
[X,Y,2] = ndgrid(x, y, z);
N = (nx + 1)*(ny + 1)x(nz + 1);

o

% Defining block top right
Dx=derivativelD (nx+1, hx);
Dy=derivativelD (ny+1l, hy);
Dz=derivativelD (nz+1, hz);
Ix=speye (nx+1l, nx+1l);
Iy=speye (ny+1l, ny+l);
Iz=speye (nz+l, nz+l);

dEy.dz = kron3(Dz, Iy, Ix); % dEy.dz, etc, componenten dubbel
dEz_dy = kron3(Iz, Dy, Ix);

dEx-dz = kron3(Dz, Iy, Ix);

dEz_dx = kron3(Iz, Iy, Dx);

dEx_dy = kron3(Iz, Dy, Ix);

dEy.dx = kron3(Iz, Iy, Dx);

mu_x = feval (pars.fevalmu, X, Y+hy/2, Z+hz/2); % the mu values for Hx
mu.y = feval (pars.fevalmu, X+hx/2, Y, Z+hz/2); % the mu values for Hy
mu-z = feval (pars.fevalmu, X+hx/2, Y+hy/2, Z); %

Mu.-x_inv = spdiags(l./mu-x(:), 0, N, N);

Mu.y-inv = spdiags(l./mu-y(:), 0, N, N);

Mu_z_inv = spdiags(l./mu.z(:), 0, N, N);

the mu values for Hz

B15 = Mu._x_invxdEy_dz;
Bl6 = —Mu_x_invxdEz_dy;
B24 = —Mu.y-invxdEx_-dz;
B26 = Mu.y-invxdEz_dx;
B34 = Mu-z_invxdEx_dy;
B35 = —Mu_z_invxdEy_dx;

% Defining block bottom left

epsilon.x = feval (pars.feval_eps, X+hx/2, Y, Z); % the epsilon values for Ex
epsilon.y = feval (pars.feval_eps, X, Y+hy/2, Z); % the epsilon values for Ey
epsilon.z = feval (pars.feval_eps, X, Y, Z+hz/2); % the epsilon values for Ez

Eps-x_-inv = spdiags(l./epsilon_x(:), 0, N, N);
Eps.y-inv = spdiags(l./epsilon.y(:), 0, N, N);
Eps-z-inv = spdiags(l./epsilon.z(:), 0, N, N);

29

111

113

B42 =
B43 =
B51
B53 =
B61
B62 =

%$define

sigma.x =

sigma.y
sigma.z
Sigma-x
Sigma.y
Sigma.z

B11l =
B22
B33 =

%define
sigma.x =
sigma.y
sigma.z
Sigma-x
Sigma.y
Sigma-z

B44
B55
B66 =

% Whole
O =

A=[Bl1,
o,

Ol

o,

B51,
B61,

sparse (N, N) ;

Eps-x_invxdEy_dz"';
—Eps_x_invxdEz_dy"';
—Eps_y-inv«xdEx_dz"';

Eps.y-invxdEz_dx"';

Eps-z_invxdEx_dy"';
—Eps_z_invxdEy-dx';

diagonal blocks for H

feval (pars.feval_sigma,
feval (pars.feval_sigma,

= feval (pars.feval_sigma,

= spdiags(sigma-x(:), O,
= spdiags(sigma-y(:), O,
= spdiags(sigma-z (:), O,
Sigma.y — Sigma.z;
Sigma-x — Sigma-z;
Sigma-x — Sigma.y;

diagonal blocks for E
feval (pars.feval_sigma,

feval (pars.feval_sigma,
feval (pars.feval_sigma,

= spdiags(sigma-x(:), O,
= spdiags(sigma.y(:), O,
= spdiags(sigma-z (:), O,
Sigma.y — Sigma-z;
Sigma-x — Sigma-z;
Sigma-x — Sigma.y;
matrix

OI
B22,
OV
B42,
OV
B62,

0,
O,
B33,
B43,
B53,
O,

X+hx/2,

Y+hy/2,

Z+hz/2,
N, N);
N, N);
N, N);

X,
Y,
Z,

X
v')i
Z

N, N);
N, N);
N, N);

all zero sparse matrix

Ol
B24,
B34,
B44,

Ol

o,

B15,
O,
B35,
0,
B55,
0,

switch precond-type

case 0

case 1

case 2

Al =
A2 = Al;
Al=[B11,
Ol
0,
O’
ol
B61,
A2=[B11,
o,
0,
o,
B51,
o,
$field
Al=[Bl1,
o,

0,

o,

0,

A2=]

%ADI splitting

o, 0,
B22, o,
0, B33,
B42, o,
0, B53,
o, o,
o, 0,
B22, 0,
0, B33,
0, B43,
o, 0,
B62, o,
splitting
o, 0,
B22, 0,
0, B33,
o, o,
o, 0,
o, o,
o, o,
o, 0,

B16;
B26;
0;
0;
0;

B66];

$no preconditioning
speye (size (A));

B24,
o,
B44,
ol
o,

Ol
B34,
B44,

0,
B35,
0,
B55,

B15,
O,
o,
o,

B55,

B15,
o,
B35,

B16;
O;
0;
O;
0;

B66]

B26;
0;
O;
0;

B66]

Bl6;
B26;
0;
O;
0;
0]

30

134
135
136
137
138

140
141
142

152

154
155
156
157
158

159

161

162

163
164

166

168

169

170
171
172
173
174

176
177
178

179

180

181

o,
0, B4
B51,

o,
2,
o,

B61, B62,

end

o, o, 0, 0;

B43, B44, 0, O;

B53, O, B55, O;
o, O, O, B66];

if strcmp (pars.what, 'no_pml")

return

elseif strcmp (pars.what, '2D")

% Add PML 2D

switch precond_type

case 0

I = speye(N);

sigma-x1 = feval (pars.feval_sigma, X, x');
sigma.yl = feval (pars.feval_sigma, Y, 'v');
Sigma-x1 = spdiags(sigma-x1(:), 0, N, N);
Sigma.yl = spdiags(sigma.yl(:), 0, N, N);
nonzero_sig-xl = sigma-x1>0;
nonzero_sig.yl = sigma.-y1>0;
nonzero_sig.xyl= (sigma_x1l.xsigma.yl)>0;

sigma._x2

feval (pars.feval_sigma, X+hx/2, 'x
feval (pars.feval_sigma, Y+hy/2, 'y

")

sigma.y2 = ")
Sigma.x2 = spdiags(sigma_x2(:), 0, N, N);
Sigma.y2 = spdiags(sigma-y2(:), 0, N, N);
nonzero_sig_x2 = sigma_x2>0;

nonzero_sig.y2 = sigma.y2>0;

nonzero_sig-xy2= (sigma-x2.x*sigma-y2)>0;

A = [A, [O(:,nonzero.sig-xl), O(:,nonzero_sig.yl),

O(:,nonzero_sig.xyl), O(:,nonzero_sig_x2)
O(:,nonzero-sig-xy2);

, O(:,nonzero_sig.y2),

O(:,nonzero_sig.-x1l), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_.sig-x2),
O(:,nonzero-sig-y2), O(:,nonzero.sig-xy2);

O(:,nonzero_sig-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), I(:,nonzero_-sig-x2),
I(:,nonzero_sig.y2), I(:,nonzero._sig._xy2);

O(:,nonzero.sig-x1l), O(:,nonzero_sig.yl),
O(:,nonzero_sig.-xyl), O(:,nonzero_sig_x2),
O(:,nonzero.sig.y2), O(:,nonzero.sig-xy2);

O(:,nonzero-sig-x1), O(:,nonzero_sig.yl),
O(:,nonzero_sig.-xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig.y2), O(:,nonzero.sig-xy2);

I(:,nonzero_sig.x1l), I(:,nonzero_sig.yl),
I(:,nonzero-sig-xyl), O(:,nonzero-sig-x2),
O(:,nonzero_.sig.y2), O(:,nonzero.sig.xy2)11;

B71 = Sigma_x1%B61;
B82 = Sigma.ylxB62;
B96 = —Sigma-xl*xSigma-yl;

B104 = Sigma_-x2%B34;
B115 = Sigma.-y2*B35;
B123 = —Sigma-x2xSigma.y2;

Block_row.7
O(:,nonzero-sig-xl), O(:,nonzero_sig.yl),

Block_row.8

Block_row.9

= [B71, o, 0, o, 0,

O(:,nonzero-sig-x2), O(:,nonzero_-sig-y2), O

= [0O, B82, o, o, o, o,
O(:,nonzero-sig-x1l), O(:,nonzero_sig.-yl), O
O(:,nonzero.sig.-x2), O(:,nonzero_sig.y2), O

= [O, o, o, o, 0, B9e,
O(:,nonzero.sig.-x1l), O(:,nonzero_sig.yl), O
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O
Block-row-10 = [O, o, 0, B104, o, o,
O(:,nonzero.sig-x1), O(:,nonzero_sig.yl), O
O(:,nonzero-sig-x2), O(:,nonzero_-sig.-y2), O

31

:,nonzero_sig-xyl),
:,nonzero_sig-xy2)1;

:,nonzero_sig-xyl),
:,nonzero_sig_xy2)1];

:,nonzero_sig_xyl),
:,nonzero_sig-xy2)1];

:,nonzero_sig_xyl),
:,nonzero_sig-xy2)1;

182

183

219

221

222

223

224

226

227

Block.row.11 = [O, o,
O(:,nonzero_sig._x1),
O(:,nonzero-sig-x2),

Block-row-12 = [O, o,
O(:,nonzero_sig.-x1),

case 1

O(:,nonzero-sig-x2), O(:,nonzero_-sig.-y2), O

A = [A;

Block_row_.7 (nonzero_sig_x1l, :);
Block_-row_8 (nonzero_sig.-yl, :);
Block_row_9 (nonzero_sig_xyl, :);
Block_row_10 (nonzero_sig-x2, :);
Block-row-11 (nonzero-sig-y2,:); ...
Block_row_12 (nonzero_sig_-xy2,:)1];

I = speye(N);

sigma.x1l = feval (pars.feval_sigma, X, 'x');

sigma.yl = feval (pars.feval_sigma, Y, 'y');

Sigma-x1 = spdiags(sigma-x1(:), 0, N, N);

Sigma.yl = spdiags(sigma.yl(:), 0, N, N);

nonzero_sig-xl = sigma-x1>0;

nonzero_sig.yl = sigma.y1>0;

nonzero_sig-xyl= (sigma-x1l.x*sigma-y1l)>0;

sigma.x2 = feval (pars.feval_sigma, X+hx/2, 'x');

sigma.y2 = feval (pars.feval_sigma, Y+hy/2, 'v');

Sigma.-x2 = spdiags(sigma-x2(:), 0, N, N);

Sigma.y2 = spdiags(sigma-y2(:), 0, N, N);

nonzero_sig._x2 = sigma_x2>0;

nonzero_sig.y2 = sigma.y2>0;

nonzero_sig_.xy2= (sigma_x2.xsigma.y2)>0;

B71 = Sigma._x1%B61;

B82 = Sigma.yl=*B62;

B96 = —Sigma-xl*xSigma-yl;

B104 = Sigma_-x2%B34;

B115 = Sigma.-y2*B35;

B123 = —Sigma-x2xSigma.y2;

Block_row.7 = [B71, o, o, o, o, o,
O(:,nonzero-sig-xl), O(:,nonzero_sig.-yl), O
O(:,nonzero-sig-x2), O(:,nonzero-sig-y2), O

Block_row.8 = [O, B82, o, o, o, o,
O(:,nonzero-sig-xl), O(:,nonzero_sig.-yl), O
O(:,nonzero.sig-x2), O(:,nonzero_sig.y2), O(:

Block_.row.9 = [O, o, o, o, 0, BY9e,
O(:,nonzero_sig.-x1l), O(:,nonzero_sig.yl), O(:
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O

Block_row_10 = [O, o, 0, B104, o, o,
O(:,nonzero_sig_-x1l), O(:,nonzero_sig.yl), O
O(:,nonzero-sig-x2), O(:,nonzero_-sig-y2), O

Block.row_11 = [O, o, o, o, B1l15, o,
O(:,nonzero-sig-xl), O(:,nonzero_sig.-yl), O
O(:,nonzero.sig.-x2), O(:,nonzero_sig.y2), O

Block.row.12 = [O, O, B123, o, o, o,
O(:,nonzero.sig.-x1l), O(:,nonzero_sig.yl), O
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O

Block_-row_zeros =[O, o, o, o, o, o,
O(:,nonzero.sig-x1), O(:,nonzero_sig.yl), O
O(:,nonzero-sig-x2), O(:,nonzero_sig.-y2), O

Al = [Al, [O(:,nonzero-sig-x1),
O(:,nonzero_sig._xyl),
O(:,nonzero-sig-xy2);

O(:,nonzero-sig-x1),
O(:,nonzero_sig-xyl),
O(:,nonzero-sig-y2),

o, 0, B115,
O(:,nonzero_sig.yl),
O(:,nonzero_sig.y2),

B123, o, o,
O(:,nonzero_sig.yl),

O(:,nonzero_sig_x2)

32

OOP

o O

:,nonzero_sig_xyl),
:,nonzero_sig-xy2)1];

:,nonzero_sig_xyl),
:,nonzero_sig-xy2)1;

:,nonzero_sig.-xyl),
:,nonzero_sig-xy2)1;

:,nonzero_sig-xyl),

,nonzero_sig_xy2)];

,honzero_sig_xyl),

:,nonzero_sig-xy2)1];

:,nonzero_sig-xyl),
:,nonzero_sig-xy2)1;

:,nonzero_sig-xyl),
:,nonzero_sig_xy2)1];

:,nonzero_sig_xyl),
:,nonzero_sig-xy2)1];

:,nonzero_sig_xyl),
:,nonzero_sig-xy2)1;

O(:,nonzero_sig.yl),
, Of(:

,nhonzero_sig.y2),

O(:,nonzero-sig-yl),
O(:,nonzero_sig-x2),
O(:,nonzero-sig-xy2);

228 O(:,nonzero-sig-xl), O(:,nonzero_sig.yl),
O(:,nonzero_sig.xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig.y2), O(:,nonzero_.sig-xy2);
229 O(:,nonzero-sig-x1), O(:,nonzero_sig-yl),
O(:,nonzero_sig.-xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig-y2), O(:,nonzero_-sig-xy2);
230 O(:,nonzero_sig.-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero_sig.y2), O(:,nonzero_sig_xy2);
231 I(:,nonzero-sig-x1), I(:,nonzero-sig.yl),
I(:,nonzero_sig_xyl), O(:,nonzero_sig.x2),
O(:,nonzero.sig.y2), O(:,nonzero.sig-xy2)]1];

232
233 Al = [Al;

234 Block_-row.7 (nonzero_sig_-x1, :);

235 Block_row_8 (nonzero_sig._yl, :);

236 Block_-row.-9 (nonzero_sig-xyl, :);

237 Block.row_zeros (nonzero_sig._x2,:);

238 Block.row-zeros (nonzero_sig.y2,:);

239 Block.-row-zeros (nonzero_-sig-xy2,:)1;

240

241 A2 = [A2, [O(:,nonzero-sig-x1), O(:,nonzero-sig.yl),

O(:,nonzero_sig.xyl), O(:,nonzero_sig_x2), O(:,nonzero._sig.y2),
O(:,nonzero-sig-xy2);
242 O(:,nonzero_sig.-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero_sig.y2), O(:,nonzero_sig_xy2);
243 O(:,nonzero_sig-xl), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), I(:,nonzero_sig-x2),
I(:,nonzero_sig.y2), I(:,nonzero_sig._xy2);
244 O(:,nonzero-sig-x1l), O(:,nonzero_sig.yl),
O(:,nonzero_sig.xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig.y2), O(:,nonzero_.sig-xy2);
245 O(:,nonzero_sig.x1l), O(:,nonzero_sig.yl),
O(:,nonzero.sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero-sig-y2), O(:,nonzero-sig-xy2);
246 O(:,nonzero_sig-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero.sig.y2), O(:,nonzero_sig.xy2)]11;

247
248 A2 = [A2;

249 Block.row-zeros (nonzero_sig-x1l,:);

250 Block.-row-zeros (nonzero_-sig.-yl, :);

251 Block.row_zeros (nonzero_sig_xyl,:);

252 Block_row_10 (nonzero_.sig-x2, :);

253 Block_row_11 (nonzero_sig.y2, :);

254 Block_row_12 (nonzero-sig-xy2, :)1;

255 case 2

256 I = speye(N);

257

258 sigma.x1l = feval(pars.feval_sigma, X, 'x')

259 sigma.yl = feval (pars.feval_sigma, Y, 'v');

260 Sigma.x1 = spdiags(sigma_x1(:), 0, N, N);

261 Sigma.yl = spdiags(sigma-yl(:), 0, N, N);

262 nonzero._sig.xl = sigma_-x1>0;

263 nonzero_sig.yl = sigma.y1>0;

264 nonzero_sig._xyl= (sigma_x1l.xsigma.yl)>0;

265

266 sigma-x2 = feval (pars.feval_sigma, X+hx/2, 'x'");
267 sigma.y2 = feval (pars.feval_sigma, Y+hy/2, 'v');
268 Sigma-x2 = spdiags(sigma-x2(:), 0, N, N);

269 Sigma.y2 = spdiags(sigma.y2(:), 0, N, N);

270 nonzero_sig.-x2 = sigma-x2>0;

271 nonzero._sig.y2 = sigma.y2>0;

272 nonzero_sig_.xy2= (sigma_-x2.xsigma.y2)>0;

273

274 B71 = Sigma-x1+B61;

275 B82 = Sigma.yl*B62;

276 B96 = —Sigma-xlxSigma.yl;

33

277
278
279
280
281

282

283

284

285

287

290

292

293

294

305

306

307

308

B104 = Sigma-x2%B34;

B115 = Sigma.y2%B35;
B123 = —Sigma-x2xSigma.y2;
Block_row.7 = [B71, o, o, o, o, o,

O(:,nonzero-sig-x1l), O(:,nonzero_sig.yl), O(:,nonzero-sig-xyl),
O(:,nonzero_sig.-x2), O(:,nonzero_sig.y2), O(:,nonzero_sig._xy2)];
Block_.row.8 = [0O, B82, o, o, o, o, C..
O(:,nonzero_sig.-x1l), O(:,nonzero_sig.yl), O(:,nonzero_sig._xyl),
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O(:,nonzero_sig.-xy2)];
Block_row.9 = [O, o, o, o, 0, B9e, R
O(:,nonzero-sig-x1l), O(:,nonzero_sig.yl), O(:,nonzero.sig.-xyl),
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O(:,nonzero-sig-xy2)];
Block.-row_10 = [O, o, 0, B104, o, o, .
O(:,nonzero-sig-xl), O(:,nonzero_sig.yl), O(:,nonzero.sig-xyl),
O(:,nonzero_sig.x2), O(:,nonzero_sig.y2), O(:,nonzero_sig._xy2)];
Block.row.11 = [O, o, o, O, B115, o, C.
O(:,nonzero_sig.-x1l), O(:,nonzero_sig.yl), O(:,nonzero_sig._xyl),
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O(:,nonzero_sig.-xy2)];
Block-row_-12 = [O, 0, Bl23, o, o, o, R
O(:,nonzero_sig.-x1), O(:,nonzero.sig.yl), O(:,nonzero_sig._xyl),
O(:,nonzero-sig-x2), O(:,nonzero_sig.y2), O(:,nonzero-sig-xy2)];
Block_row_zeros =[O, o, o, o, o, o, Ce
O(:,nonzero-sig-xl), O(:,nonzero_sig.yl), O(:,nonzero.-sig.-xyl),
O(:,nonzero_sig.x2), O(:,nonzero_sig.y2), O(:,nonzero_sig._xy2)];

Al = [Al, [O(:,nonzero_sig._x1l), O(:,nonzero_sig.yl),
O(:,nonzero_sig-xyl), O(:,nonzero.sig.-x2), O(:,nonzero.sig.y2),
O(:,nonzero-sig-xy2);

O(:,nonzero.sig.-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero_sig.y2), O(:,nonzero_sig_xy2);

O(:,nonzero-sig-xl), O(:,nonzero_sig.yl),
O(:,nonzero_sig.xyl), I(:,nonzero_sig_x2),
I(:,nonzero.sig.y2), I(:,nonzero_sig.-xy2);

O(:,nonzero-sig-x1l), O(:,nonzero_sig-yl),
O(:,nonzero_sig.-xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig.y2), O(:,nonzero_-sig-xy2);

O(:,nonzero_sig.-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero_sig.y2), O(:,nonzero_sig_xy2);

O(:,nonzero-sig-x1l), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_-sig-x2),
O(:,nonzero.sig.y2), O(:,nonzero_sig.-xy2)]1;

Al = [Al;
Block.row_zeros (nonzero_sig-x1l,:);
Block.row_zeros (nonzero_sig.yl,:);
Block.row_zeros (nonzero_sig-xyl, :);
Block_row_10 (nonzero_sig.x2, :);
Block_row_11 (nonzero_-sig.y2,:);
Block.-row-12 (nonzero-sig-xy2,:)];

A2 = [A2, [O(:,nonzero.sig-x1l), O(:,nonzero-sig.yl),
O(:,nonzero_sig.xyl), O(:,nonzero_sig_x2), O(:,nonzero_sig.y2),
O(:,nonzero-sig-xy2);

O(:,nonzero_sig.-x1l), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_.sig-x2),
O(:,nonzero-sig-y2), O(:,nonzero-sig-xy2);

O(:,nonzero.sig-x1), O(:,nonzero_sig.yl),
O(:,nonzero-sig-xyl), O(:,nonzero_sig-x2),
O(:,nonzero_sig.y2), O(:,nonzero_sig_xy2);

O(:,nonzero-sig-x1l), O(:,nonzero_sig.yl),
O(:,nonzero_sig.xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig.y2), O(:,nonzero_.sig-xy2);

O(:,nonzero-sig-x1l), O(:,nonzero_-sig.yl),
O(:,nonzero_sig.-xyl), O(:,nonzero_sig_x2),
O(:,nonzero-sig-y2), O(:,nonzero-sig-xy2);

34

309

311

319

325

350

A2

[A2;

I(:,nonzero-sig-x1),
I(:,nonzero_sig_xyl),
O(:,nonzero-sig.-y2),

Block_-row.7 (nonzero-sig-x1l, :);
Block._row_8 (nonzero_sig.yl, :);
Block_-row_.9 (nonzero_-sig-xyl, :);
Block.row_zeros (nonzero_sig._x2,:);
Block.row_zeros (nonzero_sig.-y2,:);
Block._row_zeros (nonzero_sig_xy2,:)1;

end
else
% Add PML 3D
I = speye(N);
A = [A, [O, o, o, o, B15, Bl6, I, O, O, O,
0, o, 0, B24, o, B26, O, I, O, O,
o, o, O, B34, B35, o, o0, O, 1, O,
O, B42, B43, o, o, o, 0, 0, 0, I,
B51, 0, B53, o, o, o, 0, 0, 0, O,
B61l, B62, o, o, o, o, o, 0, 0, O,
sigma_x = feval (pars.feval_sigma, X, 'x'");
sigma.y = feval (pars.feval_sigma, Y, 'v');
sigma_.z = feval (pars.feval_sigma, Z, 'z');
Sigma-x = spdiags(sigma-x(:), 0, N, N);
Sigma.y = spdiags(sigma.y(:), 0, N, N);
Sigma.z = spdiags(sigma-z(:), 0, N, N);
B71 = Sigma-x;
B82 = Sigma.y;
B93 = Sigma-z;
BEx = —Sigma.y*Sigma_z;
BEy = —Sigma-xxSigma-z;
BEz = —Sigma_x*Sigma.y;
sigma-x = feval (pars.feval_sigma, X+hx/2, 'x');
sigma.y = feval (pars.feval_sigma, Y+hy/2, 'y');
sigma.z = feval (pars.feval_sigma, Z+hz/2, 'z'")
Sigma_x = spdiags(sigma_x(:), 0, N, N);
Sigma.y = spdiags(sigma-y(:), 0, N, N);
Sigma.z = spdiags(sigma-z(:), 0, N, N);
B104 = Sigma-x;
B115 = Sigma.y;
B126 = Sigma-z;
BHx = —Sigma.-y*Sigma-z;
BHy = —Sigma_-xxSigma_z;
BHz = —Sigma-x*Sigma.y;
A = [A; [o] o] O B71 ¢} O000O0O0O0O0O0
O O) O B82 0O 0OO0OO0O0OO0O0O0
¢} 0 ¢) ¢} O B93 0O 0O0O0O0O0OO0OO
B104 O) O O 0O 0O0OO0OO0OO0O0O0
O B115 0 ¢} 0 0O 0O0O0O0O0O0O0
¢} O B1l26 ¢} 0 O000O0O0O0O0
BHx o] 0 o] 0 0O 0O0O0O0O0O0O0
O BHy @) 0 ¢} O00O0O0O0O0O0
O O BHz O O O 0OO0OO0O0OO0O0O0
o] o] O BEx 0 O000O0O0O0O0O0
O O) O BEy 0O 0O0OO0O0OO0O0O0
o o ¢) 0 O BEz O OO0 O0O0OO
end
function D_xyz = derivativelD(n_xyz_pl, h_xyz)

3
S

ee

D_xyz

o
S

OO O0OO0OO0OO0O0OO0OOO0OO0OOo

computes 1D differential operator of vector component

ones (n-xyz-pl,
spdiags([—ee, ee],

1) /h_xyz;
[0 17,

n_xyz_pl,

n_xyz.pl);

35

I(:,nonzero.sig.yl),
O(:,nonzero_sig_-x2),
O(:,nonzero-sig-xy2)1];

O;

0;

O;

0;

O;

I11;

0 0 0 0;

0 0 0 0;

0 0 0 0;

0 0 0 0O;

0 0 0 0;

0 0 0 0O;

0 0 0 O;

0 0 0 O;

0 0 0 0;

0 0 0 0;
00O0O0; ..
000O0] 1;

of E in any direction

376
377

function D

kron3 (A, B,

D=kron (A, kron(B, C));

C)

36

	Introduction
	Maxwell equations
	Solving the Maxwell equations
	Perfectly matched layer

	Spatial discretization
	Yee scheme
	Numerical test of the convergence order
	Definition of , and
	Numerical test for numerical reflections of PML

	Time integrators
	expokit package
	Krylov SAI
	Direct solver
	GMRES and BiCGSTAB iterative solvers

	ITR

	Preconditioning
	Alternating Direction Implicit splitting
	Field splitting

	Numerical tests
	Computation time
	Results with uniform epsilon
	Results with 3D epsilon (spheres)

	Fill-in factors
	Optimal value for

	Applications
	Line defect
	A closed line defect
	Around the corner

	Conclusion
	PML derivation
	Matlab Codes

