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Abstract

The aim of this thesis is to investigate the possibilites of implementing a beam-
former using an 8 microphone array into a robotic head.
Visual interaction between humans and robots is relatively common nowadays,
but the topic of interaction via sound is a bit more rare. Also, small microphone
arrays that fit inside a robot head are relatively uncommon. For this reason it
was decided to investigate the implementation of the technology in this context.
This thesis first explains the theory behind beamforming and the influence of
scattering on the pressure field. In the next stage the implementation of the
technology is considered. A PCB is designed and data acquisition hardware is
chosen and put together. Finally the beamforming algorithm is constructed in
MATLAB and evaluated.
It is concluded that beamforming with an 8 microphone array is possible and
can be further scaled down.
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1 Introduction

Creating a humanlike robot requires lively motions and good looks, but com-
munication should not be disregarded. In the field of human-robot interaction
creating a friendly robot is an important topic to improve the user’s experience
with the robot. This can be achieved by having the robot turn its head towards
the person that is speaking.
Interaction between robot and human is usually done via visual sensors. How-
ever there are things that cannot be done using only visual sensors. For example
it is difficult for a camera to determine which person in the room is speaking.
This can however be achieved when the direction of the incoming sound is
known.
Here, we investigate the possibility of implementing beamforming in the context
of a robot head.
Specifically three aims are addressed:
First, theory is investigated to optimize the sensor array and find the influence
of scattering. Secondly MATLAB code is written to implement the algorithm.
Finally the sensor array is constructed.
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2 Theory

2.1 Basic principle

This project deals with an inverse acoustic problem, meaning that the effect of
the sound is known (measured) and based on these measurements the cause (di-
rection) of the sound has to be found. This problem is considered in a context
of a conference room where the robot is in the middle of the table and must
determine which person is speaking. In speech the frequency spectrum ranges
from 200 Hz up to 4000 Hz. [7] The frequencies of interest are in the range of
200-2000 Hz, since frequencies higher than 2000 Hz do not contribute much to
the signal.
Beamforming is a source localization method based on time differences of ar-
rival. This is similar to how humans localize sound sources. The basic principle
relies on the extra distance the wave has to travel (∆u) to get from one sensor
to the next being determined by the angle of incidence of the sound wave, θ.

Figure 1: The basic principle of beamforming

This ∆u gives rise to a time difference of arrival τ = ∆u
c = d

c sin(θ) between the
microphones with c the speed of sound in [m/s].
Beamforming refers to the act of finding the time difference of arrival (τ) between
microphones. Since each delay is related to an incoming angle (as seen in figure
1) this method is also known as beam steering or steered response power (SRP).
[3]
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2.2 Sound waves

Starting from the wave equation,

∂2p

∂t2
= c2∇2u (1)

this gives solutions for pressure field of a monopole of the form

p(r, t) = f(ωt− kr) (2)

and more specifically

p(r, t) =
A

r
ei(ωt−kr) (3)

where A is the complex amplitude of the wave, r is the distance from the source,
k = w

c is the wavenumber and ω is the angular frequency in [rad/s].
For simplicity in this thesis the sound source is considered to be in the far field.
From this it follows directly that the waves are assumed to be planar. In this
assumption the wave pattern is governed by only one spatial dimension. In the
far field the pressure will be of the form

p(~k · ~r, t) =
A

r
ei(ωt−

~k·~r) (4)

Where ~k is the wave vector in the direction of the wave with magnitude |~k| = 2π
λ

in [1/m] and ~r is the position vector of the point of interest.

The far field assumption is valid for values of k and r such that kr � 1, where
k and r are the magnitudes of their corresponding vectors. [6]. This means that
for the minimum frequency of interest of 200 Hz the far field starts at

r =
1

k
=

1.715

2π
= 27cm (5)

Therefore the far field assumption is reasonable in the context of a conference
room.

2.3 System of equations

Now that it is established what kind of waves we are dealing with it is time to
set up a system equations to find the direction of these waves.
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Figure 2: Relevant parameters in a two-sensor array.

In figure 2 the situation is sketched again for 2 sensors now in vector form. The
system of equations will be generalized for any number of microphones.
Here ~u is the unknown incoming sound wave, ~x is the position vector from micro-
phone 2 relative to microphone 1. ∆u is to be determined from the beamforming
algorithm via ∆u = τ · c where c is the speed of sound.
Three unknowns are identified as the indices of the unit vector of the incoming
sound û. This means there need to be at least 3 equations to have a fully
determined system.
Now looking at figure 2 the relation between the three relevant parameters can
be seen. The scalar projection of ~x onto ~u is equal to the ∆u. This is shown in
equation 6

~x · û = ∆u (6)

Because there is one reference microphone, in a system with M microphones this
gives a system of M-1 equations. Meaning there must be at least 4 microphones
for a fully determined system.

x11 x12 x13

x21 x22 x23

...
...

...
x(M−1)1 x(M−1)2 x(M−1)3


u1

u2

u3

 =


∆u1

∆u2

...
∆uM−1

 (7)

Because there is noise in the system the solution will be approximated using the
method of least squares. Instead of solving the system

A~u = ~b (8)

the following is to be solved:

ATA~u = AT~b (9)
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Here ATA will be a 3 × 3 matrix and AT~b a 3 × 1 vector. Notice that this
is independent of M, meaning that using more than 4 microphones is not a
problem anymore, as the system stays fully determined.

2.4 Measuring the time difference of arrival

In order to find the lag between microphones the signals need to be compared
and shifted to find the largest coherence between the signals. This coherence
can be measured in a couple of ways.

2.4.1 Delay-and-sum beamforming

First up is delay-and-sum. This method simply adds up the signals for each
possible time difference and checks when the output is largest. When this is the
case this is the real lag between the signals.

∞∑
m=−∞

|f [m] + g[m+ n]| (10)

2.4.2 Cross-correlation beamforming

Secondly there is a small variation to this method where instead of the sum-
ming method the cross-correlation function is used. In discrete time the cross-
correlation between two functions f and g is defined as stated in equation 11

(f ? g)[n]
def
=

∞∑
m=−∞

f∗[m] g[m+ n] (11)

where n is the lag and m is the time index of the signal. When the correlation
value is maximum the lag is estimated to be the real lag. In this definition the
discrete inner product is acting on signals with varying lag, therefore it is also
known as the sliding inner product.

The cross-correlation method and the delay-and-sum method are of a very sim-
ilar nature. The cross-correlation method is used in this project because of its
computation time advantage.

2.5 Sample window

The minimum length of the sample is set at 10 periods of the lowest frequency
that is to be measured in the speech. As mentioned in section 2.1 the lowest
frequency of interest is 200 Hz.

10 ∗ 1

200
= 50ms (12)

Therefore the sample must be at least 50 ms long.
This sample window should be taken at least once per second to assure that the
turning of the robot head can happen smoothly.
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2.6 Sample frequency

First of all the signal must be sampled at at least twice the highest frequency to
be accurately displayed by the signal, also known as the Nyquist frequency. In
speech this gives a minimum sampling frequency of 8 kHz. Secondly the signal
must have a sufficient amount of samples for the cross-correlation function. This
determines the resolution of the algorithm. Say the desired resolution before
error margins is 100 regions in a full circle. First the time it takes for the wave
to pass the sphere is determined.

0.15

343
= 4.4× 10−4s = 0.44ms (13)

For a resolution of 100 regions per 2 π radians this gives a desired period of
4.4µs corresponding to a sample frequency of 230 kHz.

The resolution of the beamforming algorithm is found to be the limiting factor
for the sample frequency. Therefore a sample frequency of 230 kHz is desired.

2.7 Number of microphones

Figure 3: Recognition accuracy for different numbers of sensors. [5]

From this figure it is seen that from 4 to 8 microphones the increase in accuracy
is already only 5 percentage points. Extrapolating beyond this suggests that
adding more microphones gives even stronger diminishing returns. To achieve
high robustness it is therefore chosen to use 8 microphones.

9



2.8 Microphone geometry

2.8.1 Spatial aliasing

Similar to the Nyquist sampling frequency for the temporal domain, there is
also a limit for the spatial sampling frequency. The array requires a maximum
spacing between microphones of dmax < λmin

2 where λmin is the minimum
wavelength of interest. [4] For simplicity the maximum frequency of interest
in this project is set at 2000 Hz. This is possible because the objective is not
to display the signals accurately, but rather to be able to compare them. This
frequency range contains enough information to do that.
With this maximum frequency in mind the maximum spacing dmax between
microphones is

dmax =
343

2 · 2000
= 8.58cm (14)

In order to prevent spatial aliasing, the radius of the sphere is therefore set at
7 cm.

2.8.2 Resolution

In this application the most important resolution is the azimuth resolution.
Therefore most sensors should be placed on the horizontal plane. It is chosen
that 6 sensors are spread evenly in a circle on this horizontal plane and 2 sensors
are placed on the top and bottom respectively. This is shown in figure 4.

Figure 4: The positions of the 8 microphones

2.9 Scattering

Because the microphones are positioned on a solid sphere, there is scattering of
the sound on the material. This effect is especially strong in the high end of the
frequency spectrum. In order to be able to account for this a numerical FEM
model is made in COMSOL.
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2.9.1 Comsol model

In this model a plane wave of frequency 1000 Hz and an amplitude of 1 Pa is
scattered off a sphere of radius .15 m in positive x-direction. The model can be
done in 2 dimensions since the problem is symmetrical around the x-axis.

Meshing In order to acquire an accurate solution the maximum element size
is set to λ

6 . This is the standard in acoustics modelling when using second order
elements. [1]

Results In figure 5 the background field is shown.

Figure 5: Background pressure field in Pa

In figure 6 the scattered field is shown.

Figure 6: Scattered pressure field in Pa

Combined these two give the total field as shown in figure 7.
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Figure 7: Total pressure field in Pa

As a measure for the magnitude of the field the sound pressure level (SPL) in
dBs is used.
First the scattered field magnitude is shown in figure 8.

Figure 8: Scattered field magnitude in dB

Finally the total field SPL is plotted.
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Figure 9: Total field magnitude in dB

From this data a head-related transfer function can be found relating the diffracted
pressure field to the incoming pressure field.
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3 Implementation

3.1 Choice of data acquisition hardware

It is considered to eventually use a Raspberry Pi to process the data, so that
the entire hardware can be fit inside the robot head. The hardware is dis-
cussed based on properties such as price, timing, size and compatibility with a
microcomputer such as the Raspberry Pi.

3.1.1 DSP

A digital signal processor has the capability to both read out 8 microphones
in real-time and process the data immediately. This is however relatively dif-
ficult and time-consuming to implement. With this difficulty also comes great
customizability in that the timing settings can be completely controlled.

Figure 10: A digital signal processor

3.1.2 Sound cards

To be able to read out 8 microphones a sound card with 8 inputs can be used.
This is however still of medium size and cannot be used on the Raspberry Pi
directly.
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Figure 11: M-audio Delta 1010-LT Sound card

3.1.3 Digital multitrack recorder

This is definitely a very quick and easy solution and very similar to the sound
card option. It is however extremely bulky and would not fit inside the robot
head.

Figure 12: A multitrack recorder

3.1.4 USB oscilloscope

While not designed for the task of recording sound, this device can sample any
8 voltage channels at a very high sample rate. This solution can not do real-
time acquisition, however it can still acquire the data within a half second, which
means that it is still a semi real-time solution. A pause before changing direction
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is however in fact not that important when creating a humanoid robot, it might
even be considered more humanlike. Apart from this it only offers positive
points, it is only 5x5x1 cm and has sample frequencies of up to 2.5 MS/s.

Figure 13: Saleae Logic 8

3.1.5 Comparison

Timing Sf Ease of use Price Size Real-time Pi comp. Total
DSP ++ +- - + + + - 3
Sound card + + + + – + - 3
Digital multitrack recorder ++ +- + - – + - 0
USB oscilloscope ++ ++ ++ +- ++ - + 8

On this basis the USB oscilloscope is chosen for the data acquisition.
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3.2 Hardware

The hardware setup is shown in figure 14.

Figure 14: The complete setup

In the project a laptop is used to do the data processing in MATLAB. The other
components are discussed below.

3.2.1 USB oscilloscope

In choosing the Saleae device there is a lot of room for improvements to the
project. The Saleae unit is both very small and has very high sample rates.
This makes it ideal to be fit in a robot head and its USB port makes it possible
to be combined with a Raspberry Pi microcomputer. There is however currently
no support for running the acquisition software on a Raspberry Pi.
Real-time It was mentioned earlier that the USB oscilloscope cannot do real-time
acquisition, instead it can only do data-logging. This is because the software
is not ready for this. However because the samples necessary for this project
are so small that this is not a problem. Logging the sample and exporting it to
a .mat file takes approximately 0.3 seconds. Combined with the 0.1 seconds it
takes to run the MATLAB code this satisfies the demand of 1 samplewindow
per second. Saleae is working on the possibility for real-time input in the future.
Sample frequency The 2.5 MS/s sample frequency of the Saleae device is in fact
a lot higher than necessary. Luckily there are also lower sample rates available.
The sample rate was lowered to 625 kS/s to speed up the sampling process.

3.2.2 Microphones

Simple miniature electret microphones are used with a signal to noise ratio of
60 dB.
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3.2.3 PCB

A printed circuit board is designed in order to power the microphones, amplify
them and connect them to the data acquisition unit. The electret microphones
are powered via a USB port from the laptop. The amplifier circuit is shown in
figure 15.

Figure 15: Amplifier circuit for each microphone
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4 Results

4.1 Simulation results

A MATLAB script has been constructed to reflect the operations as stated in
section 2.3. The code can be found in appendix A.
In order to test the program for different SNR ratios, microphone inputs are
simulated for a 1 kHz sine wave from the [0, -1, -1] direction. These delays
are then attempted to be extracted using the cross-correlation method and the
system solution is approximated by least squares.
These solutions are then compared to the real solution for a range of SNRs.
First the percentage error in the azimuth direction is constructed:

|∆θ
2π
| (15)

Then the average value of 30 of these values is taken in order to average out the
influence of the noise.

Figure 16: Azimuth error percentages

From figure 16 it is concluded that the algorithm is accurate for SNRs above 10
dB.
The same is done for the elevation φ.

19



Figure 17: Elevation error percentages

As seen in figure 17 the graph is very similar to the first test, but it is worth
noting that the algorithm still gives only a 14 percent error for a SNR around
1. This is most likely because the signal is exactly 0 before it starts and after
it ends. Therefore it is very easy for the beamformer to determine the correct
time difference of arrival.
Surprisingly the accuracy in the azimuth is lower than in the elevation even
though the microphones are concentrated in the horizontal plane.
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5 Conclusions and recommendations

5.1 Conclusion

A robust beamforming algorithm was constructed on the basis of a cross-correlation
method. Furthermore a literature study was performed on beamforming. A
combination of hardware was chosen and put together.

5.2 Discussion and recommendations

In determining the minimum sample frequency it was assumed that the shifting
of the signal had to happen simply by shifting one sample over the next. This
method sets relatively high demands for the sample rate. Instead a method like
a fractional delay filter can be used in order to maximize the resolution. This
filter makes it possible to shift a signal by an amount that is not a multiple of
the sampling period. This way a lot of data acquisition devices with low sample
frequency open up for reconsideration.
The scattering was not included in the final algorithm due to time constraints.
Doing this will improve especially the accuracy in the higher part of the fre-
quency spectrum. Because the scattering is very much frequency dependent
this requires the algorithm to be rewritten to the frequency domain.
In the future a sphere can be designed including a camera and a light for the
interaction with humans. This can for example be 3d-printed. Secondly, in
order to be able to implement the system into a small robot head the data
processing has to be scaled down.
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Appendix A Matlab code

function [evalsols, timeDiffs, b] = beamformerleastsq(snr)

%% Initialize

sim = 1; % simulate wave or
% sim = 0; % use actual mics
load('untitled.mat');

sf = analog sample rate hz; % sample frequency
smpNum = num samples analog - 1; % number of samples

%% Coordinates
micPosSph{1} = [0, 0]; % [azimuth, elevation]
micPosSph{2} = [0, pi/2];
micPosSph{3} = [pi/3, pi/2];
micPosSph{4} = [2*pi/3, pi/2];
micPosSph{5} = [pi, pi/2];
micPosSph{6} = [4*pi/3, pi/2];
micPosSph{7} = [5*pi/3, pi/2];
micPosSph{8} = [0, 2*pi/3];

radius = .075;

micNum = length(micPosSph);
micPosCart = cell(1,8); % mics cartesian positions
for k = 1:8

micPosCart{k} = [ radius*sin(micPosSph{k}(2)) * cos(micPosSph{k}(1)),
radius*sin(micPosSph{k}(2))*sin(micPosSph{k}(1)),
radius*cos(micPosSph{k}(2)) ];
if k > 1 && k < 8

micPosCart{k}(3) = 0;
end
if k == 5

micPosCart{k}(2) = 0;
end

end

%% Simulation of wave

c = 343; % speed of sound

simfreq = 1000;
realfreq = simfreq/sf;

if sim
% snr = 6; % signal to noise ratio in dbs

noise = ((10ˆ(snr/20))ˆ-1);
% noise amplitude with a signal amplitude of 1
signals = cell(1, micNum);
disDiffSim = zeros(1, micNum);
input = [0,-1,-1];
for o = 1: micNum

disDiffSim(o) = (radius - radius*dot(input/norm(input),
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micPosCart{o}/radius) ) / c;
% dot product the unit vectors
nonzerosamples = ceil(smpNum - sf*disDiffSim(o));
signals{o} = cat(2, zeros(1, floor(sf*disDiffSim(o))),
sin( (2*pi*realfreq)*(1: nonzerosamples) )) + noise*(-1 +
2*rand(1, smpNum)); % concatenate the zeroes

end
end

%% Signals

if !sim
signals = {analog channel 0', analog channel 1', analog channel 2',
analog channel 3', analog channel 4', analog channel 5',
analog channel 6', analog channel 7'};

end
% Middle top, circle1, circle2, circle3, circle4, circle5, circle6, middle bottom

%% Cross correlation with respect to mic 1

N = micNum - 1;
% N = N-2;
timeDiffs = zeros(N, 1);

for i = 1: N
[acor,lag] = xcorr(signals{1}, signals{i+1}); % get cross correlation,
acor is correlation value array

% and lag is corresponding lag in samples
% positive lag means the middle top mic is
% reached later than the outer mic so
% all delays are with respect to the
% first mic reached.

[~,I] = max(abs(acor)); % index of the highest value of the crosscorrelation
lagDiff = lag(I); % real lag in samples
timeDiff = lagDiff/sf; % real lag in seconds
timeDiffs(i) = timeDiff;

end

disDiffs = timeDiffs * c;

% find the vectors from each mic to the reference mic
micToMic = cell(1, N);
for p = 1: N

micToMic{p} = micPosCart{p+1} - micPosCart{1};
end

%% Do math to find direction

A = zeros(N, 3);
b = zeros(N, 1);

for n = 1: N-1 % construct system
for m = 1: 3

A(n, m) = micToMic{n}(m);
end
b(n) = disDiffs(n);
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end

bnew = A'*b; % least squares
Anew = A'*A;

evalsols = linsolve(Anew, bnew);
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