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Abstract

Anomaly based intrusion detection systems (IDS) are typically employed for protecting web
applications. Changes in the applications, also known as Web Concept Drifts, negatively
impact the accuracy of IDS, increasing the number of false alerts. To adapt the IDS to
application changes, the retraining of the model is required. Unfortunately, retraining is
a time consuming task that requires a considerable effort from system administrators and
security experts. Different methods have been proposed in literature to deal with this
issue. One of these, called Response Modeling, exploits the structure of HTTP responses
to detect changes and automatically adapt the detection model to application drifts.
In this thesis, we survey existing work that addresses the Concept Drift issue and we test
one of them on simulated as well as real scenarios. The results seem to indicate that the
existing approach is still not mature enough for consistently reduce the FPR (false positive
rate). More precisely, it seems that just a specific type of alerts can be meaningfully
reduced while most of the others are not decreased. We propose some requirements and
future directions to improve such solutions, aimed at refine the efficacy of this technique.
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Chapter 1

Introduction

1.1 Context

Nowadays, web applications are widely used for both individuals and business alike. More
and more systems are connected to the world wide web, allowing businesses to reach cus-
tomers across the globe and providing people with the ability to perform bank transactions,
online payments and participate to online social communities. Since online services store
sensitive information users wish to protect, there is an increased interest in securing these
processes which are constantly subject to cyber attacks. According to Symantec’s internet
security threat report, there have been more than 6000 total vulnerabilities in 2014, 20%
of which were considered critical, meaning they could be exploited to access sensitive data
or compromise website content [14]. Table 1.1 shows the top 10 website vulnerabilities
exploited in 2014, including SSL/TLS Poodle Vulnerability and Cross-Site Scripting.
Intrusion detection systems, also known as IDS, are used to strengthen the security of web
applications. There are two main classes of such tools: signature based and anomaly based.
Signature based intrusion detection systems rely on a number of signatures used as patterns
to spot existing attacks [26]. Unfortunately, it is challenging to keep signatures up to that
with respect to the massive number of continuously discovered attacks. Anomaly based
IDS, on the other hand, model the normal behaviour of an application and detect attacks
based on the idea that attacks generate anomalies, which are associated with malicious
activities. Generally, the behaviour of a web application is defined as a set of characterist-
ics (or features) like the character distribution of the parameters processed during normal
activities, the name of the parameters and the sequence of resources accessed during a
session. Anomaly based systems seem to be unable to adapt to changes, also known as
Concept Drift, to the monitored applications. Due to a concept drift, the features and
functionalities of the application including the structure of the HTTP requests, sessions
and responses change due to software updates. When anomaly based detection systems
are employed in such circumstances, legitimate interactions between clients and monitored
applications might be flagged as anomalous, since the models used for detection do not
match their new status. This phenomenon leads to an increased number of false alerts,
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Rank Name

1 SSL-TLS Poodle Vulnerability

2 Cross-Site Scripting

3 SSL v2 support detected

4 SSL Weak Cipher Suites Supported

5 Invalid SSL certificate chain

6 Missing Secure Attribute in an Encrypted Session (SSL) Cookie

7 SSL and TLS protocols renegotiation vulnerability

8 PHP ’strrchr()’ Function Information Disclosure vulnerability

9 HTTP TRACE XSS attack

10 OpenSSL ’bnwexpend()’ Error Handling Unspecified vulnerability

Table 1.1: Top vulnerabilities on Web servers in 2014 according to Symantec’s studies.

jeopardizing the overall detection accuracy. To deal with this problem, the IDS has to un-
dertake a retraining process which is time consuming, and requires a joined effort between
developers, system administrators and security experts [31].

1.2 Intrusion Detection Systems

There are currently two main types of intrusion detection systems employed to protect
web applications: signature based and anomaly based. The first class of detection systems
is based on a set of signatures of known attacks, which is being updated as new vulner-
abilities are discovered. Unfortunately, these systems have to be kept updated frequently
which sometimes seems to be difficult considering the amount of new attacks continuously
being uncovered and the security expertise these systems require [26]. The second class of
intrusion detection systems models the normal behaviour of a web application and detects
attacks based on the idea that attacks generate anomalies, which are usually related to
malicious activities. Unlike signature based IDS, these tools are capable of self updat-
ing and adapting to new attacks, thereby limiting the maintenance and manual updates
required [31]. In the next sections, we will provide a more detailed description of both
systems and we will give some examples of IDS being used in production environments.

1.2.1 Signature based IDS

Signature based IDS, also known as misuse based IDS, take advantage of existing database
of signatures describing different types of attacks. This initial set is specified a priori and
updated as new attacks are discovered. An example of such systems is Snort, a packet
sniffer and logger used as network intrusion detection tool to protect TCP networks. Snort
takes advantages of a set of rules, representing signature of known attacks that can be
updated using a dedicated programming language. Snort is able to detect and report a
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variety of attacks such as buffer overflows, stealth port scans and CGI attacks through
a real time alert system [34]. Another commercially available signature based intrusion
detection system is Real Secure [9], produced by Internet Security Systems. Real Secure is
a three layer IDS consisting of a host and network recognition engine and an administrator
module. The network and host recognition engines are responsible for detecting attacks
that match existing signatures at network and system level respectively. These two engines
can also perform intrusion response activities such as terminating a network connection,
reconfiguring firewalls, terminating user processes and blocking user accounts. The ad-
ministrative module handles the data coming from both engines and displays it using a
single located administration interface [24, 15, 20]. The system Shadow [10], built as a
joint project by Naval Surface Weapons Center Dahlgren, Network Flight Recorder, the
National Security Agency and the SANS Institute, is a public domain signature based in-
trusion detection tool which is composed of multiple stations responsible for detection and
analysis. The detection (or sensor) stations monitor the network traffic at key locations
like outside the firewall, capturing without preprocessing packet headers and logging the
traffic information into files that are periodically read by the analysis station. As with Real
Secure, the results are displayed in a Web-based interface for further analysis [24, 15, 20].

Signature based IDS systems are effective against specified, well known attacks. They
provide lower false positive rates compared to anomaly based ones [33]. However, they are
incapable of effectively detecting zero day exploits based on new vulnerabilities, even if they
are just minimum variants of existing attacks. Besides, some exploits such as those causing
local buffer overflows or those that take advantage of race conditions do not necessarily
have a fixed pattern [18]. Moreover, the signature set used by signature based intrusion
detection systems contain a considerable amount of entries which might be irrelevant for
some organizations. For instance, according to [18], the Snort version 1.8.6 relies on a set
of signatures, 516 of which are entries related to web attacks. In case a company used an
IIS web server, just a fraction of them would be relevant. The size of such signatures sets
might be unreasonably big, thereby undermining the IDS performance.

1.2.2 Anomaly based IDS

Unlike signature based intrusion detection systems, anomaly based IDS build models used
to represent the normal behaviour of monitored web applications. Any deviation from
these models is interpreted as an anomalous activity and flagged as possible attack. The
basic assumption behind this approach is that attacks generate actions that differ from the
normal functioning: whenever the difference between modelled behaviour and the observed
one exceeds a fixed threshold value, an anomaly alert is raised [26, 31, 33].
Anomaly based intrusion detection systems require a training phase during which the
models for designing the normal attitude are built. Different characteristics such as the
HTTP traffic being exchanged, the distribution of the parameter characters in a query,
the length of the attributes or others based on the sequence of queries are used as training
samples [26]. In the work presented in [31], the authors describe an approach for classify-
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ing HTTP requests that works by organizing resources representing different modules of a
web application. Each of these resources is related to a set of possible queries containing
name-value parameters pairs. These parameters are then processed to model the normal
behaviour of the application and classify legitimate values. Modeling the length of genuine
attribute values, on the other hand, is useful to spot attacks such as buffer overflows and
cross site scripting which require an amount of data to be sent significantly higher than
the one expected [26]. Besides from HTTP requests, sessions can also be used for model-
ing the normal behaviour of web applications. Accessing a login page before requesting a
private document could be an example of genuine behaviour. If such sequence is modelled
as training sample, attacks involving access to private page without authentication could
be spotted [26]. An example of session based anomaly IDS is described in [18], where the
authors introduce a Session anomaly detection system (SAD) which builds profiles of legit-
imate page sequences depending on which threshold vales are computed. During detection,
any request sequence exceeding these values is flagged as a possible attack. Another ex-
ample of web anomaly based IDS is described in [21]: the system trains itself using a stream
of legitimate SQL queries being exchanged between the web application and the back-end
layer and extracts their features, building a representation of their structure called skeleton
query. During the detection phase, SQL injections are spotted by comparing their query
structure with corresponding skeleton queries.

Anomaly based detection systems offer an adaptive solution to web application secur-
ity. Indeed, they typically do not require maintenance or manual updates to run, unlike
signature based IDS where signature databases have to be kept constantly updated by
technically skilled personnel. Moreover, unlike signature based IDS, these systems usually
support detection of zero day exploits and site specific attacks [26, 31].
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1.3 Concept Drift

Today’s web applications are dynamic and their content is frequently being updated. Web-
sites are modified frequently, either by GUI changes or by the introduction of new features.
These updates modify the structure of the HTTP request served as well as the HTTP re-
sponses’. In [31] the authors analysed the frequency of updates of real life websites by
monitoring changes in the status of responses and requests. About 40% of the applications
considered showed significant updates of page forms during the observation period while
about 30% of them changed their input fields.
Additionally, request sessions are also subject to change. The authors in [31], reports drifts
in source code repositories of three largest open source applications to verify how frequently
code sections responsible for handling HTTP requests sessions are being updated. The re-
search shows that, as with responses and requests, session variations are frequent. Changes
in either of these three classes of features lead to a phenomenon known as Web application
Concept Drift [31]. When anomaly based detection systems are employed to protect web
applications frequently being updated, the models used to detect malicious behaviour must
be retrained to match the new changes otherwise a considerable amount of false alerts will
be triggered. To clarify the reason behind this side effect, let us consider the scenario where
HTTP requests are updated in a new version of a web application. There are two possible
updates that can affect requests. The fist one, is about modifying the actual value of the
parameters, while the second one involves removing or adding a parameter. For instance,
a web application has a registration form that handles personal data allowing the user to
specify his or her date of birth using a parameter value that supports strings only in a spe-
cific format. If a new version of the web application is deployed to support also a different
date string format and the anomalous detection system used for protecting the website is
not updated accordingly, the system will flag any legitimate request containing these new
or modified parameters as malicious. Indeed, the models used for detection rely on some of
the methods described in Section 1.2.2, such as strings character distribution or length. If
the new deployed application introduces changes in parameters values, these will reflect on
the distribution of the characters in the parameters as well as on their length. Therefore,
new legitimate requests containing these values will be reported as anomalous [31]. An-
other scenario that clarifies the importance of models retraining in case of Concept Drift is
when the web application being monitored is updated to handle different request sessions.
Session drifts take place any time an application is updated to support new sequences of
resource path: adding new pages or removing them as well as modifying the behaviour of
the system to accept a different order in which the resources are accessed affects the models
used to classify legitimate sessions. For instance, an application grants users the ability to
read the contents of a forum page at /form-results only after authenticating into the sys-
tem at the page /auth. After some time, the software is updated to allow users to display
the content of the forum page even without authenticating. In this new version, legitimate
request sessions include /form-results,/auth. Now, while the probability of this sequence in
the previous version of the application was close to zero since users had to authenticate in
order to view the forum page, the likelihood of it with the current version of the application
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is much higher. This affects the models used for detecting malicious sequences based on the
access order of resources called during normal operation [31, 26]. New, legitimate request
sessions will be reported as anomalous if the system is not retrained accordingly. There-
fore, whenever an application drift arises, it is necessary to retrain the learning models to
avoid false alerts caused by misclassification of now legitimate actions. If the models are
not retrained to meet the new changes, the system will flag genuine inputs as potentially
malicious. Retraining models for anomaly detection is a time consuming process which re-
quires a considerable amount of work by security experts and administrators. That’s why
having an automated mechanism that detects whether the application has been changed
and updates the detection models accordingly is helpful.

1.4 Contribution

In this master thesis, we evaluate one of the techniques that have been proposed to deal
with the Concept Drift issue, using both simulated and real scenarios. More specifically,
we tested a technique presented in [31] that exploits the content of HTTP Responses to
update the learning models and reduce the amount of false positives, also known as ”Re-
sponse Modeling” or simply ”Adaptive Learning”. We performed different tests using an
experimental environment where a monitored web application was being updated by intro-
ducing new functionalities. Moreover, we tested the technique with the internal network
of a financial institution where the number of false alerts triggered after application drifts
is too high for security experts to process.
The results show that, even though the selected technique just partially reduces the overall
FPR, is does decrease specific types of false alerts (those related to parameters not in the
learning model). As a matter of fact, some of the alerts triggered are actually increased as
a side effect of this process. These alerts include those related to parameter values, based
on the length and other features of the parameter vales existing in the learning model.
In this master thesis, we propose different methods that could improve this approach, by
limiting its side effects.

1.5 Thesis Outline

This work is structured as follows. First of all, we will introduce some of the existing
techniques that have been proposed to solve the concept drift issue as well as the research
question we are addressing. In Chapter 3 we will introduce the experimental environment
and describe its architecture. Chapter 4 details the methods used to perform the tests.
Chapter 5 describes the testing phase, showing the results achieved with both the simulated
and real financial environments, reporting and comparing alert rates obtained with and
without the Response Modeling mechanism. Finally, in Chapter 6 we will sum up the work
done and discuss new approaches to be considered for future work aimed at improving the
solution with respect to security and performance.

6 Concept-Drift in Web-Based IDS



Chapter 2

Related Work

Self-adaptive techniques for anomaly based IDS have also been proposed to address Concept
Drift in domains not necessarily related to web applications. In [35], the authors propose
an innovative machine learning technique for dynamic adaptation of an anomaly based IDS
intrusion models based on swarm intelligence: a bio-inspired method which emulates the
behaviour of swarms of animals for addressing complex problems. The reason behind this,
is that swarms have the considerable ability to adapt to drastic environment changes and
keep functioning even if most of its entities no longer exist. Similarly, anomaly based IDS
systems like the one proposed in [35], are simple to implement, self adaptable to external
changes and robust [25].

Another approach is described in [27], where the authors propose an adaptive anomaly
based IDS which takes advantage of Optimized Hoeffding Tree and Adaptive Drift De-
tection techniques to address concept drift. The Optimized Hoeffding Tree gathers the
misclassification rate and false alert rate from the environment and forwards it to the Ad-
aptive Drift Detection module which identifies changes and triggers adaptation. Whenever
a drift is detected, the module deletes old observations and retrains itself by running a
new classification. The authors also compared the performance of the Adaptive Drift De-
tection system with other existing detection models including ADWIN Change Detector
approach [16] and EWMA Control chart detection method [30], showing that the system
proposed is more accurate that the others and has lower false positive rate. The authors
in [29] describe how an anomaly based detection system used for detecting changes in code
execution flow has been upgraded to support self adaptation to software patches. Whenever
a software is updated, the system call behaviour of a program is likely to change from the
one monitored during training phase and classified as normal. As usual, the anomaly de-
tection must be retrained to avoid false alerts. The authors in [29] explore a solution that
allows the intrusion detection’s system call model to detect code drifts based on binary
difference analyser. The method exploits an algorithm for converting the execution-graph
used by the anomaly detector engine according to the output of the BinHunt binary dif-
ference analysis tool [19]. The experiments show that the execution graphs generated with
this approach are good approximations of the ones that would have been achieved with
normal retraining of the IDS. Table 1 summarizes the methods described above, reporting

Concept-Drift in Web-Based IDS 7



CHAPTER 2. RELATED WORK

Method Field of Application Summary
Swarm Intelligence Network based IDS Self adaptation is achieved by using

an Artificial Fuzzy Ants Clustering
(AFAC) mechanism based on swarm
intelligence [35].

Optimized Hoeffding Tree Network based IDS The technique relies on Adaptive
Drift Detection tool which processes
misclassification and false alert rate
gathered using the Optimized Hoeff-
ding Tree approach. The system
identifies concept drifts and reduces
false alert rate [27].

Binary Difference Analyzer System call based IDS False positives of system call based
IDS are reduced by using the output
of a binary difference analyzer used
to spot differences between software
versions and retrain the learning
models accordingly [19].

Table 2.1: Techniques used to improve self-adaptive capabilities of different classes of anomaly based IDS.

their respective filed of application.

Concept drift is an issue to solve in order for anomaly based IDS to be effective whenever
concept drifts take place. With respect to web applications, some approaches have already
been discussed to deal with this problem, including Response Modeling approach [31] and
Adaptive Multi-Diagnoser System approach [22]. The first approach suppresses alerts re-
lated to application drifts by exploiting the content of HTTP responses returned by the
web application. This is done by parsing the forms and links returned as part of the re-
sponses’ body and by updating the learning model accordingly. This approach optimizes
the time and resources required for retraining the models, which would normally be time
consuming.

The second solution proposed relies on an multi-diagnoser framework for building a
self adaptive intrusion detection system capable of recognizing when an application has
been updated and adaptation is required. This method takes advantage of a multi layer
architecture where observations about the system status made by different diagnosers are
cross-checked to determine whether the application has drifted or not. In the next sections,
we will detail these two approaches and discuss advantages and disadvantages of both.

2.1 Response Modeling Approach

Response Modeling relies on the fact that changes in web applications can be identified by
analyzing HTTP responses returned to the clients. HTTP responses can be represented as
a series of links Li and forms Fi related to a set of target resources. The anomaly detector
system inspects any response returned to the client, extracting and decomposing each

8 Concept-Drift in Web-Based IDS
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Figure 2.1: Interaction between a client and a web application server, monitored by an anomaly based
IDS augmented with Response Modeling. The system detects web drifts by parsing each link Li and form
Fi from the HTTP response and by comparing them with the existing reference set. Every time a change
is identified, the corresponding models are retrained. Source: [31].

link Li into tokens representing the protocol used, target host, port and path. The same
decomposition takes place for forms: for any Fi found, the action attribute is extracted
and anlayzed along with any input filed and its parameters. The system processes each
response sent by the web application by decomposing it as described above. Each link
and form is extracted and its associated values compared with the set built during the
training phase. In case a new value or a new parameter has not been previously identified,
the learning model is updated accordingly [31]. Figure 2.1 shows the interaction between
client and server when Response Modeling is engaged to protect a web application.

Response Modeling can identify when the structure of a web application is updated by
introducing new resources, parameters and parameter values. Whenever the application
drifts, new models are built to adapt to its new structure. One limitation of this approach
is that it relies on the assumption that the web application has not been compromised by
an attacker. Since the IDS recognizes changes based on the structure of the documents
the application sends to the client, if an attacker had access to the web application being
monitored, he could introduce new changes that would be classified as normal updates by
the anomaly detection system. The attacker could then exploit the change introduced to
vector new threats [31]. The second limitation is that the set of requested pages might not
be always available for a given resource. In case the application being monitored supports
client side code for creating page content, for example, there is no telling which parameters,
forms and links the response will embody since those contents are established dynamically
from the client side.

2.2 Adaptive Multi-Diagnoser System approach

The Adaptive Multi Diagnoser System is another approach used to improve the self ad-
aptivity of anomaly based IDS to re-adapt to changes of the application environment. The
approach relies on a series of multi diagnosers that constantly report anomalies found by
analysing HTTP requests. These observations are processed by a meta-diagnoser that acts
as a common agent which verifies whether the observations made by the nodes are contra-
dictory. If this is the case, the meta-diagnoser recognizes that the system has evolved to
a new state. Every node of the diagnoser cluster parses the stream of HTTP requests by

Concept-Drift in Web-Based IDS 9



CHAPTER 2. RELATED WORK

Figure 2.2: Adaptive Multi-Diagnoser System architecture: the multi diagnoser architecture consists of
multiple diagnosers periodically reporting observations to the meta-diagnoser. In this example, the ob-
servations made by the red agent are inconsistent with the others. As a consequence, the meta-diagnoser
might adapt some diagnoser’s models. Source: [22]

checking access log files and builds a report of observations taken at different time intervals.
The methods for feature extraction are similar to the one discussed in Section 1.2.2, like
character distribution and string length. At the same time, the meta-diagnoser compares
the reports coming from the cluster agents and builds a global diagnosis, according to which
the models used for detection are adapted. Figure 2.2 shows the system architecture. The
decision on whether or not updating these models is based on the fact that the reports
generated by the cluster agents have to be consistent in time. Indeed, the set of diagnoses
should be partially redundant because of the overlapping views of the observes. If this is
not the case, then it is likely that some sections of the system environment are drifting and
therefore one or more models should be updated to better perform in the future. The same
applies in the medical domain, where the status of a patient (like internal temperature or
blood pressure) is monitored using different diagnosis tests at the same time. Inconsistency
in diagnoses is reason enough to believe that one of the models should be updated [22].
The system, called LogAnalyzer2 [4], has been fully implemented in C++ and tested using
a real HTTP server access log of two different research institute collected between 2007
and 2008. In these tests, the authors verified the performance of the system with and
without adaptation. The results show that the adaptation substantially reduces the false
positives rate. Moreover, the effectiveness of the diagnosers (with respect to sensitivity
and precision) seems to be improved when the adaptation is engaged, leading to a better
global detection performance.

2.3 Research Questions

The authors in [31] suggest that Response Modeling approach could be useful to reduce
the number of alerts generated by anomaly based IDS, when the web application being
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monitored drifts. Initial tests have been carried out by the authors, however an in-depth
analysis of the solution performance on real scenarios is lacking. Especially, we are inter-
ested at evaluating the reduction of false positive in highly dynamic environment which
are subject to a considerable number of concept drifts (e.g. twice a week).

In this master thesis we evaluate whether the Response Modeling approach is effective
or not at dealing with the Concept Drift issue by performing extensive tests with both
simulated and real environments. In particular, we wish to verify its performance on the
web application of a financial institution where concept drifts take place frequently, caus-
ing an amount of alerts that is impractical to evaluate for security experts. The research
question we are addressing in this work is therefore the following:

RQ: How effective is the Reponse Modeling approach in reducing false positives when
deployed in environments where monitored web applications drift frequently and the number
of alerts generated is too large for security experts to analyze?

To answer this question, we will report the results obtained when testing the Response
Modeling and discuss whether the alert rate is actually reduced whenever concept drift
takes place.

Concept-Drift in Web-Based IDS 11
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Solution

In Chapter 2, we discussed some of the solutions that have been proposed in literature to
solve the concept drift issue. These solutions seem to be effective (on paper) at reducing
the false positives rate generated by anomaly detection engines, whenever web application
drifts take place. However, these methods have not been tested deeply on real scenarios,
especially those where application drifts take place frequently.

In order to answer the research question we address in this master thesis, we developed
the method we believed most promising: the Response Modeling Approach. In this chapter,
we will introduce the solution and provide a description of the framework we set up to
perform our tests.

3.1 Framework

Our evaluation environment replicates a typical network-based IDS as showed in Figure 3.1.
The first step of any IDS is the collection of the network traffic data exchanged between
clients and the web application under monitoring. This is done by means of a network
analysis tool (Traffic Sniffer) that allows the interception (and dump) of network traffic.
The network traffic captured by the sniffer is used as main input for our experiments. Note
that, as commonly done in the filed of machine learning, a different subset of the network
traffic is used for training (training set) and testing (testing set) activities. Traffic in the
training is set parsed and interpreted in order to create a learning model that represents
the legitimate behaviour of the web application. The model we use for learning the normal
behaviour (HTTP Learner in Figure 3.1) is a slight re-adaptation of the approach proposed
by Bolzoni et al. in [17]. This model is used by the detection module (HTTP Detector in
figure) to identify HTTP requests/responses that deviates from normal behaviour, thus can
be considered anomalous. In case of anomalous transaction, the detector raises alert that
are dispatched to the operator together with information regarding the inputs classified as
malicious by the detector.

The aforementioned process is the one typically implemented by any IDS system. In
our framework we also account for a module that addresses concept drifts (Adaptive Learn-
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Figure 3.1: Overall system overview.

ing). This module implements the Response Modeling presented in [31] that parses HTTP
responses in input and updates the learning model used for detection. Clearly, the detec-
tion output (i.e. the alerts) will be influenced by the changes to the underlying learning
model. The goal of the module it to influence the alerts in order to decrease false positive.
Our goal it so quantify the impact (in terms of reduction of false positive), the Adaptive
Learning technique proposed in [31] has on real scenarios.

In the following sections we will introduce the main steps required to set up the envir-
onment, including the data collection, learning and detection phases.

3.1.1 Data Collection

The first phase required for the evaluation consists of collecting the network data exchanged
between the clients and the web application monitored by the anomaly based IDS. During
the learning phase, a network dump file (also called training set), is used to create the
learning model which will be used to represent the legitimate behaviour of the application.
HTTP transactions are parsed from the training set by using a network sniffer which listens
to a local interface and collects the traffic exchanged. The same process is used for the
detection phase: a network dump is created using a sniffer and the resulting file (test
set) is parsed and analyzed in the detection phase to spot irregularities. Depending on
the detection algorithm being used, transactions obtained from the test file that are not
consistent with the learning model are flagged as malicious and trigger an alert.
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3.1.2 Learning

As discussed in Chapter 1, anomaly based intrusion detection system take advantage of a
learning model created during the training phase that represents the normal behaviour of
the web application to detect malicious activity. This model is built by parsing multiple
features from the training set, such as the methods, parameters and parameters’ values.
These are stored in the model and compared against the ones parsed from the the test set.
The mismatch between the features in the learning model and those found in the test set is
used to generate alerts. The Adaptive Learning mechanism based on Response Modeling
also relies on the learning model to reduce the number of false positives when application
drifts take place. Indeed, the parameters and parameters’ values parsed from the HTTP
responses are inserted in the model so that new features implemented no longer raise false
alerts.

To build a good approximation of an anomaly based IDS and test the Adaptive Learning
efficiency, we had to develop a realistic learning model. Since the authors in [31] do not
specify a model structure to be used for the Response Modeling, we built our own based
on the work presented in [17]. The model is based on a tree structure – see Figure 3.2–
composed of different request’s features including hostname, methods, parameters and their
values. The hostname is the profile feature that represents the root of the tree model.
Different hosts requested would be stored as different trees in the model, each of which
would have its own subset of features. The second level of the tree is composed of the
HTTP methods being used to request a specific resource, including the POST, GET and
HEAD methods. The third level represents all the parameters’ name used in the HTTP
requests, related to the specific layer-two method they belong to, while the fourth level
contains multiple features that are used to represent each parameter and are based on
the length of its values. There are multiple types of parameters: Nominal parameters,
such as Username and Password, are used exclusively for string values while Numerical
parameters are used to handle integers. There are also Email, Path and URL parameters,
used to handle those that have email, path and URL values respectively.
The detection process will use the length of the values (among other criteria) to evaluate the
mismatch of a new request (coming from the testing set) with the model. This information
is stored in the leaves at the very last level of the tree.

3.1.3 Detection

The detection mechanism takes advantage of the learning model built during the learning
phase to identify malicious requests and trigger alerts. The detection uses multiple fea-
tures, mainly based on the length of the parameter values that have been observed and
modelled so far. Alerts can be triggered at different layers of the learning model. With
respect to the first layer, any host that was not observed during the training phase and
therefore does not exist in the model, triggers an alert. On the other hand, any request
method that does match any of the methods stored in the second layer is marked as suspi-
cious. The third layer of the learning model also affects the detection process. Indeed, any
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Figure 3.2: Learning model tree built during the learning phase.

request parameter that was not observed in the training phase is also considered malicious:
the detection algorithm will flag new parameters as anomalous and will generate an alert.
Most of the detection process, however, takes place at the last two layers of the learning
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Alert Type Description
New Method The request method is missing in the learning model
New Host The request host is missing in the learning model
New Parameter The request parameter is missing in the learning model
Suspicious Length The request parameter value has a suspicious length
Non Alpha Characters The request parameter value contains non alphanumeric characters
Non UTF8 Encoded The request parameter value is non UTF8 Encoded

Table 3.1: Alert types.

tree. Here, the length of the parameters’ values stored during the training phase is used to
identify anomalous activities. More precisely, there are two possible detection mechanisms
that can be used in this phase.
The first option is based on the range of values observed so far: the length of the test para-
meter value is compared against the maximum and minimum length seen so far. Whenever
a test value does not fall into this length range, an alert is triggered. For example, a para-
meter Username is profiled with values such as: ”Alice”, ”Bob” and ”Jordan”. Now, the
maximum value length seen so far would be 6, while the minimum would be 3. Any test
parameter value that does not fall into this range will raise an alert. Numerical parameters
are also profiled the same way: a parameter Age, for instance, would be modelled using
numerical values representing the age of a user. In this case, the maximum and minimum
depend on the actual numerical values rather than their length.
The second detection mechanisms is based on the distribution of the value lengths, and
takes advantage of the Chebyshev’s inequality [28] to compute the difference between the
test length value and the mean of the values observed so far for a specific parameter.
This distance is then used to compute a probability which is compared against a threshold
value, specified by the user. Probabilities exceeding this threshold are due to values whose
length is too far away from the mean, and therefore considered malicious. Clearly, the
number of alerts depends directly on the threshold value chosen: the smaller the value,
the more alerts are likely to be triggered. For instance, the parameter Username de-
scribed above, would have a mean length value of 4,66. Assuming the threshold value is
fixed at 0,01, values too far away from the mean such as ”Christopher” or vectors like
<script>alert("XSS")</script> will raise an alert.
The length of the parameters’ values is not the only feature used to trigger alerts. Indeed,
the character encoding as well as the presence of only numeric or alphanumeric characters
in parameters’ values also play a role. With respect to these features, every parameter
learned during the training phase is stored in the model with as specific flag used to de-
scribe its character encoding as well as whether its values contain alphanumeric or only
numeric characters. Any test parameter that has been previously modelled whose values
do not match its training reference with respect to these flags, is considered malicious and
triggers an alert. Table 3.1 reports the different types of alerts that can be raised during
the detection phase.
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Methods

To build our experimental environment we needed to implement the Adaptive Learning
techniques suggested in [31] and the normal behaviour method described in [17]. In this
Chapter, we will discuss the implementation details of our environment. Especially, we
will present the network traffic analysis software used to sniff and inspect the traffic data
and some of the modules used to implement the normal behaviour model and the Adaptive
Learning.

4.1 Network sniffing

In order to successfully make our tests we had to find a way to parse the network traffic
exchanged between web applications and clients. Wireshark 1, is an open source network
traffic analyzer typically used to sniff the data exchanged in a computer network. It sup-
ports multiple platforms including Linux, OS X and Windows and it is regularly used by
professionals such as network engineers, security experts and developers. Unlike tcpdump
[11], Wireshark has a GUI that allows users to quickly select a network interface to listen
to and start monitoring both inbound and outbound traffic. Wireshark allows data cap-
turing live, directly from a live connection and supports multiple network types including
Ethernet, Token-Ring, FDDI, serial (PPP and SLIP), 802.11 wireless LAN as well as ATM
connections. Wireshark can also capture VoIP calls and play media flows if properly en-
coded [13]. Wireshark supports multiple data filters and options for dumping the traffic
analyzed, which is especially useful for post processing network data: HTTP traffic coming
and/or directed to a web server, for instance, can be filtered out and stored in pcap files
for further analysis.
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Figure 4.1: RapidMiner process used for learning and detection. As shown in the picture, the HTTP
Learner operator creates the learning model out of the training set. The model is then passed to the HTTP
Detector operator which compares it with the test set data and generates alerts accordingly. Training and
test sets are retrieved from a network dump file previously created with Wireshark, by using the PCAP
Parser operator.

4.2 RapidMiner operators

The first step required for evaluating the Adaptive Learning mechanism was to build an
anomaly based IDS simulator. For this purpose, we took advantage of RapidMiner 2, a
platform with machine learning and data mining support that would allow us to easier
the development process. Indeed, rather than implementing a new IDS simulator from
scratch, we decided to extend software with existing support for the data processing tasks
we required.
RapidMiner is a software developed for machine learning, data and text mining as well as
analytics. It has a GUI that allows users to perform data mining operations. It provides
tools also called ”Operators”, that can be used for different purposes, including process
control, repository access, modeling as well as data import and export [8]. RapidMiner
is fully written in Java 3 and it is also easily extendible: developers can use and modify
existing code to customize data processing. RapidMiner is currently used in different fields,
from business and education to rapid prototyping [23]. It supports different displaying
methods including 3-D graphs, scatter matrices, trees and other charts useful to better
visualize processed data.

1https://www.wireshark.org/
2https://rapidminer.com/
3http://www.oracle.com/technetwork/java/index.html
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All these features made it particularly suitable for our project, since at least some of the
operations required were either already available or extendible from existing sources. In-
deed, thanks to RapidMiner’s capabilities, we managed to build new software comfortably
and integrate it with the existing GUI environment. Nonetheless, we had to implement all
the required operators for parsing the network dump pcap files, building the IDS learning
and detection process as well as the module required for the Response Modeling. In order
to display the data correctly, we also had to develop customized renderers that would allow
us to view the learning models as a tree structure. Figure 4.1 shows a RapidMiner process
where both the learning and the detection modules are employed. In the next paragraphs
we will describe each of the implemented operators.

4.2.1 PCAP Parser operator

This operator is responsible for parsing the network dump files that will be used as training
and test set. It takes a file path as input filed, representing the location of the pcap file
do be parsed. This operator processes the network data and puts it in an data table to be
used for the learning and detection phases.

4.2.2 HTTPLearner Operator

The implementation of the learning operator reproduce the tree structure of the learning
model discussed in Section 3.1.2: the root class HTTPModel contains the mapping between
the Profile of the host requested by the client (the root layer of the tree) and the rest of the
tree structure, represented by the ParamModel class. This mapping is defined as field of
the class, of type Java HashMap [2]. Multiple requested hosts would be stored as multiple
keys in this map, each of which would have its own ParamModel class instance containing
the rest of the tree layers. The Profile class is used to map Hostnames with the rest of
the tree structure. The class ParamModel, on the other hand, maps request methods with
the list of their related parameters. Much like the mapping of the HTTPModel class, it
is stored as Java HashMap, linking objects of type Method (containing the name of the
requested method) to the list of Param class instances (representing the parameters).

Layer three of the model is implemented by taking advantage of the hierarchy of the
Java programming language. Indeed, since the model had to support multiple parameter
types including URL, Paths and Emails, we designed a hierarchical structure where the
class Param would store basic information about a parameter while its values and corres-
ponding length data would be stored in subclasses. Each parameter is therefore represented
as an extension of the Param class and belongs to a specific subclass depending on the
nature of the parameter itself. Available subclasses include: NominalParameter class, Nu-
mericalParameter class, URL parameter class, Path parameter class and Email Parameter
class. Each of these are composed of multiple fields, used to keep information about val-
ues and their respective length. These values are stored in the last layer of the model
tree, and are used for the detection process as a template. Some of these features include
average, minimum, maximum length of the values seen so far as well as their respective
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Figure 4.2: Class diagram of the learning process.

Figure 4.3: Class diagram of the Param class and its subclasses.

variance. There are also some additional fields required for the detection process, including
alphanumeric, numeric and UTF-8 flags used to verify whether the parameter handles only
values containing alphanumeric or numeric characters or whether their values are UTF-8
encoded. Figure 4.2 illustrates the implementation structure of the learning module, while
the hierarchy of the parameter classes is shown in Figure 4.3.

4.2.3 HTTPModelRender Render

The HTTPModelRender is a module used for displaying the HTTPModel created during
the learning process. It works by traversing the model tree and displaying all four levels of
the model. It visualizes a tree, having the host name as root, method as second layer and

22 Concept-Drift in Web-Based IDS



CHAPTER 4. METHODS

Figure 4.4: Output of the HTTPDetector reporting information about the alerts generated.

their related list of parameters as third. The last layer contains the information about the
length of their values, including minimum, maximum, average and variance. An example
output of this renderer in visible in Figure 3.2.

4.2.4 HTTPDetector operator

The class that implements the detection process is named HTTPDetector. It supports
multiple parameters, raging from the input detection model required for the detection, the
test data to be analyzed as well as the threshold value required in case the distribution
method is used. The class generates a list of alerts which are stored in a Java ArrayList
[3], as the detection process runs. This list is then embedded into a data table by the
HTTPDetectionOperator, returned as output. The alerts generated provide information
about the source IP, the method, the date, the parameter that caused the alert and its
value (if the alert is caused by a parameter), as well as a description of the alert. Figure 4.4
shows an example of alerts triggered by the HTTPDetectionOperator.

4.2.5 ResponseModeling Operator

The Response Modeling operator parses HTTP Responses from a network dump file and
updates the learning model passed as input accordingly. The output of this process is a
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modified version of the HTTP learning model containing new parameters and/or paramet-
ers’ values that have been parsed from the HTTP Responses.

As for the implementation, the Response Modeling process is composed of different
classes. The ResponseBodyParser, RecorderedHttpResponse class as well as the HttpRe-
sponseHandler class, are responsible for handling the network flow and extract the HTTP
Responses from it. The class ModelUpdate, on the other hand, performs the actual model
update by filling it with the parameter-value data that has been extracted from the re-
sponses.
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Evaluation

In this Chapter, we will report the results obtained with the Response Modeling mechanism
with a simulated dataset as well as with real data. In order to obtain the simulated dataset
we set-up an open source web application to which we added new modules to simulate a
concept drift. For the real dataset, we obtained real data coming from a financial institution
where concept drifts take place frequently (several in a week). The data set for the real
case has been obtained by sampling network data several times during more than a month.
In the following, we will first discuss the setup, the experiments and the results obtained
with respect to the simulation data. Afterwards, we will describe the experimental process
executed w.r.t the real scenario at a financial institution. Unfortunately, in this case we
will not provide any details regarding the content of the data due to confidentiality reasons.

5.1 Simulation environment

In order to test the Response Modeling approach, we set up a simulation environment
composed of OpenMRS 1, an open source web application running on our local environment,
an automated web crawler capable of interacting with each form and input field and a
network sniffer used to dump and analyze the traffic generated. In the following sections
we will describe each of these components.

5.1.1 OpenMRS

OpenMRS is a general purpose open source medical record system. It was developed as
software to support healthcare in developing countries. The application supports differ-
ent systems including Linux, Windows and Mac OS X. OpenMRS is based on a modular
structure that allows users to add new features without the need to modify the internal
code. The same concept applies for the data used by the system: indeed, ”dictionar-
ies” representing data items can be uploaded into the internal MySQL database without
manually creating tables or modify the database structure whatsoever [32, 6]. The multi

1http://openmrs.org//
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modal architecture of OpenMRS makes it particularly suitable for our testing purposes.
As a matter of fact, the main requirement for testing the effectiveness of the Response
Modeling approach is to verify whether it reduces the false positives rate whenever the
application being monitored drifts.
As mentioned earlier, OpenMRS supports multiple modules updates including new forms,
input fields and other modifications that actually change the application structure. There-
fore, by simply adding new modules to the application, we could simulate application drifts
and verify whether the overall alert rate drops after the Response Modeling.

5.1.2 Web Crawler

To generate meaningful network data, we need an automated web crawler tool that would
interact with the application by filling forms and other user inputs as well as visiting links.
The crawler is used twice during our experiments: (i) to build the training set and (ii)
to exercise the web applications after a new module has been installed to simulate the
activities generated in case of a concept drift. Wireshark is then used to sniff the traffic
on our local network interface and to generate pcap files that will be analyzed using our
IDS simulator prototype.
Burp Suite 2 is the crawler we decided to use for our experiments. It is a Java based
application that can be used as security test tool to secure or exploit web applications. It
is composed of a Proxy server and an Intruder which can be used to automate attacks such
as SQL injections, cross-site scripting and parameter manipulation. Burp also provides a
web crawler that automatically interacts with the target application by filling forms and
following links. The crawler, called Web Spider, can be customized to modify the content
to be submitted to forms, and use specific credentials to access restricted pages that require
authentication and handle session cookies [1].
The traffic generated by Web Spider can be intercepted by Whireshark server for further
analysis, an option that has been particularly useful with respect to our test suite. We also
took advantage of the Web Spider’s form auto fill capabilities to generate random inputs to
submit. This was useful for testing the new functionalities introduced when installing new
modules on top of the default OpenMRS application. Indeed, these would likely produce
new forms and input fields previously missing. Finally, the data generated is passed to our
software prototype for creating the learning model and performing the Response Modeling.

5.2 Simulation results

After downloading the default version of the open source web application OpenMRS, we
deployed the WAR file using Tomcat 7 as Servlet Engine and installed some demo data
in the MySQL database schema required to run the application [12, 5]. Afterwards, we
launched the Web Burp Suite web crawler as well as Wireshark to sniff the traffic on
our local interface. The crawler was able to automatically fill out and submit forms with

2https://portswigger.net/burp/
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random data, besides from visiting links and exploring all the accessible resources.
The network dump obtained was then used in our Rapid Miner extension as a training
set to build the detection model. The following step of the test process is to drift the
application in order to cause an increased amount of false alerts and compare the alert
rate with the one obtained when the Response Modeling is turned on. OpenMRS is built
as a modular web application so, in order to generate drifts, we just needed to install
new software available on the website rather than modify the sources. These software
packages [7] are available online and freely downloadable using an administration panel.
In order for this testing to be meaningful, we selected only the modules that are likely to
generate changes and raise false alerts, by introducing new forms and forms parameters.
These include:

1. HTML Form Entry Module: this module allows administrators to create new HTML
forms to be filled by users. The forms created are displayed in the ”Form entry” section of
the patient view.

2. Jasper Reports Module: this module generates Jasper Reports. Reports can be cus-
tomized by specifying name, description, file name of the top level report (if others were
previously created). It also allows zip files containing additional reports to be uploaded to
the server.

3. XForms Module: this module converts normal OpenMRS forms into Microsoft InfoPath
forms.

After deploying the modules, we ran the WebCrawler again and started sniffing the
traffic as done before for building the training module. We also manually filled out the
new forms and visited the links that have been introduced with the last update when the
modules were installed, to make sure that a different network traffic would be generated.
Once we obtained the training and test set, we executed the detection process to evaluate
the false positive rate. Afterwards, we executed the detection process again, but this time
using the Response Modeling mechanism to verify whether the number of false positives is
actually reduced as expected.

We also noticed that in order to have meaningful results with the Response Modeling
mechanism, the test sets used for detection had to satisfy a condition. More precisely,
when parsing an HTTP Response, we extract new parameters from forms and links. These
parameters will be added to the model of normal behaviour since their presence should
not cause a ”New Parameter” alert any longer (see Chapter 3). Clearly, to verify if the
update to the model impacts the drops of alerts, we need to be sure that HTTP Requests
containing these new parameters are contained in the testing set used for the experiment.
Therefore, we devised a test to verify the goodness of the testing set. In order to do that,
we implemented a class that would count the number n of parameters that are shared
between the responses and the requests. If such number is too small, the test set is con-
sider not useful and therefore discarded.
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Figure 5.1: Test process workflow.

Formally speaking, given A, the set of new parameters learned from the responses, and β,
the set of parameters found in the HTTP requests of the test set, if A ∩ β = ∅ then the
test set would be discarded, otherwise it would be considered useful.

Figure 5.1 shows the workflow related to the testing phase performed: on the left side,
the normal detection process is shown. Step 1 and 2 describe the learning phase were the
data from the training test is parsed and used to create the learning model. Step 3 shows
the detection phase, where the data obtained from the test set is compared against the
learning model to trigger alerts. On the right side of the picture, the Response Modeling
process is shown: Step 1 and 2 are exactly the same as with the normal detection process,
while Step 3 shows the Response Modeling processing the data from the same test set used
for detection and updating the learning model accordingly. Much like with the normal
detection process, in Step 4 the detection mechanism compares the test set data with the
learning model and triggers alerts accordingly. Finally, the alert rate generated with the
normal detection and the one generated with the Response Modeling are compared.

Figure 5.2 and Figure 5.3 illustrate the status of the learning model before and after the
Response Modeling mechanism. Listing 5.1 shows a section of an HTTP response that was
returned by the application once the new modules have been deployed. Some of the fields
of the form contained, including ”visitId and ”stop Date” were not in the learning model.
For this reason, multiple false positive alerts were triggered during the detection phase.
The Response Modeling mechanism solved this issue by updating the learning model with
these values. Figure 5.3 shows the updated learning model.
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... <script src="/openmrs -standalone/scripts/timepicker/timepicker.js?v

=1.10.0" type="text/javascript"></script >

<div id="patientHeader -endvisit -dialog" title="End Visit">

<form id="visit" action="/openmrs -standalone/admin/visits/endVisit

.form" method="post">

<table cellpadding="3" cellspacing="3" align="center">

<tbody>

<tr>

<td> <input type="hidden" name="visitId" value=""> Enter the

end date of the visit

<input type="text" id="enddate_visit" size="20" name="stopDate"

value="12/11/2014 10:21"

onclick="showDateTimePicker(this)" readonly ><br>&nbsp;&nbsp; </td>

</tr>

<tr height="20"></tr>

<tr>

<td colspan="2" style="text -align: center">

<input type="submit" value="End Visit"> &nbsp;

<input id="patientHeader -close -endvisit -dialog" type="button" value=

"Cancel"> </td>

</tr>

</tbody>

</table>

</form>

</div>

<script > ...

Listing 5.1: Section of HTTP response body.

In our experiments, we ran three different tests: in the first one we enabled only one of
the OpenMRS modules described above and interacted with the application only manually.
The alert rate obtained with the normal detection process is of 59% out of 137 HTTP
transactions processed from the test file. With the Response Modeling mechanism enabled,
this rate drops to 29%. In other words, the total number of alerts to be reviewed is reduced
from 81 to 40. The second test performed, is also successful. In this case, we installed two
modules of OpenMRS previously described and we ran the web crawler to generate more
traffic and fully interact with the new version of the web application. In this case, the total
number of HTTP transactions is 401. The detection rate with this test set is reduced from
16% to 7,4% thanks to the Response Modeling mechanism, meaning that the total number
of alerts drops from 67 to 30. The last test was performed with all three modules enabled
and using the web crawler to automatically generate traffic. This was done to simulate a
radical change of the web application, a situation that would take place in case of a full
update. In this case, the alert rate is decreased from 44% to 19% while the number of
alerts triggered is reduced from 310 to 132.
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Test case Transactions Rate before Alerts before Rate after Alerts after
1 137 59% 81 29% 40
2 401 16% 67 7,4% 30
3 635 44% 310 19% 132

Table 5.1: Alert detection rates with and without Response Modeling, obtained with the simulated dataset.

These results show that, with respect to the simulation environment we used for our
tests, the Response Modeling mechanism is able to successfully reduce the number of false
positives in case the application being monitored is updated. The results of the experiments
are summarized in Table 5.1.

30 Concept-Drift in Web-Based IDS



CHAPTER 5. EVALUATION

Figure 5.2: Learning model obtained without
the Response Modeling.

Figure 5.3: Learning model obtained with
the Response Modeling.
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5.3 Financial case results

In order to better verify the effectiveness of the Response Modeling mechanism, we also
ran tests at a financial institution were an anomaly based IDS was deployed. These tests
were performed under the supervision of a security expert who helped us gathering the
network data and performing the learning and detection processes. We were also being
told that the application monitored was updated frequently during the analysis, which
was required in order to have a meaningful test set. Due to the confidentiality of the
information contained in the training and testing data, we will not discuss neither the
details related to the content of the detection models created during the learning and
Response Modeling processes, nor the name of the financial institution that helped us with
these tests. However, we were given the opportunity to disclose the information useful
to verify the effectiveness of the Response Modeling, such as the detection rates, and the
number and type of alerts triggered with and without it.

As with the simulation environment, the first step of our tests is to extract the network
data needed to build the learning model. Once the learning model is done, we can move
ahead with the detection process. Once obtained the detection rates, we turned on the
Response Modeling and used the same test set used previously for detection to see whether
filling the learning model with responses’ input fields could help reduce the false positives
rate. In order to have a meaningful alert drop, we tested the test files as we did for the
simulation environment to make sure that the parameters learned from the responses would
also be found in the requests: network dumps that did not satisfy this condition would not
be considered suitable for the evaluation and therefore discarded.

By looking at the results obtained with the process, we noticed that the total amount
of alerts dropped just by 8%, after the Response Modeling. This first surprised us, then it
led us to believe that there must be other reasons behind it. Indeed, if we look at the drop
of alerts only w.r.t. ”New Parameter”, we see that the total drop is around 20% or more.
We believe this reduction in ”New Parameter” alerts actually corresponds to an increase
of other types of alerts as showed in Figure 5.4. Here we can see that e.g. the number
of value based alerts such as ”Suspicious Length”, ”Non Alpha Characters” and ”UTF-8
Encoded” are increasing due to the fact that the new parameters recently introduced in
the learning model do not have enough reference values to be used during the detection.
Indeed, most of the values related to new parameters learned from forms and links cannot
be found in responses’ body (such as the ones defined as input fields), which leads to an
increased amount of value based alerts.
The key observation here is that, the Response Modeling mechanism is effective at redu-
cing specific types of alerts, rather then the overall amount. To cope with this issue, an
additional learning phase could be performed to train the new parameters for a period of
time. This would fill the learning model with enough values to be used as reference during
the detection phase. We will introduce this approach in the next Chapter as part of the
Future work.
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Test IS Transactions Rate before Alerts before Rate after Alerts after Alert drop
1 71 20304 9,64% 1958 8,44% 1714 12,46%
2 46 30495 10,02% 3056 9,46% 2886 5,56%
3 91 45147 8,81% 3978 7,55% 3410 14,27%
4 95 45112 9,65% 4352 8,59% 3875 10,96%
5 43 29148 9.60% 2797 8.96% 2613 6,57%
6 91 50280 15.30% 7691 14.89% 7486 2,66%
7 91 58791 14.57% 8566 14.06% 8265 3,51%

Table 5.2: Alert detection rates with and without Response Modeling enabled, obtained with the internal
network of a financial institution.

Test Transactions NP Alerts before NP Alerts after NP Alert drop
1 20304 1233 896 27,33%
2 30495 1328 1167 12,12%
3 45147 2192 1510 31,11%
4 45112 2252 1647 26,87%
5 29148 942 702 25,48%
6 50280 2394 2006 16,21%
7 58791 4124 3656 11,35%

Table 5.3: ”New Parameter” (NP) alert rates, obtained with and without Response Modeling enabled on
the internal network of a financial institution.

Table 5.2, shows the results obtained with respect to the total number of alerts along
with information regarding the total number of HTTP transactions and the size of the
intersection set (IS ) based on the parameters found in both HTTP responses and requests,
used to verify whether the test case could be considered meaningful or not. Table 5.3, on
the other hand, shows the performance of the Response Modeling technique with respect
to the number of ”New Parameter” alerts.

The results indicate that the Response Modeling does reduce the total number of alerts,
however it is most effective at limiting those related to ”New Parameters”. As discussed
earlier, this seems to be related to the fact that the new parameters inserted in the learning
model now trigger value-based alerts such as the ones discussed in Chapter 3, including
”Suspicious Length”, ”Non UTF-8 Encoded” and ”Non Alpha Characters”. With respect
to ”New Parameter” alerts though, the Response Modeling substantially decreases the
number of false positives. As shown in Table 5.3, the average drop of these alerts is around
20%.

Figure 5.4 shows the distribution of the alerts by type, obtained with and without the
Response Modeling. As shown, the number of ”New Parameter” alerts is decreased thanks
to the auto tuning. However, alerts based on parameters’ values such as ”Non Alpha
Characters”, ”Non Numeric Characters” and ”Suspicious Length” grow due to the side
effect of the Response Modeling mechanism.
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Alert Type Before After
New Parameter 2192 1510
Non Alpha Characters 365 375
Non Numeric Characters 365 375
Non UTF8 Encoded 80 88
Suspicious Length 976 1062

Table 5.4: Alert drop by type obtained before and after Response Modeling.

Figure 5.4: Alert Type distribution before and after Modeling: the distribution is based on the data
reported in Table 5.4. As shown, even though the number of ”New Parameter” alerts is decreased thanks
to the Response Modeling, the number of value based alerts grows as a result of its the side effect.



Chapter 6

Conclusion and Future work

Today’s web applications process personal data and other sensible information that needs
to be secured against web attacks to avoid any leakage or malformation. Anomaly based
intrusion detection systems (formally IDS), provide an effective protection against these
threats, by modeling the normal behaviour of web applications based on which malicious
activities are reported as alerts. However, these IDS are by default unable to deal with
changes in the system environment being protected. This issue, also known as Concept
Drift, leads to increased false alert rates and worsens the detection accuracy. Manual
retraining of the IDS models requires substantial effort and time, therefore an intrusion
detection system capable of self adapting to environmental changes is highly desirable.
In this thesis, we have implemented and tested one of the methods proposed to address
Concept Drift, using both simulated data and real data obtained from a financial institu-
tions internal network. The method, called Response Modeling [31], relies on the structure
of HTTP responses to detect changes. Each response issued by the application is parsed
to spot previously unclassified parameters which are used to retrain the detection mod-
els. According to the results obtained, this approach (also known as Adaptive Learning)
does reduce the detection rate whenever a web application is updated. However, while the
improvement over the overall alert rate is somehow limited, it seems that the approach
effectively reduces the number of false positives with respect to a specific type of alert.
This is due to the fact that filling the learning model with new parameters parsed from
HTTP responses does not necessarily reduce the whole alert rate. Indeed, most of these
parameters cannot be associated with a specific value: for instance, parameters used in
some forms would have user-defined data for their input fields. These parameters will
therefore be learned without an exhaustive set of values to be used as model for the de-
tection process, which would then flag most of their values as malicious, when analysing
the requests. This leads to multiple parameter-values alerts, thereby increasing the overall
alert rate. However, the Response Modeling seems to be effective at reducing a specific
type of false positives: those related to new parameters. Indeed, the results obtained with
the internal financial network show that the average alert drop with respect to these type
of alerts has been decreased by c.a. 20%. This proves that, even though the mechanism
just partially reduces the overall amount of false positives, it does decrease those related
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to new parameters.

The Response Modeling approach seems effective at dealing with concept drifts in web
applications. However, it does have some weak points to improve both performance and
security wise. With respect to efficiency, parsing HTTP responses returned by the web
server might be costly considering the number of requests made by clients to large scale
servers. Besides, keep filling the learning model with new parameters and/or parameter
values might also jeopardize the overall efficiency of the detection process.
Security is also another concern when it comes to parsing HTTP responses. As a matter
of fact, the values parsed from the responses found in forms and/or links, might not
necessarily be trustworthy. Indeed, if an exploit is introduced by an attacker into the web
application some of the returned HTTP responses might embody threats. For instance,
a link containing a SQL injection or a XSS could be returned to the client as part of the
response content. The Response Modeling process as it is, would parse such malicious
value from the HTTP response and accordingly update the learning model which would
label as normal undesired values.

Moreover, as discussed earlier, the Response Modeling mechanism seems to have a side
effect on the number of alerts being triggered. More precisely, parameter values based
alerts might be increased as a result of the auto tuning process. A possible way to avoid
such scenario would be to trigger an additional learning phase, focused specifically on those
parameters parsed from responses whose values are not known yet. In the next sections
we will introduce some approaches that might be helpful for solving the performance and
security issues we discussed, to be considered as future work.

6.1 Future Challenges

6.1.1 Alert Rate Based Optimization

Even though the Response Modeling approach seems effective at reducing the number of
false alerts during application changes, it might decrease the overall performance of the
detection process. Indeed, parsing each HTTP response returned by the server and updat-
ing the learning model seems quite expensive in terms of resources and processing power
required. Since the Response Modeling process and the detection would have to take place
simultaneously to provide a continuous learning, the overall system performance might
be jeopardized. In order to reduce the performance impact of the Response Modeling
approach, we propose an optimization that takes advantage of the number of alerts gener-
ated during a specific time window. The main observation behind this optimization is that
whenever an application drift takes place, the total number of alerts generated is likely to
increase. As we discussed in Chapter 1, web drifts cause a large amount of false positives
due to the mismatch between the learning model and the current status of the application.
An increased amount of false positives also increases the overall number of alerts generated.
Therefore, an higher number of alerts in a limited time interval could likely be caused by
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an application drift. Since the Response Modeling should be run mainly after application
changes take place, there is no need to continuously parse HTTP responses. By evaluating
the current alert rate and comparing it with a fixed threshold value (to be estimated ac-
cording to the average rate), we could tell whether an application has likely been updated
and therefore whether a retraining is necessary. This approach would limit the amount
of parsing required, since the Response Modeling would only run at specific time periods.
Clearly, an increased number of alerts might not necessarily be related to a drift. Indeed,
the application might actually have been heavily attacked in a short period of time. In
such a scenario, the Response Modeling would be called anyway and the learning model
retrained even though there is no actual update. This however, would impact the overall
performance only moderately compared to the normal Response Modeling process where
each response is parsed no matter the status of the application being monitored.

6.1.2 Signature based optimization

Response Modeling can also be improved with respect to security. Indeed, as we described
in Chapter 2, this approach is based on the fact that learning parameter and parameter
values found in HTTP responses can improve the detection model reducing the overall
amount of false positives when application drifts take place. However, it assumes that
each parameter and parameter value parsed from the responses is legit. This might not
always be the case. As a matter of fact, the web application being monitored might be
compromised by an attacker who could vector an exploit such as XSS, or SQL injection
by means of a vulnerable parameter. This would then be reflected in the HTTP response
returned by the web server whenever the resource containing the exploit link or script is
requested. In such a scenario, the Response Modeling approach will parse such responses
and update the learning model with the contained malicious value, thereby compromising
the detection process. In order to avoid such a thing, the approach can be augmented with
an additional security module responsible for verifying the data parsed from the responses
before updating the learning model. This can be done by using a database of attack
signatures as support.
By applying this mechanism, corrupted HTTP responses can be detected before updating
the learning with malicious values that can compromise the detection accuracy.

6.1.3 Incremental learning

In order to cope with the increased amount of parameter values based alerts caused by
the Response Modeling process, we propose an incremental learning approach were an
additional learning phase is performed over the parameters that have been introduced
during the auto tuning phase. The reason why value based alerts are increased after
the auto tuning phase is that, the new parameters parsed from the HTTP responses and
included in the learning model do not have an exhaustive set of values to be used as
reference for the detection phase. Therefore, a considerable amount of false positives is
generated when comparing the test data against the learning model, since most of the
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values analysed for those specific parameters are flagged as malicious.
In order to deal with this issue, an additional learning phase could be used to update the
learning model with legitimate values. Recently introduced parameters can be held in a
sort of limbo status for a certain period: during this period when they are intercepted
they are used to do learning rather than detection. As a consequence, the detector will
not trigger as many alerts related to suspicious values as it would without the additional
training.

Even though this approach might help cope with the negative side effects of the Re-
sponse Modeling approach, it has some drawbacks. Indeed, if an attack is performed
during the limbo phase on any of the new parameters, malicious values can be interpreted
as legitimate causing a deterioration of IDS effectiveness. For this reason, we believe that
such values would have to be checked against a database of attack signatures, before being
inserted into the learning model: only those values that do not match any of the existing
attacks would be considered trustworthy and used for the incremental learning.
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