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Abstract

A candidate model for explaining pairing in high-Tc superconductors is studied.
When electrons polarize nearby ions, this electronic polarization can follow, and
alter its properties. An electron together with its polarization is an electronic
polaron. This is described analogously to polarons that instead use phonons.
Both a static and a dynamic model are described. Two similar existing models,
one for FeAs and one for La2CuO4, are discussed and expanded. Both long-
range electron-polarization interactions, as well as Coulomb repulsion are added.
New parameters in the case of La2CuO4 show no bound state, which is needed
for superconductivity. The addition of long-range interaction in the case of FeAs
can compensate an unscreened Coulomb repulsion. The model is also applied
to a new structure, a monolayer of FeSe grown on a SrTiO3 substrate. This
structure has achieved critical temperatures of up to 100 K in experiments. For
this structure the model shows that long-range interactions are not enough to
compensate the Coulomb repulsion, if we do not take into account the SrTiO3

substrate. SrTiO3 has a high dielectric constant and if we introduce this into
the model, we do get a bound state for FeSe. Suggestions are made for further
research.
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Introduction

In this thesis we examine superconductivity in high temperature superconduc-
tors. In particular, we study a candidate model for explaining pairing.

Background

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes.1 It is
the phenomenon where some materials transition to a state with zero resistivity,
and expel magnetic fields. For decades people would try and devise a theory to
describe this. The most successful theory was one by Ginzburg and Landau2.
This was a macroscopic theory, however, and did not describe what individ-
ual electrons were doing. This was solved by Bardeen, Cooper, and Schrieffer
(known as BCS theory) in 1957.

BCS theory

BCS theory3 was the first microscopic theory of superconductivity. The idea
is that two electrons can interact with each other mediated by phonons. The
resulting interaction is attractive for those electrons in a small region around
the Fermi surface. Such an interaction was shown to give a collective bound
state. This collective state could flow without resistance as it would take more
energy to create an excited state than the flowing electrons have. In the model
an electron with momentum k1 can emit a phonon with momentum κ, which
is then absorbed by another electron with momentum k2. The momenta of
the electrons before and after the interaction need to lie within a small region
around the Fermi surface. As we can see in figure 1, this is more easily done
when the two electrons have opposite momenta. If electron a pairs with electron
b2, they can scatter to anywhere in the green annulus. If it pairs with electron
b1 instead, they can only scatter to a limited subsection. Thus the interaction
is greatest for states with total momentum 0.

High-Tc Superconductors

BCS theory and its extension, Migdal-Eliashberg theory can not accurately
describe all materials. High-Tc superconductor classes such as cuprates and
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a

b1

b2 Figure 1: Scattering gives greatest interaction for
states with opposite momenta. The green annulus is
the small region around the Fermi surface that partic-
ipates in pairing.

pnictides would not be superconducting at such high temperatures according to
those models. Since the discovery of the first superconducting cuprates in 19864,
numerous theories have been developed, but none have garnered unilateral sup-
port. Alexandrov5 proposed a model in which the electron-phonon interaction
is strong enough that electrons will effectively carry phonons with them. To-
gether the electron and its phonon ’cloud’ are called a polaron. Polarons will
interact with each other differently than bare electrons.

Polarons

When electrons in crystals interact strongly with phonons, they deform the
lattice as they move, which influences its effective mass. An electron with its
lattice deformation is called a polaron. Many different theories that describe
polarons have been devised. We can treat the crystal as a continuum for large
polarons, or as a lattice for small polarons. If we treat the crystal as a lattice,
there are two models we can use. One is the Holstein model6 where an electron
can hop between two sites, interacting with a vibrating ion in between. This
can then be extended to an infinite lattice with electrons only interacting with
the closest ions. Another model is the Fröhlich model7, where the electron-
phonon interaction (EPI) range is infinite. Because ions are electrically charged,
a deformation of the crystal structure induces a polarization, which lowers the
energy of the electron. It can also screen the interaction between polarons. If
the electron-phonon interaction is strong enough, this screening is stronger than
the Coulomb repulsion of two bare electrons. Such an attractive interaction is
exactly what is needed to obtain superconductivity. The difference with the
typical BCS theory is that this attractive interaction is present in real space,
instead of momentum space.

Instead of phonons, electrons can also interact with other electrons by po-
larizing them. This leads to electronic polarons, which use many of the same
methods. An early description of this was done by Toyozawa in 1954.8 The
polarization wave there was conceived analogous to phonons, replacing the dis-
placement of an ion with the electronic polarization of the ion instead. An
important difference is that electrons are much lighter than ions, and as such
move much more quickly. Retardation effects are thus reduced. Recently, Berciu
et al.9 devised an electronic polaron model to describe an iron based supercon-
ductor, wherein the carriers that reside on iron polarize arsenic ions. This model
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was then adapted to cuprate superconductors10.

Aim of this Thesis

In this thesis it is the goal to develop a model of pairing that is necessary for the
presence of a superconducting state. We aim to use an electronic polaron inter-
action for this. The theory of (phononic) polaronic superconductivity used by
Alexandrov can be altered to use electronic polarons. This thesis compares the
model to the static electronic polaron model by Berciu et al.9, for both cuprates
and iron based superconductors. Recently it was found that a monolayer of FeSe
grown on SrTiO3 is superconducting up to temperatures of 100K11. Because
bulk FeSe is normally superconducting at 8K12, it is likely that the STO sub-
strate has an effect. SrTiO3 has a very high dielectric constant, which is related
to the polarizability of the constituents. So we can incorporate it into the model
as well.

In chapter 1 we will explain quantum mechanical polarization and describe
the static model. In chapter 2 we shall look at the dynamic model. In chapter
3 we will then apply the models to some high temperature superconductors.



Chapter 1

Electronic bipolaron theory

Normally, polarons are described by an electron interacting with phonons, where
the ions are assumed to move rigidly from an equilibrium position. Ions are not
rigid, however, and will deform when there is an electric field present. A simple
description of this effect considers the electrons having a constant density sphere
of charge, with its center displaced from the nucleus by a certain amount. This
displacement can be found by setting the force of the nucleus on the electron
cloud equal to the external field. The polarization is then the charge times this
displacement, and the polarizability is the ratio between this polarization and
the external field. This is easily calculated to be 4πε0r

3, with r being the radius
of the electron cloud. Of course this is a extremely simplified classical model,
so we want to figure out how to do it quantum mechanically.

1.1 Quantum-mechanical polarization

The quantum-mechanical polarization of an atom can be described with the help
of atomic transitions. The Stark effect is an example of this, where degenerate
energy levels split in an electric field. This is caused by some superpositions of
those states having a lower energy, and others having a higher energy. The way
to do this is to take two states, ψa(r) and ψb(r) and calculate the energy of a
superposition of the two in an electric potential:

E = −e
∫
d3r(a∗ψ∗a(r) + b∗ψ∗b (r))V (r)(aψa(r) + bψb(r))

= −e|a|2
∫
d3r|ψa(r)|2V (r)− e|b|2

∫
d3r|ψb(r)|2V (r)

− ea∗b
∫
d3rψ∗a(r)V (r)ψb(r)− eb∗a

∫
d3rψ∗b (r)V (r)ψa(r). (1.1)

Within perturbation theory, we can then expand the potential V (r) to its Taylor
series and neglect all but the first two terms:

V (r) ≈ V (0) +∇V (0) · r = V (0)− F(0) · r, (1.2)

4



CHAPTER 1. ELECTRONIC BIPOLARON THEORY 5

where we have used the fact that the electric field is minus the gradient of the
potential. If the states are point symmetric around the origin, as is the case for
atomic orbitals, and orthogonal to each other, the energy becomes:

E ≈ −(|a|2 + |b|2)eV (0) + eF·
(∫

d3ra∗bψ∗a(r)rψb(r) + b∗aψ∗b (r)rψa(r)

)
= −eV (0)− F(0) · p, (1.3)

where we have used |a|2 + |b|2 = 1, and defined the polarization p. Because
of the r in the integral, the only states we can consider are those that differ
exactly ~ in angular momentum, so an s and a p state, or a p and a d state,
etc. Other transitions are so called forbidden transitions, for which we need to
keep more terms in the Taylor expansion. To keep things simple we use s and
p states, because then there are only 3 transitions, instead of having multiple
initial and final states, and needing to keep track of the magnetic spin number
as well. We also take only those s and p states that are closest in energy. Other
transitions would also factor in the polarizability, but as we shall see later, they
are inversely proportional to the energy difference, thus they give only a small
correction. Switching to occupation number formalism, the Hamiltonian for this
model then is:

H = εss
†s+

∑
i

εpp
†
ipi − e~r · ~F

= εss
†s+

∑
i

εpp
†
ipi − pm

∑
i

Fi(p
†
is+ s†pi), (1.4)

εs and εp are the energies of the s and p states, and pm is the maximum dipole
moment of the transition:

pm = e〈s|~r|pi〉 · î. (1.5)

We can see this as the expectation value of the polarization for a state as+ bpi:

〈P 〉 = e〈a∗s† + b∗p†i |r|as+ bpi〉 = (a∗b+ b∗a)pm, (1.6)

and finding the maximum, noting that |b| =
√

1− |a|2. The maximum is found

for a = b = 1/
√

2.
We are assuming that the p states are symmetric, so they each give the same

result. We also neglect spin, as we make the approximation that the electrons
with different spin do not interact with each other. Therefore, we assume both
electrons to behave in the same way, and we just double the expectation values.
Now we find the time dependent solution, using the density operator:

ρ =

(
a
b

)(
a∗ b∗

)
=

(
|a|2 ab∗

a∗b |b|2
)
, (1.7)

where we assume the field is applied in one direction only. The a is then the
coefficient of the s state, and b the coefficient for the p state that is parallel to
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the applied field. The Schrödinger equation gives us the time dependence:

i~∂tρ = H

(
a
b

)(
a∗ b∗

)
−
(
a
b

)(
a∗ b∗

)
H = [H, ρ] , (1.8)

H =

(
εs −pmF
−pmF εp

)
, (1.9)

i~∂tρ =

(
pm(ab∗ − a∗b)F pmF (|a|2 − |b|2)−∆ab∗

∆a∗b− pm(|a|2 − |b|2)F pm(a∗b− ab∗)F

)
. (1.10)

Here ∆ = εp − εs. We can simplify this by using the following definitions:

P± = pm(ab∗ ± a∗b), (1.11)

Q = |a|2 − |b|2, (1.12)

where P+ is also the expectation value of the polarization operator. P+, P−
and Q can be related by:

P 2
+ − P 2

− = 4p2
m|a|2|b|2, (1.13)

Q2 = |a|4 + |b|4 − 2|a|2|b|2, (1.14)

1 = (|a|2 + |b|2)2 = |a|4 + |b|4 + 2|a|2|b|2, (1.15)

P 2
+ − P 2

−
p2
m

= 1−Q2 (1.16)

Now we find the equations of motion:

i~∂tP+ = −∆P−, (1.17)

−~2∂2
t P+ = ∆2P+ − 2∆p2

mFQ, (1.18)

i~∂tP− = −∆P+ + 2p2
mFQ, (1.19)

−~2∂2
t P− = ∆2P− + 4p2

mF
2P− + 2i~p2

mQ∂tF, (1.20)

i~∂tQ = 2P−F, (1.21)

−~2∂2
tQ = −2∆FP+ + 4p2

mF
2Q+ 2i~P−∂tF. (1.22)

The simplest situation is where the field is static, and the polarization does not
change. Therefore, for the moment, we only have to find the static solution,
where all time derivatives are 0:

P+ =
2p2
mQ

∆
F =

α

2
QF, P− = 0, Q =

1√
1 + αF 2

∆

, (1.23)

where we have used eq. 1.16. For small fields the ion stays mostly in the ground
state, so Q ≈ 1 and the polarization is proportional to the field with the ratio

equal to the polarizability, α =
4p2m
∆ , where we have used that the polarization is

twice P+ because of spin. Usually α is given in Å3, so we have to divide by 4πε0
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and get α =
p2m
πε0∆ , but for simplicity we neglect the prefactor unless needed for

explicit calculation. The energy relative to the ground state is simply:

E =
∆

2
(1−Q)− P+ · F =

∆

2
−Q∆ + αF 2

2
=

∆

2

(
1−

√
1 +

αF 2

∆

)
. (1.24)

Like the polarization, the energy here is for one electron, but if the ion has
two electrons (one with spin down and one with spin up), we need to double
the energy. Extending this to p to d transitions, we see that we could have
6 electrons, so if the initial and final states are respectively degenerate, the
polarization and energy would be multiplied by 6, and even more for higher
transitions. The reverse, d to p transitions, where we have up to 10 initial states,
does not multiply the values by 10, because not all transitions are allowed due
to conservation of angular momentum in the z direction. For instance an x2−y2

orbital only has transitions to x and y states but not to the z state.
If the states are not degenerate, we have to take more care in calculating

these values, and likely would have to use a polarizability tensor and keep track
of the different level splittings. In the specific case of a cubic lattice, the x2−y2

and 3z2 − r2 orbitals are separated in energy from the xy, xz and yz orbitals,
while the p states stay degenerate.13 With conservation of angular momentum
taken into account, this gives us either 2 or 4 transitions for each direction of
the field, depending on which states have higher energies. Here we are assuming
the splitting is large enough to neglect the lower lying states. We also assume
that the electrons that are polarized are at the Γ point of the Brillouin zone
(i.e. the momentum is zero), which is appropriate as first order perturbation
theory only considers interaction where the momentum of the polaron does not
change. For higher order perturbation theory both the energy splitting and the
degeneracy change. For an accurate description, the bandstructure must first
be calculated.

1.1.1 Application to the electronic polaron model

Now that we know how the energy of an atom or ion changes due to the polar-
ization of an externally applied field, we can apply this to an electronic polaron
model. The hole or electron generates a field at the ion, which polarizes it,
and reduces the energy, which we calculate with help of eq. 1.24. To find the
energy reduction of a bipolaron a certain distance away, we can just add the
fields generated by each of the two holes, and insert it in to eq. 1.24 as well. Of
course, the single holes also had their energy reduced, so for the binding energy
of the bipolaron we take the difference:

UBP = E12 − E1 − E2. (1.25)

Here E12 is the energy reduction of the ions due to both polarons polarizing
them, E1 and E2 how much the energy would be reduced if there was only one
polaron present. Usually E1 = E2, but this is not always the case. Meanwhile,



CHAPTER 1. ELECTRONIC BIPOLARON THEORY 8

the occupancies of the states are:

|a|2, |b|2 =
1

2

1± 1√
1 + α|F |2

∆

 =
1

2
(1±Q), (1.26)

and we can use this later to describe the hopping of electrons or holes. Normally,
in a tight binding model, we describe electrons as being mostly in an atomic
orbital state, as opposed to the usual Bloch wave. The electrons can then
hop from site to site via the overlap between neighboring wavefunctions. In
a polaron model, however, the electrons are ”dressed” by phonons, or, in this
model, polarization clouds. When an electron moves from site to site, it needs
to also take the polarization cloud with it. We have to incorporate this into the
tight binding model by calculating the overlap of the clouds before and after
the hop. We can do this by multiplying the states by this operator:

η†i =
∏

n=〈i〉,σ

a(F (rn − ri))s†nσ − b(F (rn − ri))
F (rn − ri) · p†nσ
|F (rn − ri)|

, (1.27)

with n running over nearby ions. Because the states are orthonormal, if the po-
larization changes, the hopping integral is reduced. To calculate this reduction
we find the expectation value of the hopping interaction with the new states
(i.e. including the polarization clouds):

ti,i+r̂ = t〈ci+r̂ηi+r̂|c†i+r̂ci|η
†
i c
†
i 〉 = t〈ηi+r̂η†i 〉

= t
∏
n,σ

(
an1an2 + bn1bn2

Fn1 · Fn2

|Fn1||Fn2|

)
, (1.28)

where the product runs over all the ions where the field changes, and the sub-
script denotes the field before and after the hop. These overlaps can be easily
calculated by finding the fields, and can be extended to ions further away as
well. Long range interaction is especially important for calculating mobility, as
only part of the polarization needs to change when the electron moves.

When two polarons are nearby, we need to take into account that both will
polarize some of the same ions. The calculation then depends on the orientation
and distance between the two polarons, before and after the hop. This is easily
done, simply by adding the fields produced by both polarons at each ion, instead
of just one.

1.2 Band structure

So far we know how an electron or hole interacts with ions to lower its energy and
how two such polarons can interact with each other just through polarization.
We like to know how they move through the crystal though, as carriers need to
be mobile to be useful. The basic model of carriers moving through a crystal
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ψi ψf
t0 δ δ ± r̂
t1 0 r̂
t2 r̂ x̂± ŷ
t3 r̂ 2r̂
t4 x̂± ŷ x̂± ŷ + r̂

ψi ψf
t′0 δ δ ± (x̂± ŷ)
t′1 x̂ ŷ
t′2 0 x̂± ŷ
t′3 2r̂ x̂± ŷ
t′4 r̂ x̂± ŷ + r̂
t′5 x̂± ŷ 2(x̂± ŷ).

Table 1.1: Hopping parameters for different transitions (in real space)

for correlated electron systems is the Hubbard model.14 Therein, every site has
two states (one for each spin) and we consider a few different energies for the
Hamiltonian. First there is the energy of the state, which is only relevant for
models with unequal sites (e.g. a copper or an oxygen site). Then there is the
on-site repulsion term for when two carriers are on the same site. A nearest
neighbor repulsion is sometimes also used, and in general a repulsion for more
distant carriers could also be incorporated. They are usually neglected though,
as they are assumed to be heavily screened. Thirdly there is an interaction
between nearby sites, by which means a carrier can move from site to site.
They are determined by calculating the overlap of the orbitals on different sites.
Lastly, for completeness, there is an effective spin-spin interaction caused by an
exchange interaction. We will not use this term however.

We can now calculate the band structure of two holes interacting through
polarization of nearby ions. The Hubbard Hamiltonian without the effect of
polarizing ions is:

H =
∑
i

UH n̂i↑n̂i↓ − t
∑
i,j=〈i〉

c†jci − t
′
∑

i,j=〈〈i〉〉

c†jci, (1.29)

where UH is on site repulsion, and t and t′ are nearest and next-nearest neighbor
hopping transfer integrals. The interaction renormalizes the hopping parameters
and adds an attraction for nearby holes. If we assume ions are only polarized by
the field of the holes, and are static, the energy is simply eq.1.24, which we add
for each neighboring ion, although this can easily be extended to ions further
away. As before, we take for the energy of two nearby holes:

Uij = Eij − Ei − Ej . (1.30)

So all we have to do is to take the coordinates of two holes, calculate their
individual and combined fields at nearby ions, and put it in to eq. 1.24.

1.3 Hamiltonian

The hopping parameters depend on the overlap of the polarization clouds of
the hole before and after the hop. Because another nearby hole also polarizes
ions, this affects the effective parameter. We then need the hopping parameters
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ψi ψj Hij

|k, 0〉 ↔ |k, 0〉 U0

|k, î〉 ↔ |k, î〉 U1

|k, x̂± ŷ〉 ↔ |k, x̂± ŷ〉 U2

|k, δ〉 ↔ |k, δ ± î〉 −2t0 cos(kia/2)

|k, 0〉 ↔ |k, î〉 −2t1 cos(kia/2)
√

2

|k, x̂± ŷ〉 ↔ |k, î〉 −2t2 cos(ki′a/2)

|k, î〉 ↔ |k, 2̂i〉 −2t3 cos(kia/2)

|k, x̂± ŷ〉 ↔ |k, 2̂i± î′〉 −2t4 cos(kia/2)
|k, δ〉 ↔ |k, δ ± (x̂± ŷ)〉 −2t′0 cos((kx ± ky)a/2)
|k, x̂〉 ↔ |k, ŷ〉 −4t′1 cos(kxa/2) cos(kya/2)

|k, 0〉 ↔ |k, x̂± ŷ〉 −2t′2 cos((kx ± ky)a/2)
√

2

|k, x̂± ŷ〉 ↔ |k, 2̂i〉 −2t′3 cos((kx ∓ ky)a/2)

|k, î〉 ↔ |k, 2̂i± î′〉 −2t′4 cos((kx ± ky)a/2)
|k, x̂± ŷ〉 ↔ |k, 2x̂± 2ŷ〉 −2t′5 cos((kx ± ky)a/2)

Table 1.2: Elements of the Hamiltonian (in momentum space)

shown in table 1.1, considering only the effect of the non-hopping hole when it is
close by. Left is the initial state, before the hop, while right is the state after the
hop. The t stand for nearest neighbor, and t′ is the next nearest neighbor. Here
t0 and t′0 do not include the other transitions, and the reverse transitions should
also be taken into account. r̂ denotes hopping in either the x- or y-direction.
Some transitions depend on geometry, but are averaged out after switching to
momentum space:

|k, δ〉 =
∑
i

eik·(Ri+
δ
2 )

√
N

|i, i+ δ〉. (1.31)

Because of symmetry |k,−δ〉 is the same state as |k, δ〉, and we only consider
states with x = 0, y > 0 or x > 0, y = −n : n. We must then be careful not to
overlook any transitions, e.g. the transition ŷ ↔ −x̂+ ŷ in real space gives rise
to a transition of |k, ŷ〉 ↔ |k, x̂− ŷ〉 in momentum space. We now calculate the
hopping interaction in momentum space:

〈k, δ′|T |k, δ〉 =
∑
i,j

eik·(Ri−Rj+
δ−δ′

2 )

N
〈j, j + δ′|T |i, i+ δ〉, (1.32)

If we take δ′ = δ+ r̂, either i = j and we get a factor e−ik·r̂/2 or j = i+ r̂ and we
get a factor eik·r̂/2. Together they give a factor 2 cos(k · r̂/2). In table 1.2 we see
the non-zero elements of the Hamiltonian. The factor

√
2 is obtained because the

on site singlet doesn’t have the same 1√
2

factor as the other states. We have only

used three terms of the interaction energy U, but this can be easily extended
to any distance between holes. The same goes for the hopping parameters,



CHAPTER 1. ELECTRONIC BIPOLARON THEORY 11

although as we shall see, these do not change much with the distance, so the
usefulness of doing so is marginal.

1.4 Long range electron-ion interactions

For now we have used short range electron-ion interactions. Long range interac-
tions can be used, but are countered by Coulomb repulsion that we have ignored
so far. We have also partially ignored screening. Screening has different contri-
butions, including the polarization of nearby ions, which we have used so far.
Secondly there is free carrier screening, which is not relevant for insulators such
as undoped cuprates, but would be needed as soon as we increase the doping to
the levels needed for superconductivity. This screening is restricted to frequen-

cies below the plasma frequency of the carriers, which is ωp =
√

ne2

m∗ε0
, where

n is the number density of carriers and m∗ is the effective mass. As the doped
carriers are polarons here, the effective mass is much increased and the plasma
frequency is reduced. Thirdly there is hybridization between states on different
ions that depend on the occupancy of the oxygen states. In the FeAs model this
hybridization was between As 4p and Fe 4s and 4p states.9 The occupation of
Fe 3d states changes this mixing and effectively screens the Coulomb repulsion.
It was mentioned that this screening was assumed to be included for the value
of the on site repulsion UH , but it would also have an effect on longer range
Coulomb repulsion. We can also figure out if a similar screening mechanism is
present in cuprates.

It has to be mentioned here that screening does not just affect the Coulomb
repulsion between holes, but also the polarization of the ions, so for an accurate
description we need to take that also into account. Luckily the frequency at
which free carriers screen is much lower than the optical frequencies of the po-
larization. We will address this further in the next chapter, and ignore screening
for the static model.



Chapter 2

Dynamic theory

BCS theory and Migdal-Eliashberg theory relied on phonons mediating the in-
teraction between carriers. When this interaction is strong, these theories fail.
The criterion for applicability is the ratio between the electron-phonon energy
and the bandwidth of the polarons.5;15

Up until now we have assumed that ions are instantly and statically po-
larized when the field changes. However, in reality an applied field will cause
the electrons to oscillate between the ground and the excited states of the ion
without the applied field. The time dependent Schrödinger equation shows that
the phase of an eigenstate changes proportionally to its energy:

i~∂tψn = Hψn = Enψn, (2.1)

so that the relative phase of the two states changes with the level splitting
divided by ~, or Ω. This also means that the frequency of the oscillation in
polarization is equal to Ω. If the field is constant in time, the ion will relax to
the new ground state after a finite amount of time, and remain there until the
field changes again. If the ion is by itself, this relaxation comes in the form of
dipole radiation or spontaneous emission. The rate of this is:16

A =
Ω3p2

m

3πε0~c3
=
αΩ4

3c3
(2.2)

with c equal to the speed of light. Using the parameters from the previous
model10, α = 6Å3, Ω = 6eV/~ ≈ 2.3x1016Hz we find a frequency of about
0.51 GHz. Although the fourth power of Ω means a small difference can give
a large change in this frequency, we are well below the 1016 hertz range of
the oscillating polarization cloud. If the ion is in a lattice, dipole relaxation
would suppress the dielectric constant for fields with frequency higher than
the relaxation rate. This is because the ions will not oscillate in phase and
so the average polarization is canceled out. In a lattice there are also other
processes that will relax the polarization. First, there are interactions with
impurities. This is especially relevant in high-Tc superconductors because of

12
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the large amount of doping needed to get superconductivity. Secondly, the ion
interact with each other through dipole-dipole interactions. This is strongest
for similar ions (e.g. one lanthanum ion interacting with another lanthanum
ion), because they oscillate with approximately the same frequency, (if the field
is not too strong) and thus create a resonance.

2.1 Dynamic solution of a two level system

Using eq. 1.22 we can find a dynamical solution, at first we use a static applied
field:

∂2
t P+ = −∆2

~2
(P+ −

α

2
FQ), (2.3a)

∂2
tQ =

2F

∆

∆2

~2
(P+ −

α

2
FQ) (2.3b)

This equation can be solved for t. We assume that at t = 0 the electron hops to
a neighboring site and so the ion is in its ground state. This means we can take
the values P+(0) = 0, Q(0) = 1, ∂tP+(0) = 0, ∂tQ(0) = 0. Next we see that a
linear combination of 2.3 gives us an equation of only one variable:

∂2
t (P+ −

α

2
FQ) = −∆2

~2
(1 +

αF 2

∆
)(P+ −

α

2
FQ). (2.4)

This equation has a simple solution:

P+ −
α

2
FQ = A cos(ωt+ φ), (2.5)

∂2
t (P+ −

α

2
FQ) = −ω2(P+ −

α

2
FQ)⇒ ω =

∆

~

√
1 +

αF 2

∆
, (2.6)

∂t(P+ −
α

2
FQ)(0) = Aω sin(φ)⇒ φ = 0, (2.7)

(P+(0)− α

2
FQ(0)) = A⇒ A = −α

2
F, (2.8)

To find the time dependence of P+, we need another equation. A different linear
combination of eq. 2.3 gives a trivial equation:

∂t(P+ +
∆

2F
Q) = 0⇒ P+ +

∆

2F
Q =

∆

2F
. (2.9)

Combining the two we find the polarization:

P+ =
α
2F

1 + αF 2

∆

(1− cos(ωt)). (2.10)

We see that the polarization oscillates, so the question is: can we describe the
polarization analogously to phonons? To do this we find the energy in terms of
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P+ and P− only:

E =
∆

2
(1−Q)− P+ · F, (2.11)

Q = ±

√
1−

P 2
+ − P 2

−
p2
m

, (2.12)

E =
∆

2

1−

√
1−

P 2
+ − P 2

−
p2
m

− F · P+, (2.13)

≈
P 2

+ − P 2
−

α
− F · P+, (2.14)

where we take Q to be positive and close to 1 for small applied fields (|a|2 � |b|2).
(This is valid for αF 2 � ∆, and driving frequencies ~ω � ∆.) To find the
energy for both electrons, we just double this. Now we use the fact that P− is
proportional to the time derivative of P+:

P− =
−i~
∆

Ṗ+ = −i Ṗ+

Ω
, (2.15)

−P 2
− =

Ṗ 2
+

Ω2
, (2.16)

to find the energy in terms of only the polarization and the field:

E ≈ 2

(
P 2

+

α
+

Ṗ 2
+

Ω2α
− F · P+

)
. (2.17)

This looks like the energy of a driven harmonic oscillator:

E =
mu̇2

2
+
mΩ2u2

2
− eF · u, (2.18)

with u = 2P+

e and mass given by:

m =
e2~2

4πε0∆2α
. (2.19)

For α = 6Å3 and ∆ = 6eV we find that m is approximately half of the electron
mass. There is also an amplitude for this harmonic oscillator:

α =
2p2
m

4πε0∆
=

2e2

4πε0∆
L2, (2.20)

L =

√
2πε0α∆

e2
=

√
~
mΩ

, (2.21)
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which is 1.12Å. Now we take a crystal of N ions coupled through their dipole-
dipole interactions:

H =
∑
n

(
|pn|2

2m
+
mΩ2|un|2

2
− eun · F(rn)

)
(2.22)

=
∑
n

(
|pn|2

2m
+
mΩ2|un|2

2
− e2

∑
l

un · Ŝ(rn − rl) · ul

)
. (2.23)

We can now apply the same techniques that would be applied to a chain of
atoms with harmonic coupling17, but in three dimensions and a dipole-dipole
coupling instead. We transform the Hamiltonian to momentum space:

un =
1√
N

∑
qν

(Uqν cos(q · rn)− 1

mωqν
Pqν sin(q · rn))eqν , (2.24)

pn =
1√
N

∑
qν

(mωqνUqν sin(q · rn) + Pqν cos(q · rn))eqν , (2.25)

where ν stands for the mode and eqν · eqµ = δνµ.

|un|2 =
1

N

∑
q,q′,ν

(−UqνPq
′ν + Pq′νUqν
mωq′ν

cos(q · rn) sin(q′ · rn) (2.26)

+ UqνUq′ν cos(q · rn) cos(q′ · rn) +
PqνPq′ν
m2ωqνωq′ν

sin(q · rn) sin(q′ · rn))

|pn|2 =
1

N

∑
q,q′,ν

(PqνPq′ν cos(q · rn) cos(q′ · rn) +m2ωqνωq′νUqνUq′ν sin(q · rn) sin(q′ · rn)

+mωqν(UqνPq′ν + Pq′νUqν) sin(q · rn) cos(q′ · rn)) (2.27)

un · Ŝnl · ul =
1

N

∑
q,q′,ν,ν′

(UqνUq′ν′ cos(q · rn) cos(q′ · rl) (2.28)

− UqνPq′ν′ + Pq′ν′Uqν
mωq′ν′

cos(q · rn) sin(q′ · rl))

+
PqνPq′ν′

m2ωqνωq′ν′
sin(q · rn) sin(q′ · rl))eqν · Ŝnl · eq′ν′ ,

∑
n

|un|2 =
1

2

∑
qν

(
U2
qν + UqνU−qν +

P 2
qν

(mωqν)2
− PqνP−qν
m2ωqνω−qν

)
, (2.29)

∑
n

|pn|2 =
1

2

∑
qν

(
P 2
qν + PqνP−qν + (mωqν)2U2

qν −m2ωqνω−qνUqνU−qν
)
,

(2.30)
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∑
n,l

un · Ŝnl · ul =
1

2

∑
q,ν,ν′

(U2
qν + UqνU−qν ,

+
P 2
qν

(mωqν)2
− PqνP−qν
m2ωqνω−qν

)
Sqν . (2.31)

Where Sqν are the eigenvalues of the Fourier transform of Ŝ(r):

Ŝq · eqν =
∑
r

cos(q · r)Ŝ(r) · eqν = Sqνeqν (2.32)

Collecting terms we find factors of this form:

1

2

(
mΩ2

2
− e2Sqν

2
±
mω2

qν

2

)
, (2.33)

where + stands for coupling terms with the same q, and − stands for coupling
terms between positive and negative q. Thus we choose ωqν so that the negative
terms cancel:

ωqν =

√
Ω2 − e2Sqν

m
= Ω

√
1− αSqν . (2.34)

At this point we need to mention that we have ignored the dispersion of the
electrons we are polarizing. As the ions are in a crystal, the level splitting itself
depends on the momentum, as well as the direction in which we are polarizing.
This also affects α, so that we have in general:

ωqν = Ωqν
√

1− α̂q · eqνSqν . (2.35)

This needlessly complicates the model, however, so we ignore this for the fol-
lowing. The Hamiltonian now becomes:

H =
∑
qν

(
P 2
qν

2m
+
mω2

qν

2
U2
qν

)
. (2.36)

We can write this using ladder operators:

bqν =

√
1

2m~ωqν
Pqν − i

√
mωqν

2~
Uqν , (2.37)

b†qν =

√
1

2m~ωqν
Pqν + i

√
mωqν

2~
Uqν , (2.38)

H =
∑
qν

~ωqν(b†qνbqν +
1

2
). (2.39)
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For convenience we write un and pn in terms of these operators:

un = i
1√
N

∑
qν

√
~

2mωqν
(bqνe

iq·rn − b†qνe−iq·rn)eqν , (2.40)

pn =
1√
N

∑
qν

√
~mωqν

2
(bqνe

iq·rn + b†qνe
−iq·rn)eqν . (2.41)

Now it is simple to introduce electron-polarization interaction into this, the
original Hamiltonian gains an extra term:

H = H0 − e
∑
n

un · Fel(rn) (2.42)

The electric field due to electrons (or holes) is a linear combination of terms:

Fel(rn) =
∑
i

F(rn − ri)c
†
i ci, (2.43)

where n is used for polarizable ions and i for electron (hole) states. Transformed
to momentum space, this becomes:

ci =
1√
N

∑
k

cke
ik·ri , (2.44)

∑
n

c†i cie
iq·rn =

1

N

∑
k,k′,n

c†k′cke
i((k′−k)·(rn−ri)+(q−(k′−k))·rn), (2.45)

=
∑
q

c†k+qcke
iq·l,

1√
N

∑
n

Fel(rn)eiq·rn =
1√
N

∑
k,l

F(l)c†k+qcke
iq·l ≡

∑
k

c†k+qckFq, (2.46)

where the sum over l goes over all different rn − ri. The electron-phonon inter-
action can then be written using a dimensionless parameter:

He−ph =
1√
N

∑
kqν

~ωqν(γqνc
†
k+qckbqν + γ∗qνc

†
kck+qb

†
qν), (2.47)

γqν = −i
√

N

2~mω3
qν

eFq · eqν . (2.48)

Sometimes it can be convenient to transform this to site representation:

He−ph =
∑
iqν

(~ωqν n̂i(fi(q, ν)bqν + f∗i (q, ν)b†qν), (2.49)

fi(q, ν) =
−i√

2~mNω3
qν

∑
n

eFel(rn) · eqνeiq·rn =
1√
N
γqνe

iq·ri . (2.50)
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The total Hamiltonian including electrons and phonons is thus:

H =
∑
ij

(T (ri − rj)− µδij)c†i cj +
1

2

∑
ij

U(ri − rj)n̂in̂j (2.51)

+
∑
qν

~ωqν(b†qνbqν +
1

2
) +

∑
iqν

~ωqν n̂i(fi(q, ν)bqν + h.c). (2.52)

Here T (r) is the hopping parameter, which is nonzero only for nearest and next
nearest neighbors. µ is the chemical potential, U(r) the Coulomb repulsion,
which is equal to the Hubbard repulsion for electrons on the same site. This
Hamiltonian is equal to the one Alexandrov5 uses in his theory, so that we can
follow his derivation. If T is small, we can use a unitary transformation to
eliminate some terms:

S =
∑
qνi

n̂i(f
∗
i (q, ν)b†qν − fi(q, ν)bqν), (2.53)

H̃ = eSHe−S , (2.54)

c̃i = eScie
−S , (2.55)

b̃qν = eSbqνe
−S . (2.56)

To calculate the new operators we first scale fi → ηfi, and differentiate the
operators with respect to the scaling factor:

∂c̃i
∂η

=
∑
qν

eS [n̂i, ci](f
∗
i b
†
qν − fibqν)e−S , (2.57)

∂b̃qν
∂η

=
∑
i

eS [b†qν , bqν ]f∗i n̂ie
−S . (2.58)

Then using [n̂i, ci] = −ci and [b†qν , bqν ] = −1 we get:

∂c̃i
∂η

= −c̃i
∑
qν

(f∗i (q, ν)b̃†qν − fi(q, ν)b̃qν), (2.59)

∂b̃qν
∂η

= −
∑
i

n̂if
∗
i (q, ν). (2.60)

We can integrate this with c̃i = ci and b̃qν = bqν at η = 0 and then set η = 1:

c̃i = ci exp[
∑
qν

(fi(q, ν)bqν − f∗i (q, ν)b†qν)], (2.61)

b̃qν = bqν −
∑
i

n̂if
∗
i (q, ν). (2.62)
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Putting this into the old Hamiltonian, eq. 2.52, we get:

H̃ =
∑
ij

(σ̂ij − µδij)c†i cj +
1

2

∑
i6=j

uij n̂in̂j (2.63)

+
∑
qν

~ωqν(b†qνbqν +
1

2
)− Ep

∑
i

n̂i (2.64)

σ̂ij = T (ri − rj) exp[
∑
qν

((fj(q, ν)− fi(q, ν))bqν − h.c.)] (2.65)

uij = U(ri − rj)−
∑
qν

~ωqνf∗i (q, ν)fj(q, ν) (2.66)

= U(ri − rj)−
2

N

∑
qν

~ωqν |γqν |2 cos(q · (rj − ri)) (2.67)

Ep =
∑
qν

~ωqν |fi(q, ν)|2 =
1

N

∑
qν

~ωqν |γqν |2 (2.68)

We can compare this to the static model. Ep is the energy reduction of each
individual polaron, and the interaction energy of two polarons a distance d away
from each other is:

Ud = − 1

N

∑
qν

~ωqν |γqν |2 cos(q · d). (2.69)

For dispersionless ωqν (i.e. no interaction between ions) these equations re-
duce to the same value as the static model with αF 2 � ∆. Also the hopping
parameters are exponentially reduced:

ti,i+r̂ = t exp[− 1

N

∑
qν

|γqν |2(1− cos(q · r̂))]. (2.70)

Again this reduces to the value of the static model with weak field if there is no
dispersion.

Now that we have a polarization wave analogous to phonons, we can study
the effects of retardation on the reduction of the Coulomb repulsion.

2.2 Retardation

For conventional superconductors retardation effects of the electron-phonon in-
teraction reduce the effective strength of the Coulomb repulsion. The relevant
parameters here are the frequency of the phonon and the Fermi energy of the
electrons. The effective interaction is:18

µc =
µ

1 + µ ln(εF /ω)
, (2.71)

where µ is the normal Coulomb repulsion, εF is the Fermi energy, ω is the
phonon frequency (for this calculation the Einstein model was used, in which all
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phonons have the same frequency), and µc is the effective Coulomb repulsion.
As long as the Fermi energy is much bigger than the phonon frequency, the
effective Coulomb repulsion is greatly reduced. For our model however, we need
to use the polarization wave frequency, which is at least 6 eV for iron based
superconductors, much higher than optical phonon frequencies. Meanwhile, the
Fermi energy, which is the energy difference between the lowest and highest
occupied states, is at most equal to the bandwidth of the polarons, or 8 times
the effective nearest neighbor hopping parameter. In cuprates this would be
around 5 eV, although this would be much reduced, because only about one
sixth of the band will be filled at optimal doping. So retardation effects will not
be relevant in this model.

2.3 Dispersion of the polarization

As we saw in eq. 2.34, the frequency of the polarization ”wave” is dependent
on the momentum, i.e. it has a dispersion. This is similar to the dispersion
of phonons. The big difference is that for rigid ions, the restoring force is
caused purely by other ions, whereas for electrons the restoring force is partially
due to the ion on which they reside. This force is much stronger, so that the
dispersion is much weaker. For (acoustic) phonons, the dispersion looks like
ωq = ω0

√
1− cos(q · r), i.e. it is zero for q = 0. For polarized electrons it is

not. This is relevant because the interaction parameter is proportional to ω
−3/2
q .

We can calculate the dispersion for different systems. It is dependent on
both polarizability and geometry of the crystal lattice. At first we look at
La2CuO4, considering only the lanthanum ions. There are lanthanum planes
above and below the CuO2, with a vertical distance19 of 3.635Å of each other.
As this is smaller than the in-plane distance of neighboring ions, it is necessary
to include both at the same time. We only consider one layer for now. Because
the structure containing just two lanthanum planes is not periodical, we cannot
simply take a Fourier transform for the z-direction, as implied by eq. 2.32.
Instead we must take the Fourier transform in x and y direction for each layer
separately, and then use the interaction between the two layers. This gives a 6
by 6 matrix for each k-point, of which we find the eigenvalues.

Because the dispersion is proportional to
√

1− αSqν (neglecting e2/ε0), the
largest eigenvalue can not be larger than 1/α. This would correspond to the
polarization increasing without bound, implying a phase change of the material.
This is not really relevant for lanthanum, as its polarizability is small, but could
be an issue for the FeAs system.

Once we have the dispersion we need to couple it to an electron. There
are two unequal sites, namely one where the closest lanthanum ions are in the
x-direction, and one where they are in the y-direction. We take the Fourier
transform of the field on each lanthanum ion, for both sites separately. As these
two lattices are translated from each other and the lanthanum ions, they will not
have exactly the same momenta, but for a large enough system the mismatch is
small. Using eq. 2.69 then gives us the energy, where we take new parameters
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(which are obtained in chapter 3), α =1.13Å3, Ω=22eV/~. If for the moment
there is no dispersion, we find for on-site, nearest neighbor and next nearest
neighbor the values, -1.86, -0.75 and -0.63 eV respectively. We can compare
this with the model we used previously, where the same energies are -1.82 ,-1.05
and -0.65 eV. These values are reasonably close, although still a bit off, which
should not be the case. The on-site interaction can be explained by noting that
we assumed the field was weak. If Ω is set to a much larger value, the interaction
becomes -1.86 eV, as expected. Turning on the dispersion, we get somewhat
different values, -1.85, -0.69 and -0.60 eV, but not significantly so. As such,
this model does not improve upon the results of the previous model, at least for
La2CuO4, and other compounds where the polarizability is low.

Turning to FeAs now, the structure is slightly different, and the polarizability
is much higher, so that ωqν has more variability. Again, without dispersion and
with the approximation that ∆ � αF 2, the two models coincide for the on-
site energy, at around -12.5 eV. The nearest and next nearest neighbor energies
again differ somewhat between the two models, more so now that the energies
in general are much higher. This is definitely a flaw that would need to be
addressed. Furthermore, the low field approximation is not appropriate, because
if we use the more accurate formula for the energy, the on-site energy reduces
to -8.5 eV.

We can look at the effect of dispersion and find an increase for the on-site
attraction to -13.5 eV, and a decrease for nearest neighbor attraction.



Chapter 3

Application to high-Tc

superconductors

Both of the models we have used (chapters 1 and 2) can be applied in general to
any compound with a layered structure such as cuprates and pnictides. What is
needed is one plane where carriers can move in, and one or more planes of polar-
izable ions nearby. In-plane ions also have an effect, but it is reduced, because
when two electrons are nearby, their fields partially cancel. This reduces the
polarization, rather than enhancing it, so that the effective interation becomes
repulsive, instead of attractive.

In cuprates the carriers are located on the CuO2 plane, with various polariz-
able ions on planes above and below, like barium, lanthanum, and strontium. If
we also take into account planes further away, we can include bismuth, mercury,
and thallium.

For iron based superconductors the carriers are going through the iron plane,
with mostly pnictogens being the polarizable ions. Chalcogens are also possible,
in the case of selenium. One important difference between iron based supercon-
ductors and cuprates, is that cuprates have more polarizable ions per layer. For
La2CuO4, there are 2 lanthanum ions per copper ion, as well as oxygen ions
in and out plane, whereas in an iron based superconductor there is only one
arsenic (or another pnictogen) ion per iron ion. This is countered by the much
higher polarizability of negatively charged ions.

3.1 Cuprates

The very first high-Tc superconductor was a cuprate, BaxLa5−xCu5O5(3−y),
found in 19864. Since then many other cuprates have been found, and models
have tried to explain such high critical temperatures. It is natural to apply any
theory of high temperature superconductivity to these materials.

22
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Figure 3.1: Top view of La2CuO4. The
lanthanum ions are located above and
below the CuO2 plane, and oxygen ions
are directly above and below the cop-
per ions. These are called apical oxy-
gen ions. Also we see the p- and d-
orbitals that interact in the formation
of a Zhang-Rice singlet.

3.1.1 Three models

We consider three models below. Firstly there is the previously used model10

where the states are single holes on oxygen ions. We are mostly comparing re-
sults to establish the accuracy of the model, as well as discussing the parameters
used in that model.

Secondly, we consider Zhang-Rice singlets20, where the states are a linear
combination of holes on the four oxygen ions adjacent to a single copper ion. If
we consider an on-site bipolaron then, the first hole has a one in four chance to
be on a specific oxygen site, and so does the second hole. The chance that they
are both on the same site is then 4 · 1

4 ·
1
4 = 1

4 . The effective repulsion is thus a
quarter of the value, as long as we neglect nearest neighbor repulsion. Similarly,
nearest neighbor bipolarons now also overlap, so they also get a repulsive term,
albeit one sixteenth of the value. This comes at the cost of a smaller interaction
with the lanthanum ions.

Thirdly, we can look at a situation where bipolarons are composed of one
Zhang-Rice singlet and a hole on the apical oxygen ion above or below the
copper ion. An ”on-site” bipolaron then has no overlap, so no repulsion, while
still having the full interaction with the lanthanum ion. These three models
have different geometries, but still the same tetragonal symmetry, which means
the same calculation can be performed for each of them, just with different
parameters.

3.1.2 Zhang-Rice singlet

Normally in a Hubbard model we consider holes and electrons to be localized on
single ions, hopping from site to site. However in cuprates, Zhang and Rice20

showed that it is energetically favorable to put a hole in a superposition of
oxygen states surrounding a single copper site, and then combine with the hole
on that copper site to create a singlet. We see this in figure 3.1. The energy
corresponding to the singlet is

EZR = −

(
6t2pd
εp

+
8t2pd

Ud − εp
+

2t2pd
Up + εp

)
, (3.1)

where tpd is the hopping between copper and oxygen, εp is the energy differ-
ence between an oxygen p-state and a copper d-state and Ud, Up are the on
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site repulsion energies of copper and oxygen, respectively. (The formula above
deviates from the original paper, as Zhang and Rice ignored the oxygen on site
repulsion.) We now need to compare this energy to a singlet of a single hole on
oxygen and a hole on copper, which is:

Es = −

(
3t2pd
εp

+
2t2pd

Ud − εp
+

2t2pd
Up + εp

)
. (3.2)

Barriquand and Sawatzky21 calculated these parameters which we enter in eq.
3.2 to find an energy reduction of 3.36 eV. This means that if two single holes
attract each other by more than twice 3.36 eV more than two Zhang-Rice sin-
glets, bipolarons will preferentially be bound as single holes. We notice here
that the ratios tpd/εp, tpd/(Up + εp), and tpd/(Ud − εp) are quite large, which
means that a substantial part of the wavefunction is not a simple combination
of a hole on oxygen and a hole on copper21 but:

ψZR ≈
√

0.7
1√
2

(Cu↑L↓ − Cu↓L↑) +
√

0.1Cu↑Cu↓ +
√

0.2L↑L↓, (3.3)

where Cu stands for a hole on copper, and L stands for a hole in a linear
combination of oxygen states. This affects all the energies involved in the model,
the question is, how much? Apart from that, a simple combination of states on
a copper site and its oxygen neighbors is not orthogonal to a similar state on
the next copper site, because they share one oxygen neighbor. This is solved
by using Wannier states instead, where we take a superposition of many oxygen
states, with the highest occupancy near the copper site it hybridizes with. Again
this changes the energies of the state and the interaction with other singlets.
We note that Barriquand and Sawatzky did take into account Wannier states
in their calculations.

Now we have the Hamiltonian only depending on one variable, the center of
mass momentum, so we can diagonalize the matrix at different k and find the
dispersion relation of polarons. First, we repeat previous simulations of single
holes in figure 3.2, and compare them with simulations of Zhang-Rice singlets
in figure 3.3, and apical/Zhang-Rice singlets in 3.4 using the same parameters.

We first find the binding energy, which we take to be the energy difference
between the two-polaron continuum and the lowest state, at k = 0. For single
holes this energy is 0.47 eV and 0.78 eV for without and with next nearest
neighbor hopping, respectively. For Zhang-Rice singlets the energies are 0.093
eV and 0.27 eV instead. These values are much lower, but not enough to break
the singlet, which has a binding energy of 6.72 eV. Similarly, we can calculate
the binding energy of the apical/Zhang Rice combination, and find 0.027 eV and
0.31 eV. Here we still have one Zhang Rice singlet, so we only have to have half
the binding energy, but it still is not enough. Next, we look at the effective mass
of the bipolaron relative to free holes. This ratio is equal to the bandwidth of the
holes without interaction (i.e. 8t) divided by the bandwidth of the bipolaron.
For single holes these values are 2.91 and 5.30, while for Zhang-Rice singlets
they are 1.60 and 6.78. Now we see that Zhang-Rice singlet bipolarons are
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Figure 3.2: Two-polaron dispersion, as calculated for La2CuO4. The carriers
are two holes on single in-plane oxygen sites, with the parameters:α = 6 Å3,
∆ = 6 eV, t = 0.25 eV, UH = 5 eV. We consider the cases with (right) and
without (left) next nearest neighbor hopping.
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Figure 3.3: Two-polaron dispersion, as calculated for La2CuO4. The carriers
are two holes that are both Zhang-Rice singlets, with the parameters: α = 6
Å3, ∆ = 6 eV, t = 0.25 eV,UH = 5 eV. We consider the cases with (right) and
without (left) next nearest neighbor hopping.
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Figure 3.4: Two-polaron dispersion, as calculated for La2CuO4. The carriers
are two holes, where one hole is a Zhang-Rice singlet, and the other hole is on
an apical oxygen site, with the parameters: α = 6 Å3, ∆ = 6 eV, t = 0.25 eV,
UH = 5 eV. We consider the cases with (right) and without (left) next nearest
neighbor hopping.
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much lighter than bipolarons made out of single holes, and that they are much
less affected by next nearest neighbor hopping. The effective masses of apical
hole/Zhang Rice singlet are 6.33 and 11.1, showing that they are much heavier,
due to the lower hopping interaction of the apical holes.

In the theory of superconductivity the concept of an order parameter is
needed. This order parameter corresponds to the wavefunction of the collective
superconductive state. The order parameter has a specific symmetry. The
Hamiltonian for a BCS superconductor is:

H =
∑
k,σ

εkc
†
kσckσ +

∑
k,k′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑, (3.4)

where Vkk′ is the (attractive) interaction between electrons, and εk is the energy
dispersion of electrons without the interaction. We also have σ for spin, and
ckσ as a annihilation operator. This Hamiltonian is then simplified by replacing∑
k′ Vkk′c−k′↓ck′↑ by its expectation value, which is the superconducting gap,

∆k. For BCS superconductors it is also proportional to the Fourier transform
of the order parameter.

All these dispersion relations have minima at the Γ point for the center of
mass momentum, just like a BCS type superconductor, which means the order
parameter of a condensate will have the same symmetry as the superconducting
gap. To find the symmetry of the gap, we need to find the ground state in terms
of the relative momentum, or rather, in terms of the difference vectors. We can
see this dependence in figures 3.5 and 3.6. Only in the case of single holes
with next nearest neighbor hopping is there d-symmetry in the wave function,
and thus, in the gap. We also see that the wavefunctions for t′ = 0 is more
spread out, so the average distance between the polarons is larger, than for the
wavefunctions with t′ = −t/2.

3.1.3 Applicability parameters

Thus far, the parameters used were replicated from the previous model.10 How-
ever, these parameters might not have been the most appropriate for the model.
First of all, hopping transfer integrals have been calculated for cuprates21.
There the value is 0.65 eV, much higher than the value initially taken (the value
was taken from a similar model of a FeAs superconductor9). The next nearest
neighbor transfer integral is unknown, but we just take its value to be − t

2 . We
also find in this paper the value for hopping of Zhang-Rice singlets, which are
0.56 eV and 0.008 eV for nearest and next nearest neighbor, respectively. For
apical oxygen ions the distance is similar to next nearest neighbors in-plane
oxygen ions, so we take the same value here. This applies to σ-orientated holes,
for π-orientated holes, the value is divided by 4. On-site repulsion is now 6 eV.

The polarizability was formerly chosen to be 6 Å3, which was found in a
paper by Shannon22. This corresponds however to the dielectric polarizability,
which also includes an ionic component, and is thus not relevant in the cur-
rent model. Sawatzky et al.23 suggest taking the ionic radius cubed, which for
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Figure 3.5: Coefficents of states by difference vector of the ground state of a
bipolaron consisting of single holes. The parameters are: α = 6 Å3, ∆ = 6
eV, t = 0.25 eV, UH = 5 eV. We see that, for t′ = −t/2 the wavefunction
changes sign when we rotate over 90 degrees, which corresponds to a d-wave
order parameter. For t′ = 0 the wavefunction does not change sign as we rotate
over 90 degrees, so it has an s-wave order parameter.
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Figure 3.6: Coefficents of states by difference vector of the ground state of a
bipolaron consisting of Zhang-Rice singlets. The parameters are: α = 6 Å3,
∆ = 6 eV, t = 0.25 eV, UH = 5 eV. Both wavefunctions have s-wave symmetry.
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lanthanum gives α = 1.1 Å3, much lower than before. More accurate calcula-
tions24 give a value of 1.13 Å3. The level splitting between the lanthanum 5p
and 5d states was roughly estimated to be 6.00-17.7 eV, and was subsequently
set to 6 eV. This value is low, however, and should actually be around 15-22
eV.19;25 Additionally data from NIST give a free ion level splitting of 19.3-26.8,
depending on spin and angular momentum. Of course this is reduced by the
crystal field. Taking these values we can redo the calculations and find a much
more modest binding energy of 40 meV for single holes with t′ = −t/2, while
in the other cases all the states lie in the continuum, and so there is no bound
state. Of course we said that t′ = 0.008 eV, which means there is not a sit-
uation where the polarons are bound into a bipolaron. Therefore, we need to
expand the model to include long-range electron-ion interactions to increase the
interaction energies.

Furthermore, polarization of oxygen ions was previously neglected as its ef-
fect was smaller than that of the lanthanum ions for the parameters used. Its
polarizability was 2 Å3 before, which was again the dielectric polarizability, so it
would have to be revised. However, based on ionic radius alone we already get a
polarizability of 2.75 Å3. Obtaining polarizabilities is usually done by measure-
ments on compounds and assuming that the polarizability of the compound is a
simple sum of the polarizability of the constituents. For oxygen this assumption
is not valid, so we get instead a range of polarizabilities of 0.5-3.5 Å3.26 Even
at the low end of this range this is significant, especially considering there are
twice as many oxygen ions as there are lanthanum ions, and the in plane ions
are closer to the doped holes.

3.1.4 Long range interactions

Incorporating long range interactions without Coulomb repulsion will again give
us a definite bound state for all three of the models. Focusing on the Zhang-Rice
model The binding energy is quite low, around 0.47 eV. The bipolaron is also
quite light, only twice the mass of holes without the interaction with the ions.
With Coulomb repulsion we see that a bound state is generally impossible to
achieve. The repulsion is many times the attraction due to polarization. To
potentially get a bound state, the polarizability has to be increased to at least 6
Å3, which we concluded to be unrealistic. This means that even incorporating
more distant planes, or including oxygen ions will most likely not be enough to
obtain superconductivity with just this model. A possibility would be to find
a way to reduce the Coulomb potential. Nearest neighbor repulsion is about 5
eV, which is comparable to on-site repulsion. As the distance is much larger,
this seems unlikely to be the right value. The on-site repulsion is likely to be
already reduced.
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3.2 Monolayer FeSe on STO

As was stated earlier, the model used here was originally devised to describe
bipolarons in iron-based superconductors, specifically those containing an FeAs
layer.9 Recently11 it was discovered that a monolayer of tetragonal FeSe grown
on SrTiO3 is superconducting up to 100 K. Also, SrTiO3 is known to have a
very high dielectric constant at low temperatures. Therefore, we expand the
model to include a SrTiO3 layer. First, we note that the most extreme values
of the dielectric constant in SrTiO3 occur below 10 K. At 100 K it is closer to
1250, which is still high enough to be notable. Secondly, this dielectric constant
is only valid for low frequencies. At higher frequencies, it is much reduced due
to dielectric relaxation. To proceed we must understand why SrTiO3 is highly
polarizable. To do so we refer to the theory of dynamical charges.27 The idea
is that as an ion displaces from equilibrium, the nearby electrons redistribute
themselves, resulting in a polarization greater than just the charge of the ion
times the displacement. In SrTiO3 this effect is anomalously large,27 due to the
hybridization of Ti-d and O-p electrons. As a titanium ion is displaced along a
O-Ti-O chain, one of the bonds becomes longer, the other shorter. The shorter
(longer) bond causes an increase (decrease) in hybridization, so that charge is
transferred to (from) the titanium ion. Of course the two effects compensate
each other, so that the total charge on each ion does not change, except for
the ions at the ends of the chain. This then gives a polarization of the charge
transferred times one lattice constant per unit cell.

Because this is partially an ionic effect, the frequencies are much lower than
those found for electronic polarization. This means it is easier for carriers to
screen the interaction, limiting its range exponentially. For the moment we
will use a crude model, where we approximate the dielectric constant as being
entirely due to a highly polarizable ion at the location of titanium. We can use
the Clausius-Mossotti relation between dielectric constant and polarizability:

ε− 1

ε+ 2
=

4πα

3Vc
(3.5)

α ≈ 3Vc
4π

, (ε� 1) (3.6)

with ε the relative dielectric constant, Vc the volume of a unit cell, and α is the
polarizability in Å3. For SrTiO3 we then find a polarizability of 14.2 Å3. For
the level splitting we take the bandgap of STO, as that is the energy needed
to excite an electron from oxygen to titanium. This is 3.75 eV for the direct
bandgap.28

Let us first look at the model applied to FeAs and compare it to FeSe without
the SrTiO3 layer. See figures 3.7 and 3.8. The lattice structure for the FeAs
model is cubic with lattice parameter a = 2.8 Å,9 whereas FeSe grown on
SrTiO3 has an in-plane lattice parameter of 2.76Å and a distance of 1.40Å
(1.41 Å) between the Fe layer and the bottom (top) layer of Se.29 These values
are very close and would not give an appreciable difference in result. For the
polarizability, As3− has a value much higher than Se2−, 9-12 Å3 versus 6-7.5
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means below. For FeAS, the iron-iron distance is 2.8 Å, the arsenic ions are 1.4
Å above and below the iron plane. For FeSe on STO the iron-iron distance is
2.76 Å instead, and the selenium ions are respectively 1.41 Å above and 1.40 Å
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Figure 3.8: FeSe on top of SrTiO3. The selenium ions in the bottom layer are
directly above the titanium ions at a distance of 3.13 Å, while the selenium ions
in the top layer are directly above the strontium ions. The iron ions are directly
above the oxygen ions at a distance of 4.43 Å.
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Figure 3.9: Two-polaron dispersion, as calculated for FeAs (left) and FeSe, using
the parameters: ∆ = 6 eV, t = 0.25 eV, UH = 10 eV. Only the nearest neigh-
boring arsenic/selenium ions are polarized, and only on-site Coulomb repulsion
is used. We see that both bandstructures show a bound state

Å3. The level splitting ∆ was mostly left as a parameter and has a value range
of 4-8 eV. Meanwhile, the titanium ions lie directly below the selenium ions, at
a distance of 3.13 Å. The oxygen ions lie 0.1 Åbelow the titanium ions.

So far only the polarizability has been significantly altered, which does not
give a qualitatively different result, only the binding energy is lowered, and the
effective mass is decreased, which is shown in figures 3.9. We also see that the
effective bandwidth of single polarons is larger with higher polarizability, which
affects how well they screen high frequency interactions. Now we switch to a
long range model, and include Coulomb repulsion, neglecting screening for the
moment. We see in fig 3.10 that the FeAs will still have a bound state, with
an even larger binding energy, despite the Coulomb repulsion. FeSe, however,
does not show a bound state at all. Therefore it would not be a superconductor
based on this model alone. If we approximate the large dielectric constant of
the SrTiO3 substrate by a highly polarizable ion at the location of the titanium
ions, the model shows a different result. As we can see in fig 3.11, now we do
have a bound state.
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Figure 3.10: Two-polaron dispersion, as calculated for FeAs (left) and FeSe,
using the parameters: ∆ = 6 eV, t = 0.25 eV, UH = 10 eV. Now all ar-
senic/selenium ions are polarized, and we use Coulomb repulsion for any dis-
tance between the polarons. Only the bandstructure for FeAs shows bound
states.
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Figure 3.11: Bandstructure as calculated for a monolayer of FeSe deposited on
an SrTiO3 substrate, using the parameters: α = 6 Å3, ∆ = 6 eV, t = 0.25 eV,
UH = 10 eV. Coulomb repulsion is taken in account and both selenium ions and
titanium ions are polarized by the polarons. A bound state is present.



Chapter 4

Conclusion & Outlook

We have reassessed a model of superconductivity, using electronic polarons for
an attractive interaction, and expanded it to a new situation (a monolayer of
FeSe on an SrTiO3 substrate). To improve upon this static model we have
altered another model, the polaronic superconductivity model of Alexandrov,
to include dynamical effects.

The dynamical theory reduces to the static one if we calculate it analyti-
cally, but only for weak fields. To improve upon that, non-linear theories of
polarization must be used. Calculating the results numerically gives deviations
however, which are most likely caused by the mismatch of the momenta used in
the Fourier transform due to the discreteness of the crystal lattice. As such, in
its current form, it cannot give us accurate results.

The static model was reexamined and streamlined. Before, all parameters
were calculated analytically for every situation, whereas now they can be cal-
culated numerically simply by inserting coordinates. The parameters that were
used in the calculation for cuprates were changed to more realistic values, and it
was found that no bound state was present, which is necessary for superconduc-
tivity. Long range interactions electron-polarization interactions could create a
bound state, but are countered by Coulomb repulsion that are much stronger.
Unless a (different) way is found to reduce this repulsion, the model would not
predict superconductivity.

Applying the model to FeAs we reproduce the results found by Berciu, and
compare it to FeSe, where a weaker but still existing bound state is found. Long-
range interaction and Coulomb repulsion cannot destroy superconductivity in
FeAs, but will in the case of FeSe. Adding an extra layer of highly polarizable
titanium ions can restore the bound state, so that it will be superconducting
again.

So far the theories can only predict the existence of a bound state, and its
binding energy, but another important parameter in superconductors is the tran-
sition temperature. In BCS theory it can be derived from the superconducting
gap, but it is to be seen if this is true for high temperature superconductors.
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