
Distributed Symbolic Reachability
Analysis

Master Thesis

Author: Graduation Committee:
Wytse Oortwijn (s1247379) Prof. Dr. J.C. van de Pol

MSc. T. van Dijk
Dr. S.C.C. Blom

Formal Methods and Tools (FMT)
University of Twente

July 31, 2015

Abstract

Model checking is an important tool in program verification and software validation. Model
checkers generally examine the entire state space of a model to find behaviour that differs from
a given formal specification. Most temporal safety properties can be verified via reachability
analysis. A major limitation is the state space explosion problem, which occurs when the state
space does not fit into the available memory.

State spaces can efficiently be stored as Binary Decision Diagrams (BDDs), a data struc-
ture used to efficiently represent sets. The BDD representations of state spaces can then be
manipulated via BDD operations, which enables symbolic reachability analysis. Moreover, more
hardware resources can be employed. By increasing processing units and available memory, larger
state spaces can be stored and processed in less time.

This thesis focuses on symbolic reachability analysis, in addition to adding hardware re-
sources by using a network of workstations. Our research goal is to implement distributed BDD
operations that scale efficiently along all processing units and memory connected via a high-
performance network.

Compared to existing work on distributed symbolic reachability, we use modern techniques
and components, like Infiniband and RDMA, to reduce network latency. Furthermore, we use
hierarchical private deque work stealing to implement efficient load-balancing. Finally, we at-
tempt to use the idle-times of workers as efficient as possible by overlapping RDMA roundtrips
as much as possible.

We designed an RDMA-based distributed hash table and private deque work stealing algo-
rithms. Both components are micro-benchmarked in detail and used to implement the actual
BDD operations for distributed symbolic reachability. The algorithms are evaluated by perform-
ing symbolic reachability over a number of BEEM models.

Instead of network latency, the limited throughput of the RDMA devices appears to be the
performance bottleneck. As a result, we achieve good scalability along the number of machines
added to the network, but scalability along the number of processes per machine remains limited.
Compared to sequential runs, speedups up to 28 are observed. With respect to parallel symbolic
reachability, by paying an acceptable performance price, the combined memory of a network of
workstations can be used efficiently, and adding workstations does not decrease performance.

1

Contents

1 Introduction 4
1.1 Research Goals . 5
1.2 Methods and Contributions . 6

1.2.1 Data Distribution . 6
1.2.2 Load-Balancing Maintenance . 6
1.2.3 Efficient Communication . 7

1.3 Structure . 7

2 Preliminaries on Partitioned Global Address Space Programming 8
2.1 Introduction . 8
2.2 The Infiniband Architecture . 8
2.3 Remote Direct Memory Access . 9

2.3.1 RDMA Operations . 10
2.4 Parallel Programming Models . 11
2.5 PGAS Implementations . 12

2.5.1 Memory Layout . 12
2.5.2 Memory Operations . 13
2.5.3 Challenges when using UPC . 13

2.6 Performance of One-Sided RDMA . 14

3 Designing a Distributed Hash Table for Shared Memory 16
3.1 Introduction . 16
3.2 Preliminaries . 17

3.2.1 Notation . 17
3.2.2 Hashing Strategies . 18
3.2.3 Conclusion . 20

3.3 Theoretical Expectations . 21
3.3.1 Research Expectations . 24

3.4 Design and Implementation . 24
3.4.1 Memory Layout . 25
3.4.2 Querying for Chunks . 25
3.4.3 Design Considerations of find-or-put . 26

3.5 Experimental Evaluation . 27
3.5.1 Throughput of find-or-put . 28
3.5.2 Latency of find-or-put . 30
3.5.3 Suggestions for Performance Improvements 33

3.6 Conclusions . 35

2

4 Hierarchical Lock-Less Private Deque Work Stealing 37
4.1 Introduction . 37
4.2 Preliminaries . 38

4.2.1 Split Deques . 39
4.2.2 Private Deques . 40
4.2.3 Selecting Victims . 40
4.2.4 Related Work . 41
4.2.5 Motivation and Contribution . 42

4.3 Design and Implementation . 42
4.3.1 Memory Layout . 43
4.3.2 The Stealing Procedure . 43
4.3.3 Algorithmic Design Considerations . 44

4.4 Experimental Evaluation . 48
4.4.1 Benchmarks . 49
4.4.2 Experimental Results . 50
4.4.3 Suggestions for Performance Improvements 57

4.5 Conclusions . 58

5 Designing Distributed Binary Decision Diagram Operations 60
5.1 Introduction . 60
5.2 Challenges and Contributions . 62
5.3 Preliminaries . 62

5.3.1 Reduced Ordered Binary Decision Diagrams 62
5.3.2 Defining ITE and RelProd . 63
5.3.3 Symbolic Reachability Analysis . 65

5.4 Design and Implementation . 66
5.4.1 Memory Layout . 66
5.4.2 Designing a Shared Memoization Cache 67
5.4.3 Design Considerations of ITE . 68
5.4.4 Design Considerations of RelProd . 70

5.5 Experimental Evaluation . 70
5.5.1 Distributed Scalability . 72
5.5.2 Parallel Scalability . 74
5.5.3 Scalability with Private Deque Work Stealing 75
5.5.4 Suggestions for Performance Improvements 76

5.6 Conclusion . 77

6 Conclusion 79
6.1 Efficient Distributed Symbolic Reachability . 79

6.1.1 Data Distribution . 79
6.1.2 Load-balancing Maintenance . 80
6.1.3 Communication Overhead . 80

6.2 Scalability of Distributed Symbolic Reachability 80
6.2.1 Future Work . 81

3

Chapter 1

Introduction

An important tool in program verification and software validation is model checking. Given
a formal specification, model checking algorithms analyse program behaviour by exhaustively
searching all reachable program states, which constitute a state space graph. State spaces often
grow exponentially with the size of the program model, which may lead to well-known state
space explosions. These exponential blow-ups occur when program states do not longer fit into
the available memory. State space explosions may arise very quickly in practice, making them a
major limitation in modern software verification.

Several attempts have been made to attack state space explosions. Those attempts include
reduction techniques like Partial Order Reduction [57] and Bisimulation Minimization [30]. In
addition, state spaces can be compressed, so that more states fit into the available memory.
Binary Decision Diagrams (BDDs) can be used for such compression, as BDDs can efficiently
represent sets. Moreover, state spaces can efficiently be manipulated by manipulating their BDD
representatives, which enables symbolic model checking. BDDs can significantly improve the space
complexity of state spaces compared to explicit representations [32], which motivates symbolic
model checking. Alternative effective compression techniques include SAT-based approaches [11],
inductive verification (e.g. IC3) [20], and other variants on decision diagrams (e.g. MDDs, LDDs,
and ZDDs) [26,31,75], but this thesis focusses only on BDDs.

In addition to techniques for reduction and compression, more hardware resources can be
employed [34, 51, 79, 80]. By increasing processing units and available memory, larger state
spaces can be stored and processed in less time. Therefore, much research has been devoted to
parallel algorithms for both symbolic and explicit model checking [41,44,75,79,80]. As a result,
good speedups are obtained on many-core clusters. The parallel BDD package Sylvan [75], for
example, reaches impressive speedups up to 38 with 48 cores.

Apart from parallel implementations, also distributed symbolic verification algorithms have
been proposed [25, 26, 48, 56, 58, 68] (see Section 5.1 for more detail). Most approaches were
motivated by the expensiveness and limitations of hardware scalability of many-core machines.
Compared to sequential runs, no speedups were obtained by most implementations, but very
large state spaces could be stored due to the large amount of available memory. Speedups
remained low, since BDD operations perform only small amounts of computation per memory
access. Distributed implementations thus require many remote memory accesses, which easily
makes network latency a performance bottleneck.

Nowadays, high-performance networking components like Infiniband [1] are available. Their
features include Remote Direct Memory Access (RDMA), which allows machines to access remote
memory without invoking the CPUs on the targeted machines. Those operations are handled by

4

the RDMA devices instead, allowing CPUs to continue with other computational tasks. RDMA
supports zero-copy data transfers, which means that no memory copies are performed when
sending or receiving packets, unlike traditional protocols such as TCP [65]. Furthermore, RDMA
also supports kernel bypassing, which avoids communication with the operating system kernel
before handling packets. As a result, one-sided RDMA operations can be performed within 3µs
on Infiniband hardware [3], compared to 60µs with TCP on Ethernet hardware [24]. The low
latencies of RDMA and its CPU efficiency justify a renewed attempt in distributed symbolic
verification.

Moreover, at the time of writing, Infiniband hardware is comparable in price to their Eth-
ernet counterparts, which makes scaling along high-performance hardware just as expensive as
scaling along standard Ethernet hardware. Some recent research, for example the RDMA-based
key-value store Pilaf [24] (2014), was motivated by this cheap scalability. In addition, high-
performance networks support an almost unlimited number of processing units and memory, in
contrast to individual multi-core machines. Combining these reasons with the cheap scalability
and low latencies of modern networking hardware motivates our research, and may allow more
efficient distributed model checking.

1.1 Research Goals

In this thesis we present distributed algorithms for reachability analysis, based on BDDs. The al-
gorithms are specialized for high-performance networks, like Infiniband, by making use of RDMA.
To the best of our knowledge, no other attempts have been made to distribute symbolic verifica-
tion with an RDMA-based approach. By experimental evaluation and reflection on the proposed
algorithms, we answer the following main research question:

Research question (RQ): How efficient can RDMA-based distributed implementa-
tions of BDD operations scale along all processing units and available memory connected
via a high-performance network?

To determine how RDMA can most efficiently be used by BDD operations, we focused on
three important design considerations, given in [32], for efficient distributed symbolic state-space
generation. These considerations are: data distribution, load-balancing maintenance, and re-
duction of communication overhead and latency. Also exploiting data-locality is an important
consideration, as part of data distribution [26]. To answer the main research question, we focused
on all four considerations, resulting in several subquestions:

Subquestion 1 (SQ1): How can the storage and retrieval of data efficiently be man-
aged to minimize their latencies?

Subquestion 2 (SQ2): How can the total computational work be divided and dis-
tributed to maximize scalability along processors over a high-performance network?

Subquestion 3 (SQ3): How can the idle-times of processes be minimized while per-
forming network communication?

Data distribution is covered in SQ1, load-balancing maintenance is covered by SQ2, and mini-
mizing communication overhead is covered by SQ3.

5

1.2 Methods and Contributions

This section discusses the research methods used to answer the subquestions. In addition, our
contributions and findings are given.

1.2.1 Data Distribution

To answer SQ1, we investigated existing high-performance distributed storage techniques, includ-
ing hash tables and key-value stores. Existing work includes Pilaf [24], Nessie [67], HERD [10],
and FaRM [5], which all use RDMA to reduce latency. With the exception of HERD, all these im-
plementations either use Cuckoo hashing [52] or Hopscotch hashing [46] to resolve hash collisions.
HERD only uses one-sided writes to minimize the required number of roundtrips, at the cost of
CPU-efficiency, which we would like to retain. Cuckoo hashing uses k ≥ 2 hash functions, which
means k roundtrips when accessing remote buckets. Hopscotch hashing uses neighbourhoods,
which can be retrieved with a single roundtrip, making Hopscotch arguably more efficient than
Cuckoo. However, both hashing schemes require expensive relocation procedures when data can
not be inserted. Those procedures may require many extra roundtrips and expensive distributed
locking mechanisms. We argue that linear probing is more efficient, since it does not use such
relocation procedures.

In Chapter 3 we present an RDMA-based distributed hash table that uses linear probing to
reduce the number of roundtrips and thus reduces latency. The hash table supports one operation,
namely find-or-put, that either adds data or gives a positive result. To minimize waiting-times,
find-or-put overlaps roundtrips as much as possible, which further reduces latency. Because
linear probing examines buckets that are consecutive in memory, a range of buckets, which we call
chunks, can be obtained with a single roundtrip. By increasing chunk sizes, higher load-factors
are supported and require fewer roundtrips, at the cost of slightly higher latencies.

A peak-throughput of 3.6× 106 op/s is reached on an Infiniband network with 10 machines.
On average, find-or-put finds intended buckets within 9.3µs with a load-factor of 0.9 when
targeting remote memory. On the other hand, by adding processes, the throughput of the
RDMA devices get saturated, which significantly affects the scalability of processes when also
scaling along machines. Solving this limitation would require improving data-locality, as well as
reducing the required number of roundtrips.

1.2.2 Load-Balancing Maintenance

Graph algorithms can effectively be parallelized by using fine-grained task parallelism [8], which
includes operations on BDDs. Due to the success of the parallel symbolic BDD package Syl-
van [75] by applying dynamic load-balancing via work stealing, we investigated hierarchical
work-stealing approaches to answer SQ2. Existing approaches include Scioto [35] and Hot-
SLAW [62], which both use split deques for storing tasks. Both approaches require expensive
locking mechanisms when performing steals. Instead, we focus on private deque work stealing,
similar to [50], due to the absence of locking and the decrease in roundtrips compared to split
deques.

Min et al. [62] propose hierarchical victim selection to exploit locality, thereby reducing
the average number of roundtrips. Also hierarchical chunk selection is proposed to adjust the
number of tasks to steal, based on communication costs. Another technique that may increase
performance is leapfrogging [77], that allows victims to steal back from their thiefs, thereby
helping thiefs to complete parts of their original work.

In Chapter 4 we present lock-less hierarchical private-deque work stealing operations that
steal more efficiently than current state-of-the-art implementations. Our implementation uses

6

the ideas of [50], but requires fewer roundtrips and supports hierarchical victim selection and
leapfrogging. Due to time constraints, we were not able to also implement hierarchical chunk
selection. Relative to HotSLAW, speedups up to 34.3 are reached for local steals and 9.3 for
remote steals. On the other hand, HotSLAW generates less overhead when executing tasks.
This is because HotSLAW supports tasks with variable-sized inputs and outputs, whereas our
implementation does not. We solved this by using extra shared data structures, which are
slightly less efficient than HotSLAW. Our implementation can likewise be optimized, but due
to time constraints we were not able to do so. Implementing hierarchical chunk selection and
reducing overhead would allow hierarchical work-stealing that is more efficient than the current
state-of-the-art.

1.2.3 Efficient Communication

To answer SQ3, we investigated ways to most efficiently use RDMA in the various components
of our BDD implementation. To minimize communication overhead we use one-sided RDMA,
so that the CPUs on the targeted machines are not invoked. Wherever possible, we employ
latency hiding via pre-fetching by overlapping roundtrips as much as possible. In the hash table
design, multiple chunks are queried simultaneously, thereby reducing waiting times. Furthermore,
hierarchical work stealing is used to exploit locality, reducing the overall idle-times of processes.

Chapter 5 presents the designs of our distributed BDD operations. We give asynchronous
operations for consulting the shared memoization cache, enabling cache requests to be overlapped
with other computational work. The BDD operations are implemented with UPC [27] and
evaluated by performing reachability analysis over various BEEM models [53]. Compared to
sequential runs, speedups are obtained by using a network of computers. Furthermore, scaling
along computers does not decrease performance, and allows more memory to be used. Relative
to two computers, each using 8 processes, speedups up to 5.18 are reached by scaling to 10
computers.

We observed that, rather than network latency, the main bottleneck was caused by the limited
throughput of RDMA devices. To increase scalability, it is key to minimize the number of RDMA
operations, as a first priority. We mainly focused on reducing waiting-times and minimizing
communication overhead by employing RDMA, but scalability can still be improved. HERD, for
example, is a distributed hash table that only uses one-sided RDMA writes as a message passing
alternative, thereby achieving a minimal number of roundtrips, at the cost of CPU efficiency. By
employing this technique, communication overhead is increased, but fewer RDMA roundtrips are
generated, thereby allowing more processes to be used before the RDMA devices get saturated,
which in turn increases both scalability and maximal achievable throughput.

1.3 Structure

Chapter 2 provides details on Infiniband network and gives various programming models us-
able in combination with RDMA. We chose to use a PGAS abstraction, whose operations are
also explained. Chapter 3 presents our distributed hash table design that uses linear probing.
Evaluational results of the latency and throughput of find-or-put are also given. Chapter 4
discusses work stealing techniques and present a hierarchical private-deque work stealing design.
The implementation is evaluated by running several benchmarks and comparing the results with
HotSLAW. Chapter 5 presents the design of our distributed BDD operations. The operations
are evaluated by performing reachability analysis on several BEEM models. Finally, Chapter 6
summarizes our conclusions.

7

Chapter 2

Preliminaries on Partitioned
Global Address Space
Programming

2.1 Introduction

In this chapter, the Infiniband network architecture is discussed (Section 2.2). In particular,
the Remote Direct Memory Access feature of Infiniband is discussed (Section 2.3), together
with various programming models that support RDMA (Section 2.4). In our research, we use
the Partitioned Global Address Space programming model, whose operations are discussed in
Section 2.5. Finally, the performance of various RDMA operations are determined via micro-
benchmarking (Section 2.6).

2.2 The Infiniband Architecture

Infiniband [1] is specialized hardware used to construct high-performance networks. Infiniband is
manufactured by Microsoft and Mellanox. The specialized hardware includes switches, Network
Interface Cards (NICs) [54], and interconnects that support bandwidths up to 300 GB/s. The
interconnects use a bidirectional serial bus to keep communication costs low. Experimental
evaluation of the algorithms proposed in this thesis are performed on a network of 10 machines,
connected via a 20 GB/s Infiniband network.

At the time of writing, the prices of Infiniband hardware are comparable to their Ethernet
counterparts [24]. As an effect, scaling along high-performance hardware is just as expensive as
scaling along traditional Ethernet hardware. This motivated some recent research in the use of
RDMA in non-performance computing [24].

In Infiniband terminology, the NICs are called Channel Adapters (CAs) and devices connected
to an Infiniband network are called nodes. Infiniband uses a queue-based model. Communication
between two nodes requires the use of a Queuing Pair, consisting of a Send Queue and a Receive
Queue. Both queues reside in the memory of the Channel Adapters, instead of main-memory,
allowing incoming messages to be handled by the CAs themselves, thereby bypassing the CPUs.
Therefore, this queue-based model allows the use of RDMA, which is explained in the following
section.

8

Operation UD UC RC RD
Send/Receive X X X X
RDMA write X X
RDMA read X
Atomic operations X

Table 2.1: The different operations supported by the various service types used by Infiniband.

As an example, suppose that two nodes A and B need to communicate over an Infiniband
network. Both nodes create a Queuing Pair, which they connect, so that messages placed in
the Send Queue of A are transmitted to the Receive Queue of B, and vice versa. The Channel
Adapters of A and B thus forward messages placed in the Send Queue and process messages
placed in the Received Queue. In addition to a Queuing Pair, a Completion Queue can be used.
After having processed a message from the Receive Queue, it can be pushed to the Completion
Queue, thereby allowing the CPUs to check the status of messages.

2.3 Remote Direct Memory Access

One of the features supported by Infiniband networks is Remote Direct Memory Access (RDMA),
which allows nodes to directly access the memory of other nodes, without necessarily invoking
their CPUs. RDMA operations are handled by the Channel Adapters instead, which are able to
access the main-memory of their host machine via the PCI-E bus. Using RDMA further reduces
network latency, since RDMA supports zero-copy data transfers and kernel bypassing.

Traditional protocols, like TCP, require multiple memcopies when transferring data [65]. To
illustrate, TCP packets are first copied from application memory to kernel memory, then send
over the network, and finally copied from kernel memory to the application memory of the node
that received the packet. As an effect, several context switches are performed. In RDMA, the
network stack is completely bypassed, as messages are directly pushed on a Send Queue on the
Channel Adapter. Furthermore, the Queuing Pairs reside in the memory of the Channel Adapters
themselves, which prevents memcopies. As a result, RDMA operations can be performed within
3µs on Infiniband hardware [3], compared to 60µs with TCP on Ethernet hardware [24].

Sharing Memory. To support RDMA operations on remote memory, the Channel Adapters
need to be aware of the blocks of memory exposed via RDMA. Therefore, a blocks of memory can
be registered at the Channel Adapters as being shared. In Infiniband terminology, a consecutive
block of shared memory is called a Memory Region. Every memory region can be accessed via
local and remote addresses. For every Memory Region, the Channel Adapters hold a lookup
table, so that remote addresses can be translated to local addresses. Prior to using RDMA, the
remote addresses of the Memory Regions can be transmitted via MPI. In addition, permissions
to RDMA-exposed memory can be specified via so-called Protection Domains.

Service Types. Various service types can be associated to Queuing Pairs, which determine how
nodes respond to incoming messages. Figure 2.1 shows an overview of different service types,
and the operations supported by them. These operations are discussed in the following Section.

The Reliable Connection (RC) service type guarantees a reliable data transfer between the
two nodes, which means that data is guaranteed to arrive. After receiving a message, Ack
and Nak packets are send, similar to traditional TCP. Packets are delivered in order and er-
roneous messages are automatically retransmitted. The Unreliable Connection (UC) specifies

9

t1 t2 . . . tn

(a) Shared Memory

t1 t2 . . .

. . .

tn

(b) Distributed Memory

Figure 2.1: Here n threads t1, . . . , tn are displayed in a shared memory and a distributed memory
setting. Dashed edges represent communication links between threads.

a connection between two nodes in which data is not guaranteed to arrive, because Ack and
Nak packets are not used. Compared to RC, less network traffic is generated, thereby allowing
higher throughputs. In the Unreliable Datagram (UD) service type, no responses are expected,
similar to traditional UDP. Therefore, RDMA is not supported. However, Grant et al. [61] pro-
pose support for RDMA over connectionless protocols, including UD, to improve performance
even further. Finally, the Reliable Datagram (RD) service type can be used, which is similar to
UD, but a reliable connection is guaranteed, since Ack and Nak packets are used upon message
retrieval.

In our research, we use RC, since it allows a reliable connection, and therefore contributes to
the correctness of the algorithms. However, some operations might be performed under unreliable
service types, thereby increasing throughput. As future work, it would for example be interesting
to use UD, together with [61], to further increase performance.

2.3.1 RDMA Operations

Infiniband supports various types of operations. Firstly, standard message passing is supported
via send and receive operations. The send operation puts a message on the Receive Queue of
the targeted node and receive polls the Receive Queue for incoming messages.

One-sided RDMA operations only use Send Queues and ignore Receive Queues. When a
Channel Adapter receives a one-sided RDMA message, it directly executes its operation on the
given location in main-memory. By not using the Received Queue, the CPUs of the targeted
nodes are never invoked and are not aware of the one-sided operations executed by the Channel
Adapters. One-sided write operations do not generate a response. One-sided read operations, on
the other hand, require the targeted node to give a response, which is written to the Completion
Queue of the node that initiated the operation.

Two-sided RDMA operations also use the Receive Queue, in addition to the Send Queues.
The CPUs of the targeted nodes need to pop messages from the Receive Queue to process
them. Two-sided operations can, for example, be used to support memory operations that
are too complex for one-sided operations. Although the CPUs of both machines are involved,
performance is still high, since the network stack is still bypassed and zero-copy data transfers
are still used.

Also various atomic operations are supported, which are explained in Section 2.5.2.

10

t1 t2 . . .

. . .

tn

(a) PGAS

t1 t2 . . .

. . .

tn

(b) Hybrid PGAS+MPI

Figure 2.2: Here n threads t1, . . . , tn are displayed in a PGAS setting. Every thread can access
the entire combined memory, of which only a small portion might be local. The global address
spaces are represented by dashed rectangles and the local address spaces by solid rectangles.

2.4 Parallel Programming Models

Several parallel programming models exist that expose memory in various ways. Figure 2.1
schematically shows the shared memory and distributed memory models.

Shared Memory. In a Shared Memory Architecture (Figure 2.1a), all threads share a single
address space. Communication between threads is done implicitly, as threads may read changes
made to the shared memory. This model simplifies programming, as the entire available memory
is accessible via a shared address space. On the other hand, data locality is not taken into
account, since threads are generally not aware where data resides.

An example of a shared memory architecture is Non-Uniform Memory Access (NUMA), a
model often used in computer systems having multiple CPUs. Every CPU has a local memory and
is able to access the memories that are local to other CPUs via a shared address space. Different
parts of the address space might use different buses, which causes non-uniform accesses.

Another example is the Symmetric Multiprocessing (SMP) architecture, in which all CPUs
access memory via the same shared memory bus. This causes memory-intensive applications to
generally perform better on NUMA architectures, as the shared bus can become a performance
bottleneck.

Distributed Memory. In a Distributed Memory Architecture (Figure 2.1b) every thread has a
local memory and threads are not able to access the memory local to another thread. Instead,
threads have to perform message passing, represented by the dashed edges in Figure 2.1b. Dis-
tributed memory architectures are often used to create distributed applications, i.e. programs
that run on a network or cluster of computers. Message passing is then performed over the
network. A popular interface for message passing is the Message Passing Interface (MPI) [78].
An advantage of distributed memory is that data locality is fully exploited, since processes only
access local memory. Also, programs written with MPI can easily be used on a scalable network
of machines.

Partitioned Global Address Spaces. Figure 2.2 schematically shows the Partitioned Global
Address Space (PGAS) model, which is a combination of the shared and distributed memory
models. Every thread has a local memory, which are also combined into a global address space,
accessible by every thread. In contrast to shared memory architectures, threads in the PGAS
model know what parts of the total available memory are local for them, allowing them to exploit

11

Thread 0 Thread 1 . . . Thread n− 1

Shared

Private. . .

. . .

S[0]

. . .

S[k − 1] S[k]

. . .

S[2k − 1] S[(n− 1)k]

. . .

S[nk − 1]

Figure 2.3: The memory layout of a PGAS setting, with a shared array S[0], . . . ,S[nk− 1], with
n the number of threads and k the number of entries per thread.

data locality.
The PGAS model can be combined with MPI (Figure 2.2b), allowing them to perform mes-

sage passing in addition to accessing the global address space. Similar to distributed memory
architectures, the PGAS model allows easy scalability along a network of computers.

If PGAS is used in a distributed environment, it can be combined with RDMA, so that
remote memory accesses are performed via one-sided RDMA operations. All local memories are
then registered as Memory Regions at the Channel Adapters, so that the local memories receive
remote addresses. These are used to constitute a global shared address space, making PGAS a
high-performance parallel and distributed programming platform.

2.5 PGAS Implementations

Various PGAS implementations exist, including Unified Berkeley C (UPC) [27], Co-array Fortran
(CAF) [49], Titanium [6], X10 [55], Chapel [19], and Open Shared Memory (OpenSHMEM) [14].

The languages UPC, CAF, and Titanium are extensions to C, Fortran, and Java, respectively.
Chapel and X10 are both programming languages on themselves, which provide direct support
for PGAS, task management, and dynamic task load-balancing. A disadvantage is that their
structures differ from C, so all existing BDD operations written in C have to be rewritten entirely
when using one of these languages. Also interoperability with existing tools, like LTSmin [64],
could be problematic.

In our research, we chose to use Berkeley UPC, since it extends on C and supports asyn-
chronous memory operations, where OpenSHMEM does not.

2.5.1 Memory Layout

Figure 2.3 shows the memory layout of a PGAS setting. Suppose that n threads are participating.
Then every thread can have a portion of shared memory, i.e. memory registered as a Memory
Region at the Channel Adapter. We denote all other memory as private. Threads thus only have
access to their private memory and memory that is shared by other threads.

We assume a unified memory model, so that all threads allocate the same amount of resources,
which simplifies programming. A shared array S is shown in Figure 2.3, which is partitioned over
the n threads, so that each thread owns k entries of S. We refer to k as the block size of the
shared array S. Therefore, thread i owns the region S[ik], . . . ,S[(i+ 1)k − 1].

12

Thread 0 Thread 1

Shared

Private

.

(a) Schematic view of memget

Thread 0 Thread 1

Shared

Private

.

(b) Schematic view of memput

Figure 2.4: Schematic overview of the memget and memput operations. In both cases, thread 0
accesses two shared elements owned by thread 1.

2.5.2 Memory Operations

We now discuss a number of operations supported by most PGAS implementations, starting with
memget and memput. Figure 2.4 gives a schematic overview of these two operation. The memget

operation transfers a block of shared memory into an equally-sized block of private memory
(Figure 2.4a). Similarly, the memput operation transfers a block of private memory into an
equally-sized block of shared memory (Figure 2.4b). Both operations are blocking operations,
thereby preventing further execution of the thread until the operation (i.e. the roundtrip over
the Infiniband network) has been completed.

Most PGAS implementations provide asynchronous versions of memget and memput, which we
denote by memget-async and memput-async. Both functions return a handle, which can be used
to synchronize on the roundtrip. Synchronization is performed with the sync operation, that
takes a handle as parameter and blocks further execution of the thread until the corresponding
asynchronous operation has been completed. Every asynchronous memory operation must be
matched by a sync, otherwise handle leaks may occur, as the maximum number of handles that
can be simultaneously opened is 65.536.

Finally, several atomic operations are supported, including cas and fetch-and-add. The
cas(b, c, v) operation compares the content of a shared memory location b with a condition c.
Only if the content of b matches c, the value v is written to b. After that, the former value
of b is returned. The fetch-and-add(b, v) operations reads a shared memory location b and
atomically adds v to its content. The former content of b is returned. Similar to fetch-and-add,
most other bitwise operations are also supported, including fetch-and-and, fetch-and-or,
fetch-and-xor, etcetera.

2.5.3 Challenges when using UPC

We encountered problems when scheduling the benchmarks on the cluster. The UPC runtime
creates a number of UPC threads, distributed over a number of processes and machines via a
scheduler. By default, MPI is used by the scheduler to prepare all participating machines and to
set-up the UPC environment. In our case, the scheduler has no control over the actual process
layout (which was also shown with a warning, given by the UPC runtime). As an effect, the
scheduler could only handle a set-up when the number of machines and processes were powers
of 2 (otherwise the scheduler could not set up the UPC environment at all). We solved this by
using a SSH-based scheduler instead. Furthermore, we used sshpass to perform non-interactive
authentication.

13

We also encountered problems when allocating large blocks of memory. It appears that, by
default, Berkeley UPC does not support block sizes of more than 220 bytes. By default, 64-bit
integers are used to represent shared pointers, where 10 bits are used to denote the process ID

and 20 bits to denote a block. Since buckets are 23 bytes in size, only 220

23 = 220−3 = 217 bucket
can be stored per process, which is by far not enough for a proper distributed hash table. This
can be solved by configuring Berkeley UPC with the --enable-sptr-struct flag, that changes
the pointer structure to a struct, which supports block sizes up to 232 − 1 bytes.

2.6 Performance of One-Sided RDMA

To determine the expected performance of network communication with one-sided RDMA, we
measured its latency and throughput by using the OSU Micro-benchmark [2]. This benchmark
tests the latency and throughput of several RDMA operations via OpenSHMEM, with various
message sizes. Figures 2.5 and 2.6 show the latencies of one-sided memget and memput operations,
respectively, and Figure 2.7 shows the latency of memput.

For small messages, i.e. 16 bytes or smaller, the local memget operations are about 76 times
as fast as remote memget operations. Local memget operations are performed in 50ns on average,
and remote memget operations in 3.87µs. The local memput operations, on the other hand, are
only 6 times as fast as remote memput operations. This is because the memput does not require
a full roundtrip. We observe that the differences in latency gets smaller, both for memget and
memput, when the message size increases. Local memput operations take 0.44µs on average, and
remote memput operations take 2.68µs with message sizes up to 16 bytes.

For messages up to 16 bytes, the throughput of local memput operations is on average 48 times
higher than remote memput operations (Figure 2.7). Similar to the latencies, the differences get
lower when the message sizes increase.

14

1B 10B 100B 1KB

0

2

4

Message Size

T
im

e
(µ
s)

1KB 10KB 100KB 1MB

0

500

1,000

Message Size

T
im

e
(µ
s)

Local
Remote

Figure 2.5: Latency of one-sided memget operations performed on both local and remote memory.

1B 10B 100B 1KB

1

2

3

Message Size

T
im

e
(µ
s)

1KB 10KB 100KB 1MB

0

500

1,000

Message Size

T
im

e
(µ
s)

Local
Remote

Figure 2.6: Latency of one-sided memput operations performed on both local and remote memory.

1B 10B 100B 1KB 10KB 100KB 1MB

103

104

105

106

107

Message size (log)

O
p

er
at

io
n

s
/

se
co

n
d

Local
Remote

Figure 2.7: Throughput of the one-sided memput operation targeting both local and remote
memory.

15

Chapter 3

Designing a Distributed Hash
Table for Shared Memory

In this chapter different hashing schemes are compared and discussed. We argue that linear
probing is expected to perform best because it requires less roundtrips than other hashing schemes.
An analysis of linear probing is given and its expected performance is determined. After that, the
design of find-or-put is given and discussed in detail. A peak-throughput of 3.6 million op/s
is reached by find-or-put on an Infiniband cluster.

3.1 Introduction

Hash tables are popular data structures for storing maps and sets, since data can be retrieved and
stored with time complexity O(1) [69]. A distributed hash table is a hash table that is distributed
over a number of computers. The advantage is that more memory is available, because the
memory of every participating computer can be used. A disadvantage is that the performance of
hash table operations might be lower due to the latency of the network and bandwidth limitations.
Having a high-performance hash table is, however, essential for an efficient implementation of
many distributed algorithms, like graph searching.

Our goal is to implement a distributed hash table using the PGAS programming model.
The hash table supports only a single operation, namely find-or-put, that either inserts data
when it is not already inserted or indices that the data element has already been added before.
Secondly, the hash table must be applicable to any sort of memory-intensive high-performance
distributed application that requires a hash table. Distributed graph searching or distributed
symbolic reachability are merely examples. If needed, find-or-put can easily be split into two
operations, find and insert. We did not implement a delete operation or garbage collection
due to time constraints, but the hash table can easily be extended to support tombstones.
Furthermore, the hash table should require minimal memory overhead, should be CPU-efficient
(i.e. not be based on polling), and the latency of find-or-put should be minimal.

We tried to maximize the hash table performance by minimizing the number of roundtrips
required by find-or-put, while keeping the hash table CPU-efficient. We compare the different
hashing strategies used in previous work and argue that linear probing requires the least number
of roundtrips. We show that many existing implementations either require more roundtrips or
are CPU-intensive. Our implementation of find-or-put maintains CPU-efficiency by using one-
sided RDMA operations, both for finding and inserting data. These operations are overlapped

16

as much as possible to minimize the waiting-times for roundtrips.
Previous work includes Pilaf [24], which is a key-value store that uses RDMA. Pilaf uses

an optimized version of Cuckoo hashing to reduce the number of roundtrips in a worst case
scenario. Lookups are performed by the clients, but inserts and deletes are performed by the
server to simplify the synchronization of memory accesses. Nessie [67] is an RDMA-based hash
table that also uses Cuckoo hashing. In Nessie, all hash table operations are performed by the
clients, which makes its implementation more complex than Pilaf. HERD [10] is a key-value
store that only uses one-sided RDMA writes and ignores the CPU bypassing features of RDMA
to maximize the throughput. FaRM [5] is a distributed computing platform that exposes the
memory of all machines in a cluster as a shared address space. A hash table is built on top of
FaRM that uses a variant of Hopscotch hashing.

This chapter is structured as follows. Different hashing strategies are compared in Section 3.2.
We argue that linear probing required the least number of roundtrips. In Section 3.3 the expected
performance of linear probing in a distributed setting is analysed. Section 3.4 discusses the design
of find-or-put. The experimental evaluation of find-or-put is given in Section 3.5. Finally,
our conclusions are summarized in Section 3.6.

3.2 Preliminaries

It is critical to minimize the number of roundtrips required by find-or-put when accessing
remote memory to achieve best performance. This is because hash table throughput is directly
limited by the throughput of the RDMA devices. This is also shown in the experimental section.
Furthermore, the waiting-times for roundtrips contribute to higher latencies of find-or-put.
Minimizing the number of roundtrips reduces waiting-times and thus reduces latency. In this
section some notation is given, followed by different techniques for solving hash collisions used
in related work. After explaining those techniques, we argue that linear probing requires fewer
roundtrips.

3.2.1 Notation

A hash table T = 〈b0, . . . , bn−1〉 consists of a sequence of buckets bi usually implemented as an
array. We denote the load-factor of T by α = m

n , where m is the number of elements inserted in
T and n is the total number of buckets.

A hash function h : U → R maps data from some universe U = {0, 1}w to a range of keys
R = {0, . . . , r − 1}. We assume that every element x ∈ U is a single machine word, so in case of
a 64-bit architecture, w = 64 and U contains all binary-encoded 64-bit words.

Hash tables use hash functions to map words x ∈ U to buckets bh(x) by letting r < n. Let
x ∈ U be a word. Then we write x ∈ bi if bucket bi contains x, otherwise we write x 6∈ bi. Let
T be a hash table. We write x ∈ T if there is some 1 ≤ i ≤ n− 1 for which x ∈ bi, otherwise we
write x 6∈ T .

For some x, y ∈ U with x 6= y it may happen that h(x) = h(y). This is called a hash collision.
A hash function h is called a perfect hash function if h is injective, meaning that h is perfect if
∀x, y ∈ U.x 6= y =⇒ h(x) 6= h(y). A perfect hash function is thus collision-free. In practice, the
domain U is unknown and often |U | � |R|, so usually h is not perfect [7].

A family {hi : U → R}i∈I of hash functions, indexed by some set I, is called universal if
∀x, y ∈ U. x 6= y ⇒ Pr[hi(x) = hi(y)] ≤ 1

|U | for every i ∈ I. A hash function is called universal

if it belongs to a universal family of hash functions [23]. In other words, h : U → R is called

17

universal if Pr[hi(x) = hi(y)] ≤ 1
|U | for every x, y ∈ U . Universal hash functions have good

theoretical properties, which are used to give theoretical expectations (in Section 3.3).

3.2.2 Hashing Strategies

In the ideal case, only a single roundtrip is ever needed by find-or-put to either find or insert
data. This can, however, only be achieved when hash collisions do not occur. Unfortunately,
they are very likely to occur in practice, since |U | is much bigger than |R| when a hash function
h : U → R is used.

Our aim is to find a hashing strategy that is both CPU-efficient and requires a minimal num-
ber of roundtrips both for finding and inserting data. HERD only needs one roundtrip for every
hash table operation, at the cost of CPU efficiency [10]. Only one-sided RDMA write operations
are used by HERD to make requests to remote processes. These processes continuously poll
memory locations to check for incoming requests. This greatly increases hash table throughput,
but also limits HERD to be used in CPU-intensive algorithms. We aim to retain CPU-efficiency
to keep the hash table usable in such algorithms.

Chained hashing. With chained hashing, every bucket is implemented as a linked list. Adding
a data element x ∈ U is performed by adding it to the linked list bh(x). Lookups and deletes
can, however, take Θ(m) time in worst case, when all m data items are inserted into the same
bucket. However, it can be shown that both successful and unsuccessful lookups require Θ(1+α)
time on average when a universal hash function is used [69], which is constant (as α ≤ 1). As
a consequence, also deletes can be performed with a constant number of operations on average,
since it uses lookup. Another consequence is that the number of RDMA operations required
to perform remote finds and deletes is also constant. Because universal hash functions are very
computational intensive, a more efficient hash function is often used in practice that achieves a
suboptimal distribution. As an effect, it often happens that linked lists contain more than one
element, thus also require more than one RDMA operation on average. Maintaining linked lists
causes memory overhead due to storing pointers. Another disadvantage is that caching perfor-
mance is poor due to the lack of data locality. Cache lines cannot effectively be used, because
buckets are traversed via pointers.

Cuckoo hashing. Cuckoo hashing [52] is an open address hashing scheme that achieves constant
lookup and deletion time and expected constant insertion time. The Cuckoo hashing scheme uses
k ≥ 2 independent hashing functions h1, . . . , hk : U → R with hi 6= hj for every i 6= j. With k-
way Cuckoo hashing we refer to Cuckoo hashing with k hash functions. Pilaf uses 3-way Cuckoo
hashing [24]. By increasing k, higher load-factors are supported, at the cost of memory accesses
or network communication. The Cuckoo hashing scheme maintains the following invariant.

Invariant 1 (Cuckoo Invariant). Suppose that k ≥ 2 independent hash functions h1, . . . , hk :
U → R are used by the Cuckoo hashing scheme. Then for every data item x ∈ U it holds that
either x 6∈ T or x ∈ bhi(x) for exactly one 1 ≤ i ≤ k.

Inserting a data element x ∈ U involves inserting x in exactly one of the buckets bh1(x), . . . , bhk(x).
It may happen that all k buckets are occupied. In that case, the data element in one of the k
buckets has to be relocated for x to be inserted. Suppose that bhi(x) is chosen, for 1 ≤ i ≤ k, and
suppose that y ∈ bhi(x). Then the relocation scheme removes y from bhi(x), inserts x in bhi(x),
and inserts y by following the same procedure recursively. The recursion chain breaks when y
can be inserted without requiring another relocation. Alternatively, the chain may also break
when the recursion depth reaches a certain threshold or when the recursion chain enters a loop.

18

In both cases, a rehashing scheme must be applied, which not only may require a large number
of roundtrips, but also a locking mechanism, which is particularly expensive in a distributed
environment. By increasing k, the probability of having to perform a relocation decreases.

Lookups require at most k roundtrips, which can be overlapped to decrease waiting times
and thus decrease latency. On the other hand, by increasing k, the number of RDMA operations
also increases, which reduces the throughput of the hash table.

Bucketized Cuckoo hashing. A variant on Cuckoo hashing, called Bucketized Cuckoo Hash-
ing, enables buckets to contain multiple data elements. Each bucket is subdivided into l slots,
and bucketized Cuckoo hashing is then called (k, l)-Cuckoo hashing, where k is the number of
hash functions used. The bucketized Cuckoo hashing scheme maintains the invariant that every
inserted data element x ∈ T is inserted into exactly one of the l slots, owned by one of the
buckets bh1(x), . . . , bhk(x).

Because every bucket contains multiple slots, it is more likely for a data item to be inserted
without needing to relocate items. Furthermore, the number of roundtrips required by the hash-
ing operations, as well as the length of relocation chains, is linearly reduced by l. Bucketized
Cuckoo hashing performs efficient even when α > 0.9 according to [15]. The designers of Pilaf
pointed out that (2, 4)-Cuckoo hashing could be very efficient [24].

Hopscotch hashing. Another hashing scheme with constant lookup time and expected constant
insertion time is Hopscotch Hashing [46]. The Hopscotch hashing scheme uses a single hash
function h : U → R and every bucket is assigned to a fixed-sized neighbourhood. We denote the
size of a neighbourhood by a constant H ≥ 1. The neighbourhood of bucket bi, which we denote
by N(bi), is bi itself, together with the next H−1 buckets modulo n, so N(bi) = 〈bi, . . . , bj〉 with
j = (i+H − 1) mod n. Hopscotch maintains the following invariant.

Invariant 2 (Hopscotch Invariant). Let x ∈ U be some data item and let N(bh(x)) = 〈b1, . . . , bH〉.
Then either x 6∈ T or x ∈ bi for exactly one 1 ≤ i ≤ H.

Alternatively, for every x ∈ U it holds that x 6∈ T or appears exactly once in N(bh(x)). As
a consequence, a lookup(x) operation only needs to examine N(bh(x)) in order to determine if
x ∈ N(bh(x)). Because neighbourhoods are consecutive blocks of memory, they can be obtained
with a single RDMA roundtrip. Lookups can thus be performed with a single RDMA roundtrip.
This is a better result than (Bucketized) Cuckoo hashing, which requires k ≥ 2 roundtrips. A
delete(x) operation simply searches for the bucket b ∈ N(bh(x)) with x ∈ b and empties b with
a cas operation. Assuming that the cas succeeds, deletes require only two roundtrips.

The insert(x) operation examines the neighbourhood N(bh(x)) and inserts x into the first
empty bucket it encounters by performing a cas operation. If cas fails, the operation simply
searches for the next empty bucket. If no such bucket exists, the insert operation tries to
relocate one of the data items in N(bh(x)) in order to make place for x, while still maintaining
Invariant 2. This requires a relocation scheme similar to the one used in Cuckoo hashing. Such
a scheme chooses some element y ∈ N(bh(x)), reads the neighbourhood N(bh(y)) of y and tries to
insert y into that neighbourhood. If the insert fails, the relocation scheme is recursively applied
to relocate y in N(bh(y)), otherwise x can be swapped for y in N(bh(x)). If the recursion depth
reaches a certain threshold, or if none of the items in the neighbourhood can be relocated, a
rehashing scheme must be applied. A relocation scheme is very expensive because it requires
many roundtrips and a locking mechanism.

Linear probing. When finding or inserting some data element x ∈ U , the linear probing
strategy examines a number of consecutive buckets bh(x)+0, bh(x)+1, . . . , bh(x)+t until the intended

19

bucket has been found or some threshold t ≥ 0 has been reached. Linear probing is very cacheline-
efficient, because the examined buckets are consecutive in memory.For the same reason, a range of
buckets can be obtained with a single RDMA roundtrip when using linear probing in a distributed
environment, which reduces the number of roundtrips.

We expect linear probing to require fewer roundtrips than Hopscotch hashing due to the
absence of relocation schemes, which require many roundtrips and a locking mechanism. The
Hopscotch hashing scheme enabled lookups to be performed with only a single roundtrip, but that
does not effectively apply to a find-or-put operation. Hopscotch hashing could be more efficient
when the hash table is used under a read-intensive workload and when the load-factor is very
high. On the other hand, inserting enough items to reach such a high load-factor could already
make linear probing more efficient, because it does not need to relocate items. Furthermore,
it may happen that relocations cannot be performed, which especially holds under high load-
factors. We expect that maintaining Invariant 2 is too expensive for an efficient implementation
of find-or-put.

A variant on linear probing is designed by Laarman et al. [7] in the context of NUMA
machines. Here, linear probing is performed in a cache line, which the authors called walking-
the-line, followed by double hashing to improve the distribution of data. This scheme obtains
very high parallel speedups due to the efficient use of data locality. By walking over cache lines,
the number of cache misses is minimized. Van Dijk et al. [75] uses this scheme to implement
find-or-put for multi-core symbolic model checking.

Other open addressing schemes. Quadratic probing is similar to linear probing, only the
hash sequence increases quadratically rather than linearly. More specifically, a quadratic hash
function h′ : U × N → R can be derived from h : U → R by choosing c1, c2 ∈ N+ and letting
h′(x, i) = h(x) + c1i + c2i

2 mod r. Then the buckets bh′(x,0), . . . , bh′(x,t) can be tried until an
empty bucket has been found or some threshold t has been reached. Quadratic probing gives a
better data distribution than linear probing because it prevents clustering.

Double hashing uses two independent hash function h1, h2 : U → R to resolve hash collisions.
A combined hash function h′ : U×N→ R can be constructed as h′(x, i) = h1(x)+ih2(x) mod r.
Similar to quadratic probing, h′ can be used to examine a sequence of buckets. Since the interval
depends on the actual data rather than a constant value, double hashing achieves an even better
hash distribution than quadratic probing.

A disadvantage of both hashing strategies is that they examine buckets that are non-consecutive
in memory. Because of that, data locality cannot be effectively exploited. As an effect, both
strategies require more roundtrips than linear probing.

3.2.3 Conclusion

We expect Hopscotch hashing to perform better than Cuckoo hashing in a distributed environ-
ment due to block retrievals. In Hopscotch hashing, fixed-sized blocks of buckets are retrieved
with a single roundtrips, whereas k-way Cuckoo hashing requires k roundtrips. Both hashing
schemes need a relocation mechanism, which may require many extra roundtrips and a locking
mechanism. Linear probing, on the other hand, also uses block retrievals and does not need
a relocation mechanism. When a collision occurs, linear probing simply reads another block
instead of relocating buckets, which we expect to be much cheaper. Our design of find-or-put
uses linear probing for this reason.

20

3.3 Theoretical Expectations

To reduce the number of roundtrips, a fixed-sized range of buckets can be obtained with a single
roundtrip, which we refer to as a chunk. We denote the chunk-size by C ≥ 1. In this section
we analyse the expected performance of linear probing with C-sized chunks. We also analyse
the behaviour of linear probing under different values of C. The following Theorem shows the
expected number of probes required by classical linear probing.

Theorem 1. Assuming that a universal hash function is used, the expected number of buckets
to examine until an empty bucket is found with linear probing is at most:

g(α) =
1

2

(
1 +

1

(1− α)2

)

A detailed proof of 1 is given in [45]. Since α ≤ 1 we have g(α) ≤ g(1), so the expected
number of operations required by lookups, inserts, and deletes is constant. This implies that
the expected number of roundtrips required by these operations is also constant. Since linear
probing examines consecutive buckets by querying for C-sized chunks, the required number of
roundtrips can be linearly reduced by C, which is shown in the next Collorary.

Corollary 1. When using C-sized chunks with C ≥ 1, the expected number of chunks to be
inspected by linear probing until an empty bucket is found is at most:

g(C,α) =
1

2C

(
1 +

1

(1− α)2

)

Proof. By Theorem 1, the expected number of buckets to examine until an empty bucket is found
is at most g(α). Then the expected number of C-sized chunks to read until an empty bucket is
found is at most:

g(C,α) =
g(α)

C
=

1

2C

(
1 +

1

(1− α)2

)

Figure 3.1 shows the expected number of chunks g(C,α) to read with various chunk sizes.
When the load-factor reaches 0.8, the value of g(C,α) grows vastly, no matter the value of
C. Furthermore, the effects of increasing C gets smaller when the load-factor increases. The
following Lemma gives a minimal value for C so that C-sized chunks are expected to contain an
empty bucket.

Lemma 1. A chunk of size at least 1+(1−α)2
2(1−α)2 is expected to contain an empty bucket.

Proof. Suppose that we have a hash table with load-factor α. We want to find a minimal chunk
size C such that g(C,α) ≤ 1 is maximal, where g(C,α) is taken from Lemma 1. In other words,
we want to find a term f(α) such that g(f(α), α) = 1. Thus:

1 = g(f(α), α)⇔ 1 =
1

2f(α)

(
1 +

1

(1− α)2

)
⇔ 2f(α) = 1 +

1

(1− α)2
⇔

f(α) =
1

2
+

1

2(1− α)2
⇔ f(α) =

1 + (1− α)2

2(1− α)2

Then a C-sized chunk is expected to contain an empty bucket if C ≥ f(α).

21

0.6 0.8 1

0

2

4

load-factor α

C
h
u

n
k
s

0.8 0.9 1

100

101

102

load-factor α

C = 1
C = 2
C = 4
C = 8
C = 16
C = 32
C = 64
C = 128
C = 256

Figure 3.1: The expected number of chunks g(C,α) to read until an empty bucket has been found,
with different chunk sizes C and load-factors α. The function g(C,α) is taken from Lemma 1.
Observe that the value of g(C,α) increases vastly with α > 0.8, no matter the value of C.

Lemma 1 shows the expected minimal chunk size that a hash table with load-factor α should
have to find an empty bucket with one roundtrip. The effects of Lemma 1 are shown in Figure 3.2.
With a load-factor α ≤ 1

2 , a chunk size of C = 4 can be used and we expect that no extra chunk
has to be read when inserting a data item. When the load-factor grows bigger (i.e. α > 1

2), the
suggested chunk size increases vastly. So a trade-off has to be made between the chunk size and
the number of chunks to read. In other words, a trade-off between the size of the RDMA reads
and the number of RDMA reads has to be made. The following Theorem gives an efficiency
bound to the load-factor α.

Theorem 2 (Efficiency Bound). Assuming the use of a universal hash function, a chunk of size
C ≥ 1 is expected to contain an empty bucket if α ≤ V (C), where:

V (C) = 1−
√

1

2C − 1

Proof. By Lemma 1, a chunk of size C is expected to contain an empty bucket if C ≥ 1+(1−α)2
2(1−α)2 ,

which can be rewritten to:

C ≥ 1 + (1− α)2

2(1− α)2
⇔ 2C(1− α)2 ≥ 1 + (1− α)2 ⇔

(2C − 1)α2 + (2− 4C)α+ (2C − 2) ≥ 0

Solving this quadratic inequality yields two possibilities:

α ≥ (4C − 2) +
√

8C − 4

2C − 1
= 1 +

√
2C − 1

2C − 1
= 1 +

√
1

2C − 1
(3.1)

α ≤ (4C − 2)−
√

8C − 4

2C − 1
= 1−

√
2C − 1

2C − 1
= 1−

√
1

2C − 1
(3.2)

Since α ≤ 1, option 3.1 does not apply. Furthermore, C ≥ 1, so
√

1
2C−1 ≤

√
1

2×1−1 =
√

1 = 1,

which gives a bound to option 3.2. Thus, an C-sized chunk with C ≥ 1 is expected to have an

22

0 0.2 0.4

1

2

3

4

load-factor α

C
h
u

n
k

si
ze
C

0.6 0.8 1

101

102

103

load-factor α

C
h
u

n
k

si
ze
C

Figure 3.2: The chunk size C that is expected to contain an empty bucket in a hash table with
load-factor α, which is the result of Lemma 1 and Theorem 2. Alternatively, this figure shows
the efficiency bound V (C) with chunk size C ≤ 1024.

empty bucket for

0 ≤ α ≤ 1−
√

1

2C − 1
≤ 1

By performing a find-or-put(d) operation with d 6∈ T and α ≤ V (C), we expect that only
two roundtrips are required, one to read the chunk and one to write d into an empty bucket.
If α > V (C), we expect that 1 + g(C,α) roundtrips are needed. We expect the hash table to
perform efficiently when α ≤ V (C). Figure 3.2 shows the efficiency bounds for a hash table
under various load-factors with various chunk-sizes. The suggested chunk size increases vastly
when the load factor gets bigger. For example, a hash table with chunk size 16 is expected to
perform efficiently for α ≤ 0.82.

Corollary 2. Let M be the maximum number of chunks to consider. Assuming the use of a
universal hash function, find-or-put is expected to return full when:

α ≥ 1−
√

1

2CM − 1
= V (CM)

Corollary 2 follows from Theorem 2 and gives a bound to the load-factor supported by
find-or-put. An universal hash function is assumed for this result. In practice, universal hash
functions are very computational intensive, so high-performance algorithms often use cheaper
hash functions with a poorer hash distribution. It would be interesting to determine the differ-
ences in distribution quality, which we could not do due to time constraints.

Corollary 2 and Corollary 1 also give a guideline to the choice of M , the maximum number of
chunks to consider until find-or-put returns full. Every chunk is retrieved via a roundtrip, so
taking a large value of M may result in a large number of roundtrips when the load-factor gets
high. Choosing a small value of M and a large value for C might result in poor performance,
because many buckets in a retrieved chunk may not be considered. To get optimal performance,
a good trade-off between values M and C has to be made, which can now analytically be done.

23

Chunk Size Efficiency Maximum Roundtrip
C Bound V (C) Chunks M Latency*
8 0.74 7 2.69µs
16 0.82 4 2.74µs
32 0.87 2 2.84µs
64 0.91 1 2.84µs
128 0.94 1 3.02µs
256 0.96 1 3.13µs

Figure 3.3: The expected performance for different values of C for find-or-put to support
load-factors up to 0.9. The roundtrip latencies (*) are taken from the experimental results in
Chapter 2.

3.3.1 Research Expectations

The size of a bucket in our hash table is 64 bits (i.e. 8 bytes), so a total of 8 buckets can be placed
on a single cache line. To make optimal use of cache lines, we let C be a multiple of 8. If we
choose to let C = 8, then linear probing is expected to perform efficiently until α ≥ V (8) = 0.742
by Theorem 2. If an additional cache line is used and C = 16, then the hashing scheme can
efficiently be used until α ≥ V (16) = 0.82, which is a lot better than using only a single cache line
(an improvement of 10.5%). Furthermore, we observed that one-sided RDMA reads performs
better with 128-byte packets than with 64-byte packets, so we expect that C = 16 performs best.
It is possible to further increase C to 24 and adding another cache line, but we expect this to
have a negative impact on the performance of the remote operations. Also V (24) = 0.854, which
is only a 4% improvement compared to V (16).

As an example, suppose that we want the hash table to support load-factors up to 0.94, which
is already a high load-factor in practice. Then Corollary 1 can be used to determine M by letting
M ≥ g(C, 0.9), for any value of C. Furthermore, the efficiency bound of C can be determined by
using Theorem 2. The results are given in Table 3.3. The roundtrips latencies are derived from
the data presented in Figure 2.5.

3.4 Design and Implementation

In this section the design of find-or-put is explained and discussed. Linear probing is used,
which could arguably be implemented to require fewer roundtrips than alternative hashing
schemes. Furthermore, we tried to minimize the waiting times for roundtrips by overlapping
them as much as possible. This is done by using asynchronous memory operations, which can
be used in a number of PGAS implementations. Figure 3.5 shows the design of find-or-put.
In this design, the value C is again used to denote the chunk size and the value M is used as a
threshold on the maximum number of chunks to consider when searching for the intended bucket.

The find-or-put operation reads a chunk of buckets from the hash table via a one-sided
RDMA read, and then iterates the chunk to search for the intended bucket. During the iteration,
new chunks are already retrieved, so that the waiting times for roundtrips are reduced, should
the previous chunk not contain the intended bucket. The remainder of this section discusses the
memory layout of the shared hash table and its buckets, the asynchronous query operations, and
the implementation of find-or-put with its design considerations.

24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32

48

(1)

(2)

Bit number

B
it

o
ff

se
t

Figure 3.4: The memory layout of a 64-bit bucket, where (1) denotes the occupation bit and
(2) is used to store the actual data.

3.4.1 Memory Layout

Figure 3.4 shows the memory layout of a bucket. Each bucket is 64 bits in size. The first bit is
used as a flag to denote bucket occupation. The remaining 63 bits are used to store data. When
data is inserted, the occupation bit is set via a cas operation to ensure data consistency and to
prevent expensive distributed locking mechanisms. If the hash table needs to support the storage
of data larger than 63 bits, a separate shared data array can be used, in which the actual data
elements can be stored. The corresponding indices are stored in the 64-bit buckets.

The cas operation is explained in Section 2.5.2. The data(b) operation takes a bucket b as
input and returns the data element stored in b, thus ignoring the occupation bit.

Shared and Private Arrays. Assuming that n processes p1, . . . , pn use the hash table, a shared
table B[0] . . .B[kn − 1] of buckets is allocated. Each worker owns (i.e. stores) k buckets. The
find-or-put operation retrieves chunks by placing them into private memory, so that they can
be iterated efficiently. For this, two-dimensional arrays P[0][0], . . . ,P[M−1][C−1] are allocated in
private memory on every process pi. Every process aligns P along cache lines, thereby minimizing
the number of cache misses when iterating over P. This reduces the number of fetches from main-
memory and thus increases performance. However, we only expect performance increases when
find-or-put targets local memory (i.e. memory owned by a local process). We expect that
waiting times for roundtrips greatly outweigh the performance gains of cache line alignment.
Cache lines are typically 64 bytes in size, so 8 buckets can be placed on a single cache line. For
this reason, we let C be a multiple of 8.

3.4.2 Querying for Chunks

When a process queries a chunk, it transfers a consecutive block of C buckets from B into its
private array P, so that the bucket may be examined locally. When find-or-put does not find
the intended bucket, it may query for the next chunk. As a result, several consecutive chunks
might be requested. The query-chunk(i, h) operation queries for the ith consecutive chunk,
assuming i ≥ 0, starting from bucket B[h mod kn]. The query-chunk operation returns a
handle, which can be given to sync to synchronize on the query, which blocks further execution
of the process until the roundtrip completes. By calling query-chunk multiple times before
synchronizing on them, their queries overlap, thereby reducing the amortized waiting times.

The query-chunk operation starts by determining start and end, denoting the first and last
index of the chunk to retrieve, respectively. When start < end, the chunk wraps around the
kn-sized hash table, hence the check at line 5. In that case, the chunk consists of two smaller

25

chunks that are non-consecutive in memory. Two roundtrips are required to fetch them, which
are performed by split (lines 9 and 10). The memget, memput, and sync operations are discussed
in Section 2.5.2.

3.4.3 Design Considerations of find-or-put

The find-or-put(d) operation returns found when d ∈ T (lines 17 and 19) before invoking the
operation and returns inserted when d 6∈ T (line 15) before invoking the operation. If d 6∈ T and
all MC consecutive buckets starting from h(d) are already occupied, full is returned (line 20).
In our implementation, the execution of the program simply terminates when full is returned,
but it would also be possible to perform rehashing or resizing of the hash table. We did not
implement either of the two schemes, since we allocate all available memory when using the hash
table in the BDD implementation. This makes resizing superfluous. Furthermore, rehashing
would only help slightly when the current hash function is replaced by a better, probably more
computational intensive hash function. Figure 3.2 shows that the hash table is expected to easily
handle load-factors up to 0.9 when a reasonable chunk size is used, which is enough for our use
case.

Retrieving Chunks. The algorithm starts by requesting the first chunk (line 3) and, if needed,
tries a maximum of M − 1 more chunks (line 4) to find the intended bucket. Before calling
sync(si) on line 7, the next chunk is already requested by calling query-chunk(i+1, d) on line 6.
This call returns a handle si+1 and before this handle is synchronized on, first a whole iteration
of the for-loop at line 4 is performed. Such an iteration includes the synchronization of the
previous query (with the exception of the first iteration) and the iteration over the chunk itself.
This reduces overal waiting times. We actually expect queries to be already completed when
synchronization is performed.

Iterating a Chunk. By iterating over a chunk in private memory, when some bucket P[i][j]
is empty, find-or-put tries to insert data into that bucket with cas on line 13. B[a] is the
bucket in shared memory corresponding to P[i][j] in private memory. The former value of B[a]
is returned by cas, which is enough to check if the cas operation succeeded (line 14). In that
case, inserted is returned (line 15). Otherwise, some other process claimed B[a] in the time
between the calls to query-chunk and cas. It might happen that d is written to that bucket,
hence the check at line 16. If not, find-or-put returns to line 8 and tries the next bucket. If
P[i][j] is occupied, find-or-put checks if d ∈ P[i][j] at line 18. In that case, found is returned.
If not, the next bucket is tried.

Interleaving Queries. Figure 3.6 shows the effect of performing asynchronous queries. The
find-or-put(d) operation queries for the first and second chunk on lines 3 and 6, respectively.
It then synchronizes on the first chunk at line 7, which causes the process to halt (shown by the
gray bar at sync(s0)). After that, the first chunk is iterated. If the intended bucket is not found
in the first chunk, find-or-put starts a query to the third chunk and synchronizes on the second
chunk. The find-or-put operation continues doing this until the intended bucket is found or
M chunks have been tried. The effect of asynchronous queries is that the write rectangles in
Figure 3.6 overlap with the gray ones, thus reducing the overall waiting times for roundtrips.

26

1 def find-or-put(data):
2 h← hash(data)
3 s0 ← query-chunk(0, h)
4 for i← 0 to M − 1:
5 if i < M − 1
6 si+1 ← query-chunk(i+ 1, h)
7 sync(si)
8 for j ← 0 to C − 1:
9 if is-not-occupied(P[i][j])

10 B Try to claim bucket B[a]
11 a← (h+ iC + j) mod kn
12 d← data(data) | OCCUPIED
13 val← cas(B[a],P[i][j], d)
14 if val = P[i][j]
15 return inserted

16 elif data(val) = data
17 return found

18 elif data(P[i][j]) = data
19 return found

20 return full

1 def data(b):
2 return (b & DATA)

1 def query-chunk(i, h):
2 B Find start and end index
3 start← (h+ iC) mod kn
4 end← (h+ (i+ 1)C − 1) mod kn
5 if end < start
6 return split(start, end)

7 else
8 B Determine source/dest. blocks
9 S ← 〈B[start], . . . ,B[end]〉

10 P ← 〈P[i][0], . . . ,P[i][C − 1]〉
11 return memget-async(S, P)

1 def split(start, end):
2 B Find the blocks in shared memory
3 S1 ← 〈B[start], . . . ,B[kn− 1]〉
4 S2 ← 〈B[0], . . . ,B[end]〉
5 B Corresp. blocks in private memory
6 P1 ← 〈P[i][0], . . . ,P[i][|S1| − 1]〉
7 P2 ← 〈P[i][|S1|], . . . ,P[i][C − 1]〉
8 B Retrieve the chunk
9 s1 ← memget-async(S1, P1)

10 s2 ← memget-async(S2, P2)
11 return 〈s1, s2〉

Figure 3.5: The design of find-or-put and query-chunk. The query-chunk operation queries
the ith chunk and sync synchronizes on it. The 64-bit bitmask OCCUPIED denotes bucket occu-
pation and DATA masks data in a bucket.

3.5 Experimental Evaluation

We implemented the design of find-or-put in Berkeley UPC, version 2.20.0. The implementa-
tion is evaluated by measuring latency, throughput, and the number of roundtrips required by
find-or-put under various configurations. Furthermore, we compared the actual experimen-
tal outcomes with our research expectations, which are given in Section 3.3. The experiments
have been performed on a cluster of 10 Dell M610 machines (the m610 partition in the CTIT
computing lab). Each machine has 8 CPU cores and 24 GB of internal memory. All machines
run Ubuntu 14.04.2 LTS with kernel version 3.13.0 and are connected via a 20 GB/s Infiniband
network. All experiments have been repeated at least three times, and the average measurements
are considered.

All remote benchmarks (i.e. the benchmarks that involve at least two machines and the
Infiniband network) are compiled with the command upc -network=ibv, so that UPC uses the
Infiniband verbs library. All local benchmarks (i.e. the benchmarks that use only a single
machine) are compiled with the command upc -pthreads. The -pthreads flag enables pro-
cesses to create multiple UPC threads. The local benchmarks do not use the Infiniband Verbs
library, otherwise all UPC operations invoked in find-or-put are performed via the RDMA de-
vice instead of via the CPU, which drastically decreases performance. The remote benchmarks
were executed by running upcrun -n processes -N machines -shared-heap 1100MB, where we
replaced processes with the total number of processes and machines with the number of partici-

27

initiator
RDMA device

of target
Main memory

of target

s0 = query-chunk(0, d)

s1 = query-chunk(1, d)

s2 = query-chunk(2, d)

s3 = query-chunk(3, d)

s4 = query-chunk(4, d)

sync(s0)

sync(s1)

sync(s2)

sync(s3)

. . .

Figure 3.6: The effects of using query-chunk and sync-chunk to retrieve chunks of buckets
asynchronously. The gray-striped rectangles denote the waiting time for the blocking sync-chunk

operation to return. The white rectangles denote the time to iterate over the C buckets, obtained
by the previous call to query-chunk.

pating machines. The -shared-heap enables every process to allocate up to 1100 MB of shared
memory. The local benchmarks were executed via upcrun -n threads -N 1 -pthreads threads
-bind-threads, with theads the number of parallel UPC threads to use. The -bind-threads

flag causes threads to be bound to CPU cores, which increases performance.

3.5.1 Throughput of find-or-put

We measured the throughput of find-or-put in terms of operations per second (op/s). This
is done by creating a shared hash table where each participating process contributes a block of
1024 MB. Thus, the total hash table size is p × 210 MB, with p the total number of processes.
Every process performs 107 find-or-put operations with pseudo-randomized data.

Three different workloads have been taken into account when measuring throughput, namely
a mixed workload (50% finds, 50% inserts), a read-intensive workload (80% finds, 20% inserts),
and a write-intensive workload (20% finds, 80% inserts). For each workload, we used a differ-
ent procedure to select the pseudo-randomized data given to each call to find-or-put. This
procedure is able to introduce a skew in the workload if needed, while maintaining a proper
distribution of data (i.e. the memory of every process is accessed equally often). Also, every
process performs an approximately equal amount of finds and inserts.

Local Throughput. Figure 3.7 shows the throughput obtained with one machine, without the
use of the Infiniband network. Here we used only one process, which spawns a various number
of UPC threads. We scaled from 1 to 10 UPC threads, which we bound to separate CPU cores.
Figure 3.7a shows that the average throughput per thread decreases when the number of threads
increases. The biggest drop (54.9% on average) is observed when two threads are spawned, in

28

1 2 4 6 8 10

2

3

4

·108

Threads

T
h

ro
u

g
h

p
u

t
(o

p
/
s)

(a) Throughput per thread

1 2 4 6 8 10

1

2

·109

Threads

T
h

ro
u

g
h

p
u

t
(o

p
/s

) mixed
read
write

(b) Total throughput

Figure 3.7: Throughput of find-or-put using one machine (i.e. without using RDMA). The
throughput is measured under a mixed workload, a read-intensive workload, and a write-intensive
workload. The total throughput is the sum of the throughputs of all threads.

Workload
Base Throughput Best Throughput

Speedup
Throughput Procs. Throughput Procs.

Mixed 324,676,333 1 2,049,388,900 8 6.31
Read-intensive 376,434,000 1 2,342,278,333 7 6.22
Write-intensive 422,593,000 1 1,963,570,267 9 4.65

Figure 3.8: The throughputs obtained when using one machine. The throughputs obtained with
one process (base throughputs) and the best achieved throughputs are given.

comparison with one thread. In that case, shared memory is used (i.e. memory shared between
two threads), which causes a performance reduction compared to one thread. When more than 8
threads are used, performance also drops. This is because the machines used in the experiments
only have 8 physical CPU cores. When considering a mixed workload, a maximum speedup of
6.3 is reached when 8 threads are used (see also Figure 3.8). Surprisingly, the benchmarks with
a mixed workload obtain higher speedups than the read-intensive workloads. We expect this
to be caused by the overhead generated due to asynchronous queries. We may conclude that
asynchronous queries are more beneficial for remote operations. The write-intensive benchmarks
obtain lower speedup because those operations fill buckets, in addition to merely reading neigh-
bourhoods.

Remote Throughput. Figure 3.10 shows the average throughputs when RDMA is used by the
processes. In addition, Figure 3.12 shows the best achieved throughputs for the different work-
loads. Compared to the local throughputs, a performance drop of several orders of magnitude
is observed. A peak-throughput of 2.05 × 109 op/s is reached locally under a mixed workload,
compared to 3.6 × 106 remotely, which is 568 times lower. This difference is caused by the
overhead generated by the RDMA devices. For every one-sided write, the RDMA device needs
to read from main-memory, send a message to a remote RDMA device, which in turn needs to
access remote memory. For a one-sided read, the remote RDMA device sends back a message in
addition to the previous steps, and also causes an additional local memory access. Furthermore,
all network accesses performed by RDMA devices are done via the PCI-E bus, instead of using

29

1 2 4 6 8 10

1

2

3

4

5

6

Processes

S
p

ee
d

u
p

mixed
read
write

Figure 3.9: Speedups on throughput when using one machine (i.e. without using RDMA).
A mixed workload (mixed), a read-intensive workload (read), and a write-intensive workload
(write) is considered.

the north-bridge, which impacts performance.
The average throughputs per process, shown in Figure 3.10, clearly shows the saturation

points for the RDMA devices. When enough processes are added, the throughput per processes
remains relatively linear. The relatively steep slope beforehand is caused by the many processes
used per machine, which is a threshold for the RDMA devices to reach their maximum through-
put. By default, Berkeley UPC has a fixed number of processes per machine, but we expect
that this slope could be less steep when a variable number of processes per machine could be
used instead. In addition, we expect that the maximum achievable throughput also increases
by spawning processes dynamically. It would be interesting to try dynamic thread creation and
apply algorithms that learn the effects on performance when threads are either added or removed.

The total throughputs, presented in the right plots in Figure 3.10, also show the saturation
points of the RDMA devices. These results imply that scalability along CPUs decreases when the
number of machines increases. Performance can only be improved by improving data-locality
in some way, or by further minimizing the number of RDMA operations. Section 3.5.3 gives
suggestions on how to potentially double the achievable throughput. By reducing the number of
roundtrips, more processes are needed to saturate the RDMA devices, but scalability remains
an issue. Therefore, improving data-locality is key to support networks of many-core machines.

Figure 3.11 presents the speedups obtained by the remote throughput benchmarks, which
look very similar to the graphs shown in Figure 3.10. The speedups are determined relative to
two machines, each having one process. Again, we expect the steep slopes to become less steep
when treads are dynamically created, adapting to performance differences.

3.5.2 Latency of find-or-put

The latency of find-or-put is measured using various chunk sizes while increasing the load-factor
α. This is done by using two processes on two machines, so that the Infiniband network is used.
Each process owns a 1 GB portion of the hash table. One of the processes remains idle throughout
the benchmark and the other process inserts a sequential range of integers until α reaches 0.92.
This was the best we could do with the hash function we used, since find-or-put started to
return full with small values of C and α > 0.92. Hash functions with better distributions would
support larger load-factors. The idle process simply exists to own a portion of remote memory,

30

(a) Avg. throughput per process, mixed (b) Total throughput, mixed

(c) Avg. throughput per process, read-intensive (d) Total throughput, read-intensive

(e) Avg. throughput per process, write-intensive (f) Total throughput, write-intensive

Figure 3.10: Average throughput per process and total throughput under mixed, read-intensive,
and write-intensive workloads.

31

(a) Mixed workload (b) Read-intensive workload

(c) Write-intensive workload

Figure 3.11: Speedups obtained in remote throughput under various workloads.

thus allowing RDMA to be used.
We benchmarked both local and remote latency. For the local latency benchmarks, we used

only one machine, which prevents RDMA from being used.

Local Latency. Figure 3.13 shows the latency of find-or-put for different values of C, while
increasing α. For α < 0.7, the differences between latencies are already relatively large. Com-
pared to 64-sized chunks, the latency is 63.5% higher on average than with 8-sized chunks. If
RDMA is not used, UPC uses memcopies instead to transfer potions of local shared data in B to
the private array P. By increasing C, the amount of memory to copy increases, which decreases
performance.

The latency increases vastly when α > 0.7, depending on the value C. The increase corre-
sponds to the expected increase shown in Figure 3.1. By taking larger values of C, the average
latency is higher, but the increase is lower when α gets big. Having a large value for C is
beneficial when α is large. The latency of find-or-put on local memory is also presented in
Figure 3.14 for some values of α. Also the remote latencies are given, together with the corre-
sponding slowdowns with respect to local latencies.

Remote Latency. Figure 3.15 presents the remote latencies for find-or-put. For α ≤ 0.5
the differences between latencies are very small, no matter the value for C. The latency with

32

Workload
Base Throughput Best Throughput

speedup
TP. M. Procs./M. TP. M. Procs./M.

Mixed 592,929 2 1 3,607,003 10 3 6.08
Read 742,728 2 1 4,620,752 10 3 6.22
Write 495,370 2 1 2,999,234 10 3 6.05

Figure 3.12: The best achieved throughputs (TP.) when scaling along machines (M.) over a
network and the number of processes per machine (Procs./M.).

0.2 0.4 0.6 0.8

400

600

800

load-factor (α)

la
te

n
cy

(n
s)

C = 8
C = 16
C = 32
C = 64
C = 128

Figure 3.13: Latency of find-or-put without using RDMA (i.e. using only a single machine).
Various chunk sizes C are used.

64-sized chunks is only 7.5% higher than 8-sized chunks, which shows that most overhead lies
in network communication. However, when choosing large values for C, the average latencies
increase vastly. To illustrate, 128-sized chunks already have 17.5% higher latency than 64-sized
chunks.

When low chunk sizes are used, the average latencies increases vastly when α > 0.5. By
choosing large values for C, higher load-factors are supported, at the cost of higher latencies.
Figure 3.16 shows the average number of roundtrips required to find a suitable bucket, which
corresponds to Corollary 1. The required number of roundtrips directly influence the latency of
find-or-put. The rightmost plot at Figure 3.15 shows a steeper increase than the roundtrips
presented in Figure 3.16 due to asynchronous queries. When find-or-put is invoked, two chunks
are being retrieved. As an effect, slightly higher load-factors are supported.

Figure 3.17 shows the required number of roundtrips and their expected values (based on
Lemma 1) for finding suitable buckets.

3.5.3 Suggestions for Performance Improvements

Figure 3.6 shows that two queries are initially performed before the first chunk is even iterated.
This causes two roundtrips (i.e. one-sided RDMA operations) to be performed, which are handled
by the RDMA devices if they target remote memory. However, Figure 3.2 shows that, with a
reasonable value for C, the first chunk often already contains the intended bucket. This especially
holds when the load-factor is still relatively low (e.g. below 0.85, depending on the value C). We
can thus argue that find-or-put very often performs queries that are never used. Furthermore,

33

Chunk size
Load-factor 0.5 Load-factor 0.8 Load-factor 0.9

Loc. Rem. SD. Loc. Rem. SD. Loc. Rem. SD.
8 338 7,981 23.61 431 9,602 22.28 769 15,873 20.64
16 447 8,046 18.00 493 8,746 17.74 682 11,653 17.09
32 526 8,217 15.62 548 8,446 15.41 695 9,928 14.28
64 629 8,565 13.62 639 8,645 13.53 710 9,304 13.10
128 733 9,383 12.80 743 9,413 12.67 802 9,708 12.10

Figure 3.14: The differences between local (Loc.) and remote (Rem.) latency (i.e. latencies
when using one machines versus latencies over an Infiniband network). The latencies are given
in nanoseconds (ns). A slowdown (SD.) of n means that the latency over an Infiniband network
is n times lower than the latency using only one machine.

0.1 0.2 0.3 0.4 0.5

8,000

8,500

9,000

9,500

load-factor (α)

la
te

n
cy

(n
s)

0.6 0.7 0.8 0.9

1

1.5

2

·104

load-factor (α)

la
te

n
cy

(n
s)

C = 8
C = 16
C = 32
C = 64
C = 128

Figure 3.15: Latency of find-or-put over a network (i.e. using RDMA), while increasing the
load-factor α. Various chunk sizes C are used.

when α gets high, the number of chunks to consider increases vastly. We argued in Section 3.5.1
that the hash table throughput is limited by the throughput of the RDMA devices, and that
lowering the number of RDMA operations would increase hash table throughput.

As a suggestion to improve performance, we propose a research in adaptive chunk selection,
in which the value of C is not constant, but determined dynamically. Lemma 1 gives an estimate
to the value of C, that can be used if the value of α is known at runtime. This value can
be approximated by all individual processes by counting the number of inserted returned by
find-or-put and assuming that all other processes performed an equal number of inserts. This
might be a valid assumption in many use cases, but also requires some research, since Lemma 1
assumes a universal hash function, which probably has a better distribution than most hash
functions used in practice. Research has to be done in the quality of the hash distribution of
those hash functions, and their deviations with respect to universal hash functions. By doing
that, each worker can approximate the value of α, adjust it with the deviations found with
respect to universal hash functions, and approximate a proper value for C.

We expect this suggestion to halve the number of roundtrips required by find-or-put, which
potentially doubles the throughput of find-or-put. This could have a significant effect on the
scalability of the BDD operations.

The key-value store HERD [10] only uses RDMA writes as an alternative to message pass-
ing. The CPUs continuously poll predetermined memory locations to read and handle incoming
requests. This further reduces the number of RDMA operations, which results in higher through-

34

0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

2

load-factor (α)

R
ou

n
d

tr
ip

s

0.8 0.85 0.9

2

4

6

8

load-factor (α)

R
ou

n
d

tr
ip

s

C = 8
C = 16
C = 32
C = 64
C = 128

Figure 3.16: The average number of roundtrips needed by find-or-put to find a suitable bucket.

Chunk size
Load-factor 0.5 Load-factor 0.8 Load-factor 0.9

Expected Actual Expected Actual Expected Actual
8 1 1.04 2 2.05 7 5.77
16 1 1.00 1 1.41 4 3.21
32 1 1.00 1 1.13 2 1.96
64 1 1.00 1 1.03 1 1.37
128 1 1.00 1 1.00 1 1.11

Figure 3.17: The expected and actual number of roundtrips performed by find-or-put under
various load-factors.

puts, but requires a lot of CPU activity. Nonetheless, this technique might be beneficial when
using fine-grained parallelism (explained in the next chapter), where relatively small computa-
tions are performed relative to the amount of memory accesses (or network communication).
Since polling might be performed when waiting for roundtrips to complete, this technique might
be more efficient than our technique. Furthermore, one-sided RDMA writes do not require a
full roundtrip, since the remote RDMA device does not need to send replies. Also, although not
supported by Berkeley UPC, the RDMA devices are able to handle RDMA operation with inline
data, thus preventing the local RDMA device to perform a memory fetch over the PCI-E bus,
which even further improves performance.

3.6 Conclusions

Minimizing the number of roundtrips is critical to increase hash table throughput. Overlapping
queries via asynchronous remote memory operations reduces waiting times for roundtrips, and
therefore reduces the overall latency of find-or-put.

Compared to techniques for resolving hash collisions used in existing work, linear probing
requires fewer roundtrips. In addition, linear probing does not need any relocation or locking
schemes. Finding an intended bucket with find-or-put takes 9.3µs on average with α = 0.9
and C = 64. A peak-throughput of 3.6 × 106 op/s is achieved by using 10 machines. The hash
table performance remains very high, even under very high loads.

Although performance does not degrade when adding machines to the network, we observed
less scalability along the number of processes per machine. When adding enough processes,
the RDMA devices get saturated, which significantly impacts performance. As future work, we

35

propose a number of ways to increase performance and scalability:

• Use Infiniband components that support higher bandwidths, use multiple Infiniband Chan-
nel Adapters, or both. Experimental evaluation has been performed on an 20 GB/s In-
finiband network, but currently bandwidths up to 100 GB/s are supported. Also, using
multiple Channel Adapters increases total throughput.

• Use adaptive chunk sizes, like described in Section 3.5.3. In most cases, find-or-put

performs an extra roundtrip that is never actually used. Although it allows asynchronous
querying, removing the need for this roundtrip reduces the number of generated RDMA
operations, which increases scalability.

• Sacrificing CPU efficiency to reduce the number of roundtrips. HERD, for example, only
uses one-sided RDMA writes to implement a message passing alternative, thereby mini-
mizing the number of roundtrips. On the other hand, HERD requires continuous polling
on memory locations, which means that its latency is determined on how fast the CPUs
react on incoming messages. This may lead to higher latencies compared to CPU-efficient
implementations. On the other hand, by minimizing the number of roundtrips, more pro-
cesses per machine are supported, which in turn might lead to higher throughputs and
better scalability.

36

Chapter 4

Hierarchical Lock-Less Private
Deque Work Stealing

In this chapter, private deque work stealing is discussed and implemented. Private deques are
used, as they minimize the number of roundtrips required for steals and do not use any locks
or memory fences. Hierarchical work stealing is applied, so that workers prefer stealing local
tasks over remote tasks, thereby reducing the number of RDMA roundtrips. The implementation
is experimentally evaluated by applying it to a number of benchmarks. Moreover, the private
deque implementation is compared to HotSLAW. We conclude that our implementation has more
efficient steals than HotSLAW.

4.1 Introduction

The aim of task-based parallelism is dividing a computational problem into a number of smaller
tasks, so that tasks can be performed in parallel by multiple threads [37]. By doing that, different
parts of the computation can be performed simultaneously, hopefully resulting in speedup. A task
is thus a basic unit of work and may create subtasks during its execution. Subtasks are created
to further subdivide the computational problem and to allow parallelism. Tasks only depend on
their intermediate subtasks for their execution. Tasks may synchronize on their subtasks and
use their results. Every thread maintains a task pool. Threads do not communicate until their
task pool gets empty, in which case they become idle. Idle threads obtain tasks from other task
pools and write their status and results to predetermined memory locations, so that task owners
can access them.

An advantage of task-based parallelism is that it provides the programmer with an inter-
face to define tasks, without needing to explicitly take parallelism into account. Some other
parallel programming approaches, like thread-centric programming, require the programmer to
handle the complexity of performance scalability, as well as parallelism while implementing al-
gorithms [12].

Load Balancing. The distribution of tasks to threads is called load-balancing. In the ideal
case, the work can be split perfectly, so that all threads receive an equal amount of work. In
that case, a potential speedup equal to the number of participating threads can be achieved.
In practice, however, the problem size is often initially unknown and the computational work is
often determined on-the-fly. During runtime, tasks generally do not know how many subtasks

37

they will generate, which makes it hard to partition the total work equally among threads.
By using task-based parallelism, programmers do not explicitly have to map computations to

underlying hardware. Instead, tasks can be mapped dynamically, which allows dynamic work-
loads and support for heterogeneous hardware [12], which motivates the use of task-parallelism
in our BDD operations.

Depending on the computational problem, a good speedup can be achieved by choosing a
proper task granularity. The task granularity denotes the relation between the computational
workload per task and the amount of communication required between threads. In fine-grained
task parallelism, a large number of small tasks are generated. In coarse-grained task parallelism,
a small number of large tasks are generated. In general, coarse-grained parallelism requires less
communication, which may result in good performance. Especially when treads are distributed
over a network and communication costs are high, this might be beneficial. On the other hand,
fine-grained parallelism allows threads to be better utilized. By implementing cluster-based work
stealing, a trade-off has to be made between computational work and the amount of communi-
cation over the network.

Work Stealing and Work Sharing. Work stealing is an efficient technique to implement
fine-grained task parallelism. With work-stealing, idle threads try to steal work from task pools
owned by other threads. The algorithm terminates when all threads become idle. We refer to
the stealing thread as the thief and the targeted thread as the victim. Work-stealing is a form
of dynamic load-balancing and is efficient since most of the computational overhead for stealing
is given to the idle threads.

Work stealing is contrasted by work sharing. Instead of stealing work, idle threads commu-
nicate their status to other threads, so that non-idle threads can send parts of their work if
needed. The advantage is that idle threads do not explicitly have to search for non-idle threads.
On the other hand, the overhead for work sharing is given to non-idle threads, while the idle
threads are merely waiting. Blumofe et al. [16] show that communication of work stealing is more
efficient than work sharing and that work stealing has expected tight space bounds. However,
work sharing might be more efficient when the number of non-idle threads is small. Wang et
al. [81] describe an initial partitioning strategy in which work sharing is applied until all threads
received work, followed by work stealing. When enough threads become idle again, the algorithm
switches back to work sharing.

Contribution. In this chapter, we design and discuss efficient operations for cluster-based work
stealing. To implement the thread pool, we use private deques (explained in Section 4.2), as
they do not use any locks or memory fences and minimize the number of roundtrips required
for steals. Victims are selected by considering the hierarchy of the network, so that thiefs prefer
to steal from workers that are physically close to them. The implementation is benchmarks and
the results are compared to HotSLAW.

This chapter is organized as follows. Section 4.2 gives preliminaries on deques and work
stealing and lists related work. Section 4.3 presents the design of our private-deque work stealer.
The design is implemented and evaluated with several common benchmarks. Section 4.4 discusses
experimental results. Finally, Section 4.5 summarizes our conclusions.

4.2 Preliminaries

Many task-based parallel platforms, like Cilk [60], Wool [28], and Lace [74], use the operations
spawn, call, and sync to spawn and execute new tasks and synchronize on tasks, respectively.

38

1 int fib(n):
2 if n < 2 return n
3 a← fib(n− 1)
4 b← fib(n− 2)
5 return a+ b

1 int par-fib(n):
2 if n < 2 return n
3 spawn(par-fib, n− 1)
4 spawn(par-fib, n− 2)
5 r ← sync
6 return r + sync

Figure 4.1: A recursive implementation of Fibonacci (left) and a derived task-based implemen-
tation (right) using fine-grained parallelism.

7 1 5

t h

(a) Initial

7 1 5 3

t h

(b) push(3, h)

7 1 5 3 8

th

(c) push(8, t)

7 1 5 3 8

th

(d) pop(h)

Figure 4.2: Several integers are popped and pushed on a fixed-size deque of size 7. From the
starting configuration, first 3 is added to the head, then 8 is added to the tail, and finally 3 is
popped of the head.

New tasks are created with the spawn operation. Every task must be matched with a sync
operation, which returns the result of the matching task. Furthermore, sync is a blocking
operation, as it blocks further execution of the worker until the corresponding task finishes. The
call operation simply executes a task, without explicitly adding it to the deque.

Figure 4.1 shows an example of the usage of spawn and sync. A task-based parallel im-
plementation of Fibonacci (right) is derived from the recursive implementation (left) by making
tasks of every recursive call. Note that each call to spawn is matched by a call to sync like
placed on a stack. So the sync at line 5 is matched by the spawn at line 4. Similarly, the sync
at line 6 is matched by the spawn at line 3. Alternatively, the second spawn and sync (lines 4
and 5) could be replaced by call to prevent the task to be added to the queue, perhaps slightly
increasing efficiency.

4.2.1 Split Deques

A double ended queue (deque) is similar to a normal queue, but has two ends, which we call
head and tail. Items can be pushed and popped from both ends of the queue. Unlike normal
queues, deques do not require a LIFO or FIFO ordering. Figure 4.2 shows an example, in which
h denotes the head and t the tail. The deque is implemented with a fixed-sized array, and push

wraps around the array if needed. Resizing would be possible when push finds the array full.
A split deque is a deque with a split point, which we denote by s. The split point determines

what part of the deque belongs to the head and what part to the tail. Other than suggested in
Figure 4.2, pop(p) operations are only successful when the part corresponding to p actually has
items to pop. Figure 4.3 shows a split deque similar to the deque in Figure 4.2, but with a split
point s. In addition, the split point s can be relocated, which is not shown in the figure.

39

7 1 5

t hs

(a) Initial

7 1 5 3

t hs

(b) push(3, h)

7 1 5 3 8

ths

(c) push(8, t)

7 1 5 3 8

ths

(d) pop(h)

Figure 4.3: A split deque with operations similar to Figure 4.2, but with a split point s added.
The dashed entries belong the tail of the split deque.

Many work stealers, including Lace, Wool, HotSLAW, and Scioto, use split deques, where
the split point determines a public (or shared) and a private part of an array. Only tasks in the
public region can be stolen and workers can influence the amount of stealable tasks by moving
their split point, thereby making the public region either larger of smaller. For example, in
Figure 4.3, the dashed entries would denote the public region. Work stealers do generally not
push items to the tail, like done in 4.3c, but only to the head of the deque. The public region is
then determined by moving s.

However, modifying the split point could conflict with steal operations performed concurrently
by other workers. To solve this, locking procedures or memory fences are often used. Those
operations are expensive, in particular when performed on distributed memory. In HotSLAW,
all accesses to public regions are performed with locks [62], thereby resolving those conflicts. In
Scioto, the whole queue is explicitly locked when attempting a steal [35] (the amount of locking
is reduced in [36]). HotSLAW and Scioto are the two state-of-the-art hierarchical cluster-based
work stealers, so by removing the need for locking, a considerable increase in performance can
be achieved [66].

4.2.2 Private Deques

Several algorithms for private deque work stealing have been proposed by Acar et al. [71] to
overcome some limitations of split deques. Private deques are used as stacks and do not have a
public region. When stealing tasks, idle workers explicitly ask victims for work, which means that
stealing is a process that involves active participation of both victim and thief. Alternatively,
private deques can be seen as split deques, like in Figure 4.3, but without the dashed entries.
Because the deques are entirely maintained in private memory, locking is not required. In
a distributed setting, it is arguable that locking is more expensive than steals involving two
workers. This is because those steals may not need to negatively affect latency, at the cost of
CPU activity. When workers need to wait for roundtrips to finish, they can poll for incoming
steal requests, thereby efficiently using their waiting times.

4.2.3 Selecting Victims

When stealing work, a victim must be selected. Random victim selection has stable perfor-
mance [17] and tight expected space bounds [16], which makes it optimal for a large class of
problems [36]. On the other hand, Dinan et al. argue that random victim selection may scale
poorly on many-core clusters. Instead of performing local steals (i.e. steals from a worker on

40

the same machine), remote steals might be performed instead, which may unnecessarily intro-
duce idle times. This effect increases when scaling along the number of machines, thus affecting
scalability.

HotSLAW introduces hierarchical victim selection that considers the hardware topology as a
hierarchical structure containing different domains. Workers first attempt to steal from the local
domain. They perform a number of stealing attempts equal to the number of processors in that
domain. If no task could be stolen, the worker moves up a domain in the hierarchy and follows
the same procedure. Compared to existing implementations that use random victim selection,
HotSLAW obtains better performance with hierarchical victim selection [62].

An additional strategy for victim selection is called leapfrogging [77], in which victims steal
back from their thiefs. By doing that, the victims execute subtasks of work stolen from them,
thereby helping thiefs to complete their original work. Furthermore, leapfrogging limits the
space requirements of task pools to the size required for a sequential execution [29]. Wool [28]
supports transitive leapfrogging, in which workers may steal from thiefs of their thiefs, thereby
further helping thiefs to perform distributed parts of their original work. Van Dijk et al. [74] first
attempts to steal from thiefs before performing random steals, which increases performance.

4.2.4 Related Work

Cilk [60] and Wool [28] are two task-based parallel frameworks that allow programs to be written
in a style that is similar to sequential programs. Cilk is a compiler-based framework and Wool is
library-based. Cilk attempts to steal work from the tail of the victims queue, hoping to maximize
the probability of stealing the task with the maximum amount of work. Blumofe et al. [16] argue
that tasks on the tail of the queue are likely to be of the largest granularity and contain half of
the victims work. Both Cilk and Wool are designed for shared memory architectures.

Olivier et al. [50] (2008) present load-balancing operations for UPC which are evaluated with
the UTS benchmark (created by Olivier and Dinan one year earlier). Tasks are stored on stacks.
Several implementations for the steal operation are given. In one implementation, the victims
stack is locked, so that a fixed-sized chunk of tasks can be claimed. The authors also described
a lock-less implementation that is similar to our design. We improve on those ideas.

Scioto [35] (2008) is a task parallelism framework designed for PGAS. Scioto is implemented
with ARMCI, which is an alternative PGAS implementation to OpenSHMEM and UPC. Scioto
uses a locality-aware version of work stealing, in which locality is exploited by using a priority
queue, so that tasks with a high local affinity are placed at the front of the queue. Steal attempts
are then performed on the tail of the queue, which makes it likely for local tasks to be executed
locally. One year later, Dinan et al [36] (2009) improved the split deque used in Scioto. In
addition, the amount of locking on the critical path is reduced, contention is reduced, and the
overhead of task creation is reduced. Furthermore, a lock-less design of the release operator on
the deque is presented.

Ravichandran et al. [43] (2011) improves work stealing on multi-core clusters compared to [50]
by combining the best aspects of intra-node parallelism (through shared memory) and inter-node
parallelism (through distributed memory). Their algorithm increase efficiency and scalability of
work stealing of large multi-core clusters.

Min et al. [62] (2011) present HotSLAW, a task library that implements hierarchical victim
selection and hierarchical chunk selection. These mechanisms allow stealing various amounts of
tasks, based on the distance between threads. HotSLAW is implemented in UPC.

Narang et al. [9] (2012) consider load-balancing mechanisms of existing task parallelism frame-
works and present a new distributed scheduling algorithm that dynamically balances load across
many-core clusters. Their algorithm achieves lower memory utilization than HotSLAW and bet-

41

ter performance and parallel efficiency than Charm++ [42], which is a machine-independent
parallel programming model. The authors extended their work in 2013 [13] by implementing pa-
rameter tuning via machine learning. The parameters include: remote spawn rate, work-stealing
rate, task granularity, and process grouping.

Ramesh et al. [59] (2014) reduces processing time and increases throughput of processors in a
distributed environment with a new load-balancing mechanism. This mechanism balances load
based on CPU utilization. Processors are placed in a priority queue based on their percentage
of CPU utilization. These priorities are used for the victim selection protocol.

Palirria [76] (2014) is a work-stealing scheduling method for nested fork/join parallelism.
Instead of random victim selection, Palirria uses alternative scheduling approaches to make effi-
cient use of resources without degrading performance. Those approaches include a deterministic
victim selection method and a resource estimation algorithm, which replaces the victim selection
policy.

Lace [74] (2015) is a task-based parallel C library that uses non-blocking concurrent split
deques, but also comes with a private deque implementation. Moreover, Lace uses leapfrogging,
followed by random victim selection, which improves scalability. Like Cilk and Wool, also Lace
is designed for shared memory architectures.

4.2.5 Motivation and Contribution

Our goal is to design a simple and efficient work stealing platform that minimizes the number
of roundtrips, as well as blocking times due to synchronizations. The implementations of both
Scioto and HotSLAW are based on deques, which require locking mechanisms. Especially in
distributed environments, locking is very expensive. Our design is based on private deques,
which are lock-less and thereby achieve better performance.

Moreover, implementing private deques with PGAS is arguably easier than implementing split
deques. This is because private deques are maintained solely by their owners, which implicitly
resolves concurrency issues. The public regions of split deques, on the other hand, are accessible
to any worker. As an effect, split deques need to explicitly resolve concurrency issues, either via
locking or with the use of atomic operations.

Acar et al. [71] shows that local portions of deques require memory fences and that steal-
many policies are difficult to implement in deques. The authors solved those limitations by using
private deques. Van Dijk et al. [74] presents concurrent deques that also solve those limitations.
Because of time constraints, we did not attempt to implement the concurrent deque in PGAS. We
designed distributed private deques, since they are relatively easy to implement, do not require
locking, and potentially increases performance.

To the best of our knowledge, two other private deque work stealing platforms have been
proposed. Firstly, the work stealing algorithms proposed by Acar et al. [71] use private deques
to prevent locking, but are not designed nor optimized for cluster-based uses. Secondly, Olivier
et al. [50] present a number of work stealing implementations, including a private deque variant,
which is implemented in Berkeley UPC. Our implementation, however, requires fewer roundtrips.
Finally, in contrast to our implementation, both platforms do not use hierarchical work stealing
nor leapfrogging.

4.3 Design and Implementation

This section discusses the design of our work stealing framework, which uses private deques,
hierarchical victim selection, and leapfrogging. The framework only supports a steal-1 policy.
We attempted to implement both a steal-many strategy and hierarchical chunk selection [62] (i.e.

42

. . .

private deque request transfer status

(k ×m)B 8B (8 + m)B 4B

Figure 4.4: The memory layout (per process) of our implementation. The different memory
blocks and their respective sizes (in Bytes) are shown. Here, k denotes the length of the private
deques and m the size (in Bytes) of a single task.

a steal-many policy), but failed to complete it in the time available. Instead, we regard these
extensions as future work. Related work shows that those extensions may significantly increase
scalability and speedup, depending on the computational problem [35,36, 50, 62]. In Section 4.4
shows the speedups obtained by HotSLAW with a Steal-10 policy, compared to Steal-1.

4.3.1 Memory Layout

In order to simplify our design, we assume that each task has a fixed number of parameters. In
addition, we assume that each task returns a 64-bit integer. These assumptions are not enough
to make a generic work stealing platform, like HotSLAW and Lace, but is enough to support
BDD operations. As future work, we would like to extend our work stealer to enable tasks to
have a various number of parameters and various types of return values. HotSLAW, for example,
enables tasks to provide input and output via pointers, thereby supporting variable input and
output sizes. Our design can be extended to support the same functionality.

Tasks are implemented with a struct and have three components. First, they have a 64-
bit integer that stores a bit to denote whether the task is stolen, a task descriptor, and a task
owner. The descriptor is used to find and invoke the function corresponding to the task. The
task owner is used to implement leapfrogging, as it also stores the identifiers of thiefs. Secondly,
the parameters of the task are stored, which requires a block of memory equal in size to the total
size of the parameters. Finally, a 64-bit is reserved for the return value. When a task is stolen,
the thief writes its result to this location.

4.3.2 The Stealing Procedure

In our design, every worker allocates a private deque, a request cell, a transfer cell, and a status
cell in shared memory, so that every worker can access them. Figure 4.4 gives a schematic
overview of this set-up. Tasks are stored in the private deques, supporting a maximum of k
tasks. When a worker needs to perform a steal, it chooses a victim and writes its thread ID to
the victims request cell by using cas.

The victim polls the request cell regularly (ideally, as often as possible to minimize latency).
When it finds the request cell occupied, it checks if the private deque contains enough tasks to
perform a steal. If so, it marks the task at the tail as stolen and writes the entire task and its
index (i.e. the corresponding index in the deque) to the transfer cell of the thief. Figure 4.4
shows that the transfer cell contains 64-bits for a task index and m bits for the task itself.

After making a successful request with cas, the thief continuously polls the transfer cell for
a response from the victim. If it receives a response, it executes the task and writes the result
back to the victims private deque by using the received index.

43

Workers can have two statuses, namely IDLE and WORKING. When a worker runs out of tasks,
it becomes IDLE. Workers maintain their status via the status cell, shown in Figure 4.4. Because
this cell is placed in shared memory, other workers may access it, which is done to implement ter-
mination detection. When a worker becomes IDLE and performed enough failed steal attempts,
it reads the status cells of all other workers via collective one-sided RDMA operations. When
all cells contain the status IDLE, the worker terminates. Otherwise, when at least one worker is
WORKING, it continues performing steal attempts.

While designing the work stealing operations, we did not consider to maintain any failed steal
attempts, which might in fact be a good idea. Especially after a failed termination detection
attempt, which is only invoked when enough workers are assumed to be IDLE, knowing what
workers are non-idle might help with selecting victims. This may prevent additional failed steal
attempts, thereby improving execution times and potentially speedups. This is something to
consider in future work.

Required Number of Roundtrips. Steal attempts require a blocking remote cas operation
to update the request cell. The victim writes a task to the thiefs transfer cell via a non-blocking
one-sided write. After having completed a stolen task, the thief writes the result back to the
thiefs private deque via a non-blocking one-sided write. To conclude, the whole procedure of
stealing only requires one blocking remote memory operation, which is performed by the already
idle worker. The non-blocking operations are handled by the RDMA devices (instead of the
CPUs), which requires the victims to continue their work while performing them.

4.3.3 Algorithmic Design Considerations

We now explain the steps given in Section 4.3.2 in more detail and present the work stealing
operations. When considering Figure 4.4, we denote the private deque by the two-dimensional
shared array deque[0][0], . . . , deque[THREADS− 1][k − 1]. We assume that each worker i owns the
block deque[i][0], . . . , deque[i][k − 1], so memory operations performed on this block do not use
RDMA, since it is local memory. Here THREADS denotes the number of participating threads.

We chose to use a consecutive two-dimensional array, because it makes the implementation
easier. Every worker i has its own private deque deque[i], and when it completes a task stolen
from worker j, it can write back its result to deque[j], as it is shared. In other words, the private
deques are shared, but they allow other workers to write back the return values of stolen tasks.

The request cells are denoted by request[0], . . . , request[THREADS−1]. Similar to the deque, we
let each worker i own the entry request[i], so that memory operations on that entry do not use
RDMA. Request cells can have three different values, namely BLOCKING, EMPTY, or the identifier
of a worker. When a cell is BLOCKING, no tasks can be stolen from that worker. When it is
EMPTY, tasks can be stolen, but there are no pending requests. When it contains an identifier,
the corresponding worker has requested a steal, which is not yet handled by the victim (i.e.
pending).

The transfer cells are denoted by transfer[0], . . . , transfer[THREADS − 1]. Each worker i owns
the entry transfer[i], thereby holding it in local memory. Transfer cells can have two different
values, namely EMPTY, or they contain a task.

Finally, the status cells are denoted by status[0], . . . , status[THREADS− 1]. Again, each worker
i owns the entry status[i] in local memory. Status cells can have two different values, namely
IDLE and WORKING. During termination detection, a worker checks if all status cells are IDLE.

Handling Incoming Requests. Suppose that a worker performs a steal. Then it chooses a

44

1 def communicate():
2 if head− tail < 2
3 if request[MY-ID] 6= BLOCKED

4 B Not enough stealable tasks, block further requests
5 if request[MY-ID] 6= EMPTY

6 reject-and-block()

7 elif cas(request[MY-ID], EMPTY, BLOCKED) 6= EMPTY

8 reject-and-block()

9 elif request[MY-ID] = BLOCKED

10 B Unblock requests, there are stealable tasks
11 request[MY-ID]← EMPTY

12 elif request[MY-ID] 6= EMPTY

13 B Send a task to the thief
14 thief ← request[MY-ID]
15 request[MY-ID]← EMPTY

16 B Prepare task to be stolen
17 deque[MY-ID][tail].stolen← true

18 deque[MY-ID][tail].owner ← thief
19 B Construct the transfer message
20 msg ← new TransferMessage

21 msg.index← tail
22 msg.task ← deque[MY-ID][tail]
23 B Write message to the transfer cell of the thief
24 memput-async(transfer[thief], msg)

Figure 4.5: The implementation of communicate, which is responsible for maintaining the request
cell of a worker.

victim and writes its ID (denoted by MY-ID) to the request cell of the victim. Figure 4.5 presents
the communicate function that is responsible for handling incoming requests. The operation first
checks if there are any tasks to steal (line 2). If the worker has less than two non-stolen tasks
in its deque, it blocks further requests by writing BLOCKED to its request cell (lines 5 to 8). By
blocking further requests, it may happen that some other worker requested work and is waiting
for a response. In that case, reject-and-block is invoked, which is an operation that writes
BLOCKED to request[MY-ID] and notifies the requesting worker that there is no work to steal. Its
implementation is presented in Figure 4.6. If the request cell is empty, the worker attempts to
write BLOCKED to it with cas (line 7).

If there are at least two stealable tasks, and the request cell contains BLOCKED, then the worker
allows new requests by writing EMPTY to request[MY-ID] (line 11).

Otherwise, when there is an incoming request, the ID of the thief is obtained (line 14), the
task at the tail of the deque is marked as stolen (lines 17 and 18), and the task is sent to the
thief (lines 20 to 24).

Handling Steals. Figure 4.6 shows the implementation of steal, which takes the ID of a
victim as argument. This operation performs a steal attempt, which returns true when the steal
succeeded and false when it failed. After the transfer cell has been cleared (line 3), a request
is sent via a cas operation (line 4). The cas operation tests if the request cell of the victim is
EMPTY, in which case the ID of the thief is written to it. If the request cell was indeed empty (the

45

1 def steal(victim):
2 communicate()
3 transfer[MY-ID]← EMPTY

4 res← cas(request[victim], EMPTY, MY-ID)
5 if res = EMPTY

6 B Wait for response from victim
7 while transfer[MY-ID] = EMPTY:
8 communicate()

9 if transfer[MY-ID] = EMPTY

10 return false

11 else
12 status[MY-ID]← WORKING

13 i← transfer[MY-ID].index
14 B Execute the stolen task
15 task ← transfer[MY-ID].task
16 task.result← call(task)
17 B Write back the task result
18 task.completed← true

19 memput-async(deque[victim][i], task)
20 return true

21 return false

1 def reject-and-block():
2 B Block further requests
3 thief ← request[MY-ID]
4 request[MY-ID]← BLOCKED

5 B Send a negative response
6 msg ← new TransferMessage

7 msg.index← 0
8 msg.task ← EMPTY

9 memput-async(transfer[thief], msg)

1 def termination-detection():
2 B Send status requests
3 for i← 0 to THREADS− 1:
4 si ← memget-async(
5 res[i], status[i])

6 B Wait for status responses
7 for i← 0 to THREADS− 1:
8 sync(si)
9 if res[i] = WORKING

10 return false

11 return true

Figure 4.6: Implementations of steal, reject-and-block, and termination-detection. The
reject-and-block operation is used by communicate to give a thief a negative response (i.e. no
tasks to steal) and block further steal attempts. The steal operation steals from a given victim
by sending a steal request, waiting for a response, executing the received task, and writing back
the result. The termination-detection operation returns true only if all workers have status
IDLE.

check at line 5), it waits for a response (line 7), while handling incoming requests (line 8). When
receiving a negative response (line 9), false is returned. When receiving a positive response,
the worker updates its status to WORKING and executes the received task (lines 12 to 16). After
having completed the task, its result is written back in a non-blocking manner (lines 18 to 20).

Compared to the private deque implementation of Acar et al. [71], our implementation is
optimized for one-sided networking operations. For example, workers with no tasks to steal set
their request cell to EMPTY, instead of maintaining a separate array for that. As a result, steals
require fewer roundtrips. Furthermore, we store the identifiers of thiefs to perform leapfrogging.

Spawning and Calling Tasks. The implementations of spawn and call are given in Fig-
ure 4.7. These implementations are rather straightforward. By invoking spawn, a new task is
created (lines 3 to 7) and inserted at the head of the deque (line 9). After that, the value of head
is increased. By invoking call, first communicate is invoked (line 2), so that workers waiting for
response do not have to wait for the function call to complete. After that, the function corre-
sponding to the task is obtained (line 4) and invoked (line 6). This function is described with desc.

Synchronizing on Tasks. The implementation of sync is also given in Figure 4.7. This
operation reads the topmost task on the deque (line 2). If that task is not stolen, sync executes
it (line 21). Otherwise, it waits for the task to complete (lines 5 to 14). During that time, the

46

1 def sync():
2 task ← deque[MY-ID][head− 1]
3 if task.stolen
4 communicate()
5 while ¬task.completed:
6 B Perform leapfrogging
7 if steal(task.owner) continue
8 if task.completed break
9 B Perform hierarchical stealing

10 for i← 0 to HIERARCHY-LVLS - 1:
11 shuffle(domain[i])
12 foreach victim ∈ domain[i] do
13 if steal(victim) goto line 5
14 if task.completed goto line 16

15 B Return result from stolen task
16 head← head− 1
17 tail← tail − 1
18 return task.result

19 else
20 head← head− 1
21 return call(task)

1 def spawn(desc, params):
2 B Build a new task
3 task ← deque[MY-ID][head]
4 task.desc← desc
5 task.stolen← false

6 task.completed← false

7 task.params← params
8 B Write new task to deque
9 deque[MY-ID][head]← task

10 head← head+ 1

1 def call(desc, params):
2 communicate()
3 B Find the intended function
4 func← function-of(desc)
5 B Invoke that function
6 return func(params)

Figure 4.7: Implementations of spawn, call, and sync. The spawn operator adds a new task
to the deque, sync pops a task from the deque and executes it (or, when stolen, waits for its
completion), and call executes a task without explicitly adding it to the deque.

worker tries to steal from other workers. By doing that, it first attempts leapfrogging (line 7),
followed by hierarchical work stealing (lines 10 to 14). When one of the steals succeeds, the
stealing process starts again by jumping to line 5. When the task completes, its result is returned
(line 18).

We assume that domain[i] contains all workers on the ith level in the processing hierarchy.
Berkeley UPC supports four of those levels, which they call verynear, near, far, and veryfar.
We use these levels, which means that HIERARCHY-LVLS is 4. We use the shuffle function to
randomly shuffle the workers in domain[i] in an efficient manner. If the number of workers gets
very high (for example, 8192 or higher), it might be more efficient to simple pick workers ran-
domly from domain[i]. Because sync is often invoked recursively, the order of workers domain[i]
remains random. As an effect, workers attempt a number of random steals equal to the amount
of workers on that level, like described by [62].

Starting a Computation. Computational tasks can be started by invoking initiate and
participate, whose implementations are shown in Figure 4.8. One of the participating processes
calls initiate and all others call participate as a collective process. This is also done by the
collective function compute, where the process with MY-ID 0 initiates the computation and all
others participate. Collective functions require the collaboration of all processes.

Both initiate and participate start by writing their process status (line 3) and waiting
for all processes to have written their status (line 4). The initiating process executes the first
task, so its status becomes WORKING. All other processes need to steal tasks before they can
start working, which makes them IDLE. The barrier function is a collective operation used to

47

1 def initiate(desc, params):
2 B Wait for all workers to start
3 status[MY-ID]← WORKING

4 barrier()
5 B Perform task
6 result← call(desc, params)
7 B Wait for all workers to complete
8 status[MY-ID]← IDLE

9 barrier()
10 return result

1 def compute(desc, params):
2 if MY-ID = 0
3 initiate(desc, params)
4 else
5 participate()

1 def participate():
2 B Wait for all workers to start
3 status[MY-ID]← IDLE

4 barrier()
5 B Perform hierarchical stealing
6 while true:
7 status[MY-ID]← IDLE

8 for i← 0 to HIERARCHY-LVLS - 1:
9 shuffle(domain[i])

10 foreach victim ∈ domain[i] do
11 if steal(victim) goto line 5

12 B No worker had tasks to steal..
13 if termination-detection()
14 break

15 barrier()

Figure 4.8: Implementations of initiate, participate, and compute. To start a computation,
one workers calls initiate and all other workers call participate. Alternatively, a computation
is started via the collective function compute.

synchronize on processes.
After having written the status cells, the initiating process calls the first task (line 6) and the

participating processes start performing hierarchical work stealing (lines 6 to 11), very similar to
the implementation of sync (Figure 4.7). When all steals failed, termination detection is invoked
(line 13). If termination-detection returns a positive result, the while-loop at line 6 breaks
and the process finishes by waiting for all other processes to complete (via a call to barrier at
line 15).

Termination Detection. Figure 4.6 presents the implementation of termination-detection,
which gives a positive result only if all processes are IDLE. The operation assumes that an array
res[0], . . . , res[THREADS − 1] exists on every worker in private memory. Termination detection
starts by asynchronously requesting the statuses of all processes (lines 3 to 5), where THREADS

is a constant denoting the total number of processes. After that, the requests are synchronized
on (line 8). If the received status equals WORKING, then at least one process is not IDLE and the
operation returns a negative result (line 10).

4.4 Experimental Evaluation

We implemented the private deque work stealing algorithm in Berkeley UPC, version 2.20.0. The
performance is evaluated by measuring scalability using various benchmarks. We compared our
implementation with HotSLAW, which is a hierarchical task-based parallel framework also im-
plemented and compiled in Berkeley UPC, version 2.20.0. Both frameworks have been compiled
with the command upcc -network=ibv. All experiments have been performed in a cluster of
10 Dell M610 machines, each having 24 GB of internal memory and 8 CPU cores. All machines
run Ubuntu 14.04.2 LTS with kernel version 3.13.0 and are connected via a 20 GB/s Infiniband
cluster. All experiments have been repeated at least three times and the average measurements
have been taken into account.

48

Benchmark Nr. of Tasks Avg. Task Time
Input/Output Input/Output
Size Size Hotslaw

fib(45) 3,672,623,805 0.154 µs 16/8 bytes 4/8 bytes
nqueens(15) 171,127,071 4.14 µs 20/8 bytes 28/8 bytes
uts(T2L) 96,793,510 0.986 µs 20/8 bytes 32/0 bytes
uts(T3L) 111,345,631 0.722 µs 20/8 bytes 32/0 bytes
matmul(512) 32,767 188.30 µs 20/8 bytes 28/0 bytes

Figure 4.9: Details of the models used to evaluate the work stealing implementation.

To make a fair comparison between our work stealing implementation and HotSLAW, the
same benchmarking code is used for both implementations. HotSLAW has built-in support for
pointers as arguments to tasks. When a task is stolen in HotSLAW, the pointers given to that
task are updated accordingly. Our implementation does not support pointers. We solved this by
giving each participating process a shared stack. Shared stacks are simple stacks implemented
on top of shared memory. Tasks may then push data on their stack and use the corresponding
shared pointers to that data. When the task is stolen, the shared pointers remain valid, even on
another machine, and can be used to retrieve the corresponding data.

The benchmarks are executed by using upcrun -n processes -N machines -shared-heap

128MB, where we replaced processes with the total number of processes and machines with the
total number of participating machines. For example, when using 7 machines, each having 4
processes, processes becomes 28 and machines becomes 7. In each experiment, we scaled the
number of machines from 1 to 10 and the number of processes per machine from 1 to 10. So
a total of 100 different configurations are benchmarked with a maximum of 100 processes. By
using the -shared-heap flag, each process is allowed to allocate up to 128 MB of shared memory,
which is more than enough for a work stealing queue.

4.4.1 Benchmarks

Figure 4.9 shows details of the models used in the evaluation of the work stealing implementations.
During the evaluation, we did not apply a cut-off in the computation trees, as we are interested
in the overhead generated by the work stealing algorithms. The fib(n) benchmark calculates
the nth Fibonacci number by creating subtasks for fib(n− 1) and fib(n− 2) and synchronizing
on their results. The computation tree of fib is skewed, which makes it non-trivial to parallelize.

The nqueens(n) benchmark calculates the number of unique solutions for placing n queens
on an n× n chessboard, where n is a positive integer. Every task has a depth j ≤ n and tries to
place a queen on every position at row i. If a queen can validly be placed, a subtask is generated
for depth i + 1. Then all valid boards on depth n are counted. The nqueens(15) problem, for
example, has 2, 279, 184 unique solutions.

The uts benchmark [66] is designed to evaluate the performance of parallel programs that
require dynamic load-balancing. This is done by performing an exhaustive search on an unbal-
anced tree, which is generated on-the-fly with a random number generator. We used SHA-1 to
generate the random numbers. UTS supports two types of unbalanced trees, namely geometric
trees (e.g. T2L) and binomial trees (e.g. T3L). The geometric trees have a branching factor that
follows a geometric distribution [66], which appears to be easy to balance in practice [74]. The
binomial trees have parameters m and q, so that nodes have m children with probability q and
no children with probability 1 − q [66]. This causes trees to have unpredictable sub-tree sizes
and depths, which makes them harder to balance compared to the geometric trees.

The matmul(n) benchmark calculates the product of two random n × n matrices, with n a

49

Benchmark
Sequential Best Configuration

speedup
Time Time Machines Procs./M.

fib(45) 563.87 8.85 10 8 63.69
matmul(512) 6.17 1.07 1 9 5.76
uts(T2L) 90.48 1.90 10 8 47.62
uts(T3L) 73.60 3.48 10 5 21.15
nqueens(15) 707.64 10.30 10 8 68.74

Figure 4.10: Sequential computation times of our work stealing implementation, together with
the best achieved times and corresponding speedups.

positive integer. The two matrices, as well as the resulting matrix, must be placed in shared
memory. Because of that, every task needs to perform a number of one-sided RDMA operations
during its execution, which may negatively affect performance and scalability. Compared to
the other benchmarks, matmul generates a relatively low number of tasks with a relatively large
workload (coarse-grained).

4.4.2 Experimental Results

Figure 4.11 shows the speedups obtained in the different benchmarks. The sequential execu-
tion times and the best achieved parallel times are shown in Figure 4.10. Both fib(45) and
nqueens(15) obtain high speedups, namely 63.69 (efficiency of 79.6%) and 68.74 (efficiency of
85.9%), respectively. When more than 8 processes per machine were used, however, the perfor-
mance degraded. Recall that the machines used in the experiments only have 8 physical CPU
cores. Since both benchmarks have a very large amount of very small tasks (Figure 4.9), and
only require a relatively low number of steals (Figure 4.15), performance degrades when more
than 8 processes are used.

The uts(T3L) benchmark achieves a maximum speedup of 21.76 (efficiency of 43.5%) when
50 processes are used. This speedup is less significant than fib(45) and nqueens(15), because
significantly more steals are required. Those steals all require multiple roundtrips, which affects
scalability. In contrast to fib(45) and nqueens(15), performance seems to slightly increase
when more than 8 processes per machine are used, perhaps because the queues on the RDMA
devices are less polluted.

The uts(T2L) benchmark scales well even when more than 8 processes per machine are used.
We expect this to be caused by the balance between task workload (about 1µs computation time
per task) and the number of steals required (Figure 4.15). The benchmarks that require less
steals (like fib(45) and nqueens(15)), allow more CPU activity, which introduces performance
degradations with more than 8 Procs./M. The ones that require more steals (e.g. uts(T3L))
causes network latency to become the bottleneck.

The matmul(512) only achieves speedup when one machine is used. In the matmul bench-
mark, two random matrices are multiplied, which are placed in shared memory. When using one
machine, both matrices and the resulting matrix all reside in local memory. When more than
one machine is used, the matrices are partitioned over the machines. As an effect, every task
performs many roundtrips to access the matrices, which results in serious performance degrada-
tions. No speedups are achieved when more than two machines are used. Therefore, matmul is
not considered in the further evaluation.

A Comparison with HotSLAW. We compared the computation times and the speedups of
our work stealing implementation with HotSLAW. Figure 4.13 shows a comparison of compu-

50

(a) Speedups of fib(45) (b) Speedups of matmul(512)

(c) Speedups of nqueens(15) (d) Speedups of uts(T2L)

(e) Speedups of uts(T3L)

Figure 4.11: Speedups obtained in various benchmarks by scaling along machines and the number
of processes per machine (Procs./M).

51

Benchmark
Our Implementation HotSLAW

Seq. Time Best Time Efficiency Seq. Time Best Time Efficiency
fib(45) 563.87 8.85 79.6% 938.49 13.13 89.3%
nqueens(15) 707.64 10.29 86.0% 387.53 5.68 85.3%
uts(T2L) 90.48 1.90 59.5% 81.22 1.53 53.2%
uts(T3L) 73.60 3.48 42.3% 67.64 5.48 24.7%
uts(T3L)∗ 73.60 3.48 42.3% 51.69 1.32 49.0%

Figure 4.12: A comparison of total execution times between our implementation and HotSLAW.
The sequential computation times and the best achieved computation times with their corre-
sponding efficiencies are given. The HotSLAW implementations running the benchmarks with a
* are using a Steal-10 policy.

tation times. A speedup of n means that our implementation performs n times faster (i.e. the
computation time was n times less than HotSLAW). Figure 4.12 shows a corresponding table
with best achieved execution times.

Both fib(45) and uts(T3L) (with Steal-1) perform better with our implementation. The
two work stealers perform about equally well for uts(T2L), and HotSLAW clearly performs
better with nqueens(15) and uts(T3L) (Steal-10). Figure 4.12 shows that, with the exception
of fib(45), HotSLAW computes tasks more efficiently. This is because HotSLAW supports the
use of pointers in tasks, which our implementation does not. Most benchmarks (with exception
of fib(45)) require such pointers. We solved this by creating a shared stack, so that other
processes can access the parameters of a task after stealing it, but this clearly is less efficient
than HotSLAW. As future work, it would be interesting to improve the execution times of tasks
by only using shared data structures when a task is stolen. This can even be done more efficiently
than HotSLAW, because all steal requests are handled by victims, so victims have an influence
in the data they share.

Figure 4.12 also shows the efficiencies of the work stealers under their fastest configurations
(i.e. the settings in which they obtained best performance). The efficiency denotes the speedup
relative to the number of processes used (i.e. a efficiency of 100% means a speedup of n when
n processes are used). In three of five cases, our implementation obtains better efficiency. Fig-
ure 4.14 shows that fib(45) scales better in HotSLAW when a large number of processes are
used (7 machines with 7 processes each, or more). Furthermore, UTS(T3L) with Steal-10 is
more efficient under HotSLAW, compared to our implementation with Steal-1. We expect that
Steal-10 simply works good with UTS(T3L), which would explain the differences in efficiency.

Figure 4.14 shows that our implementation scales about equally well compared to HotSLAW,
with the exception of UTS(T3L). When using Steal-1, UTS(T3L) scales better with our imple-
mentation, and HotSLAW scales better when Steal-10 is used.

The Latency of Steals. With stealing latency we mean the time between performing a steal
request and getting a response from the (potential) thief. Figure 4.16 shows the latencies of
stealing tasks, both locally and remotely. For these measurements, the uts(T3L) benchmark is
used due to its many steals. When one machine is used, the latency of remote steals is obviously
0, since RDMA is not used. When the number of machines increases, the latency of remote steals
also increases. When 100 processes are used, a peak-latency of 30, 6µs is reached. When less
than 45 processes are used, the latencies lie between 5, 2µs and 8, 0µs.

Local steals (shown in Figure 4.16c) are about 10 times faster than remote steals. When
using one process per machine, only remote steals are performed, as a process does not steal

52

(a) Speedups of fib(45) (b) Speedups of nqueens(15)

(c) Speedups of uts(T3L) using steal-1 (d) Speedups of uts(T3L) using steal-10

(e) Speedups of uts(T2L) using steal-1

Figure 4.13: Comparing computation times between our implementation and HotSLAW. A
speedup greater than one means that our implementation is faster.

53

(a) Speedups of fib(45) (b) Speedups of nqueens(15)

(c) Speedups of uts(T3L) using steal-1 (d) Speedups of uts(T3L) using steal-10

(e) Speedups of uts(T2L) using steal-1

Figure 4.14: Comparing scalability between HotSLAW and our implementation (speedup of
HotSLAW vs. speedup of our implementation). A speedup greater than one means that our
implementation scales better.

54

(a) Steals of fib(45) (b) Steals of nqueens(15)

(c) Steals of uts(T3L) using Steal-1 (d) Steals of uts(T3L) using Steal-10

(e) Steals of uts(T2L) using Steal-1

Figure 4.15: Average number of steals performed in the different benchmarks under various
configurations. We distinct between Steal-1 and Steal-10 strategies in the uts benchmark.

55

(a) Local (b) Remote

(c) Local, HotSLAW (d) Remote, HotSLAW

Figure 4.16: Latencies of the steal operation, both for HotSLAW and our implementation, when
stealing a task either locally (i.e. from a process on the same machine) or remotely (i.e. from a
remote machine using RDMA).

from itself. When 100 processes are used, local steals have a latency of 3, 2µs. Figure 4.16c
shows an increase that is very similar to the increase in Figure 4.16d. By adding processes, the
latency of steals increases vastly, both locally and remotely.

Figure 4.18 shows the average number of steal attempts performed per process under different
machine configurations. The plots show that the number of steal attempts remains fairly stable
when processes are added, although there are some peaks when roughly 50 processes are used.
By adding processes, more RDMA roundtrips are performed, which increases the throughput
of the RDMA devices. When the throughput increases, the steal latency also increases, since
processes need to wait for RDMA devices to complete the operation. Also the initial phase and
termination detection generate many RDMA operations, thus contributing to higher latencies.

Comparing Latencies with HotSLAW. Figure 4.16 shows the latencies of HotSLAW and
Figure 4.17 gives a comparison of steal latencies between our implementation and HotSLAW.

56

(a) Local speedup (b) Remote speedup

Figure 4.17: The speedups of local and remote steals of our implementation compared to Hot-
SLAW.

A speedup of n means that our implementations performs steal operations n times faster than
HotSLAW. For local steals, speedups up to 34.3 are reached. HotSLAW is about two times faster
when only one machine is used. It could be that HotSLAW has an optimization for purely parallel
executions. When more than one machine is used, however, our implementation steals at least
double as fast. The speedup increases when the number of processes increases, especially when
90 or more processes were used. In those configurations, the speedup increased significantly. For
some reason, the latencies of HotSLAW get very big under those configurations.

Not only local steals, but also remote steals are considerably faster with our implementation.
Again, no remote steals are performed with one machine, which explains the slope in Figure 4.17b.
The speedup remains constant when one process per machine is used, and slightly decreases
when more processes are added. Similar to the local speedups, an increase is observed when 90
processes or more are used. Remote speedups up to 9.3 are observed when using 100 processes.

4.4.3 Suggestions for Performance Improvements

Lace uses concurrent deques, which allows stealing tasks without cooperation from the victim, in
contrast to private deques [74]. Using concurrent deques might reduce the latency of steals if they
not require more roundtrips than private deques. It would be interesting to perform research
in efficient implementations of concurrent deques in PGAS, as they might increase performance.
However, we expect their implementation to be more difficult than private deques.

Our design currently does not support steal-many strategies due to time constraints. Fig-
ures 4.13 and 4.14 show that steal-many significantly improves performance when there are many
remote steals. Van Dijk et al. [74] mentioned that the performance of Lace does not improve
when using steal-many, so performance may only improve for remote steals.

Our work stealer has a hierarchical victim selection protocol, like described in [36]. Paudel et
al. [38] (2013) argue that, instead of focusing from which worker to steal, focusing on which task
to steal makes more sense in distributed work stealing. This is because the costs of remote steals
are partly determined by the size of the steal. Furthermore, the authors show that only stealing
tasks that are not locally critical (i.e. tasks that have many dependencies with other local tasks)
results in improved performance. These ideas can be implemented in our work stealer. The

57

(a) Successful steals (b) Unsuccessful steals

Figure 4.18: The average number of successful and unsuccessful steals per process when scaling
the number of participating processes.

implementation described by [38] uses a deque, so we expect that using either private deques or
the concurrent deques of [74] might even further improve performance.

Although very dependent on the computational problem, applying a coarser task granularity
may also increase performance and scalability. This is because fewer subtasks are generated, the
amount of computation per worker increases relative to the amount of communication, which
in turn reduces the overall number of roundtrips. In practice, however, updating the structure
of tasks to have a coarser granularity may not be easy. Instead, Acar et al. [71] present task
coalescing, in which a number of similar tasks can be combined. For example, in the UTS bench-
mark, every task explores only a single node in the tree. By using task coalescing, tasks can be
combined, so that each task explores a number of nodes, instead of only a single node. For some
problems, including graph searching, this might give performance improvements.

Finally, termination detection can be implemented more efficiently. Instead of having an
explicit termination detection phase, the initiating thread may determine when termination
occurs, since initiate returns immediately after the last task had been completed. Upon
completion, the initiating thread simply broadcasts global termination, so that all other threads
leave the stealing loop.

4.5 Conclusions

Compared to HotSLAW, our implementation steals more efficiently, as we observed speedups up
to 34.3 for local steals and 9.3 for remote steals (both relative to HotSLAW). In most cases, our
implementation also scales better, especially in the benchmarks that require many steals, like
uts(T3L), due to the efficiency of stealing.

On the other hand, HotSLAW generates less overhead when executing tasks. This is because
HotSLAW supports tasks with variable-sized inputs and outputs, whereas our implementation
only supports fixed -sized inputs and outputs. In addition, as a way to pass extra data to tasks,
we may use shared stacks to store data and pass the corresponding indices as input parameters
to tasks. In comparison with HotSLAW, this generates slightly more overhead, which makes
HotSLAW more efficient in the benchmarks that rely heavily on the shared stacks.

58

By scaling along the number of processes, the number of steal attempts increases, which
in turn increases the average steal latency. By using hierarchical work stealing, the number of
generated RDMA roundtrips are reduced. Every remote steal only involves a single remote cas

operation and two one-sided RDMA writes. We were not able to further reduce the number of
RDMA operations. Performance and scalability can, however, still be improved by reducing the
number of steal attempts. As future work, we would like to focus on the following improvements:

• Implement a steal-many strategy, as suggested in Section 4.4.3.

• Remove explicit termination detection with implicit termination detection (also explained
in Section 4.4.3).

• Giving the request cells multiple slots, so that each slot may contain a pending request.
The number of failed steal attempts may reduce by using multiple slots, without degrading
performance when checking for pending requests.

• When starting a new task-based computation, using work sharing might be more beneficial
than work stealing, as nearly all workers are then idle. Having an initial work sharing
phase would therefore reduce the number of failed steal attempts.

• Implement task coalescing, discussed in Section 4.4.3, to make tasks somewhat coarser,
depending on the amount of tasks to combine.

59

Chapter 5

Designing Distributed Binary
Decision Diagram Operations

In this Chapter, RDMA-based designs of BDD operations are given and discussed. The operations
make use of the distributed hash table and private deque work stealing operations discussed earlier.
In addition, a shared memoization cache is given and discussed. The BDD operations are used
to perform symbolic reachability over a number of BEEM models. In nearly all cases, distributed
runs are faster than sequential runs, but parallel runs still scale better. Especially the larger
BEEM models obtain good performances in distributed symbolic reachability, even in comparison
with parallel runs.

5.1 Introduction

A Binary Decision Diagram (BDD) is a data structure used to efficiently represent Boolean
functions. BDDs were introduced by [4] in 1978 to compress large digital functions. BDDs were
further developed by Bryant [21, 22] in 1986 and 1992. They were used in the verification of
hardware systems by performing symbolic model checking [40,47]. Because BDDs can represent
Boolean functions, they can also represent sets of states or relations. These sets can directly
be manipulated by performing BDD operations on their representations, which makes symbolic
model checking possible.

Alternatively to representing state spaces symbolically, they can also be represented explicitly.
However, often the state space becomes so large that explicit data structures cannot cope [32].
This problem is known as the state space explosion problem, which is the biggest limitation
in modern software verification. State space explosions arise because state spaces often grow
exponentially with the size of the model (e.g. the number of variables used, as well as the size
of the domain of those variables). By using a symbolic representation of the state space, the
exponentially large domain may be stored in polynomial space [32]. Exponential blow-ups are,
however, still possible with a symbolic representation and space efficiency is often reliant on the
variable ordering. Finding an optimal variable ordering is NP-Complete [18], but finding a good
ordering is often enough to significantly improve the space complexity of state spaces compared
to explicit representations, which motivates symbolic verification. The following study is mostly
based on a similar study in [72].

Early Work on Parallel BDD Manipulation. Several attempts have been made to speed up

60

BDD operations by performing parallel processing. Kimura et al. [44] (1990) views BDDs as au-
tomata. Parallelism is then achieved by calculating the products of automata in parallel, followed
by reduction to keep the resulting BDDs small. Parasuram et al. [79] (1994) uses a distributed
shared memory abstraction for sharing data and message passing for communication. The BDD
algorithms are implemented with a Depth-First approach. Yang et al. [80] (1997) designed a
parallel algorithm for BDD construction using a hybrid depth-first/breadth-first approach. The
algorithm uses parallel Breadth-First expansion until a fixed threshold is reached. After that,
the algorithm switches to Depth-First expansion to limit memory overhead.

Early Work on Distributed BDD Manipulation. Arunachalam et al. [56] (1996) exploit
the available memory in a cluster of workstations to construct larger BDDs. This was done via
distributed memory partitioning and a depth-first approach. As a result, larger BDDs could be
constructed than was possible with a single machine. Sanghavi et al. [34] (1996) exploit memory
hierarchy on a single machine by using a breadth-first approach to increase the locality of mem-
ory accesses. Compared to existing work, this resulted in a significant speedup for models that
do not fit into main-memory. Due to this success, the authors expanded their algorithms to a
network of workstations [58] (1996). BDD nodes are distributed based on their variable levels.
Workers may then only perform work when their variable level has a turn, which makes the
implementation sequential. As a result, no speedups were obtained, but very large BDDs could
be constructed and manipulated. Milvang-Jensen et al. [48] (1998) presented the parallel BDD
package BDDNOW. This package parallelizes BDD operations by striving for minimal commu-
nication overhead. Compared to existing work, BDDNOW was the first BDD implementation
that achieved some speedup on a network of workstations, but only when the workstations ran
out of memory and switched to disk instead.

Early Work on Symbolic Reachability. Heyman et al. [68] (2000) use BDDs for parallel
symbolic reachability in a distributed-memory environment of workstations. The authors ar-
gued that network accesses are cheaper than disk accesses, so using a network of workstations
is cheaper than external storage. Load-balancing is implemented by dynamically repartitioning
the state space throughout the computation. Grumberg et al. [51] (2003) present a symbolic
algorithm for reachability that is work-efficient. It allows dynamic allocation of hardware re-
sources and good utilization of those resources via mechanisms to recover from local state space
explosions. The authors concluded that a trade-off has to be made between work-efficiency (i.e.
good utilization of the available hardware resources) and obtaining speedups. Chung et al. [25]
(2004) implemented a symbolic algorithm for saturation in a distributed-memory environment.
Although the implementation obtains no speedups, the runtimes of the distributed implementa-
tion come close to the sequential implementations. Later, Chung et al. [26] (2006) implemented
distributed state space generation with MDDs. With respect to the best sequential implementa-
tion, speedups up to 17% were achieved on a network of workstations. As far as we know, this
is the best result obtained with distributed symbolic algorithms.

More Recent Work on Symbolic Reachability. After 2006, most work was focussed on
improving parallelizing symbolic algorithms (based on BDDs, but also LDDs and MDDs). Ezekiel
et al. [41] (2007) tried to increase parallelism of [26] by improving locality on shared-memory
architectures. Ciardo et al. [32] (2009) showed that, despite all previous attempts, obtaining
linear speedups still remained a challenge. Van Dijk et al. [75] (2015) present Sylvan, a parallel
BDD package that achieves parallelism by using fine-grained task parallelism via work-stealing.
Sylvan obtains good scalability and speedups up to 38 by using 48 cores.

61

5.2 Challenges and Contributions

BDD operations are very memory-intensive, because they perform only a small amount of compu-
tation per memory access. This makes it very hard to distribute BDD operations. This is because
only a small amount of computation is performed with respect to the amount of communication
between computers, which is far more expensive than memory accesses.

The main considerations for an efficient distributed-memory implementation of BDD op-
erations is the distribution of data, the maintenance of load-balancing, and the reduction of
communication overhead and latency [32]. As part of data distribution, exploiting data-locality
is also an important consideration [26].

This chapter describes a novel design of BDD operations that considers all these factors. We
distribute data via a PGAS abstraction, which provides a shared distributed memory program-
ming model that allows existing designs of BDD operations to be adopted relatively easily. We
maintain load-balancing via cluster-based work stealing, due to the success of Sylvan [75]. We
exploit data-locality via hierarchical work stealing, so that processes prefer stealing work from
other processes located on the same machine. Finally, we perform communication via one-sided
RDMA. Communication overhead is reduced via the zero-copy techniques used by RDMA and
latency is reduced via one-sided RDMA operations.

The significant performance differences of one-sided RDMA in comparison with traditional
TCP, in combination with the recent success of using fine-grained task parallelism in Sylvan was
the main motivation for a renewed attempt to distribute BDD operations.

The rest of this chapter is structured as follows. Section 5.3 gives a formal definition of BDDs
and gives preliminaries. Section 5.4 presents the design of the new BDD operations. These
implementations have been implemented and evaluated. Section 5.5 discusses the experimental
results. Finally, Section 5.6 summarizes our conclusions.

5.3 Preliminaries

5.3.1 Reduced Ordered Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are Directed Acyclic Graphs (DAGs) that express the Shannon
decomposition of a Boolean function. The following definition of a BDD is taken from [75].

Definition 1. An (ordered) Binary Decision Diagram is a DAG with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.

2. Each non-terminal node p has a variable var(p) = xi and two outgoing edges, labelled 0
and 1; we write lvl(p) = i and p[v] = q, where v ∈ {0, 1}

3. For each edge from node p to non-terminal node q, lvl(p) < lvl(q).

4. There are no duplicate nodes, i.e. ∀p∀q.(lvl(p) = lvl(q)∧p[0] = q[0]∧p[1] = q[1]) =⇒ p = q

Figure 5.1 illustrates an example in which four different simple Boolean function are repre-
sented as BDDs. The rectangle shaped nodes denote the terminal nodes 0 and 1 (or, alternatively,
false and true). Every non-terminal node p has two edges, namely a thick edge representing
p[1] and a dashed edge representing p[0]. All paths in the BDD that lead to 1 makes the Boolean
function represented by the BDD evaluate to true. For example, in Figure 5.1d, the truth as-
signments (x0 = 1) and (x0 = 0, x1 = 1) both evaluate to true, which together is equivalent to
x0 ∨ x1.

62

x

1 0

(a) x

x

0 1

(b) ¬x

x0

x1

1 0

(c) x0 ∧ x1

x0

x1

1 0

(d) x0 ∨ x1

Figure 5.1: The BDD representation of four different simple Boolean functions.

x0

x1 x1

1 0

(a) BDD with dupli-
cate nodes

x0

x1

1 0

(b) BDD with a
redundant node

x1

1 0

(c) Reduced Or-
dened BDD

Figure 5.2: Three BDD representations of the Boolean function (x0 ∧ x1) ∨ (¬x0 ∧ x1) (left
representation), which is equivalent to x1 (right representation). The rightmost BDD is obtained
by removing duplicates and redundant nodes.

The total ordering < enforced by property 3. of Definition 1 ensures that the BDD is ordered,
i.e., all variables on all paths from root to leaf satisfy the ordering <. The following definition,
also taken from [75], introduces reduced BDDs.

Definition 2. A reduced Binary Decision Diagram is a BDD without redundant nodes. A node
p is redundant if p[0] = p[1].

A BDD is thus reduced if none of its nodes has identical child nodes and if there are no
duplicate sub-graphs. Figure 5.2 shows examples of BDDs that have duplicate and redundant
nodes. All three BDDs are identical, only the rightmost one is both reduced and ordered. In
Figure 5.2a, both sub-graphs of node x0 are identical. In Figure 5.2b, the node x0 is redundant.

Let φ : Bn → B be some Boolean function and let A be the reduced ordered BDD representing
φ. Then the BDD A represents ¬φ.

5.3.2 Defining ITE and RelProd

We now define two operations on BDDs, namely ITE and Relprod. Most other BDD operations
can be expressed via ITE or Relprod. Both operations are recursively defined and are based on
Shannon decomposition.

63

Definition 3 (Restriction). Let X = {x1, . . . , xn} be a set of variables and φ(x1, . . . , xn) a
function φ : Sn → B on S. Then the restriction of v ∈ S to xi ∈ X in φ, denoted by φxi=v, is
defined as φxi=v ≡ φ(x1, . . . , xi−1, v, xi+1, . . . , xn).

Theorem 3 (Shannon Decomposition). Let X = {x1, . . . , xn} be a set of variables and φ(x1, . . . , xn)
a Boolean function φ : Bn → B. Then, for any xi ∈ X, it holds that φ ≡ (xi ∧ φxi=1) ∨ (¬xi ∧
φxi=0).

The identity described in Theorem 3 is called the Shannon decomposition of φ along xi ∈ X.
The term (xi ∧ φxi=1) is called the positive Shannon cofactor and (¬xi ∧ φxi=0) the negative
Shannon cofactor of the Shannon expansion of φ along xi. Many BDD operations, including
ITE, are implemented recursively by choosing a variable and recursively calculating the results
of its Shannon cofactors. The following operator denotes the cofactors of a BDD and is used in
the implementations of ITE and RelProd.

Definition 4 (Cofactor). Let X = {x1, . . . , xn} be a set of variables, φ(x1, . . . , xn) a Boolean
function φ : Bn → B, and A the reduced ordered BDD representation of φ. Let x ∈ X be a
variable from X. Then cofactorv(A, x) is the reduced ordered BDD representing φx=v.

To implement the relational product operation (RelProd), existential quantification and sub-
stitution is needed.

Definition 5 (Existential Quantification). Let X = {x1, . . . , xn} be a set of variables, φ(x1, . . . , xn)
a Boolean function φ : Bn → B, and x ∈ X be some variable from X. Then the exis-
tential quantification of x over φ, denoted by ∃xφ, is defined as ∃xφ ≡ φx=0 ∨ φx=1. Let
X ′ = {x′1, . . . , x′m} ⊆ X be a subset of variables from X. Then ∃X ′φ ≡ ∃x′1φ . . .∃x′mφ.

Definition 6 (Substitution). Let X = {x1, . . . , xn} be a set of variables and φ : Bn → B
be a Boolean function. Let xi, y ∈ X be two variables from X. Then the substitution of xi
by y, denoted by φ[xi ← y], is defined as φ[xi ← y] ≡ φ(x1, . . . , xi−1, y, xi+1, . . . , xn). Let
Y = {y1, . . . , ym} ⊆ X and Z = {z1, . . . , zm} ⊆ X be two subsets of X. Then φ[Y ← Z] ≡
(((φ[y1 ← z1])[y2 ← z2]) . . .)[ym ← zm].

Definition 7 (If-then-else). Let φ, ψ, γ : Bn → B be three Boolean functions and let A,B,C
be three reduced ordered BDDs representing φ, ψ, γ, respectively. Then the if-then-else operator,
denoted by ITE(A,B,C), is defined as the reduced ordered BDD representing (φ∧ ψ)∨ (¬φ∧ γ).

Figure 5.1 shows a number of Boolean formulas and their expression with the ITE operator.
BDDs can be used for symbolic model checking, and an important model checking algorithm
is reachability analysis. Burch et al. [39] uses the relational product (RelProd) operation to
implement symbolic reachability analysis. This operation is defined as follows.

Definition 8 (Relational Product). Let X = {x1, . . . , xn} be a set of variables and X ′ ⊆ X be
a subset of X. Let φ(X) and ψ(X) be two Boolean functions φ, ψ : Bn → B and let A,B be their
respective reduced ordered BDD representations. Then the relational product over A and B with
respect to X ′, denoted by RelProd(A,B,X ′), is defined as the reduced ordered BDD representing
∃X ′(φ(X) ∧ ψ(X)).

Definition 9 (Rename). Let X = {x1, . . . , xn} be a set of variables, φ : Bn → B be a Boolean
function and A be the reduced ordered BDD representing φ. Let Y = {y1, . . . , ym} ⊆ X and
Z = {z1, . . . , zm} ⊆ X be two subsets of X. Then Rename(A, Y, Z) is the reduced ordered BDD
representing φ[Y ← Z].

64

Boolean Formula Representation with ITE

φ ∧ ψ ITE(A,B, 0)
¬φ ∧ ψ ITE(A, 0, B)
φ ∧ ¬ψ ITE(A,B, 0)
¬(φ ∧ ψ) ITE(A,B, 1)
φ ∨ ψ ITE(A, 1, B)
¬(φ ∧ ψ) ITE(A,B, 1)
¬(φ ∨ ψ) ITE(A, 0, B)
φ→ ψ ITE(A,B, 1)
φ← ψ ITE(A, 1, B)
φ↔ ψ ITE(A,B,B)
φ⊕ ψ ITE(A,B,B)

Table 5.1: Several Boolean formulas expressed with the ITE operation. The Boolean functions
φ, ψ are represented by the reduced ordered BDDs A,B, respectively.

5.3.3 Symbolic Reachability Analysis

The verification of most temporal safety properties can be reduced to a reachability analysis
problem [33], which is why reachability is an important component of model checking. Let
S = Bn be the set of all states of n-sized Boolean vectors. The transitions between states can be
represented as a binary relation →⊆ S × S, which is called a transition relation. Then (SI ,→)
is a transition system, where SI ⊆ S denotes the set of initial states. The set of reachable states
is the reflexive, transitive closure of → applied to SI [70]. Reachability algorithms calculate this
closure to find all possible and reachable program states.

Reachability with Boolean Functions. Boolean functions can be used to represent sets
of states. A subset T ⊆ S can be represented by a Boolean function φ : Bn → B such that
T = {x ∈ S | φ(x)}, or, alternatively, x ∈ T ⇔ φ(x) for every x ∈ S. The function φ is then
called a membership function of T with respect to S. The transition relation →⊆ S × S can be
represented by a Boolean function ψ : Bn × Bn → B, such that ∀x, y ∈ S. ψ(x, y)⇔ (x, y) ∈→.

Let X = {x1, . . . , xn} and X ′ = {x′1, . . . , x′n} be two sets of variable names. Then the
ψ-successors of φ, which we may denote by φ′, can be obtained by φ′(X) ≡ ∃X ′(φ(X ′) ∧
ψ(X ′, X)) [70]. By repeatedly obtaining the ψ-successors, starting from the Boolean function
representing the initial states SI , the set of reachable states is computed. Formally, the set of
reachable states is represented by the fixed point of the series [70]

φi+1(X) ≡ φi(X) ∨ (∃X ′.φi(X ′) ∧ ψ(X ′, X)) (5.1)

Reachability with BDDs. Suppose that A, T are the BDD representations of φi(X) and
ψ(X,X ′), respectively. Then RelProd(A, T,X ′) is the BDD representing φi+1(X ′) ≡ ∃X(φi(X)∧
ψ(X,X ′)). The set of next states from φi(X) is the BDD representation of φi+1(X) ≡ φi+1(X ′)[X ′ ←
X]. The set of reachable states can be found symbolically by continuously calculating the next
states, starting from the set of initial states, and taking their disjunctions, like shown in 5.1.

Figure 5.3 shows the basic symbolic reachability algorithm. Here I is the BDD representing
the set of initial states and T the BDD representing the binary transition relation. The fixed
point is calculated using the while-loop at line 4. In every iteration, RelProd is used to find
successors (line 5) and Rename to obtain the next states (line 6). Finally, the disjunction of the
states already found (line 8 and the next states is calculated by applying ITE

65

1 def Reachability(I, T,X,X ′):
2 States← I
3 Previous← 0
4 while States 6= Previous do
5 Successors← RelProd(States, T,X)
6 Next← Rename(Successors,X ′, X)
7 Previous← States
8 States← ITE(States, 1, Next)

9 return States

Figure 5.3: A basic reachability operation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32

48

(1)

(2)

Bit number

B
it

o
ff

se
t

(3) (4)

64

80

96

112

(5)

(6)
(7)

Figure 5.4: The memory layout of a 128-bit BDD node, where (1) and (5) represent the high
and low edge, respectively. Furthermore, (2) represents the variable level, (6) represents data
stored in the BDD, (3) is an occupation bit, used by the hash table, (4) is a locking bit, and
(7) a complement bit.

5.4 Design and Implementation

5.4.1 Memory Layout

BDD nodes are 16 bytes (i.e. two 64-bit integers) in size. Figure 5.4 shows the memory layout
of a BDD node. Sylvan uses two separate tables for storing buckets, namely an index table and
a data table [75]. This is to make garbage collection more efficient. Due to time constraints,
we chose not to implement garbage collection. Therefore, we use only one table. The BDD
nodes are stored in the hash table described in Chapter 3, which we slightly adjusted to support
16-byte buckets instead of 8-byte buckets. By doing that, find-or-put can be implemented to
require fewer roundtrips than with two separate tables, which makes the BDD operations more
efficient.

Assuming that the hash table is used by n processes, we allocated a shared hash table
H[0], . . . ,H[mn − 1] of BDD nodes, so that each process owns m entries, thus has a portion
of 16×m bytes of the hash table. By default, we let m = 226, so that H is n GB in size.

66

Storing and Retrieving BDD Nodes. The find-or-put operation is adjusted in the follow-
ing way. When find-or-put finds an empty bucket (i.e. a BDD node with its occupation bit
set to 0), it first performs a cas operation on the first 8 bytes of the BDD node to set both its
occupation bit and locking bit to 1. After that, it writes the whole bucket to the hash table with
an one-sided RDMA write, thereby removing the lock. When find-or-put encounters a locked
bucket, it polls for the (remote) memory location until the lock is removed. This ensures data
consistency, although requiring extra roundtrips.

The high and low edges of BDDs are both 40 bits in size, which is enough to store indices
of the hash table. This also implies that the hash table cannot contain more than 240 entries,
which is 16 Terabytes in memory. If larger hash tables need to be supported, the data portion
of BDD nodes, represented by (6) in Figure 5.4, can be made smaller.

The complement bit, denoted by (7) in Figure 5.4, is used to denote complemented BDDs.
If a BDD node is retrieved from the hash table with its complement bit set to 1, then the leaves
of the BDD are switched.

Referencing BDD Nodes. We use 64-bit integers to refer to BDD nodes, where 40 bits are
used to denote the index in the hash table and 1 bit for complement edges [63]. Suppose that
the BDD A represents the Boolean function φ, so that A represents ¬φ. Then A and A can be
stored on the same location by using the complement bit, thereby reducing space requirements.
This concept is called complement edges.

5.4.2 Designing a Shared Memoization Cache

The memoization cache is a simple cache used to make the recursive implementations of ITE

and RelProd efficient. This cache is based on a simple hash table in which hash collisions
are not resolved. Resolving collisions to store a value requires performing a number of probes,
which are computationally more expensive and may require more RDMA operations than simply
overwriting the existing entry with a given value, especially when targeting remote memory.

Cache entries are 32 bytes in size and have the form 〈a, b, c, r〉, where each component is 8
bytes in size. To ensure data consistency and prevent read-write races, we use cas operations on
a to set a locking bit, which we denote via the bitmask LOCK-MASK. Read-write races may occur
in a number of scenarios. They might occur when multiple RDMA devices are used and access
the same memory location, when the CPU and RDMA device access the same memory location,
or when multiple UPC threads access the same location.

Figure 5.5 shows the operations used to access the cache. We allocated a shared array
C[0], . . .C[kn − 1] with cache entries, assuming m participating processes. Each process owns k
entries and thus contributes 32× k bytes to the shared array. By default, we let k = 223, so that
C is (256× n) MB in size.

Consulting the Cache. The cache-request operation is used to start a request to C, which
is done asynchronously (i.e. the memget at line 4). A handle s and a private memory location
R are returned by cache-request. The handle s can be given to sync to synchronize on the
roundtrip. The location R can be given to cache-check to test if (a, b, c) is already cached. We
chose to split cache reads into two operations, so that cache reads become asynchronous. During
calls to cache-request and cache-check, work can then be performed.

The cache-check operation takes a memory location R as parameter and assumes that R is
obtained via a call to cache-request and that the corresponding memory operation has been
synchronized. The operation starts by testing if R.a contains a lock. If so, cache-check waits
for the lock to expire at line 3. After that, cache-check returns R if it contains (a, b, c), or

67

1 def cache-request(a, b, c):
2 h← hash(a, b, c)
3 i← h mod CACHE-SIZE

4 s← memget-async(C[i], R)
5 return 〈s,R〉

1 def cache-check(a, b, c, R):
2 B Wait for the lock to expire
3 while is-locked(R.a) do
4 h← hash(a, b, c)
5 i← h mod CACHE-SIZE

6 memget(C[i], R)

7 B Compare R with a, b, c
8 if R.a = a ∧R.b = b ∧R.c = c
9 return R

10 else
11 return ⊥

1 def cache-put(a, b, c, r):
2 h← hash(a, b, c)
3 i← h mod CACHE-SIZE

4 B Prepare a condition and value for
the cas operation

5 cond← a & ∼ LOCK-MASK

6 val← a | LOCK-MASK
7 B Perform the cas operation
8 if cond = cas(i, cond, val)
9 R← 〈cond, b, c, r〉

10 memput-async(R,C[i])

Figure 5.5: The operations used to access the shared memoization cache. The LOCK-MASK bitmask
is used to set the locking bit in a.

otherwise returns ⊥. The value ⊥ can then be used by the function that called cache-check to
test whether (a, b, c) is in the cache or not.

Supplementing the Cache. The cache-put operation attempts to write r in the cache entry
corresponding to (a, b, c). This is done by locking a via a cas operation (line 7). If the cas fails,
then a is either changed or locked by some other process. In that case, r is not inserted in the
cache table. If cas succeeds, a new entry is created (line 9) and inserted via an asynchronous
write operation (line 10). This write also removes the lock from C[i].a by writing cond (which is
a with the locking bit set to 0) to it (line 9).

5.4.3 Design Considerations of ITE

Figure 5.6 shows the implementation of ITE. We used the implementation of Sylvan [75], and
modified it to support PGAS, cluster-based work stealing and efficient asynchronous remote
memory operations. The implementation takes three references (a, b, c) to BDD nodes as param-
eters and starts by considering terminal cases (lines 3 to 11). Note that the not operator flips
the complement bit of a given BDD reference, thereby using complement edges.

After considering terminal cases, a number of cache optimizations are performed, which are
not shown in Figure 5.6. For those optimizations we refer to [73,75].

We aimed to perform the asynchronous retrieval of BDD nodes (lines 13 to 15) as early as
possible and use them as late as possible, so that work can be performed during the roundtrips.
The BDDs cannot be retrieved before handling the terminal cases and are used shortly thereafter,
so the only work that can be performed asynchronously with the roundtrips is sending a cache
request (line 16). Nonetheless, the roundtrips themselves are performed asynchronously. After
synchronizing on the queries that fetch the BDD nodes A,B,C, referred to by a, b, c (line 17), the
top variable of (A,B,C) is determined. This is the highest variable in the total variable ordering.
After that, we check if (a, b, c) is already in the cache at lines 20 to 22. We also considered to

68

1 bdd ITE(bdd a, bdd b, bdd c):
2 B Terminal cases
3 if a = 1 return b
4 if a = 0 return c
5 if a = b then b← 1
6 if a = not(b) then b← 0
7 if a = c then c← 0
8 if a = not(c) then c← 1
9 if b = c return b

10 if b = 1 ∧ c = 0 return a
11 if b = 0 ∧ c = 1 return not(a)
12 B Retrieve nodes asynchronously
13 sa ← memget-async(H[a], A)
14 sb ← memget-async(H[b], B)
15 sc ← memget-async(H[c], C)
16 〈sr, R〉 ← cache-request(a, b, c)
17 sync(sa), sync(sb), sync(sc)
18 x← top-variable(A,B,C)
19 B Consult the cache
20 sync(sr)
21 R← cache-check(a, b, c, R)
22 if R 6=⊥ return R
23 B Get the cofactors
24 a0 ← cofactor0(A, x), b0 ← cofactor0(B, x), c0 ← cofactor0(C, x)
25 a1 ← cofactor1(A, x), b1 ← cofactor1(B, x), c1 ← cofactor1(C, x)
26 B Calculate result recursively
27 if is-constant(a1)
28 high← if a1 = 1 then b1 else c1
29 low ← call(ITE, a0, b0, c0)
30 result← make-node(x, high, low)

31 else
32 spawn(ITE, a1, b1, c1)
33 low ← call(ITE, a0, b0, c0)
34 high← sync
35 result← make-node(x, high, low)

36 B Add result to cache and return
37 cache-put(a, b, c, result)
38 return result

Figure 5.6: The implementation of ITE.

69

consult the cache before retrieving the A, B, and C, but a cache request often results in a remote
memory read. Performing such a read asynchronously with the other roundtrips is more efficient.

Finally, the cofactors of A, B, and C are retrieved (lines 24 to 25) and ITE is called recursively
(lines 27 to 35) to enable task parallelism. If a1 is constant (line 27), i.e. either 0 or 1, then the
high edge of the resulting BDD can be determined without a performing a recursive call.

5.4.4 Design Considerations of RelProd

Figure 5.7 shows the implementation of RelProd. Similar to ITE, we used the RelNext operation
implemented in Sylvan and modified it to support PGAS and distributed memory operations.
The RelProd operation takes two BDD node references a, b and an integer v, used as index in
the variable array.

In Sylvan, lists of variables are given to BDD operations as BDDs. For example, consider the
set of variables X = {x1, . . . , xn}. Then Sylvan uses the BDD representation of the membership
function x1 ∨ · · · ∨ xn to store X. Subgraphs of that BDD are used to denote subsets of X. In
our implementation, we used an array vars[1], . . . , vars[n] instead. This is because traversing a
BDD requires multiple roundtrips and traversing an array does not.

The RelProd operation starts by considering terminal cases (lines 3 to 5). In line 5 RelProd

tests if all variables have been checked. If so, the conjunction of a and b is returned.
In lines 12 to 15 variables are skipped, so that fewer tasks are generated and thus fewer

roundtrips are required by RelProd. Sylvan implements this part by traversing through the
BDD representing the set of variables, but this would considerably slow down execution in a
distributed setting due to the generated roundtrips. We therefore use arrays instead.

After consulting the cache, RelProd retrieves the four cofactors of A,B (lines 22 to 22). If
x 6= vars[v] (line 25), the variable x can be skipped and RelProd is recursively applied to the
cofactors of A and B (lines 41 to 44). Otherwise, Shannon decomposition along x is applied
to the results of the recursive calls to RelProd (lines 27 to 39). Finally, the resulting BDD is
constructed, stored in the cache, and returned.

5.5 Experimental Evaluation

We implemented the BDD operations in Berkeley UPC, version 2.20.2. The performance is
evaluated by measuring the execution times and scalability of various common models from the
BEEM database [53]. The implementation is compiled by using the Berkeley UPC compiler
and gcc version 4.8.2, using the command upcc -O -network=ibv. The -O compiler option
causes UPC to generate optimized executables, which improves performance. All experiments
have been performed on a cluster of 10 Dell M610 machines running Ubuntu 14.04.2 LTS with
kernel version 3.13.0, each having 8 CPU cores and 24 GB of internal memory. The machines
are connected via a 20 GB/s Infiniband cluster. All experiments have been repeated at least five
times and the average measurements have been taken into account.

The experiments were performed by spawning a number of processes on every machine. By
default, every process contributes 1 GB to the hash table and 256 MB to the computation cache.
For example, by using a configuration of 6 machines, each having 5 processes, the total hash table
size is 30 GB and the total cache size is 7.5 GB. If needed, a custom memory layout can be used to
make optimal use of the available memory. The benchmarks are executed by using the command
upcrun -n processes -N machines -shared-heap 1350MB, where we replaced processes by the
total number of processes (e.g. 30 in the example given above) and machines with the number
of machines. Each process is allowed to allocate up to 1350 MB of shared memory by using the
shared-heap flag.

70

1 bdd RelProd(bdd a, bdd b, int v):
2 B Terminal cases
3 if a = 1 ∧ b = 1 return 1
4 if a = 0 ∨ b = 0 return 0
5 if v ≥ length(vars) return ITE(a, b, 0)
6 B Retrieve nodes asynchronously
7 sa ← memget-async(H[a], A)
8 sb ← memget-async(H[b], B)
9 sync(sa), sync(sb)

10 x← top-variable(A,B)
11 B Skip variables
12 while 1 do
13 if x ≤ vars[v] break
14 v ← v + 1
15 if v ≥ length(vars) return ITE(a, b, 0)

16 B Consult the cache
17 〈sr, R〉 ← cache-request(a, b, v)
18 sync(sr)
19 R← cache-check(a, b, v, R)
20 if R 6=⊥ return R
21 B Get the cofactors of A and B
22 a0 ← cofactor0(A, x); b0 ← cofactor0(B, x)
23 a1 ← cofactor1(A, x); b1 ← cofactor1(B, x)
24 B Recursively calculate result
25 if x = vars[v]
26 B In this case, variable v is in vars. Retrieve nodes:
27 sb0 ← memget-async(H[b0], B0)
28 sb1 ← memget-async(H[b1], B1)
29 B Get the cofactors of B0 and B1

30 sync(sb0); b0,0 ← cofactor0(B0, v); b0,1 ← cofactor1(B0, v)
31 sync(sb1); b1,0 ← cofactor0(B1, v); b1,1 ← cofactor1(B1, v)
32 B Spawn new tasks
33 spawn(RelProd, a0, b0,0, v + 1); spawn(RelProd, a1, b0,1, v + 1)
34 spawn(RelProd, a0, b1,0, v + 1); spawn(RelProd, a1, b1,1, v + 1)
35 B Spawn new tasks, which construct c ∨ d and e ∨ f
36 f ← sync; e← sync; d← sync; c← sync
37 spawn(ITE, c, 1, d); spawn(ITE, e, 1, f)
38 d← sync; c← sync
39 result← make-node(v, c, d)

40 else
41 B In this case, variable v is not in vars
42 spawn(RelProd, a0, b0, v); spawn(RelProd, a1, b1, v)
43 r1 ← sync; r0 ← sync
44 result← make-node(v, r0, r1)

45 B Add result to cache and return
46 cache-put(a, b, v, result)
47 return result

Figure 5.7: Implementation of RelProd

71

While performing the experiments, we found out that our work stealer, in combination with
the BDD implementation, contains a bug. This causes the BDD implementation to crash in
about 50% of the runs when using small models (i.e. models with a relatively small state space),
and even more often when larger models are used. This is because an erroneous interleaving of
the execution is possible, which causes the program to crash or produce incorrect results. For
this reason, continuing the evaluation with this bug was unpractical. Due to time constraints,
we were also not able to either find or fix the bug in time. As an alternative, we used HotSLAW
instead. Furthermore, we did not encounter such problems when evaluating the implementation
of the work stealers. We assume that the bug was introduced after integrating our work stealer
with the BDD implementation. We suspect the error to be caused by the stack sizes, as they
might be too small, especially for larger models. For this reason, we expect the experimental
evaluation of the work stealers to be valid, despite this bug.

5.5.1 Distributed Scalability

We evaluated the scalability along the number of processes and machines in detail. The four
smallest models of the BEEM database have been used, which are: anderson.1, anderson.2,
at.5, and schedule world.2. Evaluation is performed by scaling the number of machines from
2 to 10 and the number of processes per machine from 1 to 8 (which makes a total of 72 different
configurations). The benchmarks have been repeated five times for every model and the average
measurements have been taken into account.

We observed that benchmarking larger models in such detail is unpractical, because it would
take too much time (benchmarking at.5 five times already took more than 26 hours, benchmark-
ing even larger models in such detail could take weeks). Instead of executing them 72 times,
they are only executed 8 times by scaling only along the number of machines and choosing smart
amounts of processes per machine. Details and experimental results of these benchmarks are
given later in this chapter.

Figure 5.8 shows the relative speedup obtained when performing reachability over the four
smallest BEEM models. In contrast to the evaluation of the work stealers, where we only used
one process to determine relative speedup, here we use two processes. The tasks generated
by the work stealing benchmarks do not perform RDMA operations, with the exception of
matmul. This is the main reason for the good speedups achieved in fib, uts, and nqueens

(shown in Figure 4.10). The tasks generated by the BDD operations, on the other hand, often
perform multiple RDMA operations. When using only one machine, RDMA operations are not
performed because all shared memory is local. This gives an unfair performance advantage when
determining the distributed speedup when scaling along machines (the speedup graphs would
then be very similar to the graph of matmul(512), presented in Figure 4.10).

Similar to the results obtained in the evaluation of the hash table, scaling both along processes
and machines results in a fairly low speedup. For example, the highest speedup obtained in
schedule world.2 is 6.96 when using 30 processes (10 machines, each having 3 processes),
which is an efficiency of only 23.2%. Another observation, which is also similar to the hash
table behaviour, is that the throughput of the RDMA devices gets saturated from some point
on, which results in a steep performance drop. This causes the speedup graphs of most of the
models to show a waving pattern. The peaks in the speedup graph of anderson.1 are constant
(they are all about 1.9). This is because the computation depth of anderson.1 is relatively large,
and relatively little work is done on every depth, followed by termination detection. This has a
negative impact on speedup. The at.5 model achieves reasonable speedup, namely 17.9 with 30
processes (10 machines, each having 3 processes), which gives an efficiency of 67.5%. Table 5.9
shows the best achieved execution times and speedups.

72

(a) Speedups of anderson.1 (b) Speedups of anderson.6

(c) Speedups of at.5 (d) Speedups of schedule world.2

Figure 5.8: The distributed speedup when scaling both along machines and the number of
processes per machine (Procs./M).

Distributed Scalability on Larger Models

To perform symbolic reachability on the larger BEEM models, we scale only along the number
of machines and choose an optimal number of processes per machine. The optimum is taken
from the results presented in Figure 5.8 and shown in Figure 5.10. A surprising observation is
that a configuration of 9 machines performs best when 36 processes are used, in contrast to 30
processes in a setting with 10 machines. It is reasonable to expect that a setting with 10 machines
requires more processes to saturate the throughput of all RDMA devices than with 9 machines.
When scaling from 3 to 4 processes per machine in a configuration with 10 machines, an average
performance drop of 46% is observed. When scaling from 4 to 5 processes per machine in a
setting with 9 machines, an average drop of 136% is observed, which is far more significant. Out
of this, we expect that a configuration with 10 machines may even perform better when more
than 30, but less than 40 processes are used in total. We did not verify this expectation due to
time constraints and the fact that, by default, only a fixed amount of processes per machine can
be used by UPC. It is, however, possible to either dynamically spawn additional processes or to

73

Model
Base configuration Best configuration

Speedup
Time M. P./M. Time M. P./M.

anderson.1 19.93 2 1 8.86 2 7 2.25
anderson.6 362.73 2 1 45.61 10 3 7.95
at.5 1,730.20 2 1 96.51 10 3 17.93
schedule world.2 130.52 2 1 18.75 10 3 6.96

Figure 5.9: The best achieved execution times and speedups when scaling along both machines
(M.) and processes (P./M.). Execution time is given in seconds. The speedup is calculated
relative to the given base configurations.

Machines
Processes Total nr.

per machine of processes
2 8 16
3 7 21
4 6 24
5 5 25
6 4 24
7 4 28
8 4 32
9 4 36
10 3 30

Figure 5.10: The number of processes used in every configuration used in the evaluation of the
distributed scalability with the larger models.

spawn extra processes and disable a few, but our implementation does not support that. The
same observation applies to the configuration with 6 machines.

5.5.2 Parallel Scalability

Figure 5.13 shows the speedups of distributed reachability with respect to parallel reachability.
By using one thread, the implementation seems to require some extra overhead, which leads
to a slight decrease in performance. Furthermore, the speedup of collision.5 could not be
determined because its state space does not fit into the memory of a single machine. Finally, the
computation time of anderson.8 with 8 threads could not be determined, because the benchmark
crashed. The crash was caused by a segmentation fault that occurred immediately after opening
the BDD file.

Even when considering that single threaded runs require some extra overhead, in nearly all
cases the distributed runs result in speedups. The anderson.1 model obtains the lowest speedup,
since it has a large computation depth and on every depth only a small number of computations
are performed. We expect that, due to termination detection on each phase, speedup remains
low. The highest speedups are obtained with the largest models (i.e. at.7 and anderson.8).
Although we could not determine the speedup of collision.5, we expect that this model may
obtain the highest speedup.

On the other hand, Figure 5.13 also shows that, in a number of cases, the parallel runs are
faster than the distributed runs. By having a parallel execution, data locality is better exploited,
since all memory is local. We may thus conclude that distributed executions are generally faster
than sequential executions, but not as fast as parallel executions. However, these performance

74

2 3 4 5 6 7 8 9 10

1

2

3

4

5

Machines

S
p

ee
d

u
p

anderson.1
anderson.6
anderson.8
at.5
at.6
at.7
collision.4
collision.5
schedule world.2
schedule world.3

Figure 5.11: The relative speedup of the BDD implementation when scaling along the number
of machines.

differences get smaller when the models get larger. For example, at.5 still has a much better
distributed computation time, and we highly expect that the distributed runs of anderson.8

and collision.5 are also much faster than 8-threaded runs.

5.5.3 Scalability with Private Deque Work Stealing

Figure 5.14 shows details of the models used to evaluate the BDD implementation. The models
anderson.1 and schedule world.2 were small enough to be executed with our private deque
work stealer without crashing that often. Our work stealer crashed or produced incorrect results
in 161 out of 288 runs for anderson.1 (a failure-rate of 55%) and 144 out of 288 runs for
schedule world.2 (a failure-rate of 50%).

We determined the relative speedup of the BDD operations implemented with our work stealer
with respect to the HotSLAW implementation. We discarded the incorrect results produced by
our work stealer. The speedup is determined by considering the lowest execution times achieved
by the different implementations when scaling from 2 to 10 machines. Figure 5.15 presents the
results of the comparison. Note that, due to the failure rate, these results are only indicative and
may not accurately represent the performance of our work stealer with respect to HotSLAW. The
schedule world.2 model only achieves a small speedup (up to 4.5%), but anderson.1 achieves
a significant speedup (up to 56.5%). This is because anderson.1 requires more steals, since it
has a large execution depth (namely 1293). On every depth, the work stealers need to perform
termination detection, which requires many steal attempts. We already concluded that our work
stealer has more efficient steals than HotSLAW, which explains the differences in performance.
Every process performs termination detection separately, so the amount of work for termination
detection increases when increasing the number of processes, which explains the speedup. Most
models, however, have a relative small execution depth (very similar to schedule world.2), so
we expect our work stealer to perform only slightly faster than HotSLAW for most of the other

75

Model 2 Machines
Best Set-up

Speedup
Machines Time

anderson.1 8.99 10 10.69 0.84
anderson.6 75.97 10 45.61 1.67
anderson.8 645.74 9 313.84 2.06
at.5 184.83 10 96.51 1.92
at.6 785.44 10 355.44 2.20
at.7 3,347.50 9 841.54 3.98
collision.4 779.89 10 368.38 2.12
collision.5 7,141.96 9 1,378.05 5.18
schedule world.2 35.00 10 18.75 1.87
schedule world.3 728.41 10 342.22 2.13

Figure 5.12: Average computation times (in seconds) of distributed reachability performed on
the BEEM models.

Model
Parallel Distributed

Speedup
1 Thread 8 Threads Machines Time

anderson.1 4.80 14.45 10 10.69 0.45
anderson.6 74.45 45.61 10 45.61 1.63
anderson.8 4,656.50 - 9 313.84 14.84
at.5 2,19.84 32.17 10 96.51 2.28
at.6 2,386.63 206.77 10 355.44 6.71
at.7 23,665.80 2,030.55 9 841.54 28.12
collision.4 2,500.06 197.78 10 368.38 6.79
collision.5 - - 9 1,378.05 -
schedule world.2 30.23 5.51 10 18.75 1.61
schedule world.3 1,833.15 145.04 10 342.22 5.36

Figure 5.13: A comparison of execution times between parallel and distributed symbolic reach-
ability, performed in several BEEM models.

models.

5.5.4 Suggestions for Performance Improvements

Figure 5.8 shows that the performance increases when adding processes, but to a certain extent.
At some point, adding more processes per machine causes the throughput of the RDMA devices
to be saturated, which has a negative impact on performance. The sweet spots are shown in
Figure 5.10. We also argued that the scalability can be improved even further when slightly
more processes are added. This may also be very dependent on the model, which is shown by
the divergence of the speedup graph of anderson.1 in Figure 5.8. We suggest to implement
adaptive load-balancing, which disables further execution of a number of processes when the
performance drops. This can be done by preventing steal operations on a number of processes,
so that only a subset of the processes remain active. We expect that adaptive load-balancing
increases scalability.

The ITE and RelProd operations often create new BDD nodes via make-node as a result
of their computations. It would be possible for make-node to return the machine at which
the node is stored (i.e. the owner of that BDD node). It would therefore also be possible to

76

Model Depth Groups States BDD nodes
anderson.1 1,293 6 352,664 22,221
anderson.6 181 18 18,206,917 75,220
anderson.8 246 21 538,699,029 285,148
at.5 51 26 31,999,440 156,785
at.6 95 26 160,589,600 420,526
at.7 57 31 819,243,816 986,322
collision.4 168 29 41,465,543 24,960
collision.5 182 29 431,965,993 29,537
schedule world.2 18 26 1,570,340 18,779
schedule world.3 23 34 166,649,331 28,500

Figure 5.14: Details of the BEEM models used to evaluate the implementation of the BDD
operations.

2 4 6 8 10

1

1.2

1.4

1.6

Nr. of machines

R
el

a
ti

ve
sp

ee
d

u
p

anderson.1
schedule world.2

Figure 5.15: Relative speedups of our work stealing implementation with respect to HotSLAW.
Only the smallest two BEEM models are used.

approximate the machine that would achieve best performance when exploring a BDD node. This
approximation can be determined via the recursion trees of ITE and RelProd. We expect that
steals become more efficient when using this approximation. This is because data-locality is then
exploited to some extent, which is currently not done. By exploiting data-locality, less RDMA
operations are performed, which increases total throughput and allows CPUs to be utilized more
efficiently.

5.6 Conclusion

We have implemented several BDD operations that efficiently use the memory of all participating
computers in a high-performance network. Hierarchical work stealing is used as a method to
partition the computational work into a large number of small tasks that are dispatched to the
participating processors. The BDD operations have been used to perform symbolic reachability
over a number of BEEM models, with positive results.

When using a network of workstations, speedups up to 28 are obtained relative to single-
threaded runs. Generally, the larger BEEM models achieve the highest speedups. Furthermore,
adding computers to the network does not degrade performance, unless enough processes are
used to saturate the RDMA devices. We thus conclude that the performance of BDD operations

77

scales well along the number of machines added to the network.
On the other hand, the implementation does not scale very well along the number of pro-

cesses per machine, due to bandwidth limitations. This scalability can very well be improved
by reducing the number of roundtrips, and we have suggested various ways to do that in the
Sections: 3.5.3, 4.4.3, and 5.5.4 and in the conclusions of Chapters 3 and 4.

Compared to distributed scalability, the parallel executions achieve lower computation times
in a number of cases. This is not surprising, since parallel runs have much better data locality.
The differences in performance, however, get smaller when the BEEM models get larger. We
therefore conclude that distributed runs are faster than sequential runs, but do not scale as well
as parallel runs.

To conclude, by paying an acceptable performance price (compared to parallel runs), the total
available memory of a network of workstations can be used efficiently for symbolic reachabil-
ity, and adding workstations does not decrease performance. This makes distributed symbolic
verification feasible and usable in practice. Considering the many performance improvements
that can still be applied and the potential scalability of a network of workstations, performing
further research in distributed (and even heterogeneous) verification algorithms could give very
promising results.

78

Chapter 6

Conclusion

In this thesis, we described an RDMA-based distributed hash table and hierarchical private deque
work stealing operations. Both parts have been evaluated in detail via micro-benchmarking
in order to determine their behaviours. We used both parts to implement distributed BDD
operations and evaluated its scalability by performing symbolic reachability over a number of
BEEM models.

We expected roundtrip latency to be the bottleneck of distributed reachability analysis, but
instead the throughput of the RDMA devices appeared to be the biggest limitation. When
enough processes per machine are used, the throughput of the RDMA devices get saturated,
which drastically degrades performance. As a result, we achieve good scalability along the
number of machines added to the network, but the scalability along processes per machine
remains limited. The scalability can be improved by reducing the number of roundtrips and by
using hardware that supports higher bandwidths. Both suggestions are feasible, as the price of
Infiniband hardware is comparable to standard Ethernet hardware, and we suggested various
effective ways to reduce the number of roundtrips.

6.1 Efficient Distributed Symbolic Reachability

Chapter 1 mentions four design considerations that are important for efficient distributed sym-
bolic state-space construction. In addition, we presented three subquestions that cover these
four considerations. In this section, we discuss each of them.

6.1.1 Data Distribution

To answer SQ1, we looked at several existing RDMA-based distributed hash tables and discussed
their efficiencies with respect to the number of required roundtrips. We argued that linear
probing would be more efficient than the collision strategies used in existing work for an efficient
implementation of find-or-put. We use chunk retrievals to fetch multiple buckets in a single
roundtrip, as the buckets examined by linear probing are consecutive in memory. Moreover, we
overlap roundtrips as much as possible to further reduce latency.

As a result, find-or-put only requires less than 2 roundtrips on average to find the intended
bucket when a reasonable chunk size is chosen (i.e. 32 or 64). Furthermore, by using 64-sized
chunks, find-or-put achieves a peak-throughput of 3.6×106 op/s and requires 9.3µs on average
to find the intended bucket.

79

6.1.2 Load-balancing Maintenance

To answer SQ2, we investigated techniques for fine-grained task parallelism, in particular work
stealing, as it has already been successfully used in parallel symbolic reachability [75]. Existing
distributed task-based parallel frameworks consider the hierarchy of the network to achieve good
scalability. Nearly all implementations use split deques to implement their task pools and require
expensive locking structures when stealing work. We use private deque work stealing instead,
which is lock-free and minimizes the number of roundtrips required for steals. A similar approach
has been proposed in [50], but requires more roundtrips and does not consider the hierarchy of
the network. Our implementation uses hierarchical victim selection, as proposed by HotSLAW,
which gives performance improvements up to 52% compared to random victim selection [62].
Due to time constraints, we could not implement hierarchical chunk selection [36], which could
also provide serious performance improvements (up to 122% in [62]).

Our private deque work stealing implementation achieves speedups up to 68.7 when using
80 threads. Compared to HotSLAW, the latency for remote steal operations are 9.3 times
lower (and even 34.3 times lower for local steals). On the other hand, HotSLAW generates less
overhead when executing tasks, which makes it more efficient in some cases. As future work,
we would like reduce the overhead generated when executing tasks, remove explicit termination
detection, and implement hierarchical chunk selection to further improve performance.

6.1.3 Communication Overhead

To answer SQ3, we tried to use asynchronous roundtrips as much as possible. We expected
network latency to be the biggest bottleneck, so we attempted to perform as much work as
possible during roundtrips to hide latency. As a result, we designed a querying system for the
distributed hash table, so that consecutive chunks are retrieved while iterating over a chunk. This
reduces waiting times, but also increases the number of RDMA operations required by the hash
table. Ultimately, not the network latency, but the throughput of the RDMA devices appeared to
be a bottleneck. We propose a strategy to determine adaptive chunk sizes to reduce the number
of roundtrips, which increases performance and ultimately also reduces waiting times.

6.2 Scalability of Distributed Symbolic Reachability

To answer our main research question, we implemented distributed BDD operations by using
hierarchical work stealing and our RDMA-based distributed hash table. We used these opera-
tions to implement distributed symbolic reachability. With experimental evaluation we conclude
that the BDD operations scale well across a network of workstations. Compared to sequential
executions, speedups up to 28 are reached. However, the implementation does not scale very well
along the number of processes per machine, due to bandwidth limitations of the RDMA devices.

We also concluded that parallel scalability is better than distributed scalability, which is
reasonable since parallel runs can better exploit data locality. However, the larger BEEM models
used for evaluation still achieve very good distributed performance compared to the parallel runs.

To conclude, by paying an acceptable performance price (compared to parallel symbolic
reachability), the total combined memory of a network of workstations can be efficiently used.
Adding machines to the network does not decrease performance, which introduces scalability.
Considering that performance can still be improved, distributed symbolic reachability analysis
is feasible and usable in practice.

80

6.2.1 Future Work

To improve performance and scalability of distributed symbolic reachability, minimizing the
number of RDMA operations is key. This thesis presents many ways to achieve this, but the
most important considerations which we expect to yield the highest benefits are summarized in
Sections 3.6 and 4.5.

81

Bibliography

[1] Infiniband trade association, 2008.

[2] Osu micro-benchmarks, 2015.

[3] Performance numbers of mvapich2 on intel ivybridge architecture with mellanox connectx-3,
2015.

[4] Sheldon B. Akers. Binary decision diagrams. 27(6):509–516, 1978.

[5] Orion Hodson Miguel Castro Aleksandar Dragojević, Aleksandar Narayanan. Farm: Fast
remote memory. In 11th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI, volume 14, 2014.

[6] David Gay Susan Graham Paul Hilfinger Arvind Krishnamurthy Ben Liblit Carleton
Miyamoto Geoff Pike Luigi Semenzato Alex Aiken, Phil Colella et al. Titanium: A high-
performance java dialect. Concurrency: Practice and Experience, 10:11–13, 1998.

[7] Jaco van de Pol Alfons Laarman and Michael Weber. Boosting multi-core reachability
performance with shared hash tables. In Conference on Formal Methods in Computer-Aided
Design, pages 247–256. FMCAD, 2010.

[8] Bruce Hendrickson Andrew Lumsdaine, Douglas Gregor and Jonathan Berry. Challenges in
parallel graph processing. Parallel Processing Letters, 17(1):5–20, 2007.

[9] Ramnik Jain Ankur Narang, Abhinav Srivastava and R.K. Shyamasundar. Dynamic dis-
tributed scheduling algorithm for state space search. In Parallel Processing, pages 141–154.
Springer, 2012.

[10] Michael Kaminsky Anuj Kalia and David G. Andersen. Using rdma efficiently for key-value
services. In ACM conference on SIGCOMM, pages 295–306. ACM, 2014.

[11] Edmund M. Clarke Ofer Strichman Armin Biere, Alessandro Cimatti and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117–148, 2003.

[12] Mats Brorsson Artur Podobas and Karl-Filip Faxén. A comparison of some recent task-based
parallel programming models. 2010.

[13] Anurag Srivastava Arun Narang and R.K. Shyamasundar. High performance adaptive dis-
tributed scheduling algorithm. In Parallel and Distributed Processing Symposium Work-
shops, pages 1725–1734. IEEE, 2013.

82

[14] Swaroop Pophale Stephen Poole Jeff Kuehn Chuck Koelbel Barbara Chapman, Tony Curtis
and Lauren Smith. Introducing openshmem: Shmem for the pgas community. In Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming Model, page 2.
ACM, 2010.

[15] David G. Andersen Bin Fan and Michael Kaminsky. Memc3: Compact and concurrent
memcache with dumber caching and smarter hashing. In Networked Systems Design and
Implementation, pages 371–384, 2013.

[16] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. 46(5):720–748, 1999.

[17] Robert D. Blumofe and Dionisios Papadopoulos. The performance of work stealing in multi-
programmed environments. In Measurement and Modeling of Computer Systems, volume 26,
pages 266–267. ACM, 1998.

[18] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is np-complete.
45(9):993–1002, 1996.

[19] Hans P. Zima Bradford L. Chamberlain, David Callahan. Parallel programmability and
the chapel language. International Journal of High Performance Computing Applications,
21(3):291–312, 2007.

[20] Aaron R. Bradley. Ic3 and beyond: Incremental, inductive verification. In Computer Aided
Verification, page 4, 2012.

[21] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. 35(8):677–
691, 1986.

[22] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
24(3):293–318, 1992.

[23] Lawrence J. Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In Ninth Annual ACM Symposium on Theory of Computing, pages 106–112.
ACM, 1977.

[24] Yifeng Geng Christopher Mitchell and Jinyang Li. Using one-sided rdma reads to build a
fast, cpu-efficient key-value store. In USENIX Annual Technical Conference, pages 103–114,
2013.

[25] Ming-Ying Chung and Gianfranco Ciardo. Saturation now. In Quantitative Evaluation of
Systems, pages 272–281. IEEE, 2004.

[26] Ming-Ying Chung and Gianfranco Ciardo. A dynamic firing speculation to speedup dis-
tributed symbolic state-space generation. In Parallel and Distributed Processing Symposium.
IEEE, 2006.

[27] Tarek El-Ghazawi and Lauren Smith. Upc: Unified parallel c. In ACM/IEEE Conference
on Supercomputing, page 27. ACM, 2006.

[28] Karl-Filip Faxén. Wool-a work stealing library. 36(5):93–100, 2009.

[29] Karl-Filip Faxen. Efficient work stealing for fine grained parallelism. In Parallel Processing
(ICPP), pages 313–322. IEEE, 2010.

83

[30] Kathi Fisler and Moshe Y. Vardi. Bisimulation and model checking. In Correct Hardware
Design and Verification Methods, pages 338–342. Springer, 1999.

[31] Maryam Haji Ghasemi. Symbolic model checking using zero-suppressed decision diagrams,
November 2014.

[32] Yang Zhao Gianfranco Ciardo and Xiaoqing Jin. Parallel symbolic state-space exploration
is difficult, but what is the alternative? 2009.

[33] Shoham Ben-David Ilan Beer and Avner Landver. On-the-fly model checking of rctl formu-
las. In Computer Aided Verification, pages 184–194. Springer, 1998.

[34] Robert K. Brayton Jagesh V. Sanghavi, Rajeev K. Ranjan and Alberto L. Sangiovanni-
Vincentelli. High performance bdd package by exploiting memory hierarchy. In Design
Automation Conference, pages 635–640. ACM, 1996.

[35] Brian B. Larkins Jarek Nieplocha James Dinan, Sriram Krishnamoorthy and Ponnuswamy
Sadayappan. Scioto: A framework for global-view task parallelism. In Parallel Processing,
pages 586–593. IEEE, 2008.

[36] Ponnuswamy Sadayappan Sriram Krishnamoorthy James Dinan, Brian D. Larkins and Jarek
Nieplocha. Scalable work stealing. In High Performance Computing Networking, Storage
and Analysis, page 53. ACM, 2009.

[37] David R. O’hallaron Jaspal Subhlok, James M. Stichnoth and Thomas Gross. Exploit-
ing task and data parallelism on a multicomputer. In Principles and Practice of Parallel
Programming, volume 28, pages 13–22. ACM, 1993.

[38] Olivier Tardieu Jeeva Paudel and José N. Amaral. On the merits of distributed work-stealing
on selective locality-aware tasks. In Parallel Processing (ICPP), pages 100–109. IEEE, 2013.

[39] David E. Long Kenneth L. McMillan Jerry R. Burch, Edmund M. Clarke and David L. Dill.
Symbolic model checking for sequential circuit verification. 13(4):401–424, 1994.

[40] Kenneth L. McMillan David L. Dill Jerry R. Burch, Edmund M. Clarke and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. In Logic in Computer Science, pages
428–439. IEEE Computer Society, 1990.

[41] Gerald Lüttgen Jonathan Ezekiel and Gianfranco Ciardo. Parallelising symbolic state-space
generators. In Computer Aided Verification, pages 268–280. Springer, 2007.

[42] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++, volume 28. ACM, 1993.

[43] Sangho Lee Kaushik Ravichandran and Santosh Pande. Work stealing for multi-core hpc
clusters. In Parallel Processing, pages 205–217. Springer, 2011.

[44] S. Kimura and E.M. Clarke. A parallel algorithm for constructing binary decision diagrams.
In Computer Design (ICCD): VLSI in Computers and Processors, pages 220–223. IEEE,
1990.

[45] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., 1997.

84

[46] Nir Shavit Maurice Herlihy and Moran Tzafrir. Hopscotch hashing. In Distributed Comput-
ing, volume 5218, pages 350–364. Springer Berlin Heidelberg, 2008.

[47] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[48] Kim Milvang-Jensen and Alan J. Hu. Bddnow: a parallel bdd package. In Formal Methods
in Computer-Aided Design, pages 501–507. Springer, 1998.

[49] Robert W. Numrich and John Reid. Co-array fortran for parallel programming. In ACM
Sigplan Fortran Forum, volume 17, pages 1–31. ACM, 1998.

[50] Stephen Olivier and Jan Prins. Scalable dynamic load balancing using upc. In Parallel
Processing, pages 123–131. IEEE, 2008.

[51] Tamir Heyman Orna Grumberg and Assaf Schuster. A work-efficient distributed algorithm
for reachability analysis. In Computer Aided Verification, pages 54–66. Springer, 2003.

[52] Rasmus Pagh and Flemming F. Rodler. Cuckoo hashing. Journal on Algorithms, 51(2):122–
144, 2004.

[53] Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Model Checking Software,
pages 263–267. Springer, 2007.

[54] Gregory F. Pfister. An introduction to the infiniband architecture. High Performance Mass
Storage and Parallel I/O, 42:617–632, 2001.

[55] Vijay Saraswat Christopher Donawa Allan Kielstra Kemal Ebcioglu Christoph Von Praun
Philippe Charles, Christian Grothoff and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.

[56] Craig M. Chase Prakash Arunachlam and Dinos Moundanos. Distributed binary decision
diagrams for verification of large circuits. In Proceedings of Computer Design (ICCD): VLSI
in Computers and Processors, pages 365–370. IEEE, 1996.

[57] Thomas A. Henzinger Shaz Qadeer Rajeev Alur, Robert K. Brayton and Sriram K. Ra-
jamani. Partial-order reduction in symbolic state space exploration. In Computer Aided
Verification, pages 340–351. Springer, 1997.

[58] Robert K. Brayton Rajeev K. Ranjan, Jagesh V. Sanghavi and Alberto L. Sangiovanni-
Vincentelli. Binary decision diagrams on network of workstations. In Computer Design:
VLSI in Computers and Processors, pages 358–364. IEEE, 1996.

[59] Dharavath Ramesh and Alok K. Pani. An incremental load balancing approach for hetero-
geneous distributed processing systems. 5, 2014.

[60] Bradley C. Kuszmaul Charles E. Leiserson Keith H. Randall Robert D. Blumofe, Christopher
F. Joerg and Yuli Zhou. Cilk: An efficient multithreaded runtime system, volume 30. ACM,
1995.

[61] Pavan Balaji Ryan E. Grant, Mohammad J. Rashti and Ahmad Afsahi. Scalable connec-
tionless rdma over unreliable datagrams. Parallel Computing, 48:15–39, 2015.

[62] Costin Iancu Seung-Jai Min and Katherine Yelick. Hierarchical work stealing on manycore
clusters. In Partitioned Global Address Space Programming Models, 2011.

85

[63] Nagisa Ishiura Shin-ichi Minato and Shuzo Yajima. Shared binary decision diagram with
attributed edges for efficient boolean function manipulation. In Design Automation Confer-
ence, pages 52–57. IEEE, 1990.

[64] Jaco van de Pol Stefan Blom and Michael Weber. Ltsmin: Distributed and symbolic reach-
ability. In Computer Aided Verification, pages 354–359. Springer, 2010.

[65] Ryan Stutsman Mendel Rosenblum Stephen M. Rumble, Diego Ongaro and John K. Ouster-
hout. Its time for low latency. In USENIX Conference on Hot topics in Operating Systems,
page 11. USENIX Association, 2011.

[66] Jinze Liu Jan Prins James Dinan Ponnuswamy Sadayappan Stephen Olivier, Jun Huan and
Chau-Wen Tseng. Uts: An unbalanced tree search benchmark. In Languages and Compilers
for Parallel Computing, pages 235–250. Springer, 2007.

[67] B. Cassell T. Szepesi, B. Wong and T. Brecht. Designing a low-latency cuckoo hash table
for write-intensive workloads using rdma. In First International Workshop on Rack-scale,
2014.

[68] Orna Grumberg Tamir Heyman, Danny Geist and Assaf Schuster. Achieving scalability in
parallel reachability analysis of very large circuits. In Computer Aided Verification, pages
20–35. Springer, 2000.

[69] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[70] Alfons Laarman Tom van Dijk and Jaco van de Pol. Multi-core bdd operations for symbolic
reachability. pages 127–143, 2012.

[71] Arthur Chargueraud Umut A. Acar and Mike Rainey. Scheduling parallel programs by work
stealing with private deques. In PPOPP, volume 48, pages 219–228. ACM, 2013.

[72] Jaco van de Pol. MaDriD Multi-Core Decision Diagrams. 2010.

[73] Tom van Dijk. The parallelization of binary decision diagram operations for model checking.
2012.

[74] Tom van Dijk and Jaco van de Pol. Lace: non-blocking split deque for work-stealing. In
Euro-Par 2014: Parallel Processing Workshops, pages 206–217. Springer, 2014.

[75] Tom van Dijk and Jaco van de Pol. Sylvan: Multi-core decision diagrams. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 677–691. Springer, 2015.

[76] Georgios Varisteas and Mats Brorsson. Palirria: Accurate on-line parallelism estimation
for adaptive work-stealing. In Programming Models and Applications on Multicores and
Manycores, page 120. ACM, 2014.

[77] David B. Wagner and Bradley G. Calder. Leapfrogging: a portable technique for imple-
menting efficient futures. In PPOPP., volume 28, pages 208–217. ACM, 1993.

[78] Nathan Doss William Gropp, Ewing Lusk and Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Parallel Computing,
22(6):789–828, 1996.

86

[79] E. Stabler Y. Parasuram and S.K. Chin. Parallel implementation of bdd algorithms using a
distributed shared memory. In 27th Hawaii International Conference on System Sciences,
Volume 1: Architecture, pages 16–25. IEEE, 1994.

[80] Bwolen Yang and David R. O’Hallaron. Parallel breadth-first bdd construction. In PPOPP,
volume 32, pages 145–156. ACM, 1997.

[81] Qi Zuo Yizhuo Wang, Weixing Ji and Feng Shi. A hierarchical work-stealing framework for
multi-core clusters. In Parallel and Distributed Computing, Applications and Technologies
(PDCAT), pages 350–355, Dec 2012.

87

	Introduction
	Research Goals
	Methods and Contributions
	Data Distribution
	Load-Balancing Maintenance
	Efficient Communication

	Structure

	Preliminaries on Partitioned Global Address Space Programming
	Introduction
	The Infiniband Architecture
	Remote Direct Memory Access
	RDMA Operations

	Parallel Programming Models
	PGAS Implementations
	Memory Layout
	Memory Operations
	Challenges when using UPC

	Performance of One-Sided RDMA

	Designing a Distributed Hash Table for Shared Memory
	Introduction
	Preliminaries
	Notation
	Hashing Strategies
	Conclusion

	Theoretical Expectations
	Research Expectations

	Design and Implementation
	Memory Layout
	Querying for Chunks
	Design Considerations of find-or-put

	Experimental Evaluation
	Throughput of find-or-put
	Latency of find-or-put
	Suggestions for Performance Improvements

	Conclusions

	Hierarchical Lock-Less Private Deque Work Stealing
	Introduction
	Preliminaries
	Split Deques
	Private Deques
	Selecting Victims
	Related Work
	Motivation and Contribution

	Design and Implementation
	Memory Layout
	The Stealing Procedure
	Algorithmic Design Considerations

	Experimental Evaluation
	Benchmarks
	Experimental Results
	Suggestions for Performance Improvements

	Conclusions

	Designing Distributed Binary Decision Diagram Operations
	Introduction
	Challenges and Contributions
	Preliminaries
	Reduced Ordered Binary Decision Diagrams
	Defining ITE and RelProd
	Symbolic Reachability Analysis

	Design and Implementation
	Memory Layout
	Designing a Shared Memoization Cache
	Design Considerations of ITE
	Design Considerations of RelProd

	Experimental Evaluation
	Distributed Scalability
	Parallel Scalability
	Scalability with Private Deque Work Stealing
	Suggestions for Performance Improvements

	Conclusion

	Conclusion
	Efficient Distributed Symbolic Reachability
	Data Distribution
	Load-balancing Maintenance
	Communication Overhead

	Scalability of Distributed Symbolic Reachability
	Future Work

