
University of Twente

Master Thesis

Low latency asynchronous database synchronization
and data transformation using the replication log.

Author:
Vincent van Donselaar
vincent@van-donselaar.nl

Supervisors:
Dr. Ir. Maurice van Keulen

Dr. Ir. Djoerd Hiemstra
Ruben Heerdink MSc

August 14, 2015
Non-Confidential

Abstract

Analytics firm Distimo offers a web based product that allows mobile app developers to track the perfor-

mance of their apps across all major app stores. The Distimo backend system uses web scraping techniques

to retrieve the market data which is stored in the backend master database: the data warehouse (DWH).

A batch-oriented program periodically synchronizes relevant data to the frontend database that feeds the

customer-facing web interface.

The synchronization program poses limitations due to its batch-oriented design. The relevant metadata

that must be calculated before and after each batch results in overhead and increased latency.

The goal of this research is to streamline the synchronization process by moving to a continuous,

replication-like solution, combined with principles seen in the field of data warehousing. The binary trans-

action log of the master database is used to feed the synchronization program that is also responsible for

implicit data transformations like aggregation and metadata generation. In contrast to traditional homo-

geneous database replication, this design allows synchronization across heterogeneous database schemas.

The prototype demonstrates that a composition of replication and data warehousing techniques can

offer an adequate solution for robust and low latency data synchronization software.

i

Preface

This thesis is the result of my final project for the Computer Science master programme at the University

of Twente. It took me quite some time to finish this project, perhaps partially because I accepted the offer

of full-time employment at Distimo immediately after an internship of six months. Still being very satisfied

with that decision, it turned out to be quite a challenge to finish an academic study while working for more

than 40 hours a week with great contentment. My daily work was at times highly correlated with the topic

of my thesis. For me it was never a question whether I was going to finish my research or not. The planning

on the other hand certainly was a question, up until now.

My time at Distimo was a great experience and for me it was the definitive confirmation of my interest in

computer science and software engineering. I do not regret my choice starting the natural sciences oriented

Advanced Technology bachelor. But in hindsight I would have picked a CS bachelor instead. I never took the

chance of following bachelor courses like Compiler Construction and Functional Programming. Fortunately

I am able to look back at great highlights like Djoerd’s BigData course including a trip to SARA, and every

single database related course Maurice taught me. Not least I’m grateful for having both gentlemen as

supervisors for this final project. Their dedication and patience was encouraging and pleasant.

At the time of writing the final words of this thesis I have moved on to a next step in my professional

career outside of Distimo. Times change and they often do that in unexpected ways. Hopefully the mem-

ories of a great team of colleagues will not. My gratitude goes out to Ruben and Tom for supporting me in

my research and for offering me a position as a professional software engineer. It has been a true pleasure

working together.

Vincent van Donselaar

iii

Acronyms

ACID Atomicity, Consistency, Isolation and Durability. 6, 24, 26, 29, 33, 34

API Application Programming Interface. 3, 5, 22, 27, 39

binlog Binary (transaction) log. 38

BLOB Binary Large Object. 39, 41

CDC change data capturing. 17, 19–22, 29, 30, 33

DDL Data Definition Language. 41, 43, 44

DML Data Manipulation Language. 37

DRY Don’t repeat yourself. 6

DWH data warehouse. i, 1, 3–6, 9, 11, 14–17, 25, 33, 38, 44

ETL Extract, Transform and Load. 6, 8, 11, 16, 22, 33

GTID Global Transaction Identifier. 41

JDBC Java Database Connectivity. 23, 38–40

MITM Man-in-the-middle. 3

ORM Object-Relational Mapping. 13, 24–26

RDBMS Relational Database Management System. 18, 20, 26

UUID Universally Unique Identifier. 41, 42

WAL Write-ahead log. 36

ZLE Zero Latency Enterprise. 17

v

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Distimo: the app store analytics company . 1

1.3 Data processing challenges . 1

1.4 Heterogeneous database synchronization . 2

1.5 Research goals . 2

1.6 Design validation . 3

1.7 Contents . 3

2 Data synchronization in depth 5

2.1 Characteristics of a multi-purpose database cluster . 5

2.2 The structure of the data types in depth . 5

2.3 Synchronization across heterogeneous structures . 5

2.4 The architecture of the ‘sync state’ synchronization . 5

2.5 Bottlenecks of sync state based synchronization . 6

2.6 Requirements . 6

2.6.1 Low latency by streaming synchronization . 6

2.6.2 Full recoverability from the source database . 6

2.6.3 Minimized I/O operations . 6

2.6.4 Event detection . 6

2.6.5 Consolidation of asynchronous post-processing 6

2.6.6 Relaxed ACID transactions . 7

2.6.7 Summary . 7

3 Literature overview 9

3.1 Introduction . 9

3.2 Data warehousing . 9

3.3 Zero-latency Data Warehousing . 9

3.4 Change data capture . 10

3.5 Change data capture . 11

3.6 Hybrid sharding and replication . 11

3.7 Literature reflection . 12

vii

CONTENTS Chapter 0

4 Introducing the log sync framework 15

4.1 Introduction of the log sync framework design . 15

4.2 Process description . 16

4.2.1 Part I: The log scanner (‘Extract’ steps) . 16

4.2.2 Part II: Event programming . 17

4.2.3 Part III: The Processor (‘Transform’ and ‘Load’ steps) 18

4.2.4 Recap: A summary of the log sync process . 19

4.3 Limitations and system boundaries . 19

4.3.1 Availability constraints . 19

4.3.2 Bootstrapping . 20

4.3.3 Log limitations . 20

4.3.4 Future compatibility . 20

4.4 Conclusions . 21

5 Design analysis 23

5.1 Compliance with business requirements . 23

5.1.1 Primary requirements . 23

5.1.2 Functional requirements . 24

5.2 Performance analysis . 25

5.2.1 The cost of change data capturing based on sync states 25

5.2.2 Time consumption of CDC using metadata . 26

5.2.3 Efficiency gained by log scanning . 26

5.3 Conclusion . 26

6 Conclusions 29

6.1 Achievements . 29

6.2 Limitations . 30

6.3 Discussion and Future work . 30

6.3.1 ACID compliance and limitations of the MySQL log format 30

6.3.2 Pub-sub instead of log scanning . 30

A The Distimo data infrastructure 31

B The MySQL binary log 33

B.1 MySQL Replication . 33

B.2 MySQL binary log APIs . 33

B.3 The binary log format . 34

B.4 Data types in MySQL, the binary log and Java . 35

B.5 MySQL compatibility . 38

B.5.1 Changes and new features in MySQL 5.6 . 38

viii

CONTENTS Chapter 0

C Log Synchronization design overview 41
C.1 Design limitations . 41

C.1.1 Handling DDL query events . 41

D Performance statistics by Munin 45

Bibliography 47

ix

Chapter 1

Introduction

1.1 Problem statement

Mobile app analytics company Distimo is an organization that is heavily driven by large sets of relational

data across multiple database systems. Keeping these systems in sync is a challenging task which demands

continuous improvement. The next step is to advance the synchronization between structurally different

databases in a low latency manner.

1.2 Distimo: the app store analytics company

Distimo was founded in 2009 with the ambition to provide transparency in the mobile app market. In its

first years of existence the company offered custom reports with market insights on metrics like the total

number of apps per platform and the estimated number of downloads and revenue for popular applications.

A web application was created over the years to allow customers to do their own analysis based on the

data gathered in the Distimo backend data warehouse (DWH).

With support for the Apple App Store, Google Play, Windows Phone, BlackBerry and Nokia, the product

is unique in a sense that it allows a cross market overview of mobile app performance. The premium

product AppIQ allows app developers to keep an eye on the competition by estimating downloads and

revenue of nearly every popular app in the market. Apart from app developers ranging from individuals to

large software companies, a vast number of investment firms likes to stay informed on the fortunes of the

mobile app ecosystem. This made Distimo a major player in the fast growing app market. The definitive

success was finally proven when Distimo got successfully acquired by competitor App Annie in May 2014

[Perez, 2014].

1.3 Data processing challenges

The ever increasing data volume continuously raises the bar for efficient data processing solutions. A well

known and notorious problem commonly encountered with growing data sets are the limits of vertical scal-

ing: buying faster hardware is a medium to short term solution because there are limits to what one single

server can handle. Once this barrier has passed by introducing the inevitable ‘horizontal’ measures like

1

1.4. HETEROGENEOUS DATABASE SYNCHRONIZATION Chapter 1

sharding and replication, a new domain of challenges unfolds. Data has to be kept consistent. Querying

should still be fairly quick and there must be an adequate disaster recovery plan. For a data driven com-

pany like Distimo, this scenario happened in an early phase. It doesn’t mean all problems have been settled

already. The development of a data processing pipeline is an evolutionary process and the target of this

research is to streamline the data flow by moving from a batch oriented design to a continuous replication-

like approach. Appendix A describes the nature of Distimo’s data and the setup of the database and data

flow within the company. The new approach will eventually turn out to be an improvement in matter of

latency across the database cluster, while preserving the great goods like consistency, easy maintenance,

and existing business logic. Chapter 2 will identify the general problems related to the typical setup and

scenarios for an organization like Distimo.

1.4 Heterogeneous database synchronization

The backend and frontend databases have to be kept in sync. Throughout the day new information gets

added to the DWH by the scrapers, which in most cases must find its way to the frontend as well. As

described in appendix A, both databases can be quite different. This means that regular replication is not a

viable option to keep the systems in sync. Because of that, a dedicated synchronization process takes care

of propagating the relevant changes to the frontend database on regular intervals. This process contains

the domain logic that is required to guarantee this consistency across the databases. It can be seen as a

mapping that projects the data from the backend database to the frontend database. This mapping involves

transformation, aggregation and metadata generation and is therefore certainly not a trivial view on the

DWH. The synchronizatoin program runs various Extract, Transform and Load (ETL) steps to fully update the

frontend with the latest state dictated by the state of the DWH.

The primary focus of this research is to improve this very specific part of the infrastructure while keeping

in place the complicated business logic that defines the mapping from the DWH to the frontend database.

1.5 Research goals

The synchronization of the internal database systems is a vital process for a data-driven company. Data

latency plays an important role because customers make their decisions based on this data. The aim of this

research is to streamline and improve the recurring ETL steps involved with typical database synchronization

by shifting from a batch oriented approach[Inmon, 2005] to a low-latency, continuous data integration

solution. Key factors of design are:

• Low latency in order to deliver up to date information to the customer. A Streaming setup is preferred

over batch processing to cancel the costly overhead introduced by the setup of the batch process.

• Maintaining Atomicity, Consistency, Isolation and Durability (ACID) properties. Replication delay is

allowed however. This means that replicas of the database are allowed to ‘run behind’ in time in the

order of seconds while they are processing the already committed transactions on the master.

• Re-use of existing business rules and logic following the Don’t repeat yourself (DRY) principle.

2

CHAPTER 1. INTRODUCTION Chapter 1

• Easy maintenance for operations team: a self healing system that can easily be restarted to continue

where it had stopped, just like normal replication.

Apart from these architectural design goals, there are also functional requirements that should be met.

These requirements are not a fundamental part of the design although they are likely to be applicable

to most situations. Section 2.6 elaborates on the Distimo-specific considerations of the following generic

functional requirements:

• Filtering: Selective data replication based on custom business logic.

• The possibility to do data transformations: One single source record could result in multiple target

records and vice versa.

• Metadata processing, i.e. index and cache generation: the process produces metadata on the fly

which is cheaper than using a separate process to maintain caches and indices.

1.6 Design validation

The design and prototype of the system will be assessed for production-grade quality and fitness. This

assessment will be done by running the prototype in parallel with the existing synchronization code while

writing to a separate database table. The contents of this table are expected to be the same as the pro-

duction table. Each of the goals from the previous section will be evaluated to see if the criteria were met.

1.7 Contents

The next chapter gives a detailed insight in the current situation at Distimo’s infrastructure and database

setup. Current and future bottlenecks will be highlighted and requirements for an improved synchronization

system will take shape. Driven by this agenda, chapter 3 offers an overview of relevant literature on useful

approaches and applicable architectures. Chapter 4 introduces a prototype synchronization framework

addressing the intended goals. Verification of the proclaimed features and a performance improvement

analysis is addressed in chapter 5, on which chapter 6 draws both conclusions and suggestions for further

investigations and improvements.

3

Chapter 2

Data synchronization in depth

2.1 Characteristics of a multi-purpose database cluster

Having two databases with different schemas offers the advantage of being able to optimize the database

for a specific purpose. This ideally results in a backend database that stores data efficiently and allows data

to be appended easily. Other databases are more likely to be optimized for long running queries or real

time user interfaces. The middleware that is responsible for the synchronization between the databases is

a very important part of such a typical setup: a failure of the middleware results in the target database(s)

being out-of-sync with the source database. Apart from the availability requirements, the middleware is

also the place where data transformations usually take place. Instead of just copying data from A to B,

these middleware programs become complex ETL tools.

This chapter walks through the principles of data synchronization between heterogeneous databases.

The next subsection considers the implications of fitting object entities to a relational database while being

able to address issues like merging with existing data and the prevention of deadlocks. Section 2.3 focuses

on the heterogeneity and how (and when) to transform data while synchronizing. Following that, a list of

limitations of the ‘sync state’ sync will be enumerated on which a list of requirements for improvement will

follow in section 2.6.

2.2 The structure of the data types in depth

Confidential

2.3 Synchronization across heterogeneous structures

Confidential

2.4 The architecture of the ‘sync state’ synchronization

Confidential

5

2.5. BOTTLENECKS OF SYNC STATE BASED SYNCHRONIZATION Chapter 2

2.5 Bottlenecks of sync state based synchronization

Confidential

2.6 Requirements

The analysis of the baseline ‘sync state’ situation and the effort to describe the individual bottlenecks of

the design have resulted in the functional requirements of the prototype as already described in section 1.5.

This section adds some background to these requirements that will play a role in the design of the prototype.

2.6.1 Low latency by streaming synchronization

An evident, and presumably the most important requirement, is the desire to stream the changes to the

target as soon they are recorded in the source DWH rather than polling for changes. Polling will always

introduce overhead and delay, while a continuous stream will decrease the latency when implemented

correctly.

2.6.2 Full recoverability from the source database

The new sync framework must be able to reconstruct a consistent target state regardless of the (possibly

faulty) changes that were applied earlier. Example situations are cases of a software bug, an outage, or a

manual intervention where the synchronization has to be rerun. In other words, the sync should still have

one modus operandi in which it can idempotently reconstruct arbitrary parts of the frontend database. This

immediately contradicts the previous requirement that is solely based on changes from a stream. Therefore

it will be likely to keep the sync state table in place in case the streaming solution has failed.

2.6.3 Minimized I/O operations

A heavily used source DWH may easily processes several thousand queries per second. It is important to

keep the DWH available as much as possible, without being counteracted by other transactions keeping

locks on tables or parts of tables. This must be an implicit design requirement.

2.6.4 Event detection

Event detection is a special case of a transformation. An event can be described as a transformation that

needs the context of a record that is not part of the transaction. A typical example is when the price of

a product changes. In order to detect the price change, yesterday’s price has to be known in order to

compare that price with the product’s price of today. Transformations that need such a sliding window

with information are denoted as ‘Events’ and need to be supported.

2.6.5 Consolidation of asynchronous post-processing

All asynchronous post-processing must happen within the synchronization process. This is merely a result

of the requirement to deliver low latency data.

6

CHAPTER 2. DATA SYNCHRONIZATION IN DEPTH Chapter 2

2.6.6 Relaxed ACID transactions

All data is originally inserted in the source database by atomic transactions at a sufficiently strict isolation

level to guarantee consistency. Such a transaction is, by definition, a consistent delta within scope of the

source database. This same logic delta must be applied to the target database eventually, but it must

conform to a different schema. It is not possible to implement a two phase commit across both databases

because of performance reasons. Nonetheless the transactions must be replicated to the target database

correctly. This should be done by adopting a relaxed form of ACID transactions that is similar to normal

(MySQL) replication: the transactions are guaranteed to be committed to the target, albeit by adopting an

‘eventual consistent’ guarantee.

T1 T2 T3

T1’ T2’ T3’

Time

DWH

Frontend

Figure 2.1: Transactions applied on the source DWH must eventually be committed to the frontend target

as well.

2.6.7 Summary

The synchronization of sets of object graphs across structurally different databases often results in dead-

locks when not properly optimized. Deadlocks can be avoided by reordering entities in-memory. The in-

memory pre-processing of the data allows easy event detection and post-processing of data that is being

synchronized. These extra data manipulations are likely to come with the cost of sacrificing at least one of

the ACID properties.

7

Chapter 3

Literature overview

3.1 Introduction

The aim of this chapter is to find answers and adequate techniques required to realize the requirements

stated in section 2.6. Literature considered relevant is expected to be found in the field of data warehousing

which aims at synchronization and refreshing of data warehouse cubes. The traditional data warehouse

paradigm differs a bit from the situation at Distimo because the Distimo DWH is the source of the ETL

process rather than the target. This is primarily a naming issue; one should consider the frontend database

to be a data warehouse as well that uses an ETL process (i.e. the synchronization program) to refresh its

data.

3.2 Data warehousing

Data warehousing techniques have become crucial in enterprise decision making. The architecture of

Distimo’s infrastructure shows similarities with that of a traditional enterprise data warehouse, although

aspects differ on certain fields. At Distimo, the ‘data warehouse’ is seen as the database containing the

original, raw data as it was harvested by the data jobs. The aggregation step (in DWH terminology known

as ‘building the cube’) stores its data in the frontend database. The web application known as Distimo App

Analytics acts upon this aggregated data, directly serving customers in their data demands. Such a live

queryable data warehouse exposed to end-users is often denominated as a ‘data mart’ [Inmon, 2005]. A

data mart is a subset of a full-blown data warehouse, optimized for a specific company department or in

the case of Distimo, for a specific customer.

3.3 Zero-latency Data Warehousing

In the beginning of the data warehousing era the primary concern was coping with - according to today’s

standards - limited resources. Data warehouse cubes in the order of terabytes were rebuilt in batches

once per week or even once per month [Chaudhuri and Dayal, 1997]. As a consequence, queries on such

DWH were not real-time. Modern business is however more likely to be interested in up-to-the-minute

information and the technique of today makes it possible. The architecture presented by Bruckner et al.

9

3.4. CHANGE DATA CAPTURE Chapter 3

[2002] is a proposition to accomplish continuous data integration using Java based middleware. Key in

their work is real-time acquirement of data from various sources, the possibility to directly act and make

decisions while processing, and maintaining high availability. More elaborate research by Nguyen and

Tjoa [2006] proposes the concepts of a Zero-latency data warehouse (ZLDWH), presumably inspired by

the Zero Latency Enterprise (ZLE) [Schulte, 1998]. Different stages of DWH evolutions are highlighted:

traditional warehouses used for reporting (put together by pre defined queries) evolved in sources for

analysis. An increase in analytical model construction resulted in the DWH becoming a source for prediction.

Continuous updates of the DWH made it possible to react on operational events, which could be used

to adapt organizations. The final state is depicted as ‘Automate and Control’ which covers a continuous

feedback loop of performance metrics.

3.4 Change data capture

Incremental data synchronization includes a fundamental step known as change data capturing (CDC). This

step entails determining the delta between the state of the source and the target data set. This delta is used

to update the target, which results in both sites being identical. In the case of two-way synchronization this

can be a very hard task, which could result in conflicts when records on different nodes become inconsistent.

In situations with one-way synchronization this problem diminishes since the state of the master is always

leading.

Change data capture can be achieved using several techniques. Globally, the following options are

worth considering.

Metadata storage.
Metadata storage involves storing additional information describing the current states of the data to

be synchronized. Several solutions are possible. In case of one-way synchronization, which is often

the case in DWH techniques, annotating data with a timestamp is often sufficient. Complex synchro-

nization involving multiple sites quickly requires dedicated storage solutions for these metadata.

Besides a timestamp indicating last synchronization, version numbering and so called ‘tomb stones’

indicate which data was changed or deleted. Regardless of the metadata format chosen there will

always be some overhead in both maintaining and querying this metadata. A number of aspects is

highlighted and pointed out by Chen et al. [2010].

Triggers.
Database triggers offer a variety of possibilities to track changes of a database. A common practice

in data warehousing is to automatically update aggregation tables upon an update or insert on the

raw data. The penalty for doing this is a delay in write operations. Using triggering and scheduling

algorithms, this effect can partially be circumvented [Shi, Bao, Leng, and Yu, 2009; Song, Bao, and

Shi, 2010].

Event programming.
Instead of capturing changes after the events of interest happened, the CDC category known as

event driven data capture is based on a different approach. Often a database proxy or a framework

10

CHAPTER 3. LITERATURE OVERVIEW Chapter 3

hook is used to generate events. Eccles et al. [2010] claim this is the only approach capable of truly

capturing real-time data changes. Event programming became popular after the principle was for-

mally described by Fowler [2005] on his weblog under the title of Event Sourcing. Fowler describes

the principle of identifying and tracking of changes of an application’s state. The application devel-

oper essentially creates a transactional log, which correlates with the log scanning technique that

assumes an already existing log.

Log scanning.
Log scanning involves analysis of database transaction logs. These logs are practically the first

derivative of the state of the database over time. The framework proposed by Shi et al. [2008]

exploits this property for doing change data capturing. The advantages of log scanning are very

promising according to this research. Transaction logs are a very reliable source of information,

since they unambiguously represent what happened to the state of the database. Non-deterministic

queries are annotated in such a way that they become deterministic [Cecchet et al., 2008]; usually

by storing the final result rather than the original query.

3.5 Change data capture

Database replication is a technique which is often applied to improve availability and performance of a

Relational Database Management System (RDBMS), but is primarily meant to act as a fail-over solution.

The term ‘replication’ involves homogeneous one-way synchronization most of the time, which is relatively

easy to set up and maintain. Most popular RDBMSs support this type of replication. More complex cases of

replication, like multi-master replication are less common and are relatively complex because the consis-

tency between replica’s is harder to guarantee [Wong et al., 2009]. Another special case of replication is

heterogeneous replication, which involves data stores of different types or brands. The idea of heteroge-

neous replication is not new [Wang and Chiao, 1994]. Connecting different data stores often involves data

transformation and conversion. A combination of both worlds is worth considering: a one-way replication

between two MySQL databases having a heterogeneous structure.

3.6 Hybrid sharding and replication

A common practice in the Big Data domain is sharding across multiple commodity type servers [Ghemawat

et al., 2003]. Shards are often made redundant to prevent data loss and to balance the load. This design

does not appear to be very well suited for ad-hoc querying because of the lack of data locality and the need

to sort the data while employing MapReduce for data processing [Dean and Ghemawat, 2008]. Although

projects like Apache Spark [Zaharia et al., 2010] offer impressive results in the field of interactive querying

of large data sets, there is still a long way to go before real-time applications can be built on top of it.

Meanwhile solutions offering a hybrid approach of both sharding and replication start to look promising

[Dhamane et al., 2014], although being often heavily inspired and built upon existing distributed database

technology like MySQL Cluster or C-JDBC [Cecchet et al., 2008].

11

3.7. LITERATURE REFLECTION Chapter 3

3.7 Literature reflection

The general consensus of the literature is that a refresh interval between thirty minutes and one day using

a batched synchronization cannot be considered a low-latency approach [Bruckner et al., 2002; Nguyen and

Tjoa, 2006]. Even a drastic increase in the synchronization frequency will not result in a system that can be

considered real-time. It only increases the amount of overhead involved with polling for change sets. The

CDC method on which the current solution is based, is metadata storage (i.e. the so called ‘sync states’). Of

the types of CDC addressed in previous section, this one is least suited for low-latency applications. Based

on findings in this chapter, table 3.1 summarizes the pros and cons of each CDC type. Using table 3.1 as a

guidance to determine effective CDC mechanisms, the following conclusions can be drawn:

Pro Con

Metadata storage Robust.

Allows full state recovery.

Inappropriate for zero-latency application. Intro-

duces overhead (database tables).

Triggers Abstraction at database

level.

Real-time.

Inflexible programming environment.

Inefficient due to excessive locking.

Vendor specificity undermines robustness.

Recursive triggers are hard to predict.

Event programming Very flexible. Increases programmatic coupling.

Log scanning No impact on database

I/O.

Both real-time and his-

torical data processing.

Vendor specific.

Format is prone to structural changes over time.

Replication Mature and vendor sup-

ported.

Only supports homogeneous data structures.

Table 3.1: Pros and cons of different CDC approaches

• The CDCmechanism that is based onmetadata storage (‘sync states’) is an imperative way of tracking

changes similar to the situation described in section 2.4. Being thoroughly tested, a synchronization

job that acts upon sync states operates very reliable, but usually quite slow. The metadata storage is

the most reliable among the CDC methods mentioned: it offers the possibility to rebuild a consistent

state between the databases at any time. Other CDC methods (except log scanning) only act upon

live changes. Reliable recovery from inconsistencies is important, which makes metadata storage

indispensable.

• Database triggers are far from ideal because of the limitations of the environment. Besides the

confined programming abilities, the use of database triggers will more likely introduce more locking

issues than it will ultimately be able to solve. The MySQL documentation states that “If you lock a

12

CHAPTER 3. LITERATURE OVERVIEW Chapter 3

table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly1”. Triggers

acting over multiple database servers are also not worth considering.

• Event programming looks promising, although it increases programmatic coupling, contradicting sep-

aration of concerns of the individual web scrapers. The event processing must not introduce any

additional delay. It is more likely to encapsulate other CDC methods, extending them with additional

logic. This spares the scraping jobs from additional responsibilities while keeping flexibility.

• Log scanning offers both online (real-time) and offline (historical) analysis of changed data. This

technique is often incorporated for replication (see next section). The CDC on the log file can be

executed using a separated and isolated thread, running at its own pace. Log scanning is however

a bit more complex than other solutions. The possibilities are limited by the vendor specific format

of the log file, which usually contain the bare minimum of data required for crash recovery and/or

replication. Appendix B.5 offers an overview of important aspects of the MySQL transaction log. Like

the metadata storage method, log scanning allows historical change capturing, but only as long the

log files are maintained. This makes log scanning a very versatile approach as long the log files aren’t

deleted after a certain period.

• Database replication embraces the principle of a transaction log that tracks changes on the master

database replica over time. The log will eventually be shipped to one or more replication slaves.

Shipment of the log might happen in chunks or by a continuous stream of data and is eventually

replayed on the replicas. Appendix B.1 describes the internal operation a replication log specific for

MySQL. Other replication-capable RDBMSs have implemented log shipping in different ways, but the

principle of replication is always more or less the same. A major restriction that can be identified

across all popular databases is the lack of transformation capabilities and expressiveness. Either all

data will be replicated or nothing at all. The flexibility of custom business logic that would otherwise

be available in an application layer is absent.

Putting together these conclusions, there is no silver bullet among the evaluated CDC methods. The

metadata storage method stands out in particular because it is the only mechanism that is able to fully

recover an inconsistent state, because the metadata is always available regardless of the age of the data.

Real-time approaches do not allow historical state recovery, except for the log scanning method which is

limited by the retention of the log. The metadata storage is however exceptionally unsuitable for near

real-time applications. In order to benefit from both robustness and low latency, a hybrid solution would be

appropriate. This solution aims to combine techniques to exploit advantages of various techniques, while

minimizing the limitations.

1http://dev.mysql.com/doc/refman/5.5/en/lock-tables-and-triggers.html

13

http://dev.mysql.com/doc/refman/5.5/en/lock-tables-and-triggers.html

Chapter 4

Introducing the log sync framework

4.1 Introduction of the log sync framework design

The log based synchronization framework presented here is a design that leveragesmultiple CDC techniques

that were mentioned in the previous chapter. The design is a hybrid of metadata storage and a replication

technique based on log scanning and event programming. The reason for choosing a hybrid approach is

because it is not possible to adopt one single method that fulfills all requirements. The metadata oriented

approach is the only approach that is able to recover a consistent state reliably. This capability comes

with the price of increased latency and overhead. Continuous log scanning overcomes this limitation and

allows the framework to operate like an asynchronous database replicator. Unlike traditional replication,

the principles of event programming allows selective synchronization and immediate transformations of

the data. This is usually not possible with normal replication which is limited to homogeneous database

structures.

Metadata querier

Processor

Event interpreter

Source DB

Target DB

Log

Figure 4.1: A hybrid design both supporting metadata synchronization and log scanning + event program-

ming.

Figure 4.1 displays the two data streams that are involved with a hybrid solution. This synchronization

framework has two modes of operation: one continuous synchronization stream originating from the log,

and one ad-hoc state oriented synchronization. These operations will never run within the same runtime

environment but it is possible to run multiple concurrent instances of a different kind. During normal daily

operation only the log scanner part is likely to operate continuously. The metadata synchronization acts

15

4.2. PROCESS DESCRIPTION Chapter 4

solely as a backup for situations where the log is not able to offer conclusive information to the sync

framework. This is likely to happen in situations of manual intervention: schema changes, data correction,

and disaster recovery are typical examples.

The processor component contains all generic business logic that is involved with the synchronization.

It must be capable of processing data from both CDC inputs and it should therefore expose a well designed

interface. The actual benefit of this component is to have one single point containing all business logic

rather than having multiple independent data streams.

4.2 Process description

This section describes the log scanning data flow from fig. 4.1 in more detail. The whole process from source

to target can be seen as a sequence of ETL steps. All of these steps can be explained as a serial process:

there is no intermediate storage involved except for buffering. Note however that change sets acquired

from the log are processed on a per-transaction basis, which could contain multiple records at once. The

end of this section will summarize the high level principle.

DWH

1010
0101
0100

Log reader Event
interpreter

Data Type
Checking

BEGIN
WRITE download

WRITE temp
WRITE download

COMMIT

Queue

Figure 4.2: Steps 1 - 4: Log scanning, event checking and queuing of a transaction containing two write

operations of ‘download’ entities and one irrelevant write operation to a temporary table.

4.2.1 Part I: The log scanner (‘Extract’ steps)

Step 1: Log reading
The begin of the process is shown on the left side of fig. 4.2. The synchronization job starts by

specifying a log identifier and a position within that log. The server will start to transfer the log to

the client where it will be processed by the next step.

There are various ways to ship a database log. MySQL allows a slave process to connect with the

master database server. Such a connection can be established over MySQL’s regular network interface

that is also used for regular clients. Reading the log file directly from disk is also an option, although

this is probably more error prone because the log files can be stored at different locations. There

are various Application Programming Interface (API)s available for reading a MySQL binary log. An

overview is given in appendix B.2. Other database systems that were not considered offer similar

solutions.

Step 2: Log event interpretation.
The log contains a chain of events. Each event describes what happened on the master at a certain

time in history. An overview of relevant types of events is given in appendix B.3 and is specific to

16

CHAPTER 4. INTRODUCING THE LOG SYNC FRAMEWORK Chapter 4

MySQL. The most important events are those describing changes of records. Each change data event

contains the state of a particular record before and after the change. The log sync interprets these

events and constructs a serialized object in runtime memory containing all relevant information

regarding the change. This includes the time of the event, the name of the database schema and

table, and the before/after states of the record. The change data events within one transaction are

preceded by a transaction BEGIN event and followed by a transaction COMMIT event. All events of

one transaction are grouped together as such.

Step 3: Data type checking.
The validation step checks whether the data in the serialized object from the previous step complies

with the expected data structure of the database schema. This is done to make sure that the map-

ping is correct in order to prevent unexpected behavior to happen. After verifying mutual consistency

between event and database structure, this step converts the database’s data types to the applica-

tion’s native data types, e.g. VARCHARs to strings, INTs to int or long, etc. Appendix B.4 describes
this process in detail for the case of MySQL in combination with Java Database Connectivity (JDBC).

Step 4: Transaction identification & queuing.
The type checked events from the previous step are grouped per transaction. This is done to identify

logical units of work to process. The scope of a transaction is an obvious choice because it represents

one atomic and consistent delta. For each BEGIN event, a new list is created and filled with data

change events that follow. As soon the COMMIT message occurs, the list is published to an internal
queue. This queue acts as the primary buffer of the system. After publishing the list of events to

the queue, the log scanner continues to interpret the next transaction from the log. The scanner

only blocks if the queue is saturated or when the log’s tail is reached. Scanning resumes as soon the

queue accepts new input, or when a new event is written to the log. The use of an internal queue

decouples the log scanner from the rest of the process to prevent it from blocking on log I/O.

4.2.2 Part II: Event programming

Queue

Filter

temp
download
download

Hydrate

download
download

Transform

download
downloadFront.DWH

Figure 4.3: Steps 5 - 7: Filtering, Hydrating and Resolving

Step 5: Dequeuing & Filtering.
The processing tier continuously polls the internal queue for transactions to process, serialized as lists

of database changes. Each transaction that was recorded in the log is analyzed for changes, for every

single record that was inserted, deleted or updated. Not all of them are relevant for synchronization.

A simple filter matches events solely on database and table name. This reduces the load on the

17

4.2. PROCESS DESCRIPTION Chapter 4

process in the next two steps, which are certainly the most resource intensive. This step shifts the

process from typical replication to the principles of event programming.

Step 6: Resolving to original source entities & Hydration.
This step is responsible for reconstruction of the original entities as Object-Relational Mapping (ORM)

objects in runtime like they were originally inserted on the master. Based on the table name included

in each event, the corresponding schema can be determined. By using the ORM the other way

around (i.e. bottom-up), a runtime object can be filled with data from the database event. Filling an

empty ORM object with data is known as ‘hydrating’ the object. In some cases the event does not

contain enough information to hydrate all the object fields that are mandatory. In such cases an extra

SELECT query will be necessary. The primary key is always available from the event, so the query

will likely be efficient. Nonetheless this violates the ACID principles which makes this an edge-case

that developers want to avoid. Section 4.3.3 will describe this limitation in more detail.

4.2.3 Part III: The Processor (‘Transform’ and ‘Load’ steps)

Step 7: Transforming to target entities.
The target database uses its own ORM definitions specific to its domainmodel. The ORM entities from

the source database will be transformed to their respective target entities. The source and target

entity structures may differ. Some target entities contain extra fields while others lack fields that do

exist in the source definition. It is the responsibility of the source entity to do its own transformation

correctly. The transformation is done as follows. a) The source object is detached from its database

session b) the object is forced transform itself to a target entity c) the newly created entity is attached
to the target database and optionally further hydrated.After the transformation the in-memory ORM

objects are consistent with the target database schema and could be inserted immediately. There is

still some post-processing to do in the next step however.

Group /
Merge

Generate
metadata

download
download

download download
metadata

Frontend

Load

Figure 4.4: Steps 8 - 10: Merging and grouping, generation of availability metadata and loading.

Step 8: Post processing: merging & grouping.
Some entities might require post processing. Note that his is solely business logic and is not a

fundamental step in the log-sync process, but nonetheless important to address. The following

post-processing issues can be distinguished:

• Merging The transformation done in the previous step assumes that one single entity from the

source maps on exactly one entity in the target database. This is not always the case however.

18

CHAPTER 4. INTRODUCING THE LOG SYNC FRAMEWORK Chapter 4

Some entities for example may span multiple records in the source database but not in the

target. Such entities will be merged according to entity-dependent business logic.

• Grouping This is similar to merging but with a different discriminator. It could be the case that
an entity has to be merged with an entity that was part of another transaction that happened

earlier. This can only be done by querying the database for data which was already inserted.

Step 9: Post processing: Cache maintenance
The last processing step before the data gets inserted to the target database allows the framework

to trigger additional, possibly out of band processes. The data itself is not manipulated anymore,

that was already done in the previous step. This step is meant to do cache maintenance (warming

up, invalidation, creation) and index creation. There is a good reason to incorporate this maintenance

work in the sync process: All relevant data is in memory now which eases the processes that are

likely to be involved here.

Step 10: Load data to the target database.
The last step in the process involves persisting all entities to the target database. This is done by

triggering a ‘persist’ method on all ORM objects in memory. The ORM library will take care of the

rest.

4.2.4 Recap: A summary of the log sync process

The multiple steps that were described in the previous section can be summarized on a high level as follows:

• A process monitors the log of the DWH and filters the relevant data that must be synchronized to

the target database.

• The filtered data is used to reconstruct the original ORM objects. Possibly missing data is added by

additional querying.

• These reified objects go through various business processes for transformation, aggregation and

metadata generation.

• After these transformations, the objects are persisted to the database.

4.3 Limitations and system boundaries

4.3.1 Availability constraints

The log sync acts similar to a replication slave and is allowed to run behind in time on the master’s opera-

tions. This latency is an important variable in the freshness of the data in the target database. The latency

itself is dictated by both the processing power of the node that runs the synchronization process, as well

by the number of write events per unit time written to the log. In case the synchronization process fails or

needs to be stopped, operation can be resumed later. As long as the logs are retained and the position is

known, the synchronization will start to catch up with the tail of the log and will keep reading along with

the current transaction events happening.

19

4.3. LIMITATIONS AND SYSTEM BOUNDARIES Chapter 4

4.3.2 Bootstrapping

The log sync can be started at any moment for reading from the current tail of the log. It is however impor-

tant to realize that it will only monitor changes applied to the master database starting from that particular

moment. Before the process starts, the states between both databases should already be synchronized to

guarantee the data to be consistent in the future. In case the source and target are inconsistent, there are

two possible options.

1. Use a the metadata storage to achieve consistency between both sides. Then start the log sync from

the tail of the log.

2. Start the log sync, pointing to the last log position on which the source and target were known to be

consistent.

The latter method is a common approach for crash recovery applied by most RDBMSs [Kifer et al., 2005].

Problems could occur if modifications to the database were applied afterwards. This will be discussed in

the next section.

4.3.3 Log limitations

Transaction logs contain as little data as possible. This is an understandable attempt to keep the log files a

bit manageable because they can grow quite fast. Appendix B gives an overview of the MySQL log format

in more detail. The flip side of a minimalist log is that the log scanner needs to do a huge effort to identify

and reconstruct the original objects in the application layer because the schema is implicit and not part of

the log entries. After all, a normal replication slave has this schema already so there is no need to ship this

information. The sync program solves this difficulty by matching the log entries with its ORM definitions

which are effectively another representation of the very same schema. This imposes no significant problems

so far. Sometimes however the reconstructed objects are not enough for the synchronization program to do

all the complicated transformations. This is best expressed by an example: To calculate the daily revenue of

an app, the sync needs to know the currency of the app’s country. The currency was however not part of the

original transaction because it is a static table and it is therefore not included in the log. The sync has to do

a SELECT query on the database to retrieve this currency information. This violates the ACID properties of

the system. The SELECT statement queries the most recent state of the database rather than the state at
the time of the original transaction. This is similar to a ‘non-repeatable read’. Fortunately this issue can be

mitigated by carefully looking at the hand-written transformations. In case of the missing currency the ACID

violation was allowed because currencies are never altered programmatically. A change of the currency

table involves human interaction and the human in question should take care of the consequences for the

sync.

4.3.4 Future compatibility

The log is a vendor specific format and the implementation of the log scanner heavily depends on this.

Although every decent database embraces the same principle for either disaster recovery or replication, a

migration to a different RDBMS will not be trivial. Even across versions of the same database there can be

20

CHAPTER 4. INTRODUCING THE LOG SYNC FRAMEWORK Chapter 4

incompatibilities. Appendix B.5 highlights some of these changes across various versions of MySQL that

should be taken into account. The authors are not the ones to blame in this case. The format of MySQL’s

binary log was never meant to be used for other things than replication. As such, there is no detailed

documentation on the precise binary format of the log. The conclusion is that log scanning will never be

as easy as writing an interface to an API or using a standard like SQL. Fortunately the source code of the

MySQL binlog contains quite some helpful comments1, so a persistent person will find its way eventually.

There is no guarantee that other vendors offer similar documentation regarding their log format.

4.4 Conclusions

The hybrid synchronization framework that was presented in this chapter combines log scanning, repli-

cation and event programming in one streaming synchronization technique. Apart from that technique,

it remains compatible with ad-hoc database synchronization based on separate metadata storage. The

overall design offers a generic and flexible synchronization solution although an actual implementation

will become database vendor specific due to the low level of operation.

1https://github.com/mysql/mysql-server/tree/5.7/libbinlogevents/include

21

Chapter 5

Design analysis

The goals of this chapter are two-fold. The first part in section 5.1 will qualitatively analyze the compliance

with the intended business requirements. The primary goal of the development of the prototype was to

meet these requirements. The second part will try to express the added value of using a log scanner CDC

technique over a metadata querier for day-to-day use.

This second part is by no means a performance benchmark to assess the quality and speed of the pro-

totype’s implementation. The design contains optimizations that would in some cases be applicable to any

other synchronization framework. The opposite is also true: some parts of the prototype are left for fu-

ture performance improvements. In other words, section 5.2 limits itself to the analysis of the performance

that is a direct consequence of the streaming design rather than the implementation. For implementation-

specific data appendix D can be consulted.

5.1 Compliance with business requirements

The design of the log sync was based on the requirements described in section 1.5. The goal of this section

is to investigate whether or not all of these requirements have been met and to what extend that has

succeeded.

5.1.1 Primary requirements

Low latency
The log sync leverages the log mechanism that is also used for the database’s homogeneous repli-

cation. As such, the system exhibits a similar behavior of a slight delay between the master and the

target/slave database. During the test period, the log reader was able to process the log entries

immediately and no buffering on the internal queue was required. This amount of latency is low

enough to be experienced as a nearly ‘instant’ synchronization for the end users. These results

can however be influenced by a situations that would otherwise affect homogeneous replication

too. Large transactions on the master and decreased availability of the target will increase the ‘slave

delay’ up to the magnitude of seconds as normally seen on the production environment. This is a

consequence of the replication principle rather than the sync framework design.

23

5.1. COMPLIANCE WITH BUSINESS REQUIREMENTS Chapter 5

ACID properties
The sync framework uses the original transactions on the master as batches of work to synchronize.

Each transaction is in itself an atomic and consistent chunk of ‘changed data’. This delta will be

applied to the other database as well in a similar atomic and consistent transaction. The system

is strictly speaking not able to offer isolation across the source and target database. This property

is inherited from the way the asynchronous replication works. Commits are acknowledged on the

master and will eventually be committed on the slaves.

The isolation property that is sacrificed was coined in section 2.6.6 with the term ‘relaxed ACID’.

Instead of adopting a two-phase commit mechanism the system assumes that the transaction will

eventually be committed on the other replicas. This means that an expensive two-phase commit is

not required. The consequence will be that developers will have to keep this in mind when making

assumptions related to the state of the database. Especially the case in which objects are being

hydrated with data that is beyond the scope of the original transaction.

Reuse of business logic
The ‘processor’ part accepts input data from both the log scanner and the sync state CDC mecha-

nisms. This is clearly displayed in fig. 4.1. As a consequence, all business logic resides in one software

component and no code duplication is needed.

Ease of maintenance
The log sync framework heavily depends on replication technology. A general understanding of repli-

cation is therefore mandatory before knowing how to troubleshoot and maintain this synchroniza-

tion framework. Experienced database administrators will feel comfortable while operating a sync

framework like this because homogeneous replication is likely to be in place already. The log sync

framework does not add much terms of maintenance effort in that case.

5.1.2 Functional requirements

Filtering
Fitlering of the transaction log is a very trivial operation which does not deserve muchmore attention:

Just a filter based on the name of the database/table combination was enough to filter irrelevant

data.

Data structure transformations
The design offers room for custom data transformations. Reusable transformers can be attached as

‘listener’ for specific data types that are being synchronized. Such a transformer has access to the

full scope of a transaction because the log scanner scans the logs in chunks of transactions. This

makes it easy to identify the scope of the data transformation: the context of the transaction is

in memory already and there is no need to re-identify transactions or to query additional data for

simple transformations.

Cache and index generation
This is a special case of a data transformation. Instead of transforming data from source to target, ad-

24

CHAPTER 5. DESIGN ANALYSIS Chapter 5

ditional target (meta)data can be generated. This so called metadata can be used to warm up caches

for example. Another use case is the maintenance of indices that are based on the synchronized data.

5.2 Performance analysis

The performance analysis was carried out on one single but important part of the log sync framework: the

CDC part. The framework contains two CDC types (metadata querying and log scanning) as was described in

chapter 4. The log scanner is the framework’s day-to-day modus operandi and the metadata querier is the

one that will be used occasionally for manual interventions. The metadata querier comes with additional

setup overhead in comparison to the log scanner. Both are repeatedly visualized in fig. 5.1.

Metadata querier

Processor

Event interpreter

Source DB

Target DB

Log

Figure 5.1: (Repeated) The sync framework supporting metadata based synchronization and log scanning

CDC.

This analysis will express the amount of work saved by the log scanner with respect to the situation in

which the metadata querier would have been the CDC technique. In other words, the added value of the log

scanner is the amount of work that does not have to be executed in comparison with the metadata querier.

5.2.1 The cost of change data capturing based on sync states

The metadata querier scans the source database periodically for changes. This involves overhead because

not all data that is referenced in the table needs to be synchronized. The more often this process runs, the

less likely it will be that there is out-of-sync data. This means that the synchronization interval is a trade-off

between up-to-date data and needless database load. The interval that was used for this experiment is the

default production setting of the Distimo platform. That is two times per hour for a small time window and

3 times a day for a larger window to make sure that even delayed data is eventually synchronized. These

intervals were chosen by trail and error and should therefore be an acceptable benchmark.

Definition of system load

The load on a database server can be expressed in several ways. Metrics like CPU time or memory con-

sumption are among the ones that are relatively easy to measure. Others like (the chance of) deadlocks

and the average response time are difficult on a live database system that handles multiple connections.

25

5.3. CONCLUSION Chapter 5

Those are the ones however that are relevant while assessing performance. In order to measure the sys-

tem load objectively and reasonably independent of unrelated other processes, the load will be expressed

in database time consumed. The assumption is that efficient queries will terminate quickly and inefficient

queries take longer to compute.

5.2.2 Time consumption of CDC using metadata

An analysis was done over 26 days of log data from the production environment. During this period the

synchronization framework was operating only on sync state metadata and the log scanner was not active.

Over the course of this time span, a total of 49 hours was spent querying sync state metadata. Table 5.1

shows an itemized overview of the time per synchronization strategy. These strategies are the result of

some Distimo specific fine-tuning of the system. Some data types must be updated very often, for which

a small historical window is used. Others don’t have to be updated very often and have therefore a bigger

window to make sure that no historical data is missed.

Per strategy Interval Operations Time consumption (±10m) Percentage / total

Manual Ad hoc 471,239 1:00 h 1.84%

Small window 2 / hour 4,950,383 9:30 h 19.31%

Large window 3 / day 20,210,059 38:30 h 78.85%

Total - 25,631,681 49:00 h 100%

Table 5.1: Cummulative time consumed comparing sync states per 26 days is 49 hours.

Not all of the 25.6 million sync states that were analyzed did result in a synchronization action. In most

cases, the sync state appeared to be in sync with the target database. Only 3 million (12%) sync states

resulted in an actual synchronization. The other 88% was a waste of resources because no action was

required but could not be known upfront. Regardless of the (in)efficiency of the metadata comparison, it

is still important to realize that 100% of the work can be neglected once the log scanner is used.

5.2.3 Efficiency gained by log scanning

The log sync solution is able to replace the sync state comparison principle altogether because all data can

be retrieved from the log. This will reduce the load on the database by approximately 49 hours per 26 days,

which is almost 2 hours per day. In order to make a fair comparison with the log scanner one must take

the overhead of the log scanner into consideration as well. This overhead is however negligible. The logs

usually grow by tens of gigabytes per day, so the disk load of the log scanner is insignificant to the query

load of the database itself.

5.3 Conclusion

The log scanning mode of the sync framework saves 2 hours of database work per day while delivering

synchronization with a latency similar to that of replication. These two hours are saved by replacing an

expensive and inefficient process by a process that is efficient by design because it operates only on data

26

CHAPTER 5. DESIGN ANALYSIS Chapter 5

in motion. The cost of this new log scanning process is almost free because it does not rely on database

application resources, but on the file system.

27

Chapter 6

Conclusions

Data driven organizations often need to keep their data consistent across multiple data stores and database

replicas. Synchronization tasks running at regular intervals introduce overhead and latency, which is un-

desirable for today’s standards where customers demand real-time information. A synchronization frame-

work having similarities with asynchronous replication has proven to be a suitable solution to this problem.

Mobile app analytics firm Distimo has adopted this principle to improve the synchronization process be-

tween the DWH and the web application with the preservation of existing business logic and requirements

in terms of ACID properties.

6.1 Achievements

The log synchronization framework is an appropriate design for low latency synchronization of structurally

different (‘heterogeneous’) databases. The principle of log scanning is a robust setup and a proven tech-

nology in the field of database replication. Leveraging the replication process as a part of the existing ETL

process results in a very versatile synchronization process that combines the best of both worlds:

1. Low synchronization latency similar to that of replication solutions.

2. Preservation of ACID properties under general circumstances.

3. Versatile data transformations using existing business logic.

4. On the fly metadata generation and cache maintenance by adopting event programming principles.

5. Efficient use of database resources by not having to poll the database for changes, saving 2 hours of

database query time per day.

6. Small maintenance footprint that is similar to that of a replication setup.

The prototype that was developed for this research was tested on a production environment where it

was integrated with the existing infrastructure. All business logic and data transformations are handled

by the new log sync framework, as well the cache and metadata maintenance. The sync state mode is the

primary CDC mode and the log scanner is used as a parallel shadow process for further testing.

29

6.2. LIMITATIONS Chapter

6.2 Limitations

The log sync framework poses a limitation on the format of the log. The master needs to log every change to

individual table rows rather than declarative statements manipulating multiple rows at once. Appendix B.1

describes the various replication formats of MySQL in more depth. As a consequence of logging every

individual row changed, the log file will grow faster than it would be the case with statement-based logging.

Another limitation is primarily a design concern for data transformations. The changes of the rows that

were persisted in the log lack the context of other records. It is therefore not possible to join additional data

beyond the scope of the original transaction without violating ACID properties. The state of the database

could have been altered since the moment of the original transaction commit.

6.3 Discussion and Future work

6.3.1 ACID compliance and limitations of the MySQL log format

When considering future work it might be an idea to look at the known issues and limitations of the design

that relate to MySQL specifically. The fact that the log contains information as little as possible makes it

very hard to do complex operations on the data without sending additional queries to the database and

breaking the ACID principles. It has never been an option for Distimo to start patching MySQL by adding

additional hints to the log: this would involve a huge effort of development and testing. Nonetheless it

would be an interesting project to start investigating what would be an optimal log format to fully support

the log sync design. This would simplify the overall design by not having to cache table structures and by

not having to detect data types using a conversion table like table B.1.

6.3.2 Pub-sub instead of log scanning

A fundamentally different approach for the log sync principle would be to adopt a pub-sub design [Eugster

et al., 2003]. The replication client would subscribe to certain parts of the data set and the database server

would be responsible for pushing the adequate changes to the client. The JSON database RethinkDB1 is

modeled following this principle and it would be nice to see a similar solution for relational (SQL) databases.

Microsoft SQL Server does have ‘query notifications’ since version 2005 but it doesn’t seem to be used

that much apart from being exclusively available on Windows. The idea behind a query notification is that

the server signals when the result of a subscribed query changes. The underlying mechanism is also used

for the detection when to rebuild table indexes, so the cost of a notification is low according to Microsoft.

PostgreSQL offers inter client communication using the ‘LISTEN’ and ‘NOTIFY’ commands. This gives the

possibility to address query notifications on the application layer: integration with a sync framework de-

mands changes to the writer processes as well. Future research could focus to make this transparent like

Microsoft’s solution.

1http://rethinkdb.com/

30

Appendix A

The Distimo data infrastructure

Confidential

31

Appendix B

The MySQL binary log

B.1 MySQL Replication

MySQL replication works by using a binary logging mechanism. The MySQL master instance is the only

instance on which data should be written at a particular moment in time. The master keeps track of all

changes and logs these ‘events’ to a binary log file on hard disk. The MySQL binary log is strictly speaking

not a proper write-ahead log because the log is written after the transaction is committed to the master.

The MySQL InnoDB engine does use an internal Write-ahead log (WAL) however. For the sake of compati-

bility with other database systems, the binlog is considered to follow the same principles as real WALs just

like other databases. One or more slave instances must be configured to scan the binary log and replay the

events on their own database instance. Obviously, the master does not keep a log of SELECT statements

as there is no need for the slaves to replay this queries because nothing will change in the database. Repli-

cation can be useful for load balancing and scaling. Slave instances are available as read-only databases

for fast querying and the master’s only concern is processing INSERTs, UPDATEs, and DELETEs. Important
to note is that the slaves are no limiting factor for the master. While the master takes the lead in query

processing, each slave can run at it’s own pace. Slaves running far behind will serve outdated query results

of course, so one should take caution. The master can be configured to use different types of replication,

i.e. a) statement based, which replicates client queries literally to the slaves; b) row based, which replicates

the changes of each row individually; and c) a combination of statement-based and row-based.Throughout
this research, row-based replication was used and is assumed throughout the processes. The reason is that

only row-based replication contains the explicit values needed for the sync to replicate to the frontend.

B.2 MySQL binary log APIs

This sections gives an overview of log scanning software that is able to interpret the MySQL binary log

format.

MySQL Replication Listener

The MySQL Replication Listener is a semi-official MySQL project providing an STL/Boost based C++ library

for processing a replication stream from a MySQL server [Pettersson and Kindahl, 2010]. Although being

33

B.3. THE BINARY LOG FORMAT Chapter B

a quite robust solution, the preference is to use a Java based solution for maintaining consistency in the

code-base.

License: GNU GPL v2

Tungsten Replicator

Tungsten Replicator [Hodges, 2012] is an open-source data replication engine for MySQL, sponsored by

Continuent, Inc. Tungsten Replicator is focused on achieving high performance across multiple sites within

complex topologies. The replicator is the base for Tungsten Enterprise, a commercial database clustering

product by Continuent. The open-source version is nevertheless quite abundant to act as a simple binlog

parsing library.

License: GNU GPL v2

Open Replicator

Open Replicator is a MySQL binlog parser written in Java [Xu, 2012]. It has a small footprint and the

projects aims to offer no more than just a practical library. Therefore, Open Replicator was used to build

the prototype system.

License: Apache 2.0

B.3 The binary log format

The binary log consists of multiple files chained together by an internal reference at the end of each file.

Every file has a header containing meta information like the version and file name. The rest of the file

consists of multiple ‘events’ of different kinds. The following listing gives an overview of the most important

events required to accomplish replication.

Format_description_event
The first event of a log file, containing a description of the binary log version and server version.

Query_event
This event is primarily used by statement based logging. It contains a query as executed by the mas-

ter. In case of row-based logging, this event only occurs for queries which do not involve particular

rows, for example data definition statements like ALTER TABLE-queries.

Rotate_event
A rotate event announces a log rotation and is always the last event of a single binlog file. Its payload

contains the name of the next binlog file.

Table_map_event
Only used in row-based replication. This event precedes an event containing Data Manipulation

Language (DML). That is an UPDATE, INSERT, or DELETE event on a particular table specified in

the payload. Other payload data of interest are the column count, the column names, a definition of

the data types of the columns, and a bitmap specifying which columns are nullable. The DML events

34

APPENDIX B. THE MYSQL BINARY LOG Chapter B

following a Table_map_event only contain raw data, without meta data like column names and data

types. The binlog sync must therefore always remember the last Table_map_event since that is the

only way to be able to process DML events.

Write_rows_event
This DML event corresponds to an INSERT query in row-based replication. Its payload contains an

image of the inserted record in column order, without column names or data types specified.

Update_rows_event
This DML event corresponds to an UPDATE query in row-based replication. Its payload contains a

before-image of the record, as well an after-image in column order, without column names or data

types specified.

Delete_rows_event
This DML event corresponds to an DELETE query in row-based replication. Its payload contains a full
after-image of the record in column order, without column names or data types specified.

Change data capture on a binary log is quite Spartan. After all, the binary log only contains almost a

minimal amount of data for the replication to function. The slaves already have the right structure. Only

the actual scalar data is logged since mentioning the data type is redundant in this case. Hence, the binary

log stands not on his own and additional information is required in order to fully understand what the data

represents. Appendix B.4 further elaborates on this.

B.4 Data types in MySQL, the binary log and Java

The binlogsync interacts with four ‘interfaces’, having their own data type characteristics. To guarantee

correct operation, each data field is type checked to verify that the structure between them is consistent.

This involves:

• MySQL data types (as the data is stored in DWH)

• Binlog / OpenReplicator data types (what is read from the Binary (transaction) log (binlog))

• JDBC data types (used for retrieving table definitions)

• Java data types (for filling Hibernate entities)

Ideally, all data types would have a one-to-one mapping. Unfortunately, this is not the case. Based on

information from the binary log and JDBC, the binlogsync must be able to determine the original MySQL

data type, from which the final Java type can be derived. Figure B.1 shows how the binlogsync is connected.

MySQL currently supports approximately 30 data types. The ‘traditional’ data types include integers

ranging from 1 to 8 bytes, dates, datetimes, characters of fixed and varying lengths, and various binary

types. Besides these common types, MySQL also supports enumerations and sets which are essentially

bitmaps.

The binlog does not offer a counterpart for all 30 MySQL types. These are mapped to only 16 data types
in the log. This means that it will not be possible to unambiguously determine the original data type by

35

B.4. DATA TYPES IN MYSQL, THE BINARY LOG AND JAVA Chapter B

JDBC

Binary stream

Hibernate

Internal Java (Open
Replicator API)

Java interface

Synchronization

Load to
frontendJava (Data jobs)

MySQL (DWH)

Binlog

Java (Post processing)

Binlogsync

Open Replicator

Figure B.1: The binary log determines the actual MySQL data types based on input from the binlog API and

the JDBC API and outputs a Java objects of according types.

solely reading the log. This sometimes leads to confusing situations. For example, all Binary Large Object
(BLOB) and TEXT data types appear as BLOB in the binary log. The types BINARY, CHAR, ENUM, and SET
are all mapped to the STRING log data type.

The Open Replicator API does a good job in translating the 16 binlog data types to its respectful Java
counterparts.

JDBC, which is the API used to retrieve the database structure, supports most MySQL data types, except
for ENUM and SET. JDBC also tends to interpret BIT(1) and TINYINT(1) as boolean instead of a bytearray

and an integer respectively.

The combination of data types from the different interfaces matters when in comes on type checking.

Only a few combinations are valid, which are shown in table B.1. Other combinations point to an inconsis-

tency which will result in an error.

36

APPENDIX B. THE MYSQL BINARY LOG Chapter B
Ta
bl
e
B.
1:
Da
ta
ty
pe

m
ap
pi
ng

re
fe
re
nc
e
fo
rM

yS
QL

in
te
rn
al
s,
bi
na
ry
lo
g,
Op

en
Re
pl
ic
at
or

an
d
Ja
va

ru
nt
im
e.

M
yS
QL

ID
Bi
nl
og

Da
ta
Ty
pe

ID
JD
BC

Da
ta
Ty
pe

JD
BC

Ja
va

Ty
pe

Op
en

Re
pl
ic
at
or

OR
Ja
va

Ty
pe

Fi
na
lc
on
ve
rs
io
n

bi
t(
1)

16
M
YS
QL
_T

YP
E_
BI
T

-7
Bi
t

ja
va
.la
ng
.B
oo
le
an

Bi
tC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

bi
t(
2)

16
M
YS
QL
_T

YP
E_
BI
T

-7
Bi
t

[B
Bi
tC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

tin
yb
lo
b

25
2

M
YS
QL
_T

YP
E_
BL
OB

-2
Bi
na
ry

[B
Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

bl
ob

25
2

M
YS
QL
_T

YP
E_
BL
OB

-4
Lo
ng
va
rb
in
ar
y

[B
Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

lo
ng
bl
ob

25
2

M
YS
QL
_T

YP
E_
BL
OB

-4
Lo
ng
va
rb
in
ar
y

[B
Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

m
ed
iu
m
bl
ob

25
2

M
YS
QL
_T

YP
E_
BL
OB

-4
Lo
ng
va
rb
in
ar
y

[B
Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

lo
ng
te
xt

25
2

M
YS
QL
_T

YP
E_
BL
OB

-1
Lo
ng
va
rc
ha
r

ja
va
.la
ng
.S
tr
in
g

Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

m
ed
iu
m
te
xt

25
2

M
YS
QL
_T

YP
E_
BL
OB

-1
Lo
ng
va
rc
ha
r

ja
va
.la
ng
.S
tr
in
g

Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

te
xt

25
2

M
YS
QL
_T

YP
E_
BL
OB

-1
Lo
ng
va
rc
ha
r

ja
va
.la
ng
.S
tr
in
g

Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

tin
yt
ex
t

25
2

M
YS
QL
_T

YP
E_
BL
OB

12
Va
rc
ha
r

ja
va
.la
ng
.S
tr
in
g

Bl
ob
Co
lu
m
n

ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

da
te

10
M
YS
QL
_T

YP
E_
DA
TE

91
Da
te

ja
va
.s
ql
.D
at
e

Da
te
Co
lu
m
n

ja
va
.s
ql
.D
at
e

ja
va
.u
til
.D
at
e

da
te
tim

e
12

M
YS
QL
_T

YP
E_
DA
TE
TI
M
E

93
Ti
m
es
ta
m
p

ja
va
.s
ql
.T
im
es
ta
m
p

Da
te
tim

eC
ol
um

n
ja
va
.s
ql
.T
im
es
ta
m
p

ja
va
.u
til
.D
at
e

do
ub
le

5
M
YS
QL
_T

YP
E_
DO

UB
LE

8
Do

ub
le

ja
va
.la
ng
.D
ou
bl
e

Do
ub
le
Co
lu
m
n

ja
va
.la
ng
.D
ou
bl
e

ja
va
.la
ng
.D
ou
bl
e

flo
at

4
M
YS
QL
_T

YP
E_
FL
OA
T

7
Re
al

ja
va
.la
ng
.F
lo
at

Fl
oa
tC
ol
um

n
ja
va
.la
ng
.F
lo
at

ja
va
.la
ng
.F
lo
at

m
ed
iu
m
in
t

9
M
YS
QL
_T

YP
E_
IN
T2
4

4
In
te
ge
r

ja
va
.la
ng
.In
te
ge
r

In
t2
4C
ol
um

n
ja
va
.la
ng
.In
te
ge
r

ja
va
.la
ng
.In
te
ge
r

in
t

3
M
YS
QL
_T

YP
E_
LO
NG

4
In
te
ge
r

ja
va
.la
ng
.In
te
ge
r

Lo
ng
Co
lu
m
n

ja
va
.la
ng
.In
te
ge
r

ja
va
.la
ng
.In
te
ge
r

bi
gi
nt

8
M
YS
QL
_T

YP
E_
LO
NG

LO
NG

-5
Bi
gi
nt

ja
va
.la
ng
.L
on
g

Lo
ng
Lo
ng
Co
lu
m
n

ja
va
.la
ng
.L
on
g

ja
va
.la
ng
.L
on
g

de
ci
m
al

24
6

M
YS
QL
_T

YP
E_
NE

W
DE

CI
M
AL

3
De
ci
m
al

ja
va
.m
at
h.
Bi
gD

ec
im
al

De
ci
m
al
Co
lu
m
n

ja
va
.m
at
h.
Bi
gD

ec
im
al

ja
va
.m
at
h.
Bi
gD

ec
im
al

sm
al
lin
t

2
M
YS
QL
_T

YP
E_
SH

OR
T

5
Sm

al
lin
t

ja
va
.la
ng
.In
te
ge
r

Sh
or
tC
ol
um

n
ja
va
.la
ng
.In
te
ge
r

ja
va
.la
ng
.S
ho
rt

bi
na
ry

25
4

M
YS
QL
_T

YP
E_
ST
RI
NG

-2
Bi
na
ry

[B
St
rin

gC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

ch
ar

25
4

M
YS
QL
_T

YP
E_
ST
RI
NG

1
Ch
ar

ja
va
.la
ng
.S
tr
in
g

St
rin

gC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.la
ng
.S
tr
in
g

en
um

25
4

M
YS
QL
_T

YP
E_
ST
RI
NG

1
Ch
ar

ja
va
.la
ng
.S
tr
in
g

St
rin

gC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

se
t

25
4

M
YS
QL
_T

YP
E_
ST
RI
NG

1
Ch
ar

ja
va
.la
ng
.S
tr
in
g

St
rin

gC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

tim
e

11
M
YS
QL
_T

YP
E_
TI
M
E

92
Ti
m
e

ja
va
.s
ql
.T
im
e

Ti
m
eC
ol
um

n
ja
va
.s
ql
.T
im
e

ja
va
.u
til
.D
at
e

tim
es
ta
m
p

7
M
YS
QL
_T

YP
E_
TI
M
ES
TA
M
P

93
Ti
m
es
ta
m
p

ja
va
.s
ql
.T
im
es
ta
m
p

Ti
m
es
ta
m
pC
ol
um

n
ja
va
.s
ql
.T
im
es
ta
m
p

ja
va
.u
til
.D
at
e

bo
ol
/
tin

yi
nt
(1
)

1
M
YS
QL
_T

YP
E_
TI
NY

-7
Bi
t

ja
va
.la
ng
.B
oo
le
an

Ti
ny
Co
lu
m
n

ja
va
.la
ng
.In
te
ge
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

tin
yi
nt

1
M
YS
QL
_T

YP
E_
TI
NY

-6
Ti
ny
in
t

ja
va
.la
ng
.In
te
ge
r

Ti
ny
Co
lu
m
n

ja
va
.la
ng
.In
te
ge
r

ja
va
.la
ng
.In
te
ge
r

va
rb
in
ar
y

15
M
YS
QL
_T

YP
E_
VA
RC
HA

R
-3

Va
rb
in
ar
y

[B
St
rin

gC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.n
io
.B
yt
eB
uf
fe
r

va
rc
ha
r

15
M
YS
QL
_T

YP
E_
VA
RC
HA

R
12

Va
rc
ha
r

ja
va
.la
ng
.S
tr
in
g

St
rin

gC
ol
um

n
ja
va
.n
io
.B
yt
eB
uf
fe
r

ja
va
.la
ng
.S
tr
in
g

ye
ar

13
M
YS
QL
_T

YP
E_
YE
AR

91
Da
te

ja
va
.s
ql
.D
at
e

Ye
ar
Co
lu
m
n

ja
va
.s
ql
.D
at
e

ja
va
.la
ng
.In
te
ge
r

37

B.5. MYSQL COMPATIBILITY Chapter B

B.5 MySQL compatibility

Important changes possibly affecting binary log synchronization in future versions are listed below. All

these changes are from the MySQL release notes [Oracle Corporation, 2015].

B.5.1 Changes and new features in MySQL 5.6

Global transaction identifiers This release introduces Global Transaction Identifiers (GTIDs) for MySQL

Replication. A GTID is a unique identifier that is assigned to each transaction as it is committed;

this identifier is unique on the MySQL Server where the transaction originated, as well as across

all MySQL Servers in a given replication setup. Because GTID-based replication depends on tracking

transactions, it cannot be employed with tables that employ a nontransactional storage engine such

as MyISAM; thus, it is currently supported only with InnoDB tables.

Since: MySQL 5.6.5 (2012-04-10, Milestone 8)

Multi-threaded slave execution MySQL replication now supports a multi-threaded slave executing repli-

cation events from the master across different databases in parallel, which can result in significant

improvements in application throughput when certain conditions are met. The optimum case is that

the data be partitioned per database, and that updates within a given database occur in the same

order relative to one another as they do on the master. However, transactions do not need to be co-

ordinated between different databases.

Since MySQL 5.6.3 (2011-10-03, Milestone 6)

Transaction logging BEGIN, COMMIT, and ROLLBACK statements are now cached along with the state-

ments instead of being written when the cache is flushed to the binary log. This change does not af-

fect Data Definition Language (DDL) statements—which are written into the statement cache, then

immediately flushed—or Incident events (which, along with Rotate events, are still written directly

to the binary log). Since MySQL 5.6.3 (2011-10-03, Milestone 6)

No empty transactions A transaction was written to the binary log even when it did not update any non-

transactional tables. (Bug #11763471, Bug #56184)

Since MySQL 5.6.3 (2011-10-03, Milestone 6)

Row imaging Added the binlog_row_image server system variable, which can be used to enable row image

control for row-based replication. This means that you can potentially save disk space, network

resources, and memory usage by the MySQL Server by logging only those columns that are required

for uniquely identifying rows, or which are actually changed on each row, as opposed to logging all

columns for each and every row change event. In addition, you can use a “noblob” mode where all

columns, except for unneeded BLOB or TEXT columns, are logged.

Since MySQL 5.6.2 (2011-04-11)

Server GUIDs Globally unique IDs for MySQL servers were implemented. A Universally Unique Identifier

(UUID) is now obtained automatically when theMySQL server starts. The server first checks for a UUID

written in the auto.cnf file (in the server’s data directory), and uses this UUID if found. Otherwise,

38

APPENDIX B. THE MYSQL BINARY LOG Chapter B

the server generates a new UUID and saves it to this file (and creates the file if it does not already

exist). This UUID is available as the server_uuid system variable.

Since: MySQL 5.6.0 (Not released, Milestone 4)

39

Appendix C

Log Synchronization design overview

DWH

1010
0101
0100

Log reader Event
interpreter

Data Type
Checking

BEGIN
WRITE download

WRITE temp
WRITE download

COMMIT

Queue

Queue

Filter

temp
download
download

Hydrate

download
download

Transform

download
downloadFront.DWH

Group /
Merge

Generate
metadata

download
download

download download
metadata

Frontend

Load

Figure C.1: Full process

C.1 Design limitations

C.1.1 Handling DDL query events

A special case of events are those containing DDL queries. In other words: ALTER TABLE queries. These

queries only occur at times when a version of the software is deployed or a data migration takes place with

the use of a temporary table. During the extraction step described in section 4.2.1, validation of the data

takes place. The data captured from the log is validated against a cached table definition. This cache is

built as soon the log sync starts and must be invalidated as soon a DDL events occurs. Consecutive write

events will then be validated against an up-to-date definition. This situation is illustrated in fig. C.2.

41

C.1. DESIGN LIMITATIONS Chapter C

Write
table t1

Current state of
frontend

Current state of
master DWH

Alter
table t1

Sync pointer

Write
table t1

Current state of
frontend

Current state of
master DWH

Alter
table t1

Sync pointer

I

II

Figure C.2: Phase I: The log sync starts and caches a table structure of table t1 as defined by the current
state of the DWH. Phase II: Table t1 is modified by a DDL query. The log-sync refreshes its cache with an
up-to-date definition of table t1.

Validating the log’s event structures against the current state of the database could result in problems

if the database structure was changed over time and the log file is outdated. Figure C.3 shows this situation

where the log sync has just started and lags behind on the state of the master. The sync is going to catch

up with the tail of the log by processing all events from left to right in the picture. The write operation on

table t1 will be compared with the current schema of table t1 on the master. The schema of t1 is however

inconsistent with the write event in the log because the table was altered somewhere between the sync

pointer and the log tail.

Alter
table t1

Current state of
frontend

Current state of
master DWH

Write
table t1

Sync pointer

Figure C.3: The binlogsync validates an event using a new (and possibly incompatible) table structure set

by the ALTER TABLE event.

The best thing to do is to make sure this situation never happens. This can be done by making sure that

the sync is not running behind while doing the ALTER TABLE. The sync should pass the alter statement in

42

APPENDIX C. LOG SYNCHRONIZATION DESIGN OVERVIEW Chapter C

the log to make sure the situation in fig. C.3 cannot happen in the future. In case that sync was not able

to catch up with the alter statement, the good old ‘sync state sync’ will need to recover consistency across

the databases from where the log sync can take over.

43

Appendix D

Performance statistics by Munin

A performance assessment of the sync framework on a production environment is near to impossible to do

correctly. The target database is used by a large number of ad-hoc processes and this harms proper test

isolation. Although the regular system monitoring software is not an appropriate tool to draw conclusions

upon, the software helped to gain additional insight in the way the sync framework operates. Figure D.1

displays one year of data retrieved from the monitoring software Munin.

Figure D.1: Number of queries per second on the target database, retrieved from system monitor Munin.

The graphic displays the number of queries per second processed by the target database, itemized

by query type. The large purple spike ranging from Jan - Feb was an early prototype that was geared

towards REPLACE queries. For the majority of queries the net result was zero because the REPLACE was

45

Chapter D

issued regardless of whether the record had to be updated or not. This inefficient behavior was eventually

corrected and the more efficient ON DUPLICATE KEY UPDATE was used in relevant cases. By the end of

March the definitive processing pipeline was deployed on the production environment. This can be identified

based on the increase of UPDATE queries (orange). The automated cache and metadata maintenance

contributed for hundreds of extra updates per second. This seems like a heavy performance penalty, but

the queries themselves are very efficient. Their task is to update only one record at a time based on the

full primary key of the record. This immediately exposes the problem of graphs like these: the number of

queries per second is not a good measure for actual performance. This is the reason that Munin was not

used for further analysis of the framework design.

46

Bibliography

S. W. Ambler. The object-relational impedance mismatch. Agile Database Techniques, Wiley Publishing,
2003.

R. M. Bruckner, B. List, and J. Schiefer. Striving towards Near Real-Time Data Integration for Data

Warehouses. In Y. Kambayashi, W. Winiwarter, and M. Arikawa, editors, Data Warehousing and
Knowledge Discovery, number 2454 in Lecture Notes in Computer Science, pages 317–326. Springer
Berlin Heidelberg, Jan. 2002. ISBN 978-3-540-44123-6, 978-3-540-46145-6. URL

http://link.springer.com/chapter/10.1007/3-540-46145-0_31.

E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based database replication: the gaps between theory

and practice. In Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, SIGMOD ’08, pages 739–752, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi:

10.1145/1376616.1376691. URL http://doi.acm.org/10.1145/1376616.1376691.

S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM Sigmod record,
26(1):65–74, 1997. URL http://www.acm.org/sigmod/record/issues/9703/chaudhuri.ps.

L. Chen, W. Rahayu, and D. Taniar. Towards Near Real-Time Data Warehousing. In 2010 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA), pages
1150 –1157, Apr. 2010. doi: 10.1109/AINA.2010.54.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM, 51
(1):107–113, Jan. 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492. URL

http://doi.acm.org/10.1145/1327452.1327492.

R. Dhamane, M. P. Martínez, V. Vianello, and R. J. Peris. Performance Evaluation of Database Replication

Systems. In Proceedings of the 18th International Database Engineering & Applications
Symposium, IDEAS ’14, pages 288–293, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2627-8. doi:

10.1145/2628194.2628214. URL http://doi.acm.org/10.1145/2628194.2628214.

M. Eccles, D. Evans, and A. Beaumont. True Real-Time Change Data Capture with Web Service Database

Encapsulation. In 2010 6th World Congress on Services (SERVICES-1), pages 128 –131, July 2010. doi:
10.1109/SERVICES.2010.59.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Publish/Subscribe. ACM
Comput. Surv., 35(2):114–131, June 2003. ISSN 0360-0300. doi: 10.1145/857076.857078. URL

http://doi.acm.org/10.1145/857076.857078.

47

http://link.springer.com/chapter/10.1007/3-540-46145-0_31
http://doi.acm.org/10.1145/1376616.1376691
http://www.acm.org/sigmod/record/issues/9703/chaudhuri.ps
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/2628194.2628214
http://doi.acm.org/10.1145/857076.857078

BIBLIOGRAPHY Chapter D

M. Fowler. Event Sourcing, Dec. 2005. URL

http://martinfowler.com/eaaDev/EventSourcing.html.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

ISBN 1-58113-757-5. doi: 10.1145/945445.945450. URL

http://doi.acm.org/10.1145/945445.945450.

R. Hodges. tungsten-replicator - A high performance, open source, data replication engine for MySQL -

Google Project Hosting, Oct. 2012. URL http://code.google.com/p/tungsten-replicator/.

P. Hofmann. Multi-Master Replication Manager for MySQL [MMM for MySQL Wiki], Nov. 2012. URL

http://mysql-mmm.org/doku.php.

W. H. Inmon. Building the data warehouse. Wiley, 2005. ISBN 9780764599446.

M. Kifer, A. J. Bernstein, and P. M. Lewis. Database Systems: An Application-oriented Approach.
Addison-Wesley, 2005. ISBN 9780321228383.

T. M. Nguyen and A. M. Tjoa. Zero-latency data warehousing (ZLDWH): the state-of-the-art and

experimental implementation approaches. In 2006 International Conference on Research,
Innovation and Vision for the Future, pages 167 – 176, 2006. doi: 10.1109/RIVF.2006.1696434.

Oracle Corporation. MySQL :: MySQL 5.6 Release Notes, Jan. 2015. URL

http://dev.mysql.com/doc/relnotes/mysql/5.6/en/.

S. Perez. App Annie Acquires Competitor Distimo, Raises Another

$17Million From Existing Investors, May 2014. URL http://social.techcrunch.com/2014/05/28/
app-annie-acquires-competitor-distimo-raises-another-17-million-from-existing-investors/.

K. Pettersson and M. Kindahl. MySQL Replication Listener in Launchpad, Apr. 2010. URL

https://launchpad.net/mysql-replication-listener.

R. W. Schulte. Introducing the zero-latency enterprise. Gartner Research, June, 1998.

J. Shi, Y. Bao, F. Leng, and G. Yu. Study on log-based change data capture and handling mechanism in

real-time data warehouse. In Proceedings - International Conference on Computer Science and
Software Engineering, CSSE 2008, volume 4, pages 478–481, 2008.

J. Shi, Y. Bao, F. Leng, and G. Yu. Priority-Based Balance Scheduling in Real-Time Data Warehouse. In

Ninth International Conference on Hybrid Intelligent Systems, 2009. HIS ’09, volume 3, pages 301
–306, Aug. 2009. doi: 10.1109/HIS.2009.275.

J. Song, Y. Bao, and J. Shi. A Triggering and scheduling approach for ETL in a real-time data warehouse. In

Proceedings - 10th IEEE International Conference on Computer and Information Technology,
CIT-2010, 7th IEEE International Conference on Embedded Software and Systems, ICESS-2010,
ScalCom-2010, pages 91–98, 2010.

48

http://martinfowler.com/eaaDev/EventSourcing.html
http://doi.acm.org/10.1145/945445.945450
http://code.google.com/p/tungsten-replicator/
http://mysql-mmm.org/doku.php
http://dev.mysql.com/doc/relnotes/mysql/5.6/en/
http://social.techcrunch.com/2014/05/28/app-annie-acquires-competitor-distimo-raises-another-17-million-from-existing-investors/
http://social.techcrunch.com/2014/05/28/app-annie-acquires-competitor-distimo-raises-another-17-million-from-existing-investors/
https://launchpad.net/mysql-replication-listener

BIBLIOGRAPHY Chapter D

Y. Wang and J. Chiao. Data Replication in a Distributed Heterogeneous Database Environment: An Open

System Approach. In , IEEE 13th Annual International Phoenix Conference on Computers and
Communications, 1994, page 315, Apr. 1994. doi: 10.1109/PCCC.1994.504132.

L. Wong, N. Arora, L. Gao, T. Hoang, and J. Wu. Oracle Streams: A High Performance Implementation for

Near Real Time Asynchronous Replication. In IEEE 25th International Conference on Data
Engineering, 2009. ICDE ’09, pages 1363 –1374, Apr. 2009. doi: 10.1109/ICDE.2009.121.

J. Xu. open-replicator - A high performance MySQL binlog parser written in Java - Google Project Hosting,

Aug. 2012. URL https://code.google.com/p/open-replicator/.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Computing with Working

Sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=1863103.1863113.

49

https://code.google.com/p/open-replicator/
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Introduction
	Problem statement
	Distimo: the app store analytics company
	Data processing challenges
	Heterogeneous database synchronization
	Research goals
	Design validation
	Contents

	Data synchronization in depth
	Characteristics of a multi-purpose database cluster
	The structure of the data types in depth
	Synchronization across heterogeneous structures
	The architecture of the `sync state' synchronization
	Bottlenecks of sync state based synchronization
	Requirements
	Low latency by streaming synchronization
	Full recoverability from the source database
	Minimized I/O operations
	Event detection
	Consolidation of asynchronous post-processing
	Relaxed ACID transactions
	Summary

	Literature overview
	Introduction
	Data warehousing
	Zero-latency Data Warehousing
	Change data capture
	Change data capture
	Hybrid sharding and replication
	Literature reflection

	Introducing the log sync framework
	Introduction of the log sync framework design
	Process description
	Part I: The log scanner (`Extract' steps)
	Part II: Event programming
	Part III: The Processor (`Transform' and `Load' steps)
	Recap: A summary of the log sync process

	Limitations and system boundaries
	Availability constraints
	Bootstrapping
	Log limitations
	Future compatibility

	Conclusions

	Design analysis
	Compliance with business requirements
	Primary requirements
	Functional requirements

	Performance analysis
	The cost of change data capturing based on sync states
	Time consumption of CDC using metadata
	Efficiency gained by log scanning

	Conclusion

	Conclusions
	Achievements
	Limitations
	Discussion and Future work
	ACID compliance and limitations of the MySQL log format
	Pub-sub instead of log scanning

	The Distimo data infrastructure
	The MySQL binary log
	MySQL Replication
	MySQL binary log APIs
	The binary log format
	Data types in MySQL, the binary log and Java
	MySQL compatibility
	Changes and new features in MySQL 5.6

	Log Synchronization design overview
	Design limitations
	Handling DDL query events

	Performance statistics by Munin
	Bibliography

