
University of Twente

Master Thesis

Privacy-Preserving Social
DNA-Based Recommender

Author:
Inés Carvajal Gallardo

Supervisor:
Dr. Andreas Peter

July 29, 2015

Abstract

Recommender systems are generally used to generate recommen-
dations for items based on user tastes. Recommender systems that
provide privacy of user ratings and recommendation requests are called
privacy-preserving. In this thesis, we research how to design and im-
plement a privacy-preserving recommender system that uses DNA-
similarity as a basis for the recommendation generation. The use of
DNA-similarities between users of a recommender system is an inter-
esting problem, because it has many relevant applications. An example
of this is online dating platforms that use DNA-matching algorithms
to determine compatibility between users. The DNA similarities are
computed in a privacy-preserving way between users of the system.
This similarity score is combined with familiarity links between a user
and his friends in a social network to recommend items based on the
friends’ preferences, thereby using a social filtering approach to recom-
mend items.

We first design our recommender system in the semi-honest user
model, in which users and a central server that assists in computations
are assumed to be semi-honest. Users may be offline during recom-
mendation generation, which means that these computations are done
on behalf of other users. We then research the malicious user model,
in which users are no longer assumed to be semi-honest. To enable our
recommender system in this security model, we employ a second server
and require that the two servers are semi-honest and non-colluding.

The encyption scheme that is used in the system is a somewhat ho-
momorphic encryption scheme, which enables homomorphic addition
and multiplication of ciphertexts up to a certain limit of allowed op-
erations. Proxy re-encryption and additive secret sharing are used to
split user data into secret shares, where one share of user data can be
re-encrypted to another party that performs computations on behalf
of the user.

We design and implement privacy-preserving protocols for com-
puting the similarity scores, the recommender protocol and a rating
update protocol with which users can update their ratings in a privacy-
preserving way. All protocols have a variant for both security models
(with exception of the rating update protocol). We determine two sim-
ilarity scores that fit the design of our recommender system, called the
edit distance and the Smith-Waterman score. Analysis of the perfor-
mance of both protocols shows that the edit distance protocol is much
more efficient and is the preferred choice for similarity computations.

A possible and important application of the developed recommender
system could be a social network of members in a self-help group who
can get drug recommendations, including non-prescribed drugs, based
on other members’ experiences, where the accuracy of the recommen-
dation depends on their genetic similarity.

1

Contents

1 Introduction 4

2 Related Work 8
2.1 Recommender Systems . 8

2.1.1 Private recommender systems 8
2.1.2 Similarity- and familiarity-based recommender systems 12

2.2 Somewhat homomorphic encryption versus additive homo-
morphic encryption . 13

2.3 Privacy-sensitive DNA matching 14
2.3.1 Edit distance and Smith-Waterman distance 14
2.3.2 Techniques for privacy-preserving DNA computation . 14

2.4 Drug selection based on DNA 17

3 Research Goals 19

4 Preliminaries 22
4.1 Proxy re-encryption . 22
4.2 Secret sharing . 23
4.3 Somewhat Homomorphic Encryption 23

4.3.1 Notation . 24
4.3.2 Parameter selection 24
4.3.3 The Encryption Scheme 25

4.4 DNA similarity measures . 26
4.4.1 Edit Distance . 26
4.4.2 Smith-Waterman similarity 26
4.4.3 Technique for privacy-preserving computation 27

4.5 Encrypted Division . 29

5 Design 30
5.1 System Components . 30
5.2 Recommendation Formula . 31
5.3 Security . 32

5.3.1 Security Model . 32
5.3.2 Privacy Requirements 32

5.4 Joining and Leaving the System 33
5.5 DNA data representation . 34
5.6 Summary of DNA notations 35

2

6 Construction 37
6.1 Transfer of Data through Proxy Re-Encryption 37
6.2 Protocols in the Semi-Honest Model 37

6.2.1 Similarity Protocols 37
6.2.2 Edit Distance Protocol 38
6.2.3 Substitution Cost Protocol 39
6.2.4 Minimum-Finding Protocol 41
6.2.5 Smith-Waterman Distance 44
6.2.6 Analysis and Complexity of the Similarity Protocols . 45
6.2.7 Offline Recommender Protocol 46
6.2.8 Analysis and Complexity of the Recommender Protocol 50

6.3 The Malicious User Model . 51
6.3.1 Additional Privacy Requirements 51
6.3.2 Data Storage . 52
6.3.3 Non-Collusion Assumption 53
6.3.4 Similarity Protocols in the Malicious User Model . . . 54
6.3.5 Edit Distance . 54
6.3.6 Substitution Cost . 55
6.3.7 Minimum Finding . 57
6.3.8 Smith-Waterman . 61
6.3.9 Analysis and Complexity of the Similarity Protocols . 62
6.3.10 Offline Recommender Protocol in the Malicious User

Model . 63
6.3.11 Analysis and Complexity of the Recommender Protocol 66
6.3.12 Role of the Proxy Server 66

6.4 Rating Updates . 67
6.5 Other Application Areas . 73
6.6 Limitations in the Malicious User Setting 73

7 Experimental Results 75
7.1 Random data for tests . 75
7.2 Libraries . 76
7.3 Choice of Parameters . 77
7.4 Timings of the Protocols . 79

7.4.1 Similarity Computations 79
7.4.2 Recommender Protocol 81
7.4.3 Rating Updates . 86

7.5 Example use case for Similarity Computations 88

8 Discussion and Conclusion 89

3

1 Introduction

Recommender systems are commonly used to gather recommendations for
books, movies or music for example. People use these systems to add ratings
for items and to get recommendations for items they might be interested
in. These recommendations are generated using the ratings supplied by
other users that have similar tastes (this is the case in a similarity-based
recommender system) or that are connected to the user through a social
network.

In a similarity-based recommender system, the recommendations are
made based on a similarity measure between users, most commonly sim-
ilar tastes. For example, in a book-related domain, ratings of other users
that have given similar ratings to books as the user who is asking for a
recommendation, will have a greater weight in the recommendation. This
approach often has the drawback of requiring a lot of input for each recom-
mendation, since all other users in the system are considered.

If the acquantainces that link users in a social network are used for
generating recommendations, then the recommender system is said to be
familiarity-based. In other words, a familiarity between two users exists if
they are acquaintances in a social network and these familiarities form the
basis for the recommendations in the recommender system. Users get recom-
mendations based on the ratings of people they know. The reasoning behind
this is that users will generally want to have recommendations based on their
friends’ ratings and this approach has shown to give results that are com-
parable in accuracy to the approach used in similarity-based recommender
systems [GE07, Ler07, SS01, GZC+09]. We will refer to a familiarity-based
recommender system as a social recommender system.

Many recommender systems have been proposed that preserve the users’
privacy. This is an important topic, because users might not want their
friends or complete strangers to know which ratings they gave to certain
items. If we think of a recommender system for drugs, users might not even
want anyone to know that they use a certain type of drug. Therefore com-
monly, the generated recommendations (based on possibly sensitive input
from other users) and the inquiry after certain recommendations are the
information that has to be kept private.

There are, however, application domains for recommender systems where
not only the content that is recommended, but also the similarity on which
recommendations are based needs to be protected. An example of such an
application is a recommender system where DNA similarity is taken as the
weight for recommendations. DNA profiles are stored more and more fre-

4

quently, by governments and private companies alike, but the high sensitivity
of this data calls for a way to compute DNA similarities in a privacy-sensitive
way. DNA data can contain markers for diseases for example [BKKT08], or
for drug allergies [ER04]. It can also be used to test for family relations.
It is therefore necessary to keep DNA data that is used in a recommender
system private, because it may contain information that individuals would
not want their government, health care insurance company or employer to
know.

This study focuses on the design of a recommender system that uses
DNA similarities between users as a weight for the recommendations, while
also using the familiarity links from social networks as a basis for recommen-
dations. By using the the familiarity between users from a social network
when generating recommendations, we hope to design an efficient recom-
mender system. Using DNA-similarity as a similarity measure on top of
this familiarity will offer new possibilities for the use of recommendations.
The familiarity and similarity between users will be combined by generat-
ing a recommendation over the friends of a user, while using their DNA-
similarities as weights for the relevance of each friend’s ratings.

The use of DNA-similarity between users in a recommender system of-
fers new possibilities for the use of the recommender system. A setting
in which this social DNA-based recommender system could be used can
for example be a social network of members of a self-help group, who give
and get drug treatment recommendations for a specific illness. Members
of self-help groups may already be giving drug recommendations, for non-
prescribed drugs especially. In a privacy-preserving recommender system,
the members of the self-help group will now be able to give and get ratings
for (non-prescribed) drugs that take genetic factors into account for the ex-
pected drug treatment outcome. The drug recommendations in settings like
this will be done based on a DNA similarity between users of the system,
where the motivation for taking DNA similarity as a weight comes from the
fact that similarities in DNA can predict similar responses to drugs. The
familiarity between users of the system in this example lies in their visiting
the same self-help group. This setting brings us to the following general
problem statement.

Can a privacy-preserving and efficient social DNA-based recom-
mender system be designed for a (medical) setting, where users
can privately share drug treatment experiences and get private
recommendations based on DNA-similarity to other users in their
social network?

5

The recommender system which we will design in this study will be
an extension to a previous recommender system designed by Jeckmans et
al. [JPH13], which introduced the use of somewhat homomorphic encryp-
tion to build an efficient privacy-preserving recomender system. We will
use a somewhat homomorphic encryption scheme (namely that of [BV11])
to get an efficient homomorphic encryption in which a limited number of
additions and multiplications is allowed. We will follow the same basic ar-
chitecture for the recommender system, where a central server does most of
the computational work on behalf of the users.

For the security model of the recommender system, we first consider
semi-honest users and a semi-honest server. We then extend the design of the
system to the malicious user model, where users are allowed to deviate from
protocols and collude with other users. A second server will be introduced
under an assumption of non-collusion between the two servers, who are both
still semi-honest.

All protocols for the recommender system and the privacy-preserving
DNA-matching will be implemented and analyzed for efficiency in both the
semi-honest security model and the malicious user security model.

Contribution

This research contributes to the field of private recommender systems a
new type of recommender system that is DNA-based, which means that the
basis for recommendations lies in DNA-similarity of the users. We design
privacy-preserving protocols using somewhat homomorphic encryption for
the computation of DNA-similarities and for an offline recommender, both
in a semi-honest user model as well as in a malicious user model. We de-
sign a privacy-preserving protocol for rating updates in the malicious user
model. Though most of the protocols are based on existing protocols, they
are altered to fit the requirements of our recommender system and the use
of somewhat homomorphic encryption in the context of privacy-preserving
DNA-matching is new. The results of this research are of importance to
real life applications where DNA-matching is used in privacy-sensitive en-
vironments. We provide an informal security proof for the rating updates
protocol, which is not based on any existing protocols. For the other proto-
cols, security is deduced from the security of the underlying protocols.

The experimental results of the performance of our recommender system
are overall very promising.

The similarity computations can be performed in a precomputation phase
during system set-up, but at this point will be inefficient for real-time use.

6

This is not a huge drawback, since the recommender system is designed in
such a way that all of these similarity computations can be done during
the set-up phase of the system. For the similarity computations, the semi-
honest versions of the protocols perform better than the malicious versions.
Another contribution is that by using somewhat homomorphic encryption in
privacy-preserving DNA-matching protocols and analyzing the performance
of the resulting protocols, we determined the applicability and performance
of using somewhat homomorphic encryption in this context, which has not
been done before.

For the recommender protocol, the malicious version performs notably
better than the semi-honest version of the protocol, which makes it the better
choice. This has some important advantages; the malicious user model is
stronger in security than the semi-honest user model and the protocol in the
malicious user model removes a lot of computational load from the users of
the system.

In this research, we succeeded in extending the work by Jeckman’s et.
al [JPH13] to the malicious user model. The design of the recommender
protocol in the malicious user model can be viewed independently from the
DNA-matching as a contribution as well.

The performance of the rating updates protocol, which was designed in
the malicious user model, is very efficient and can be run during real-time
use of the system.

7

2 Related Work

In this section, we will present the current research on recommender systems
and privacy-preserving computations on DNA.

We consider the current research on privacy-preserving recommender
systems that are either similarity or familiarity-based, since we intend to
combine these techniques in the design of a recommender system. A recent
study by Jeckmans et al. [JPH13] used a specific type of homomorphic en-
cryption in their recommender system, which we plan to use in our system as
well. Therefore, we also discuss the different cryptographic techniques that
can be used for preserving privacy in a recommender system, focusing on
the technique used by Jeckmans et al. Related work on privacy-preserving
recommender systems is presented in section 2.1.

Since we plan to use DNA-similarities in the computation of recommen-
dations, we look into privacy-preserving techniques for DNA-matching and
present an overview of relevant research carried out in this field, which can
be found in section 2.3.

Then, section 2.4 reviews the current research in the field of pharmaco-
genmics, which motivates the study of a DNA-based recommender system.

2.1 Recommender Systems

Recommender systems are systems that recommend content to users which
they might be interested in. In this section, we consider collaborative filter-
ing recommender systems, which are the recommender systems that generate
recommendations based on ratings by other users that have similar tastes
as the user requesting the recommendation. Specifically, we only consider
recommender systems that are privacy-preserving, which means that the
ratings of users are kept private and that the request for a recommenda-
tion remains private. For an overview of types of recommender systems,
refer to Figure 1. (Note that this is not an exhaustive classification of types
of recommender systems, but rather one that is used in this thesis.) The
privacy-preserving social DNA-based recommender system that we intend
to design falls in both the similarity-based and familiarity-based categories
and will therefore combine both types of recommender systems.

2.1.1 Private recommender systems

Private recommender systems have been researched and implemented in a
number of ways. Almost all of the private recommender systems that ex-
ist use additive public-key homomorphic encryption to enable computation

8

Figure 1: Recommender Systems

of recommendations in a private manner. Additive (public-key) homomor-
phic encryption has the following useful property: if two ciphertexts are
encrypted under the same public key, then addition of the ciphertexts re-
sults in a ciphertext which is the encryption of the two added plaintexts.
This can be expressed as: E(x)pk + E(y)pk = E(x + y)pk, where x, y are
plaintexts and pk is the public key.

A study by Canny et al. [Can02] shows an algorithm by which users
can aggregate their data without exposing their inputs. Their scheme is
a practical implementation of multi-party computation, users compute an
aggregate that is publicly available and is composed of all users’ data, which
allows them to compute personal recommendations locally in a private way.
Additive homomorphic encryption is used to apply collaborative filtering,
the aggregate is calculated through iterations in which user data has to be
added.

Erkin et al. [EVTL12] also used additive homomorphic encryption (using
Paillier’s scheme [Pai99]) to generate recommendations and introduced a
trusted third party and data packing. The trusted third party, the privacy
service provider (PSP), performs computations but is not allowed to obtain
private data. In Erkin et al.’s approach, a minimum of user interaction is
preferred. Their protocol is faster than the protocol proposed by Canny et
al., but is still not very efficient. The protocol is also not dynamic (updating

9

ratings will cause the trusted third party and a service provider to start the
whole protocol anew, causing lots of computations to be done again) and
the use of a trusted third party would not be preferable if it can be avoided.

Hoens et al. [HBSC13] developed a recommender system in which pa-
tients can inquire after or give doctor recommendations, while keeping the
recommendations private. This recommender system offers two different
ways to keep information private. One of these ways is by data perturba-
tion, the other is by using homomorphic encryption (again, Paillier’s scheme
is used). The Secure Processing Architecture is proposed by Hoens et al. in
which additive homomorphic encryption is used in combination with secure
multi-party computation with a certain threshold. The paper also proposes
the use of Zero Knowledge Proofs to prove the validity of inputs. The practi-
cal implementation of this architecture, however, is too slow to use without a
lot of pre-computation, because the time it takes to make recommendations
is in the order of hours.

The study by Jeckmans et al. [JPH13] designed two protocols for a
privacy-enhanced familiarity-based recommender system that used a differ-
ent manner of encryption compared to what was used in most of the existing
privacy-preserving recommender systems. Their protocols are more efficient
than existing protocols such as the one proposed by Canny et al. or Erkin
et al., because firstly, it is a familiarity-based recommender system. This
means that the costly computations that are needed to determine similar-
ity between users can be left out. Instead, social connections are used to
determine which users are considered for the recommendation computation.
Secondly, the scheme does not use additive homomorphic encryption, but
rather somewhat homomorphic encryption. A strong point of the system
they propose is that users can supply the weights that are taken into ac-
count for the recommendations. Jeckmans et al. designed two protocols,
one in which users need to be online to perform the computations and one
in which users may also be offline. This last protocol is the most practical
protocol, because it would be unrealistic to expect users of a recommender
system to be on-line all the time. The protocols are proven to be secure
in the semi-honest attacker model. Since the research done by Jeckmans et
al. comes close to what is needed for the proposed social DNA-based rec-
ommender system, it will be discussed in more detail here. In section 2.1.2,
more will be said on the concept of familiarity-based recommender systems.
Section 2.2 will go into more detail on the somewhat homomorphic encryp-
tion scheme used in their protocol. Below, the protocol for offline friends
will be discussed.

10

The recommendation formula that Jeckmans et al. designed for their
recommender system is the following:

pu,b =

∑Fu
f=1 qf,b ∗ rf,b ∗

wu,f+wf,u

2∑Fu
f=1 qf,b ∗

wu,f+wf,u

2

(1)

Here, pu,b is the recommendation for user u for book b. The summation
is taken over all of user u’s friends, which are indicated with the symbol f .
qf,b indicates whether friend f rated book b. If he did, the value is equal
to 1, otherwise it is equal to 0. rf,b is the rating for book b by friend f .
The values wu,f and wf,u are the weights that user u gives to friend f and
reversed, they define the importance of the friend’s input for the user and
the importance of the user’s input to the friend.

A formula similar to equation 6 could be used in the proposed setting
of a medical recommender system that recommends drugs, where not the
value of a friend’s opinion is used as a weight, but where DNA-similarity is
taken into account. This DNA-similarity would then be used instead of the
sum wu,f +wf,u. The user will then also not have to provide these weights.

The two protocols that are presented, one for on-line friends and one for
offline friends, are very similar. The protocol for offline users is an extension
of the protocol for on-line users. It has been proven to be secure and is
the one of the most efficient privacy-preserving recommender protocols that
exist up till now.

A server is used on which encrypted information of users is stored. This
encrypted information can be used for the recommendation computations.
Proxy re-encryption is applied to re-encrypt information that a user stored
for one of his friends, who does not need knowledge of the secret key of the
user in order to decrypt the information.

The protocol for offline friends splits the rating vector value Rf (com-
posed of the values rf,b for all books) into two secret shares Sf and Tf with
an additive secret sharing scheme. The weight wf,u is also split into two se-
cret shares xf,u and yf,u. At the server, one of the rating shares and one of
the weight shares are stored. The other shares are stored under encryption
at the server, so that the server will not be able to reconstruct the rating
vector or the weight value.

In order to compute the rating value in equation 6, both the server and
the user compute the sum of the weights, by adding the user’s weight value
wu,f and the two shares of the friend’s weight value wf,u under somewhat
homomorphic encryption. To do so, the user sends [wu,f + yf,u]u to the

11

server, encrypted under his own key and the server sends [xf,u]s to the user,
encrypted under the server’s key. When all values are added, the sum of
the weights has been computed. Addition can be done under encryption at
both the user and the server.

Then, for each book, the corresponding rating value from the friend’s
rating vector is taken. The user has a share through proxy re-encryption
and the server also has a share of this rating value. They multiply these
shares with the combined weight that was previously computed and sum
the resulting value for all books, resulting in the values [zb]s =

∑Fu
f=1[wu,f +

wf,u]s ∗ tf,b and [ab]u =
∑Fu

f=1[wu,f + wf,u]u ∗ sf,b. The user sends his sum
[zb]s (that is blinded additively) to the server, along with an unblinding
value that is encrypted under the user’s key (this has the consequence that
the value zb can only be unblinded under encryption with the user’s key).

The user then computes and sends a normalization weight per book:
[db]s =

∑Fu
f=1[wu,f +wf,u]s ∗qf,b. These values are blinded by multiplication.

An encryption for removing the blinding as well as the blinded normalization
values are sent to the server.

The server removes the blinding from the value zb that was encrypted un-
der the server’s key to get [zb]u. He adds this to his own summed value to get
[nb]u. For the normalization weights that were sent after being multiplica-
tively blinded, the server decrypts the encryptions and inverts the blinded
normalization weights. Then the blinding is removed under the user’s key,
so that the inverted normalization weights are computed. The value [nb]u
is then multiplied with the inverted normalization weight for the book b to
get the recommendation value [pu,b]u and this value is sent to the user, who
can decrypt it.

2.1.2 Similarity- and familiarity-based recommender systems

Many recommender systems are similarity-based. They use collaborative
filtering and perform expensive computations to compute which users are
similar to each other. Jeckmans et al. [JPH13] used familiarity instead
of similarity as a weight for generating recommendations in their proto-
col. They point out that previous studies [GE07,Ler07,SS01,GZC+09] have
shown that using familiarity between users in a social network instead of
similarity gives comparable results if the recommender system is used in a
taste-related domain. The benefit of using familiarity instead of similarity,
is that is computationally less expensive. Jeckmans et al. implement an
efficient protocol for generating recommendations with this approach.

When considering using DNA similarity as a weight for recommenda-

12

tions, it is not at first obvious that familiarity should also play a role in the
recommender system. However, in certain settings this could be useful and
improve the efficiency of the recommender system. For example, if the rec-
ommender system is used by self-help groups or by patients in a hospital then
patients who visit the same doctor or members of the same self-help group
form social networks. Users of the recommender system that are linked by
familiarity can then be compared to each other using the DNA similarity to
determine what treatment or what drug might be recommended for them.
This may greatly reduce the overall computational power that is needed.

2.2 Somewhat homomorphic encryption versus additive ho-
momorphic encryption

Several schemes for somewhat homomorphic encryption have been proposed
in the past. Van Dijk et al. [vDGHV10] described a SWHE scheme that
works over the integers, of which the security is reduced to the security
of the hardness of the approximate integer greatest common divisors prob-
lem. However, their scheme is very noisy and inefficient for use in practical
situations.

Brakerski and Vaikuntanathan described another SWHE scheme [BV11],
that was proven to be semantically secure under the assumption of polyno-
mial learning with errors. The scheme uses the ring Zq[x]/〈f(x)〉 to represent
encrypted messages. Outputting ciphertexts is done by multiplying the key
with a random parameter and some noise and by adding the resulting value
to the message. Decryption is done by performing a modulo operation.
Keys can be generated by every party by first choosing a secret key and
then adding some randomness to create the public key.

Jeckmans et al. [JPH13] used this SWHE scheme by Brakerski and
Vaikuntanathan in their recommender system as opposed to additive ho-
momorphic encryption which is used in most recommender systems (using
a scheme such as Paillier’s). Their implementation is much more efficient
than the recommender systems that make use of additive homomorphic en-
cryption, it runs in the order of minutes instead of hours. The resulting
recommender system is secure in the semi-honest attacker model.

The advantage of using somewhat homomorphic encryption over addi-
tive homomorphic encryption schemes in a recommender system lies in the
fact that it makes the recommender system more efficient. Most public-key
additive homomorphic encryption schemes use exponentiations, which are
costly computations.

One example of an implementation of a SWHE scheme exists in the HElib

13

library, which is an open-source C++ library and implements the BGV
scheme by Brakerski et al. [BGV11]. Halevi and Shoup [HS14] described
some of the algorithms and optimization techniques that are used in this
library in their report on HElib.

The BGV scheme is a SWHE scheme based on the scheme by Brakerski
and Vaikuntanathan, that implements some changes that increase perfor-
mance and security. One of the main improvements is the use of modulus
switching, a technique where noise in the ciphertext is reduced by transform-
ing a ciphertext into another ciphertext under a different, smaller modulus,
without losing any of the information contained in the ciphertext.

2.3 Privacy-sensitive DNA matching

2.3.1 Edit distance and Smith-Waterman distance

The edit distance and Smith-Waterman distance are two DNA-similarity
measures that are commonly used to compute the similarity between two
strings, that can be arbitrary strings or DNA sequences. The edit distance is
defined as the minimum cost of transforming a string x into a string y with
the operations deletion, insertion and subtitution. The Smith-Waterman
distance is a more fine-grained similarity score. Gaps are used when comput-
ing this distance that represent empty spaces within strings, where deletions
or insertions have taken place. By comparing segments of various lengths,
the Smith-Waterman algorithm outputs a similarity score that takes into
account similar regions in two sequences. Both the edit distance and the
Smith-Waterman distance have been used in the past as similarity measures
in privacy-sensitive DNA matching.

2.3.2 Techniques for privacy-preserving DNA computation

Privacy-preserving matching of DNA material is a topic that is becoming
more interesting while new applications using DNA sequences are on the
rise. Bruekers et al. [BKKT08] did a study on ways in which to use cryptog-
raphy in order to design protocols for matching DNA that would preserve
DNA privacy. Their study focused on the most common DNA tests, such
as identity, paternity and ancestry tests. The paper deals with the pro-
tection of STR (Short Tandem Repeat) profiles that are used for identity
tests, which are used commonly by the police for example. The need for
privacy enhancing protocols to do identity tests or related tests lies in the
fact that these STR profiles do not only hold information about a person’s
identity, but can also contain information about a pre-disposition to develop

14

a specific disease, or contain markers for likely drug allergies. Secure multi-
party computation is used together with homomorphic encryption (Paillier’s
scheme for example) to solve this problem and the scheme is proven to be
secure in a semi-honest attacker model.

Atallah et al. [AKD03] proposed a protocol for securely computing the
edit distance between two sequences. This distance can be used on genome
sequences in order to compute similarity and can be computed using dy-
namic programming.

Jha et al. [JKS08] also did a study on ways to compare strings, partic-
ularly DNA sequences, in a privacy-sensitive manner. Their approach, just
like Atallah et al.’s, is more general than the protocols developed by Bruek-
ers et al., since they can be used for any piece of genomic data to compute
a similarity score, while the protocols that are proposed by Bruekers et al.
are focused on paternity testing, ancestry testing or identity testing. Their
study presents two distances that can be used to calculate the similarity
between two sequences, namely the edit distance which was also studied by
Atallah et al. [AKD03] and the Smith-Waterman similarity score, which can
also be formulated with a recurrence relation

The cryptographic techniques that are used for these protocols are secure
function evaluation, in which two parties can jointly compute a function
while they preserve the privacy of their respective inputs, oblivious transfer,
oblivious circuit evaluation and secure computation with shares. In oblivious
transfer, one out of several inputs is sent to a receiver, without the receiver
knowing which of the inputs was received and without the sender knowing
which input was received by the receiver. An oblivious transfer of 1-out-
of-n values is denoted by OTn1 . The protocol uses the implementation by
Naor-Pinkas [NP01] for this.

Oblivious circuit evaluation is based on Yao’s garbled circuits [Yao86,
LP09] and secure computation with shares. Inputs of two parties are eval-
uated on circuits that can be arithmetic or boolean, where inputs of both
parties and internal circuit wire values remain secret to the other party.
If Alice and Bob use oblivious circuit evaluation, then Alice generates two
random keys for every circuit wire, where one key represents a 0 and the
other represents a 1. The keys that represents Alice’s input for each wire
are transferred to Bob, who does not know what values the keys represent.
For his own input on each wire, the oblivious transfer protocol OT 2

1 is used
n times, if his input consists of n values. For each circuit gate, Alice will
produce a garbled truth table: she encrypts the two output wire keys under
the encryptions of the input keys for all possible inputs and outputs. These
encryptions are randomly permuted. Bob can then decrypt only one output

15

wire key, since for each input wire he has one input key (Alice’s or Bob’s
input keys). He then learns the mapping of the output wire keys, so that
he knows what the output bit on that wire was (which was represented by
the key). He learns nothing of the inputs. If a complex circuit is used, only
the mapping of keys to values for the wires that represent the output of the
entire circuit are revealed.

All of these techniques are used for the protocols for computing both the
edit distance and the Smith-Waterman distance. There are several different
implementations for evaluating both distance measures that were tested us-
ing random strings and real protein sequences, which perform better or worse
in certain circumstances. The study shows that scores can be computed in
the order of seconds and could therefore be applied in practical situations.
For the computations for the edit distance or Smith-Waterman distance, an
equality circuit is used (which compares two values to test for equality) and
a minimum-of-three circuit is used (which computes the minimum of three
values that are shared randomly between two participants).

Jha et al. also showed that the protocol for securely computing the edit
distance that was proposed by Atallah et al. [AKD03] was not efficient at
all, as it took minutes to solve a problem where the implementation by Jha
et al. took only seconds.

Their study clearly does not use homomorphic public-key cryptography,
but makes use of garbled circuits in order to keep inputs secret. This is one
of the main reasons that the protocol is so efficient.

Another protocol for securely computing a special case of the edit-distance
was proposed by Rane and Sun [RS10]. Theirs is an asymmetric protocol
for calculating the edit distance in which a lightweight server and a powerful
server jointly compute the similarity score. This asymmetric protocol may
be a better fitting solution for recommender systems than the protocols pro-
posed by Jha et al, because in the setting of recommender systems it would
be preferred to have the server do part of the computations when other users
are offline.

The main cryptographic primitives used in their implementation are ad-
ditive secret sharing and semantically secure additive homomorphic encryp-
tion. The cryptographic building blocks that are used in the protocol are a
private substitution cost protocol and a privacy-preserving minimum find-
ing protocol for two parties. The private substitution cost protocol is used
to compute the substitution costs for substituting one character by another
in a privacy-preserving manner. Three different common substitution cost
protocols are given by the authors, suchs as a protocol for absolute distance,
for polynomial cost and for an indicator function cost. The client in this

16

protocol computes an encrypted matrix with intermediate edit-distance val-
ues, for subsequences of the strings that are compared. The matrix L is
used, where L(i, j) is the edit distance between substrings of lengths i and
j. The server only learns the total edit distance that is computed through
these subproblems of the edit-distance problem. The client keeps a table of
insertion costs I and the server keeps a table of deletion costs D, which are
both needed for computing the intermediate values in the encrypted matrix.
It is possible to use parallelization on multiple servers in a secure manner.

Blanton et al. [BAFM12] did a study on secure and efficient outsourcing
of sequence comparisons, which also uses Yao’s garbled circuits as the main
technique for speeding up computations. They presented a framework in
which a client can send two strings to two remote servers who compute the
edit distance between these strings, without revealing any information to
the servers about the input strings or the outcome of the protocol. They
assume that the servers are non-colluding. Their protocol is mostly focused
on computing the edit script, which contains information on the operations
performed for the optimal edit distance. The protocol is therefore less suited
for the medical recommender system that is considered in this literature
study.

In a study by Ayday et al. [ARHR13], a new architecture for genetic
disease susceptibility tests was proposed based on patient’s genomic data
for ’privacy-preserving disease susceptibility test’ (PDS), in which homo-
morphic encryption and proxy re-encryption are applied. A storage and
processing unit (SPU) stores the genomic data of patients while preserving
the genomic privacy and can perform tests on parts of the DNA-data to con-
duct genetic tests. They use rather specific operations for computing the
likelihood of a patient developing a certain disease, tailored to their system
architecture, while in our system we aim to keep the DNA-matching very
general by computing similarities between patients, but not focusing on dis-
ease susceptibility in particular. However, their system is still very similar
to our envisioned recommender system regarding the setting and architec-
ture. The security of the patients’ genomic data is also somewhat different
from the security that we aim to achieve in this research, since the results
of the disease susceptibility tests are known to a medical unit who requests
the tests and can therefore give information about the patient’s genome.

2.4 Drug selection based on DNA

DNA sequences can be used to predict a person’s reaction to treatment with
a specific drug. The concept of personalized medicine, choosing a certain

17

drug that will result in the most effective treatment, is very important in the
scenario of a medical recommender system where medication can be recom-
mended based on DNA-similarity. This section gives an overview of studies
that focus on personalized medicine to get a better understanding of how
personalized medicine works and what should be taken into consideration
for a social DNA-based recommender system.

Evans and McLoad [EM03] wrote a review article on pharmacogenomics,
an area of study that researches differences in responses to drugs between
individuals in a population, based on their DNA. The review treats several
examples that show how pharmacogenomics can be used to improve drug
therapy through molecular diagnostics. The examples show that different
reactions to drugs are the result of differences in variations of the genes
that encode drug-metabolizing enzymes, drug targets and drug transporters.
Single-nucleotide polymorphims (SNPs) are associated with different effects
of medication on different individuals and can be used to predict clinical
responses. SNPs are DNA sequence variations that occur commonly in a
population. They are variations (polymorphisms) of the DNA where only
one nucleotide in a sequence of nucleotides differs. Apart from being used for
determining the effects of medication, SNPs are also used for other purposes,
such as determining kinship.

A more recent review article on the current state of pharmacogenomics
was published by Evans and Relling [ER04]. They described an example
regarding one of the most common single-gene traits: thiopurine S-methyl-
transferase, referred to as TPMT. Patients who have non-functional TPMT
alleles (they have inherited a certain TPMT polymorphism that does not
work as it does for persons with the standard TPMT allele) who are treated
with drugs for neoplasias, for example, can develop haematopoietic toxicity,
which can be a life-threatening condition. If it is found out that patients
have this TPMT deficiency by inspecting their genomic data, they can be
treated with lower doses of the drug which will prevent any harmful side-
effects. There are known ’candidate genes’ that can be used to predict
a treatment outcome for a specific drug, these genes have polymorphisms
that have been known to affect the drug disposition. The paper gives an
overview of some of these genes and states that in some cases drug effects
are inherited. At the time that the study was published, pharmacogenomics
were not commonly used to individualize patient treatment, partly because
drug effects do not only depend on genetic traits but also on drug interaction
for example, which is why there had not been many experiments to prove
that individualization of medication would improve treatment yet.

18

3 Research Goals

The goal of this research is to find a solution to the following general problem
(which was also stated shortly in section 1):

Can a private and efficient social DNA-based recommender sys-
tem be designed for a (medical) setting, in which users of the sys-
tem can privately share treatment experiences for drugs, where
similarity between users’ DNA is used to generate recommenda-
tions in combination with familiarity links between them. Pri-
vacy of treatments and drug ratings and of DNA data needs to
be preserved in this recommender system.

The following concrete research questions will be answered in this thesis:

• How can familiarity and similarity be combined in a recommendation
protocol?
An equation will be formulated for the recommendation that incor-
porates both familiarity and similarity. The formula by Jeckmans et
al. [JPH13] will be taken as a basis for this formula.

• How can privacy of patients’ DNA material be guaranteed and which
method is best for computing DNA similarity?
There are several ways to preserve the privacy of DNA material while
still being able to compute similarity measures. Ways to compute DNA
similarity are for example the edit distance and the Smith-Waterman
score. We use both of these measures as similarity scores and compare
the efficiency of our implementations of these similarity scores to se-
lect the most suitable approach for privacy-preserving computation of
DNA-similarity.

• Can a protocol for offline users be devised, based on the protocol by
Jeckmans et al. [JPH13] and what consequences will a protocol with
offline users have for privacy requirements when user data has to be
stored at a server?
As has been stated before, it would be practical to have a protocol
for a social DNA-based recommender system for offline users. This
means that users have to store (part of) their data at a server under
encryption. This has consequences for the DNA-similarity computa-
tions and the privacy of these computations. Protocols such as the
one by Jha et al. use garbled circuits and have been designed for two

19

individual parties that keep their own private data, and are therefore
less suited to the context of our recommender system. The protocol
by Jeckmans et al. will be extended to incorporate the computation
of DNA-similarities and this new protocol will be proven to be secure.

• Can an efficient implementation of a social DNA-based recommender
be implemented and which library will be most suitable for this imple-
mentation?
One goal of this research is to implement the proposed social DNA-
based recommender system. We consider a range of libraries that im-
plement somewhat homomorphic encryption, such as the HElib [HS14]
library, the jLBC library 1 and the implementation developed by Ar-
jan Jeckmans2, and compare them to find the one most suitable to
our purposes. The implementation of the recommender system will be
tested on random DNA-sequences and on randomly generated rating
data to measure its performance and the system’s performance will
be compared to that of other private recommender systems, in partic-
ular the previous implementation by Jeckman’s et al. [JPH13]. The
performance results of the privacy-preserving DNA-matching will be
analyzed to check the applicability and performance of using somewhat
homomorphic encryption in this context.

• What security requirements can we set for the recommender system
and for the similarity computations? Is it possible to allow for the
existence of malicious users?
As stated, we will extend the existing protocol by Jeckmans et al.
[JPH13] to the setting of this research. This protocol was proven to
be secure in the semi-honest attacker model. We will take this security
model as a starting point for our system and then try to find a way to
extend the system in such a way that malicious users can exist without
introducing any risks to privacy or correctness of the results. In our
design section, we will formulate the security requirements that the
system must fulfill for both security models.

• Can we develop a protocol for updating ratings in a privacy-preserving
way?
A privacy-preserving protocol for rating updates would be necessary
in any privacy-preserving recommender system, since users may want

1http://gas.dia.unisa.it/projects/jlbc/
2http://scs.ewi.utwente.nl/other/jeckmanscode/

20

http://gas.dia.unisa.it/projects/jlbc/
http://scs.ewi.utwente.nl/other/jeckmanscode/

to change ratings they entered into the system. We will therefore try
to devise a protocol for this in such a way that a user’s new rating
remains private.

21

4 Preliminaries

Before going into detail on the design of our recommender system, we
present the following (cryptographic) preliminaries that are necessary build-
ing blocks to our system.

4.1 Proxy re-encryption

Proxy re-encryption is a technique that can be used to allow a receiver to
decrypt on behalf of a sender, without the receiver getting knowledge of
the sender’s secret key. Blaze et al. [BBS98] describe the concept of atomic
proxy cryptography, where through an atomic proxy function a ciphertext
under one key is translated to a ciphertext under another key, without the
plaintext being exposed at any time during the operation. This is done
using a proxy key, with which a message encrypted under one key can be
re-encrypted to another key. Proxy re-encryption will be needed to share
DNA material and drug ratings privately between users of the recommender
system if we want to enable other users to be offline during the computation
of recommendations. Data may then be stored at a central server that
carries out protocols on behalf of a user’s friends.

There are a few requirements to the proxy re-encryption scheme used.
The scheme needs to be unidirectional and it needs to be one-hop, meaning
that a proxy key from sender to receiver can be constructed from the sender’s
private key and the receiver’s public key (thus not needing interaction with
the receiver) and that the proxy re-encryption only works one time from the
sender to the receiver. The receiver cannot re-encrypt the message again for
a second receiver. This way, when a user gets data from his friends which
is proxy re-encrypted, he cannot send it on to yet another friend if the two
friends are not connected.

There are several schemes [AFGH06,LV11,CWYD10] that satisfy these
requirements and which can be used with the recommender protocol outlined
in the rest of this paper. For our recommender system, we will use the second
scheme of Ateniese et al. [AFGH06], of which we now present a schematic
overview.

The scheme

The scheme that was designed by Ateniese et al. [AFGH06], uses two groups
G1 and G2 of prime order q and a bilinear map e : G1 · G1 → G2. Here,
element G generates G1 and e(G,G) = Z.

22

The key-parameters for a user A are: skA = a, pkA = ga. A re-encryption
key from A to B is computed as: rkAB = gb/a

A first-level encryption (which cannot be re-encrypted to another user) is
described as follows:

cA = (Zak,m · Zk), where m is the message and k is randomly picked.
A second-level encryption (which can be re-encrypted to another user) is
described as:

cA = (Gak,m · Zk)
To re-encrypt a second-level encryption cA = (Gak,m · Zk) to a ciphertext
cB, the scheme uses the following computation:

cB = (Zbk,m · Zk), where Zbk is computed as: e(Gak, Gb/a) = Zbk

To decrypt a first-level encryption cA = (u, v) with secret key skA, compute:
m = v/(u1/a)

To decrypt a second-level encryption cA = (u, v) with secret key skA, com-
pute:

m = v/(e(u,G)1/a)
This scheme was proven to be secure under the assumption that in

(G1, G2), the problem of deciding whether Q = e(g, g)a/b is hard, when
given (g, ga, gb, Q) for g ← G1, a, b,← Zq and Q ∈ G2.

Notation

The notation [[x]]y will be used throughout this paper to denote a encryption
of x with the proxy re-encryption scheme with key y, which may belong to
a user of the system or which may be a re-encryption key.

4.2 Secret sharing

A secret sharing scheme will be used in the recommender system to split data
into two secret shares. Following the research by Jeckmans et al. [JPH13],
we use an additive secret sharing [Gol05] scheme to secret share vectors of
values. If v = (v0, . . . , vn) is a vector that needs to be secret shared, we
choose a vector s ∈ Rk randomly and compute r = v − s. Then, for all
0 ≤ i ≤ n we have ri + si = vi. The vectors r and s are the secret shares to
v.

4.3 Somewhat Homomorphic Encryption

Somewhat homomorphic encryption (SWHE) schemes are public-key en-
cryption schemes that allow for a limited number of operations of addition

23

and multiplication over bits that are encrypted. In these schemes there is
a fixed degree of homomorphism. Each ciphertext contains some noise. As
long as the noise is small enough, homomorphic operations can be applied
to the ciphertext: E(x) ·E(y) = E(x ·y) and E(x)+E(y) = E(x+y). Noise
grows faster with multiplication than with addition. At a certain point, the
noise becomes too large and the permitted degree of homomorphism will be
reached.

In our recommender system, the somewhat homomorphic encryption
scheme by Brakerski and Vaikuntanathan [BV11] is used. The security
of this encryption scheme is based on the polynomial learning with errors
assumption (PWLE), which is a variant of the ring learning with errors as-
sumption (RWLE) by Lyubashevsky et al. [LPR13]. The RLWE assumption
states that if s ∈r Rq := Rq/R (where R is the ring Z[x]/〈f(x)〉, f(x) is a
fixed n-degree cyclotomic integer polynomial in Z[x] and q ∈ Z a prime such
that q ≡ 1 mod 2n then given any number of samples (ai, bi = ai · s+ ei) ∈
(Rq)

2 that are polynomial in the security parameter κ, where ai are uni-
formly random in Rq and ei are drawn from the error distribution χ, the bi
are computationally indistinguishable from uniform in Rq.

4.3.1 Notation

The notation [x]y is used throughout the paper to indicate somewhat ho-
momorphic encryption of x under the public key belonging to y. For homo-
morphic addition of two messages m1 and m2, the notation [m1]y + [m2]y =
[m1 + m2]y is used. For homomorphic multiplication of two messages, the
notation [m1]y · [m2]y = [m1 ·m2]y is used. Also, [m1]y +m2 = [m1 +m2]y
and [m1]y ·m2 = [m1 ·m2]y.

4.3.2 Parameter selection

In order to use the BV scheme, some public parameters must be specified.
The message space of the scheme is Zt[x]/〈f(x)〉. Here, t ∈ Z∗q is a prime,
f(x) is an n-degree cyclotomic integer polynomial in Z[x] and q ∈ Z a prime
such that q ≡ 1(mod 2n). The encrypted messages are in the ciphertext
space Z[x]/〈f(x)〉.

M is an upper bound on the allowed number of homomorphic multipli-
cations. An error distribution χ is taken over the ring Rq and is sampled
from during key generation and encryption. In order to select a secure pa-
rameter set, so that the scheme is correct and secure against attacks, we will
follow the approach by Naehrig et al. [NLV11]. They take χ as the discrete

24

Gaussian DZn,σ, where σ is the standard deviation of the error distribution
and they choose n to be a power of 2.

Naehrig et al. [NLV11] formulate a correctness condition, which for fixed
parameters t, σ, n,M and A gives a lower bound on the prime q in order
to have a correct encryption scheme. Here, M is the allowed number of
multiplications and A is the allowed number of additions. The bound is

expressed as: q ≥ 4 · (2tσ2
√

(n))M+1 · (2n)
M
2 sqrt(A).

The combination of chosen parameters will define the security of the
scheme. Specifically, the bound M that we use as a measure for the degree
of homomorphism is determined by choice of f, q and χ. Refer to the paper
by Naehrig et al. [NLV11] for details on specific parameter selections and
their resulting security.

4.3.3 The Encryption Scheme

The SWHE scheme outlined in the paper by Brakerski and Vaikuntanathan
[BV11] and in the paper by Naehrig et al. [NLV11] consists of the following
routines:

SH.KeyGen A sample s is chosen from the error distribution χ and is
set as the secret key sk := s. Now, a ring element a1 is sampled
from Rq and e is sampled from χ in order to construct the public key:
pk = (a0, a1) := (−(a1s+ te), a1).

SH.Enc To encrypt a message m from the message space Rt, sample u, f, g
from χ. We get ct = (c0, c1) := (a0u + tg + m, a1u + tf), which is a
ciphertext belonging to the ring R2

q . Due to homomorphic operations,

the ciphertext can grow to become an element from Rdq , where d ≤M .
This is the standard form for ciphertexts: ct = (c0, . . . , cd).

SH.Dec For decryption of ct = (c0, . . . , cδ) with secret key s, we use the
following formula: m =

∑δ
i=0 cis

i ∈ Rq(mod t), which is the original
plaintext message m.

SH.Add We can add two ciphertexts c = (c0, . . . , cδ) and c′ = (c′0, . . . , c
′
γ)

as c+ c′ = (c0 + c′0, . . . , cmax(δ,γ) + c′max(δ,γ)). This operation does not
increase the number of elements in the ciphertext. The ciphertext
containing the least elements is padded with zeroes.

SH.Mul We can multiply two ciphertexts c = (c0, . . . , cδ) and c′ = (c′0, . . . , c
′
γ)

as follows: using a symbolic value v, the expression

25

(
∑δ

i=0 civ
i) · (

∑γ
i=0 c

′
iv
i) ≡

∑δ+γ
i=0 ĉiv

i with terms in Rq can be com-
puted, such that (ĉ0, . . . ˆcδ+γ) is the resulting ciphertext (the product
of the two original ciphertexts).

4.4 DNA similarity measures

The edit distance and Smith-Waterman distance are two similarity measures
that are commonly used to compute the similarity between two strings, that
can be arbitrary strings or DNA sequences.

4.4.1 Edit Distance

The edit distance is defined as the minimum cost of transforming a string
x into a string y with the operations deletion, insertion and subtitution. If
x and y are viewed as vectors of respectively n and m characters long, then
x = x1...xn and y = y1...ym. The edit-distance between the strings is then
L(n,m) for the input strings x and y, where n and m denote the number
of characters that are considered for the edit-distance. So in general, L(i, j)
will be the edit distance between the substrings x1...xi and y1...yj . Using
this notation, the edit-distance can be formulated recursively as follows, for
1 ≤ i ≤ n, 1 ≤ j ≤ m:

L(i, j) = min

L(i− 1, j) + 1
L(i, j − 1) + 1
L(i− 1, j − 1) + S(xi, yj)

 (2)

Here, S(xi, yj) denotes the cost for substituting the i-th element in string
x by the j-th element in string y. The value of L(0, 0) = 0. The edit
distance is at least 0, in the case that two strings are identical, and is at most
max(n,m), in the case that the two strings have no matching characters at
the same position. To use the edit distance as a similarity weight between
0 and 1, we use the following formula:

sx,y = 1− L(n,m)

max(n,m)
(3)

4.4.2 Smith-Waterman similarity

The Smith-Waterman distance is a more fine-grained similarity score. This
measure is commonly used for sequence alignment to determine similar re-
gions between two strings of nucleotides. Nucleotide segments of all possible
lengths are compared to find the optimal alignment of the two sequences and

26

to determine the similarity score. It is defined by Jha et al. [JKS08] as fol-
lows, for 1 ≤ i ≤ n, 1 ≤ j ≤ m:

H(i, j) = max

0,
max1≤o≤i(H(i− o, j)− g(o),
max1≤l≤jH(i, j − l)− g(l),
H(i− 1, j − 1) + c(xi, yj)

 (4)

Here, as before, xi and yj denote the i-th and j-th characters in the
strings x and y. The Smith-Waterman distance between the strings x and
y is H(m,n). Gaps (usually denoted by the − character) are used for the
alignment and represent empty spaces within strings, where deletions or
insertions have taken place. The function g is the gap-function which scores
gaps and is defined as: g(k) = x + y(k − 1). This is the affine form of a
gap scoring function. The term k is the size of the gap and the terms x
and y are positive integer constants. The value of x determines the initial
cost of the gap, the value of y determines the gap-cost per character. In
equation 4 we see that the gap-score is always subtracted, this is because a
gap due to an insertion or deletion decreases the similarity of the two strings.
The function c is the cost-function that determines the cost of substituting
one character by another and is defined as c(a, b) = e if a = b and −f
if a 6= b. The maximal value that the Smith-Waterman score can take is
e ·min(n,m)− |n−m|, which only happens if the two strings are identical.
The minimal value is 0, when there is no similarity between the sequences.
To use the Smith-Waterman score as a similarity weight between 0 and 1,
we use the following formula:

sx,y =
H(n,m)

e ·min(n,m)− |n−m|
(5)

4.4.3 Technique for privacy-preserving computation

Both the edit-distance and the Smith-Waterman distance are considered
as a similarity weight in our envisioned recommender system, see Section 5.
While the edit distance would be enough to test for similarity between SNPs
that are related to a set of drugs, having the Smith-Waterman score as a
similarity weight has some advantages as well. A large amount of research
still has to be done in the field of pharmacogenomics. The interaction be-
tween drug and multiple SNPs is not always known and some SNPs may
not have been found yet [ER04]. It would therefore be too limiting to only
consider the correspondence of a certain set of SNPs between individuals

27

to predict drug treatment effects. Also, the recommender system that is
presented in this research generally takes DNA similarity as a weight for
recommendations. The recommendations need not be drug treatment rec-
ommendations for patients, this is merely the setting that we keep in mind
as we develop the recommender system.

The methods that we came across for privacy-preserving computation
of the edit distance or Smith-Waterman score can be roughly divided into
two categories. The first category is composed of all methods that use
additive homomorphic encryption to apply operations on encrypted data,
the second category is composed of all methods that use garbled circuits
for secure function evaluation. The protocols by Jha. et al [JKS08] are
among the most efficient techniques for computing these similarity scores in
a privacy-preserving way, because of their efficient use of garbled circuits.
However, their protocols are designed for two parties who both have to pro-
vide plaintext input to the circuits. In the setting of our research, where
a central server represents users and is involved in the computation of sim-
ilarity weights and in the generation of recommendations, this presents a
problem. The server should only have access to encrypted data. However,
the protocols presented by Jha. et al require the parties to enter unencrypted
data.

The protocols by Rane and Sun [RS10] are intended to be used by a client
and server, who jointly compute the edit distance or a related similarity score
(such as the longest common subsequence). Their method uses additive
homomorphic encryption and is suited for a setting in which a server holds
part of the data over which a similarity needs to be computed.

Other earlier techniques for computing the edit distance using additive
homomorphic encryption also exist, such as the technique by Atallah et
al. [AKD03], but are too slow for use in practical situations. The technique
by Rane and Sun puts most of the computational load on the server, so that
a client can do most computations in constant time.

We choose the technique presented by Rane and Sun [RS10] as the basis
for our similarity computations and will alter their protocols slightly to fit
the setting of our recommender system. The main difference is that we use
somewhat homomorphic encryption for the encryption in our recommender
system, which not only allows for addition but also for multiplication of
ciphertexts. We expect that this will speed up the protocols that Rane and
Sun presented.

28

4.5 Encrypted Division

The homomorphic encryption scheme by Brakerski and Vaikuntanathan
[BV11], which we use in this research, works on integers from the mes-
sage space Rt = Zt[x]/〈f(x)〉. In the protocols of our recommender system,
sometimes an encrypted division will be needed. Because we work with inte-
gers, this means that while we are still using encryption, we cannot actually
divide the integers. During this time, the integers will have to be inverted
modulo a certain prime number. Following the construction by Jeckmans
et al. [JPH13], we will use a look-up table to store the actual fractions of
the integers, so that these can be replaced later. For two integers with
x, y ∈ Zt[x] with gcd(x, y) = 1, the lookup table stores the value x

y at in-

dex positions x · y−1(mod t). If gcd(x, y) 6= 1, then we can divide out the
greatest common divisor and use the fraction x′

y′ for index position x′ · y′−1(
mod t) instead (where x′ = x

gcd(x,y) , y
′ = y

gcd(x,y)), since it is the same as the

fraction x
y .

29

5 Design

In this section we will explain the recommender system design. Throughout
the section, the application of drug recommendations will be considered.
Similarity computations are performed to establish DNA similarity between
patients and ratings for drugs are shared throughout a social network. Users
of the recommender system can inquire after recommendations for a certain
drug which are made using their friends’ ratings. Here, the DNA similarity
between user and friend is taken as a weight for the rating. Other application
areas of a privacy-preserving DNA-based social recommender system also
exist, some of which are discussed in section 6.5. For simplicity’s sake,
however, during the discussion of the protocols used in the recommender
system, we will use the drug recommendation application as a setting.

We discuss the system architecture and system requirements in subsec-
tions 5.1 and 5.3.2. We then look at the recommendation formula used for
the recommender system in section 5.2. Section 5.3 looks at the security
requirements of the recommender system.

5.1 System Components

The recommender system has the following actors:

Figure 2: System Components

User The user of the system, who inquires after a drug recommendation.

Server The server, which could be located at a hospital for instance. The
server assists in recommendation computations and performs the simi-
larity computations between users. It also stores encrypted DNA-data
for the users and stores encrypted similarity scores between users. The
server serves as a proxy for proxy re-encryption operations.

Friends The friends of the user, who for instance visit the same self-help

30

group or are connected to each other by some other means. The friends
provide ratings for drug treatments.

Proxy Server An additional server, which can be used to assist in privacy-
preserving computations.

Recommendations should be generated while friends are offline. There-
fore, the recommender protocol should be an offline protocol, in which the
server performs computations on behalf of the friends.

5.2 Recommendation Formula

The recommender system generates recommendations for a drug by eval-
uating the ratings that users of the system provide. Based on these user-
supplied ratings, a recommendation for a specific user is made that expresses
the likelihood that the user will get good results from using the drug. Equa-
tion 6 specifies the recommendation formula used in our recommender sys-
tem, which is based on the formula by Jeckmans et al. [JPH13].

pu,d =

∑Fu
f=1 qf,d · rf,d · su,f∑Fu

f=1 qf,d · su,f
(6)

The drug prediction pu,d is generated for a user u and a drug d. The
total number of users in the system is U , the total number of drugs known to
the system is D. The drug prediction formula takes into account all friends
of the user, with Fu being total number of friends of user u. Each friend f
supplies a rating rf,d for drug d. The value qf,d is used as an indicator value,
it has a value of 1 if friend f rated drug d and a value of 0 otherwise. The
DNA similarity su,f between user u and friend f serves as a weight and is
multiplied with the rating. Note that su,f = sf,u. The similarity score su,f
lies between 0 and 1. The higher the similarity score, the higher the friend’s
rating is valued.

The sum of ratings multiplied with the indicator values and similarities is
divided by the normalization sum, which is the sum of all ratings multiplied
with the corresponding indicator values.

The similarity su,f will never be known to the user or the friend or the
server, it is computed once by the user and the server or by the friend and
the server (using the user’s and friends’ DNA material) and is then stored
under encryption at the server. The user cannot change his DNA data at
some point to initiate new similarity computations and can therefore not
influence the similarity value to try and find out some of the other values in

31

the formula. The indicator qf,d and the rating rf,d remain hidden from the
user as well as the server.

The DNA-similarity used in the formula can be either the edit distance
or the Smith-Waterman score, both of which were discussed in section 4.4.
Privacy-preserving protocols for determining these DNA similarity measures
are presented later on. However, this recommender system could also be
used with a different similarity score.

5.3 Security

5.3.1 Security Model

Initially, we design our recommender system for the semi-honest model.
Here, the server is semi-honest. It will try to find out as much as possible
about the users, but will not deviate from the protocols as set out in sec-
tion 6. Since the server would be located at a hospital or a pharmacy for
instance, this is a reasonable assumption. The user and his friends are also
considered to be semi-honest. They will try to learn as much as possible
about the other parties.

5.3.2 Privacy Requirements

The system should fulfill the following set of privacy requirements:

• The user and friend cannot find out the similarity score su,f . The
user cannot find out any of the ratings rf,d of his friends. The user
will try to find these values, since he is semi-honest, but it should be
computationally hard for him to find them.

To fulfill this requirement, similarity scores are computed by a user
and the server. Only the server sees the similarity value encrypted
under the user’s key. The server therefore does not know the value
and neither does the user, since he does not get to see it. Other
values that users may try to find, such as ratings or indicator values,
cannot be recovered through the recommendation formula, since the
similarity weight stays secret and cannot be changed to influence the
recommendation result.

• The server will try to learn the values su,f , rf,d, qf,d, pf,d, but should
not be able to succeed in this.

32

The similarity value is stored under encryption at the server. The
rating and indicator values are never shared with the server, nor is the
recommendation.

• The server does not learn the contents of the users’ DNA data.

All user data that is stored at the server is either stored under
encryption with the user’s key or after secret sharing has been applied
to the data.

• Users do not learn the contents of other users’ DNA data.

Users keep their own DNA data and only store their data at the
server under encryption with their public key. Other users can there-
fore not find out the contents of their DNA data.

• Users cannot learn whether a friend submitted a rating for a certain
condition or for a specific drug. The values qf,d should therefore also
be kept hidden from the user. Likewise, the friend does not find out
the same information about the user.

• The inquiry after a prediction should be considered sensitive data.

5.4 Joining and Leaving the System

During the set-up of the recommender system, similarities between users
that are friends will be computed. Users provide secret shares to some of
their data as input for the similarity computations and as input that may
later be re-encrypted to their friends through proxy re-encryption, when it
is used in a recommendation protocol.

When a user joins the system, we assume that a social network is already
in place. The user therefore already has friends who use the system, whom
he is immediately connected to.

Upon registration, a user has to provide his/her DNA data to the server.
The DNA data will be split into secret shares using the secret sharing men-
tioned in section 4.2. One share is stored in plaintext and one share is
stored encrypted under encryption with the user’s key, along with a proxy
re-encryption key for each of the user’s friends. Details on the specific repre-
sentation of DNA data at the user and at the server are given in section 5.5.

The user also has a rating vector, Ru, and an indicator vector, Qu,
which may need to be used by his friends in recommendation generations
at some point and which contain all rating values ru,d and indicator values
qu,d. These pieces of data are each split into two secret shares using the

33

same secret sharing scheme, where one share of Ru and Qu respectively is
stored in plaintext at the server and the other share is stored at the server
under encryption with the user’s key. The re-encryption keys needed to
translate the encryption of the shares to encryptions under the friends’ keys
have already been stored at the server in the previous step.

The reason for storing shares of the user’s data at the server, where the
server is only able to see one of the shares, is the concern of privacy. The
server can access one share for each piece of data and he can re-encrypt the
other share for one of the user’s friends using a proxy re-encryption scheme
(examples of appropriate schemes were discussed in section 4.1). The pro-
tocols for the recommender system are set up in such a way that a user and
the server can use the shares of a friend’s data to generate recommendations
and similarity weights while preserving the friend’s privacy.

Once the user has provided the necessary data to the server, they initiate
the similarity computations. The results of the computations are similarity
scores between the user and each friend, encrypted under the user’s key.
Using proxy re-encryption, this similarity score is then also stored under
encryption with the friend’s key.

Upon leaving the system, the server will delete all data that was stored
on behalf of the user, namely his secret shared DNA data, rating vector and
indicator vector and also all of his similarity scores. The server is assumed
to be honest-but-curious, we therefore expect the server to cooperate in this
process.

In short, the following user data is stored at the server:

• The user’s DNA data (refer to section 5.5 for more details).

• Encryption keys from the user to each of his friends.

• Two shares to the rating vector Ru, one share encrypted under the
user’s public key.

• Two shares to the indicator vector Qu, one share encrypted under the
user’s public key.

• Similarity values between the user and each of his friends, under en-
cryption with the user’s public key.

5.5 DNA data representation

The DNA data over which a similarity score is computed remains generic
throughout this research. The DNA data used can be a partial genome

34

sequence, the whole genome, or can also only hold the status of the SNPs
that are of interest for a certain drug. The implementation of selecting
the right parts of DNA remains as future work and depends on the specific
setting in which the recommender system is used.

DNA-data is represented as a vector of integer-values. Each nucleotide-
base is represented by a number. We use the alphabet A = {1, 2, 3, 4} to
represent the bases {A,C,G, T}. DNA-data belonging to user u is repre-
sented as Gu, a vector of arbitrary length n.

This DNA-data is stored at the server as follows: for each position
i in the DNA-sequence Gu, the character Gu,i is represented by an in-
dicator vector Iu,i. This indicator vector has length 4 and contains ze-
roes in all places, except at the Gu,i’th position, where the value is 1.
For example, if part of a DNA sequence is (T,A,C,G,G), then this se-
quence is represented in our alphabet as (4, 1, 2, 3, 3). The vector of in-
dicator vectors that represent this DNA sequence will be represented as:
((0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1, 0)).

For each character in Gu, we construct such an indicator vector. The
usefulness of these indicator vectors will become apparent when we discuss
the edit distance protocol. The collection of all indicator vectors is denoted
by (Iu,i). The vector (Iu,i) is split into two parts using a secret sharing
scheme (refer to section 4.2), so that (Iu,i) = (Xu,i)+(Yu,i). Vector (Xu,i) is
stored under encryption with the user’s key at the server along with a proxy
re-encryption key for each of his friends, so that it can be re-encrypted for
another user of the system. Vector (Yu,i) is stored in plaintext at the server.

What is stored at the server regarding a user’s DNA data is therefore
the following: a plaintext secret share (Yu,i) and a secret share (Xu,i) which
is stored under encryption with the user’s key. Together, these shares form
the collection of indicator vectors for the user’s DNA sequence.

5.6 Summary of DNA notations

Gu The genome sequence of user u of arbitrary length n, consisting of inte-
gers from the alphabet A = {1, 2, 3, 4}.

Gu,i The i’th character from Gu.

Iu,i The indicator vector for Gu,i.

(Iu,i) The collection of all indicator vectors Gu,i for 0 ≤ i ≤ n.

(Xu,i) A share of [Iu,i] for another user of the system.

35

(Yu,i) A share of [Iu,i] for the server.

36

6 Construction

We will initially consider the semi-honest security model, which was dis-
cussed in section 5.3, when designing the protocols for our recommender
system (similarity protocols can be found in section 6.2.1 and the offline
recommender protocol can be found in section 6.2.7). Then, we will make
an extension to the malicious user model in section 6.3. The existing pro-
tocols for the security model of our recommender system will be altered to
extend them to the malicious user model.

6.1 Transfer of Data through Proxy Re-Encryption

For many of the protocols described below, a user and the server jointly
compute some value using (partial) data from the user’s friends. Because of
the system’s privacy requirements, the friend’s data is stored neither at the
server nor at the user in full plaintext. Instead, as we saw in section 5.4, the
friend’s data is always stored in two parts at the server, after it has been split
using an appropriate secret sharing scheme. One part is stored in plaintext,
the other part is stored under encryption with the friend’s key. The server
also has a proxy re-encryption key from the friend to the user. Whenever a
protocol is initiated in which the user needs some share to a friend’s data, the
server will re-encrypt this data for the user and send it to him using proxy
re-encryption. This will happen during similarity computations, where a
secret share of the collection of indicator vectors (Iu,i) is re-encrypted for
the user, but also during the recommender protocol, where secret shares to
the friend’s rating vector and indicator vector are re-encrypted and then
sent to the user.

6.2 Protocols in the Semi-Honest Model

6.2.1 Similarity Protocols

The similarity computations between users are performed during the set-up
phase of the system. As a similarity measure, both the edit distance and the
Smith-Waterman score are considered. However, in theory these similarity
measures could also be replaced by some other similarity measure to use
in combination with the recommender system. Different privacy-preserving
protocols would then be needed to perform the similarity computations.

37

6.2.2 Edit Distance Protocol

We first look at a privacy-preserving protocol to compute the edit distance of
two strings, which in our recommender system will be two DNA-sequences.
The protocol presented here is based on the privacy-preserving Levenshtein
distance protocol by Rane and Sun [RS10]. The protocol that they devised
uses additive homomorphic encryption. In our protocol, we will use a some-
what homomorphic encryption scheme. We alter the Levenshtein distance
protocol in some places to fit it into our system architecture.

The protocol for computing the edit distance uses two subroutines; the
substitution cost protocol, which determines the cost of substituting one
character by another in a sequence, and the minimum-finding protocol,
which finds the minimum element of a vector in a privacy-preserving man-
ner. Both of these subroutines are carried out by the server and a user,
where most work is done on the server side.

To find the edit distance between two strings x and y of lengths n and
m, we use the dynamic formulation of the edit distance of section 4.4. We
present the protocol for strings of unequal length. However, in our applica-
tion of DNA-sequence similarity, strings of equal length will always be used,
since we do a comparison on two sequences of DNA and having strings of
unequal length as input to the protocol may leak information.

An encrypted edit distance matrix M is used, where M(i, j) is the en-
cryption under the user’s public key of the edit distance L(i, j) between
substrings x[0 . . . i] and y[0 . . . j]. M(n,m) is the encryption of the total
edit distance. The server has matrix M . The user does not get to see any of
the sub-distances nor the total edit distance, because then the privacy of the
similarity which is used in the recommendation formula would be violated.

Before the protocol can be carried out, the user has to obtain his secret
share (Xf,i) (containing partial indicator vectors for string y, which belongs
to friend f) from the server through proxy re-encryption. The user already
has his own string x, his public key PKU and secret key SKU . The server
has the user’s public key PKU and the other share (Yf,i). Note that (Xf,i)+
(Yf,i) = (If,i).

The steps of the protocol are as follows:

1. The server initiates values M(0, 0) = [0]U , M(0, j) = [j]U for 0 ≤ j ≤
m and M(i, 0) = [i]U for 0 ≤ i ≤ n.

2. For 1 ≤ i ≤ n, 1 ≤ j ≤ m:

The user and server initiate the substitution cost protocol for the
characters xi and yj , at the end of which the server has [S(i, j)]U .

38

The server computes the values [L(i − 1, j) + 1]U , [L(i, j − 1) +
1]U and [L(i − 1, j − 1) + S(i, j)]U using the additive homomorphic
properties of the encryption scheme used.

The user and server initiate the minimum-finding protocol to find
M(i, j) = [min(L(i−1, j)+1, L(i, j−1)+1, L(i−1, j−1)+S(i, j))]U .
The server gets this minimum value, the user learns nothing during
this subroutine.

3. At the end of the last round, the server has computed M(n,m) =
[L(n,m)]U . This is the edit distance between strings x and y, en-
crypted under the user’s key. M(n,m) is used to compute the sim-
ilarity weight su,f following Equation 3 and this weight is stored at
the server as [su,f]U for future reference. The user does not obtain the
edit distance.

6.2.3 Substitution Cost Protocol

The substitution cost protocol is an altered version of the indicator function
substitution cost protocol by Rane and Sun [RS10]. The protocol is used to
evaluate the cost of substituting a character a (one of the xi) by a character
b (one of the yj) in a string. For the edit distance, the cost is 1 if the
characters are not the same and the cost is 0 if the characters are the same.
We denote the indicator variable which takes a value of 1 if a and b are the
same and takes a value of 0 if a and b are not the same by 1(a=b). The
substitution cost can then be expressed as S(a, b) = (1− 1(a=b)).

The differences with [RS10] are that instead of taking the characters a
and b as input to the protocol, one of these characters is represented as
an indicator vector which is split according to a secret sharing scheme and
shared between the two participating parties of the protocol.

In this protocol, the server and a user jointly compute the substitution
cost. The protocol takes as input a character b from the alphabet A, which
is known to the user and two secret shares to an indicator vector E(a),
where the character a is also from the alphabet A. The indicator vector has
previously been split into two shares X(a) and Y (a) with one of the secret
sharing schemes mentioned in section 4.2. The user receives a share X(a)

through proxy re-encryption beforehand. The share Y (a) is already stored
at the server.

The vector E(a) (which is one of the indicator vectors from If,j for some
user f) has values 0 at each position, except at the b’th position (note
that b in this protocol represents a character from an alphabet consisting

39

User Server
(PKS , PKU , SKU) (PKU , PKS , SKS)

X(a), b Y (a)

1. −→
[b]U

∀0 ≤ i ≤ |A| :
[βi · (i− b) + (1−

Y
(a)
i) + r]U

←− ∀0 ≤ i ≤ |A| :
[βi · (i− b) + (1− Y (a)

i) + r]U

2.

(1− Y (a)
b) + r

−→
[(1− Y (a)

b) + r]U [(1− Y (a)
b) + r]U

[X
(a)
b]U

3.

[(1− Y (a)
b) + r −X(a)

b]U

= [(1− E(a)
b) + r]U

= [(1− 1a=b) + r]U

[(1−1a=b)+r]U +[−r]U
= [(1− 1a=b)]U

Figure 3: Substitution Cost Protocol

of integers), which takes the value of 1. To protect the friend’s privacy, the
server does not know a nor the indicator vector E(a).

An overview of the protocol can be found in Figure 3. The steps of the
protocol are the following:

1. The user encrypts b under his own public key and sends it to the
server. The server then for all i in the alfabet computes the value

[βi · (i− b) + (1−Y (a)
i) + r]U using homomorphic addition. This value

40

is computed as: (i−[b]U)·βi+(1−Y (a)
i +r). Here, βi and r are random

integers from some integer field that is large enough to provide security.
These encryptions are sent to the user in the right order.

2. The user picks the b’th term of the received encryptions and decrypts it

to obtain (1− Y (a)
b) + r. He re-encrypts this value as [(1− Y (a)

b) + r]U
and sends it back to the server. Because of the re-encryption, the
server does not know which term was picked. The user also sends his

encrypted share [X
(a)
b]U .

3. The server uses additive homomorphic properties to get [(1− Y (a)
b) +

r − X
(a)
b]U and removes the noise-term r, also using homomorphic

properties. He ends up with [(1 − 1a=b)]U = [S(a, b)]U , which is the
encrypted substitution cost for substituting character a by character
b.

The substitution cost protocol outputs an encrypted substitution cost
(either an encryption of 1 or 0) to the server. The substitution cost is
encrypted under the user’s key. The ciphertext contains the noise of two
additions, namely the addition of the server’s indicator vector share and the
unblinding of factor r. During the protocol, a few homomorphic additions
are applied to ciphertexts occurring in the protocol (both at the user and
the server) and some scalar multiplications (at the server).

6.2.4 Minimum-Finding Protocol

The minimum-finding protocol is used to find the minimum value out of
n values and was developed by Rane and Sun [RS10]. The input for this
protocol is a vector z with n entries. The goal is for the server to find
[min1≤i≤nzi]U , the minimum encrypted under the user’s key. For the edit-
distance protocol, a vector with 3 entries will always be entered into the
minimum-finding protocol. An overview of the protocol can be found in
Figure 4.

1. The server generates a permutation π on the set (1, . . . , n). He com-
putes the permutation of the component-wise encrypted vector z,
which he wants to find the minimum of, to obtain [v]U = π([z]U).
The server now picks an integer g > 0. Using this value, he creates
an order-preserving map G ∈ Zn×n (refer to Figure 6.2.4). The server
then computes w = [Gv]U , using homomorphic properties. Because of
the order-preservingness of G,

41

User:
(PKS , PKU , SKU)

Server:
(PKU , PKS , SKS); [z]U

1.
[v]U = π([z]U)
[w]U = [Gv]U

←− [b]U = [w − a]U
[w − a]U

2.
b = w − a

←− aδ =
(a1 − a2, . . . , an−1 − an)

bδ =
(b1 − b2, . . . , bn−1 − bn)

aδ − η

∀1 ≤ i < j ≤ n:

ai − aj − ηi,j S bj − bi
−→

[α]U = [arg min1≤i≤nvi]U

3.
∀1 ≤ i ≤ n:

[βi · (i− α) + vi + r]U
←− ∀1 ≤ i ≤ n:

[βi · (i− α) + vi + r]U
vα + r
[vα + r]U −→

[vα + r]U

4.
[vα]U = [vα+r]U+[−r]U

= [min1≤i≤nzi]U

Figure 4: Minimum-Finding Protocol

the following property holds: vi < vj ⇐⇒ wi < wj . The server picks

42

g + g1 g2 . . . gn+1 gn
g1 g + g2 . . . gn+1 gn
...

...
. . .

...
...

g1 g2 . . . g + gn+1 gn
g1 g2 . . . gn+1 g + gn

 (7)

Figure 5: Matrix G

a vector a ∈ Zn randomly and sends [w − a]U to the user.

2. The user decrypts [w − a]U element-wise and obtains a vector b =
w − a. The user generates a vector bδ of size

(
n
2

)
such that bδ =

(b1 − b2, . . . b1 − bn, b2 − b3, . . . , b2 − bn, . . . , bn−1 − bn). The server
generates a similar vector aδ of size

(
n
2

)
. The server then chooses an

integer value η′ ∈ [−g, g] randomly and uses this to generate the vector

η = (ηi,j)1≤i<j≤n ∈ Z(n2). The sum of all ηi,j is equal to η′. The server
sends aδ−η to the user, who for all 1 ≤ i < j ≤ n compares ai−aj−ηi,j
to bj − bi.

Note that: wi ≤ wj iff ai− aj ≤ bj − bi. By determining ai− aj −
ηi,j ≤ bj − bi, the server checks whether wi −wj − ηi,j ≤ 0. The value
ηi,j was picked from [−g, g], so if ai − aj − ηi,j < bj − bi then vi < vj
and if ai − aj − ηi,j > bj − bi then vi > vj . With these comparisons,
the user is able to determine α = arg min1≤i≤n vi. The user sends [α]U
to the server.

3. The server picks a random integer r and random integers βi∀1 ≤ i ≤ n.
He uses homomorphic properties to compute [βi(i− α) + vi + r]U and
sends these values in the right order to the user. For index i = α, the
user decrypts [βi(i−α) + vi + r]U to vα + r. He re-encrypts this value
and sends it to the server in the form [vα + r]U .

4. The server now removes the blinding factor r using homomorphic prop-
erties and ends up with [vα]U = [min1≤i≤nvi]U = [min1≤i≤nzi]U .

The encrypted minimum which is outputted to the server at the end
of the protocol, is a ciphertext to which two additions have been applied,
namely the blinding and unblinding of vα. During the protocol, element-
wise multiplication is performed on the server once and several additions
take place. However, the output of the protocol only contains the noise
caused by two additions.

43

6.2.5 Smith-Waterman Distance

For the Smith-Waterman similarity score, we use the same subroutines as
for the edit distance, with very few alterations. To find the similarity score,
we use the recursive relation as was specified in section 4.4.

An encrypted edit distance matrix M is used, where M(i, j) is the en-
cryption under the user’s public key of the Smith-Waterman score H(i, j)
between substrings x[0 . . . i] and y[0 . . . j]. M(n,m) is the encryption of the
total score. The server has matrix M . The user does not get to see any of
the sub-distances nor the total edit distance, because then the privacy of the
similarity which is used in the recommendation formula would be violated.

Instead of using minimum-finding, it is apparent that we will have to
do maximum-finding to find the Smith-Waterman score. We can reuse the
minimum-finding protocol by using the following relation:
−min(−z1, . . . ,−zn) = max(z1, . . . , zn). We provide the negative vector
as input to the minimum-finding protocol and negate the output to obtain
the maximum value. The substitution cost protocol can also be reused,
however, we do not use an indicator cost function anymore. We use the cost
function c. In order to use this cost function, we alter the substitution cost
protocol so that (if we use an indicator vector for the character y) instead
of computing 1− Eai we compute (Eai − 1)f + Eai · e. If the two characters
are the same, e.g. as input characters we have a and b and for a we have the
indicator vector Ea, then this will evaluate to (1− 1)f + 1 · e = e and if the
two characters are different then this will evaluate to (0− 1)f + 0 · e = −f .

The steps of the substitution cost protocol are now the following for
computing the cost c(a, b) for characters a, b:

1. The user encrypts b under his own public key and sends it to the
server. The server then for all i in the alfabet computes the value

[βi ·(i−b)+(Y
(a)
i −1)f+Y

(a)
i ·e+r]U using homomorphic multiplication

and addition. Here, βi and r are random integers from some integer
field that is large enough to provide security. These encryptions are
sent to the user in the right order.

2. The user picks the b’th term of the received encryptions and decrypts

it to obtain (Y
(a)
b − 1)f + Y

(a)
b · e + r. He re-encrypts this value as

[(Y
(a)
b − 1)f + Y

(a)
b · e+ r]U and sends it back to the server. Because

of the re-encryption, the server does not know which term was picked.

The user also sends his encrypted share [X
(a)
b · (e+ f)]U .

3. The server uses additive homomorphic properties to get [(Y
(a)
b − 1 +

44

X
(a)
b)f+(Y

(a)
b +X

(a)
b) ·e+r]U and removes the noise-term r, also using

homomorphic properties. He ends up with [(1a=b − 1)f + 1a=b · e]U =
[c(a, b)]U , which is the encrypted substitution cost for substituting
character a by character b.

Using this altered substitution cost protocol and the maximum-finding
protocol, we devise the following protocol for the Smith-Waterman score:

1. The server initiates values M(0, 0) = [0]U , M(0, j) = [0]U for 0 ≤ j ≤
m and M(i, 0) = [0]U for 0 ≤ i ≤ n.

2. For 1 ≤ i ≤ n, 1 ≤ j ≤ m:

3. The user and server initiate the altered substitution cost protocol for
the characters xi and yj , at the end of which the server has [c(xi, yj)]U .

4. The server computes the values [H(i−o, j)−g(o)]U∀1 ≤ o ≤ i, [H(i, j−
l)− g(l)]U∀1 ≤ l ≤ j and initiates the maximum-finding protocol with
the user to find [max1≤o≤i(H(i−o, j)−g(o)]U) and [max1≤l≤j H(i, j−
l) − g(l)]U . The server also computes the value [H(i − 1, j − 1) +
c(xi, yj)]U , using homomorphic encryption properties.

5. The user and server initiate the maximum-finding protocol to find:
[max(0,max1≤o≤i(H(i−o, j)−g(o)]U),max1≤l≤j H(i, j−l)−g(l), H(i−
1, j− 1) + c(xi, yj))]U . The server gets this maximum value and stores
it as [H(i, j)]U , the user learns nothing during this subroutine.

6. At the end of the last round, the server has computed M(n,m) =
[H(n,m)]U . This is the edit distance between strings x and y, en-
crypted under the user’s key. M(n,m) is used to compute the similar-
ity weight su,f according to Equation 5, which is stored at the server as
[su,f]U for future reference. The user does not obtain the Smith-Water
score nor the similarity measure.

6.2.6 Analysis and Complexity of the Similarity Protocols

For the similarity computation (edit distance or Smith-Waterman) and the
subprotocols, security derives from the original protocols on which they
were based [RS10,JKS08]. Here, we will not give a formal proof of security
for each of these protocols, because they are straightforward. With the
composition theorem for the semi-honest model [Gol05] we can conclude
that the composition of all proven secure subprotocols is secure as well.

45

For the substitution cost protocol, the complexity for user as well as
server is O(1) for both computation and communication. For the minimum-
finding protocol (or the altered maximum-finding protocol), the same ap-
plies, since in our setting we do minimum-finding on three values.

The complexity of these subroutines translate directly into the com-
plexity analysis for the edit distance and Smith-Waterman protocols. The
complexity for the protocols can be found in Figures 6 and 7.

User Server

step comp comm comp comm

1. - - O(max(n,m)) -
2. O(n ·m) O(n ·m) O(n ·m) O(n ·m)

Figure 6: Complexity of the Edit Distance Protocol for a user and a server
(semi-honest model), n and m are the respective lengths of sequences that
are compared.

User Server

step comp comm comp comm

1. - - O(max(n,m)) -
3. O(m · n) O(n ·m) O(m · n) O(n ·m)
4. O(m2 · n2) O(m2 · n2) O(m2 · n2) O(m2 · n2)
5. O(m · n) O(m · n) O(m · n) O(m · n)

Figure 7: Complexity of the Smith-Waterman Protocol for a user and a
server (semi-honest model), n and m are the respective lengths of sequences
that are compared.

We see that the complexity of the Smith-Waterman Protocol is greater
than that of the edit distance protocol. This is due to the fact that for finding
the Smith-Waterman distance, subsequences must also be inspected.

The only homomorphic operations that are used in the protocols are
homomorphic additions. These protocols can therefore also be carried out
using an additive homomorphic encryption scheme.

6.2.7 Offline Recommender Protocol

Here we present the recommender protocol for offline friends, which is based
on the solution with offline friends by Jeckmans et al. [JPH13]. An overview
of the protocol can be found in Figure 8. Before the run of the protocol,

46

for all friends of the user, similarities between the user and the friend su,f
have been computed by the user and the server and stored under encryption
of both the user and the friend at the server, using one of the protocols
presented in section 6.2.1.

As was mentioned before in section 5.4, the friend’s rating vector rf,d
and his indicator vector qf,d are split into two shares following the secret
sharing method that was discussed before. The rating vector Rf for a friend
f is split as follows: Rf = Tf +Sf . The indicator vector is split in the same
way: Qf = Uf + Vf . This secret sharing scheme has already been applied
during the set-up of the recommender system. The shares Sf and Vf have
been stored at the server in plaintext and the other shares Tf and Uf have
been stored under encryption with the friend’s key at the server. A proxy
re-encryption key from the friend to the user has been stored at the server
as well. For use in this protocol, we set rf,d to zero when qf,d is zero, in
order to simplify the operations.

47

User: Server:
(PKU , SKU , PKS , PRESKU , PREPKU) (PKS , SKS , PKU)

∀1 ≤ f ≤ Uf :
Sf , Vf , [[Tf]]PREPKf

[[Uf]]PREPKf
, RKfU

1. ∀1 ≤ f ≤ Uf
←− [[Tf]]PREPKU

, [[Uf]]PREPKU

[[Tf]]PREPKU
, [[Uf]]PREPKU

Tf , Uf

2. ∀1 ≤ f ≤ Uf
←− [su,f + b]U

[su,f + b]U , [−b]S
[su,f]S

3. ∀1 ≤ d ≤ D
[zd]S =

∑Fu
f=1[su,f]S ·tf,d [ad]U =

∑Fu
f=1[su,f]U · sf,d

[zd+σ1,d]S = [zd]S+σ1,d −→
[zd + σ1,d]S , [−σ1,d]U

4. ∀1 ≤ d ≤ D
[gd]S =∑Fu

f=1[su,f]S · uf,d
[hd]U =

∑Fu
f=1[su,f]U · vf,d

[gd+σ2,d]S = [gd]S+σ2,d −→
[gd + σ2,d]S , [−σ2,d]U

5. ∀1 ≤ d ≤ D
zd + σ1,d, gd + σ2,d

[zd]U = [−σ1,d]U + (zd + σ1,d)
[nd]U = [zd]U + [ad]U

[gd]U = [−σ2,d]U + (gd + σ2,d)
[ed]U = [gd]U + [hd]U

6. ∀1 ≤ d ≤ D
←− [ed · σ3,d]U = [ed]U · σ3,d

[ed · σ3,d]U , [σ−13,d]S
[ed · σ4,d]S =
ed · σ3,d · [σ−13,d]S · σ4,d

−→

[ed · σ4,d]S , [σ4,d]U
e−1d · σ

−1
4,d

[e−1d]U = e−1d · σ
−1
4,d · [σ4,d]U

←− [pu,d]U = [e−1d]U · [nd]U
[pu,d]U

Figure 8: Recommender Protocol for offline friends
48

1. Before the start of the actual offline recommender protocol, the main
server will act as a proxy by re-encrypting the shares Tf and Uf for
the user, translating the encryption under key PREPKf , belonging
to the friend, to encryption under the user’s key PREPKU , using the
re-encryption key RKfU .

2. During the first step of the protocol, the server has the similarity
measure for each friend f that is considered in the protocol. He blinds
the value [su,f]U additively with a blinding value bf and sends the
encryption [su,f + bf]U to the user, along with the unblinding value
[−bf]S , encrypted under the server’s key. The user decrypts this to
su,f + bf and uses the unblinding value to get [su,f]S = [su,f + bf]S +
[−bf]S .

3. For each drug for which a recommendation needs to be generated, the
server and user compute their shares of the sum of ratings multiplied
with the similarity between user and friend. The user computes the
value [zd]S =

∑Fu
f=1[su,f]S · tf,d, using the similarity that he received

during step 1 and his share of the friend’s rating vector, and the server
computes [ad]U =

∑Fu
f=1[su,f]U ·sf,d. Together, the values zd+ad eval-

uate to nd =
∑Fu

f=1 su,f · rf,d. The user blinds his value [zd]S with a
random integer σ1,d ∈ Zt and sends this value to the server accom-
panied by the unblinding value [−σ1,d]U , which can only be removed
under encryption with the user’s key.

4. Likewise, the server and user compute their shares of the normaliza-
tion sum. The user computes [gd]S =

∑Fu
f=1[su,f]S · uf,d and blinds

this value with σ2,d ∈ Zt to obtain [gd + σ2,d]S and sends this to the
server along with the unblinding value [−σ2,d]U , which can also only
be removed under encryption with the user’s key. The server simulta-
neously computes the value [hd]U =

∑Fu
f=1[su,f]U · vf,d.

5. The server now removes the blinding values σ1,d and σ2,d using ho-
momorphic properties of the encryption scheme. He computes [zd]U =
[−σ1,d]U+(zd+σ1,d) and is now able to construct the sum-value [nd]U =
[zd]U + [ad]U . The server also computes [gd]U = [−σ2,d]U + (gd + σ2,d)
which allows him to compute [ed]U = [gd]U+[hd]U . The normalization-
sum [ed]U evaluates to

∑Fu
f=1[su,f]U ·qf,d and needs to be inverted before

the drug prediction can be made. The only problem that might occur
here is when ed is equal to 0. This would occur when none of the user’s

49

friends have rated drug d. However, the likelihood of this situation is
negligibly small.

6. The server blinds [ed]U multiplicatively using σ3,d ∈ Z∗t , obtaining [ed ·
σ3,d]U . He sends this to the user, accompanied by the inverted blinding
value [σ−13,d]S . The blinding can only be removed under the server’s key.
The user uses the unblinding value to obtain [ed]S and adds his own
blinding σ4,d ∈ Z∗t multiplicatively. He sends it to the server along
with the unblinding value [σ4,d]U , which can only be removed under
encryption with the user’s key. The server decrypts the message to
ed · σ4,d. He inverts this value to e−1d · σ

−1
4,d and removes the blinding

under encryption with the user’s key. Now the server has [e−1d]U . He
computes the recommendation [pu,d]U = [nd]U · [e−1d]U and sends it
to the user. The user can decrypt this and uses a look-up table for
divisions to get recommendation value.

6.2.8 Analysis and Complexity of the Recommender Protocol

The differences with Jeckman et al.’s [JPH13] protocol, is that some oper-
ations have been added to preserve the privacy of the indicator vector Qf
and that the weights from user to friend and from friend to user do not need
to be added, but that another weight is used (the similarity score), which
needs to be sent from the server to the user while maintaining privacy. We
accomplish this by blinding the similarity score under the server’s public
key.

The recommender protocol uses a few more homomorphic additions than
the protocol by Jeckmans et al., but the number of homomorphic multipli-
cations stays the same (only one homomorphic multiplication is performed).

An analysis of the protocol’s complexity can be found in figure 15.

50

User Server

step comp comm comp comm

1. O(Fu) - O(Fu) O(Fu)
2. O(Fu) - O(Fu) O(Fu)
3. O(Fu ·D) O(D) O(Fu ·D) -
4. O(Fu ·D) O(D) O(Fu ·D) -
5. - - O(D) -
6. O(D) O(D) O(D) O(D)

Figure 9: Complexity of the Offline Recommender Protocol for a user and a
server (semi-honest model), Fu is the number of friends of user u, D is the
number of drugs that is being rated.

6.3 The Malicious User Model

The recommender system that we have discussed so far was designed for
a semi-honest setting, in which users and the server are all semi-honest.
However, this is a relatively weak security model. It would be preferable
to allow malicious users in our security model. That is why we now extend
the recommender system to a new security model where malicious users are
allowed, but where the server is still considered to be semi-honest. The server
will still try to find out as much as possible about the system’s users, but
will not deviate from protocol. To accomodate for the existence of malicious
users, a second server is needed, which we shall call the proxy server and
which was briefly mentioned before in section 5.1. The proxy server is also
required to be semi-honest and the two servers are required to not collude.
Section 6.3.3 discusses the reasonableness of the assumption of non-collusion
between the two servers. All computations are from now on now carried out
by the server and the proxy server on behalf of the user.

For the sake of simplicity, throughout the remainder of this section we
shall refer to the main server and the assisting proxy server as server A and
server B, respectively.

6.3.1 Additional Privacy Requirements

Additional privacy requirements in the malicious user model are the follow-
ing:

• Users cannot submit false ratings that lie outside the boundaries of
permitted rating values.

51

• The assisting server is also considered to be semi-honest, but cannot
find out any of the values su,f , rf,d, qf,d, pf,d without computationally
hard work. The assisting server can also not find out users’ DNA data.

6.3.2 Data Storage

All user data is stored at the same server as before, which is the main
server. The proxy server only serves as an assisting server for the similarity
computations and the recommendation generation and can therefore be a
lightweight server.

To enable privacy-preserving computations on behalf of the user, the
user needs to store some additional data at server A: he needs to encrypt
the collection of indicator vectors that represent his genome sequence as well
as his genome sequence under the assisting server’s public key and store this
at the main server. Also, a proxy re-encryption key for server B has to be
generated by the user, which is then stored at the main server (server A).

It may seem unsecure to store confidential user data under the assisting
server’s public key at the main server, since in real life the two servers
could collude. However, since the user already stored two secret shares to
his genome data at the main server, storing the non-splitted data under
encryption with the assisting server’s key practically makes no difference
and does not decrease security in any way when compared to the previous
situation.

In summary, what is now stored for each user at server A is:

• The user’s DNA data: the plaintext share (Xu,i), the encrypted share
(Yu,i) which can be proxy re-encrypted, the non-splitted collection
[Iu,i]B and the encrypted genome sequence [Gu]B.

• Encryption keys from the user to each of his friends and to the proxy
server.

• Two shares to the rating vector Ru, one share encrypted under the
user’s public key.

• Two shares to the indicator vector Qu, one share encrypted under the
user’s public key.

• Similarity values between the user and each of his friends, under en-
cryption with server B’s public key.

Server B also needs to generate re-encryption keys to all users in the
system, which are stored at server A.

52

6.3.3 Non-Collusion Assumption

For the malicious user model, we assume that the two servers are still semi-
honest: they do not deviate from protocol and do not collude. The non-
collusion assumption for two servers has been used in real-life applications
and in theoretical applications before.

The research by Peter et al. [PTK13] uses the concept of two non-
colluding servers for outsourcing privacy-preserving computations on en-
crypted user data. Their design is very similar to ours. Choi et al. [CEJ+07]
also use this concept in their design for online secure computation on en-
crypted input. Veugen et al. [VdHCM15] use two non-colluding servers in
their provably secure recommender system to outsource computations to.
In their recommender system, a server that acts maliciously cannot do so
without a user detecting this malicious behaviour. They provide security
for their recommender system in the malicious model, where an adversary
can take control of one of the servers. The pre-processing phase for their
recommender system is not included in this security model, however.

Catrina and Kerschbaum [CK08] wrote about e-commerce applications
that use secure multi-party computation and mentioned the combination of
cryptographic and non-cryptographic tools and architectures to make effi-
cient SMC systems possible, for instance by combining cryptographic tech-
niques and the use of service providers. They note that the advantages of
using a service provider, such as the main server and proxy server in our
recommender design for malicious users, are that service providers can be
set-up with more resources than normal clients in an SMC application and
that network requirements are lower, since fewer network traffic is neces-
sary. The same may be true in our recommender system, the main server
especially can be set with more resources and the amount of network traffic
between the main and the proxy server is kept to a minimum throughout
all protocols that are presented in the remainder of this section. Other
real-world applications using non-colluding servers are [BLW08,BCD+09].

The requirement that the two servers do not collude is a reasonable one,
since our main server will be provided by a hospital, for instance, and since
the proxy server could be a security provider (refer to section 6.3.12 for a
discussion of the proxy server’s role in the system). These servers will not
likely collude or cheat to recover users’ data, since this would be damaging
to their reputation.

53

6.3.4 Similarity Protocols in the Malicious User Model

We will now discuss the alterations made to the already existing similarity
protocols, to extend them to the malicious user model.

6.3.5 Edit Distance

We alter the edit distance protocol discussed previously in section 6.2.2,
which is based on the privacy-preserving Levenshtein distance protocol by
Rane and Sun [RS10], to extend it to the malicious user model.

As before, an encrypted edit distance matrix M is used, where M(i, j)
is the encryption under server B’s public key of the edit distance L(i, j)
between substrings x[0 . . . i] and y[0 . . . j]. M(n,m) is the encryption of the
total edit distance. Server A has matrix M . The user u, to whom string
x belongs and friend f , to whom string y belongs, do not get to see any of
the sub-distances nor the total edit distance, since they are not involved in
the protocol. Server B also does not get to see these values; server A never
shares the encrypted values with him, since that would cause the privacy of
the protocol to be violated.

Before the protocol can be carried out, server B has to obtain his secret
share (Xf,j) (containing partial indicator vectors for string y, which belongs
to friend f) from server A through means of proxy re-encryption. He already
has his own public key PKB and secret key SKB. Server A has Server B’s
public key PKB, the user’s public key PKU and the public key PKF of
friend f . He also has the other share (Yf,j). Note that (Xf,j) + (Yf,j) =
(If,j). Lastly, server A has the homomorphically encrypted indicator vector
collection [(Iu,i)]B and the homomorphically encrypted genome sequence
[Gu]B.

The steps of the protocol are as follows:

1. Server A initiates values M(0, 0) = [0]B, M(0, j) = [j]B for 0 ≤ j ≤ m
and M(i, 0) = [i]B for 0 ≤ i ≤ n.

2. For 1 ≤ i ≤ n, 1 ≤ j ≤ m:

Server A and server B initiate the substitution cost protocol for
the characters xi and yj , at the end of which the server has [S(i, j)]B.
Inputs to this protocol are: Xf,j , Yf,j , [Iu,i]B, [Gu,i]B.

Server A computes the values [L(i−1, j)+1]B, [L(i, j−1)+1]B and
[L(i− 1, j − 1) + S(i, j)]B using the additive homomorphic properties
of the encryption scheme used.

54

Server A and server B initiate the minimum-finding protocol to
find M(i, j) = [min(L(i − 1, j) + 1, L(i, j − 1) + 1, L(i − 1, j − 1) +
S(i, j))]B. Server A gets this minimum value, server B learns nothing
during this subroutine.

3. At the end of the last round, server A has computed M(n,m) =
[L(n,m)]B. This is the edit distance between strings x and y, en-
crypted under server B’s key. M(n,m) is used to compute the similar-
ity weight su,f following Equation 3 and this weight is stored at server
A as [su,f]B for future reference. The user, friend and Server B never
obtain this (encrypted) edit distance.

6.3.6 Substitution Cost

The substitution cost protocol from section 6.2.3 is altered to extend it to the
malicious user model and is still based on the indicator function substitution
cost protocol by Rane and Sun [RS10].

Server A and Server B now jointly compute the substitution cost. The
protocol takes as input an encrypted indicator vector E(b) := [Iu,i]B that
represents a character b = Gu,i from the alphabet A, the encrypted b: [b]B,
and two secret shares to an indicator vector If,j , which represents a character
a that is also from the alphabet A. Server A has E(b) and [b]B. If,j has
previously been split into two shares X(a) := Xf,j and Y (a) := Yf,j with one
of the secret sharing schemes mentioned in section 4.2. Server B receives
his share X(a) through proxy re-encryption before the start of this protocol;
the share Y (a) is already stored at server A.

An overview of the protocol can be found in Figure 10. The steps of the
protocol are the following:

55

Server B Server A
(PKA, PKB, SKB) (PKB, PKA, SKA)

X(a) Y (a), [Eb]B, [b]B

1. ←− π([Eb])B
π([Eb])B

∀1 ≤ i ≤ |A| :
ti = [βi · (i− b) + (1−

Y
(a)
i) + r]B

←− ∀1 ≤ i ≤ |A| :
send ti in ascending order of

π−1(i)

2.
pick π(b)-th term

(1− Y (a)
b) + r

−→
[(1− Y (a)

b) + r]B [(1− Y (a)
b) + r]B

3. −→
[X(a)]B
←− π([X(a) + r2]B)

π([X(a) + r2]B)

[X
(a)
b + r2]B −→

[X
(a)
b + r2]B

[X
(a)
b]B

4.

[(1− Y (a)
b) + r −X(a)

b]B

= [(1− E(a)
b) + r]B

= [(1− 1a=b) + r]B

[(1−1a=b)+r]B +[−r]B
= [(1− 1a=b)]B

Figure 10: Substitution Cost Protocol in the malicious user model

56

1. Server A picks a random permutation π of the alphabet A and per-
mutes [Iu,i]B and [E(b)]B. He sends the obtained permutation [π(E(b))]B
to server B. Server A then for all i in the alphabet computes the value

[βi · (i− b) + (1−Y (a)
i) + r]B using homomorphic addition. This value

is computed as: (i − [b]B) · βi + (1 − Y (a)
i + r). Here, βi and r are

random integers from some integer field that is large enough to pro-
vide security. These encryptions are sent to the user according to the
ascending order of π−1(i).

2. Server B gets [π(E(b)]B and decrypts this to π(E(b)). He infers π(b)
from the index where a 1 appears in the resulting indicator vector.
Server B picks the π(b)’th term of the received encryptions, which
comes down to him picking the b’th term, and decrypts it to obtain

(1−Y (a)
b) + r. He re-encrypts this value as [(1−Y (a)

b) + r]B and sends
it back to the server. Because of the re-encryption, the server does not
know which term was picked.

3. Server B sends his share X(a) after encrypting it under his public key
to Server A. Server A additively blinds the vector element-wise with a
blinding factor r2. He then permutes the vector with π and sends the
result back to Server B. Server B now picks the π(b)’th index of the

vector that he receives, which is [X
(a)
b + r2]B. He sends this to Server

A and Server A removes the blinding factor.

4. Server A uses additive homomorphic properties to get [(1 − Y (a)
b) +

r − X
(a)
b]B and removes the noise-term r, also using homomorphic

properties. He ends up with [(1 − 1a=b)]B = [S(a, b)]B, which is the
encrypted substitution cost for substituting character a by character
b.

The substitution cost protocol outputs an encrypted substitution cost
(either an encryption of 1 or 0) to server A. The substitution cost is en-
crypted under server B’s public key.

6.3.7 Minimum Finding

For minimum finding, we now look to a protocol by Erkin et al. [EFG+09],
which is a minimum finding protocol for two encrypted values. We alter this
protocol so that it is performed by two servers using SWHE. The original
protocol offers the option to compare two encrypted values and to get the

57

encrypted minimum. We will have to perform the routine twice to get the
encrypted minimum of three values.

We opt for this altered version of Erkin’s protocol, instead of extending
the protocol in section 6.2.4, because it is easier to extend to the malicious
user model and because the extension we present takes advantage of the
SWHE scheme used. In Erkin et al.’s original protocol, a multiplication is
performed by using an interactive protocol. By using SWHE, we expect to
improve on efficiency, since we can perform a homomorphic multiplication.
In the original protocol an encrypted value needs to be blinded, sent to the
other party, who then decrypts it and performs an exponentiation and re-
encrypts the result, after which the first party removes the blinding from
the received encryption. The efficiency gain would lie in the fact that no
communication is required and that we expect a homomorphic multiplication
to be faster than a blinding, exponentiation and unblinding.

Refer to Figure 11 for an overview of the protocol. Below, we describe
the steps taken in the protocol for our setting, where the protocol differs
slightly from the one by Erkin et al. [EFG+09]. At the beginning of the
protocol, the main server has three encrypted values of which he would like
to get the encrypted minimum. We call these values a, b and c.

58

Server B: Server A:
(PKB, SKB, PKA) (PKA, SKA, PKB)

[a]B, [b]B, [c]B

1.
[z]B = [2l + a− b]B

←− [d]B = [z + r]B
z + r mod 2l −→

[z + r mod 2l]B
[z′]B = [d mod 2l − r

mod 2l]

2. ∀0 ≤ i ≤ l − 1
−→ [d′i]B

s ∈r {−1, 1}
[w′i]B = [d′i + r′i]B

←− [w′i]B
wi = w′i mod 2

−→ [wi]B
[ci]B =

[d′i − r′i + s+ 3
∑l−1

j=i+1wj]B
[ei]B = [ci]B · [qi]B

←− [ei]B
check for zero

−→ [λ′]B
[λ]B = [λ′]B · s

3.
[z mod 2l] = [z′ + λ2l]B

[zl]B = [2−l · (z − (z
mod 2l))]B

[m]B = [zl]B · [a− b]B + [b]B

Figure 11: Mininimum Finding in the malicious user model

1. Server A has [a]B and [b]B. The variable l is the bit-length of the
inputs. Server A determines [z]B, whose most significant bit is 0 iff

59

a < b. We want to obtain the value z mod 2l, to determine the
most significant bit of z. Server A blinds z additively with a random
blinding factor r which is κ + l + 1 bits long (κ being the security
parameter of our SWHE scheme) and sends it to server B. Server B now
performs a modulo operation on the blinded and decrypted value and
returns [z+r mod 2l]B = [d mod 2l]B to server A. Server A subtracts
r mod 2l from this value using homomorphic addition and gets [z′

mod 2l]B. This subtraction does not occur modulo 2l of course, so a
reduction modulo 2l has to be performed to get [z mod 2l]B. (Only
if d mod 2l > r mod 2l, then z′ mod 2l ≡ z mod 2l).

2. In the second step, Erkin et al. [EFG+09] switch to another homomor-
phic encryption scheme with a smaller plaintext space that allows for
efficient multiplicative masking. We do switch, however, since we use
the BV scheme [BV11], in which multiplicative masking comes down
to a multiplication rather than an exponentiation.

Server B encrypts all bits in d′ ≡ d mod 2l and sends these to server
A. Server A computes the sums [ci]B = [di − ri + s + 3

∑l−1
j=i+1wj]B,

using the bits of r′ ≡ r mod 2l. Here, wj = d′j ⊕ r′j . To compute this
xor-value under homomorphic encryption, we use the formula a⊕ b =
a + bmod2, where a and b are bits. Server A first adds all d and r′

bits under homomorphic encryption and sends them in a random order
to server B. Server B decrypts these values and performs a reduction
modulo 2. Server B sends the results back to server A in the same
order as he received them, after which server A stores the values in
the right order (unrandomized). Now, if r′ > d′, then one of the ci
will be equal to zero. If d′ > r′, then all ci are non-zero. Server A
sends the encrypted ci to server B, after multiplicatively blinding them
with random values qi ∈ Z∗t , who decrypts all values and checks for
zeroes. Server B sends back an encrypted bit λ′, which is 1 if a zero
was encountered during the check and is 0 otherwise. Server B now
does not know which of the two initial values r′ and d′ was greater,
because this depends on the value of the random s that server A chose.
Server A computes [λ]B ≡ [λ′ · s]B to get the encrypted bit indicating
whether r′ > d′. As Erkin et al. [EFG+09], we compare the values 2d
and 2r + 1 in this step instead of d and r. This does not change any
results, but has the advantage of avoiding the case where d and r are
equal.

3. Server A now has the encrypted bit indicating whether r mod 2l > d

60

mod 2l. He uses this bit λ to compute: [z mod 2l] = [z′+λ2l]B. Now
Server A can compute the most significant bit of z, through computing
[zl]B = [2−l ·(z−(z mod 2l))]B. The encrypted minimum of the values
[a]B and [b]B is computed by Server A as: [m]B = [zl]B · [a−b]B +[b]B,
using a homomorphic multiplication.

4. Server A and B repeat steps 1 to 3 on the inputs [m]B and [c]B, to get
the encrypted minimum of values [a]B, [b]B and [c]B.

6.3.8 Smith-Waterman

For the extension of the Smith-Waterman protocol to the malicious user
model, we use the same subroutines as for the edit distance in the malicious
user model, with very few alterations.

An encrypted edit distance matrix M is used, where M(i, j) is the en-
cryption under Server B’s public key of the Smith-Waterman score H(i, j)
between substrings x[0 . . . i] and y[0 . . . j]. M(n,m) is the encryption of the
total score. Server A has matrix M .

We use the minimum-finding protocol for the malicious user model to do
maximum finding in the same manner as before using: −min(−z1, . . . ,−zn) =
max(z1, . . . , zn). The substitution cost protocol for the malicious user model
can also be reused by making the same alterations as in section 6.2.5, the
substitution cost protocol carried out by the two servers will then compute
the cost c(a, b) for characters a, b.

The altered protocol for the Smith-Waterman score is as follows:

1. Server A initiates values M(0, 0) = [0]B, M(0, j) = [0]B for 0 ≤ j ≤ m
and M(i, 0) = [0]B for 0 ≤ i ≤ n.

2. For 1 ≤ i ≤ n, 1 ≤ j ≤ m:

3. Server A and server B initiate the altered substitution cost protocol for
the characters xi and yj , at the end of which Server A has [c(xi, yj)]B.

4. Server A computes the values [H(i−o, j)−g(o)]B∀1 ≤ o ≤ i, [H(i, j−
l)− g(l)]B∀1 ≤ l ≤ j and initiates the maximum-finding protocol with
server B to find [max1≤o≤i(H(i−o, j)−g(o)]B) and [max1≤l≤j H(i, j−
l)−g(l)]B. Server A also computes the value [H(i−1, j−1)+c(xi, yj)]B,
using homomorphic encryption properties.

5. Server A and server B initiate the maximum-finding protocol to find:
[max(0,max1≤o≤i(H(i−o, j)−g(o)]B),max1≤l≤j H(i, j−l)−g(l), H(i−

61

1, j − 1) + c(xi, yj))]B. Server A gets this maximum value and stores
it as [H(i, j)]B, server B learns nothing during this subroutine.

6. At the end of the last round, server A has computed M(n,m) =
[H(n,m)]B. This is the Smith-Waterman similarity of strings x and y,
encrypted under server B’s key. M(n,m) is used to compute the sim-
ilarity weight su,f according to Equation 5, which is stored at server
A as [su,f]B for future reference. The user, friend and server B do not
obtain this (encrypted) Smith-Waterman score or similarity measure.

6.3.9 Analysis and Complexity of the Similarity Protocols

For the similarity computation (edit distance or Smith-Waterman) and the
subprotocols, security again derives from the original protocols on which
they were based [RS10] [JKS08] [EFG+09]. Using the composition theorem
[Gol05] again, the edit distance and Smith-Waterman protocol are secure in
the malicious user model.

For the new substitution cost protocol, the complexity for user as well
as server stays O(1) for both computation and communication. For the new
minimum-finding protocol (or the altered maximum-finding protocol), the
complexity for communication and computation is now O(l), where l is the
bit-length of the inputs.

The complexity of these subroutines translate directly into the complex-
ity analysis for the edit distance and Smith-Waterman protocols in the mali-
cious extension. The complexity for the protocols can be found in Figures 12
and 13.

Server B Server A

step comp comm comp comm

1. - - O(max(n,m)) -
2. O(n ·m · l) O(n ·m · l) O(n ·m · l) O(n ·m · l)

Figure 12: Complexity of the Edit Distance Protocol for two servers (mali-
cious user model)

62

Server B Server A

step comp comm comp comm

1. - - O(max(n,m)) -
3. O(m · n) O(n ·m) O(m · n) O(n ·m)
4. O(m2 · n2 · l) O(m2 · n2 · l) O(m2 · n2 · l) O(m2 · n2 · l)
5. O(m · n · l) O(m · n · l) O(m · n · l) O(m · n · l)

Figure 13: Complexity of the Smith-Waterman Protocol for two servers
(malicious user model)

6.3.10 Offline Recommender Protocol in the Malicious User Model

Here we present an extension to the protocol discussed in section 6.2.7, so
that the solution for offline friends by Jeckmans et al. [JPH13] now works
in a setting with malicious users. An overview of the protocol can be found
in Figure 14. Before the run of the protocol, for all friends of the user,
similarities between the user and the friend su,f have been computed by
server A and server B and stored under encryption of server B at server A,
using one of the protocols presented in section 6.3.4.

The same input is used as before in the semi-honest user case. Instead of
re-encrypting the shares Tf , Uf for the user, server A now re-encrypts these
shares for server B. Server A has the similarities between the user and his
friends, encrypted under server B’s key.

63

Server B: Server A:
(PKB, SKB, PKA, PKU , PREPKB, PRESKB) (PKA, SKA, PKB, PKU)

∀1 ≤ f ≤ F u :
Sf , Vf , [[Uf]]PREPKf

[[Tf]]PREPKf
, RKfB, [su,f]B

1. ∀1 ≤ f ≤ Uf
←− [[Tf]]PREPKB

, [[Uf]]PREPKB

[[Tf]]PREPKB
, [[Uf]]PREPKB

Tf , Uf

2. ∀1 ≤ f ≤ Uf
←− [su,f + bf]B

[su,f +
bf]B, [−bf]A, [−bf]U , [su,f]U

[su,f]A
[su,f]U −→

[su,f]U

3. ∀1 ≤ d ≤ D
[zd]U =

∑Fu
f=1[su,f]U · tf,d [ad]U =

∑Fu
f=1[su,f]U · sf,d

−→
[zd]U

4. ∀1 ≤ d ≤ D
[gd]A =

∑Fu
f=1[su,f]A · uf,d [hd]B =

∑Fu
f=1[su,f]B · vf,d

[gd + σ1,d]A = [gd]A + σ1,d −→
[gd + σ1,d]A, [−σ1,d]B

5. ∀1 ≤ d ≤ D
[nd]U = [zd]U + [ad]U

[gd]B = [−σ1,d]B + (gd + σ1,d)
[ed]B = [gd]B + [hd]B

6. ∀1 ≤ d ≤ D
[ed]B

←− [ed · σ2,d]B = [ed]B · σ2,d
[ed · σ2,d]B, [σ−12,d]A

[ed · σ3,d]A =
ed · σ2,d · [σ−12,d]A · σ3,d

−→

[ed · σ3,d]A, [σ3,d]U
e−1d · σ

−1
3,d

[e−1d]U = e−1d · σ
−1
3,d · [σ3,d]U

←− [pu,d]U = [e−1d]U · [nd]U
[pu,d]U

Figure 14: Recommender Protocol for offline friends in the malicious user
model 64

1. Before the start of the actual offline recommender protocol, the main
server, server A, will act as a proxy by re-encrypting the shares Tf and
Uf for server B. He translates the encryptions under key PREPKF ,
belonging to the friend, to encryptions under server B’s key PREPKB,
using the re-encryption key RKfB.

2. Server A blinds the encrypted similarity [su,f]B with blinding factor
bf . He sends the blinded similarity along with the unblinding factors
[−bf]A, [−bf]U to server B. Server B can now compute the similarity
under encryption with server A’s key as well as the user’s key to get
[su,f]A and [su,f]U . Server B sends [su,f]U to server A, who needs this
value in the next step of the protocol.

3. For each drug for which a recommendation needs to be generated,
server A and server B compute their shares of the sum of ratings mul-
tiplied with the similarity between user and friend. Server B computes
the value [zd]U =

∑Fu
f=1[su,f]U · tf,d, using the similarity that he re-

ceived during step 1 and his share of the friend’s rating vector. Server
B computes [ad]U =

∑Fu
f=1[su,f]U · sf,d. Together, the values zd + ad

evaluate to nd =
∑Fu

f=1 su,f · rf,d. Server B sends [zd]U to Server A.

4. In a similar manner, the servers compute their shares of the normal-
ization sum. Server B computes [gd]A =

∑Fu
f=1[su,f]A · uf,d and sends

it to Server A after blinding it additively with blinding factor σ1, d,
along with the unblinding factor [−σ1, d]B. Server A simultaneously
computes the value [hd]U =

∑Fu
f=1[su,f]U · vf,d.

5. Server A now computes the sum-value [nd]U = [zd]U + [ad]U and the
normalization-value [ed]B = [gd]B+[hd]B. To compute the normalization-
value, server A first decrypts [gd + σ1, d]A and adds the unblind-
ing factor, to get [gd]B. The normalization-sum [ed]B evaluates to∑Fu

f=1[su,f]B · qf,d and needs to be inverted before the drug prediction
can be made. The only problem that might occur here is when ed is
equal to 0. This would occur when none of the user’s friends have
rated drug d. However, the likelihood of this situation is negligibly
small.

6. Server A uses multiplicative blinding to blind [ed]B and obtains [ed ·
σ2, d]B. He sends this, along with unblinding factor [σ2, d−1]A to
server B. The blinding can only be removed under server A’s key.
Server B uses the unblinding value to obtain [ed]A and adds his own

65

multiplicative blinding value σ3,d ∈ Z∗t . He sends the result to server
A along with the unblinding value [σ3,d]U , which can only be removed
under encryption of the user’s key. Server A decrypts the message to
ed · σ3,d. He inverts this value to e−1d · σ

−1
3,d and removes the blinding

under encryption with the user’s key. Now the server has [e−1d]U . He
computes the recommendation [pu,d]U = [nd]U · [e−1d]U and sends it
to the user. The user can decrypt this and uses a look-up table for
divisions (refer to section 4.5) to get the recommendation value.

6.3.11 Analysis and Complexity of the Recommender Protocol

For the complexity of this protocol, refer to Figure 15. With regards to the
SWHE encryption scheme, two multiplications are necessary to carry out
this protocol.

Server B Server A

step comp comm comp comm

1. O(Fu) - O(Fu) O(Fu)
2. O(Fu) O(Fu) O(Fu) O(Fu)
3. O(Fu ·D) O(D) O(Fu ·D) -
4. O(Fu ·D) O(D) O(Fu ·D) -
5. - - O(D) -
6. O(D) O(D) O(D) O(D)

Figure 15: Complexity of the Offline Recommender Protocol for two servers
(malicious user model)

6.3.12 Role of the Proxy Server

The second server that was introduced for the malicious model, referred to
as server B in the discussion of the protocols, has the task of assisting the
main server in computations.

For the edit-distance and Smith-Waterman score computations, this
proxy server is merely involved in the execution of the malicious minimum-
finding and substitution-cost protocols. In the malicious substitution-cost
protocol, the proxy server’s task is to pick one of the terms that the main
server sends to him and send it back after re-encrypting it. All other com-
putations are done by the main server. The operations performed by the
proxy server are outsourced by the main server with the purpose to preserve
privacy, the proxy server does not need to perform intensive computations.

66

In the malicious minimum-finding protocol, the proxy server assists by
performing modulo reductions (for which the values need to be decrypted),
checking for zero-values in a collection of values sent to him by the main
server and outputting corresponding encrypted bits. In this case, the op-
erations performed by the proxy server are merely to preserve privacy as
well.

In both cases, the main workload lies at the main server, the proxy server
is only involved in those steps of the protocol that can’t be performed by the
main server alone without losing the privacy-preservingness of the protocol.

The recommender protocol in the malicious user model also uses the exis-
tence of the second server to outsource operations that cannot be performed
by the main server alone without losing security. The proxy server computes
sums based on his secret shares and multiplicatively blinds a value so that
the main server can decrypt and then invert it. All other computations are
done by the main server.

We can conclude that the role of the proxy server is therefore that of a
security provider. This underlines the previously made statement that the
second server can be a lightweight server that is only needed for security.
The proxy server could be supplied by a company specialising in providing
security services and in which some degree of trust can be placed. Having
a second server whose only goal is to provide security in combination with
a main server that is governed by a party (such as a hospital) that needs to
maintain an image of being trustworthy further strengthens our grounds for
the non-collusion assumption between the two servers in the malicious user
model.

6.4 Rating Updates

As users change their ratings for drug treatments, their rating vectors need
to be updated accordingly. A privacy-preserving protocol is needed for this.
The main server, who stores the ratings, should not find out what rating
is being updated nor what the new rating value is. Since malicious users
are now allowed in our recommender system, users may try to inject false
ratings that lie outside the range of permitted rating-values. The range of
permitted rating values can be defined as: (rmin, . . . , rmax). Therefore, the
server should be able to do some checks on the new rating value, to make
sure that it is a valid rating.

The following protocol (refer to Figure 16) offers a solution to the posed
problems. It presents a privacy-preserving way to update users’ rating vec-
tors (which are stored at the main server in two secret shares) and indicator

67

vectors. We discuss in detail the way to update a rating vector. Translation
to the case of updating an indicator vector is very simple, the only difference
is the values that an element in the indicator vector can take (either 1 or
0). The same protocol can therefore be used for the indicator vector.

The main server, Server A, has the user’s current rating vector shares
Su and [[Tu]]pru (where pru is the public key of user u in the proxy re-
encryption scheme, likewise prb will occur during the protocol as the public
key of server B and prub will occur as the re-encryption key from user u to
server B). Together, these shares form the rating vector Ru = Su + Tu. We
set the length of these vectors to be k ∈ N. The requested update is for the
new rating value [rx], where the index x lies between 1 and k. Before the
start of this protocol, the user has put in the update request to the main
server, supplying the new rating value [rx]B and the index at which the
update needs to take place, [x]B. The value [rx]B has to be split through
additive secret sharing during the protocol and both secret shares to the
user’s rating value have to be updated accordingly at the right index.

68

Server B Server A
(PKA, PKB, SKB, prb, prskb, pru) (PKB, PKA, SKA, prb, pru, prub)

[[Tu]]pru, Su, [rx]B, [x]B

1. ∀1 ≤ i ≤ rmax − rmin

←− ai = [(rx−(rmin+i−1))∗δ1]B
ai

(rx − (rmin + i− 1) ∗ δ1
?
= 0 −→

true/false

2.
sx, a

[tx]B := [rx − sx]B, [x+ a]B
←−

[x+ a]B, [tx]B, [sx]A
x+ a, tx
y := (x+ a− 1)(mod k) + 1

3.
σ1 := {σj,1}∀1 ≤ j ≤ k σ2 := {σj,2}∀1 ≤ j ≤ k

[[Tu]]prb
←− [[T ′u]]prb = c([Tu]prb, a)

[[T ′u]]prb
T ′′u := Tu + σ1
T ′′u,y = tx + σ1,y −→

T ′′u
T ′′′u = c(T ′′u + σ2,−a)

←− [S′u]A = c([Su]A, a)
[S′u]A, T

′′′
u

[[]Tu]]pru = [[T ′′′u]]pru, [S
′′
u] :=

[S′u − σ1]A
[S′′u,y]A = [sx − σ1,y]A −→

[Tu]pu, [S
′′
u]A

4.
Su = c(S′′u − σ2,−a)

Figure 16: Rating Update Protocol (malicious user model)

69

1. To check whether user u has put forth a valid update request, server
A subtracts all valid rating values in the range rmin, . . . , rmax from rx
and blinds the resulting values multiplicatively with a blinding value
δ1 ∈ Z∗t . He sends these values [(rx − (rmin + i − 1)) ∗ δ1] for 1 ≤
i ≤ rmax− rmin to server B. Server B decrypts these values and checks
whether any of them evaluate to 0. If none of the values evaluate to 0,
then the user has supplied a false rating which does not lie in the valid
range of rating values. In this case, server B sends ”false” to server
A, who terminates the protocol. Otherwise, server B sends ”true” to
server A and the protocol continues in step 2.

2. Server A generates a random value sx ∈ zt and a random integer a
between 1 and k. He uses the properties of SWHE to get [tx]B, which
is the updated share for server B and to blind the index x at which
the update needs to take place, resulting in the value [x + a]. a also
determines the circular rotation that will be applied in step 3. Server
A sends [x+ a]B and [tx]B to server B. He encrypts the random value
sx to [sx]A, which will be used later by Server B to update server
A’s rating share. Server B receives and decrypts. Lastly, server B
computes the new index value y, at which the rating update needs
to take place for both secret shares to the user’s rating vector. We
subtract 1 before the modulo operation and add it after, because our
indexes range from 1 to k. If the circular shift by a is such that x+ a
evaluates to 0, we want to have an index of k.

3. Server A and B simultaneously generate vectors of random values σ1
and σ2 ∈ zt. Server A applies the circular shift by a to the proxy
re-encrypted share Tu, which he re-encrypts to server B using the re-
encryption key prub and sends it to server B, who decrypts his share
using his secret key prskb and adds the random vector σ1, to blind the
values. Server B now replaces the y-th position of the share with tx
and subtracts the randomness σ1,y here as well and sends the resulting
vector T ′′u to server A in plaintext. Server A undoes the circular shift
and adds in his own randomness σ2. He sends the result, T ′′′u back to
server B, who encrypts the updated share under proxy re-encryption
with the user’s key pru. For the share Su, server A uses homomorphic
encryption under his own key to encrypt the share and then applies
the circular shift to the result. He sends [S′u]A to server B. Server B
replaces the y-th position of the encrypted share with sx and subtracts
his randomness σ1 from all terms. The result is sent back to server A.

70

4. Server A subtracts his own randomness σ2 and then removes the cir-
cular rotation from S′′u, resulting in the updated share Su. After this
operation, server A has the updated and proxy-encrypted secret share
[Tu]pu, where at the x’th position the value of tx has been added and
has the updated plain share Su, where at the x’th position the value
of sx has been added.

Privacy

We now look at the privacy of the presented protocol for rating updates. Re-
call that the two servers in the protocol are semi-honest and non-colluding.
The user who supplies the new rating rx at position x can be malicious. The
user may therefore try to supply a ’false’ rating, that lies outside the bound-
aries of permitted values rmin and rmax and the two servers will try to learn
the value of rx or the position x at which the update takes place. To prove
security of the protocol, it should be clear that the servers are not be able
to distinguish between a real run of the protocol and a simulation of one,
according to the ’real-vs.-ideal’ framework [Gol05]. Any messages that the
servers receive during a protocol run should therefore be indistinguishable
from random.

Privacy of the user towards any of the other users in the system is never
in danger, since they are not involved in the protocol. They receive no
output from the protocol.

The value rx, which is the new rating, is sent under somewhat homo-
morphic encryption to server A. Since the encryption is semantically secure,
server A cannot distinguish this message from a random value. The same
holds for the message x containing the index at which the update has to
be performed. For server B, who can decrypt these messages, the values
are first transformed before he receives them. The actual value of the new
rating is split at the beginning of the protocol into two shares: server A sub-
tracts a random share-value sx under somewhat homomorphic encryption
from the encrypted update value rx, so that server B does not get the actual
new rating value, but only an additive share tx which contains randomness
chosen by server A. Because of this, the message is indistinguishable from
random in the eyes of server B and can therefore be simulated from his point
of view. Server A encrypts the random sx under encryption with his own
key, so that server B can add this to server A’s share at the right time, but
once again, because of the semantic security of the encryption scheme, this
message can be simulated from server B’s point of view.

Regarding the secret shares Tu and Su, which are additive secret shares to

71

the user’s rating vector Ru for which an update is requested, we have indis-
tinguishability of these shares from random vectors throughout the protocol,
since they are additive secret shares and Tu is only known to server B and
Su is only known to server A. The servers do not collude and therefore are
not able to recover Ru.

The changes made to Tu and Su during the protocol run, are done in
such a way that at no point any of the two servers can distinguish the secret
shares from vectors of random elements. Server A applies a circular shift
with a random value a to the secret share Tu, before re-encrypting it to
server B using the proxy re-encryption key from the user to server B. Since
a circular shift with a random value is applied, server B cannot decipher
at which index x he will perform the update to the secret share. To make
sure that the update is performed at the right place, the index at which the
update has to be performed is also translated according to the circular shift.
The index message is indistinguishable from random by server A, because it
is encrypted when server A receives it. After server A translates it according
to the circular shift, server B receives it and can decrypt it, but he can at
this point also not distinguish it from a random message, because of the
added random factor that determines the circular shift.

Server B updates his rating share Tu with tx and then adds in random
additive blinding values to all other positions in Tu, after which he sends it
to server A in plaintext. Because of the blinding with random values, server
A cannot distinguish the share from a vector of random values. Server A
adds in his own randomness before removing the circular rotation, so that
server B cannot decipher the location at which the update was made.

The two random vectors that are added to the share Tu, need to be sub-
tracted from the share Su, otherwise the protocol does not work correctly.
This is done during the protocol, partly under somewhat homomorphic en-
cryption, so that server B can subtract his randomness from Su without
needing server A’s plaintext secret share to do so. Because this subtraction
takes place under somewhat homomorphic encryption, server B cannot dis-
tinguish the old or the new value from an encryption of a random message.

We can conclude that during the full run of the protocol, the (encrypted)
values Tu and Su are indistinguishable from vectors of random messages and
can therefore be simulated from the points of view of both server A and
server B.

With regards to the user who requests an update, there is a chance that
the user inserts a false rating value, where rx lies outside the allowed range
of values. The protocol takes care of this by checking the value. Server
A sees the encrypted rx and subtracts all allowed values from it, under

72

somewhat homomorphic encryption. He cannot distinguish any of these
messages from random, due to the semantic security of the used encryption
scheme. These values are then blinded multiplicatively and sent to server B.
Server B decrypts the messages and checks them zeroes (if no zero occurs,
the rating is false). Because of the multiplicative blinding, server B cannot
distinguish any of the received messages from random and from his point of
view, this part of the protocol can therefore be simulated.

We conclude that the protocol is privacy-preserving. All messages that
are received during the protocol are either indistinguishable from random to
the point of view of the receiver because they are encrypted with a seman-
tically secure encryption scheme, because they are secret shares or because
they are blinded either additively or multiplicatively with random values.
The user receives no output from the protocol and is caught if he submits
a false rating. The two servers cannot distinguish a real run of the protocol
from a simulation.

6.5 Other Application Areas

We have now put forth the design of a privacy-preserving DNA-based so-
cial recommender system in the setting of personalized medicine, where
drug treatment recommendations are generated based on DNA similarity
between patients. Other application areas for the recommender system that
we described and implemented also exist.

An example of an application area in which the recommender system
might be interesting, is an online dating service where individuals are matched
based on their genetic compatibility. A company that provides such a ser-
vice is GenePartner3. Individuals wishing to use their service are asked
to present a sample of their DNA, which is stored by the company. Hav-
ing privacy-preserving DNA matching and privacy-enhanced recommender
protocols in a social network of people who use the dating service (where
matches could be made based on genetic compatibility and on ratings by
others) would be useful to the users of such a service.

6.6 Limitations in the Malicious User Setting

To accommodate for the existence of malicious users, we introduced a second
server that is semi-honest. Users are excluded from all protocol operations
(except for setting them in motion by requesting a recommendation) and
are only required to provide input during the registration phase. Users then

3http://www.genepartner.com/

73

http://www.genepartner.com/

provide DNA-material to the main server (the secret shares to the indicator
collection: (Xu,i) and [(Yu,i)]U , the encrypted indicator collection [Iu,i]U
and the encrypted genome sequence [Gu]U). Users also provide to the main
server a re-encryption key for the proxy server and their rating vector with
the accompanying indicator vector, both of which are split into secret shares.

Even though all user data which is stored by the main server is stored
either encrypted or as secret shares, where one share is encrypted, quite a
lot of user data is stored at the server and so quite a lot of trust is placed in
the server. When both servers follow protocol, neither server will ever know
any of the user’s confidential information, since neither server has access
to the unencrypted information or to both secret shares that form a piece
of data. However, if the servers were to collude, all user data would be
discovered: the genome sequence, the rating vector and the accompanying
indicator vector.

This is no different from the security setting in which users were required
to be semi-honest: then, if the user and the server were to collude, they could
also retrieve the user’s friends’ dna-material and rating vectors.

However, this means that the security of the malicious user model (also)
builds upon a non-collusion assumption, which is a limit to the security. The
security setting where two servers are required to be semi-honest and non-
colluding is stronger than the security setting in which users are also semi-
honest, but it would be even better to have a recommender system in which
every entity could be malicious, but could still not recover any information
about any of the other entities. To achieve this security requirement, we
would need to have protocols in which all operations on the users’ data
could be carried out without having to share the data between two servers.
This is a current limitation of the recommender system and it remains future
work to study whether this security requirement can be achieved efficiently.

74

7 Experimental Results

To analyze the performance of our protocols, we implemented prototypes in
C++. We used several libraries as building blocks for our system, especially
for the somewhat homomorphic encryption and for the use of elliptic curves
in the proxy re-encryption scheme.

The implementation of the system consists of prototypes for: the edit dis-
tance protocol, the substitution cost protocol, the minimum finding protocol,
the smith-waterman distance protocol and the offline recommender protocol.
All of these protocols have been implemented for both the semi-honest user
model as well as the malicious user model, except for the minimum-finding
protocol, of which only the malicious version was implemented. The reason
that the minimum-finding protocol in the semi-honest model was not imple-
mented is that there were some implementationwise technical requirements
that made an actual implementation impractical. When using a group of
integers to represent the messages, there will be overflows of integers that
wrap around the group. However, the protocol that our version of minimum-
finding in the semi-honest model was based on, uses comparisons that will
give incorrect results when wraparound happens, which will happen often.
A very large message space would be needed to solve this problem, but this
would lead to a very impractical implementation.

We also implemented the rating update protocol and the proxy re-
encryption scheme by Ateniese et al. [AFGH06], which is used in the imple-
mentation of the recommender protocols.

All prototypes have been implemented so that for each party in the
protocol, steps are taken sequentially on the same machine. All protocols
have been implemented in a single thread and have been tested on a virtual
machine with a 2x Intel Xeon CPU at 2.33 GHz with 8GB of RAM.

7.1 Random data for tests

For testing the similarity computation protocols, we generated random DNA-
sequences represented with the integers 1, 2, 3, 4 of different lengths. For
testing the recommender protocols, we altered the existing datasets that
were used by Jeckman’s et al. [JPH13] slightly to fit our input requirements,
in order to run our data on the same ratings that were used for the evalua-
tion of the performance of their recommender system. In order to test the
rating updates protocol, we generated artificial user rating vectors where
the ratings lie between 1 and 5. This rating range was chosen out of con-
venience, but does have some impact on the efficiency of the protocol, since

75

the two servers compare an updated rating value to all possible rating values
at the beginning of the protocol to see whether the supplied and encrypted
rating value is legitimate (and does not lie outside the permitted rating
value boundaries). The impact on efficiency will not be very great however,
because this process is linear in the amount of permitted rating values. This
range of allowed rating values is also a good fit for most recommender sys-
tems, it would be a good representation of a rating system where users give
stars to items for example.

7.2 Libraries

SWHE-encryption

For the practical implementation of our recommender system, we had the
option to choose from several libraries that implement an SWHE scheme.
At an early stage of the research, we considered the HElib [HS14], which
implements the BGV-scheme [BGV11]. However, later on we chose to use
the BV-scheme [BV11] as a basis for the SWHE, since it provided some
advantages regarding our system design (the main one being that we only
needed a relatively small message space for our system). Since we chose the
BV-scheme, there were two possible options for a cryptographic library. The
first was an open-source library written in Java: the jLBC4. The other option
was the BV-implementation written by Arjan Jeckmans5, which is based on
the GMP6 and FLINT7 libraries. After trying out both implementations, it
was apparent that the code written by Jeckmans was faster than the jLBC
library, which is why his code was chosen to use as the BV-implementation
for our recommender system.

Elliptic Curve Cryptography

For our implementation of the proxy re-encryption scheme, we used the
Pairing-Based-Cryptography Library (PBC) 8, which is a free C-library
built on GMP that allows us to perform cryptographic operations on el-
liptic curves.

4http://gas.dia.unisa.it/projects/jlbc/
5http://scs.ewi.utwente.nl/other/jeckmanscode/
6https://gmplib.org/
7http://flintlib.org/
8http://crypto.stanford.edu/pbc/

76

http://gas.dia.unisa.it/projects/jlbc/
http://scs.ewi.utwente.nl/other/jeckmanscode/
https://gmplib.org/
http://flintlib.org/
http://crypto.stanford.edu/pbc/

7.3 Choice of Parameters

BV-scheme

For the choosing the parameters for the BV-scheme, we follow the guidelines
by Naehrig et al. [NLV11]. Theorem 3.3 from their paper gives a lower limit
for the prime q that is used in the scheme as the ciphertext modulus, through
the following equation:

q ≥ 4 · (2tσ2
√
n)D+1 · (2n)D/2 ·

√
A (8)

If the parameters used comply with this equation, then, according to the
theorem, the scheme will work correctly and securely under the Ring-LWE
assumption. Here, M is the allowed number of multiplications, A the allowed
number of additions, n is advised to be a power of 2, and t is the plaintext
space modulus. Naehrig et al. also give a relation between the parameters
with which the security of the resulting BV-scheme can be computed. We
use their proposed parameter ε = 2−32 as the success probability of the
attacker in the distinguishing attack when computing the optimal runtime
of the attacker.

For the edit distance computations that we carry out, if we for example
fix D = 3, A = 1000, t = 1021, n = 4096, this results in a minimal q
of 119 bits with a resulting security of the attacker logarithm runtime in
terms of basic CPU operations of 2144. Refer to Table 6 to view the selected
parameters for the similarity computations and their resulting security.

We choose a rather small message space for the edit distance computa-
tions, since the computations are all performed on relatively small integers
that do not exceed the length of the compared DNA-sequences by much.
The parameter t is therefore dependent on the lengths of DNA-sequences
with which we experiment. Refer to section 7.5 for our motivation for the
selected values for t.

For the number of allowed multiplications, we set M = 3, since this is
the number of multiplications needed for our implemented system to work
correctly.

t D A n log2(q) security (in bits)

1021 3 1000 4096 119 144
1021 3 1000 8192 122 386

Table 6: BV-scheme parameters for similarity computations - edit distance

77

We now have two sets of parameters with different security levels of the
attacker logarithm runtime and different message spaces with which we run
experiments. Both of these parameter sets fulfill the requirements set by
Naehrig et al. [NLV11], who state that the security level must be at least
128 in order to have a correctly working secure scheme.

After some initial runs of the Smith-Waterman protocols on the param-
eters in table 6, we sometimes get incorrect results. This is due to noise
overflow in the ciphertexts that are computed during the protocol runs,
since there are more subroutines of the protocols used for every computa-
tion of a matrix value. Therefore, for the Smith-Waterman computations,
we specify parameter sets with slightly larger keys to solve this problem,
which somewhat reduces the security parameter. The parameter sets that
we use are the following, found in table 7.

t D A n log2(q) security (in bits)

1021 3 1000 4096 122 138
1021 3 1000 8192 126 370

Table 7: BV-scheme parameters for similarity computations - Smith-
Waterman distance

For the recommender system protocols and the rating update protocol,
we again determine different keyparameters. Since the number of needed
multiplications is lower for these protocols, we can fix M = 2. However, the
message space must be much larger for these protocols, to accommodate for
a large number of users in the system. Table 8 shows the different parameter
sets which will be used for the experiments of these protocols.

t D A n log2(q) security (in bits)

5000011 2 1000 4096 126 130
5000011 2 1000 8192 129 358

Table 8: BV-scheme parameters for recommender computations

In all three cases, we have two key parameter sets where the first has a
normal security level, of respectively 144 or 138 and 130 bits of the attacker
logarithm runtime, and where second keyset has a very high security level
of respectively 386 or 370 and 358 bits of the attacker logarithm runtime.
We will compare the runtimes of the protocols on these two key parameter

78

sets, to see what effect the security level has on the efficiency of the system.

Proxy re-encryption

For the proxy re-encryption scheme, a symmetric pairing is required. We
use parameters for the elliptic curve provided by the PBC, namely type A
pairings. This type of pairing provides a base field size of 512 bits 9. The
parameters for the elliptic curve are: prime q (the order of the field used)
is 512 bits and r = 730750818665451621361119245571504901405976559617,
which is the order of the subgroups used for the pairing and is a Solinas
prime. The elliptic curve that is used is Y 2 = X3 +X. Using these param-
eters, we achieve a security of 256 bits for the proxy re-encryption, which
is a good level of security according to the NIST recommendations for key-
lengths10. The runtimes (in milliseconds) on random data for the first- and
second-level decryption and encryption operations, for the re-encryption and
for key-generation (two public/private keypairs and a re-encryption key) of
our implementation are given in table 9.

Operation n Runtime (ms)

Encryption (1st) 10.6935
Decryption (1st) 0.238691
Encryption (2nd) 2.52118
Decryption (2nd) 1.4941

Re-encryption 1.38101
Keygen 7.65707

Table 9: Proxy re-encryption performance

The scheme is very efficient, since all operations take only milliseconds.
We use the implementation of this scheme for these parameters in the im-
plementation of other protocols where proxy re-encryption is used.

7.4 Timings of the Protocols

7.4.1 Similarity Computations

The edit distance protocols and Smith-Waterman protocols were tested on
inputs of different sizes, using the given key parameter sets. In the tables

9http://crypto.stanford.edu/pbc/times.html
10http://www.keylength.com/en/4/

79

http://crypto.stanford.edu/pbc/times.html
http://www.keylength.com/en/4/

below, the runtimes for these protocols are shown. Runtimes are specified
in seconds.

Input size n SH KS1 (s) Mal KS1 (s) Mal:SH ratio SH KS2 (s) Mal KS2 (s) Mal:SH ratio

10 382.014 859.754 2.25 464.716 1135.83 2.44
20 1638.76 2101.08 1.28 3830.38 4915.43 1.28
50 11603 14998.4 1.28 − − -

Table 10: Execution times of Edit Distance Protocol

The execution speed for the edit distance protocol is in the order of
minutes for input lengths of 10, in the order of thousands of seconds for
input lengths of 20 and ten thousands of seconds for input lengths of 50.
For the keyset one, in both the semi-honest and the malicious protocol, this
comes down to approximately half an hour for length 20. For the larger
keyset, it takes more than an hour. In the case of an input length of 50, the
computation takes hours in the semi-honest case. This inefficiency is largely
due to the key parameters that are needed to enable three multiplications
during the protocol and due to the fact that the edit distance protocol is
a recursive protocol, so the growth of the execution time is exponential in
the input size. The difference between runtime of the semi-honest and the
malicious version of the edit distance protocol differs for different input sizes,
but we see a factor of 1.28 for lengths 20 and 50. For a small input size of
10, the difference is greater, which may be explained by the overall runtime
being smaller which would lead to greater variation in timings of specific
protocol runs. It is clear that the malicious version of the protocol is slower
than the semi-honest version, which leads to especially inefficient timings on
large inputs.

The results for the edit distance protocol on input length 50 for keyset
2 are missing from this table. Running the protocol on these specific pa-
rameters gave incorrect results, due to noise overflow and would have to be
run again on larger parameters such as were set for the Smith-Waterman
protocol. However, this would not give an accurate comparison to the other
timings in the table, which is why these timings were left out.

Even though the performance of the semi-honest and malicious edit dis-
tance protocols are not very efficient, these computations can be done on a
server that has more resources than the machine on which these protocols
were tested for performance. More importantly, the computations can be
done in an off-lne phase during the recommender system set-up, which is
also how we designed our recommender system, to allow for some inefficiency
in the similarity computations.

80

Input size n SH KS1 (s) Mal KS1(s) Mal:SH ratio SH KS2 (s) Mal KS2 (s) Mal:SH ratio

10 2027.72 2324.37 1.15 5381.38 5882.59 1.09

Table 11: Execution times of Smith-Waterman Distance Protocol

The execution times for the Smith-Waterman protocol are much slower
than those for the edit distance. This is to be expected, as the complexity
for the Smith-Waterman protocol is a factor of n∗m greater than that of the
edit distance protocol for some of the protocol steps, due to the recursive
minimum-finding step on all previous column or row values in the Smith-
Waterman score matrix. Where the inefficiency of the edit distance protocol
could be tolerated as the protocol is ran during an offline set-up phase,
the inefficiency of the Smith-Waterman protocol on sequences as small as
length 10 would be a deterrent from using this implementation in a real-
life application of the system and would be a good argument for using the
edit distance as a similarity score instead of the Smith-Waterman distance.
The difference between the malicious and the semi-honest versions of the
protocol is not very great this time, the malicious protocol is only a factor
of 1.15 slower than the semi-honest version on keyset 1 and a factor of 1.09
slower on keyset 2. We did not run the Smith-Waterman protocols on larger
input sizes, since the results on sequences of length 10 already proved very
inefficient, on keyset 1 the execution time was more than half an hour and on
keyset 2 the execution time was more than an hour. Running the protocols
on larger input lengths gave wrong results, which is again due to noise
overflow in the ciphertexts. An option to remedy this would be to change
the keyparameter sets even more to allow for more homomorphic operations.
We decided against this, since changing the key parameters to enable the
protocol to run on bigger inputs would only decrease the performance more.

7.4.2 Recommender Protocol

We run experiments on the previously mentioned key parameter sets for
different input sizes for the number of friends F and the number of drugs D.
All results are runtimes for generating D recommendations. An initial run of
both the semi-honest and the malicious user protocol for the recommender
gives the runtimes shown in table 12. The used input sizes were F = 10 and
D = 10. Runtimes are given in seconds.

81

t M A n log2(q) Runtime SH (s) Runtime Mal (s)

5000011 2 1000 4096 126 6.08213 4.96252
5000011 2 1000 8192 129 14.3631 13.5413

Table 12: Execution times for different keysets on server without proxy re-
encryption, F = 10,D = 10, where F is the number of friends, D is the
number of drugs

For the different keysets, we now run the recommender protocols on
various larger input sizes. We use the same input sizes as in the research by
Jeckman’s et al. [JPH13], namely: F = 50, 100, 200 and D = 500, 1000, 2000.
The results of these runs can be found in table 13.

F D SH KS1 (s) Mal KS1 (s) SH:MAL ratio SH KS2 (s) Mal KS2 (s) SH:MAL ratio

50 500 335.132 318.170 1.05 738.722 705.927 1.05
100 500 522.174 508.343 1.03 1134.356 1108.950 1.02
200 500 904.907 887.699 1.02 1899.185 1878.125 1.01
50 1000 641.521 615.945 1.04 3306.858 1823.016 1.81
100 1000 995.472 975.940 1.02 5011.672 2798.317 1.79
200 1000 1712.765 1687.519 1.01 6539.349 4432.331 1.48
100 2000 3015.882 2354.550 1.28 11081.609 7764.834 1.43
200 2000 4746.540 3801.570 1.25 13552.790 10818.180 1.25

Table 13: Execution times in seconds of recommender protocols, including
proxy re-encryption. Columns 1 and 2 show the number of friends and drugs.
Columns 3 and 4 show the execution times of the semi-honest and malicious
protocols on keyset 1, columns 6 and 7 show the execution times of the
protocols on keyset 2. Columns 5 and 8 show the ratio between semi-honest
and malicious protocols on keysets 1 and 2 respectively.

The execution times are given in seconds. For all input sizes for keyset 1,
the protocols run in the order of minutes on average. For a very large input
size of 200 friends and 2000 drugs, for example, the malicious protocol will
take approximately one and a half hour to compute the recommendations
for all of these drugs. In comparison, on an input size of 50 friends and 500
drugs, it only takes approximately six minutes for the malicious protocol to
compute the recommendations. What is interesting is that the semi-honest
protocol is slower than the malicious protocol in all cases. For small input
sizes, the difference in runtime is small, but this difference becomes greater
on larger inputs. This can be explained by the fact that, though both pro-
tocols have the same complexity, except for in the first step of the protocol
where there is more communication overhead in the malicious protocol, in

82

steps three and five, the semi-honest protocol requires more computations
over the number of drugs D than the malicious protocol. When the drug
parameter rises, this difference becomes apparent by an increase in runtime
in the semi-honest protocol.

The following figures 17181920 show the runtimes in minutes for the
semi-honest and malicious protocols on both keysets.

Figure 17: Semi-Honest Recommender Runtimes on keysets 1 and 2

Figure 17 shows the runtimes of the recommender protocol in the semi-
honest user model for keysets 1 and 2. There is an exponential growth in
runtime as the number of friends F and the number of drugs D increase.
The difference in runtime between keysets 1 and 2 increases much as the
input parameters grow, which is due to the larger keyparameters for keyset
2. For keyset 1, the protocol runs in under twenty minutes for most input
sizes (5 minutes in the best case for 50 friends and 500), but for large input
sizes of 1000 drugs and 100 or 200 friends, the protocol will take an hour or
longer to run, which would be too inefficient for a real-time application of
the recommender system. The timings for keyset 2 get inefficient faster, for
input sizes of 200 friends and 500 drugs and onwards, the protocol will take
half an hour to run in the best case and more than one hour in the worst
case.

83

Figure 18: Malicious Recommender Runtimes on keysets 1 and 2

The trend in growth of runtimes for the recommender protocol in the
malicious user model on both keysets is roughly the same as for the semi-
honest user model. The timings are better overall for the malicious version
of the protocol, for most input sizes up to 100 friends and 1000 drugs, the
protocol will run in less than 15 minutes on keyset 1 and will take more than
forty minutes to complete for large input sizes of 1000 drugs and 100 or 200
friends.

Figure 19: Semi-Honest and Malicious Runtimes on keyset 1

84

Figure 19 shows the difference in execution time between the semi-honest
and the malicious protocol on the first key parameter set. There is very little
difference between the execution times here, only for large input sizes of 2000
friends and 100 or 200 drugs does it become apparent that the semi-honest
protocol takes longer to execute.

Figure 20: Semi-Honest and Malicious Runtimes on keyset 2

On the second key parameter set, the difference is much clearer. Fig-
ure 20 shows the different runtimes for the semi-honest and the malicious
protocols for keyset 2. The timings for small input sizes are very similar,
but for inputs with more than 500 drugs, the semi-honest protocol performs
clearly worse than the malicious protocol.

The factor with which the semi-honest version of the protocol differs
from the malicious version are shown in table 13. An interesting observation
here is that the difference in execution time is almost negligible for small
parameter sets on both keysets, where the semi-honest protocol is 1 to 5
per cent slower than the malicious protocol. For an input size of 2000 drugs
however, however, we see a large jump in these execution times on keyset
1. Here, the semi-honest protocol is 28 and 25 per cent slower than the
malicious protocol for 100 and 200 friends respectively. On keyset 2, these
differences are even greater. For 1000 drugs, the semi-honest protocol is
approximately 80 per cent slower than the malicious protocol for 50 and
100 friends, but is only 48 per cent slower for 200 friends. The difference in
timings therefore becomes greater as the input sizes get larger and as the

85

key parameters get larger. The sudden jump in ratios can be explained by
the fact that the input parameters for F and D that are chosen are not
chosen linearly. For 2000 drugs on keyset 2, the semi-honest protocol is 43
per cent slower for 100 friends and 25 per cent slower for 200 friends. This
decrease in timing difference for keyset 2 on parameters of 1000 drugs and
200 friends or larger is an unexpected result. It is possible that the results
for 1000 drugs and 50 or 100 friends are outliers.

We do see a general decreasing trend in the ratios of the execution times
for a constant input size for the number of drugs and an increasing input
size for the number of friends. This holds for both keyparameter sets and all
possible input sizes for D. The reason for the execution times of the semi-
honest and malicious protocol to lie closer together when a larger number of
friends is taken for the recommendation generation, is that the difference in
computational work between the two versions of the protocol is mostly de-
pendent on the input size of D. When the number of friends F grows larger,
the influence of D becomes slightly smaller, thus resulting in a smaller dif-
ference between the execution times between the semi-honest and malicious
recommender protocol.

In general, we can conclude that the malicious protocol is more efficient
than the semi-honest protocol and that the difference in performance gen-
erally rises as the combined input size for the number of drugs and friends
used in the computation or the key parameter size grows larger.

7.4.3 Rating Updates

The rating updates protocol was performed on random rating vectors, where
R denotes the number of ratings in each vector. We chose a constant number
of users for testing the efficiency of the protocol and generated data for 50
users, since this factor does not influence the speed of the protocol (the
update takes place for one user only). We ran the protocol on both keysets
for R = 10, 100, 200, 500, 1000, 2000. The results given in table 14 show the
time needed to update one rating in a rating vector of size R for one user.
Runtimes are given in seconds.

86

R Runtime for KS1 (s) Runtime for KS2 (s) KS2
KS1

10 0.751304 1.77817 2.36678
100 6.10326 14.376 2.35546
200 12.0838 28.7247 2.37713
500 29.9851 716.828 2.39061
1000 60.3183 144.544 2.39635
2000 120.756 288.278 2.38728

Table 14: Execution times of rating updates protocol, including PRE.

The ratio of the runtime on keyset 2 divided by the runtime of the
protocol on keyset 1 is approximately 2.4 and is the same for different sizes
of the rating vector. The increase of security therefore slows down the
protocol by more than a factor of two.

For the increase in the number of ratings that is considered for the up-
date, we see a semi-exponential growth in the runtime of the protocol, for
both keysets. This can be seen in figure 21.

Figure 21: Rating Updates Runtimes

87

7.5 Example use case for Similarity Computations

An example of a situation where DNA similarities can be computed to de-
termine whether an individual is a carrier for a certain disease is found in
a research by Gordillo and Vega [GV08], who studied the autosomal reces-
sive disorder known as the Roberts Syndrome. This syndrome is caused
by mutations on the ESCO2 gene. Molecular genetic testing can identify
the risk of inheritance of the mutations that cause Robert’s syndrome in
a family. A number of 26 SNPs need to be examined in order to find all
possible mutations. This study motivates our choice for input DNA lengths
of 20 and 50; by using privacy-preserving DNA matching on relatively small
input lengths, a mutation such as one of the mutations on the ESCO2 gene
that causes Robert’s Syndrome could be tracked down.

88

8 Discussion and Conclusion

In this research, we designed a recommender system that incorporates privacy-
preserving DNA-matching into a social and privacy-preserving recommender
system. We studied techniques for privacy-preserving DNA-matching and
studied various types of privacy-preserving recommender systems that exist.
Then, we designed and implemented the edit-distance and Smith-Waterman
algorithms for computing DNA-similarities between users of our envisioned
recommender system in a privacy-preserving way, based on previous work
by Rane and Sun [RS10] and Erkin et al. [EFG+09]. These similarities were
then incorporated into a previously designed social recommender system by
Jeckman’s et al. [JPH13] in the semi-honest user model, which we extended
to add extra security guarantees for the users of the system (specifically
regarding the privacy of the indicator vector with which ratings that a user
adds can be hidden). For the encryption in all of the designed protocols for
our recommender system, we used the somewhat homomorphic encryption
of the BV-scheme [BV11], which is an efficient form of encryption that al-
lows for a limited number of homomorphic additions and multiplications of
ciphertexts.

Our designed recommender system was initially developed for the semi-
honest user model, as was the original recommender system that we based
our design upon, but we later extended it to the malicious user-model in
which two non-colluding servers are employed. This is a stronger security
model and is more realistic than the semi-honest user model for a real-life
application of the recommender.

To accomodate for changes in ratings made by users of the system, we
then designed and implemented a secure rating update protocol, which is
carried out by two non-colluding servers in the malicious user model.

In this section, we will recall our research goals and will discuss how we
achieved these goals. We will also discuss the design and implementation (in
terms of efficiency and security) of our recommender system and compare
the efficiency of the implementation to that of the recommender system
by Jeckman’s et al. [JPH13], which it was based upon. We then draw a
comparison between the efficiency of our DNA-matching and the disease
susceptibility results by Ayday et al. [ARHR13] and compare the efficiency of
our implemented proxy re-encryption scheme to the benchmark of Ateniese
et al. [AFGH06].

We conclude this section with a discussion of the limitations of our re-
search and recommendations for future work.

89

Research Goals

Our main research goal was to design and implement a privacy-preserving
DNA-based social recommender system, that uses privacy-preserving DNA-
matching to compute similarities between users of the recommender system
and combines this with familiarity between the users to generate recommen-
dations in a privacy-preserving manner.

To do so, we slightly altered the recommendation formula by Jeckman’s
et al. [JPH13] to include the DNA-similarity score as a weight for the rating
prediction.

Then, we looked at different techniques for privacy-preserving DNA-
matching to see which would fit into our recommender system best. We
chose the technique of a substitution cost protocol by Rane and Sun [RS10]
and the minimum finding technique by Erkin et al. [EFG+09] to adapt to our
system architecture and chosen cryptographic scheme, namely the somewhat
homomorphic encryption scheme by Brakerski and Vaikantunathan [BV11].
These subprotocols were adapted to both the semi-honest and the mali-
cious user model and were used in the computation of the edit distance
and the Smith-Waterman score. The main differences between the original
subprotocols and our adaptations were the use of somewhat homomorphic
cryptography and the use of secret shares and indicator vectors as input to
the protocols, which made some adjustments to the computations necessary.
We chose to enable both of these similarity scores to make the recommender
system more dynamic, so that a choice for a specific similarity score could
be made later on. The edit distance will in most use cases suffice for DNA-
matching, since most of the time a set of SNPs needs to be compared, but
the Smith-Waterman gives an additional score that takes into account mul-
tiple alignments of two DNA-sequences, which might prove useful in some
cases.

One of our concrete research questions was whether we could devise an
offline recommender protocol and what the privacy requirements would be
for storing user data on the server. We designed the offline recommender
based on the recommender for offline friends by Jeckman’s et al. [JPH13]
and altered it to fit our system architecture. The privacy requirements that
followed from having a recommender system that can compute recommenda-
tions when users are offline, were that users need to store their data in secret
shares at the server under proxy re-encryption, so that for each piece of data
one of these shares could be re-encrypted for another user or another server
with whom the main server initiates the protocol. In our system design, this
meant that not only the rating data needed to be divided into shares and

90

stored on the server, but that the DNA data also needed to be stored at the
server in secret shares, since we could count upon both users being online
at the same time to perform the similarity computations. The requirement
that users and friends can be offline also meant that DNA-similarity com-
putations need to be performed by the server and a user (or the user and a
proxy in the case of the malicious model) for all of the user’s friends once
the user registers, in a system-set up phase.

Summary of Results

DNA-matching

The implementations of the edit distance in the semi-honest and the mali-
cious user model were not very fast, but could be used in an offline phase
where DNA-similarities are computed between users beforehand. This would
take much computational power of a main server, especially if multiple sim-
ilarities are computed at the same time. A drawback of the inefficiency is
that, depending on the length of DNA over which similarities need to be
computed, the user will have to wait for minutes or even an hour to have
access to the recommender system. The Smith-Waterman similarity score
proved too inefficient to use, even in a precomputation phase when the user
registers with the recommender system.

The performance of the similarity protocols that we implemented in-
dicate that somewhat homomorphic encryption may not be the best en-
cryption scheme to use for the implementation of privacy-preserving DNA-
matching. The edit distance protocol performed reasonably well, but its
efficiency is not very good. The Smith-Waterman distance protocol was
very inefficient. Using somewhat homomorphic encryption for protocols
that require many multiplications will therefore not give good performance.
However, new somewhat homomorphic encryption schemes that may be de-
veloped in the future may change this and boost the performance of the
privacy-preserving DNA-matching protocols.

Off-line Recommender

Our offline recommender protocol gave good results. Though it is slow on
very large inputs, the performance of the protocols is good enough for use
in a real-life application of the recommender system. What is most notable
is that the protocol performs better in the malicious user model, which is
the preferred security model.

91

Rating Updates

The rating updates protocol was implemented and ran very efficiently. It
can be used in the malicious user model when two non-colluding servers are
employed.

Comparison of Results

We will now compare the timings of our DNA-similarity computations to
the timings given in the paper by Ayday et al. [ARHR13]. Recall that their
research focused on a new architecture for privacy-preserving disease sus-
ceptibility tests, where SNPs that contain markers for certain diseases are
compared per patient to compute a disease susceptibility. Though their ge-
netic tests and system architecture are different from ours, since we consider
DNA-similarity between users of our recommender system (either the edit
distance or the Smith-Waterman similarity score), the main idea behind it is
to compare SNPs in a privacy-preserving way, which can be translated to the
setting of our similarity computations by selecting the right subsequence of
a DNA-string. Of the reviewed literature in section 2.3 that have implemen-
tations and performance results, their manner of privacy-preserving genetic
tests comes closest to our implemented techniques for similarity computa-
tions.

The performance of Ayday et al.’s [ARHR13] was tested on DNA-sequences
of length 10 (10 SNPs) on an Intel Core i7-2620M CPU with 2.70 GHz pro-
cessor. For a key-size of 2048 bits, the homomorphic operations of the
susceptibility test took 25 seconds, while for a key-size of 4096 bits, the op-
erations took 100 seconds. The security for their 4096 bits key corresponds
roughly to our keyset 1 for the BV-scheme. Our timings on this keyset for
sequences of length 10 are 382 seconds in the semi-honest edit distance pro-
tocol and 465 seconds in the malicious edit distance protocol. We see that
our genetic test is therefore around 4 times slower than the results by Ayday
et al. [ARHR13].

In order to make a realistic comparison on the efficiency of the recom-
mender system, we ran the code for the offline protocol by Jeckman’s et
al. [JPH13] on our own machine, using keyset 1 which was defined in sec-
tion 7.3, for large input parameters of 100 friends and 2000 books. The
protocol executed in slightly over 26 minutes on our machine, whereas the
performances listed in their paper noted a runtime of approximately 17 min-
utes for the same input. The reason for this difference lies mainly in the
usage of different parameters for the BV-scheme, which is necessary for the

92

larger amount of multiplications that must be supported in order for our
protocols to run correctly, and may also be due to the different set-up of
machines on which the code was tested. The larger key parameters that
we use are necessary because of the fact that in our recommender system,
we also hide the indicator vector from the user or from the second server.
This means that the main server has two sums to compute, of which one
needs to be inverted. To invert this without loss of privacy, the value has
to be blinded multiplicatively two times, whereas in the original protocol,
the indicator vector is not hidden from the user (or second server in our
case) and the main server therefore does not need to compute a sum be-
fore inversion. In that case, the user, or second server, can already do the
multiplicative blinding without the main server needing to add his own mul-
tiplicative blinding to hide the sum from the server.

Where the protocol by Jeckmans et al. [JPH13] took 26 minutes on our
machine on keyset 1, our own implementation in the semi-honest user model
took slightly over 51 minutes to execute. Our implemented recommender
system has worse performance than the original recommender for offline
friends by Jeckmans et al. [JPH13], this is also apparent from the other
timings given in their paper and the timings given in table 13. This is to be
expected, however, since the recommender protocol that we designed and
implemented requires more computations on ciphertexts during the protocol
run to generate the recommendations.

One of the main differences between the results in this research and those
of Jeckmans et al. [JPH13] is that we also implemented the recommender for
the malicious user model, where two non-colluding semi-honest servers are
employed. We therefore implemented a recommender in a stronger security
model, which is an addition to the current research on recommender systems.

Veugen et al. [VdHCM15] presented a framework for computing recom-
mendations by using two non-colluding servers. Their architecture is very
similar to ours, which is why a comparison to their results is also in order.
Their security model however, differs from ours in the sense that one of the
servers is allowed to be malicious, where in our case both servers are required
to be semi-honest. Their recommendations are computed using homomor-
phic encryption in a collaborative filtering approach, which is similar to the
technique that we use (only we use somewhat homomorphic encryption).
Another difference in their recommendation computation is that they use a
pre-processing phase for generating some system parameters, which takes a
load of the work to be performed by the two servers later on. The timing
for one recommendation when 10, 000 users are considered is 0.34 seconds,
but this is excluding four hours of pre-computation.

93

The results by Veugen et al. [VdHCM15] are very efficient, especially
since they are able to move a lot of the computations to a pre-computation
phase. Their recommender is therefore more efficient than ours. However,
this statement should be moderated by adding that their execution time is
only for the computation of one recommendation, while our performance
results compute the ratings for all drugs D. On the other hand, their im-
plementation was tested on a greater number of users.

For proxy re-encryption, we implemented the second option by Ateniese
et al. [AFGH06]. Our timings for this implementation were given in the
previous section. The paper by Ateniese et al. describes their own timings
for the third option, which is similar to the second option but is dependent
on a different security assumption. They tested their protocol on an AMD
Athlon 2100+ 1.8 GHz with 1 Gbyte RAM client with an IBM 7200 RPM,
40 Gbyte, Ultra ATA/100 hard drive and an Intel Pentium 4 2.8 GHz with 1
Gbyte RAM server with a Seagate Barracuda 7200 RPM, 160 Gbyte, Ultra
ATA/100 hard drive. We compare our timings to their server timings for a
512 bit parameter size. The respective timings are given in table 15.

Operation Runtime (ms) Runtime Ateniese implementation (ms)

Encryption (1st) 10.6935 9.3
Decryption (1st) 0.238691 26.5
Encryption (2nd) 2.52118 -
Decryption (2nd) 1.4941 4.1

Re-encryption 1.38101 26.7
Keygen 7.65707 -

Table 15: Efficiency of the implementation

The differences in timings are very slight. Our implementation is slightly
faster in most cases, which may be due to the fact that the second option
from the paper requires less computation than the third option.

Limitations and Future Work

There were a few limitations to our recommender system design that could
be improved upon.

Firstly, the similarity computations run in the order of hours on relatively
large inputs and will take even longer for very large inputs, such as DNA-
sequences of length 1000 and more. We did not test on these inputs, since
for length 50 the protocol for the edit distance already took more than

94

an hour to execute. The similarity computations can be computed by two
servers during an offline phase, but it would still be a great improvement to
the recommender system if these computations could be more efficient. To
achieve this, different subroutines for minimum finding and substitution cost
might need to be developed that require less homomorphic multiplications,
so that the key parameters chosen can be smaller. This will speed up the
somewhat homomorphic encryption scheme.

Secondly, a problem that we ran into during the implementation of our
protocols was that the semi-honest minimum finding protocol could not be
implemented due to an integer wrap around in the message space that we
used for our encryption system. As a result, the malicious minimum finding
protocol was used instead, but this may have had a negative impact on the
efficiency of the semi-honest edit distance and Smith-Waterman distance
protocol timings.

A minor limitation of our current system design is that both servers are
required to be semi-honest and non-colluding. Although this is a realistic
scenario, when for example the main server is governed by a health care
company and the second server is a security provider, it would be even
better if the recommender system could be designed in such a way that one
or two malicious servers would not impact the privacy of the system. This
would lead to a stronger security model.

As a recommendation for future research, it would be interesting to
study whether verifiability of recommendation results can be introduced to
the protocol in the malicious or the semi-honest user model. In our current
design, the user who requests a recommendation has no way of knowing
that he receives a correct result that is computed over all of his friends’
ratings. If the current protocols were to be extended, the fact could be used
in the malicious user model that the two servers are non-colluding and could
therefore be required to check each other’s results.

95

References

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Ho-
henberger. Improved proxy re-encryption schemes with appli-
cations to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1–30, 2006.

[AKD03] Mikhail J. Atallah, Florian Kerschbaum, and Wenliang Du.
Secure and private sequence comparisons. In Proceedings of
the 2003 ACM Workshop on Privacy in the Electronic Society,
WPES 2003, Washington, DC, USA, October 30, 2003, pages
39–44, 2003.

[ARHR13] Erman Ayday, Jean Louis Raisaro, Jean-Pierre Hubaux, and
Jacques Rougemont. Protecting and evaluating genomic pri-
vacy in medical tests and personalized medicine. In Proceedings
of the 12th annual ACM Workshop on Privacy in the Elec-
tronic Society, WPES 2013, Berlin, Germany, November 4,
2013, pages 95–106, 2013.

[BAFM12] Marina Blanton, Mikhail J. Atallah, Keith B. Frikken, and
Qutaibah M. Malluhi. Secure and efficient outsourcing of se-
quence comparisons. In Computer Security - ESORICS 2012
- 17th European Symposium on Research in Computer Secu-
rity, Pisa, Italy, September 10-12, 2012. Proceedings, pages
505–522, 2012.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible
protocols and atomic proxy cryptography. In Advances in
Cryptology - EUROCRYPT ’98, International Conference on
the Theory and Application of Cryptographic Techniques, Es-
poo, Finland, May 31 - June 4, 1998, Proceeding, pages 127–
144, 1998.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin
Geisler, Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure multi-
party computation goes live. In Financial Cryptography and
Data Security, 13th International Conference, FC 2009, Ac-
cra Beach, Barbados, February 23-26, 2009. Revised Selected
Papers, pages 325–343, 2009.

96

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
Fully homomorphic encryption without bootstrapping. Elec-
tronic Colloquium on Computational Complexity (ECCC),
18:111, 2011.

[BKKT08] Fons Bruekers, Stefan Katzenbeisser, Klaus Kursawe, and Pim
Tuyls. Privacy-preserving matching of DNA profiles. IACR
Cryptology ePrint Archive, 2008:203, 2008.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
framework for fast privacy-preserving computations. In Com-
puter Security - ESORICS 2008, 13th European Symposium on
Research in Computer Security, Málaga, Spain, October 6-8,
2008. Proceedings, pages 192–206, 2008.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomor-
phic encryption from ring-lwe and security for key dependent
messages. In Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2011. Proceedings, pages 505–524, 2011.

[Can02] John F. Canny. Collaborative filtering with privacy. In 2002
IEEE Symposium on Security and Privacy, Berkeley, Califor-
nia, USA, May 12-15, 2002, pages 45–57, 2002.

[CEJ+07] Seung Geol Choi, Ariel Elbaz, Ari Juels, Tal Malkin, and Moti
Yung. Two-party computing with encrypted data. In Advances
in Cryptology - ASIACRYPT 2007, 13th International Con-
ference on the Theory and Application of Cryptology and In-
formation Security, Kuching, Malaysia, December 2-6, 2007,
Proceedings, pages 298–314, 2007.

[CK08] Octavian Catrina and Florian Kerschbaum. Fostering the up-
take of secure multiparty computation in e-commerce. In Pro-
ceedings of the The Third International Conference on Avail-
ability, Reliability and Security, ARES 2008, March 4-7, 2008,
Technical University of Catalonia, Barcelona , Spain, pages
693–700, 2008.

[CWYD10] Sherman S. M. Chow, Jian Weng, Yanjiang Yang, and
Robert H. Deng. Efficient unidirectional proxy re-encryption.
In Progress in Cryptology - AFRICACRYPT 2010, Third In-
ternational Conference on Cryptology in Africa, Stellenbosch,

97

South Africa, May 3-6, 2010. Proceedings, pages 316–332,
2010.

[EFG+09] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzen-
beisser, Inald Lagendijk, and Tomas Toft. Privacy-preserving
face recognition. In Privacy Enhancing Technologies, 9th Inter-
national Symposium, PETS 2009, Seattle, WA, USA, August
5-7, 2009. Proceedings, pages 235–253, 2009.

[EM03] William E. Evans and Howard L. McLeod. Pharmacogenomics
– drug disposition, drug targets, and side effects. N Engl J
Med, 348(6):538–549, 2003.

[ER04] William E. Evans and Mary V. Relling. Moving towards indi-
vidualized medicine with pharmacogenomics. Nature, 429:464–
468, 2004.

[EVTL12] Zekeriya Erkin, Thijs Veugen, Tomas Toft, and Reginald L. La-
gendijk. Generating private recommendations efficiently using
homomorphic encryption and data packing. IEEE Transac-
tions on Information Forensics and Security, 7(3):1053–1066,
2012.

[GE07] Georg Groh and Christian Ehmig. Recommendations in taste
related domains: collaborative filtering vs. social filtering. In
Proceedings of the 2007 International ACM SIGGROUP Con-
ference on Supporting Group Work, GROUP 2007, Sanibel Is-
land, Florida, USA, November 4-7, 2007, pages 127–136, 2007.

[Gol05] Oded Goldreich. Foundations of cryptography - A primer.
Foundations and Trends in Theoretical Computer Science,
1(1), 2005.

[GV08] Miriam Gordillo and Hugo Vega. The molecular mechanism
underlying roberts syndrome involves loss of esco2 acetyltrans-
ferase activity. Human Molecular Genetics, 17(14):21722180,
2008.

[GZC+09] Ido Guy, Naama Zwerdling, David Carmel, Inbal Ronen, Erel
Uziel, Sivan Yogev, and Shila Ofek-Koifman. Personalized rec-
ommendation of social software items based on social relations.
In Proceedings of the 2009 ACM Conference on Recommender

98

Systems, RecSys 2009, New York, NY, USA, October 23-25,
2009, pages 53–60, 2009.

[HBSC13] T. Ryan Hoens, Marina Blanton, Aaron Steele, and Nitesh V.
Chawla. Reliable medical recommendation systems with pa-
tient privacy. ACM TIST, 4(4):67, 2013.

[HS14] Shai Halevi and Victor Shoup. Algorithms in helib. Cryptology
ePrint Archive, Report 2014/106, 2014. http://eprint.iacr.
org/.

[JKS08] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards
practical privacy for genomic computation. In 2008 IEEE Sym-
posium on Security and Privacy (S&P 2008), 18-21 May 2008,
Oakland, California, USA, pages 216–230, 2008.

[JPH13] Arjan Jeckmans, Andreas Peter, and Pieter H. Hartel. Efficient
privacy-enhanced familiarity-based recommender system. In
Computer Security - ESORICS 2013 - 18th European Sympo-
sium on Research in Computer Security, Egham, UK, Septem-
ber 9-13, 2013. Proceedings, pages 400–417, 2013.

[Ler07] Kristina Lerman. Social networks and social information fil-
tering on digg. In Proceedings of the First International Con-
ference on Weblogs and Social Media, ICWSM 2007, Boulder,
Colorado, USA, March 26-28, 2007, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s
protocol for two-party computation. J. Cryptology, 22(2):161–
188, 2009.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. J. ACM, 60(6):43,
2013.

[LV11] Benôıt Libert and Damien Vergnaud. Unidirectional chosen-
ciphertext secure proxy re-encryption. IEEE Transactions on
Information Theory, 57(3):1786–1802, 2011.

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM Cloud Computing Security Work-
shop, CCSW 2011, Chicago, IL, USA, October 21, 2011, pages
113–124, 2011.

99

http://eprint.iacr.org/
http://eprint.iacr.org/

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer
protocols. In Proceedings of the Twelfth Annual Symposium
on Discrete Algorithms, January 7-9, 2001, Washington, DC,
USA., pages 448–457, 2001.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Advances in Cryptology - EU-
ROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Re-
public, May 2-6, 1999, Proceeding, pages 223–238, 1999.

[PTK13] Andreas Peter, Erik Tews, and Stefan Katzenbeisser. Ef-
ficiently outsourcing multiparty computation under multiple
keys. IEEE Transactions on Information Forensics and Secu-
rity, 8(12):2046–2058, 2013.

[RS10] S. Rane and W. Sun. Privacy preserving string comparisons
based on levenshtein distance. 2010.

[SS01] Rashmi R. Sinha and Kirsten Swearingen. Comparing recom-
mendations made by online systems and friends. In DELOS
Workshop: Personalisation and Recommender Systems in Dig-
ital Libraries, 2001.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully homomorphic encryption over the in-
tegers. In Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, French Riviera, May 30 -
June 3, 2010. Proceedings, pages 24–43, 2010.

[VdHCM15] Thijs Veugen, Robbert de Haan, Ronald Cramer, and Frank
Muller. A framework for secure computations with two non-
colluding servers and multiple clients, applied to recommenda-
tions. IEEE Transactions on Information Forensics and Secu-
rity, 10(3):445–457, 2015.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In 27th Annual Symposium on Founda-
tions of Computer Science, Toronto, Canada, 27-29 October
1986, pages 162–167, 1986.

100

	Introduction
	Related Work
	Recommender Systems
	Private recommender systems
	Similarity- and familiarity-based recommender systems

	Somewhat homomorphic encryption versus additive homomorphic encryption
	Privacy-sensitive DNA matching
	Edit distance and Smith-Waterman distance
	Techniques for privacy-preserving DNA computation

	Drug selection based on DNA

	Research Goals
	Preliminaries
	Proxy re-encryption
	Secret sharing
	Somewhat Homomorphic Encryption
	Notation
	Parameter selection
	The Encryption Scheme

	DNA similarity measures
	Edit Distance
	Smith-Waterman similarity
	Technique for privacy-preserving computation

	Encrypted Division

	Design
	System Components
	Recommendation Formula
	Security
	Security Model
	Privacy Requirements

	Joining and Leaving the System
	DNA data representation
	Summary of DNA notations

	Construction
	Transfer of Data through Proxy Re-Encryption
	Protocols in the Semi-Honest Model
	Similarity Protocols
	Edit Distance Protocol
	Substitution Cost Protocol
	Minimum-Finding Protocol
	Smith-Waterman Distance
	Analysis and Complexity of the Similarity Protocols
	Offline Recommender Protocol
	Analysis and Complexity of the Recommender Protocol

	The Malicious User Model
	Additional Privacy Requirements
	Data Storage
	Non-Collusion Assumption
	Similarity Protocols in the Malicious User Model
	Edit Distance
	Substitution Cost
	Minimum Finding
	Smith-Waterman
	Analysis and Complexity of the Similarity Protocols
	Offline Recommender Protocol in the Malicious User Model
	Analysis and Complexity of the Recommender Protocol
	Role of the Proxy Server

	Rating Updates
	Other Application Areas
	Limitations in the Malicious User Setting

	Experimental Results
	Random data for tests
	Libraries
	Choice of Parameters
	Timings of the Protocols
	Similarity Computations
	Recommender Protocol
	Rating Updates

	Example use case for Similarity Computations

	Discussion and Conclusion

