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Abstract

Scala is a versatile multi-paradigm general purpose programming language on the Java Virtual Machine, which offers
full compatibility with existing Java libraries and code, while providing a multitude of advanced features compared
to Java itself.
Permission-based separation logic has proven to be a powerful formalism in reasoning aboutmemory and concurrency
in object-oriented programs – specifically in Java, but there are still challenges in reasoning about more advanced
languages such as Scala.
Of the features Scala provides beyond Java, this thesis focusses on first class functions and lexical closures. A
formal model subset of Scala is defined, around these features. Using this foundation we present an extension to
permission-based separation logic to specify and reason about functions and closures. Furtermore we provide a
demonstration and an argument for its use by performing a case study on the Scala actors library.
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1 Introduction

1.1 Motivation

The recent years have seen the growing popularity of language features, being borrowed from different paradigms such
as functional programming, added to imperative and object-oriented languages to create hybrid paradigm languages.
Popular examples include the inclusion of first-class functions in languages such as C#, with version 3.0, and Java,
with version 8.0. There are, however, languages which take this approach even further, and do not just add features to
an existing paradigm, but mix entire paradigms to allow for many-faceted approaches to programming challenges.
One of the premier languages in this regard is Scala.

Meanwhile the recent years have also seen the rise of multi-threading and concurrency as a means to quench the
ever-increasing thirst for computing power. With this new focus on concurrency, also came a response from the
proponents of formal methods in computer science, with model checking and concurrent program verification
techniques allowing for a more reliable creation of concurrent programs. This is important, as writing these concurrent
programs by hand, without formal techniques, proved error-prone.

In this thesis we examine concurrent program verification techniques – especially the use of separation logic – in how
they manage with a multi-paradigm language such as Scala. We do so by first examing the current state of the art in
program verification using separation logic and examining the Scala language itself. We will then start a formalization
process in which we develop a formal semantics for an interesting subset of Scala with an accompanying separation
logic to prove its correctness. Finally we will provide a case study in which we use our logic to provide a specification
of the Scala actor concurrency library.

1.2 Contribution

Our contribution is a means to specify Scala programs using permission-based separation logic, with a focus on a
concise and correct method to specify first-class functions and lexical closures and a case study, which demonstrates
our approach and its viability. We will provide a formalization of a subset of Scala including lexical closures and
exceptions. Using this formalized subset, we will establish type-safety and a separation logic to establish memory
safety and race freedom.

1.3 Document Outline

Background (Section 2)

In the Background section, we start with an introduction to, and background of, formal program verification using,
first, Hoare logic and following that, Separation Logic. We show the defining features of separation logic and their
advantages and uses in the verification of shared memory languages and concurrency. Secondly, we have a look
at formal semantics, their uses and their role in program verification, by giving a short overview of the three most
common forms of formalizing semantics, being axiomatic, operational and denotational formalization.

The Scala Language (Section 3)

In this chapter we describe the Scala programming language and its distinctive features. We provide examples with
listings where relevant, to facilitate a basic understanding of the language, as required for this thesis.
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A Formalized Model Language for Scala (Section 4)

An essential part of program verification, is the formalization of the semantics of the language being verified. As Scala
is a multi-paradigm language with too many features to cover in this work, we define a number of subsets: We start
with a basic expression language, which we first expand with first-class functions and closures, then with exceptions,
classes and finally multi-threading. These subsets of Scala are then consecutively formalized using a program-context
approach, resulting in what we call Scala Core.

Separation Logic for Scala Core (Section 5)

The primary goal in this section is to provide a variant of separation logic which can be used to verify programs written
in our model language, secondly we provide typing rules, to assure type-safety. We start with the basic expression
language with functions, as this is one of the most interesting cases for verification and continue towards exceptions
and multi-threading.

A Case Study (Section 6)

With our formalization complete, it is interesting to see how it would function when used to specify a real-world
larger piece of software. In this section we do so by writing a specification for the Scala actor library, which is as an
alternative to shared-memory concurrency.

Conclusions and Future Work (Section 7)

Finally this chapter concludes our work by summarizing it, comparing it to similar approaches and describing what
work remains to be done.
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2 Background Information & Previous Work

For thework presented in this thesis, we build on previouswork in the verification of (concurrent) programs, specifically
via the use of separation logic and on the work in formal semantics. In this section we shall expand on the existing
work in these areas, with a focus on the JVM and on Scala in particular. We shall start with a general introduction to
static contract analysis in Section 2.1 and program logics in Section 2.2 and proceed with an introduction to separation
logic in Section 2.3.1, which we shall expand to Concurrent Separation Logic in Section 2.3. Finally we shall give an
introduction to formal semantics in Section 2.4

2.1 Static Contract Analysis

Of all the recent formal methods for program analysis, such as software model checking [54], static analysis [42, 41]
and interactive theorem proving [33], our focus will be on program verification using logic assertions in program code,
as first suggested by Hoare [29]. These assertions form contracts [39] between computational modules in software
from which proof obligations can be derived and solved. This analysis can be done without executing the application,
making it static in nature. Well-known tools based on this formalism include the more academic tools Esc/Java [24]
and Spec# [8] and the more commercially used Code Contracts [23]. These tools are unfortunately restricted in the
sense that they, and the formalisms backing them, break in concurrent situations. This is especially jarring as many
applications, including all with a GUI, written in languages such as C#and Java, are concurrent in nature.

2.2 Verification using Classic Program Logic

2.2.1 Properties of Code

sort(a : Int[]) : Int[]

{

...

}

Listing 1: Simple Sort

We shall illustrate properties of code, using Listing 1, which shows a simple method, that sorts a given array. We
can, independently of the implementation, state that this method indeed sorts an array, in first-order logic – e.g. as
∀𝑖, 𝑗.0 ≤ 𝑖 < 𝑗 < 𝑎.𝑙𝑒𝑛𝑔𝑡ℎ ⇒ 𝑎[𝑖] ≤ 𝑎[𝑗]. Unfortunately, there is no practical means to tell where this property holds:
It could just as well have been a requirement for the method to execute, instead of a condition on the result. The
solution, as pioneered by Hoare, involves making location explicit, by dividing the properties in so-called preconditions
and postconditions [29]:

• Precondition: A property that should hold at method entry, specifying what is required to deliver correct
output.

• Postcondition: A property that should hold at method exit, specifying what the method guarantees to the caller.

With these, we can now speak of what are commonly referred to as Hoare triples: Triples in the form of {𝑃}𝐶{𝑄},
where 𝑃 is a precondition, 𝐶 is a statement and 𝑄 is a postcondition. the triple is defined as having the following
interpretation:

• Definition: Given that 𝑃 is satisfied in a state 𝑠, and 𝐶 terminates in state 𝑠′, then 𝑄 is satisfied in state 𝑠′.

• Alternatively: The statement 𝐶 requires the precondition 𝑃, to ensure the postcondition 𝑄.
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We can now specify a Hoare triple for the example in Listing 1 – in Listing 2:

// {𝑡𝑟𝑢𝑒}

sort(a : Array[Int]) : Array[Int]

{

/* […] */

}

// {∀ 𝑖, 𝑗. 0 ≤ 𝑖 < 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎) ⇒ 𝑎[𝑖] ≤ 𝑎[𝑗]}

Listing 2: Simple Sort with Hoare Triple

2.2.2 Reasoning about Properties

Once we have a Hoare triple for a method – also called a proof outline – the next step is to reason about them and
establish their validity. This is done by applying the axioms and logic rules ofHoare logic to determine a truth value [29].
A simple example of an axiom being the empty statement axiom, which states that any preconditions holding before
the skip-statement will hold after – essentially saying that skip has no impact on the program state – is shown in
Fig. 1:

𝑆𝑘𝑖𝑝
{𝑃}𝑠𝑘𝑖𝑝{𝑃}

Figure 1: The Skip Axiom

An example of a rule is the sequential composition rule – shown in Fig. 2 – which specifies the conditions that should
hold for sequential statements:

{𝑃}𝑆1{𝑄} {𝑄}𝑆2{𝑅}
𝑆𝑒𝑞

{𝑃}𝑆1; 𝑆2{𝑅}

Figure 2: The Seq Rule

Given these examples, proving correctness of a program would seem like a lot of work, and indeed, these correctness
proofs tend to take up sheets and sheets with rules being applied over and over until finally axiomatic statements are
reached. Fortunately, this part can be largely (but not entirely) automated [24], resulting in the proof outline being
sufficient to automatically determine correctness. This provides the basis for the practical use of formal verification
via program logics. One essentially provides proof outlines and lets the automatic reasoning tool determine whether
they hold; this type of verification is often referred to as static checking.

2.2.3 Relation to Programming by Contract

The pre- and postconditions mentioned in Section 2.2.1 may sound familiar to anyone familiar with the concept of
design by contract (DBC); and indeed, the specifications are similar. In practice, in DBC, the specifications are often
defined as a part of the programming language itself and thus executable [38]. The contracts are compiled to executable
code along with the program code and thus violations of the contract are prohibited at runtime. This also means that
DBC by itself makes no guarantees, without executing the program (of which the specification is now part). Because
of this, it is often referred to as runtime checking, as opposed to the static checking mentioned in Section 2.2.2.

However, design by contract and static checking are not incompatible: Static checkers are often used in conjunction
with DBC, as the specifications are largely similar. Examples would be ESC/Java, and the JML-tooling, that both use
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the JML language as specifications to provide static checking and runtime checking respectively, and Code Contracts,
which provides runtime as well as static checking on the same specifications.

2.2.4 Limitations of the Classic Approach

So far it seems that classic program logics are quite powerful in reasoning about programs, to the point that static
checking of advanced specification languages such as JML can be built on top of them. However, there are limitations
in the classical approach, mostly concerned with reasoning about pointers and memory:

Assignment Axiom
{𝑃[𝐸/𝑥]}𝑥 ∶= 𝐸{𝑃}

Assignment with values
{𝑦 + 7 > 42}𝑥 ∶= 𝑦 + 7{𝑥 > 42}

Assignment with pointers
{𝑦.𝑎 = 42}𝑥.𝑎 ∶= 7{𝑦.𝑎 = 42}

Figure 3: The Issue with Pointers

To illustrate the pointer issue, Fig. 3 shows an example of the assignment axiom in use, which states that if 𝑃 holds and
all occurences of the assigned expression 𝐸 in 𝑃 are replaced by the variable 𝑥, 𝑃 should still hold. For the example
with values this clearly holds and for the example with pointers it seems to hold, but this turns out to be unsound
when 𝑥 aliases 𝑦, thus invalidating the axiom for use with pointers.

[𝑦 ∶= −𝑦; 𝑥 ∶= 𝑥 + 1; 𝑦 ∶= −𝑦] (1)
[𝑥 ∶= 𝑥 + 1] (2)

Figure 4: The Issue with Concurrency

Figure 4 shows two cases which in sequential execution satisfy the same input and output conditions, but in concurrent
execution act differently due to interference with other statements of the first case. This means classic Hoare logic
provides no guarantees of race-freedom. The result of this is that classic program logics are unsuitable to reason about
concurrent programs, as any assertion established in a thread, can possibly be invalidated by another thread, at any
time during the execution. While there exist logics which can take into account these multi-threaded scenarios, they
tend to be either – in the case of Owicki-Gries [46] and Rely-guarantee [36] – too general to be of practical use, or – in
the case of concurrent Hoare logics [30], too simplistic to handle the complex situations, involving heaps, in modern
programming languages.

To allow for reasoning with concurrency and pointers, we must then look at a logic which can properly reason about
memory; enter Separation logic (SL).

2.3 Separation Logic

2.3.1 Sequential Separation Logic

Separation logic is a recent generalization of Hoare logic, developed by O’Hearn, Ishtiaq, Reynolds, and Yang [45, 35,
52] based on the work by Burstall [16]. It allows for specification of pointer manipulation, transfer of ownership and
modular reasoning between concurrent modules. Furthermore, it works on the principal of local reasoning, where
only the portion of memory modified or used by a component is specified, instead of the entire program. It allows
us to reason about memory by adding two concepts to the logical assertions, namely the store and the heap. The
store is a function that maps local (stack) variables to values and the heap is a partial function that maps memory
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locations to values (representing objects or otherwise dynamically allocated memory). These additions allow us to
make judgements of the form 𝑠, ℎ ⊨ 𝑃, where 𝑠 is a store, 𝑝 a heap and 𝑃 an assertion about them.

To allow for concise definitions of assertions over the heap and store, classical separation logic extends first-order logic
with four assertions:

⟨𝑎𝑠𝑠𝑒𝑟𝑡⟩ ∶∶ = ⋯

∣ emp empty heap
∣ ⟨𝑒𝑥𝑝⟩ ↦ ⟨𝑒𝑥𝑝⟩ singleton heap
∣ ⟨𝑎𝑠𝑠𝑒𝑟𝑡⟩ ∗ ⟨𝑎𝑠𝑠𝑒𝑟𝑡⟩ separating conjunction
∣ ⟨𝑎𝑠𝑠𝑒𝑟𝑡⟩ ∗ ⟨𝑎𝑠𝑠𝑒𝑟𝑡⟩ separating implication

Figure 5: Extensions to First-Order Logic

• The emp predicate denotes the empty heap and acts as the unit element for separation logic operations.

• The points-to predicate 𝑒 ↦ 𝑒′ means that the location 𝑒 maps to value 𝑒′.

• The resource (or separating) conjunction 𝜙 ∗ 𝜓means that the heap ℎ can be split up in 2 disjoint parts ℎ1⊥ℎ2
where 𝑠, ℎ1 ⊨ 𝜙, and 𝑠, ℎ2 ⊨ 𝜓.

• 𝜙 ∗ 𝜓 asserts that, if the current heap is extended with a disjoint part in which 𝜙 holds, then 𝜓 will hold in
the extended heap.

However, we will mostly be dealing with al alternate variant, called intuitionistic separation logic[21, 47], which,
instead of extending classic first-order logic, extends intuitionistic logic. This is as classical separation logic is based
on reasoning about the entire heap, which presents issues with garbage collected language like Scala, where the heap is
in a state of flux and cannot generally be completely specified. The intuitionistic variant therefore admits weakening,
that is to say 𝑃 ∗ 𝑄 ⇒ 𝑄. Normally this would allow for memory leaks, but the garbage collection takes care of this.
Instead of using emp as the unit element, intuitinionistic separation logic drops this predicate and uses true.

𝑒 ↦ 𝑒1, … , 𝑒𝑛
𝑑𝑒𝑓
= 𝑒 ↦ 𝑒1 ∗ … ∗ 𝑒 + (𝑛 − 1) ↦ 𝑒𝑛

𝑝 = 𝑥 ↦ 3 𝑟 = 𝑥 ↦ 3, 𝑦

𝑞 = 𝑦 ↦ 3 𝑠 = 𝑦 ↦ 3, 𝑥

𝑝 ∗ 𝑞

Figure 6: Example Assertions in Separation Logic

Given this syntax, we will now visualize the examples given in Fig. 6:

• 𝑝 asserts that 𝑥 maps to a cell containing 3.

𝑥 3

• 𝑝 ∗ 𝑞 asserts that 𝑝 and 𝑞 hold in disjoint parts of the heap.

𝑥 3 𝑦 3

• 𝑟 ∗ 𝑠 asserts that two adjacent pairs hold in disjoint heaps.

𝑥
3 3 𝑦
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• 𝑟 ∧ 𝑠 asserts that two adjacent pairs hold in the same heap.

𝑥, 𝑦 3

• 𝑝 ∗ 𝑞 asserts that, if the current heap is extended with a disjoint part in which 𝑝 holds, then 𝑞 will hold in the
extended heap.

ℎ1 ℎ1

ℎ2

ℎ1 ∗ ℎ2

𝑝

ℎ1 𝑞

Now let us look at an example specification of a simple Scala-method, with PointsTo being the ASCII representation
of↦:

class Simple

{

var x = 0

var y = 1

var z = 3

/*@

requires PointsTo(x, _)

ensures PointsTo(x, \result)

*/

def inc() : Int

{

x = x+1

x

}

}

Listing 3: A Simple Specification in Separation Logic

The exact meaning of the specification in Listing 3 is not yet relevant, but an important detail to note is that the
specification only mentions the part of the heap relevant to the method, in this case 𝑥. This is called local reasoning,
made possible by the frame rule – shown in Fig. 7 – which prevents us from repeatedly having to specify the entire
heap.

{𝑃}𝑆{𝑄}
𝐹𝑟𝑎𝑚𝑒 None of the variables modified in 𝑆 occur free in 𝑅

{𝑃 ∗ 𝑅}𝑆{𝑄 ∗ 𝑅}

Figure 7: The Frame Rule

The frame rule states that if a program can execute in a small (local) state satisfying 𝑃, it can execute in an expanded
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state, satisfying 𝑃 ∗ 𝑅, and that its execution will not alter the expanded part of the state i.e. the heap – outside of what
is locally relevant – does not need to be considered when writing specifications.

2.3.2 Abstract Predicates

A practical extension to separation logic, especially for verification of data structures, is abstract predicates [48].
Similarly to abstract data types in programming languages, abstract predicates add abstraction to the logical frame-
work.

Abstract predicates consist of a name and a formula and are scoped:

• Verified code inside the scope can use both the predicate’s name and body.

• Verified code outside the scope must treat the predicate atomically.

• Free variables in the body should be contained in the arguments to the predicate.

To illustrate the use of abstract predicates for data abstraction, Fig. 8 shows the abstraction for singly-linked lists
which is defined by induction on the length of the sequence 𝛼. The 𝐥𝐢𝐬𝐭 predicate takes a sequence and a pointer to
the first element as its arguments; An empty list consists of an empty sequence and a pointer to 𝐧𝐢𝐥 and longer lists
are inductively defined by a pointer to a first element and the assertion that the following sequence is once again a
list.

𝐥𝐢𝐬𝐭 𝜖 𝑖
𝑑𝑒𝑓
= 𝐞𝐦𝐩∧ 𝑖 ↦ 𝐧𝐢𝐥

𝐥𝐢𝐬𝐭 𝑎 ∶ 𝛼 𝑖
𝑑𝑒𝑓
= ∃𝑗.𝑖 ↦ 𝑎, 𝑗 ∗ 𝐥𝐢𝐬𝐭 𝛼𝑗

Figure 8: A List Abstraction using Abstract Predicates

Figure 9 shows another example of abstract predicates, but one where a predicate functions more like a access
ticket.

{𝑇𝑖𝑐𝑘𝑒𝑡⟨𝑥⟩
𝑑𝑒𝑓
= true}

{true}

getTicket() : Int { }

{𝑇𝑖𝑐𝑘𝑒𝑡⟨𝑟𝑒𝑡⟩}

{𝑇𝑖𝑐𝑘𝑒𝑡⟨𝑥⟩}

useTicket(x : Int) { }

{true}

Figure 9: An Example use of Abstract Predicates

2.3.3 Fractional Permissions

One of the useful extensions for verification of concurrent programs, is permissions [12]. In the logic described in
Section 2.3.1 the points-to predicate is used to describe access to the heap. Another way to look at this is that the
points-to predicate requests permission to access a certain part of the heap. The use of fractional permissions in
separation logic makes this notion explicit by extending the points-to predicate with an additional fractional value
in (0, 1], where any value 0 < 𝑣 < 1 requests permission to read and a value of 𝑣 = 1 to write. When proving the
soundness of the verification rules, a global invariant is maintained, requiring the sum of all permissions for each
variable to be less or equal to 1. This invariant, combined with the extended predicate, makes sure that a variable is
either written by one, read by one or more, or untouched, guaranteeing mutual exclusion.
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We shall illustrate this with an example in Listing 4:

class Simple

{

var x = 0

/*@

requires PointsTo(x, 1, _)

ensures PointsTo(x, \result)

*/

def inc() : Int

{

x = x+1

x

}

/*@

requires PointsTo(x, 1/2, _)

ensures PointsTo(x, 1/2, _)

*/

def read() : Int

{

x

}

}

Listing 4: A Simple Example of Permissions

In Listing 4 inc() requires a permission of 1, and read() one of 1

2
, so at most two threads are allowed to read x using

read(), but only one is ever allowed to increment, at a time.

When considering resources and permissions, the magic wand gains another use in the trading of permissions: Given
a heap in which 𝑝 ∗ 𝑞 holds, the resource 𝑝 can be consumed, yielding the resource 𝑞. This use is visualized in
Fig. 10.

• 𝑟 = (𝑥
0.3
↦ 9) ∗ (𝑥

1
↦ 9) holds in ℎ1.

ℎ1 = 𝑥 9
0.7

• Heap extension happens as before, but permissions are combined.

𝑥 9
0.3 + 0.7

• Given the resource needed, we can trade: ((𝑥
0.3
↦ 9) ∗ 𝑟) ⇒ (𝑥

1
↦ 9)

ℎ1 = 𝑥 9
1

• (𝑥
0.3
↦ 9) is consumed in the trade.

Figure 10: Trading Permissions using Separating Implication
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2.3.4 Locks

Another key addition we require, is a means to reason about locks and reentrancy. Fortunately, a solution [28, 5]
exists:

First we define inv, the so-called resource invariant, describing the resources a lock protects e.g. in Listing 5 the
resource invariant protects 𝑥.

class Simple

{

/*@ inv = PointsTo(x, 1 _) */

var x = 0

/*@ commit */

/*@

requires Lockset(S) * (S contains this -* inv) * initialized

ensures Lockset(S) * (S contains this -* inv)

*/

def inc() : Int

{

synchronized

{

x+=1

x

}

}

}

Listing 5: Specification of a Lock in Separation Logic

As invmay require initialization before becoming invariant, the invariant starts in a suspended state. Only when we
commit the invariant, it is actually required to invariantly hold. A common place for such a commit to happen would
be at the end of a constructor as in Listing 5.

Secondly we extend the logic with the following predicates:

• 𝐿𝑜𝑐𝑘𝑠𝑒𝑡(𝑆): The multiset of locks held by the current thread. 𝐿𝑜𝑐𝑘𝑠𝑒𝑡(𝑆) is empty on creation of a new thread.

• 𝑒.𝑓𝑟𝑒𝑠ℎ: The resource invariant of 𝑒 is not yet initialized en therefore doesn’t hold.

• 𝑒.𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑: The resource invariant of 𝑒 can be safely assumed to hold.

• 𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑒: The multiset of locks of the current thread contains the lock 𝑒.

We will require an addition to the rule for object creation, regardless of the actual specifics of the existing rule, that
specifies that all new objects (and therefore locks) are fresh. Furthermore, we require the additional rules given in
Fig. 11:

• The lock rule applies for a lock that is acquired non-reentrantly. The precondition specifies this stating there is
a lockset 𝑆 for this thread, but the lock is not part of it. Furthermore the lock is required to have an initialized
resource invariant. In the postcondition the lock must have been added to the lockset.

• The relock rule is a simple variant of lock, for the reentrant case.

• The unlock rule is the dual of lock, requiring the lock in the lockset in the precondition and having it removed
in the postcondition. Once again a simple variant exists for the reentrant case.
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• Finally we have the commit rule, which promotes a fresh lock to an initialized one.

In the rules given we assume, for easier illustration, a language with dedicated lock and unlock primitives, but this is
extendable to constructions like synchronized and wait/notify.

Lock {Lockset(S) * ¬(S contains u) * u.initialized}
{lock(u)}

{Lockset(u.S) * u.inv}
Relock {Lockset(u.S)}

{lock(u)}
{Lockset(u.u.S)}

Unlock {Lockset(u.S) * u.inv}
{unlock(u)}
{Lockset(S)}

Commit {Lockset(S) * u.fresh}
{u.commit}

{Lockset(S) * ¬(S contains u) * u.initialized}

Figure 11: Extra Rules to Deal with Locks

2.4 Formal Semantics

As previously stated in Section 1, one of our goals is to provide a formal semantics for Scala; Here we shall give an
introduction to formal semantics and its relevance to this thesis.

Programming languages are generally specified informally, using a language specification document, such as the
ones for Java [27] and Scala [43], but to reason about languages using the previously covered program logics, this is
insufficient; For them languages need to have a strict mathematical meaning, which can be linked to and used in the
logical formulas. Such a mathematical description of language meaning is called a formal program semantics.

The idea of program semantics was introduced by Floyd [25] and formal semantics now exist in three major categories,
namely axiomatic semantics, operational semantics and denotational semantics. For our purposes, we will mainly
be interested in operational semantics, for the language itself, and, to a lesser extent, in axiomatic semantics and
denotational semantics, to define the meaning of the assertion logic and its relation to the language semantics.

Operational semantics describe what is valid in a language as sequences of computational steps. They do so either –
in the case of big-step semantics – by describing the overall result of an execution [34] or – in the case of small-step
semantics – by describing the individual steps of the computation [50], using rules. Because our work is focused
on concurrency, we will be dealing with the latter. We shall give a small example of a small-step semantics of a toy
language:

𝑒 ∶∶= 𝑚 ∣ 𝑒0 + 𝑒1

Figure 12: A Very Simple Language

Our demonstration language will consist of expressions, which can be either be a constant or an addition between two
expressions. These expressions can be evaluated in four steps:

• Constants

1. Constants remain, as they are already evaluated with themselves as the value.
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• Addition

1. In 𝑒0 + 𝑒1, 𝑒0 is evaluated to a constant, say𝑚0.

2. In 𝑒0 + 𝑒1, 𝑒1 is evaluated to a constant, say𝑚1.

3. In 𝑒0 + 𝑒1,𝑚0 + 𝑚1 is evaluated to a constant, say𝑚2.

These steps can now be formalized as rules, which take the form premises
conclusion

:

𝑒0 → 𝑒′0

𝑒0 + 𝑒1 → 𝑒′0 + 𝑒1

𝑒1 → 𝑒′1

𝑚0 + 𝑒1 → 𝑚0 + 𝑒′1

With𝑚2 the sum of𝑚0 and𝑚1.𝑚0 + 𝑚1 → 𝑚2

Figure 13: Reduction Rules for the Very Simple Language

These rules now give a strict formal meaning to our simple language.

Axiomatic semantics describe meaning using rules and axioms, of which we have seen examples in Section 2.3.

Denotational semantics describe meaning by providing a mapping to a domain with a known semantics, generally
based in mathmatics.
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3 The Scala Programming Language

3.1 Introduction

Scala1 [22] is a purely object-oriented language with a unified type-system, blending in functional concepts, imple-
mented as a statically typed language on the JVM2, seamlessly interoperating with the existing Java libraries [44, pp. 49,
55–58]. Notable Features of Scala include:

• First-class functions and lexical closures.

• Traits.

• Unified Type System.

• Case Classes.

• Singleton Objects.

• Pattern Matching.

• Limited Type Inference.

• Properties.

• Abstract Types.

As the work presented in this document depends on an understanding of the Scala language, we will take some time
to mention and clarify some of the features used. We will assume an understanding of the Java language and JVM, as
well as a basic understanding of functional programming and languages. Furthermore, this is not meant to be a full
tutorial on Scala, as better resources for that exist elsewhere [44]. We shall illustrate the features of the language using
the sample program given in Listing 7.

3.2 A Guided Tour of Scala

The program described in Listing 7 represents and evaluates simple propositional logic formulas without variables. It
encodes the logical formula in a tree of objects and visits them recursively to evaluate the truth-value. We shall begin
our in-depth examination with the encoding of the basic logical formulas true and false:

case object True extends PropositionalFormula

case object False extends PropositionalFormula

Listing 6: True and False

Besides the fact that all formulas extend the class PropositionalFormula, we immediately encounter two Scala-specific
features, being the case-keyword and the object-keyword. Let us first look at object :

In addition to the class -keyword as it would be used in Java, Scala also supports object . This defines a singleton [26]
object. There are no different possible instantiations of True and False , so making them a global singleton makes
sense.

1A portmanteau of Scalable and Language
2There exist other implementations e.g. on the .Net runtime, but the JVM is the primary one.
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trait EvaluatableToBoolean

{

def boolValue : Boolean

}

trait EvaluatableToInt

{

def intValue : Int

}

trait EvaluatableToString

{

def stringValue : String

def prefix : String

def print = prefix + stringValue

}

object PropositionalFormula

{

def evaluate(phi:PropositionalFormula) : Boolean =

phi match

{

case True => true

case False => false

case Not(r) => !evaluate(r)

case And(l, r) => evaluate(l) && evaluate(r)

case Or(l, r) => evaluate(l) || evaluate(r)

case Implies(l, r) => !evaluate(l) || evaluate(r)

case Equivalent(l, r) => evaluate(Implies(l, r)) && evaluate(Implies(r, l))

}

}

sealed abstract class PropositionalFormula extends EvaluatableToBoolean

{

def value = boolValue

override def boolValue = PropositionalFormula.evaluate(this)

def >(right:PropositionalFormula) : PropositionalFormula = Implies(this, right)

def <>(right:PropositionalFormula) : PropositionalFormula = Equivalent(this, right)

def &(right:PropositionalFormula) : PropositionalFormula = And(this, right)

def |(right:PropositionalFormula) : PropositionalFormula = Or(this, right)

def unary_! : PropositionalFormula = Not(this)

}

case class Not(right:PropositionalFormula)

extends PropositionalFormula

case class And(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

case class Or(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

case class Equivalent(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

case class Implies(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

with EvaluatableToInt

with EvaluatableToString

{

override def prefix = "Value is : "

override def stringValue = PropositionalFormula.evaluate(this).toString()

override def intValue = if(PropositionalFormula.evaluate(this)) 1 else 0

}

case object True extends PropositionalFormula

case object False extends PropositionalFormula

object QuickLook extends App

{

var f = (True | False)

val v1 = f.value

f = ((!(True<>False) & False) > True)

val v2 = PropositionalFormula.evaluate(f)

val v3 = f.asInstanceOf[Implies].print

val v4 = f.asInstanceOf[Implies].intValue

val list = List(v1, v2, v3, v4)

Console.println(list map ((e) => e.toString))

}

Listing 7: A Sample Scala Program
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Secondly there is case: Coupled with object , case has relatively little impact, as it provides only a default serialization
implementation and a prettier toString [43, p. 69]. We use the case-keyword with object to keep the definitions
in line, syntactially, with the case classes, where the impact is much stronger. So let us have a look at those, with the
encodings of the logical operations:

case class Not(right:PropositionalFormula)

extends PropositionalFormula

case class And(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

case class Or(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

case class Equivalent(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

Listing 8: Logical Operators

We encode a single unary logical operation and a couple of binary ones, as case classes. Classes prefixed with case

are, by default, immutable data-containing classes, relying on their constructor-arguments for initialization. They
allow for a compact initialization syntax, without new, have predefined structural equality and hash codes and are
serializable [44, pp. 312–313]. They are also given a companion object with implementations of the extractor methods
apply and unapply, which, respectively, construct the object, given its fields and return the fields of the object [43,
p. 67, 44, Chapter 15]. For the simple definition of say And, the compiler generates Listing 9 as a companion object
where apply returns the left and right operands of And as a tuple and where unapply creates an instance of And given
the left and right operands.

final private object And extends scala.runtime.AbstractFunction2

with ScalaObject with Serializable {

def this(): object this.And = {

And.super.this();

()

};

final override def toString(): java.lang.String = "And";

case def unapply(x$0: this.And):

Option[(this.PropositionalFormula, this.PropositionalFormula)] =

if (x$0.==(null))

scala.this.None

else

scala.Some.apply[(this.PropositionalFormula, this.PropositionalFormula)]

(scala.Tuple2.apply[this.PropositionalFormula, this.PropositionalFormula](x$0.left, x$0.right));

case def apply(left: this.PropositionalFormula, right: this.PropositionalFormula):

this.And = new $anon.this.And(left, right)

};

Listing 9: Compiler-generated And Companion Object

The presence of apply and unapply allow us to pattern match on the case classes [43, p. 116] as you would on algebraic
datatypes(ADTs) in functional languages such as Haskell. Generally case classes and case objects are therefore used to
mimic ADTs, but they do remain full-fledged classes, with their own implementation details. In our case we use this
to add methods to case classes and extend superclasses.

Now let’s have a look at the base class of all our formulas, PropositionalFormula:
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sealed abstract class PropositionalFormula extends EvaluatableToBoolean

{

def value = boolValue

override def boolValue = PropositionalFormula.evaluate(this)

def >(right:PropositionalFormula) : PropositionalFormula = Implies(this, right)

def <>(right:PropositionalFormula) : PropositionalFormula = Equivalent(this, right)

def &(right:PropositionalFormula) : PropositionalFormula = And(this, right)

def |(right:PropositionalFormula) : PropositionalFormula = Or(this, right)

def unary_! : PropositionalFormula = Not(this)

}

Listing 10: PropositionalFormula class

PropositionalFormula is abstract, as there will be no instantiations of it, and sealed, meaning it may not be
directly inherited from, outside of this source file. We seal the class because when matching over formulas, we want
the compiler to warn us if we happen to forget any cases, without adding a default catch-all case. The compiler can
only do this if it knows the full range of possible cases. In general this would be impossible, as new case classes can be
defined at any time and in arbitrary compilation units, but sealing the base class makes all the cases contained to a
single source file and known at compile-time [44, pp. 326–328].

Besidesmaking sure that patternmatching is exhaustive, PropositionalFormula defines operators usedwith formulas,
so we can write them in familiar infix notation instead of prefix constructor notation, e.g. True & False instead of
And(True, False).

Binary operators are defined as any other method or function, using the keyword def, with the name of the operator
being the method name, but for unary operators the special syntax unary_ is used. As opposed to other languages,
both binary and unary operators are to be chosen from a restricted set of symbols; this explains the seemingly odd
choice for the implication and equivalence operators, as = is restricted. Type information is added in postfix notation
following ‘:’, as opposed to the prefix notation used in Java.

Furthermore the class defines the method value, which evaluates the formula, by passing it to evaluate, on the other
PropositionalFormula. Let us have a look a that one:

object PropositionalFormula

{

def evaluate(phi:PropositionalFormula) : Boolean =

phi match

{

case True => true

case False => false

case Not(r) => !evaluate(r)

case And(l, r) => evaluate(l) && evaluate(r)

case Or(l, r) => evaluate(l) || evaluate(r)

case Implies(l, r) => !evaluate(l) || evaluate(r)

case Equivalent(l, r) => evaluate(Implies(l, r))

&& evaluate(Implies(r, l))

}

}

Listing 11: PropositionalFormula singleton

Singleton objects we have seen before in Listing 6. However, because this one shares the name with a class, it is of
a special type called companion objects [44, p. 110]. As Scala has no notion of static members, class definitions are
often coupled with singleton objects, whose members act as static members would in Java [44, p. 111]. When these



3 THE SCALA PROGRAMMING LANGUAGE 19

objects are given the same name as classes, they’re called companion objects and can call private members, on the
instantiations of the class, and vice versa [44, p. 110].

It was already mentioned, during our treatment of case, but here we finally see an instance of pattern matching, in the
evaluatemethod. The evaluatemethod looks at a PropositionalFormula and recursively determines the Boolean
valuation. If the PropositionalFormula is either True or False, this is simple, but in the other cases we extract
the operands of the operator, using the extractor methods provided by case classes and recursively determine their
valuation. Then the built-in language operators are used to determine the valuation of the formula containing the
operator.

We shall have a slightly more in-depth look at the case sequence used in pattern matching, as this will be relevant to the
case study in Section 6 First some definitions:

abstract class Function1[-a,+b] {

def apply(x: a): b

}

abstract class PartialFunction[-a,+b] extends Function1[a,b] {

def isDefinedAt(x: a): boolean

}

Listing 12: Definition of Function1 and PartialFunction

A function in Scala is an object with an apply-method. The unary function, Function1, is predefined with apply

taking a single contravariant argument and returning a single covariant result. Scala has predefined syntax for these
types of functions:

new Function1[Int, Int] {

def apply(x: Int): Int = x + 1

}

Listing 13: Use of Function1

(x: Int) => x + 1

Listing 14: Shorthand

A partial function is mathematically a function mapping only a subset of a domain 𝑋 to a domain 𝑌. Since this
would make every Scala function a partial function, a slightly different approach is used. The trait PartialFunction
is defined as a subclass of Function1, with an additional method isDefinedAt(x), which determines whether the
parameter 𝑥 is an element of the subset of 𝑋, making the domain of the partial function explicit.

A common use3 of PartialFunction in Scala is the case sequence, which features heavily in pattern matching:

{

case p_1 => e_1;

/* ⋮ */

case p_n => e_n

}

Listing 15: Case sequence

3Only in the general case, as the compiler may perform optimizations which turn it into e.g. a nested conditional.
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The cases 𝑝1⋯𝑝𝑛 define the partial domain. isDefinedAt(x) returns true, if one of these cases match the argument
𝑥, and Apply(x) returns the value 𝑒𝑚 for the first pattern 𝑝𝑚 that matches. Listing 16 demonstrates a concrete case
sequence with its PartialFunction representation.

{

case 0:Int => false

case 1:Int => true

}

new PartialFunction[Int, Boolean] {

def apply(d: Int) = (d==1)

def isDefinedAt(d: Int) = (d == 0) || (d==1)

}

Listing 16: Simple Case Sequence, as a PartialFunction

Back in the sample application, we have another major feature to look at, namely traits:

trait EvaluatableToBoolean

{

def boolValue : Boolean

}

trait EvaluatableToInt

{

def intValue : Int

}

trait EvaluatableToString

{

def stringValue : String

def prefix : String

def print = prefix + stringValue

}

Listing 17: Traits

Traits are essentially constructorless abstract classes, or partially implemented interfaces. A class can inherit from mul-
tiple traits, allowing for mixin class composition [13]. In our sample we have 3 traits, namely EvaluatableToBoolean,
EvaluatableToInt and EvaluatableToString. The first two act just like interfaces would in Java, but in the last one
the print-method is actually implemented, concisely showing the difference.

In Listing 10 we see that PropositionalFormula extends EvaluatableToBoolean and implements the method it
requires using the override keyword. And in Listing 18 we see that Implies implements the other two traits, showing
multiple trait inheritance and once again showing that case classes are fully fledged classes.
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case class Implies(left:PropositionalFormula, right:PropositionalFormula)

extends PropositionalFormula

with EvaluatableToInt

with EvaluatableToString

{

override def prefix = "Value is : "

override def stringValue = PropositionalFormula.evaluate(this).toString()

override def intValue = if(PropositionalFormula.evaluate(this)) 1 else 0

}

Listing 18: Multiple Trait Inheritance

Finally our example is tied together with an object that extends App, which signifies an entry point to the application [44,
p. 112] :

object QuickLook extends App

{

var f = (True | False)

val v1 = f.value

f = ((!(True<>False) & False) > True)

val v2 = PropositionalFormula.evaluate(f)

val v3 = f.asInstanceOf[Implies].print

val v4 = f.asInstanceOf[Implies].intValue

val list = List(v1, v2, v3, v4)

Console.println(list map ((e) => e.toString))

}

Listing 19: Main Entry Point

Listing 19 shows the actual implementation of the primary constructor is placed in the class body [44, pp. 140-142].
Constructor parameters of the primary constructor would ordinarily follow the class name akin to method definition,
but as there are none in this case, the () can be ommited. In the case of singletons, this constructor runs when then
object is first accessed [44, p. 112].

Some other features are quickly demonstrated by Listing 19 as well, namely the var-keyword formutables and the val-
keyword for immutables, the syntax for list construction List(..) and for anonymous functions => and the use of
InstanceOf[t] which acts as a cast. The operators we have defined before allow us to write our logical formulas in a
familiar fashion. The use of map shows that the familiar . and () of Java are optional in Scala; in Java it would look
something like List.map(..).
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4 AModel Language Based on Scala

4.1 Introduction

To allow for a proper foundation of the logical assertions in our specifications of Scala programs, we first have to assign
a mathematical meaning to the programs in the form of a formal semantics. We will do this for a modeling language
called Scala Core, which is a subset of Scala.

Our semantics will be based around program contexts, which have been previously used to model non-local control
flow in C [37]. This approach allows for amore natural way of handling the non-local aspects of closures and exceptions
in a small-step operational semantics.

With the importance of program contexts to our semantics, we shall first have an in-depth look at those in Section 4.2.
With the knowledge of how program contexts canmodel expression trees, we will give a semantics for a basic expression
language in Section 4.3; this simple language will form the basis of Scala Core. After defining the basic expression
language, we will subsequently expand it with functions in Section 4.4, exceptions in Section 4.5, classes and traits in
Section 4.6 and finally multithreading in Section 4.7. After defining the semantics in this fashion, we will compare it
to those of the actual Scala language and other relevant semantics in Section 4.8.

4.2 Program Contexts & Zippers

To fully understand program contexts, it is important to first take a look at their main source of inspiration: The zipper
data structure – originally proposed by Huet [32].

The zipper data structure is, as originally described, a representation of a tree, together with a currently focused subtree.
Generally this subtree is called the focus and this representation is called the context. It is called a context because a
focussed subtree occupies a certain location within the tree as a whole: a context for the subtree. We shall illustrate
this with the simple example of an expression tree for the expression (𝑎 × 𝑏) + (𝑐 × 𝑑):

𝑎 𝑏 𝑐 𝑑

× ×

+

Figure 14: The Parse Tree of (𝑎 × 𝑏) + (𝑐 × 𝑑)

Figure 14 shows the parse tree of the sample expression, which we will encode in Scala, using the datatypes defined in
Listing 20.

sealed abstract class BinaryTree

case class Leaf(item : String) extends BinaryTree

case class Split(left : BinaryTree, item : String, right : BinaryTree) extends BinaryTree

Listing 20: Zipper Tree Data Type
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A binary tree consists of either leafs with values or nodes with a left branch, a right branch and a value. Listing 21
shows the encoding of the expression parse tree shown in Fig. 14, using BinaryTree.

Split

(

Split(Leaf("a"), "x", Leaf("b"))

"+"

Split(Leaf("c"), "x", Leaf("d"))

)

Listing 21: The Parse Tree of (𝑎 × 𝑏) + (𝑐 × 𝑑) in Scala

𝑎 𝑏

× �

+

Listing 22: The Context of the Right × in the Parse Tree of (𝑎 × 𝑏) + (𝑐 × 𝑑)

Now, if we look at the right × in Fig. 14, its context would be given by Listing 22: a tree with a hole where the focused
subtree would fit. A way to concisely describe this context is by means of a path from the focused subtree to the root
node. For instance, to reach the root from our subtree, we need to go up the right branch of the root. To demonstrate
this notion in Scala, Listing 23 defines Context: A context consists of Top, for a root hole, or a left hole, with its
parent context and its right sibling, or a right hole, with its left sibling and its parent context. Using this data structure,
Listing 24 shows the encoding of the context of the right ×: It is a child of the root node and appears to the right of
𝑎 × 𝑏.

sealed abstract class context

case class Top() extends Context

case class L(parent : Context, sibling : Tree) extends Context

case class R(sibling : Tree, parent : Context) extends Context

Listing 23: Zipper Context Data Type

R(Split(Leaf("a"), "x", Leaf("b")), Top())

Listing 24: The Context of × in the Parse Tree of (𝑎 × 𝑏) + (𝑐 × 𝑑) in Scala

Moving the focus to another part of the tree is easily expressed, as the movement itself is part of the path describing
the context. L(R(Split(Leaf("a"), "x", Leaf("b")), Top()), Leaf("d")) for instance, would be the context,
were we to move the focus to 𝑐, as it is the left sibling of 𝑑 and its parent context is the one from Listing 24.

Formore complicated expressions, the approachs remains the same: for (𝑎×𝑏)+(𝑐×(2×𝑑) for instance, the context of
𝑐 would be L(R(Split(Leaf("a"), "x", Leaf("b")), Top()), Split(Leaf("2"), "x", Lead("d"))), which
is as before, but with the right sibling of 𝑐 now being 2 × 𝑑.
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Another way to express these contexts, is by means of a list of trees, annotated with the direction that was chosen.
Listing 25 demonstrates this approach in with the focus on 𝑐 in (𝑎 × 𝑏) + (𝑐 × 𝑑).

sealed abstract class Direction

case object L : Direction

case object R : Direction

case class SingularContext(d : Direction, t : Tree)

List

(

SingularContext(Split(Leaf("a"), "x", Leaf("b")), R),

SingularContext(Leaf("d"), L)

)

Listing 25: List Representation of Contexts

Following Krebbers et al. [37], we can adapt and extend the zipper to model program execution: The focus shall be on
(sub)expressions in our model language and the context will consist of the expression turned inside-out representing
a path from the focused subexpression to the whole expression, i.e. the steps executed in the current scope to
reach the focused subexpression. We will illustrate this with an example based on the Scala Core program given in
Listing 26:

var x: Int;

x := 2*3+4*5

Listing 26: A Simple Scala Core Program

The example listing in Listing 26 is a Scala Core program, similar in meaning to the example expression we used before,
but with concrete values for 𝑎, 𝑏, 𝑐, 𝑑 and a variable assignment as the topmost expression. Figure 15 visualizes this
program as a parse tree.
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int 2 int 3 int 4 int 5

∗ ∗

𝑥0 +

∶=

var 𝑥:Int

Figure 15: The Parse Tree of Listing 26

When we focus the rightmost multiplication, the context can be once again visualized – as shown in Fig. 16.

int 2 int 3

∗ �

𝑥0 +

∶=

var 𝑥:Int

Figure 16: The Parse Tree of Listing 26

However, since we will be using this expression tree in a reduction semantics, which rewrites the tree along the way
to propagate evaluated expressions, we will use a slightly different representation – as shown in Fig. 17 – where the
expressions that have been evaluated, have been replaced by their values.
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int 6 �

ref 𝑎𝑥 +

∶=

var 𝑥:Int

Figure 17: The Visualized Context of 4*5 in Listing 26 with evaluated expressions

Instead of using figures of trees, or Scala programs, we shall express the context of a focused expression in lists of
what we shall call singular expression contexts. For the given example we shall define a number of singular expression
contexts – as shown in 18:

⟨𝑏𝑜𝑝⟩ ∶∶=; ∣ + ∣∶=∣ ∗ ∣ …

𝐾𝒮 ∶∶= � ⟨𝑏𝑜𝑝⟩ 𝑒2 ∣ 𝑣1 ⟨𝑏𝑜𝑝⟩� ∣ var𝑎 �

Figure 18: Singular program contexts

Themeaning of these singular contexts is as follows:

• The two binary expression contexts, � ⟨𝑏𝑜𝑝⟩ 𝑒2 and 𝑣1 ⟨𝑏𝑜𝑝⟩ �, mark the currently focused statement as
either the left or right subexpression of a binary expression. if the binary expression context is of the second
subexpression, the first subexpression has been evaluated to a value.

• The variable block context var𝑎 �marks the current expression as the subexpression of a variable block, where
the address of the variable is 𝑎.

We will add more singular expression contexts to the definition as they are required, e.g. when dealing with function
calls.

Using these singular expression contexts, we can now succinctly express the context of 4*5 in the simple program – as
shown in Fig. 19.

𝐤 = int 6 +�

∶∶ ref 𝑎𝑥 ∶= �

∶∶ var𝑎𝑥

∶∶ []

Figure 19: The Context of 4*5 in Listing 26

4*5 is the right hand side of the addition where the left hand side has been evaluated to 6, so the direct context is of



4 A MODEL LANGUAGE BASED ON SCALA 27

the form 6 +�. The context of the addition is right hand side of the assignment where the left hand side is ref 𝑎𝑥, i.e.
ref 𝑎𝑥 ∶= �. Finally the context of the addition is the variable declaration block𝑎𝑥 .

As before, we can traverse upwards and downwards along the zipper, in this case to subexpressions and superexpres-
sions respectively. For instance, if we move downwards from 4*5, the focus shall change to 4, with the following
context:

𝐤 = � ∗ int 5
∶∶ int 6 +�

∶∶ ref 𝑎𝑥 ∶= �

∶∶ var𝑎𝑥

∶∶ []

Figure 20: The Context of 4 in Listing 26

In the same fashion, if we move upwards from 4*5, the focus changes to 2*3+4*5, with the following context:

𝐤 = ref 𝑎𝑥 ∶= �

∶∶ var𝑎𝑥

∶∶ []

Figure 21: The Context of 2*3+4*5 in Listing 26

The practical effect of defining the data structure in this fashion, is that each focused statement comes with the
execution history relevant to its scope, in the form of the context. It is this history which allows us to add non-local
effects to the semantics. In the next section we will demonstrate the program contexts in action, as we shall describe
the basic structure of program context semantics.

4.3 Scala Core with only Basic Expressions

For this first foray into program context semantics for a Scala Core, we will have a look at the simple expression
language which will form the base of our model language. First we will define a syntax for this basic language, then we
will provide and explain the runtime structures necessary for the semantics and provide a number of reduction rules
and finally we will give a a sample reduction of a small program.

4.3.1 Syntax

The syntax of the basic expression language is defined as follows:

Type ∶∶= Ref Type ∣ Int ∣ Unit
Value ∶∶= refAddress ∣ int Integer ∣ unit

Integer = ℕ

Address = ℕ

Figure 22: Types & Values in the Basic Expression Language
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There are only 3 types: Pointer, which is the type of addresses in memory, parametrized with the type of the element it
points to, Int, the type of integer values and theUnit type. Corresponding to these types we have pointer values, integer
values and the unit instance. The unit instance can not be directly used, but is used as the return type of expressions
such as assignment.

In the semantics, we will generally refer to types as 𝑡𝑖, values as 𝑣𝑖 and addresses as 𝑎𝑖, with 𝑖 ∈ ℕ, dropping the
subscript in the singular case.

We have the following expressions, which we will refer to using 𝑒𝑖:

⟨𝑏𝑜𝑝⟩ ∶∶=; ∣∶=

Expression ∶∶= Expression ⟨𝑏𝑜𝑝⟩ Expression ∣ load Expression ∣ var Type; Expression ∣ 𝑥𝑖
∣ Value

Figure 23: Expressions in the Basic Expression Language

• Assignment 𝑒1 ∶= 𝑒2, which stores a value to a location on the heap. It will evaluate to unit.

• Sequential 𝑒1; 𝑒2, which evaluates two expressions sequentially. It will evaluate to the value of the second
expression.

• Load load 𝑒, which loads a value from a given address in the heap.

• VarBlock var 𝑡; 𝑒, which declares a variable of type 𝑡. The variable has no name, as we refer to variables by their
position on the stack instead of by name.

• Ident 𝑥𝑖, which provides the value at the 𝑖𝑡ℎ position of the stack.

4.3.2 Semantics: Runtime Structure

For our model language we shall give a small-step operational semantics which makes extensive use of the previously
introduced program contexts.

For this we need to define the runtime state of our semantics:

State = Context × Focus ×Heap

Context =
−⇀
𝐾𝒮

Focus = Direction× Expression

Direction ∶∶=↘∣↗

Heap = Address ⇀ Type×HeapElement

HeapElement = Value

Figure 24: Runtime Structure

States consist of a context, a focus and a heap. We will refer to states as 𝑆𝑖 and use the syntactic shorthand 𝑆𝑖 =

S(𝑘, 𝜙, ℎ).

With only primitive types, a heap is a finite partial function from addresses to pairs of a type and a value; we shall
refer to them using ℎ𝑖. We shall use the shorthand ℎ[𝑎 ↦ 𝑣] to store values in the heap and use ℎ[𝑎 ↦ ⊥] to allocate
unassigned variables.
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Contexts are lists of singular expression contexts, as described in Section 4.2. We generally refer to them using 𝑘𝑖. We
shall define the singular expressions for the simple language in Fig. 25.

Foci consist of the currently focused expression, i.e. the actual focus of the zipper, and a direction. The direction
indicates where the focus will be moved in the next state; up ↗, or down ↘ the parse tree of the expression. We will
refer to foci using 𝜙𝑖.

In this simple variant of our model language we have the following singular expression contexts:

⟨𝑏𝑜𝑝⟩ ∶∶=; ∣∶=

𝐾𝒮 ∶∶= � ⟨𝑏𝑜𝑝⟩ 𝑣2 ∣ 𝑒1 ⟨𝑏𝑜𝑝⟩� ∣ var𝑎 � ∣ load�

Figure 25: Basic Singular Expression Contexts

Most of the basic singular expression contexts are already familiar from Section 4.2, but we have added load�, which
is used to provide the context for the subexpression 𝑒 in load 𝑒 expressions.

The stack 𝜌, which is implicitly contained in 𝑘, consists not of values, but of pointers to values on the heap, which
will simplify capturing local variables by closures, as all captured variables will consist of references to heap-allocated
variables. To prevent closures from referring to non-existing variables, variables are not explicitly deallocated when
they go out of scope; a garbage collector is assumed to prevent heap pollution. We will refer to the stack using
DeBruijn-indices [14] instead of names, meaning that instead of variable names we shall use 𝑥𝑖 which will refer to the
𝑖𝑡ℎ variable-adress on the stack; this means we do not need special handling of overlapping variable names in different
scopes.

The implicit availability of 𝜌 in 𝑘 is made possible by the fact that there are singular expression contexts marking every
variable allocation. To illustrate this, we look at the example in listing Listing 27:

f(x: Int) : Unit

{

var y: Int;

y := 5

}

f(6)

Listing 27: Stack Example

The example program which we use to illustrate the stack implicitly contained in the context, shows a simple function
definition and its call. This is one extension past the simple expression language, but it allows for a more effective
illustration. The context of interest will be the one where y:=5 is the focussed statement, in the execution of the
function body; we provide this context in Listing 28.

𝐤 = var𝑎𝑦 �

∶∶ funCall 𝑐𝑐 ⟨6⟩

∶∶ var𝑎𝑓 �

∶∶ []

Listing 28: The Context of y:=5 in Listing 27

To represent the context of a function call, we have introduced the additional singular expression context funCall 𝑐𝑘 −⇀𝑎 ,
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which we shall examine in detail in Section 4.4; for now it is important to know that this context contains adresses of
the evaluated parameters to the function in the form of −⇀𝑎 .

The stack at the time of the assignment consists of the local variable 𝑦, the parameters to the function and the variable
𝑓, which is part of the lexical closure of the function. These values are contained in the program context, in the singular
var𝑎𝑦 , funCall 𝑐𝑐 ⟨6⟩ and var𝑎𝑓 contexts respectively. In the general case, the concatenation of the addresses, in singular
variable contexts, and the parameters, in singular function call contexts, will provide the stack, in this fashion. We
therefore define a 𝑔𝑒𝑡𝑆𝑡𝑎𝑐𝑘 function in Listing 29, which provides us the stack. We treat this function as an implicit
conversion where needed and extend this function as more singular expression contexts are defined.

getStack(� ⟨𝑏𝑜𝑝⟩ 𝑒2 ∶∶ 𝑘) ∶= getStack 𝑘

getStack(𝑣1 ⟨𝑏𝑜𝑝⟩� ∶∶ 𝑘) ∶= getStack 𝑘

getStack(var𝑎 � ∶∶ 𝑘) ∶= 𝑎 ∶∶ getStack 𝑘

getStack(funCall
−⇀
𝑣 � ∶∶ 𝑘) ∶=

−⇀
𝑣 ⧺ getStack 𝑘

Listing 29: A Function to Derive the Stack from the Context.

4.3.3 Semantics: Reduction Rules

With the runtime structure defined in the previous section, we can now define the operational semantics for the simple
expression language with the following reduction rules:

For the skip expression:
S(𝑘, (↘ skip), ℎ) ⇾ S(𝑘, (↗ unit), ℎ) red_skip
For subexpression reduction in binary expressions:
S(𝑘, (↘ 𝑒1 ⟨𝑏𝑜𝑝⟩ 𝑒2), ℎ) ⇾ S(� ⟨𝑏𝑜𝑝⟩ 𝑒2 ∶∶ 𝑘, (↘ 𝑒1), ℎ) red_binSubLeft
S(� ⟨𝑏𝑜𝑝⟩ 𝑒2 ∶∶ 𝑘, (↗ 𝑣1), ℎ) ⇾ S(𝑣1 ⟨𝑏𝑜𝑝⟩� ∶∶ 𝑘, (↘ 𝑒2), ℎ) red_binSubRight
S(𝑘, (↘ 𝑒1 ⟨𝑏𝑜𝑝⟩ 𝑣2), ℎ) ⇾ S(� ⟨𝑏𝑜𝑝⟩ 𝑣2 ∶∶ 𝑘, (↘ 𝑒1), ℎ) red_binSubLeftVal
S(𝑘, (↘ 𝑣1 ⟨𝑏𝑜𝑝⟩ 𝑒2), ℎ) ⇾ S(𝑣1 ⟨𝑏𝑜𝑝⟩� ∶∶ 𝑘, (↘ 𝑒2), ℎ) red_binSubRightVal
For binary expressions:
S(�; 𝑣2 ∶∶ 𝑘, (↗ 𝑣1), ℎ) ⇾ S(𝑘, (↗ 𝑣2), ℎ) red_seqLeft
S(𝑣1;� ∶∶ 𝑘, (↗ 𝑣2), ℎ) ⇾ S(𝑘, (↗ 𝑣2), ℎ) red_seqRight
S(� ∶= 𝑣 ∶∶ 𝑘, (↗ ref 𝑎), ℎ) ⇾ S(𝑘, (↗ unit), ℎ[𝑎 ↦ 𝑣]) red_assignLeft
S(ref 𝑎 ∶= � ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, (↗ unit), ℎ[𝑎 ↦ 𝑣]) red_assignRight
For variable declaration blocks:
S(𝑘, (↘ (var 𝑡; 𝑒)), ℎ) ⇾ S(var𝑎 � ∶∶ 𝑘, (↘ 𝑒), ℎ[𝑎 ↦ ⊥]) red_varBlock

for any 𝑎 where 𝑎∉ dom(ℎ)
S(var𝑎 � ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, (↗ 𝑣), ℎ) red_varBlockUp
S(𝑘, (↘ var 𝑡; 𝑣), ℎ) ⇾ S(𝑘, (↗ 𝑣), ℎ) red_varBlockVal
For variable lookup:
S(𝑘, (↘ load 𝑒), ℎ) ⇾ S(load� ∶∶ 𝑘, (↘ 𝑒), ℎ) red_loadSub
S(load� ∶∶ 𝑘, (↗ ref 𝑎), ℎ) ⇾ S(𝑘, (↗ 𝑣), ℎ) red_load

for any 𝑣 where snd ℎ(𝑎) = 𝑣

Listing 30: Basic Reduction Rules
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The basic reduction rules have the following meaning:

• red_binSubLeft evaluates a binary expression one step by marking the first subexpression for evaluation using
↘ and prepending a singular binary expression context containing the second subexpression and with a hole�
for the first.

• red_binSubRightmarks the second subexpression of a binary expression for execution, when it encounters
the resulting value of the first subexpression combined with a singular binary expression context. It swaps the
encountered singular binary expression context with a hole for the first subexpression, with one for the second
subexpression.

• red_binSubLeftValmarks the second subexpression of a binary expression for execution, in case the first one
is already a value, skipping the evaluation of the first subexpression.

• red_binSubRightVal finishes up the subexpression reduction of a binary expression, when it encounters a value
for the second subexpression and the resulting value of the first subexpression in a singular binary expression
context, by removing the singular binary expression context and marking the binary expression for execution,
now with values instead of expressions.

• red_seqLeft and red_seqRight evaluate a sequential expression, by discarding the value resulting from the first
subexpression and propagating the value of the second subexpression.

• red_assignLeft and red_assignRight assign value 𝑣 to address 𝑎 in the heap. The value of an assignment
expression is always unit.

• red_varBlock declares a local variable by prepending a singular var context, with 𝑎 the address of the variable,
which implicitely pushes 𝑎 on the stack. The variable is uninitialized.

• red_varBlockUp removes a singular var context, consequently removing the variable from the stack. It does
not deallocate the variable from the heap, as it could have been captured by a function closure. The value of a
block is the value of its expression.

• red_varBlockVal removes a singular var context, consequently removing the variable from the stack. It does
not deallocate the variable from the heap, as it could have been captured by a function closure. The value of a
block is the value of its expression.

• red_loadSub evaluates the subexpression in a load expression.

• red_load evaluates a load expression from address 𝑎 to the value stored in the heap at that address.

4.3.4 Reduction of a Simple Program

Since we have defined the semantics formally, let us run through the reduction of a simple program to see them in
action:

var x : Int;

x := 5;

x := 3

Listing 31: Simple Program for Reduction Example

While we have technically defined a syntax without variable names, in the example listings we shall still write the
familiar notation with variable names, as this is clearer to read.
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𝐤𝟏 = []

𝝓𝟏 =↘ var Int; 𝑥0 ∶= int 5; 𝑥0 ∶= int 3
𝐡𝟏 = {}

𝐒𝟏 = S(𝑘1, 𝜙1, ℎ1)

Figure 26: The Initial State in the Reduction of Listing 31

The initial state of the reduction of Listing 31 is given by Fig. 26: The context 𝑘1 consists of an empty list, as we are at
the top expression, and the heap ℎ1 starts empty as well. The focused expression 𝜙1 is a variable block, which will
declare the local variable 𝑥 for the expression 𝑥0 ∶= int 5; 𝑥0 ∶= int 3, which means the red_varBlock rule applies –
resulting in the state of Fig. 27.

𝐤𝟐 = var𝑎𝑥 � ∶∶ []

𝝓𝟐 =↘ 𝑥0 ∶= int 5; 𝑥0 ∶= int 3
𝐡𝟐 = {𝑎𝑥 ↦ ⊥}

𝐒𝟐 = S(𝑘2, 𝜙2, ℎ2)

Figure 27: The Second State in the Reduction of Listing 31

After applying red_varBlock, we have reached the second state of the reduction: A singular var context with the
address of 𝑥 has been appended to the context, making the address of 𝑥 the zeroeth of the stack. The variable 𝑥 has
been defined and now points to an empty location in the heap. The focus is now on the sequence subexpression in
the scope of the block, which has been marked for execution using ↘. This means the red_binSubLeft rule applies –
resulting in the state of Fig. 28.

𝐤𝟑 = �; 𝑥0 ∶= int 3
∶∶ var𝑎𝑥 � ∶∶ []

𝝓𝟑 =↘ 𝑥0 ∶= int 5
𝐡𝟑 = {𝑎𝑥 ↦ ⊥}

𝐒𝟑 = S(𝑘3, 𝜙3, ℎ3)

Figure 28: TheThird State in the Reduction of Listing 31

In the third state, red_binExp has been applied, which resulted in a singular sequence context being appended to the
context, which signifies that we are executing the first subexpression of the sequence. The focused statement consists
of this first subexpression, which is the assignment 𝑥0 ∶= int 5, marked for execution using ↘. While the right hand
side of the assignment expression is already a value, the left hand side still requires another reduction, so we apply
red_binSubLeftVal – resulting in the state of Fig. 29.
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𝐤𝟒 = � ∶= int 5
∶∶ �; 𝑥0 ∶= int 3
∶∶ var𝑎𝑥 � ∶∶ []

𝝓𝟒 =↘ 𝑥0

𝐡𝟒 = {𝑎𝑥 ↦ ⊥}

𝐒𝟒 = S(𝑘4, 𝜙4, ℎ4)

Figure 29: The Fourth State in the Reduction of Listing 31

In the fourth state, red_binSubLeftVal has been applied and the variable corresponding to the first element of the
stack evaluates to the address of the variable 𝑥. Since the first subexpression has been reduced and the second is
already a value, we can now apply red_assignLeft – resulting in the state of Fig. 30.

𝐤𝟓 = �; 𝑥0 ∶= int 3
∶∶ var𝑎𝑥 � ∶∶ []

𝝓𝟓 =↗ unit
𝐡𝟓 = {𝑎𝑥 ↦ 5}

𝐒𝟓 = S(𝑘5, 𝜙5, ℎ5)

Figure 30: The Fifth State in the Reduction of Listing 31

In the fifth state, the application of red_assignLeft has resulted in the heap changing, to reflect the assignment of
the integer value 5 to 𝑥, and the direction of the focused statement changing to ↗. This direction combined with the
singular sequential context, with the� on the left side, at the head of the context, means the red_binSubRight rule
now applies – resulting in the state of Fig. 31.

𝐤𝟔 = unit;�
∶∶ var𝑎𝑥 � ∶∶ []

𝝓𝟔 =↘ 𝑥0 ∶= int 3
𝐡𝟔 = {𝑎𝑥 ↦ 5}

𝐒𝟔 = S(𝑘6, 𝜙6, ℎ6)

Figure 31: The Sixth State in the Reduction of Listing 31

In the sixth state, red_binSubRight has been applied, which resulted in the execution shifting to the second subex-
pression of the sequence. The previous singular sequential context has been replaced by a new one, which signifies the
execution of the second subexpression. The focus is subsequently also on this subexpression, marked with ↘. Since
the subexpression is once again an assignment, we apply the same rules as before and fast forward to the 8𝑡ℎ state in
Fig. 32, where the assignment has finished.
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𝐤𝟖 = unit;�
∶∶ var𝑎𝑥 � ∶∶ []

𝝓𝟖 =↗ unit
𝐡𝟖 = {𝑎𝑥 ↦ 3}

𝐒𝟖 = S(𝑘8, 𝜙8, ℎ8)

Figure 32: The 8𝑡ℎ State in the Reduction of Listing 31

In the 8𝑡ℎ state, red_assignLeft has been applied in the same fashion as in the fifth state, with similar results: The heap
now reflects the integer value 3 for 𝑥 and the value has been evaluated to unit. However, as this time we evaluated the
second subexpression of a sequence, the red_seqLeft rule applies instead of red_binSubRight – resulting in the state
of Fig. 33.

𝐤𝟗 = var𝑎𝑥 � ∶∶ []

𝝓𝟗 =↗ unit
𝐡𝟗 = {𝑎𝑥 ↦ 3}

𝐒𝟗 = S(𝑘9, 𝜙9, ℎ9)

Figure 33: The 9𝑡ℎ State in the Reduction of Listing 31

In the 9𝑡ℎ state, after applying red_seqLeft, the singular sequential context has been removed from the context and
the focused statement now consists the value of the sequential expression, unit, marked with ↗. This ↗, combined
with the singular var context, means it is time to pop 𝑎𝑥 of the stack by applying red_varBlockUp – resulting in the
state of Fig. 34.

𝐤𝟏𝟎 = []

𝝓𝟏𝟎 =↗ unit
𝐡𝟏𝟎 = {𝑎𝑥 ↦ 3}

𝐒𝟏𝟎 = S(𝑘10, 𝜙10, ℎ10)

Figure 34: The 10𝑡ℎ State in the Reduction of Listing 31

In the 10𝑡ℎ and final state, there are no more possible reductions and we have reduced the top expression to a value,
meaning the program has successfully executed. As we are at the top expression, the context is once again empty.

4.4 Extending Scala Core with Functions

One of the more interesting extentions of our model language – and a primary focus – is the support for first-class
functions and lexical closures. In this section we first give, and explain, the syntax, changes to the runtime structure
and the necessary reduction rules, to incorporate functions in our semantics, and we provide an example reduction,
using these rules.
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4.4.1 Syntax

Type ∶∶= … ∣ FType

FType ∶∶= (
−−−⇀
Type) ∶ Type

Expression ∶∶= … ∣ FType → {Expression} ∣ call Expression

Figure 35: Syntactical Extensions for Functions

Extending our model language with functions requires an additional type for functions and, furthermore, two new
expressions:

• Lambda (−⇀𝑡 ) ∶ 𝑡 → 𝑒, which defines a function, with a list of parameters with types−⇀𝑡 , return type 𝑡 and function
body 𝑒.

• Call call 𝑒, which calls a function.

There is no specific function value, as a function will consist of a pointer to a function store in the heap.

4.4.2 Semantics : Runtime Structure

HeapElement = Value ∣ FunctionStore

FunctionStore = Context × Expression

Figure 36: Extended Runtime Structure for Functions

To allow functions to be stored on the heap, we have added the function store as a possible heap element. A function
store consists of the defining context of a function, i.e. a list of singular expression contexts, and an expression, which
is the body of the function.

Furthermore, we have added additional singular expression contexts for function expressions:

𝐾𝒮 ∶∶= … ∣ call� −⇀
𝑒 ∣ call 𝑣 � ∣ params

−⇀
𝑣
−⇀
𝑒 � ∣ funCall 𝑘

−⇀
𝑎 �

Figure 37: The Singular Expression Contexts Expanded with Function Contexts

These additional contexts have the following meaning:

• The singular call contexts call�−⇀
𝑒 and call 𝑒�mark the currently focused subexpression as the called expression

or the parameters of a call, respectively.

• The singular parameters context params−⇀𝑒 −⇀
𝑣�marks the currently focused subexpression as a member of a

list of function parameters, with −⇀𝑣 the values of the evaluated parameters and −⇀𝑒 the remaining (unevaluated)
subexpressions.

• The singular function call funCall 𝑘 −⇀𝑎 context marks the currently focused subexpression as the body of an
executing function, with 𝑘 the calling context of the function and −⇀𝑎 the addresses of the parameters.
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4.4.3 Semantics : Reduction Rules

To evaluate functions, we introduce the following reduction rules:

For function definition:

S(𝑘, (↘ (
−⇀
𝑡 ) ∶ 𝑡 → 𝑒), ℎ) ⇾ S(𝑘, (↗ ref 𝑎), ℎ[𝑎 ↦ ⟨𝑘, 𝑒⟩]) red_funDef

for any 𝑎 where 𝑎∉ dom(ℎ)
For subexpression reduction in function calls:

S(𝑘, (↘ call 𝑒 −⇀𝑒 ), ℎ) ⇾ S(call� 𝑟𝑒𝑣(
−⇀
𝑒 ) ∶∶ 𝑘, (↘ 𝑒), ℎ) red_callLeft

S(call� −⇀
𝑒 ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(call 𝑣 � ∶∶ 𝑘, (↘

−⇀
𝑒 ), ℎ) red_callRight

For function parameters:
S(call 𝑣 � ∶∶ 𝑘, (↘ []), ℎ) ⇾ S(call 𝑣 � ∶∶ 𝑘, (↗ []), ℎ) red_paramsEmpty

S(call 𝑣 � ∶∶ 𝑘, (↘ 𝑒 ∶∶
−⇀
𝑒 ), ℎ)

⇾ S(params[] −⇀𝑒� ∶∶ call 𝑣 � ∶∶ 𝑘, (↘ 𝑒), ℎ) red_paramsHead

S(call 𝑣 � ∶∶ 𝑘, (↘ 𝑣 ∶∶
−⇀
𝑒 ), ℎ)

⇾ (S(params 𝑣 ∶∶ []
−⇀
𝑒�) ∶∶ call 𝑣 � ∶∶ 𝑘, (↗ 𝑣), ℎ) red_paramsHeadVal

S((params−⇀𝑣 𝑒 ∶∶
−⇀
𝑒 �) ∶∶ 𝑘, (↗ 𝑣), ℎ)

⇾ S((params 𝑣 ∶∶
−⇀
𝑣
−⇀
𝑒 �) ∶∶ 𝑘, (↘ 𝑒), ℎ) red_paramsNext

S((params−⇀𝑣 𝑣2 ∶∶
−⇀
𝑒 �) ∶∶ 𝑘, (↗ 𝑣1), ℎ)

⇾ S((params 𝑣1 ∶∶
−⇀
𝑣
−⇀
𝑒 �) ∶∶ 𝑘, (↗ 𝑣2), ℎ) red_paramsNextVal

S((params−⇀𝑣 []�) ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, (↗ 𝑣 ∶∶
−⇀
𝑣 ), ℎ) red_paramsLast

For function calls:

S(call ref 𝑎� ∶∶ 𝑘1, (↗
−⇀
𝑣 ), ℎ1) ⇾ S(funCall 𝑘1

−⇀
𝑎 � ∶∶ 𝑘2, (↘ 𝑒), ℎ2) red_call

For any −⇀𝑎 , ℎ2, 𝑘2, 𝑒 where allocparams ℎ1
−⇀
𝑣
−⇀
𝑎 ℎ2,

snd ℎ1(𝑎) = ⟨𝑘2, 𝑒⟩

For function returns:

S(funCall 𝑘2
−⇀
𝑎 � ∶∶ 𝑘1, (↗ 𝑣), ℎ) ⇾ S(𝑘2, (↗ 𝑣), ℎ) red_return

Figure 38: Reduction rules for functions

These rules have the following meaning:

• red_funDef allocates the function store corresponding to the definition to the heap and returns the address.

• red_callLeft and red_callRight start the reduction of the subexpression 𝑒 and the list of subexpressions −⇀𝑒
respectively, when a function call is encountered.

• The params rules reduce the subexpressions in the list of function parameters to values.

• red_call starts the evaluation, of the function with store ⟨𝑘2, 𝑒⟩ at address 𝑎 and list of parameters −⇀𝑣 , by
prepending the singular funCall 𝑘 −⇀𝑎 context, to the defining context 𝑘2 of the function, and starting the execution
of the body in that context. The function parameter values are allocated to the heap using allocParams – shown
in Fig. 39.

• red_return Propagates the return value 𝑣 to the calling context 𝑘2, when a funCall 𝑘2
−⇀
𝑎 context is encountered

in combination with an evaluated value 𝑣.
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allocParams ℎ [] [] ℎ

allocParams ℎ1
−⇀
𝑎
−⇀
𝑣 ℎ2 𝑎∉ dom(ℎ1)

allocParams ℎ1 (𝑎 ∶∶
−⇀
𝑎 ) (𝑣 ∶∶

−⇀
𝑣 ) ℎ2 ℎ2[𝑎 ↦ 𝑣]

Figure 39: The Inductively Defined allocParams Relation

4.4.4 Reduction of a Simple Program with Functions

With these reduction rules we can now evaluate the program in Listing 32. Compared to the previous reduction of the
simple example, the margins now contain pointers to retain an intuitive idea of where the execution of the program is
at, in the sea of reduction steps.

var f : (Int):Int;

f = (x : Int):Int ->

{

x

};

f(5)

Listing 32: A Small Program with a Function

Declaration of
𝑓

𝐤𝟏 = []

𝝓𝟏 =↘ var(Int) ∶ 𝐼𝑛𝑡; (𝑥0 ∶= (𝐼𝑛𝑡) ∶ 𝐼𝑛𝑡 → load 𝑥1); call(load 𝑥0)(int 5 ∶∶ [])
𝐡𝟏 = {}

𝐒𝟏 = S(𝑘1, 𝜙1, ℎ1)

Figure 40: The Initial State in the Reduction of Listing 32

The initial state of the reduction of Listing 32 is given by Fig. 40: The context and the heap are empty, as we are at the top
expression, which is a variable declaration. We apply the red_varBlock rule to proceed to the state in Fig. 41.

𝑓 declared
𝐤𝟐 = var𝑎𝑓 �

∶∶ []

𝝓𝟐 =↘ (𝑥0 ∶= (𝐼𝑛𝑡) ∶ 𝐼𝑛𝑡 → load 𝑥1); call(load 𝑥0)(int 5 ∶∶ [])
𝐡𝟐 = {𝑎𝑓 ↦ ⊥}

𝐒𝟐 = S(𝑘2, 𝜙2, ℎ2)

Figure 41: The Second State in the Reduction of Listing 32

In the second state, red_varBlock has been applied, which resulted in the function f being declared and a singular
var context containing its address being prepended to the context. The subexpression of the function block is a
sequential expression, so we apply red_binSubLeft to reduce the first subexpression – which results in de state shown
in Fig. 42.
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Definition of 𝑓
𝐤𝟑 = �; call(load 𝑥0)(int 5 ∶∶ [])

∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟑 =↘ 𝑥0 ∶= ((𝐼𝑛𝑡) ∶ 𝐼𝑛𝑡 → load 𝑥1)
𝐡𝟑 = {𝑎𝑓 ↦ ⊥}

𝐒𝟑 = S(𝑘3, 𝜙3, ℎ3)

Figure 42: TheThird State in the Reduction of Listing 32

In the third state, red_binSubLeft has been applied. The first subexpression is an assignment with reducible subex-
pressions, so we once again apply red_binSubLeft – which results in the state shown in Fig. 43.

𝐤𝟒 = � ∶= ((𝐼𝑛𝑡) ∶ 𝐼𝑛𝑡 → load 𝑥1)
∶∶ �; call(load 𝑥0)(int 5 ∶∶ [])
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟒 =↗ ref 𝑎𝑓
𝐡𝟒 = {𝑎𝑓 ↦ ⊥}

𝐒𝟒 = S(𝑘4, 𝜙4, ℎ4)

Figure 43: The Fourth State in the Reduction of Listing 32

In the fourth state, red_binSubLeft has reduced the first subexpression of the assignment to a value, which means we
can apply red_binSubRight to reduce the second – resulting in the state of Fig. 44.

𝐤𝟓 = ref 𝑎𝑓 ∶= �

∶∶ �; call(load 𝑥0)(int 5 ∶∶ [])
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟓 =↘ (𝐼𝑛𝑡) ∶ 𝐼𝑛𝑡 → load 𝑥1
𝐡𝟓 = {𝑎𝑓 ↦ ⊥}

𝐒𝟓 = S(𝑘5, 𝜙5, ℎ5)

Figure 44: The Fifth State in the Reduction of Listing 32

In the fifth state, red_binSubRight has been applied and the focused expression is now a function definition expression.
We apply red_funDef to reduce this expression to a value – resulting in the state of Fig. 45.
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𝐤𝟔 = ref 𝑎𝑓 ∶= �

∶∶ �; call(load 𝑥0)(int 5 ∶∶ [])
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟔 =↗ ref 𝑎𝑓1
𝐡𝟔 = {𝑎𝑓 ↦ ⊥, 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟔 = S(𝑘6, 𝜙6, ℎ6)

Figure 45: The Sixth State in the Reduction of Listing 32

In the sixth state, red_funDef has allocated the function at address 𝑎𝑓1 and returns the address. We now apply
red_assignRight to finish the actual assignment – resulting in the state of Fig. 46.

𝑓 defined
𝐤𝟕 = �; call(load 𝑥0)(int 5 ∶∶ [])

∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟕 =↗ unit
𝐡𝟕 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟕 = S(𝑘7, 𝜙7, ℎ7)

Figure 46: The Seventh State in the Reduction of Listing 32

In the seventh state, red_assignRight has been applied, resulting in the address 𝑎𝑓 pointing to the proper value. The
return value of assignments is always unit. With this the first subexpression of the sequential expression has been fully
reduced – i.e. the function 𝑓 has been defined – so we apply red_binSubRight to start on the second one – resulting
in the state of Fig. 47.

Starting call
𝐤𝟖 = unit;�

∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟖 =↘ call(load 𝑥0)(int 5 ∶∶ [])
𝐡𝟖 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟖 = S(𝑘8, 𝜙8, ℎ8)

Figure 47: The Eighth State in the Reduction of Listing 32

In the eighth state, red_binSubRight has marked the second subexpression for evaluation, which is a function call
expression. As this call has yet unreduced subexpressions, we apply red_callLeft to reduce the first subexpression –
resulting in the state of Fig. 48.
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𝐤𝟗 = call�(𝐼𝑛𝑡5 ∶∶ [])

∶∶ unit;�
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟗 =↘ load 𝑥0
𝐡𝟗 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟗 = S(𝑘9, 𝜙9, ℎ9)

Figure 48: The 9𝑡ℎ State in the Reduction of Listing 32

In the 9𝑡ℎ state, red_callLeft has been applied, resulting in a load expression being marked for execution. To load
a value from the heap, we first reduce the expression 𝑒 in the load expression to an address using red_loadSub –
resulting in the state of Fig. 49.

𝐤𝟏𝟎 = load�

∶∶ call�(𝐼𝑛𝑡5 ∶∶ [])

∶∶ unit;�
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟎 =↘ 𝑥0

𝐡𝟏𝟎 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟏𝟎 = S(𝑘10, 𝜙10, ℎ10)

Figure 49: The 10𝑡ℎ State in the Reduction of Listing 32

In the 10𝑡ℎ state, applying red_loadSub resulted in an ident expression, which means we can now apply red_load to
load the actual value – resulting in the state of Fig. 50.

Function
identified as 𝑓

𝐤𝟏𝟏 = call�(int 5 ∶∶ [])
∶∶ unit;�
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟏 =↗ ref 𝑎𝑓1
𝐡𝟏𝟏 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟏𝟏 = S(𝑘11, 𝜙11, ℎ11)

Figure 50: The 11𝑡ℎ State in the Reduction of Listing 32

In the 11𝑡ℎ state, red_load has been applied with the address 𝑎𝑓, to obtain the value ref 𝑎𝑓1 . As this concludes the
reduction of the first subexpression of the function call expression, we now apply red_callRight to evaluate the
function parameters – resulting in the state of Fig. 51.
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Evaluating
parameters

𝐤𝟏𝟐 = call ref 𝑎𝑓1 𝑥1�
∶∶ unit;�
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟐 =↘ int 5 ∶∶ []
𝐡𝟏𝟐 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟏𝟐 = S(𝑘12, 𝜙12, ℎ12)

Figure 51: The 12𝑡ℎ State in the Reduction of Listing 32

In the 12𝑡ℎ state, after applying red_callRight, the focus is on a list of expressions, of which the first is already a value,
in a function call context, which means the red_paramsHeadVal rule applies – resulting in the state of Fig. 52.

𝐤𝟏𝟑 = params(𝐼𝑛𝑡5 ∶∶ []) []�

∶∶ call ref 𝑎𝑓1 𝑥1�
∶∶ unit;�
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟑 =↗ int 5
𝐡𝟏𝟑 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟏𝟑 = S(𝑘13, 𝜙13, ℎ13)

Figure 52: The 13𝑡ℎ State in the Reduction of Listing 32

In the 13𝑡ℎ state, after applying red_paramsHeadVal, the focused context is an evaluated value and the list of remaining
expressions in the singular parameter context is empty, which means the red_paramsLast rule applies – resulting in
the state of Fig. 53.

Parameters
evaluated

𝐤𝟏𝟑 = call ref 𝑎𝑓1 𝑥1�
∶∶ unit;�
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟑 =↗ (int 5 ∶∶ [])
𝐡𝟏𝟑 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩}
𝐒𝟏𝟑 = S(𝑘13, 𝜙13, ℎ13)

Figure 53: The 13𝑡ℎ State in the Reduction of Listing 32

In the 13𝑡ℎ state, red_paramsLast has changed the focus to a list of values, which means the function call expression
is ready to be evaluated. We therefore apply red_call – resulting in the state of Fig. 54.
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Evaluating call
𝐤𝟏𝟒 = funCall 𝑘9 (𝑎𝑥 ∶∶ [])

∶∶ ref 𝑎𝑓 ∶= �

∶∶ �; (load 𝑥0)(int 5 ∶∶ [])
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟒 =↘ load 𝑥1
𝐡𝟏𝟒 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩, 𝑎𝑥 ↦ int 5}
𝐒𝟏𝟒 = S(𝑘14, 𝜙14, ℎ14)

Figure 54: The 14𝑡ℎ State in the Reduction of Listing 32

In the 14𝑡ℎ state, after applying red_call, the context is now the defining context of the function, prepended with ,
which contains the calling context and a list containing the address of the function parameter. The focused expression
is the function body, which in this case consists of a load expression. The load expression reduces as before, so we skip
forward to the 17𝑡ℎ state – shown in Fig. 55 – where the function body has been reduced.

𝐤𝟏𝟕 = funCall 𝑘9 (𝑎𝑥 ∶∶ [])

∶∶ ref 𝑎𝑓 ∶= �

∶∶ �; (load 𝑥0)(int 5 ∶∶ [])
∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟕 =↗ int 5
𝐡𝟏𝟕 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩, 𝑎𝑥 ↦ int 5}
𝐒𝟏𝟕 = S(𝑘17, 𝜙17, ℎ17)

Figure 55: The 17𝑡ℎ State in the Reduction of Listing 32

In the 17𝑡ℎ state, after applying red_load, the function has finished executing and we now apply red_return to
propagate the return value back to the calling context – which results in the state of Fig. 56.

Call returned
𝐤𝟏𝟖 = unit;�

∶∶ var𝑎𝑓 �

∶∶ []

𝝓𝟏𝟖 =↗ int 5
𝐡𝟏𝟖 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩, 𝑎𝑥 ↦ int 5}
𝐒𝟏𝟖 = S(𝑘18, 𝜙18, ℎ18)

Figure 56: The 18𝑡ℎ State in the Reduction of Listing 32

In the 18𝑡ℎ state, red_return has been applied and the value returned has now taken the place of the function call,
back in the original calling context. What remains is applying red_seq to finish up the sequential expression and then
red_funBlockUp to clear the stack – which results in the final state of Fig. 57.
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𝐤𝟏𝟗 = []

𝝓𝟏𝟗 =↗ int 5
𝐡𝟏𝟗 = {𝑎𝑓 ↦ 𝑎𝑓1 , 𝑎𝑓1 ↦ ⟨𝑘7, load 𝑥1⟩, 𝑎𝑥 ↦ int 5}
𝐒𝟏𝟗 = S(𝑘19, 𝜙19, ℎ19)

Figure 57: The 23𝑟𝑑 State in the Reduction of Listing 32

4.5 Extending Scala Core with Exceptions

Another feature of our model language, is the support for exceptions. In this section we first give, and explain, the
necessary reduction rules, to incorporate exceptions in our semantics, and, we provide an example reduction, using
these rules.

4.5.1 Syntax

For exceptions we extend the syntax with two expressions:

Expression ∶∶= try {Expression} catch(Type) {Expression} ∣ throw Expression

Figure 58: Syntactical Extensions for Exceptions

• Try/catch try {𝑒1} catch(𝑡) {𝑒2}, which evaluates 𝑒1 either succesfully, or until an exception of type 𝑡 is encoun-
tered, in which case it evaluates 𝑒2.

• Throw throw 𝑒, which evaluates 𝑒 and then propagates the resulting value up the expression tree until either a
matching try/catch is found, or the topmost expression has been reached and the program terminates abnormally.

4.5.2 Semantics: Runtime Structure

To express the semantics of exceptions, we have added a traversal direction – shown in Fig. 59 – and a number of
additional singular expression contexts – shown in Fig. 60 – and we have defined the neccesary reduction rules –
shown in Fig. 61.

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∶∶=↗∣↘∣ 𝑡

Figure 59: An Additional Direction

The additional 𝑡 direction is used to propagate exceptions upwards in the expression, moving the focus up one step at
a time, until a singular trycatch 𝑡′ 𝑒 � context is encountered where 𝑡 = 𝑡′.

𝐾𝒮 ∶∶= … ∣ trycatch 𝑡 𝑒 � ∣ throw�

Figure 60: The Singular Expression Contexts Expanded with Function Contexts

These additional contexts have the following meaning:
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• The singular trycatch context trycatch 𝑡 𝑒 �marks the currently focused subexpression as the try-expression in
a try/catch expression, with 𝑒 the expression to execute on catch and t the type of expression to catch.

• The singular throw context throw� marks the currently focused subexpression as the eventual value to be
thrown in a throw expression.

4.5.3 Semantics: Reduction Rules

For try/catch expressions:
S(𝑘, (↘ try 𝑒1 catch 𝑡 𝑒2), ℎ) ⇾ S(trycatch 𝑡 𝑒2 � ∶∶ 𝑘, (↘ 𝑒1), ℎ) red_try
S(trycatch 𝑡 𝑒 � ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, (↗ 𝑣), ℎ) red_tryNoEx
For subexpression reduction in throw expressions:
S(𝑘, (↘ throw 𝑒), ℎ) ⇾ S(throw� ∶∶ 𝑘, (↘ 𝑒), ℎ) red_throwSub

For any 𝑡 where typeOf(𝑒, 𝑡)
For throwing exceptions:
S(throw� ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡𝑣), ℎ) red_throw
For catching exceptions:
S(trycatch 𝑡 𝑒 � ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(val𝑎 � ∶∶ 𝑘, (↘ 𝑒), ℎ[𝑎 ∶= 𝑣]) red_catch

For any 𝑎 where ℎ 𝑎 = ⊥

For exception propagation:
S(� ⟨𝑏𝑜𝑝⟩ 𝑒2 ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exBinSubLeft
S(𝑣1 ⟨𝑏𝑜𝑝⟩� ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exBinSubRight
S(var𝑎 � ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exBlock
S(load� ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exLoad

S(call� −⇀
𝑒 ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exCallLeft

S(call 𝑣 � ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exCallRight

S(params−⇀𝑣 −⇀
𝑒 � ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exParams

S(funCall 𝑐𝑘 −⇀𝑎 ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑐𝑘, ( 𝑡 𝑣), ℎ) red_exCall
S(throw� ∶∶ 𝑘, ( 𝑡 𝑣), ℎ) ⇾ S(𝑘, ( 𝑡 𝑣), ℎ) red_exThrow
S(trycatch 𝑡1 𝑒 � ∶∶ 𝑘, ( 𝑡2

𝑣), ℎ) ⇾ S(𝑘, ( 𝑡2
𝑣), ℎ) red_exTry

Where 𝑡1 ≠ 𝑡2

Figure 61: Reduction rules for Exceptions

These additional reduction rules have the following meaning:

• red_try takes a try/catch expression, with the expression to try 𝑒_1, the type to catch 𝑡 and the expression to
evaluate on a catch 𝑒_2, and reduces it to the execution of 𝑒_1 in a singular trycatch context containing 𝑒_2
and 𝑡.

• red_tryNoEx is applied when a try expression has evaluated without throwing. The value 𝑣 resulting from the
try expression is propagated as the result of the entire try/catch expression. The singular trycatch context is
removed.

• red_throw is applied after red_throwSub has resulted in a value 𝑣, of type 𝑡, to throw. The direction is changed
to 𝑡, and the focused expression is the value 𝑣.
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• red_catch is applied when, during exception propagation – signified by the direction 𝑡 and a value 𝑣, we
encounter a singular trycatch context with type 𝑡. The exception is now considered caught and the catch
expression 𝑒_2 is evaluated in a singular variable block context containing the address to the thrown value,
which has been allocated on the heap.

• The red_ex rules are generally straightforward, as they simply propagate the exception one step up the context.
The outlier is red_exCall, which, instead of moving the exception up one step in the current context, propagates
it to the calling context of an executing function.

4.5.4 Example Program with Exceptions

With these reduction rules we can now evaluate the program in Listing 33:

var x : Int;

x := 6;

try

{

throw x;

}

catch(y : Int)

{

x := 2

}

Listing 33: A Small Program with Exception Handling

𝐤𝟕 = unit;�
∶∶ var𝑎𝑥

∶∶ []

𝝓𝟕 =↘ try(throw load 𝑥0) catch Int(𝑥0 ∶= int 2)
𝐡𝟕 = {𝑎𝑥 ↦ int 6}
𝐒𝟕 = S(𝑘7, 𝜙7, ℎ7)

Figure 62: The Seventh State in the Reduction of Listing 33

As variable declaration and assignment are by now quite familiar, we will begin this example in the seventh state,
where the try/catch expression is marked for evaluation. In this state we apply red_try – resulting in the state of
Fig. 63.
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𝐤𝟖 = trycatch Int(𝑥0 ∶= int 2)�
∶∶ unit;�
∶∶ var𝑎𝑥

∶∶ []

𝝓𝟖 =↘ throw load 𝑥0
𝐡𝟖 = {𝑎𝑥 ↦ int 6}
𝐒𝟖 = S(𝑘8, 𝜙8, ℎ8)

Figure 63: The Eighth State in the Reduction of Listing 33

In the eighth state, red_try has been applied, resulting in a singular trycatch context being prepended to the context,
with 𝑥0 ∶= int 2 the catch expression and Int for the type to catch. The focused expression is now the throw
expression throw load 𝑥0, with the direction ↘marking it for execution. As the throw expression has a yet unreduced
subexpression, we apply red_throwSub – resulting in the state of Fig. 64.

𝐤𝟗 = throw�

∶∶ trycatch Int(𝑥0 ∶= int 2)�
∶∶ unit;�
∶∶ var𝑎𝑥

∶∶ []

𝝓𝟗 =↘ load 𝑥0
𝐡𝟗 = {𝑎𝑥 ↦ int 6}
𝐒𝟗 = S(𝑘9, 𝜙9, ℎ9)

Figure 64: The Ninth State in the Reduction of Listing 33

In the ninth state, after applying red_throwSub, the focused expression is the familiar load expression, so we fast
forward to the 12𝑡ℎ state where it has been fully evaluated.

𝐤𝟏𝟐 = throw�

∶∶ trycatch Int(𝑥0 ∶= int 2)�
∶∶ unit;�
∶∶ var𝑎𝑥

∶∶ []

𝝓𝟏𝟐 =↗ int 6
𝐡𝟏𝟐 = {𝑎𝑥 ↦ int 6}
𝐒𝟏𝟐 = S(𝑘12, 𝜙12, ℎ12)

Figure 65: The 12𝑡ℎ State in the Reduction of Listing 33

In the 12𝑡ℎ state, we encounter a value in a singular throw context, which means we can apply red_throw, to throw
the value – resulting in the state of Fig. 66.
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𝐤𝟏𝟑 = trycatch Int(𝑥0 ∶= int 2)�
∶∶ unit;�
∶∶ var𝑎𝑥

∶∶ []

𝝓𝟏𝟑 = Int int 6
𝐡𝟏𝟑 = {𝑎𝑥 ↦ int 6}
𝐒𝟏𝟑 = S(𝑘13, 𝜙13, ℎ13)

Figure 66: The 13𝑡ℎ State in the Reduction of Listing 33

In the 13𝑡ℎ state, after applying red_throw, we encounter the value int 6 with direction Int, in a singular trycatch con-
text with matching type. This means we can apply red_catch to catch the value – resulting in the state of Fig. 67.

𝐤𝟏𝟒 = var𝑎𝑦 �

∶∶ unit;�
∶∶ var𝑎𝑥

∶∶ []

𝝓𝟏𝟒 =↘ 𝑥0 ∶= int 2
𝐡𝟏𝟒 = {𝑎𝑥 ↦ int 6, 𝑎𝑦 ↦ int 6}
𝐒𝟏𝟒 = S(𝑘14, 𝜙14, ℎ14)

Figure 67: The 14𝑡ℎ State in the Reduction of Listing 33

In the 14𝑡ℎ state, red_catch has been applied and the assignment expression 𝑥0 ∶= int 2 is marked for execution. A
singular var context has been prepended to the context, containing the address of the caught value. The assignment
reduces as before and is not relevant to the treatment of exception handling, so we omit further reduction steps from
this example.

4.6 Extending Scala Core with Classes & Traits

A large, but necessary, extension, is the addition of classes and traits, to make Scala Core into an object-oriented
language, just as Scala itself. In this section we provide the necessary syntax and semantics for objects and demonstrate
their use with an example reduction.

4.6.1 Syntax

To extend our model language with classes and traits, the syntax requires a substantial extension. First there is the
syntax to define classes and traits:
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Class ∶∶= class ClassIdentifier extends ClassIdentifierwith
−−−−−−−−−−−⇀
TraitIdentifier

{Field Method}

Trait ∶∶= trait TraitIdentifier extends TraitIdentifierwith
−−−−−−−−−−−⇀
TraitIdentifier

{Field Method}

Method ∶∶= MethodIdentifier(
−−−⇀
Type) ∶ Type {Expression}

Field ∶∶= MutableField ∣ ImmutableField

MutableField ∶∶= var FieldIdentifier ∶ Type
ImmutableField ∶∶= val FieldIdentifier ∶ Type

Figure 68: Syntactical Extensions for Class Definition

Classes consist of an identifier, a superclass (which will be Any if none is specified), a number of implemented traits, a
set of fields and set of methods. The constructor is the method init, which may have any number of parameters, but
must always return a pointer to the constructed object.

Traits are similar to classes. They consist of an identifier, a number of implemented traits and sets of fields and methods.
They have no constructor and may not be instantiated.

Methods are comparable to functions, except that they are named.

Fields can be either mutable or immutable. Immutable fields are mutable until their initial assignment.

Type ∶∶= Pointer ∣ Unit ∣ ClassIdentifier ∣ TraitIdentifier ∣ FType

FType ∶∶= (
−−−⇀
Type) ∶ Type

Figure 69: Syntactical Extensions for Classes

Secondly, types now consist of those defined by classes and traits, a pointer type and a function type.

There are no longer any primitive types, as those will be implemented using classes and syntactic sugar, for a more
unified type system.

We will refer to class and trait identifiers using 𝐶𝑖 and 𝑇𝑖 respectively, to method identifiers using 𝑚𝑖 and to field
identifiers using 𝑓𝑖.

Finally there are three new expressions:

Expression ∶∶= … ∣ call Expression . MethodIdentifier(−−−−−−−−⇀Expression) ∣ Expression . FieldIdentifier

∣ new ClassIdentifier(
−−−−−−−−⇀
Expression)

Figure 70: Syntactical Extensions for Object Expressions

• Method call call 𝑒.𝑚(−⇀𝑒 ), which calls a method on an object.

• Field dereference 𝑒.𝑓, which points to a field of an object.

• Object allocation new 𝐶(
−⇀
𝑒 ), which allocates a new object of type 𝐶 in memory and returns a pointer to it.
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4.6.2 Semantics: Runtime Structure

To express the semantics of classes and traits, we have altered the runtime structure as follows:

HeapElement = Address ∣ FunctionStore ∣ ObjectStore

ObjectStore = FieldIdentifier ⇀ Address ×Mutability

Mutability ∶∶= mutable ∣ immutable

Figure 71: Extended Runtime Structure for Objects

To allow objects to be stored on the heap, we have added a new type of heap element in the form of the object
store. An object store is a finite partial function from field identifiers to tuples of an address, which is the value
of the field and a marker stating if a field is mutable or immutable. We define ℎ[𝑎1.𝑓 ↦ 𝑎2] as a shorthand for
[ℎ[𝑎1 ↦ ⟨𝑡, 𝑓 ↦ ⟨𝑎2mt⟩⟩]].

The class and trait definitions, including the methods, are not part of the state, but exist as a given. We will use lookup
functions when information contained in these definitions is required. The class and trait definitions define class tables
: 𝑐𝑡 ∈ Class ∪ Trait. We define ⪯𝑐𝑡 as the partial order induced on type identifiers by class table 𝑐𝑡, with the following
restrictions :

1. If type 𝑡 occurs in 𝑐𝑡, then 𝑡 is declared in 𝑐𝑡.

2. 𝑐𝑡 does not contain duplicate declarations, or declarations of Any or Unit.

We can now inductively define subtyping:

𝑡1 ∶< Any

𝑡1 ∶< 𝑡1

𝑡1 ∶< 𝑡2 𝑡2 ∶< 𝑡3
𝑡1 ∶< 𝑡3

𝑡1 extends 𝑡2 with
−⇀
𝑡

∀𝑡3 ∈ (𝑡2 ∶∶
−⇀
𝑡 ) ∣ 𝑡1 ∶< 𝑡3

Figure 72: The Inductively Defined Subtyping Relation

Furthermore, we have added additional singular expression contexts for dereferenced expressions, method calls and
constructor calls:

𝐾𝒮 ∶∶= … ∣ deref�.𝑓 ∣ deref�.𝑚 ∣ methodCall
−⇀
𝑎 � ∣ ctorCall

−⇀
𝑎 �

Figure 73: The Singular Expression Contexts Expanded with Method Contexts

These additional contexts have the following meaning:

• Deref Field deref�.𝑓 marks the currently focussed subexpression as an object expression that will be derefer-
enced by field 𝑓.

• Deref Method deref�.𝑚 marks the currently focussed subexpression as an object expression that will be
dereferenced by method𝑚.
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• Method CallmethodCall −⇀𝑎 �marks the currently focussed subexpression as the body of a method being called.

• Constructor Call ctorCall −⇀𝑎 �marks the currently focussed subexpression as the body of a constructor being
called.

There are no additional contexts for parameter evaluation in methods, as those used for functions can be used for
methods as well.

4.6.3 Semantics: Reduction Rules

With support for classes and traits comes a number of additional reduction rules, which we give in Fig. 74.

For dereferenced expressions:
S(𝑘, (↘ 𝑒.𝑓), ℎ) ⇾𝑐𝑡 S(deref�.𝑓 ∶∶ 𝑘, (↘ 𝑒), ℎ) red_derefField
S(𝑘, (↘ 𝑒.𝑚), ℎ) ⇾𝑐𝑡 S(deref�.𝑚 ∶∶ 𝑘, (↘ 𝑒), ℎ) red_derefMethod
S(deref�.𝑓 ∶∶ 𝑘, (↗ ref 𝑎), ℎ) ⇾𝑐𝑡 S(𝑘, (↗ ref 𝑎.𝑓), ℎ) red_derefFieldUp
S(deref�.𝑚 ∶∶ 𝑘, (↗ ref 𝑎), ℎ) ⇾𝑐𝑡 S(𝑘, (↗ ref 𝑎.𝑚), ℎ) red_derefMethodUp
For object allocation:

S(𝑘, (↘ new 𝐶1(
−⇀
𝑒 )), ℎ)

⇾𝑐𝑡 S(call ref 𝑎.init� ∶∶ 𝑘, (↘ (ref 𝑎 ∶∶
−⇀
𝑒 )), ℎ[𝑎 ↦ 𝑜]) red_new

for any 𝑎, 𝑜 where fld(𝐶1, flds) ∧ 𝑎∉𝑑𝑜𝑚(ℎ)
∧ 𝑜 = {⟨𝑓, ⊥⟩ ∣ ⟨𝑡2, 𝑓⟩ ∈ flds}

For method invocation:

S(call ref 𝑎.𝑚 � ∶∶ 𝑘, (↗
−⇀
𝑎 ), ℎ)

⇾𝑐𝑡 S(methodCall
−⇀
𝑎 � ∶∶ 𝑘, (↘ 𝑒), ℎ) red_methodCall

for any 𝑒 where mbLookup(fst ℎ(𝑎) 𝑚 𝑒) ∧ ¬(𝑚 = init)

S(call ref 𝑎. init� ∶∶ 𝑘, (↗
−⇀
𝑎 ), ℎ)

⇾𝑐𝑡 S(ctorCall
−⇀
𝑎 � ∶∶ 𝑘, (↘ 𝑒), ℎ) red_ctorCall

for any 𝑒 where mbLookup(fst ℎ(𝑎) 𝑚 𝑒)

For method returns:

S(methodCall −⇀𝑎 � ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, (↗ 𝑣), ℎ) red_methodReturn

S(ctorCall(𝑎 ∶∶
−⇀
𝑎 )� ∶∶ 𝑘, (↗ 𝑣), ℎ) ⇾ S(𝑘, (↗ ref 𝑎), ℎ) red_ctorReturn

For field lookup:
S(load� ∶∶ 𝑘, (↗ ref 𝑎1.𝑓), ℎ) ⇾𝑐𝑡 S(𝑘, (↗ ref 𝑎2), ℎ) red_fLoad

for any 𝑎2 where ℎ[𝑎1.𝑓 ↦ 𝑎2]

For field assignment:
S(ref 𝑎1.𝑓 ∶= � ∶∶ 𝑘, (↗ ref 𝑎2), ℎ)

⇾𝑐𝑡 S(𝑘, (↗ unit), ℎ[𝑎1.𝑓 ↦ ⟨𝑎2, 𝑚𝑡𝑏⟩]) red_fStore
where ((snd ℎ(𝑎1))(𝑓) = ⊥ ∨ snd(snd ℎ(𝑎1))(𝑓) = mutable)
∧ fst ℎ(𝑎1) = 𝑡 ∧ lookupMtb(𝑡, 𝑚𝑡𝑏)

Figure 74: Reduction rules for Classes & Traits

These reduction rules have the following meaning:
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• red_new allocates a new instance of an object of type 𝐶1 to the heap. The fields – both direct and inherited – are
looked up using fld – which is defined in Fig. 76 – and added to the domain of the partial field function, with
value ⊥, marking them as uninitialized. The constructor is scheduled for execution with the given parameters,
with the pointer to the newly allocated object store, i.e. the this pointer, as the first parameter.

• red_methodCall calls the method with name𝑚 on the object with address 𝑎, if the method is not a constructor.
The method is looked up in the definition, of the type of the object and its supertypes, using mbLookup – which
is defined in Fig. 75. The method body 𝑒 is executed in a singular method call context.

• red_ctorCall is essentially identical to method calls, but only used in the case of constructors. The constructor
body 𝑒 is executed in a singular constructor call context, which will be used to return the pointer to the newly
allocated object.

• red_methodReturn is functionally identical to the previously red_return, but for methods.

• red_ctorReturn instead of returning the value of the expression, constructors return the pointer to the object
store of the newly allocated object.

• red_fLoad is similar to the previously discussed red_load, but for pointers to objects dereferenced with a field.

• red_fStore stores a value in an object field, that is either uninitialized or mutable. The newly stored value is
annotated with the mutability of the field, which is looked up using mtbLookup – which is defined in Fig. 77.

• Parameter reduction for methods and constructors is done using the same rules we defined for functions.

class Any {…𝑚(
−⇀
𝑡 ){𝑒} …}

mbLookup Base
mbLookup(𝑚,Any, 𝑒)

class 𝐶 {…𝑚(
−⇀
𝑡 ){𝑒} …}

mbLookup Defining Class
mbLookup(𝑚, 𝐶, 𝑒)

trait 𝐶 {…𝑚(
−⇀
𝑡 ){𝑒} …}

mbLookup Defining Trait
mbLookup(𝑚, 𝐶, 𝑒)

class 𝐶1 extends 𝐶2 with
−⇀
𝑇 {𝑓 𝑚}

𝑚∉ dom(𝑚)

∃𝑡 ∈ (𝐶2 ∶∶
−⇀
𝑇) ∣ mblookup(𝑚, 𝑡, 𝑒)

mbLookup Super Class
mbLookup(𝑚, 𝐶1, 𝑒)

trait 𝑇1 extends 𝑇2 with
−⇀
𝑇 {𝑓 𝑚}

𝑚∉ dom(𝑚)

∃𝑇 ∈ (𝑇2 ∶∶
−⇀
𝑇) ∣ mblookup(𝑚, 𝑇, 𝑒)

mbLookup Super Trait
mbLookup(𝑚, 𝐶1, 𝑒)

Figure 75: The Inductively Defined mbLookup Relation
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fld Base
fld(Any, ∅)

class 𝐶1 extends 𝐶2 with
−⇀
𝑇 {𝑓 𝑚}

𝑓𝑙𝑑𝑠 = 𝑓 ∪ ⋃{𝑓
′
∣ fld(𝑡, 𝑓

′
) ∧ 𝑡 ∈ (𝐶2 ∶∶

−⇀
𝑇)}

fld Extended Class
fld(𝐶1, 𝑓𝑙𝑑𝑠)

trait 𝑇1 extends 𝑇2 with
−⇀
𝑇 {𝑓 𝑚}

𝑓𝑙𝑑𝑠 = 𝑓 ∪ ⋃{𝑓
′
∣ fld(𝑡, 𝑓

′
) ∧ 𝑡 ∈ (𝑇2 ∶∶

−⇀
𝑇)}

fld Extended Trait
fld(𝑇1, 𝑓𝑙𝑑𝑠)

Figure 76: The Inductively Defined fld Relation

flds(𝑡, 𝑓)

var 𝑓 … ∈ 𝑓
mtbLookupMutable

mtbLookup(𝑡, 𝑓,mutable)

flds(𝑡, 𝑓)

val 𝑓 … ∈ 𝑓
mtbLookup Immutable

mtbLookup(𝑡, 𝑓, immutable)

Figure 77: The Inductively Defined mtbLookup Relation

4.6.4 Example Program with Classes

With the new reduction rules we can now evaluate the program in Listing 32:

class Foo {}

class Bar

{

var x : Foo;

init()

{

x := new Foo();

}

}

new Bar();

Listing 34: A Small Program with Classes

𝐤𝟏 = []

𝝓𝟏 =↘ newBar([])

𝐡𝟏 = {}

𝐒𝟏 = S(𝑘1, 𝜙1, ℎ1)

Figure 78: The Initial State in the Reduction of Listing 34
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The initial state in the reduction of Listing 34 is given by Fig. 78: The context and heap are empty and the focused top
expression is an object allocation expression. To allocate an object of type Bar, we apply red_new – which results in
the state of Fig. 79.

𝐤𝟐 = call ref 𝑎𝑜1 .init�
∶∶ []

𝝓𝟐 =↘ []

𝐡𝟐 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟐 = S(𝑘2, 𝜙2, ℎ2)

Figure 79: The Second State in the Reduction of Listing 34

In the second state, after red_new has been applied, the context now consists of a singular call context, to call the
constructor method. The heap contains the newly allocated Bar object at address 𝑎𝑜1 . The focused expression is the
list of parameter expressions, which is empty. Because it is empty, we apply red_paramsEmpty – which results in the
state of Fig. 80.

𝐤𝟑 = call ref 𝑎𝑜1 .init�
∶∶ []

𝝓𝟑 =↗ []

𝐡𝟑 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟑 = S(𝑘3, 𝜙3, ℎ3)

Figure 80: TheThird State in the Reduction of Listing 34

In the third state, the empty list of expressions has been reduced to an empty list of values, which means the actual
constructor call can proceed, by applying red_ctorCall – which results in the state of Fig. 81.

𝐤𝟒 = ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟒 =↘ 𝑥0.𝑥 ∶= new Foo([])

𝐡𝟒 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟒 = S(𝑘4, 𝜙4, ℎ4)

Figure 81: The Fourth State in the Reduction of Listing 34

In the fourth state, after applying red_ctorCall, it is time to evaluate the expression which makes up the body of the
constructor. The constructor expression is an assignment expression with unevaluated left and right hand expressions,
so we start by evaluating the left hand side using red_binRedLeft – which results in the state of Fig. 82.
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𝐤𝟓 = � ∶= new Foo([])

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟓 =↘ 𝑥0.𝑥

𝐡𝟓 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟓 = S(𝑘5, 𝜙5, ℎ5)

Figure 82: The Fifth State in the Reduction of Listing 34

In the fifth state, after applying red_binRedLeft, we encounter a dereferenced ident expression, so we apply red_der-
efField – which results in the state of Fig. 83.

𝐤𝟔 = deref�.𝑥

∶∶ � ∶= new Foo([])

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟔 =↘ 𝑥0

𝐡𝟔 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟔 = S(𝑘6, 𝜙6, ℎ6)

Figure 83: The Sixth State in the Reduction of Listing 34

In the sixth state, after applying red_derefField, we can now apply red_ident, to reduce the ident expression to a
value – which results in the state of Fig. 84.

𝐤𝟕 = deref�.𝑥

∶∶ � ∶= new Foo([])

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟕 =↗ ref 𝑎𝑜1
𝐡𝟕 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

7

Figure 84: The Seventh State in the Reduction of Listing 34

In the seventh state, after red_ident has been applied, we now have the address of the object, so we can apply
red_derefFieldUp to combine it with the field name to a dereferenced field value – which results in the state of
Fig. 85.



4 A MODEL LANGUAGE BASED ON SCALA 55

𝐤𝟖 = � ∶= new Foo([])

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟖 =↗ ref 𝑎𝑜1 .𝑥
𝐡𝟖 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟖 = S(𝑘8, 𝜙8, ℎ8)

Figure 85: The Eighth State in the Reduction of Listing 34

In the eighth state, after applying red_derefFieldUp, the left hand side of the assignment expression has been fully re-
duced, so we proceed to the right hand side by applying red_binRedRight – which results in the state of Fig. 86.

𝐤𝟖 = ref 𝑎𝑜1 .𝑥 ∶= �

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟖 =↘ new Foo([])

𝐡𝟖 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}}

𝐒𝟖 = S(𝑘8, 𝜙8, ℎ8)

Figure 86: The Ninth State in the Reduction of Listing 34

In the ninth state, after applying red_binRedRight, we encounter an object allocation expression, so we once again
apply red_new to allocate it – which results in the state of Fig. 87.

𝐤𝟖 = call ref 𝑎𝑜2 .init
∶∶ ref 𝑎𝑜1 .𝑥 ∶= �

∶∶ ctorCall(ref 𝑎 ∶∶ [])�

∶∶ []

𝝓𝟖 =↘ []

𝐡𝟖 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}, 𝑎𝑜2 ↦ {}}

𝐒𝟖 = S(𝑘8, 𝜙8, ℎ8)

Figure 87: The 8𝑡ℎ State in the Reduction of Listing 34

In the 8𝑡ℎ state, the object has been allocated to the heap as before and we proceed to the constructor call parameters
using red_paramsEmpty, as they are once again empty – which results in the state of Fig. 88.
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𝐤𝟗 = call ref 𝑎𝑜2 .init
∶∶ ref 𝑎𝑜1 .𝑥 ∶= �

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟗 =↗ []

𝐡𝟗 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}, 𝑎𝑜2 ↦ {}}

𝐒𝟗 = S(𝑘9, 𝜙9, ℎ9)

Figure 88: The 9𝑡ℎ State in the Reduction of Listing 34

In the 9𝑡ℎ state, the actual constructor call takes place, by applying red_ctorCall – which results in the state of
Fig. 89.

𝐤𝟏𝟎 = ctorCall(ref 𝑎𝑜2 ∶∶ [])� ∶∶ ref 𝑎𝑜1 .𝑥 ∶= �

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟏𝟎 =↘ skip
𝐡𝟏𝟎 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}, 𝑎𝑜2 ↦ {}}

𝐒𝟏𝟎 = S(𝑘10, 𝜙10, ℎ10)

Figure 89: The 10𝑡ℎ State in the Reduction of Listing 34

In the 10𝑡ℎ state, we encounter the default constructor body, in the form of a skip expression. We apply red_skip to
proceed to the state of Fig. 90.

𝐤𝟏𝟎 = ctorCall(ref 𝑎𝑜2 ∶∶ [])� ∶∶ ref 𝑎𝑜1 .𝑥 ∶= �

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟏𝟎 =↗ unit
𝐡𝟏𝟎 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}, 𝑎𝑜2 ↦ {}}

𝐒𝟏𝟎 = S(𝑘10, 𝜙10, ℎ10)

Figure 90: The 10𝑡ℎ State in the Reduction of Listing 34

In the 10𝑡ℎ state, we encounter a returned value in a constructor call context, which means the body has finished
executing. Instead of returning the value, as we would with a method or function call, we return the pointer to the
parent object of this constructor, by applying red_ctorReturn – which results in the state of Fig. 91.
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𝐤𝟏𝟏 = ref 𝑎𝑜1 .𝑥 ∶= �

∶∶ ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟏𝟏 =↗ ref 𝑎𝑜2
𝐡𝟏𝟏 = {𝑎𝑜1 ↦ {𝑥 ↦ ⊥}, 𝑎𝑜2 ↦ {}}

𝐒𝟏𝟏 = S(𝑘14, 𝜙14, ℎ14)

Figure 91: The 11𝑡ℎ State in the Reduction of Listing 34

In the 11𝑡ℎ state, after the constructor has returned, we now encounter a returned value in a right binary assignment
context, which means the subexpressions have been reduced and we can perform the actual assignment by applying
red_fStore – which results in the state of Fig. 92.

𝐤𝟏𝟏 = ctorCall(ref 𝑎𝑜1 ∶∶ [])�
∶∶ []

𝝓𝟏𝟏 =↗ unit
𝐡𝟏𝟏 = {𝑎𝑜1 ↦ {𝑥 ↦ ⟨𝑎𝑜2 ,mutable⟩}, 𝑎𝑜2 ↦ {}}

𝐒𝟏𝟏 = S(𝑘11, 𝜙11, ℎ11)

Figure 92: The 11𝑡ℎ State in the Reduction of Listing 34

In the 11𝑡ℎ state, after applying red_fStore, the heap reflects the assignment and the body of the constructor has
finished executing. We once again return the pointer to the parent object using red_returnCall – which results in the
state of Fig. 93.

𝐤𝟏𝟐 = []

𝝓𝟏𝟐 =↗ ref 𝑎𝑜1
𝐡𝟏𝟐 = {𝑎𝑜2 ↦ {𝑥 ↦ ⟨𝑎𝑜2 ,mutable⟩}, 𝑎𝑜2 ↦ {}}

𝐒𝟏𝟐 = S(𝑘12, 𝜙12, ℎ12)

Figure 93: The 12𝑡ℎ State in the Reduction of Listing 34

The 12𝑡ℎ state is the final state of this example, with the topmost expression being the evaluated value of the entire
expression in an empty context.

4.7 Extending Scala Core withThreads & Locking

The final extension, which completes Scala Core, will be the addition of threads and locks, to allow for concurrency. In
this section we will extend the runtime structure to deal with threads and locks, add a number of contexts, provide
the rules to fork and join threads and to lock and unlock and finally give an example derivation of a multithreaded
program.
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4.7.1 Syntax

To add threads and locks in the Java and Scala sense, there is no need to add additional syntax, as the functionality
will be stored in the methods fork(), join(), lock() and unlock() on Any, with the following meaning:

• Fork thread 𝑒.fork() creates a new thread and runs the run-method on the object in that thread; the pointer to
the object serves as the thread-identifier. The expression 𝑒 must always result in an instance of an object with a
run()method, returning unit. fork() always returns unit.

• Join thread 𝑒.join() joins a finished thread; it always returns unit.

• Lock 𝑒.lock() assigns the lock with the pointer of the callee object as identifier to the current thread, or raises
the reentrancy count by one, if it is already owned by this thread; it always returns unit.

• Unlock 𝑒.unlock() removes the lock with the pointer of the callee object as identifier, if it belongs to the current
thread, or decreases the reentrancy count by one if it is higher than one; it always returns unit.

4.7.2 Semantics : Runtime Structure

Adding support for threading and locking requires a significant reorganization in the runtime structure of the semantics.
First we have added the required structures to represent and store threads and locks:

Threadpool = Address −⇀𝑇ℎ𝑟𝑒𝑎𝑑

Thread = Context × Focus

Locktable = Address −⇀𝐴𝑑𝑑𝑟𝑒𝑠𝑠 × ReentrancyLevel

ReentrancyLevel = ℕ

Figure 94: Runtime Structures for Threads and Locks

The threadpool, which is a finite partial function from a thread identifier, in the form of an object address, to threads,
keeps track of the threads in a program and which object represents them. Threads themselves have their own focus
and context and execute als programs previously would, but sharing the heap. Initially the threadpool will always
consist of one thread, which executes the main program expression, which may spawn additional threads. In the
semantics we will refer to threads as 𝜏𝑖 = 𝜙 in 𝑘, to threadpools as 𝑝𝑖 = 𝑎1 is 𝜏1 ∣ … ∣ 𝑎𝑛 is 𝜏𝑛 and to lock tables as
𝑙𝑖.

The lock table, which is a finite partial function from addresses to pairs of an address and a reentrancy level, maps
locks to pairs of the thread that owns the lock and the number of times they have been reentrantly acquired.

Secondly we have adapted the states in our semantics to multithreading:

State = Heap×Threadpool × LockTable

Figure 95: State for Threads and Locks

Since we now have multiple threads executing, the single focus and context per state will no longer suffice. Therefore
we have redefined states as a tuple of a heap, a threadpool and a lock table. The semantics continue to sequentially
execute small steps, but these steps will be interleaved by non-determinically choosing one of the currently enabled
threads.

We will continue to refer to states with 𝑆𝑖 and will use the syntactic shorthand of 𝑆𝑖 = S(ℎ, 𝑝, 𝑙).
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4.7.3 Semantics : Reduction Rules

The reduction rules that allow for multithreading are the following:

For method invocation:

S(ℎ, (𝑝 ∣ 𝑎 is(↗
−⇀
𝑎 ) in(call ref 𝑎.𝑚 � ∶∶ 𝑘)), 𝑙)

⇾𝑐𝑡 S(ℎ, (𝑝 ∣ 𝑎 is(↘ 𝑒) in(methodCall
−⇀
𝑎 � ∶∶ 𝑘)), 𝑙) red_methodCall

for any 𝑒 ∣ mbLookup(fst ℎ(𝑎) 𝑚 𝑒) ∧ 𝑚∉ restricted
For forking & joining threads:
S(ℎ, (𝑝 ∣ 𝑎1 is(↗ []) in(call ref 𝑎2.fork� ∶∶ 𝑘)), 𝑙)

⇾𝑐𝑡 S(ℎ, (𝑝 ∣ 𝑎1 is(↗ unit) in(𝑘) ∣ 𝑎2 is(↘ call ref 𝑎2.run()) in([])), 𝑙) red_fork
S(ℎ, (𝑝 ∣ 𝑎1 is(↗ []) in(call ref 𝑎2.join� ∶∶ 𝑘1) ∣ 𝑎2 is(↗ 𝑣) in(𝑘2)), 𝑙)

⇾𝑐𝑡 S(ℎ, (𝑝 ∣ 𝑎1 is(↗ unit) in(𝑘1) ∣ 𝑎2 is(↗ 𝑣) in(𝑘2)), 𝑙) red_join
For locking & unlocking:
S(ℎ, (𝑝 ∣ 𝑎1 is(↗ []) in(call ref 𝑎2.lock� ∶∶ 𝑘)), 𝑙1)

⇾𝑐𝑡 S(ℎ, (𝑝 ∣ 𝑎1 is(↗ unit) in(𝑘)), 𝑙2) red_lock
for any 𝑙2 ∣ (𝑙1(𝑎2) = ⊥ ∧ 𝑙2 = 𝑙1[𝑎2 ↦ ⟨𝑎1, 1⟩])

∨ (𝑙1(𝑎2) = ⟨𝑙1, 𝑖⟩ ∧ 𝑙2 = 𝑙1[𝑎2 ↦ ⟨𝑎1, 𝑖 + 1⟩])

S(ℎ, (𝑝 ∣ 𝑎1 is(↗ []) in(call ref 𝑎2.unlock� ∶∶ 𝑘)), 𝑙1)

⇾𝑐𝑡 S(ℎ, (𝑝 ∣ 𝑎1 is(↗ unit) in(𝑘)), 𝑙2) red_unlock
for any 𝑙2 ∣ 𝑙1(𝑎2) = ⟨𝑎1, 𝑖⟩ ∧ ((𝑖 > 1 ∧ 𝑙2 = 𝑙1[𝑎2 ↦ ⟨𝑎1, 𝑖 − 1⟩])

∨ (𝑖 = 1 ∧ 𝑙2 = 𝑙1[𝑎2 ↦ ⊥]))

Figure 96: Reduction rules for Multithreading

these additional rules have the following meaning:

• red_methodCall is adjusted to skip any method𝑚 mentioned in the set of restricted method names, currently
defined as restricted = {init, fork, join, lock, unlock}. It also demonstrates how rules on our previous state
definition can be rewritten to work with the new state.

• red_fork spawns a new thread which executes the runmethod on the callee object identified by 𝑎2. The new
thread is given 𝑎2 as an identifier. The context in the new thread is empty, as the call to run will be the topmost
expression.

• red_join joins a finished thread. The fact that the thread is finished is indicated by the focus being on a returned
value, which means the expression of the thread has been fully evaluated.

• red_lock grants the current thread a free lock or reacquires a lock it already owns. If a lock is already owned, it
is reentrantly acquired, by raising the reentrancy level by one. Newly acquired locks are given a reentrancy level
of one.

• red_unlock decreases the reentrancy level by one for reentrantly acquired locks and releases the lock owned by
the current thread for non reentrantly acquired locks.

4.7.4 Example Multithreaded Program

With these reduction rules we can now evaluate the program in Listing 35:
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class Foo

{

run()

{

this.lock();

skip;

this.unlock()

}

}

val o : Foo;

o := new Foo();

o.fork();

o.join()

Listing 35: A Small Multithreaded Program

𝐤𝟏𝟏𝟕 = call(ref 𝑎𝑜).fork
∶∶ �; (load 𝑥0).join()
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟏𝟕 =↗ []

𝐩𝟏𝟕 = {_ ↦ ⟨𝜙1
17, 𝑘

1
17⟩}

𝐥𝟏𝟕 = {}

𝐡𝟏𝟕 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}}

𝐒𝟏𝟕 = S(𝑝17, 𝑙17, ℎ17)

Figure 97: The 17𝑡ℎ State in the Reduction of Listing 35

As declarations, object instantiation, assignment and loads are by now all familiar and essentially unchanged from
single to multi-threaded programs, we will start this example in the 17𝑡ℎ state, where we ecounter a (fork) method on
an object pointer, which allows us to apply red_fork – resulting in the state of Fig. 98.
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𝐤𝟏𝟏𝟖 = �; (load 𝑥0).join()
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟏𝟖 =↗ unit
𝐤𝟐𝟏 = []

𝝓𝟐
𝟏 = call ref 𝑎𝑜.run()

𝐩𝟏𝟖 = {_ ↦ ⟨𝜙1
18, 𝑘

1
18⟩, 𝑎𝑜 ↦ ⟨𝜙2

1 , 𝑘
2
1⟩}

𝐥𝟏𝟖 = {}

𝐡𝟏𝟖 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}}

𝐒𝟏𝟖 = S(𝑝18, 𝑙18, ℎ18)

Figure 98: The 18𝑡ℎ State in the Reduction of Listing 35

In the 18𝑡ℎ state, after applying red_fork, the threadpool now shows an additional thread, about to execute the run
method on the thread object. Execution in either the main thread or the new thread may proceed. We, taking the role
of the scheduler, decide to first execute 6 steps on the main thread, until the joinmethod call is the focused expression,
in state 24 – shown in Fig. 99.

𝐤𝟏𝟐𝟒 = call ref 𝑎𝑜.join
∶∶ unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟒 =↗ []

𝐤𝟐𝟏 = []

𝝓𝟐
𝟏 = call ref 𝑎𝑜.run()

𝐩𝟐𝟒 = {_ ↦ ⟨𝜙1
24, 𝑘

1
24⟩, 𝑎𝑜 ↦ ⟨𝜙2

1 , 𝑘
2
1⟩}

𝐥𝟐𝟒 = {}

𝐡𝟐𝟒 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}}

𝐒𝟐𝟒 = S(𝑝24, 𝑙24, ℎ24)

Figure 99: The 24𝑡ℎ State in the Reduction of Listing 35

In the 24𝑡ℎ state, the main thread can no longer proceed, as the thread it is trying to join has not yet finished execution.
Therefore, we execute 6 steps in the second thread, which will bring us to the execution of a lockmethod, in state 30 –
which is shown in Fig. 100.
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𝐤𝟏𝟐𝟒 = call ref 𝑎𝑜.join
∶∶ unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟒 =↗ []

𝐤𝟐𝟕 = call ref 𝑎𝑜.lock
∶∶ �; skip; call load 𝑥0.run()
∶∶ methodCall(ref 𝑎𝑝 ∶∶ [])�

𝝓𝟐
𝟕 =↗ []

𝐩𝟑𝟎 = {_ ↦ ⟨𝜙1
24, 𝑘

1
24⟩, 𝑎𝑜 ↦ ⟨𝜙2

7 , 𝑘
2
7⟩}

𝐥𝟑𝟎 = {}

𝐡𝟑𝟎 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}, 𝑎𝑝 ↦ 𝑎𝑜}

𝐒𝟑𝟎 = S(𝑝30, 𝑙30, ℎ30)

Figure 100: The 30𝑡ℎ State in the Reduction of Listing 35

In the 30𝑡ℎ state, we encounter the lockmethod being called on an object pointer, which means we can apply red_lock
– resulting in the state of Fig. 101.

𝐤𝟏𝟐𝟒 = call ref 𝑎𝑜.join
∶∶ unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟒 =↗ []

𝐤𝟐𝟖 = �; skip; call load 𝑥0.run()
∶∶ methodCall(ref 𝑎𝑝 ∶∶ [])�

𝝓𝟐
𝟖 =↗ unit

𝐩𝟑𝟏 = {_ ↦ ⟨𝜙1
24, 𝑘

1
24⟩, 𝑎𝑜 ↦ ⟨𝜙2

8 , 𝑘
2
8⟩}

𝐥𝟑𝟏 = {𝑎𝑜 ↦ ⟨𝑎𝑜, 1⟩}

𝐡𝟑𝟏 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}, 𝑎𝑝 ↦ 𝑎𝑜}

𝐒𝟑𝟏 = S(𝑝31, 𝑙31, ℎ31)

Figure 101: The 31𝑡ℎ State in the Reduction of Listing 35

In the 31𝑠𝑡 state, after applying red_lock, the lock table shows the current thread owning the lock with a reentrancy
count of 1. The lock method always returns unit. This completes the first subexpression of a binary expression. The
second subexpression is another sequential expression, with the first subexpression consisting of merely a skip, so we
forward to state 38, where the unlockmethod is being called – in Fig. 102.
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𝐤𝟏𝟐𝟒 = call ref 𝑎𝑜.join
∶∶ unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟒 =↗ []

𝐤𝟐𝟏𝟓 = call ref 𝑎𝑜.unlock
∶∶ unit;�
∶∶ unit;�
∶∶ methodCall(ref 𝑎𝑝 ∶∶ [])�

𝝓𝟐
𝟏𝟓 =↗ []

𝐩𝟑𝟖 = {_ ↦ ⟨𝜙1
24, 𝑘

1
24⟩, 𝑎𝑜 ↦ ⟨𝜙2

15, 𝑘
2
15⟩}

𝐥𝟑𝟖 = {𝑎𝑜 ↦ ⟨𝑎𝑜, 1⟩}

𝐡𝟑𝟖 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}, 𝑎𝑝 ↦ 𝑎𝑜}

𝐒𝟑𝟖 = S(𝑝38, 𝑙38, ℎ38)

Figure 102: The 38𝑡ℎ State in the Reduction of Listing 35

In the 38𝑡ℎ state, after some sequential expression reductions and the execution of the skip, we encounter the unlock
method being called on an object pointer. We apply red_unlock – which results in the state of Fig. 103.

𝐤𝟏𝟐𝟒 = call ref 𝑎𝑜.join
∶∶ unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟒 =↗ []

𝐤𝟐𝟏𝟔 = unit;�
∶∶ unit;�
∶∶ methodCall(ref 𝑎𝑝 ∶∶ [])�

𝝓𝟐
𝟏𝟔 =↗ unit

𝐩𝟑𝟗 = {_ ↦ ⟨𝜙1
24, 𝑘

1
24⟩, 𝑎𝑜 ↦ ⟨𝜙2

16, 𝑘
2
16⟩}

𝐥𝟑𝟗 = {𝑎𝑜 ↦ ⊥}

𝐡𝟑𝟗 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}, 𝑎𝑝 ↦ 𝑎𝑜}

𝐒𝟑𝟗 = S(𝑝39, 𝑙39, ℎ39)

Figure 103: The 39𝑡ℎ State in the Reduction of Listing 35

In the 39𝑡ℎ state, red_unlock has been applied, which resulted in the entry in the lock table belonging to this thread
being cleared. unlock always returns unit. With the rightmost subexpression in the method body expression finished,
the sequential expression can finished along with the method call itself – resulting in the state of Fig. 104.
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𝐤𝟏𝟐𝟒 = call ref 𝑎𝑜.join
∶∶ unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟒 =↗ []

𝐤𝟐𝟐𝟏 = []

𝝓𝟐
𝟐𝟏 =↗ unit

𝐩𝟒𝟒 = {_ ↦ ⟨𝜙1
24, 𝑘

1
24⟩, 𝑎𝑜 ↦ ⟨𝜙2

21, 𝑘
2
21⟩}

𝐥𝟒𝟒 = {𝑎𝑜 ↦ ⊥}

𝐡𝟒𝟒 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}, 𝑎𝑝 ↦ 𝑎𝑜}

𝐒𝟒𝟒 = S(𝑝44, 𝑙44, ℎ44)

Figure 104: The 44𝑡ℎ State in the Reduction of Listing 35

In the 44𝑡ℎ state, the second thread has finished executing, so the join in the main thread may now proceed. We apply
red_join – which results in the state of Fig. 105.

𝐤𝟏𝟐𝟓 = unit;�
∶∶ unit;�
∶∶ val𝑎𝑥

∶∶ []

𝝓𝟏
𝟐𝟓 =↗ unit

𝐤𝟐𝟐𝟏 = []

𝝓𝟐
𝟐𝟏 =↗ unit

𝐩𝟒𝟓 = {_ ↦ ⟨𝜙1
25, 𝑘

1
25⟩, 𝑎𝑜 ↦ ⟨𝜙2

21, 𝑘
2
21⟩}

𝐥𝟒𝟓 = {𝑎𝑜 ↦ ⊥}

𝐡𝟒𝟓 = {𝑎𝑥 ↦ 𝑎𝑜, 𝑎𝑜 ↦ {}, 𝑎𝑝 ↦ 𝑎𝑜}

𝐒𝟒𝟓 = S(𝑝45, 𝑙45, ℎ45)

Figure 105: The 45𝑡ℎ State in the Reduction of Listing 35

In the 45𝑡ℎ state, the second thread has been joined and the rightmost subexpression in the sequential expression has
finished. The program now finishes by applying the usual remaining reduction rules.

4.8 Comparisons

In this section, having defined our semantics and language, we evaluate how it stacks up against other approaches to
Scala semantics, the informal semantics of Scala and the program context semantics for C.

4.8.1 Compared to Scala

Compared to Scala, Scala Core is definitely a subset, but it is not a strict one, as we approach some aspects of the
language (slightly) differently or in an expanded fashion:
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Firstly, functions in Scala are just syntactic sugar for classes and objects, whereas we have given them their own
type and semantics. The benefit of the Scala approach is a completely unified type system and the ability to extend
functions similarly to objects. The benefit of our approach is a first-class function type which we can use when defining
permission-based separation logic for our model language.

Secondly, exceptions in Scala are only allowed to throw objects which are of specific types, whereas our semantics
allow throwing any value. This is a minor difference, as constraints on the types throwable can be put in place in our
semantics as well.

Thirdly, creating and starting threads in Scala is generally similarly to Java by extending the Thread class, instantiating
the object and calling the startmethod. We have taken an approach similar to that used in the Vercors project by
Amighi et al. [5] by providing a fork and joinmethod on all objects. In the same vein, while locking is generally
done using synchronized blocks, we have provided the lock and unlockmethods on all objects, which combines the
functionality of synchronized and explicitly created instances of the ReentrantLock class.

4.8.2 Compared to existing Scala semantics

Previous work in specifying a formal semantics for Scala consist primarily of the work done by Cremet [19] and of
Cremet et al. [20] in their work on the decidability of Scala Type Checking.

The PhDThesis approaches the semantics by providing a powerful object-calculus called Scaletta with a reduction
semantics, to which a core functional subset of Scala could be translated. This object-calculus is far more capable
in expressing the intricacies of the Scala type system than our approach, as type parameters and mixins can be fully
expressed. However, our approach makes functions explicitly first-class, instead of mapping them to classes and
objects, which should provide benefits in bringing CSL to Scala in Section 5 and it provides mechanisms for exceptions
and multithreading, which the approach by Cremet lacks. More importantly, our approach deals with state, whereas
the approach by Cremet doesn not, which is fundamental for our goals of verifying concurrent Scala programs with
side-effects.

In the decidability paper, Cremet [19] define Featherweight Scalawith a small-step semantics, similarly to Featherweight
Java[34], which is a purely small functional subset of Scala. As before, this semantics is unsuited to our purpose, as it
models a stateless language and it lacks the exceptions and multi-threading support we provide.

4.8.3 Compared to the Program Context Semantics for C

Compared to the C semantics by Krebbers and Wiedijk [37], on which we have based our program context approach,
our approach is a significant departure. Themajor reason for this difference is that Scala Core is an expression language,
whereas C has statements; this leads to far more expression contexts, in the Scala Core case, and different reduction
rules even for similar language constructs. Another large difference is the fact that Scala Core is extended with objects,
exceptions and first-class functions, none of which have counterparts in C and most of which require significant
expansions to the runtime structure.
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5 Adapting Permission-Based Separation Logic to Scala

5.1 Introduction

Previously the use of permission-based separation logic has been shown successful for languages such as Java, but
Scala brings its own challenges in the form of being an expression-based language with side-effects and first-class
functions and closures. In this section we will assess those challenges and determine the point at which the Java
approach can be adapted and where different paths need to be taken.

To this end, we will – in Section 5.2 – assess the challenges that come with the specification of Scala Core. Following
this, we shall present a type system in Section 5.3 and a separation logic in Section 5.4, which are capable of solving
these challenges for a subset of Scala Core, with its accompanying Hoare rules in Section 5.4.3. This smaller logic
will then see extensions in Section 5.5, Section 5.6 and Section 5.7, until it is capable of fully specifying Scala Core
programs. Finally we shall compare our approach to that of others in Section 5.8.

5.2 Elements of our Separation Logic

For the specification of Scala Core, our logic will contain a number of elements not commonly found in other variants
of separation logic. In this section we will intuitively approach these features before delving into the formal definitions
in the next sections.

5.2.1 Expressions and Side-Effects

As opposed to languages with separate commands, which have side-effects, but no value, and expressions, which
have values, but no side-effects, Scala – and subsequently Scala Core – features expressions which have both values
and possible side-effects. For instance, for some heap-variable 𝑥, x=6;x is a valid expression with value 6 and the
side-effect of mutating the heap. To illustrate the effect this has on the proof rules of our logic, we shall have a look at
the assignment rule:

In a language where expressions do not have side-effects, we could define the↦-operator to evaluate the expressions
on the left and right hand side, similar to the approach of Birkedal et al. [10, Appendix D. long version]:

Γ; Δ ⊢ {𝑃 ∗ 𝑒1 ↦ _} 𝑒1 ∶= 𝑒2 {𝑄 ∗ 𝑒1 ↦ 𝑒2}

Figure 106: Sample Assignment Rule

Or we could introduce an operator to more explicitly evaluate expressions – as used by Krebbers and Wiedijk
[37]:

Γ; Δ ⊢ {𝑃 ∗ 𝑒1 ⇓ 𝑣1 ∗ 𝑣1 ↦ _} 𝑒1 ∶= 𝑒2 {𝑄 ∗ 𝑒1 ⇓ 𝑣1 ∗ 𝑒2 ⇓ 𝑣2 ∗ 𝑣1 ↦ 𝑣2}

Figure 107: Sample Assignment Rule

However, in our case, neither of these approaches would suffice, for with side-effects, the evaluation of 𝑒1 could
influence the evaluation of 𝑒2:
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var Int;

𝑥0 ∶= 5; 𝑥0 ∶= 𝑥0 + 1

Figure 108: Sample Program

We see that, were we to use the same approach as with side-effect free expressions, the left hand side evaluates to 𝑥0 as
expected, but the right hand side will be invalid, as the side-effect of the left hand side expression has been ignored.
To prevent these types of issues from occurring, we could disallow or restrict them, which is standard in the case of
assignments – which can always be rewritten to a sequence of simple assignments without side-effects – but as other
expressions such as inline function definitions also produce side-effects and can not be easily disallowed or restricted.
Therefore we opt to separately evaluate the left and right hand expressions in the assignment rule and refer to the
values resulting from those evaluations and proceed similary with other expressions:

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑃
′ ∗ 𝑣1 = result ∗ 𝑣1 ↦ _}

Γ; Δ ⊢ {𝑃′} 𝑒2 {𝑃
′′ ∗ 𝑣2 = result}

Γ; Δ ⊢ {𝑃 ∗ 𝑣1 ↦ _} 𝑒1 ∶= 𝑒2 {𝑄 ∗ 𝑣1 ↦ 𝑣2 ∗ result = unit}

Figure 109: A Rule for Assignment

In this case the side-effect of the left hand side expression is captured in the state used to evaluate the right hand side
expression. We use result, in postconditions, to refer to value of the expression in the triple.

5.2.2 Hoare Triples as Assertions

One of the major features of our logic will be the ability to specify the first-class functions with closures in Scala Core.
To achieve this in our logic, it will feature abstract predicates – previously illustrated in Section 2.3 – and Hoare triples
as assertions – similarly to the work of Schwinghammer et al. [53] – instead of being defined, in the different syntactic
class of specifications, in the usual fashion. This means our assertions will be used for both predicates on states and on
expressions, unlike in standard separation logic. Furthermore it means, because the triples are themselves assertions,
they can appear in both the pre- and postconditions of other triples, forming nested triples. These nested triples are the
key to reasoning about functions. To wit, let us consider the following example:

def counter(x:Int) =

{

var count = 0

def inc = () => {count += 1; count}

count = x

inc

}

val inc = counter(5)

inc() // 6

Listing 36: An Example Scala Program with Functions
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val&(𝐼𝑛𝑡) ∶ (𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡;
𝑥0 ∶= (𝐼𝑛𝑡) ∶ (𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

{

var 𝐼𝑛𝑡;
𝑥0 ∶= 0;

val&(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡;
𝑥0 ∶= (𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

{

𝑥2 ∶= (load 𝑥2) + 1

𝑥2
};

𝑥1 ∶= 𝑥2;

𝑥0

}

val(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡;
𝑥0 ∶= call load 𝑥1(5);
call 𝑥0()

def counter(x:Int)

=

{

var count

= 0

def inc

= () =>

{

count += 1;

count

}

count = x

inc

}

val inc

= counter(5)

inc() // 6

Listing 37: The Same Program in Scala Core

The example program defines counter, which has the local variables count and inc, which are initialized to 0 and an
incrementing function respectively. The counter function assigns its argument to count and returns the incrementing
function. The counter function is called with the initial value 5 and the resulting function is stored and subsequently
called. The resulting value will be 6, as the incrementing function definition closes over the local variable count,
capturing it and incrementing it on each call. Given such a program, it makes sense to provide inc with the following
specification:

⋮

𝑥0 ∶= requires 𝑥2 ↦ 𝑉;

ensures 𝑥2 ↦ 𝑉 + 1;

(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

{

𝑥2 ∶= (load 𝑥2) + 1;

𝑥2

};

⋮

Listing 38: Naive Specification of inc

However, this leads to issues, as, by the time the function is called, this specification refers to variables out of scope at
the callsite: e.g. 𝑥1 will refer to the local variable holding the reference to inc. The solution to this issue involves the
use of abstract predicates to abstract from the local variable reference:
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⋮

𝑥0 ∶= requires 𝑆𝑡𝑎𝑡𝑒(𝑉);
ensures 𝑆𝑡𝑎𝑡𝑒(𝑉 + 1);

(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

{

𝑥2 ∶= (load 𝑥2) + 1;

𝑥2

};

⋮

Listing 39: inc Specified using Predicates

In this case the predicate 𝑠𝑡𝑎𝑡𝑒(𝑉) serves as an access ticket to the incrementing function: as long as we can provide an
initial instance of 𝑠𝑡𝑎𝑡𝑒(𝑉) the first time we call the function, we can keep trading subsequent instances of the predicate
for renewed access to the function. To provide this initial instance, we define 𝑠𝑡𝑎𝑡𝑒(𝑉) as 𝑠𝑡𝑎𝑡𝑒(𝑉) 𝑑𝑒𝑓

= 𝑥1 ↦ 𝑉 and
provide the initial instance in the postcondition of counter:

⋮

𝑥0 ∶= requires true;
ensures 𝑆𝑡𝑎𝑡𝑒(load 𝑥0);
(𝐼𝑛𝑡) ∶ (𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

⋮

Listing 40: Initial Predicate Instance from counter

In the postcondition of counter the predicate will be proven using its definition, in all further instances the name of
the predicate is used as the access ticket. In our example the initial ticket instance is 𝑠𝑡𝑎𝑡𝑒(5) which will be traded to
𝑠𝑡𝑎𝑡𝑒(6) on a call to inc.

Now what remains is to provide counter itself with the second part of its postcondition; which is where the nested
triples come into play, as we need a means to provide the contract to the returned function, without divulging the
body of counter:
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𝑠𝑡𝑎𝑡𝑒(𝑉)
𝑑𝑒𝑓
= 𝑥1 ↦ 𝑉

val&(𝐼𝑛𝑡) ∶ (𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡;
𝑥0 ∶= requires true;

ensures 𝑆𝑡𝑎𝑡𝑒(load 𝑥1) ∗ result ↦ {𝑆𝑡𝑎𝑡𝑒(𝑉)} _ {𝑆𝑡𝑎𝑡𝑒(𝑉 + 1)};

(𝐼𝑛𝑡) ∶ (𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

{

var 𝐼𝑛𝑡;
𝑥0 ∶= 0;

val&(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡;
𝑥0 ∶= requires 𝑆𝑡𝑎𝑡𝑒(𝑉);

ensures 𝑆𝑡𝑎𝑡𝑒(𝑉 + 1);

(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡 →

{

𝑥2 ∶= (load 𝑥2) + 1;

𝑥2

};

𝑥1 ∶= 𝑥2;

𝑥0

}

val(𝑈𝑛𝑖𝑡) ∶ 𝐼𝑛𝑡;
𝑥0 ∶= call load 𝑥1(5);
call 𝑥0()

Listing 41: The Specified Program in Scala Core

Using the nested triple the postcondition of counter states that the value returned is a pointer to some function body
for which the given triple holds.

5.2.3 Invariant Extension

The frame rule of separation logic is what enables local reasoning; for our language it would be given in the following
form:

Γ; Δ ⊢ {𝑃} 𝑒 {𝑄}

Γ; Δ ⊢ {𝑃 ∗ 𝑅} 𝑒 {𝑄 ∗ 𝑅}

Figure 110: A Rule for Assignment

When we apply this rule to a triple containing nested triples, it is clear that the assertion 𝑅 is added only to the
assertions in the outermost one:
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Γ; Δ ⊢ {𝑃 ∗ {𝑅} 𝑒1 {𝑆}} 𝑒2 {𝑄}

Γ; Δ ⊢ {𝑃 ∗ {𝑅} 𝑒1 {𝑆} ∗ 𝑅
′} 𝑒2 {𝑄 ∗ 𝑅′}

Figure 111: A Rule for Assignment

To enable local reasoning with functions – and in general for nested triples – we would like a rule which adds an
assertion not only to the outermost triple, but to all this nested triples as well; something in the following shape:

Γ; Δ ⊢ 𝑃

Γ; Δ ⊢ 𝑃 ⊗ 𝑄

Figure 112: A Rule for Assignment

This rule when applied to our example should have the following effect:

Γ; Δ ⊢ {𝑃 ∗ {𝑅} 𝑒1 {𝑆}} 𝑒2 {𝑄}

Γ; Δ ⊢ {𝑃 ∗ {(𝑅 ⊗ 𝑅′) ∗ 𝑅′} 𝑒1 {(𝑆 ⊗ 𝑅′) ∗ 𝑅′} ∗ 𝑅′} 𝑒2 {𝑄 ∗ 𝑅′}

Figure 113: A Rule for Assignment

The⊗-operation, called invariant extension, which allows for this definition of a higher order frame rule is adapted
from the work of Schwinghammer et al. [53]; following the axioms given in Fig. 114, it performs exactly the required
distribution of the assertion 𝑅 through any nested triples.

𝑃 ∘ 𝑅 = (𝑃 ⊗ 𝑅) ∗ 𝑅

(∀𝑡 𝛼 • 𝑃) ⊗ 𝑅 ⇔ (∀𝑡 𝛼 • (𝑃 ⊗ 𝑅)

(∃𝑡 𝛼 • 𝑃) ⊗ 𝑅 ⇔ (∃𝑡 𝛼 • (𝑃 ⊗ 𝑅)

(𝑃 ⊕ 𝐴) ⊗ 𝑅 ⇔ (𝑃 ⊗ 𝑅) ⊕ (𝑄 ⊗ 𝑅) ⊕ ∈ {⇒, ∧, ∨, ∗, ∗ }

𝑃 ⊗ 𝑅 ⇔ 𝑃 𝑃is true, false, 𝑒1 = 𝑒2 or 𝑒1 ↦ 𝑒2

(𝑃 ⊗ 𝑅) ⊗ 𝑅′ ⇔ 𝑃⊗ (𝑅 ∘ 𝑅′)

{𝑃}𝑒{𝑄} ⊗ 𝑅 ⇔ {𝑃 ∘ 𝑅}𝑒{𝑄 ∘ 𝑅}

Figure 114: Axioms for Invariant Extension

5.2.4 Recursive Predicates

As demonstrated in Section 2.3 with a predicate for lists, it benefits us to support recursive predicates. Often these
predicates are defined inductively and the proof rules for the logic are equipped with an open and close rule.

Another approach to these predicates, without explicit open and close rules is to define them using the solution to the
recursive equation described by the recursive definition. For instance, the recursively defined predicate in Fig. 115
gives rise to the equation in Fig. 116; what remains is to find the solution.
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𝐿𝑒𝑞𝑇𝑤𝑜(2)
𝑑𝑒𝑓
= true

𝐿𝑒𝑞𝑇𝑤𝑜(𝑥)
𝑑𝑒𝑓
= 𝐿𝑒𝑞𝑇𝑤𝑜(𝑥 + 1)

Figure 115: recursive Defined Predicate

𝐿𝑒𝑞𝑇𝑤𝑜 = 𝜆𝑥.𝑥 = 2 ∨ 𝐿𝑒𝑞𝑇𝑤𝑜(𝑥 + 1)

Figure 116: Recursive Equation Belonging to Fig. 115

In logics with a least fixed point operation 𝜇, solutions to these equations are easily provided in the form 𝐿𝑒𝑞𝑇𝑤𝑜 =

𝜇𝑋(𝑥).𝑥 = 2∨𝑋(𝑥+1). An example of such a logic is higher order separation logic where 𝜇 can be defined syntactically
as follows[9]:

For an arbitrary predicate 𝑞 = 𝜙(𝑞), with 𝑞 only occurring positively in 𝜙:

𝜇𝑞.𝜙(𝑞) = (𝜙(𝑞) ⇒ 𝑞) ⇒ 𝑞

Figure 117: Syntactic Definition of the Least Fixed Point

This defines the least fixed point as both 𝜙(𝜇𝑞.𝜙(𝑞) ⇒ 𝜇𝑞.𝜙(𝑞)) and ∀𝑝.(𝜙(𝑝) ⇒ 𝑝) ⇒ (𝜇𝑝.𝜙(𝑞) ⇒ 𝑝) hold in the
logic.

However, instead of defining the least fixed point syntactically, we will take an semantic approach, as used by Birkedal et
al. [10], where the existence of least fixed points is given in the underlying semantic representation of the logic.

5.2.5 Permissions

As shown in Section 2.3, permissions are a powerful addition to the logic for use in concurrent scenarios. As we will
want to specify the concurrent programs in Scala Core, our logic will be extended with permissions. As opposed to
the common [48] approach of storing permissions in the heap, our permissions will be stored in an additional data
structure called a permission table.

5.3 Typing Scala Core with Basic Expressions & Functions

A first step in proving the correctness of Scala Core programs, is to make sure they are well-typed. In this section
we will present a Kripke-style semantics for types in Scala Core without classes, along with the necessary typing
judgements. The approach used here to define the semantics of our types, will also serve as the introduction to a
general approach to these Kripke-style semantics, as described by Birkedal et al. [10], which, will serve as the basis of
our separation logic semantics in Section 5.4.

5.3.1 Semantics of Types

Semantically, types can be seen subsets of the closed values of a language defined by predicates on the set; for instance
the type Nat of natural numbers can be defined as all the values that are elements of ℕ, i.e. the set {𝑣 ∣ 𝑣 ∈ V ∧𝑣 ∈ ℕ}.
However, when a language contains reference types such as Scala Core does, this approach needs refinement, as the
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predicate is dependent on existing types, e.g. the type refNat of natural numbers consists of all values which are
references to values that are natural numbers, making it dependent on knowing which values are natural numbers.
Following Birkedal et al. [10] we therefore define semantic types not as the obvious 𝑇 = Pred(𝑉) but as follows:

𝑊 = ℕ ⇀𝑚𝑓𝑖𝑛 𝑇

𝑇 = 𝑊 →𝑚𝑜𝑛 Pred(𝑉𝑎𝑙𝑢𝑒)

Figure 118: Recursive Definition of Semantic Types

We define worlds𝑊 as partial functions from addresses to types. Intuitively, these worlds will provide additional
information to the heap, by containing the type of the value at a given address. Our semantic types are still predicates
on values, but now parameterized on worlds. Our example type Ref Nat(𝑤) can now be defined as all the values, which
are references, to some address, in worlds where that address has type Nat, i.e. the set {Ref 𝑎 ∣ 𝑤(𝑎) = Nat}.

With this, our semanticmodel of types is given by aKripkemodel over a recursively-defined set ofworlds. Unfortunately,
due to cardinality reasons, the solution to the above equations describing our model does not exist in the category of
sets [2]. Commonly, to address this issue, methods are used which are based on step-indexing which solve approximate
versions of the equations [2, 6], which – as demonstrated by Hobor, Dockins, and Appel [31] – are often sufficient for
practical purposes. However, we will use the approach used by Birkedal et al. [10], which provides a recipe to transform
the sets in the equations to objects in the Cartesian closed category 𝐶𝐵𝑈𝑙𝑡𝑛𝑒 of complete, 1-bounded, non-empty,
ultrametric spaces and non-expansive functions between them and solve the equations in that category:

Since we have defined the semantics of Scala Core as a small step operational semantics, the first step consists of
defining 𝑉, which will act as the domain for semantic values, as the set of closed syntactic values from the operational
semantics.

In the second step we define an object Pred(𝑉) in 𝐶𝐵𝑈𝑙𝑡𝑛𝑒, which will represent predicates on values. Due to
the operational nature of our semantics, we take UPred(𝑉) for Pred(𝑉), which consists of the set of predicates on
step-approximated values [10], where the step numbers coincide with the reduction steps taken in the operational
semantics:

𝑈𝑃𝑟𝑒𝑑(𝑉) = {𝑝 ⊆ ℕ × 𝑉 ∣ ∀(𝑛, 𝑣) ∈ 𝑝.∀𝑚 ≤ 𝑛.(𝑚, 𝑣) ∈ 𝑝}

Figure 119: Definition of UPred(𝑉)

This set can always be made into a well-defined object (UPred(𝑉), 𝑑) in 𝐶𝐵𝑈𝑙𝑡𝑛𝑒, where the elements represent
predicates on values, by providing the following distance function 𝑑:

𝑑(𝑝, 𝑞) = {
2−𝑚𝑎𝑥{𝑚∣𝑝[𝑚]=𝑞[𝑚]} if 𝑝 ≠ 𝑞

0 otherwise.

where 𝑝[𝑛] = {(𝑚, 𝑣) ∈ 𝑝 ∣ 𝑚 < 𝑛} represents the𝑚𝑡ℎ approximation of 𝑝.

Figure 120: Definition of the Distance Function for UPred(𝑉)

Intuitively, this distance function measures to which level the predicates agree, e.g. the predicate 𝑝 – describing values
approximated to the eighth step – and the predicate 𝑞 – describing values approximated to the tenth step – agree to
the eighth step, so their distance is 8.

It is interesting to note that the construction of UPred(𝑉) does not depend on the choice of 𝑉; we will make use of this
when defining contexts.
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In the third step we obtain the solution 󰗲𝑇 by solving the following equation in 𝐶𝐵𝑈𝑙𝑡𝑛𝑒:

󰗲𝑇 ≅
1

2
⋅ ((ℕ ⇀𝑚𝑓𝑖𝑛

󰗲𝑇) →𝑚𝑜𝑛 UPred(𝑉))

Figure 121: Solving the Recursive Equation

And in the fourth and final step we now define𝑊 and 𝑇 using 󰗲𝑇.

𝑇 =
1

2
⋅ 𝑊 →𝑚𝑜𝑛 UPred(𝑉)

𝑊 = ℕ ⇀𝑚𝑓𝑖𝑛
󰗲𝑇

Figure 122: Solving the Recursive Equation

A striking feature here is there inclusing of the 1

2
: This shrinking factor is a standard technique to make sure the

functor is locally contractive [3], which is required for the existence of recursive solutions.

With the solution to our equations we can now give an interpretation of 𝑡 ∈ Type, in program context 𝑘 and world
𝑤:

[[𝑡]]𝑘 ∶
1

2
⋅ 𝑊 →𝑚𝑜𝑛 UPred(𝑉)

[[Unit]]𝑘 = 𝜆𝑤.ℕ × {unit}
[[Bool]]𝑘 = 𝜆𝑤.ℕ × {true, false}
[[Int]]𝑘 = 𝜆𝑤.ℕ × ℤ

[[Ref 𝑡]]𝑘 = 𝜆𝑤.{(𝑛, 𝑎) ∣ 𝑎 ∈ 𝑑𝑜𝑚(𝑤) ∧ [[𝑡]]
𝑚
= 𝑤(𝑎)}

[[(𝑡) ∶ 𝑡′]]𝑘 = 𝜆𝑤.{(𝑛, 𝑣) ∣ ∀𝑚 ≤ 𝑛.∀𝑣′ ∈ 𝑉.∀𝑤′ ⊒ 𝑤.(𝑚, 𝑣′) ∈ [[𝑡]]𝑘(𝑤)

⇒ (𝑚, call 𝑣(𝑣′)) ∈ ℰ[[𝑡′]]𝑘(𝑤
′)}

ℰ[[𝑡]]𝑘 = 𝜆𝑤.{(𝑛, 𝑒) ∣ ∀𝑚 ≤ 𝑛.∀ℎ.∀𝑣.ℎ ∶𝑘 𝑤 ∧ 𝑣 = [[𝑒]]ℎ𝑘

⇒ ∃𝑤′ ⊒ 𝑤.(𝑛 − 𝑚, 𝑣) ∈ [[𝑡]]𝑘(𝑤
′)}

Figure 123: Interpretation of Types

Interpretations of primitive types are trivially given by their step-approximated values.

The interpretation of reference types however, makes use of the extra information available in the given world,
consisting of all step-approximated reference values of which the type, of the referenced value, agrees.

Finally function types of (𝑡) ∶ 𝑡′ are interpreted as all step-approximated values, where the function call expression, of
such a value, with an argument of 𝑣′ type 𝑡, evaluates to a value of type 𝑡′.

Using different sets for 𝑉, namely the set of worlds and the set of stacks, we can define contexts Γ of typed references
and Δ of typed variables:
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[[Γ]]𝑘 ∶
1

2
⋅ 𝑊 →𝑚𝑜𝑛 UPred(𝑊)

[[Γ]]𝑘 = {(𝑛, 𝑤) ∣ ∀(𝑒, 𝑡) ∈ Γ.(𝑛, 𝑒) ∈ ℰ[[Ref 𝑡]]}𝑘(𝑤)}

[[Δ]]𝑘 ∶
1

2
⋅ 𝑊 →𝑚𝑜𝑛 UPred(𝑆𝑡𝑎𝑐𝑘)

[[∅]]𝑘 = 𝜆𝑤.ℕ × ∅

[[Δ, 𝑖 ∶ 𝑡]]𝑘 = 𝜆𝑤.{(𝑛, 𝜌[𝑖 ↦ 𝑣]) ∣ (𝑛, 𝑣) ∈ [[𝑡]]𝑘(𝑤) ∧ (𝑛, 𝜌) ∈ [[Δ]]𝑘(𝑤)}

Figure 124: Interpretation of Contexts

The context Γ – of typed references – is defined as all pairs of an Expression 𝑒 and a type 𝑡 where the value, resulting
from the evaluation of 𝑒, corresponds to the type Ref 𝑡, and interpreted as the step-approximation of 𝑤.

The context Δ – of typed variables – is inductively defined as all pairs of an index 𝑖 and a type 𝑡, where the value 𝑣, at
position 𝑖 in the stack, is of type 𝑡, and is interpreted as the step-approximation of 𝜌. This context is the reason for the
parameterization, of the type interpretations, by context 𝑘, as we require it to determine the stack 𝜌.

Γ; Δ ⊢ 𝑒 ∶ 𝑡
𝑑𝑒𝑓
⇔ ∀𝑛 ≥ 0.∀𝑘.∀𝑤.(𝑛, 𝑤) ∈ [[Γ]]𝑘 ∧ (𝑛, 𝜌) ∈ [[Δ]]𝑘(𝑤) ⇒ (𝑛, 𝑒) ∈ ℰ[[𝑡]]𝑘(𝑤)

Figure 125: Definition of Well-Typed Expressions

An expression 𝑒 in the language is now classified as well-typed with type 𝑡, when, for all approximations of worlds
and contexts, the approximated world is contained in the interpretation of Γ, the approximated stack is contained in
the interpretation Δ and the approximated expression is contained in the interpretation of ℰ[[𝑡]]𝑘(𝑤), i.e. the given
contexts give rise to a world and program context where 𝑒 evaluates to a value with type 𝑡.

5.3.2 Type Judgements

Using our previous definitions, we now provide the following type judgments:
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T-Var
Γ↑, 𝑥0 ∶ 𝑡2; Δ↑, 0 ∶ Ref 𝑡2 ⊢ 𝑒 ∶ 𝑡1

Γ; Δ ⊢ var 𝑡2; 𝑒 ∶ 𝑡1
T-Seq

Γ; Δ ⊢ 𝑒1 ∶ 𝑡1
Γ; Δ ⊢ 𝑒2 ∶ 𝑡2

Γ; Δ ⊢ 𝑒1; 𝑒2 ∶ 𝑡2

T-Eq
Γ; Δ ⊢ 𝑒1 ∶ 𝑡

Γ; Δ ⊢ 𝑒2 ∶ 𝑡

Γ; Δ ⊢ 𝑒1 = 𝑒2 ∶ Bool

T-Assign
Γ; Δ ⊢ 𝑒1 ∶ Ref 𝑡

Γ; Δ ⊢ 𝑒2 ∶ 𝑡

Γ; Δ ⊢ 𝑒1 ∶= 𝑒2 ∶ Unit

T-Load
Γ; Δ ⊢ 𝑒 ∶ Ref 𝑡

Γ; Δ ⊢ load 𝑒 ∶ 𝑡

T-If

Γ; Δ ⊢ 𝑒1 ∶ Bool

Γ; Δ ⊢ 𝑒2 ∶ 𝑡

Γ; Δ ⊢ 𝑒3 ∶ 𝑡

Γ; Δ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ∶ 𝑡

T-Fundef
Γ↑, 𝑥0 ∶ 𝑡1; Δ↑, 0 ∶ Ref 𝑡1 ⊢ 𝑒 ∶ 𝑡2

Γ; Δ ⊢ (𝑡1) ∶ 𝑡2 → {𝑒} ∶ Ref(𝑡1) ∶ 𝑡2

T-Funcall
Γ; Δ, Ε ⊢ 𝑒1 ∶ Ref(𝑡1) ∶ 𝑡2
Γ; Δ ⊢ 𝑒2 ∶ 𝑡1

Γ; Δ, Ε ⊢ call(𝑒1) ∶ 𝑒2 ∶ 𝑡2

T-True
Γ; Δ ⊢ true ∶ Bool

T-False
Γ; Δ ⊢ false ∶ Bool

T-Unit
Γ; Δ ⊢ unit ∶ Unit

T-Int
Γ; Δ ⊢ int 𝑛 ∶ Int

Figure 126: Type Judgements

The judgements have the following meaning:

• T_Var: A variable declaration expression adds a variable of type 𝑡 to the heap and pushes a reference to it on
the stack. This rule therefore, on encountering a variable declaration expression with a variable of type 𝑡2 and a
body of type 𝑡1, adds the reference to Δ and the heap location and type to Γ. The type of a variable declaration
expression is the type of its body.

• T_Seq: The type of a sequential expression is the type of the second subexpression, assuming both subexpressions
are well-typed.

• T_Eq: The type of an equivalence expression is Bool, assuming both subexpressions have the same type.

• T_Assign: The type of an assignment is always Unit and the second subexpression must be assignable to the
first, i.e. the first should be a reference of the type of the second.

• T_Load: The type of a load expression is 𝑡, assuming the subexpression is a reference of type 𝑡.

• T_If: The type of an if expression is 𝑡, assuming the first subexpression – the condition – is of type Bool and the
other two are both of type 𝑡.

• T_Fundef: The type of a function definition is a reference type of the function being defined. The body of the
function should have a type equal to the return type of the function. The function parameter is added to the
contexts for evaluation of the body type. We split the stack-environment, as the function will always be executed
at the defining site with a stack smaller or equal to that of the calling site.

• T_Funcall: The type of a function call is the return type of the function being called. The expression being
called should be a function reference type and the parameter type should match the function signature.

5.4 Separation Logic for Scala Core with Basic Expressions & Functions

Now that expressions can be typed, we will focus our attention on proving the correctness of Scala Core programs
using a separation logic. We will start with the syntax of assertions in our language, and then provide the Kripke-style
semantics in a similar fashion as before.
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5.4.1 Assertion Language Syntax

To define assertions and their relation to the program, we add the following syntactical constructs:

Assertion ∶∶= true ∣ false ∣ Assertion ∨ Assertion ∣ Assertion ∧ Assertion
∣ Expression = Expression ∣ Expression ≤ Expression ∣ Assertion ⇒ Assertion

∣ ∀ LVar: Type . Assertion ∣ ∃ LVar: Type . Assertion ∣ Expression ↦ Expression

∣ Assertion ∗ Assertion ∣ Assertion ∗ Assertion

∣ {Assertion} Expression {Assertion} ∣ Assertion⊗Assertion ∣ Predicate

Expression ∶∶= … ∣ requiresAssertion; ensuresAssertion; FType → {Expression} ∣ …

Figure 127: Assertions in Scala Core

The assertion syntax consists of the familiar operators from first-order logic and permission-based separation logic
extended with the prevously discussed invariant extension operator 𝑃 ⊗ 𝑄, (nested) Hoare triples of the form {𝑃}𝑒{𝑄}

and with recursive predicates of the form (𝜇𝛼.𝜆𝛽.𝑃)(𝑒). We will use 𝑃, 𝑄, 𝑅 and 𝑆 to identify assertions and 𝛼, 𝛽, 𝛾 to
identify logical terms.

5.4.2 Meaning of Assertions

Where, before, semantic types were described as subsets of the closed values of a language, defined by predicates on the
set, semantic assertions for a separation logic can be seen as subheaps, defined by predicates on the set of heaps.

Using the approach outlined in Section 5.3.1, we define Kripke-model over a recursively defined set of worlds:

𝑊 = ℕ ⇀𝑚𝑓𝑖𝑛 𝐴

𝐴 = 𝑊 →𝑚𝑜𝑛 𝑃𝑟𝑒𝑑(𝐻𝑒𝑎𝑝)

Figure 128: Recursive Definition of Semantic Assertions

Once again, these worlds will provide additional information to the heap, but in this case worlds 𝑤 ∈ 𝑊 describe
invariants – for instance, accompanying stored functions – which all possible computations should preserve. For
classical, or Boolean, BI-algebra, the construction would be identitical to the one in Section 5.3.1 and we could simply
substitute Heap for the set of closed values to obtain a solution. However, as we are interested in an intuistionistic, or
Heyting, BI-algebra, we use a variation on this approach similar to the one by Birkedal et al. [10, section 3.2]:

Recall the set UPred(𝑉) of uniform predicates on values:

UPred(𝑉) = {𝑝 ⊆ ℕ × 𝑉 ∣ ∀(𝑛, 𝑣) ∈ 𝑝.∀𝑚 ≤ 𝑛.(𝑚, 𝑣) ∈ 𝑝}

For a poset (𝐴, ⊑), the set UPred ↑(𝐴) of upward closed uniform predicates is defined as:

UPred ↑(𝐴) = {𝑝 ⊆ ℕ × 𝑉 ∣ ∀(𝑛, 𝑎) ∈ 𝑝.∀𝑎 ⊑ 𝑏.(𝑛, 𝑏) ∈ 𝑝}

Figure 129: Definition of UPred ↑(𝐴)

From this point on we follow the same approach as in Section 5.3.1, but with UPred ↑(Heap) instead of UPred(𝑉) and
the following partial order on Heap:
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ℎ1 ⊑ ℎ2 ⇔ dom(ℎ1) ⊇ dom(ℎ2) ∧ ∀𝑙 ∈ dom(ℎ2).ℎ1(𝑙) = ℎ2(𝑙)

Figure 130: Intuitionistic Ordering of Heaps

WithUPred ↑(Heap)made into an object in 𝐶𝐵𝑈𝑙𝑡𝑛𝑒 by using the same distance function as before, we can now obtain
a solution to our recursive equation in 𝐶𝐵𝑈𝑙𝑡𝑛𝑒:

𝐴 =
1

2
⋅ 𝑊 →𝑚𝑜𝑛 UPred ↑(Heap)

𝑊 = ℕ ⇀𝑚𝑓𝑖𝑛
󰗲𝐴

Figure 131: Solution the Recursive Equation

Since worlds represent invariants which speak of functions and are thus themselves world-dependent, it is natural they
must double as functions𝑊 →𝑚𝑜𝑛 UPred(Heap). Consequently, the solution can be simplified to the following:

𝑊 =
1

2
(𝑊 → UPred ↑(Heap))

Figure 132: Simplified Solution to the Recursive Equation

Following Birkedal et al. [10], using this solution we define Pred as Pred = 1

2
(𝑊 → UPred ↑(Heap))with isomorphism

𝑖 ∶ Pred → 𝑊. We will model assertions as elements of Pred. For the interpretation of the standard assertions in
intuitionistic separation logic we will define a complete Heyting BI-algebra on Pred:

First we provide a pointwise ordering of the elements in Pred:

∀𝑝, 𝑞 ∈ 𝑃𝑟𝑒𝑑.𝑝 ≤ 𝑞 ⇔ ∀𝑤 ∈ 𝑊.𝑝(𝑤) ⊆ 𝑞(𝑤)

Figure 133: Pointwise Ordering of Elements in 𝑃𝑟𝑒𝑑

Then we define the unit element of the algebra, which coincides with the top element of the algebra, due to our choice
of an intuitionistic logic:

ℐ = ℕ × Heap = ⊤

Figure 134: Unit

Finally we define the required operations:

𝑝 ∗ 𝑞 = 𝜆𝑤.{(𝑛, ℎ) ∣ ∃ℎ1, ℎ2.ℎ1 ⋅ ℎ2 = ℎ ∧ (𝑛, ℎ1) ∈ 𝑝(𝑤) ∧ (𝑛, ℎ2) ∈ 𝑞(𝑤)}

𝑝 ∗ 𝑞 = 𝜆𝑤.{(𝑛, ℎ) ∣ ∀𝑚 ≤ 𝑛.((𝑚, ℎ′) ∈ 𝑝(𝑤) ∧ ℎ#ℎ′) ⇒ (𝑚, ℎ ⋅ ℎ′) ∈ 𝑞(𝑤)}

𝑝 ⇒ 𝑞 = 𝜆𝑤.{(𝑛, ℎ) ∣ ∀𝑚 ≤ 𝑛.∀ℎ′ ⊑ ℎ.(𝑚, ℎ′) ∈ 𝑝(𝑤) ⇒ (𝑚, ℎ′) ∈ 𝑞(𝑤)}

Where ℎ1#ℎ2 denotes two heaps having disjoint domains and ℎ1 ⋅ ℎ2 denotes their union.

Figure 135: Separation Logic Operations on 𝑃𝑟𝑒𝑑
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With the previous ordering, operations, unit andmeet and join given by set-intersection and set-union respectively,
Pred is a complete Heyting BI-algebra[9], which provides us a sound interpretation of the basic elements of the
logic:

[[false]]𝜂,𝑘 = 𝜆𝑤.∅

[[true]]𝜂,𝑘 = 𝜆𝑤.ℕ × Heap

[[𝑃 ∧ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∩ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ∨ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∪ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ⇒ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ⇒ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ∗ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∗ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ∗ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∗ [[𝑄]]𝜂,𝑘𝑤

Where 𝜂 ∈ Environment – as defined in Fig. 141 – is an environment of ghost variables and predicates and
𝑘 ∈ Context is the program context.

Figure 136: Interpretation of Basic Connectives

First of we extend these with quantifiers, equality and the pointsto operation:

[[𝑒1 ↦ 𝑒2]]𝜂,𝑘 = 𝜆𝑤. {

{(𝑛, ℎ[𝑎 ↦ [[𝜂(𝑒2)]]
ℎ
𝑘]) ∣ 𝑛 ∈ ℕ, ℎ ∈ Heap}

if [[𝜂(𝑒1)]]ℎ𝑘 = ptr 𝑎
∅ otherwise.

[[𝑒1 = 𝑒2]]𝜂,𝑘 = 𝜆𝑤. {
ℕ × Heap if [[𝑒1]]𝜂,𝑘 = [[𝑒2]]𝜂,𝑘
∅ otherwise.

[[∀𝛼∶𝑡.𝑃]]𝜂,𝑘 = 𝜆𝑤. ∩𝑣∈{𝑣∣𝑣∈Value ∧ typeof(𝑣)=𝑡} [[𝑃]]𝜂[𝛼↦𝑣],𝑘(𝑤)

[[∃𝛼∶𝑡.𝑃]]𝜂,𝑘 = 𝜆𝑤. ∪𝑣∈{𝑣∣𝑣∈Value ∧ typeof(𝑣)=𝑡} [[𝑃]]𝜂[𝛼↦𝑣],𝑘(𝑤)

Where 𝜂 ∈ Environment – as defined in Fig. 141 – is an environment of ghost variables and predicates and
𝑘 ∈ Context is the program context.

Figure 137: Interpretation of Basic Connectives

Quantification is typed and makes use of an environment mapping logical variables to expressions. The interpretation
of a quantifier is then given by the union or disjunction of the quantified set.

Equality is determined simply by expressions reducing to the same value, and in that case given the interpretation of
true.

For the pointsto operation, we use capture-avoiding substitution of the logical – or ghost – variables with their values
and associate the heap in which the resulting pointer points to a value as the interpretation.

What remains are the more interesting cases of the interpretation of Hoare triples, recursive predicates and invariant
extension:

For invariant extension we need to define the operator⊗ on the set of semantic predicates Pred. Following Birkedal
et al. [10], we do so by providing the recursive equation it should satisfy:
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There exists a unique function⊗ ∶ Pred×𝑊 → Pred in 𝐶𝐵𝑈𝑙𝑡𝑛𝑒 satisfying:

𝑝 ⊗ 𝑤 = 𝜆𝑤′.𝑝(𝑤 ∘ 𝑤′)

where ∘ ∶ 𝑊 → 𝑊 ×𝑊 is given by:

𝑤1 ∘ 𝑤2 = 𝑖((𝑖−1(𝑤1) ⊗ 𝑤2) ∗ 𝑖
−1(𝑤2))

with the basic properties:
1. (𝑊, ∘, 𝑡𝑟𝑢𝑒) is a monoid.
2. The operator is amonoid action of𝑊 on Pred: for all𝑃 ∈ Predwe have𝑃⊗𝑡𝑟𝑢𝑒 = 𝑃 and (𝑃⊗𝑤1)⊗𝑤2 =

𝑃 ⊗ (𝑤1 ∘ 𝑤2)

where 𝑡𝑟𝑢𝑒 = 𝑖(𝜆𝑤.ℐ), i.e. the image of the BI-unit.

Figure 138: Recursive Equation for Invariant Extension

Proof of the existence of this operator can be obtained by application of Banach’s fixed point theorem[53], which
guarantees the existence and unicity of fixed points in certain self-maps of metric spaces, provided the mapping is
contractive.

As triples can be nested, the interpretation of triples and assertions will be given simultaneously, using semantic
triples:

To define semantic triples, we again follow Birkedal et al. [10] and define Safe
𝑚
as the set of configurations which are

safe for m steps and we write⇾𝑘 as the k-step reduction relation, in the operational semantics. Now we can define
⊨𝑛:

𝑤, 𝑘 ⊨𝑛 (𝑝, 𝑒, 𝑞) iff: For all 𝑟 ∈ Pred, all𝑚 < 𝑛 and all ℎ ∈ Heap if (𝑚, ℎ) ∈ 𝑝(𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟 then:
1. S(𝑘, (↘ 𝑒), ℎ) ∈ 𝑆𝑎𝑓𝑒𝑚.
2. For all 𝑗 < 𝑚, 𝑣 ∈ Value and all ℎ ∈ Heap if S(𝑘, (𝑒), ℎ) ⇾𝑘

𝑐𝑡 S(𝑘, (↗ 𝑣), ℎ′), then (𝑚 − 𝑘, ℎ′) ∈

𝑞[𝑣/result](𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟

Figure 139: Semantic Hoare Triples

The semantic triples bake in the first-order frame property, by joining the invariant 𝑟. As this would otherwise result in
endless recursion, we close the loop by applying the world 𝑤, on which the triple implicitly depends, to the unit 𝑡𝑟𝑢𝑒.
We substitute the value of the expression for result in the postcondition. Step-indexing is used to determine to what
extent pre- and postconditions should hold. Intuitively these semantic triples corresponds to the standard interpretation
of a hoare triple: in a state where 𝑝 holds ((𝑚, ℎ) ∈ 𝑝(𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟), the evaluation of the expression is
possible (S(𝑘, (↘ 𝑒), ℎ) ∈ 𝑆𝑎𝑓𝑒𝑚) and results in a state where 𝑞 should hold (if S(𝑘, (𝑒), ℎ) ⇾𝑘

𝑐𝑡 S(𝑘, (↗ 𝑣), ℎ′), then
(𝑚 − 𝑘, ℎ′) ∈ 𝑞[𝑣/result](𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟).

Hoare triples can now be interpreted using the given semantic construct and the interpretation of an assertion Γ; Δ ⊢ 𝑃

is defined to be an element in [[𝑃]] ∈ 𝑃𝑟𝑒𝑑.

The one thing that remains is the interpretation of recursively defined predicates, which is, following [10, 53], defined
using Banach’s fixpoint theorem:

Let 𝐼 be a set and suppose that, for every 𝑖 ∈ 𝐼, 𝐹𝑖 ∶ 𝑃𝑟𝑒𝑑𝐼 → 𝑃𝑟𝑒𝑑 is a contractive function. There then exists a
unique 𝑝⃗ = (𝑝𝑖)𝑖∈𝐼 ∈ 𝑃𝑟𝑒𝑑 such that 𝐹𝑖(𝑝⃗) = 𝑝𝑖, forall 𝑖 ∈ 𝐼.

Figure 140: Interpretation of Recursive Predicates
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The interpretation of the connectives are now, in summary, the following:

Environment = Ghost ∣ RecPred

Ghost = LVar →𝑚𝑓𝑖𝑛 Value

RecPred = LVar →𝑚𝑓𝑖𝑛 (Value → Assertion)

Figure 141: Environment

[[false]]𝜂,𝑘 = 𝜆𝑤.∅

[[true]]𝜂,𝑘 = 𝜆𝑤.ℕ × Heap

[[𝑃 ∧ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∩ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ∨ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∪ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ⇒ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ⇒ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ∗ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∗ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ∗ 𝑄]]𝜂,𝑘 = 𝜆𝑤.[[𝑃]]𝜂,𝑘𝑤 ∗ [[𝑄]]𝜂,𝑘𝑤

[[𝑃 ⊗ 𝑄]]𝜂,𝑘 = 𝜆𝑤. ([[𝑃]]𝜂,𝑘 ⊗ 𝑖([[𝑄]]𝜂,𝑘)) 𝑤

[[𝑒1 ↦ 𝑒2]]𝜂,𝑘 = 𝜆𝑤. {

{(𝑛, ℎ[𝑎 ↦ [[𝜂(𝑒2)]]
ℎ
𝑘]) ∣ 𝑛 ∈ ℕ, ℎ ∈ Heap}

if [[𝜂(𝑒1)]]ℎ𝑘 = ptr 𝑎
∅ otherwise.

[[𝑒1 = 𝑒2]]𝜂,𝑘 = 𝜆𝑤. {
ℕ × Heap if [[𝑒1]]𝜂,𝑘 = [[𝑒2]]𝜂,𝑘
∅ otherwise.

[[{𝑃} 𝑒 {𝑄}]]𝜂,𝑘 = 𝜆𝑤.{(𝑛, ℎ) ∣ 𝑘, 𝑤 ⊨𝑛 ([[𝑃]]𝜂,𝑘 , 𝑒, [[𝑄]]𝜂,𝑘)}

[[∀𝛼∶𝑡.𝑃]]𝜂,𝑘 = 𝜆𝑤. ∩𝑣∈{𝑣∣𝑣∈Value ∧ typeof(𝑣)=𝑡} [[𝑃]]𝜂[𝛼↦𝑣],𝑘(𝑤)

[[∃𝛼∶𝑡.𝑃]]𝜂,𝑘 = 𝜆𝑤. ∪𝑣∈{𝑣∣𝑣∈Value ∧ typeof(𝑣)=𝑡} [[𝑃]]𝜂[𝛼↦𝑣],𝑘(𝑤)

[[(𝜇𝛼.𝜆𝛽.𝑃)(𝑒)]]𝜂,𝑘 = fix (𝜆𝑃Value→Assertion1 𝜆𝑣.[[𝑃]]𝜂[𝛼↦𝑃1,𝛽↦𝑣],𝑘) ([[𝜂(𝑒1)]]
ℎ
𝑘)

Where 𝜂 ∈ Environment – as defined in Fig. 141 – is an environment of ghost variables and predicates and
𝑘 ∈ Context is the program context.

Figure 142: Interpretation of Connectives

Furthermore we define interpretations of the contexts Δ and Γ as follows:

Γ = 𝜆𝑤.ℕ × LVar

Δ = 𝜆𝑤.ℕ × Heap

Figure 143: Interpretation of Contexts

The context Γ contains the names of ghost variables and predicates, whereas Δ contains stack indices. These contexts
will be used for book keeping which is required for the soundness argument.
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5.4.3 Hoare Rules

Having defined the formulas in our logic, we will now provide the proof rules used to establish the validity of Scala
Core programs:

Γ; Δ ⊢ 𝑃′ ⇒ 𝑃

Γ; Δ ⊢ 𝑄 ⇒ 𝑄′

Γ; Δ ⊢ {𝑃} 𝑒 {𝑄} ⇒ {𝑃′} 𝑒 {𝑄′}

Figure 144: Consequence Rule

To emphasize having Hoare triples as assertions, we give a slightly modified formulation of the standard consequence
rule – for strengthening preconditions and weakening postconditions – which instead of putting {𝑃} 𝑒 {𝑄} in the
premises and {𝑃′} 𝑒 {𝑄′} in the conclusion, has an implication between the triples in the conclusion.

Γ; Δ ⊢ {𝑃} 𝑒 {𝑄} ⇒ {𝑃 ∗ 𝑅} 𝑒 {𝑄 ∗ 𝑅}

Figure 145: First-Order Frame Rule

The first-order frame rule is just the standard frame rule for separation logic – previously seen in Section 2.3.1 – but
once again making use of the fact that our Hoare triples are first class assertions. This rule will not suffice for nested
triples, as it adds the invariant to only the outermost triple. To deal with the nested case, we require the addition of a
higher-order frame rule, as decribed by Schwinghammer et al. [53]:

Γ; Δ ⊢ 𝑃

Γ; Δ ⊢ 𝑃 ⊗ 𝑄

Figure 146: Higher-Order Frame Rule

𝑃 ∘ 𝑅 = (𝑃 ⊗ 𝑅) ∗ 𝑅

(∀𝑡 𝛼 • 𝑃) ⊗ 𝑅 ⇔ (∀𝑡 𝛼 • (𝑃 ⊗ 𝑅)

(∃𝑡 𝛼 • 𝑃) ⊗ 𝑅 ⇔ (∃𝑡 𝛼 • (𝑃 ⊗ 𝑅)

(𝑃 ⊕ 𝐴) ⊗ 𝑅 ⇔ (𝑃 ⊗ 𝑅) ⊕ (𝑄 ⊗ 𝑅) ⊕ ∈ {⇒, ∧, ∨, ∗, ∗ }

𝑃 ⊗ 𝑅 ⇔ 𝑃 𝑃is true, false, 𝑒1 = 𝑒2 or 𝑒1 ↦ 𝑒2

(𝑃 ⊗ 𝑅) ⊗ 𝑅′ ⇔ 𝑃⊗ (𝑅 ∘ 𝑅′)

{𝑃}𝑒{𝑄} ⊗ 𝑅 ⇔ {𝑃 ∘ 𝑅}𝑒{𝑄 ∘ 𝑅}

Figure 147: Axioms for Invariant Extension

With the higher-order frame rule, we allow the invariant 𝑅 not only to be added to the outermost triple, but all nested
triples inside. It is formulated using the invariant extension operator, which distributes the invariant 𝑅 through the
formula using the axioms previously shown in Fig. 114, which we repeat in Fig. 147 for the sake of clarity.

We define the following rules for the basic expressions in the language:
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Γ; Δ↑, 0 ⊢ {𝑥0 ↦ _ ∗ 𝑃↑ ∗mutable(𝑥0)} 𝑒 {𝑥0 ↦ _ ∗ 𝑄↑}

Γ; Δ ⊢ {𝑃} var 𝑡; 𝑒 {𝑄}

Figure 148: Variable Declaration

The first rule we provide is for the declaration of variables. This axiom makes use of a lifting operator ↑ over assertions,
which increments the indices of the variables contains within the assertion by one i.e. it replaces all occurrences of 𝑥𝑖
with 𝑥𝑖+1. A variable declaration expression then is correct, given the correctness of its body 𝑒 in a state, where the
original stack is lifted and a top element exists, i.e. where a variable has been pushed on the stack.

Γ; Δ ⊢ {𝑃} 𝑒 {𝑄 ∗ 𝑣1 = result ∗ 𝑣1 ↦ 𝑣2}

Γ; Δ ⊢ {𝑃 ∗ 𝑣1 ↦ 𝑣2} load 𝑒 {𝑄 ∗ 𝑣2 = result ∗ 𝑣1 ↦ 𝑣2}

Figure 149: Load

The next rule is for the load expression. In this case, a load expression is correct when the expression 𝑒 evaluates to a
valid pointer and the value, residing at the address of the pointer, is equal to the resulting value of the expression.

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑃
′ ∗ 𝑣1 = result ∗ 𝑣1 ↦ _}

Γ; Δ ⊢ {𝑃′} 𝑒2 {𝑄 ∗ result = 𝑣2}

Γ; Δ ⊢ {𝑃 ∗ 𝑣1 ↦ _} 𝑒1 ∶= 𝑒2 {𝑄 ∗ 𝑣1 ↦ 𝑣2 ∗ result = unit}

Figure 150: Assignment

Next there is the assignment expression, which is correct when the left hand expression evaluates to a pointer, the
right hand expression evaluates to a value.

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑃
′}

Γ; Δ ⊢ {𝑃′} 𝑒2 {𝑄}

Γ; Δ ⊢ {𝑃} 𝑒1; 𝑒2 {𝑄}

Figure 151: Composition

Finally there is the straightforward rule for sequential expressions.

We now focus our attention on functions, starting with their definition:

Γ; Δ ⊢ {𝑃} requires𝑅; ensures 𝑆; 𝑡1 ∶ 𝑡2 → 𝑒 {𝑄 ∗ 𝑣1 ↦ {𝑅} _ {𝑆} ∗ 𝑣1 = result}

Figure 152: Function Definition

A function definition is correct when the returned value of the expression is a pointer to the allocated function
body.
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Γ; Δ, Ε ⊢ {𝑃} 𝑒1 {𝑃
′ ∗ 𝑣1 = result ∗ 𝑣1 ↦ {𝑅} _ {𝑆}}

Γ; Δ, Ε ⊢ {𝑃′} 𝑒2 {𝑃
′′ ∗ 𝑣2 = result}

∀𝑣2 ∶ 𝑡 • Γ; Δ, 0 ⊢ {𝑅} 𝑒3 {𝑆} ⇒ {𝑃′′ ∗ 𝑥0 ↦ 𝑣2} 𝑒3 {𝑄 ∗ 𝑥0 ↦ 𝑣2}

Γ; Δ, Ε ⊢ {𝑃 ∗ 𝑣1 ↦ {𝑅} _ {𝑆}} call 𝑒1(𝑒2) {𝑄}

Figure 153: Function Call

A function call is correct when 𝑒1 is a valid function pointer, to an expression, with a contract. Secondly, the argument
– we assume a single argument for the sake of legibility – evaluates to a value 𝑣2. Finally the contract of the function,
applied to the body, should imply the contract of the call.

5.5 Expanding Separation Logic for Scala Core to Exceptions

To support exceptions, as demonstrated with Scala Core in Section 4.5, we will take the usual approach and modify the
notation ofour Hoare triples to take into account exceptional post-conditions – the definition for which is given in
Fig. 156:

Γ; Δ ⊢ {𝑃} 𝑒 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡} ⇒ {𝑃 ∗ 𝑅} 𝑒 {𝑄 ∣

−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡 ∗ 𝑅}

Figure 154: First-Order Frame Rule with Exceptions

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑃
′ ∣

−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡}

Γ; Δ ⊢ {𝑃′} 𝑒2 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡}

Γ; Δ ⊢ {𝑃} 𝑒1; 𝑒2 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡}

Figure 155: Composition with Exceptions

As demonstrated with the previous examples in Fig. 154 and Fig. 155, most rules remain essentially the same, but now,
if it terminates with an exception of type 𝑡, there is a matching exceptional postcondition that holds, instead of the
non-exceptional one. We codify this in the semantics of the Hoare triple as follows:

𝑤, 𝑘 ⊨𝑛 (𝑝, 𝑒, 𝑞,
−⇀
𝑟𝑡 ) iff: For all 𝑟 ∈ Pred, all𝑚 < 𝑛 and all ℎ ∈ Heap if (𝑚, ℎ) ∈ 𝑝(𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟 then:

1. S(𝑘, (↘ 𝑒), ℎ) ∈ 𝑆𝑎𝑓𝑒𝑚.
2. For all 𝑗 < 𝑚, 𝑣 ∈ Value and all ℎ ∈ Heap if S(𝑘, (𝑒), ℎ) ⇾𝑘

𝑐𝑡 S(𝑘, (↗ 𝑣), ℎ′), then (𝑚 − 𝑘, ℎ′) ∈

𝑞[𝑣/result](𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟
3. For all 𝑟𝑡 ∈

−⇀
𝑟𝑡 , 𝑗 < 𝑚, 𝑣 ∈ Value and all ℎ ∈ Heap if S(𝑘, (𝑒), ℎ) ⇾𝑘

𝑐𝑡 S(𝑘, ( 𝑡𝑣), ℎ
′), then (𝑚 − 𝑘, ℎ′) ∈

𝑟𝑖[𝑣/result](𝑤) ∗ 𝑖−1(𝑤)(𝑡𝑟𝑢𝑒) ∗ 𝑟

[[{𝑃} 𝑒 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡}]]𝜂,𝑘 = 𝜆𝑤.{(𝑛, ℎ) ∣ 𝑘, 𝑤 ⊨𝑛 ([[𝑃]]𝜂,𝑘 , 𝑒, [[𝑄]]𝜂,𝑘 , [[

−⇀
𝑅𝑡]]𝜂,𝑘)}

Figure 156: Semantic Hoare Triples for Exceptions

The definition remains largely similar to the one in Fig. 139, which the addition of point 3, which states that in case of
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an exceptional end to an execution, the matching exceptional postcondition holds, instead of the non-exceptional
one.

We also add a number of additional rules to deal with the exception expressions and modify the consequence rule to
deal with weakening of exceptions:

Γ; Δ ⊢ 𝑃′ ⇒ 𝑃

Γ; Δ ⊢ 𝑄 ⇒ 𝑄′

Γ; Δ ⊢
−⇀
𝑅𝑡 ⇒

−⇀
𝑅′
𝑡

Γ; Δ ⊢ {𝑃} 𝑒 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡} ⇒ {𝑃′} 𝑒 {𝑄′ ∣

−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅′
𝑡}

Figure 157: Consequence Rule for Exceptions

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑄 ∣ 𝑒𝑥𝑡 ⇒ 𝑅𝑡 ,
−−⇀
𝑒𝑥𝑡 ⧵ 𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡 ⧵ 𝑅𝑡}

Γ; Δ ⊢ {𝑅𝑡} 𝑒2 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡}

Γ; Δ ⊢ {𝑃} try 𝑒1 catch 𝑡 𝑒2 {𝑄 ∣
−−⇀
𝑒𝑥𝑡 ⇒

−⇀
𝑅𝑡}

Figure 158: TryCatch Rule

Γ; Δ ⊢ {𝑃} throw 𝑒 {false ∣ 𝑒𝑥𝑡 ⇒ 𝑅𝑡}

Figure 159: Throw Rule

The support of exceptions will also require an extensive, but straightforward rework of the type system, as any
expression can now also return an exception. As is this isn’t relevant to the main goal of this section, we will not
reproduce this work here.

5.6 Expanding Separation Logic for Scala Core to Classes & Traits

To deal with classes, we take a similar approach to Amighi et al. [5] in line with our previously defined operational
semantics in Section 4. For use with our logic, methods in the class table are expanded with a pre- and postcondition,
similarly to functions. The mblookup relation – for looking up method bodies, given their name and class type – is
modified to reflect this:
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class Any {…Requires𝑃 Ensures𝑄𝑚(−⇀𝑡 ) ∶ 𝑡{𝑒} …}
mbLookup Base

mbLookup(𝑚,Any, {𝑃} 𝑒 {𝑄})

class 𝐶 {…Requires𝑃 Ensures𝑄𝑚(−⇀𝑡 ) ∶ 𝑡{𝑒} …}
mbLookup Defining Class

mbLookup(𝑚, 𝐶, {𝑃} 𝑒 {𝑄})

trait 𝐶 {…Requires𝑃 Ensures𝑄𝑚(−⇀𝑡 ) ∶ 𝑡{𝑒} …}
mbLookup Defining Trait

mbLookup(𝑚, 𝐶, {𝑃} 𝑒 {𝑄})

class 𝐶1 extends 𝐶2 with
−⇀
𝑇 {𝑓 𝑚}

𝑚∉ dom(𝑚)

∃𝑡 ∈ (𝐶2 ∶∶
−⇀
𝑇) ∣ mblookup(𝑚, 𝑡, {𝑃} 𝑒 {𝑄})

mbLookup Super Class
mbLookup(𝑚, 𝐶1, {𝑃} 𝑒 {𝑄})

trait 𝑇1 extends 𝑇2 with
−⇀
𝑇 {𝑓 𝑚}

𝑚∉ dom(𝑚)

∃𝑇 ∈ (𝑇2 ∶∶
−⇀
𝑇) ∣ mblookup(𝑚, 𝑇, {𝑃} 𝑒 {𝑄})

mbLookup Super Trait
mbLookup(𝑚, 𝐶1, {𝑃} 𝑒 {𝑄})

Figure 160: TheModified mblookup Relation

Additionally the mtlookup relation – for looking up method types, given their name and class type – is added:

class Any {…Requires𝑃 Ensures𝑄𝑚(−⇀𝑡 ) ∶ 𝑡{𝑒} …}
mbLookup Base

mbLookup(𝑚,Any, (−⇀𝑡 ) ∶ 𝑡

class 𝐶 {…Requires𝑃 Ensures𝑄𝑚(−⇀𝑡 ) ∶ 𝑡{𝑒} …}
mbLookup Defining Class

mbLookup(𝑚, 𝐶, (
−⇀
𝑡 ) ∶ 𝑡

trait 𝐶 {…Requires𝑃 Ensures𝑄𝑚(−⇀𝑡 ) ∶ 𝑡{𝑒} …}
mbLookup Defining Trait

mbLookup(𝑚, 𝐶, (
−⇀
𝑡 ) ∶ 𝑡

class 𝐶1 extends 𝐶2 with
−⇀
𝑇 {𝑓 𝑚}

𝑚∉ dom(𝑚)

∃𝑡 ∈ (𝐶2 ∶∶
−⇀
𝑇) ∣ mblookup(𝑚, 𝑡, {𝑃} 𝑒 {𝑄})

mbLookup Super Class
mbLookup(𝑚, 𝐶1, (

−⇀
𝑡 ) ∶ 𝑡

trait 𝑇1 extends 𝑇2 with
−⇀
𝑇 {𝑓 𝑚}

𝑚∉ dom(𝑚)

∃𝑇 ∈ (𝑇2 ∶∶
−⇀
𝑇) ∣ mblookup(𝑚, 𝑇, {𝑃} 𝑒 {𝑄})

mbLookup Super Trait
mbLookup(𝑚, 𝐶1, (

−⇀
𝑡 ) ∶ 𝑡

Figure 161: The mtlookup Relation

To modify the type system to account for classes, primitive types are removed and replaced with classes with the
appropriate syntactical sugar.
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[[𝑡]]𝑘 ∶
1

2
⋅ 𝑊 →𝑚𝑜𝑛 UPred(𝑉)

…

[[C]]𝑘 = 𝜆𝑤.ℕ × {𝑜} ∧ 𝑜 = {⟨𝑓, _⟩ ∣ ⟨𝑡, 𝑓⟩ ∈ 𝑓𝑙𝑑𝑠 ∧ 𝑓𝑙𝑑(𝐶, 𝑓𝑙𝑑𝑠)}

…

Figure 162: Interpretation of Class Types

The interpretation of a class type, designated by its identifier, is given all step-approximated values, that match its
fields.

Additional rules are added for creating classes, accessing their fields and calling methods:

T-New
Γ; Δ ⊢ 𝐶 ∈ ct

Γ; Δ ⊢ 𝑒 ∶ 𝑡

Γ; Δ ⊢ new 𝐶(𝑒) ∶ Ref 𝐶

T-Get
fld(𝑡, 𝑓𝑙𝑑𝑠) ⟨𝑡′, 𝑓⟩ ∈ 𝑓𝑙𝑑𝑠

Γ; Δ ⊢ 𝑒 ∶ Ref 𝑡

Γ; Δ ⊢ load 𝑒.𝑓 ∶ 𝑡′

T-Set

fld(𝑡, 𝑓𝑙𝑑𝑠) ⟨𝑡′, 𝑓⟩ ∈ 𝑓𝑙𝑑𝑠

Γ; Δ ⊢ 𝑒1 ∶ Ref 𝑡

Γ; Δ ⊢ 𝑒1 ∶ 𝑡
′

Γ; Δ ⊢ 𝑒1.𝑓 ∶= 𝑒2 ∶ 𝑈𝑛𝑖𝑡

T-Methodcall

mtlookup(𝑚, 𝑡, (𝑡′) ∶ 𝑡′′)

Γ; Δ ⊢ 𝑒1 ∶ Ref 𝑡

Γ; Δ ⊢ 𝑒2 ∶ 𝑡
′

Γ; Δ ⊢ call 𝑒1.𝑚(𝑒2) ∶ 𝑡′′

Figure 163: Type Judgements for Classes

For the logic, we add 4 new Hoare rules:

typeof(𝑣1, 𝑡) fld(𝑡, 𝑓𝑙𝑑𝑠) 𝑓 ∈ 𝑓𝑙𝑑𝑠

Γ; Δ ⊢ {𝑃} 𝑒 {𝑃′ ∗ 𝑣1 = result}

Γ; Δ ⊢ {𝑃 ∗ 𝑣1.𝑓 ↦ 𝑣2} load 𝑒.𝑓 {𝑄 ∗ 𝑣1 ↦ 𝑣2 ∗ 𝑣2 = result}

Figure 164: Get

Field access is correct when the field in question belongs to the class pointed to by the pointer to which e evaluates and
the resulting value of the expression is the contents of the field.

typeof(𝑣1, 𝑡1) typeof(𝑣2, 𝑡2) 𝑡2 ∶< 𝑡1 fld(𝑡1, 𝑓𝑙𝑑𝑠) 𝑓 ∈ 𝑓𝑙𝑑𝑠

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑃
′ ∗ 𝑣1 = result ∗ 𝑣1 ↦ _}

Γ; Δ ⊢ {𝑃′} 𝑒2 {𝑃
′′ ∗ 𝑣2 = result ∗ 𝑣2 ↦ _}

Γ; Δ ⊢ {𝑃 ∗ 𝑣1.𝑓 ↦ _} 𝑒1.𝑓 ∶= 𝑒2 {𝑄 ∗ 𝑣1.𝑓 ↦ 𝑣2}

Figure 165: Set

When writing to fields, correctness is essentially expressed by a combination of the previous rules for reading fields
and assignment: once again the field should belong to the referenced object and subexpression should evaluate to
their proper values and types.
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typeof(𝑣1, 𝑡1) mblookup(𝑚, 𝑡1, {𝑅}𝑒3{𝑆})

Γ; Δ ⊢ {𝑃} 𝑒1 {𝑃
′ ∗ 𝑣1 = result}

Γ; Δ ⊢ {𝑃′} 𝑒2 {𝑃
′′ ∗ 𝑣2 = result}

∀𝑣2 • Γ; Δ, 0 ⊢ {𝑅} 𝑒3 {𝑆} ⇒ {𝑃′′ ∗ 𝑥0 ↦ 𝑣1 ∗ 𝑥1 ↦ 𝑣2} 𝑒3 {𝑄 ∗ 𝑥0 ↦ 𝑣1 ∗ 𝑥1 ↦ 𝑣2}

Γ; Δ ⊢ {𝑃 ∗ {𝑅} 𝑒3 {𝑆}} call 𝑒1.𝑚(𝑒2) {𝑄}

Figure 166: Method Call

Calling methods is similar to calling functions, with the addition of the correct evaluation to the receiver pointer and
the fact that the first argument of the function is a pointer to the receiver.

𝐶 ∈ 𝑐𝑡

Γ; Δ ⊢ {𝑣1 ↦ 𝑜} call ptr 𝑣1.𝑖𝑛𝑖𝑡(𝑒) {𝑄}

Γ; Δ ⊢ {𝑡𝑟𝑢𝑒}new 𝐶(𝑒) {𝑄 ∗ 𝑣1 = result ∗ 𝑣1 ↦ 𝑜 ∗ Γ𝑣1 = 𝐶 ∗ 𝑣1.𝑖𝑛𝑖𝑡}

Figure 167: New

The new expression is valid when the constructor evaluates correctly for the newly allocated object.

5.7 Expanding Separation Logic for Scala Core with Permissions

As with the model language in Section 4, our final expansion concerns multithreading. To assure race-freedom we
use a permission-based approach as described in Section 2. To allow permissions in our logic, we take an approach
similar to Amighi et al. [4] and embed them in resources:

Resource = Heap× PermissionTable

PermissionTable = Address × FieldIdentifier ∪{⊥} ⇀ [0, 1]

Figure 168: Resources & Permission Tables

Resources ℛ range over Resource with the binary relation # and the binary operation ⋅ where # defines disjointness
between resources and ⋅ denotes their union.

Permission tables are defined to carry the same (#, ⋅) structure as resources similary to heaps, by having # denote
disjoint domains and having ⋅ denote the union by pointwise addition of permissions.

As both heaps and permission tables carry the same structure as resources, the operations on resources are defined by
a pointwise lifting of its components. Similarly, the meaning of assertions can be ammended to resources, by simply
substituting Resource for Heap in the definitions of Section 5.4.2.

With the embedding of permissions, an expansion to multithreading with fork/join and reentrant locks can be made
in the same vein as the work by Amighi et al. [4].

5.8 RelatedWork

The work with the strongest relation to our own – and on which we have based a lot of our work – is that of
Schwinghammer et al. [53] and Birkedal et al. [10]. The main differences reside in our attempt to match the work to
Scala and the fact that instead of describing general code stored on the heap, our approach is restricted to functions
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as defined in Section 4.4. Another approach would be to based our work on a higher order separation logic [9],
which allows to express the higher order nature of our functions, but along with this expressiveness, brings even more
difficulties with regards to the computational complexity of the eventual implementation in a tool.

While our approach, following Birkedal et al. [10] is complicated and highly abstract, earlier simpler approaches [18,
51] often came with downsides, such as complications with parameters of stored functions or deep nesting.

With regard to classes, a lot of our approach is based on the work of Amighi et al. [4], which makes use of a predefined
class-table, which matches our program semantics in Section 4. An alternative, would be to integrate the type system
in the formalization, as seen in the work of Cremet et al. [20]. This allows for a more thorough correctness and brings
to fore the extensive type system of the Scala language.

For multi-threading and locks, we extended the logic with permissions, which can be used in an approach similar to
the work of Amighi et al. [4]. However, this will require many additional axioms and bookkeeping to integrate it with
our approach. An alternative would be the approach taken by Buisse, Birkedal, and Støvring [15], which elegantly
integrates locks in the many-worlds approach we have taken here, but loses out by the lack of a sound separating
implication operator.

While we have said hardly anything with regards to the soundness of our approach, much will be once again similar to
the work of Birkedal et al. [10]. The main differences will lie in the different definition of the semantic Hoare triple
and the integration of exceptions and multithreading.
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6 Specification of Scala Actors: A Case Study

6.1 Introduction

In this section we evaluate the practical application of our work in previous sections, by using our extended separation
logic to specify a representative piece of software, namely the Scala actors library. Since it is a part of the standard
library, it is an example of idiomatic Scala. It also inherently deals with concurrency. We will start in Section 6.2 by
describing this formalism and then give a detailed example of the library in use in Section 6.3. After this introduction,
we shall examine the internal architecture of the library on a high level in Section 6.4 and then provide the detailed
specified implementation in Section 6.5. Finally we shall evaluate the practicality of our extensions in use, along with
further conclusions in Section 6.6.

6.2 OnThe Actor Model

As our case study deals with a library based on the actor model formalism, we shall first have a look at the model itself,
with its formal definition in Section 6.2.1 and the practical use in Section 6.2.2.

6.2.1 Formally

The Actor Model is a general model of computation originating in AI-research [7]. Akin to the object-oriented model
where everything is an object, the primitive is the actor. Actors have the following properties:

• They possess an identity, which acts as an address [7], as apposed to the anonymous processes in process
algebra [40].

• On receiving a message, they can concurrently:

1. Send a message to a finite number of actors.

2. Create a finite number of new actors.

3. Specify the behavior to handle the next incoming message.

As an inherently concurrent formalism, it is especially suited to reason about concurrent and distributed sys-
tems [1].

6.2.2 In Concurrent Programming

Another approach is to use the constructs formalized in the Actor Model as a basis for message-based concurrency in
a programming language. The language would support Actors as a language construct and have them conform to the
properties as specified by the Actor Model. More concretely, these languages generally allow you to instantiate Actors
in a similar way to objects in object-oriented programming and have operators to asynchronously send messages
between them. These languages suffer less of the problems commonly associated with shared-state concurrency
involving locks, as the immutable message passing inherent to the model promotes share-nothing approach [44,
pp. 724–725]. Common examples of languages which use the Actor Model in this way are Erlang and Scala.

• In Erlang, every object in the language, down to for instance an integer, is an actor. Each actor is backed
by a user-mode thread, which are scheduled on kernel threads as required. Immutability of messages is
guaranteed. This has resulted in Erlang being used for large scale commercial applications involving high levels
of concurrency [55].

• The Scala language on the other hand, uses a library to facilitate actor model concurrency [44, pp. 724–725]. As
it is an object-oriented language by nature, not everything is an actor, but only objects, specifically designated
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as such, are. There is not a certain way to say which objects should be actors; it all depends on the way the
application is modeled. Commonly however, actors either guard a resource or perform a (part of a) computation.
As the overhead is generally low, it is not a problem to have many actors and it is best to split up computations in
multiple actors to maximize parallelism. In Scala actors are described as: “a thread-like entity that has a mailbox
to receive messages” [44, pp. 724–725]. They are implemented by subclassing the Actor-trait and implementing
the act-method, something we shall look at in detail in Section 6.3.

6.2.3 Remaining Issues

While the share-nothing approach helps to prevent common problems that arise due to concurrent programming,
there are some issues: Deadlocks are still possible, but become a matter of protocol design [17]. Starvation is an
implementation-specific issue, depending on the fairness of the scheduler used. Non-determinism is actually likelier to
occur due to the default of asynchronous message passing, but can be lessened by using petri-nets [49] or rendezvous
communication. Actors tend to be composable, however, the messaging protocol often needs to be adjusted. Following
general best practices [44, pp. 733-740] for such implementations lessens the issues named here and makes it a reliable
alternative, or at least extension, to the shared-data approach [44, pp. 724–725].

6.3 Using Scala Actors

In this quick illustration of the Actor model as used in Scala, we shall take a common, well-defined, problem in
concurrent computing, and see how it fits the Actor Model and implement it in Scala. Let us look at the Bounded Buffer
Problem:

The bounded buffer, or producer/consumer problem is a commonly used illustration of concurrent processes, in which
we have a process manufacturing items and a process consuming them – both as fast as they can – with the restriction
that there’s only a finite storage space for produced items. This finite storage space, or the bound of the so-called buffer,
requires processes to wait on each other, when either the consumer is faster and the storage space is empty, or the
producer is faster and the storage space is full.

In the example we will be describing here, the buffer or storage space will be an actor itself, allowing it to coordinate
the producer and consumer via messages.

6.3.1 TheMessage Protocol

Because our actors will be communicating via messages, we will first have to define a protocol and the messages
themselves. The protocol that we will use in our bounded buffer example, is shown in Section 6.3.1:

Buffer

Producer Consumer

produce

consume⟨𝑖𝑡𝑒𝑚⟩put⟨𝑖𝑡𝑒𝑚⟩

get

Figure 169: Visual Representation of the Bounded Buffer Protocol

The producer can put items in the buffer, the consumer gets them out, but only when the buffer allows them to by
sending either produce or consume.
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The messages are defined case objects:

class get (consumer : Actor)

class put (producer : Actor, item: Int)

class consume (item: Int)

object produce

Listing 42: Messages

Listing 42 shows that get and put are messages parametrized with an actor, essentially functioning as a return-address
for the buffer to return messages to either the producer or the consumer.

6.3.2 Threaded Variant

Scala supports different variants of Actor Model concurrency. The first variant we’ll be looking at is the one requiring a
JVM-thread per actor (more on this when we will discuss the implementation in Section 6.5.5). We shall provide an
example of its use:

class Buffer(contents : List[Int], capacity : Int) extends Actor

{

var _capacity = capacity

var _contents = contents

def act()

{

while(true) receive

{

case put(producer, item) if _capacity > 0 =>

Console.println("Buffering " + item)

producer ! produce

_capacity = _capacity - 1

_contents = _contents ++ List(item)

case get(consumer) if _contents.size != 0 =>

Console.println("Unbuffering " + _contents.head)

consumer ! consume(_contents.head)

_capacity = _capacity + 1

_contents = _contents.tail

}

}

}

Listing 43: Asynchronous Buffer

The lynchpin of the example is the class Buffer in Listing 43. Its internal state consists of an integer specifying the size
of the buffer and a list representing the actual buffered items. It waits on producers and consumers either wanting to get
or put an item. If a producer wants to put an item, we block until the internal state satisfies the guard capacity > 0.
When the guard is satisfied, we asynchronously send produce, using the !-operator, to signal the producer to continue
producing. Furthermore, we adjust the internal state as needed by decreasing the capacity and adding the newly
produced item to the buffer. The case for the consumer is symmetrical.

Next up, let us look at the producer and consumer classes for our asynchronous example in Listing 44 and Listing 45
respectively:
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class Producer(buffer : Actor) extends Actor

{

var lastProduced = 0

def act()

{

while(true)

{

lastProduced = lastProduced + 1

Console.println("Producing" + lastProduced)

buffer ! put(self, lastProduced)

receive

{

case produce =>

}

}

}

}

Listing 44: Asynchronous Producer

class Consumer(buffer : Actor) extends Actor

{

def act()

{

while(true)

{

buffer ! get(self)

receive

{

case consume(item) =>

Console.println("Consuming " + item)

}

}

}

}

Listing 45: Asynchronous Consumer

After the buffer, these two are nearly trivial. The producer continuously wants to produce and does so when it is
allowed and the case is symmetric for the consumer, as receive(f) blocks when there are no matching messages.
The producer has some internal state in the form of lastProduced, which serves only as an incrementing number to
make for slightly clearer output.

Now the only thing remaining is to tie it all together into a functioning program:
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object main extends App

{

val buffer = new Buffer(List.empty, 10)

val producer = new Producer(buffer)

val consumer = new Consumer(buffer)

buffer.start()

producer.start()

consumer.start()

}

Listing 46: Asynchronous Main

A seemingly trivial, but quite necessary part is constructing and starting the actors shown in Listing 46. The buffer is
constructed first, to allow it’s address to be passed on to the producer and consumer.

With the first complete example out of the way, it’s time to look at some different methods of communication, namely
synchronous messaging and the use of futures. First off, the synchronous variant:

Synchronous, or Rendezvous communication as it is sometimes called, works on the principle of blocking a send until
you have received a reply. In Scala it is available with the !?-operator and reply(message). Listing 47 shows the
modifications to the buffer for synchronous communication.

case put(producer, item) if _capacity > 0 =>

Console.println("Buffering " + item)

reply(produce)

_capacity = _capacity - 1

_contents = _contents ++ List(item)

Listing 47: Synchronous Buffer

As seen, we can now simply reply(message) to the last message received. The rest of the buffer remains exactly the
same.

On the consumer side, we have a slight variation in sending the message (the producer is practically symmetrical, thus
will be omitted here):

while(true)

{

buffer !? get(self) match

{

case consume(item) => Console.println("Consuming " + item)

}

}

Listing 48: Synchronous Consumer

As we can see in Listing 48, we now use the !?-operator for sending, which blocks until an answer is given, so we no
longer need a separate receive. !? returns the answer in message form, as we would normally encounter in it receive,
so we use pattern matching to unpack the message and retrieve the item.

Our last example in this section deals with the use of futures, similar to synchronous communication in that it allows
replies, but without immediately blocking the sending side to wait for a reply. Futures require the use of the !!-operator,
reply(message) and future().
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while(true)

{

lastProduced = lastProduced + 1

Console.println("Producing" + lastProduced)

val future = buffer !! put(self, lastProduced)

future()

}

Listing 49: Synchronous Producer

The buffer is the same as in the previous example, so this time we start with the producer in Listing 49. The !!-operator
returns immediately with an function called a future. The execution of function is a blocking operation returning the
reply to the original message. This allows for intermediate actions, before deciding to wait on the reply.

6.3.3 Event-Driven Variant

Besides the thread-per-actor model, Scala also allows for actors to be event-based and to be scheduled on a pool of
threads by an internal scheduler. As this requires some special attention due to specifics within the implementation, a
different syntax is used. We shall once again look at the bounded buffer to see what this entails. The event-driven
model allows for synchronous communication and events in the same fashion as the threaded model, so in this case
we shall only demonstrate two variants of asynchronous bounded buffers. The first one is a direct equivalent of our
original example:

def act()

{

loop

{

react

{

case put(producer, item) if _capacity > 0 =>

[..]

case get(consumer) if _contents.size != 0 =>

[..]

}

}

}

Listing 50: Event-Driven Asynchronous Buffer

Listing 50 shows the changes in buffer compared to the threaded variant. We change while(true) into loop(f) and
receive(f) into react(f). We do this because the fundamental issue with react is that it never returns. If we would
use an ordinary loop, it would simply hang after the first iteration. The reason for this is that react does not preserve
the call stack (more on this when we discuss the implementation). This attribute of react(f) does however allow for
an interesting approach, namely the use of recursion in actors, as you would in Erlang, without risking the stack. As
the rest of this example is the same as the original, with the two mentioned swaps, let us look at a recursive version
instead:
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def buffer(contents : List[Int], capacity : Int)

{

react

{

case put(producer, item) if capacity > 0 =>

Console.println("Buffering " + item)

producer ! produce

buffer(contents ++ List(item), capacity - 1)

case get(consumer) if contents.size != 0 =>

Console.println("Unbuffering " + contents.head)

consumer ! consume(contents.head)

buffer(contents.tail, capacity + 1)

}

}

Listing 51: Event-Driven Recursive Asynchronous Buffer

As we can see in Listing 51, the buffer is now no longer an object, but simply a recursive function definition. There is,
however, nothing making this function an actor quite yet, so this is something we’ll have to keep in mind for later. The
functionality remains exactly the same as before, however the variables we originally had for our internal state are
removed in favour of passing values on to the recursive call to buffer(contents, capacity).

def producer(buf : Actor, lastProduced : Int)

{

Console.println("Producing" + lastProduced + 1)

buf ! put(self, lastProduced + 1)

react

{

case produce => producer(buf, lastProduced + 1)

}

}

Listing 52: Event-Driven Recursive Asynchronous Producer

In the same fashion Listing 52 shows a recursive producer. Once again, we replace the state variable we had before
with a value we pass on. A consumer in the same vein can be easily imagined.

What rests is to take the recursive functions and create actors out of them. The key to doing that lies in the function
react(f) which takes a function and returns a started actor. We tie it together in listing Listing 53.

val buf = actor { buffer(List.empty, 10) }

actor { producer(buf, 0) }

actor { consumer(buf) }

Listing 53: Event-Driven Recursive “main”

6.3.4 Advanced Features

The actors library contains many more advanced features such as exception handling using actors, actor linking
and automatic failover on actor termination [44, Chapter 32]. However, as this is not meant to be a comprehensive
summary on the use of actors in Scala, we shall not go into any depth regarding those.
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6.4 Architecture of Scala Actors

<<Trait>>

Actor

<<Trait>>

AbstractActor

<<Object>>

Actor

<<Trait>>

Combinators
<<Trait>>

Msg >: Any

Reactor

<<Object>>

Reactor

<<Trait>>

ActorCanReply

<<Trait>>

-Msg

OutputChannel

<<Trait>>

+Msg

InputChannel

<<Trait>>

-T, +R

CanReply

<<Trait>>

ReactorCanReply

<<Trait>>

ReplyReactor
DelegatingScheduler

Msg >: Null

MQueue

Msg >: Null

MQueueElement

<<companion>>

<<companion>>

scheduler

mailbox, sendbuffer

first, last

Figure 170: High Level Diagram of scala.actors

The scala.actors package is quite large and contains many classes and traits, of which the main ones are shown in
Fig. 170. Central to all of these is the Reactor trait, which defines the basic actor model functionality: The mailbox in
which messages are received.

Essentially, scheduling issues and filtering messages aside, the entire implementation can be summed up in two queues:
one which temporarily holds newly received messages and the mailbox. All further elements of the implementation
either have to do with scheduling, with determining which message from the mailbox to perform an action on, or
with putting items into the queues. To put this in terms of the traits shown:

• Combinators defines helper methods for the composition of suspendable closures, used with react.

• InputChannel and OutputChannel are interfaces for receiving and sending messages respectively.

• AbstractActor is essentially an interface for methods specific to Actor, but with the addition of defining a
concrete type for Future.

• CanReply is once again almost an interface, this time for sending messages which may have replies, and again
additionally defines a concrete type for Future.

• ReactorCanReply and ActorCanReply are realizations of CanReply.

• Reactor defines the core functionality of actors, its companion object guards the scheduler.

• Actor unifies the traits and adds some specific functionality; this trait and its companion object are what are
actually directly used when programming actors.
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6.5 Implementation and Specification of Scala Actors

6.5.1 Regarding the Specification Language Used

For our specifications in text-format, we shall use a subset of JML, extended with separation logic constructs, with the
following basic syntax:

𝑅 ∶∶= 𝑏 ∣ PointsTo(field; frac; 𝑒)
∣ Perm(field, frac) ∣ (\forall∗ 𝑇 𝑣; 𝑏; 𝑟)
∣ 𝑟1 ∗∗ 𝑟2 ∣ 𝑟1 −∗ 𝑟2 ∣ 𝑏1 ==> 𝑟2 ∣ 𝑟1 𝑓| => 𝑟2

∣ 𝑒.𝑃(𝑒1, … , 𝑒𝑛)

𝑅 ∶∶= Any pure expression
𝐵 ∶∶= Any pure Boolean expression
∣ (\forall 𝑇 𝑣; 𝑏1; 𝑏2)
∣ (\exists 𝑇 𝑣; 𝑏1; 𝑏2)
Where 𝑇 is an arbitrary type, 𝑣 is a variable, 𝑃 is a resource
predicate and 𝑓 is a function.

Figure 171: ASCII Specification Language

The ASCII-syntax given in Fig. 171 maps to the separation logic defined in Section 5, with the closure arrow being
the representation of the first class Hoare triple, when used in pre- and postconditions of methods and functions.
The syntax is a slight restriction of the separation logic in Section 5, but it sacrifices some expressivity for clarity and
suffices for the task at hand. The specifications will be placed in comments, using indicators such as ensures for
preconditions, requires for postconditions, given for ghost arguments, yields for ghost returns and invariant

for class-invariants. To refer to the return value of a method we shall use \result and to refer to the return value of
a function 𝑓 in 𝑟1 𝑓| => 𝑟2, we shall use \return. To refer to the pre-state of a formula we shall use \old(p). We
also assume the existance of a predicate 𝑙𝑖𝑠𝑡 to abstractly deal with data structures, with concatenation ++, length #,
reverse and indexing [] operations predefined.
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6.5.2 MQueue

Msg >: Null

MQueue

-_size : Int

Msg >: Null

MQueueElement

+msg : Msg
+session : OutputChannel[Any]

next

first

last

+size : Int
+isEmpty : Boolean

+changeSize(Int)
+prepend(MQueue[Msg])
+clear()
+append(Msg, OutputChannel[Any])
+append(MQueueElement[Msg])
+foreach((Msg, OutputChannel[Any])=> Unit)
+foreachAppend(MQueue[Msg])
+foreachDequeue(MQueue[Msg])
+foldLeft(B)((B, Msg) => Boolean) : B
+get(Int)(Msg => Boolean) : Option[Msg]
+remove(Int)((Msg, OutputChannel[Any])=> Boolean) 
: MQueueElement[Msg]
+extractFirst((Msg, OutputChannel[Any]) => Boolean) 
: MQueueElement[Msg]
+extractFirst(PartialFunction[Msg, Any]) ) : 
MQueueElement[Msg]
-removeInternal(Int)((Msg, OutputChannel[Any]) => 
Boolean) : Option[MQueueElement[Msg]]

Figure 172: Class Diagram of MQueue

The first class to be specified is MQueue: It is mostly self-contained, used only in the actors framework, either under
guard of a lock or in non-contentious situations, makes use of closures and is of fundamental importance to the
framework, making it an ideal first choice.

𝑙𝑎𝑠𝑡𝑓𝑖𝑟𝑠𝑡

Figure 173: Visual Representation of the Internal List

MQueue models a queue with added actor-specific functionality. Internally it consists of a singly linked list of
MQueueElement instances, visualized in Fig. 173. Specification of MQueueElement is trivial and therefore omit-
ted.

private[actors] class MQueue[Msg >: Null](protected val label: String) {[..]}

protected /*@ spec_public */ var first: MQueueElement[Msg] = null

protected var last: MQueueElement[Msg] = null

private var _size = 0

Listing 54: Constructor & Fields of MQueue

Listing 54 shows the constructor and internal fields of the queue. The queue is constructed with a name and a generic
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parameter specifying the type of message this queue contains. The fields consist of two pointers, one to the first element
and one to the last element of the linked list, and an integer representing the length of the linked list and thus of the
queue. The pointer first is annotated spec_public to allow its use in publicly visible specifications.

For specification of the queue we need a means to publicly state facts about the contents of the queue, without leaking
implementation details. Furthermore it is likely that specifications of classes using an instance the queue will require a
means to reason about the contents of the queue as well. Because this is fundamentally a case of abstraction, we once
again turn to abstract predicates: We use the list predicate as defined in Section 6.5.1 and formulate some practical
predicates, shown in Listing 55.

/*@

public pred state<perm p> = PointsTo(_size, p, _) * PointsTo(first, p, _) * state<p, first.next>

public pred state<perm p, MQueueElement[Msg] mqe> = PointsTo(mqe, p, _) * (mqe != null ==>

state<p, mqe.next>)

public pred queue<out alpha, MQueueElement fst> = list alpha fst

public pred length<out int l, MQueueElement fst> = queue<alpha, fst> ** #alpha == l

public pred isLength<int l, MQueueElement fst> = length<l', fst> ** l == l'

public pred empty<MQueueElement fst> = length<0, fst> ** PointsTo(first, \epsilon, null) **

PointsTo(last, \epsilon, null) ** PointsTo(_size, 1, 0)

public pred contains<MQueueElement mqe, MQueueElement fst> = mqe == fst || contains<a, alpha>

public pred isFirst<MQueueElement mqe, MQueueElement fst> = peekFirst<m, fst> ** mqe == m

public pred isLast<MQueueElement mqe, MQueueElement fst> = peekLast<m, fst> ** mqe == m

public pred peekFirst<out MQueueElement mqe, MQueueElement fst> = queue<mqe::alpha, fst>

** mqe == fst

public pred peekLast<out MQueueElement mqe, MQueueElement fst> = queue<alpha, fst> **

(\exists beta, (reverse alpha mqe::beta))

*/

Listing 55: Predicates Defined for Specification of MQueue

While the list predicate itself is sufficient for most of our purposes, we define variants using out-parameters to cut
down on the visual clutter of constant existential quantifications in the specification. Of the predicates shown in
Listing 55 the meaning is as follows:

• 𝑠𝑡𝑎𝑡𝑒 asserts a given permission over all elements of the list, which allows us to concisely specify access.

• 𝑞𝑢𝑒𝑢𝑒 provides the list starting at the given element;The complete internal list𝛼 is then given by 𝑞𝑢𝑒𝑢𝑒⟨𝛼, 𝑓𝑖𝑟𝑠𝑡⟩.

• 𝑙𝑒𝑛𝑔𝑡ℎ provides the length of the list starting at the given element, with the length 𝑙 of the entire list being given
by 𝑙𝑒𝑛𝑔𝑡ℎ⟨𝑙, 𝑓𝑖𝑟𝑠𝑡⟩.

• 𝑖𝑠𝐿𝑒𝑛𝑔𝑡ℎ is the assertion that there exists a list starting at the given element with length 𝑙.

• 𝑒𝑚𝑝𝑡𝑦 asserts the empty list

• 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 asserts there exists a list starting at the given element which contains the element𝑚𝑞𝑒.

• 𝑝𝑒𝑒𝑘𝐹𝑖𝑟𝑠𝑡 and 𝑝𝑒𝑒𝑘𝐿𝑎𝑠𝑡 respectively provide the first and last element of a list starting at the given element.

• 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 and 𝑖𝑠𝐿𝑎𝑠𝑡 assert the first or last element of a list being equal to the given element.
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Using these predicates it is now possible to state a number of invariants – as shown in Listing 56 – and to abstractly
specify all the public functions of the queue, starting with one of the most straightforward, the size method, in
Listing 57.

/*@

public invariant list first

public invariant isFirst<first, first>

public invariant empty<first> <==> isEmpty() <==> isLength<0, first>

public invariant length<l, first> ** l == size

private invariant isLast<last, first>

*/

Listing 56: Invariants of MQueue

The invariants state that the first pointer always points to a list and it is the first element of the list it points to.
Furthermore, equivalence between isEmpty, the 𝑒𝑚𝑝𝑡𝑦⟨𝑓𝑖𝑟𝑠𝑡⟩ predicate and 𝑙𝑒𝑛𝑔𝑡ℎ⟨𝑓𝑖𝑟𝑠𝑡, 0⟩ predicate is guaranteed,
just als the equivalence of the result of the 𝑙𝑒𝑛𝑔𝑡ℎ predicate and the sizemethod. Finally there is an invariant that
the last pointer is in fact the last element of the list.

/*@

public normal_behaviour:

pure

requires state<\epsilon>

ensures state<\epsilon> * length<\result, first>

*/

def size = _size

Listing 57: The size Method of MQueue

The sizemethod is a trivial accessor method, but it directly demonstrates the use of the predicates: We can specify
the fact that it requires a read access on the queue of some 𝜖 using 𝑠𝑡𝑎𝑡𝑒 and we can link the integer returned directly
to the length of our abstract representation using 𝑙𝑒𝑛𝑔𝑡ℎ. In the same manner we can specify the other trivial method,
isEmpty, using the 𝑒𝑚𝑝𝑡𝑦 predicate; The full listing is omitted for brevity.

/*@

protected normal_behaviour:

requires state<1> ** length<l, first> ** (l + diff >= 0)

ensures state<1> ** \old(length<l, first>) ** isLength<l+diff, first>

*/

protected def changeSize(diff: Int) {

_size += diff

}

Listing 58: The changeSize Method of MQueue

Slightly more interesting is the changeSizemethod – shown in Listing 58 – as it is the first method to change the
internal state of the queue. As this method modifies the internal state, we specify full write permissions on the state
using 𝑠𝑡𝑎𝑡𝑒⟨1⟩. The functionality of the method is related to the abstract internal list using the 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑖𝑠𝐿𝑒𝑛𝑔𝑡ℎ
predicates.
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With the helper and accessor methods out of the way, it is time to have a look at the functional aspects of the queue. We
shall skip the straightforward clearmethod, which is easily specified using 𝑠𝑡𝑎𝑡𝑒 and 𝑒𝑚𝑝𝑡𝑦 and start with foreach

and foldleft.

Due to the specific internal use of MQueue, it does not implement any of the expected basic collection traits such as
Traversable or Iterable, but instead it provides its own foreach and foldLeft. The functionality of these methods
is straightforward and as expected. We shall specify the methods using the specification methods for closures as
proposed in Section 5 and the by now somewhat familiar predicates.

/*@

public normal_behaviour:

given cs

requires state<1> ** length<j, first> ** \old(queue<alpha, first>) ** cs

requires (\forall int i; 0 <= i && i < j,

(cs f(alpha[i].msg, alpha[i].session)<cs> |=> cs))

ensures state<1> ** length<j, first> ** \old(queue<alpha, first>) ** cs

ensures (\forall int i; 0 <= i && i < j,

(cs f(alpha[i].msg, alpha[i].session)<cs> |=> cs))

yields cs

*/

def foreach(f: (Msg, OutputChannel[Any]) => Unit) {

var curr = first

/*@

invariant queue<alpha, curr> ** queue<beta, first>

invariant list<alpha, curr> -* list<beta, first>

invariant cs

invariant (\forall int i; 0 <= i && i < (#beta-#alpha),

(cs f(curr.msg, curr.session)<cs> |=> cs) ** cs)

decreases #alpha

*/

while (curr != null) {

f(curr.msg, curr.session)

curr = curr.next

}

}

Listing 59: The foreach Method of MQueue

/*@ pred state<Int x> = Pointsto(count, 1, x) */

/*@

given state<V>

requires state<V>

ensures (x%2) ==> state<V+1> ** !(x%2) ==> state<V>

yields state

*/

def inc = (x : Int, session : OutputChannel[Any]) =>

{count = if(x%2) count+1 else count}

Listing 60: A Sample Specified Function for use with foreach
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The foreachmethod – shown in Listing 59 – is specified with write permissions, as fmay have side-effects on the
queue. Since the foreachmethod takes a general function as its argument, without many constraints, the closure
specification takes a similar general approach. It states that the precondition, given by an instance of 𝑐𝑠, of the function
f, should hold for all elements in the queue and after executing f on such an element, its postcondition will once
again be an instance of 𝑐𝑠. This is made possible by the fact that unmentioned parameters of predicates are implicitly
quantified. This would, for instance, make Listing 60 a valid function for this method, given Msg >: Int, while having
a parameterized state predicate.

/*@

public normal_behaviour:

given cs<V, W>

requires state<1> ** length<l, first> ** \old(queue<alpha>) ** cs<z, first>

requires (\forall int i; 0 <= i && i < l, (\exists B acc,

(cs<acc, alpha[i]> f (acc, alpha[i].msg) <cs<acc, alpha[i]> > |=>

cs<\return, alpha[i].next>)))

ensures state<1> ** length<l, first> ** queue<alpha>

ensures peekLast<lst, first> ** cs<\result, null>

ensures (\forall int i; 0 <= i && i < l, (\exists B acc,

(cs<acc, alpha[i]> f (acc, alpha[i].msg) <cs<acc, alpha[i]> > |=>

cs<\return, alpha[i].next>))

yields cs<\result, null>

*/

def foldLeft[B](z: B)(f: (B, Msg) => B): B = {

var acc = z

var curr = first

/*@

invariant queue<alpha, curr> ** queue<beta, first>

invariant list<curr> -* list<first>

invariant cs

(\forall int i; 0 <= i && i < (#beta-#alpha),

(cs<acc, beta[i]> f (acc, beta[i].msg) <cs<acc, alpha[i]> > |=>

cs<\return, alpha[i].next>))

decreases #alpha

*/

while (curr != null) {

acc = f(acc, curr.msg)

curr = curr.next

}

acc

}

Listing 61: The foldLeft Method of MQueue
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/*@ pred state<Int x, MQueueElement[Int] e> = queue.state<1> */

/*@

given state<V, W>

requires state<V, W>

ensures (m%2) ==> state<V+1, W.next> ** !(x%2) ==> state<V, W.next>

yields state

*/

def inc = (z : Int, m : Int) : Int => {if(m%2) x+1 else x}

Listing 62: A Sample Specified Function for use with foldLeft

The foldLeftmethod – shown in Listing 61 – is similar to foreach, since it applies a function to all the elements in
the queue, but with an additional accumulated value of type B. The specification is therefore similar as well, but it has
the important distinction of dealing with a parameterized variant of the predicate. This parameterization allows us to
specify meaningful connections between the function state and the initial and final accumulated values: Initially the
predicate with the first element and the initial accumulator value z, should satisfy the precondition of the function.
Then, for every element there should exist an instance of 𝑐𝑠 with an accumulated value and the current element which
satisfies the precondition of the function and after execution there should exist an instance of 𝑐𝑠 with the result of f
and the next message which satisfies the postcondition. We provide a sample specified function which would qualify
for f in Listing 62.

Next we shall cover a group of closely relatedmethods, namely prepend, foreachAppend and foreachDequeue.

/*@

public normal_behaviour:

requires !other.isEmpty() ==> other.state<1> ** state<1>

ensures !other.isEmpty() ==> other.state<1> ** state<1> **

\old(other.queue<gamma, other.first>) **

queue<alpha, first> **

\old(queue<beta, first>) **

alpha == gamma ++ beta

also protected normal_behaviour:

ensures PointsTo(other.last.next, 1, first) ** PointsTo(first, 1, other.first)

ensures Perm(other.first, \epsilon)

*/

def prepend(other: MQueue[Msg]) {

if (!other.isEmpty) {

other.last.next = first

first = other.first

}

}

Listing 63: The prepend Method of MQueue

Themethod prepend – seen in listing Listing 63 – modifies the current queue by prepending the target queue. Our
predicates allow us to specify this by saying that the new queue will simply be the concatenation of the old queue with
the target one, given write permission on both queues. We also provide a list invariant, which implies the postcondition,
specifies permission transfer and shows termination in terms of the length of the remaining unprepended list.
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/*@

public normal_behaviour:

requires state<1> ** target.state<1>

ensures state<1> ** target.state<1> ** queue<alpha, first> ** target.queue<beta>

ensures \old(target.queue<gamma, target.first>) ** (beta == (gamma ++ alpha))

*/

def foreachAppend(target: MQueue[Msg]) {

var curr = first

/*@

invariant \old(target.length<l, target.first>) ** target.queue<gamma, target.first>

invariant queue<alpha, curr> ** queue<beta, first>

invariant list<alpha, curr> -* list<beta, first>

invariant (\forall int j; 0 <= j && j < (#beta-#alpha), gamma[l+j] == beta[j])

decreases #alpha

*/

while (curr != null) {

target.append(curr)

curr = curr.next

}

}

Listing 64: The foreachAppend Method of MQueue

Listing 64 shows the method foreachAppend, which is similar in functionality to prepend, with the difference that it
instead appends the current queue to the target one. The specification is largely the same, but with the current and
target queues swapped and a reverse order of concatenation.

The method foreachDequeue is almost identical to foreachAppend with the addition that it clears the source queue
after the append, so we omit its listing for brevity.

Finally we will cover the single-element operations of the queue, namely append in Listing 65, get in Listing 67,
remove in Listing 66 and extractFirst.
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/*@

public normal_behaviour:

requires state<1>

ensures peekLast<m, first> ** m.msg eq msg ** m.session eq session

ensures (empty ==> (peekFirst<m'> ** m eq m'))

ensures old(queue<beta, first> ** queue<alpha, first> ** alpha == beta ++ [m]

ensures \old<length<i, first> > ** isLength<i+1, first>

also protected normal_behaviour:

ensures peekLast<m, first> ** m.msg eq msg ** m.session eq session

ensures pointsto(last, 1, m) ** empty ==> pointsto(first, 1, m) **

ensures !empty ==> pointsto(last.next, 1, m))

*/

def append(msg: Msg, session: OutputChannel[Any]) {

changeSize(1) // size always increases by 1

val el = new MQueueElement(msg, session)

if (isEmpty) first = el

else last.next = el

last = el

}

Listing 65: The append Method of MQueue

The append-method appends a single element. The specification requires the usual access to the queue and it ensures
the new element will be the new last element, with the rest of the queue remaining the same, and that it will be the first
element, if it is appended to an empty queue.

The get-method returns the 𝑛𝑡ℎ element of the elements that match the predicate 𝑝, while leaving the queue intact. In
the specification we require read permission only, as the method is pure and we ensure that, when there is a result,
there are at least 𝑛 items matching 𝑝 in the queue and, using the 𝑛𝑀𝑠𝑔𝑀𝑎𝑡𝑐ℎ predicate, that the result is indeed
the 𝑛𝑡ℎ one matching the predicate 𝑝. We also provide a list invariant, which implies the postcondition, specifies
permission transfer and shows termination in terms of the length of the remaining untested list.
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/*@

public pred nMsgSessionMatch<Msg m, int n, (Msg, OutputChannel[Any])->Boolean p, a::alpha> =

(p(a.msg, a.session) ** a.msg eq m ** n == 1) || (m == p(a.msg, a.channel) **

nMsgMatch<m, n-1, p, alpha>) || (nMsgMatch<m, n, p, alpha)

public normal_behaviour:

given cs

requires state<1> ** length<l, first> ** cs

requires (\forall int i; 0 <= i && i < l,

(<cs> p (alpha[i].msg, alpha[i].session) <cs> |=> cs))

ensures state<1> ** \old<length<l, first> > ** \old(queue<alpha, first>)

ensures queue<beta, first> ** cs

ensures (\forall int i; 0 <= i && i < l, p (alpha[i].msg, alpha[i].session) <cs> |=> cs)

ensures \result != None ==> nMsgSessionMatch<\result.get._1, n, p, alpha> **

((<cs> p (alpha[i].msg, alpha[i].session) <cs> |=> cs) ** \return) **

isLength<l-1, first> ** !nMsgSessionMatch<\result.get._1, n, p, beta>

ensures \result == None ==> !nMsgSessionMatch<\result.get._1, n, p, alpha>

yields cs

*/

def remove(n: Int)(p: (Msg, OutputChannel[Any]) => Boolean): Option[(Msg, OutputChannel[Any])] =

removeInternal(n)(p) map (x => (x.msg, x.session))

Listing 66: The remove Method of MQueue

The remove-method is essentially like get in function, with the addition that it removes the matching element from
the queue.

The extractFirst-method and its straightforward overload which takes a PartialFunction are simply remove with
an 𝑛 of 0 and will therefore be omitted here. Methods extractFirst and remove both defer to the removeInternal
method, but as the specification is identical to remove and the implementation is straightforward, we omit a listing in
this case as well.
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/*@

public pred nMsgMatch<Msg m, int n, Msg->Boolean p, a::alpha> =

(p(a.msg) ** a.msg eq m ** n == 1) ||

(m == p(a.msg) ** nMsgMatch<m, n-1, p, alpha>) ||

(nMsgMatch<m, n, p, alpha)

public normal_behaviour:

pure

given cs

requires state<\epsilon> ** cs ** (\forall int i; 0 <= i && i < j,

(<cs> p alpha[i].msg <cs> |=> cs))

ensures state<\epsilon> ** length<j> ** queue<alpha> ** cs

ensures (\forall int i; 0 <= i && i < j, (cs p alpha[i].msg <cs> |=> cs))

ensures \result != None ==> (nMsgMatch<\result.get, n, p, alpha> **

((cs p \result.get <cs> !=> cs) ** \return))

ensures \result == None ==> !nMsgMatch<\result.get, n, p, alpha>

yields cs

*/

def get(n: Int)(p: Msg => Boolean): Option[Msg] = {

var pos = 0

def test(msg: Msg): Boolean =

p(msg) && (pos == n || { pos += 1; false })

var curr = first

/*@

invariant queue<alpha, curr> ** queue<beta, first>

invariant list<alpha, curr> -* list<beta, first>

invariant cs ** (\forall int i; 0 <= i && i < (#beta-#alpha),

(cs p alpha[i].msg <cs> |=> cs) ** !test(alpha[i].msg))

invariant test(curr.msg) ==> nMsgMatch<curr.msg, n, p, beta> **

((<cs> p \result.get <cs> !=> cs) ** \return)

decreases #alpha

*/

while (curr != null)

{

if (test(curr.msg)) return Some(curr.msg) // early return

else curr = curr.next

}

None

}

Listing 67: The get Method of MQueue
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6.5.3 Reactor

<<Trait>>

Msg >: Any

Reactor

-mailbox : MQueue[Msg]

+act()

-sendBuffer : MQueue[Msg]
-waitingFor : PartialFunction[Msg, Any]
-_state : Actor.State.Value
-kill : () => Unit

+start() : Reactor[Msg]
+receiver() : Actor
+forward(msg : Msg)

+send(msg:Msg, replyTo : OutputChannel[Any])
+!(msg : Msg)

+restart()
+getState() : Actor.State.Value

#exceptionHandler() : PartialFunction[Exception, Unit]
#scheduler() : IScheduler
#mailboxSize() : Int
#react(handler : PartialFunction[Msg, Any]) : Nothing

-startSearch(msg : Msg, replyTo : OutputChannel[Any], 
handler : PartialFunction[Msg, Any])
-makeReaction(fun : () => Unit) : Runnable
-makeReaction(fun : () => Unit, handler : 
PartialFunction[Msg, Any], msg : Msg) : Runnable
-resumeReceiver(item : (Msg, OutputChannel[Any]), 
handler : PartialFunction[Msg, Any], onSameThread : 
Boolean)
-drainSendBuffer(mbox : MQueue[Msg]) 
-searchMailBox(startMbox : MQueue[Msg], handler : 
PartialFunction[Msg, Any], resumeOnSameThread : 
Boolean)
-scheduleActor(handler : PartialFunction[Msg, Any], 
msg : Msg]

#exit() : Nothing

-dostart()
-seq[a, b](first : () => a, next : () => b)
-terminated()

<<Object>>

Reactor

+scheduler : DelegatingScheduler
+waitingForNone : PartialFunction[Any, Unit]

<<companion>>

ReactorTask

Figure 174: Reactor Class Diagram

The Reactor-trait forms the core of the actors package, providing much of the basic functionality. It makes use of
the MQueue class which we specified in Section 6.5.2 and the ReactorTask class which we shall cover in Listing 80.
Reactor is used in multithreaded scenarios, using locks to protect critical resources.

trait Reactor[Msg >: Null] extends OutputChannel[Msg] with Combinators {..}

Listing 68: The Reactor Trait Definition

As shown in Listing 68, Reactor extends the OutputChannel interface and the Combinators trait, which provides
some basic constructs to deal with continuations. The generic parameter Msg is restricted to reference types. There is
no constructor.
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private[actors] val mailbox = new MQueue[Msg]("Reactor")

private[actors] val sendBuffer = new MQueue[Msg]("SendBuffer")

private[actors] var waitingFor: PartialFunction[Msg, Any] =

Reactor.waitingForNone

Listing 69: The Fields of Reactor

Listing 69 shows three of the five fields in Reactor:

1. mailbox: Where received messages are stored until they are processed. the mailbox is only ever accessed by the
main thread the actor is executing on, so it is not guarded by a lock.

2. sendBuffer: Where other threads put their messages via send. sendBuffer is guarded using the Reactor itself
as a lock.

3. waitingFor: The stored continuation of a currently suspended actor, i.e. the PartialFunction given to either
receive or react. When an actor is executing, i.e. not suspended, it is equal to WaitingForNone. This field is
accessed by multiple threads and is guarded by the Reactor-lock.

/*@

initially _state == Actor.State.New

invariant _state == Actor.State.New ||

_state == Actor.State.Runnable ||

_state == Actor.State.Terminated

constraint \old(_state) ==

Actor.State.New =>

_state == Actor.State.New ||

_state == Actor.State.Runnable ||

_state == Actor.State.Terminated

&& Actor.State.Runnable =>

_state == Actor.State.Runnable ||

_state == Actor.State.Terminated

&& Actor.State.Terminated =>

_state == Actor.State.Runnable ||

_state == Actor.State.Terminated

*/

private[actors] var _state: Actor.State.Value = Actor.State.New

Listing 70: The _state Field in Reactor

def getState: Actor.State.Value = synchronized {

if (waitingFor ne Reactor.waitingForNone)

Actor.State.Suspended

else

_state

}

Listing 71: How Other States Rise from the MainThree
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Listing 70 shows _state – the fourth of the fields in Reactor – and its specification. This field, as its name implies,
represents the current state of the actor. It is guarded by Reactor for concurrent access. Of the possible states of an actor
shown in Listing 86, _state can only take the three values shown in the specification. The others are combinations of
these three states and conditions that arise in the actor; an example of those is shown in Listing 71.

/*@

inv = sendBuffer.state<1> ** Perm(_state, 1) ** Perm(waitingFor, 1)

*/

Listing 72: The Resource Invariant of Reactor

The resource invariant – shown in Listing 72 – mirrors the state guarded by the Reactor-lock, which consists of the
fields sendBuffer, waitingFor and _state.

With the internal state out of the way, we shall now look at the methods of Reactor, beginning with the start in
Listing 73.

/*@

public normal_behaviour:

requires fresh;

ensures Lockset(S) ** (S contains this -* inv);

*/

def start(): Reactor[Msg] =

/*@ assert Lockset(S) ** (S contains this -* inv) ** initialized */

/*@ commit */

synchronized {

if (_state == Actor.State.New)

dostart()

this

}

Listing 73: The startmethod in Reactor

/*@

private normal_behaviour:

requires

Lockset(S) ** S contains this ** inv

** _state == Actor.State.New

ensures

Lockset(S) ** S contains this * inv

** _state == Actor.State.Runnable

*/

private[actors] def dostart() {

_state = Actor.State.Runnable

scheduler newActor this

scheduler execute makeReaction(() => act(), null, null)

}

Listing 74: The doStartmethod in Reactor

The start method – shown in Listing 73 – starts the execution of the actor, assuming it is not already running. As
there is no constructor and start is always the first method called on an actor, we commit the resource invariant at



6 SPECIFICATION OF SCALA ACTORS: A CASE STUDY 112

this point. The now committed invariant is immediately put to use as the start method uses a synchronized block to
access _state.

The dostart-method in Listing 74 is where the actual transition to the running state happens by changing _state,
announcing the actor to the scheduler, and scheduling the act method, wrapped in a ReactorTask by makeReaction,
for execution. It is only called from start and therefore always guarded by the lock, which allows us to specify the pre
and post state of _state.

/*@

public normal_behaviour:

requires

Lockset(S) ** (S contains this -* inv) ** initialized

** \rec_imm(msg)

ensures Lockset(S) * (S contains this -* inv)

*/

def send(msg: Msg, /*@ nullable */ replyTo: OutputChannel[Any]) {

val todo = synchronized {

if (waitingFor ne Reactor.waitingForNone) {

val savedWaitingFor = waitingFor

waitingFor = Reactor.waitingForNone

startSearch(msg, replyTo, savedWaitingFor)

} else {

sendBuffer.append(msg, replyTo)

() => { /* do nothing */ }

}

}

todo()

}

Listing 75: The send-method in Reactor

The send-method is one of the most important in Reactor, as sending and receiving messages are the defining
aspects of actors. As the send-method is called concurrently by other actors, it uses a synchronized block to access
waitingFor and sendBuffer. Therefore we specify the usual pre- and postconditions for a lock. Furthermore we
demand the message to be provably immutable, to prevent in-flight modification.

Intuitively, all send would do is append a message to the mailbox, but the implementation shown in Listing 75 is
more complicated: The first thing to explain is the use of todo: todo does not in fact execute the synchronized
block, as this would have no useful effect, but it executes the function that results from the synchronized-block. In
the case that waitingFor equals waitingforNone i.e. the actor is currently executing on some thread, the incoming
message is appended to the sendBuffer and an empty function is returned, and executed outside of the block. In
case waitingFor is not waitingForNone – meaning that the actor is suspended and the continuation is stored in
waitingFor – the continuation is passed to startSearch and the function that is executed by calling todo is the
function returned by startSearch. The practical result of this is that when an actor is currently executing, send adds
to the buffer, which the executing actor checks for new messages, and when it is not executing, it starts the process of
scheduling the actor for execution to handle the new message. The lock guarantees that even with multiple actors
sending, whether the actor is or is not already executing, the actmethod is only ever executed on one thread.
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def !(msg: Msg) {

send(msg, null)

}

def forward(msg: Msg) {

send(msg, null)

}

Listing 76: The forward and !Methods in Reactor

Reactor provides two shorthand methods using send, both sending the message without a provided return address;
these are shown in Listing 76.

/*@

private normal_behaviour:

requires Lockset(S) ** S contains this ** inv ** \rec_imm(msg)

requires handler != Reactor.WaitingForNone

ensures Lockset(S) ** S contains this ** inv

ensures cs \result () <cs> |=> cs

yields cs

*/

private[actors] def startSearch(msg: Msg, replyTo: OutputChannel[Any],

handler: PartialFunction[Msg, Any]) =

/*@

pred cs = Perm(Reactor.scheduler, \epsilon)

*/

/*@

given cs; requires cs; ensures cs; yields cs

*/

() => scheduler execute makeReaction(

/*@

pred csl = Reactor.Lockset(S) ** (S contains this -* Reactor.inv) **

Reactor.initialized

*/

/*@

given csl; requires csl; ensures csl; yields csl

*/

() => {

val startMbox = new MQueue[Msg]("Start")

synchronized { startMbox.append(msg, replyTo) }

searchMailbox(startMbox, handler, true)

})

Listing 77: The startSearch-method in Reactor

Listing 77 shows the startSearch-method which is called from send. As mentioned before – while covering send
– this method returns a function, which schedules an actor for execution, to handle the incoming message. Its
specification shows that it is always executed under a lock, namely the one from the send-method from which it
is called, the remaining immutability of the message and the fact there should be a valid continuation to schedule.
Furthermore, it specifies and yields the required access predicate to call the returned function. The innermost
function – which is the argument to makeReaction – is specified using a predicate which encapsulates the standard
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pre- and postconditions for acquiring a lock, however, it is unclear what the use of the synchronized block is. This
innermost function is what is finally scheduled for execution, after it has been wrapped into a ReactorTask object by
makeReaction.

Listing 79 shows what gets executed on the thread, on which the ReactorTask is scheduled, via startSearch. As
mentioned before, only one thread is scheduled to execute an actor at any time, so this method executes without
contention on mailbox. The specification requires access to the queues involved and, assuming that tmpMbox does not
initially contain a match, it requires locking. This lock guards the sendBuffer, where messages may have been added
due to send, and waitingFor, to store the continuation when suspending. The method searches for a match in the
incoming messages using isDefinedAt and resumes the actor if it finds one. If it does not, it stores the continuation
and throws an exception to signal suspension.

/*@

private normal_behaviour:

signals SuspendActorControl

*/

private[actors] def resumeReceiver(item: (Msg, OutputChannel[Any]),

handler: PartialFunction[Msg, Any], onSameThread: Boolean) {

if (onSameThread)

makeReaction(null, handler, item._1).run()

else

scheduleActor(handler, item._1)

throw Actor.suspendException

}

Listing 78: The resumeReceiver-method in Reactor

The method resumeReceiver – shown in Listing 78 – is responsible for resuming the actor, either by running the
continuation on the same thread, or by scheduling it on another. In case of being called from a ReactorTask created
via send, it is always resumed on the same thread and vice versa when it is called via react. Eventually an exception is
thrown to influence control flow in the ReactorTask from which this method is called.
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/*@

private normal_behaviour:

requires

startMBox.state<1> **

mailbox.state<1> **

!(\exists int i; i >= 0 && i < startMbox.size(),

startMbox.queue<alpha, startMbox.first> **

((handler.isDefinedAt(alpha[i].msg)) => Lockset(S) **

(S contains this -* inv) ** this.initialized)

ensures

startMBox.state<1> **

mailbox.state<1> **

!(\exists int i; i >= 0 && i < startMbox.size(),

startMbox.queue<alpha, startMbox.first> **

(handler.isDefinedAt(alpha[i].msg)) =>

Lockset(S) ** (S contains this -* inv))

also private exceptional_behaviour:

ensures waitingFor == handler

signals SuspendActorControl

*/

private[actors] def searchMailbox(startMbox: MQueue[Msg],

handler: PartialFunction[Msg, Any],

resumeOnSameThread: Boolean) {

var tmpMbox = startMbox

var done = false

while (!done) {

val qel = tmpMbox.extractFirst(handler)

if (tmpMbox ne mailbox)

tmpMbox.foreachAppend(mailbox)

if (null eq qel) {

synchronized {

if (!sendBuffer.isEmpty) {

tmpMbox = new MQueue[Msg]("Temp")

drainSendBuffer(tmpMbox)

} else {

waitingFor = handler

throw Actor.suspendException

}

}

} else {

resumeReceiver((qel.msg, qel.session), handler, resumeOnSameThread)

done = true

}

}

}

Listing 79: The searchMailbox-method in Reactor
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def run() {

try {

beginExecution()

try {

if (fun eq null)

handler(msg)

else

fun()

} catch {

case _: KillActorControl =>

// do nothing

case e: Exception if reactor.exceptionHandler.isDefinedAt(e) =>

reactor.exceptionHandler(e)

}

reactor.kill()

}

catch {

case _: SuspendActorControl =>

// do nothing (continuation is already saved)

case e: Throwable =>

terminateExecution(e)

reactor.terminated()

if (!e.isInstanceOf[Exception])

throw e

} finally {

suspendExecution()

this.reactor = null

this.fun = null

this.handler = null

this.msg = null

}

}

Listing 80: The run-method in ReactorTask

In the previous listings control flow exceptions are thrown which have to be caught somewhere. This happens in the
run-method of the before mentioned ReactorTask, shown in Listing 80. The run-method of the ReactorTask runs
the provided function, which is usually the actmethod via dostart, or handler in the case of an actor continuation,
followed by terminating the actor, from which it was spawned. The SuspendActorControl exception is thrown to
allow the function or handler in ReactorTask to finish and allow suspending the actor from which the ReactorTask
is spawned, instead of terminating it.
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/*@

protected normal_behaviour:

requires Lockset(S) ** (S contains this -* inv) ** this.initialized

ensures Lockset(S) ** (S contains this -* inv)

signals SuspendActorControl

*/

protected def react(handler: PartialFunction[Msg, Unit]): Nothing = {

synchronized { drainSendBuffer(mailbox) }

searchMailbox(mailbox, handler, false)

throw Actor.suspendException

}

Listing 81: The react-method in Reactor

Besides allowing to send messages via send, Reactor allows to receive messages in an event-driven fashion, by using
the react-method shown in Listing 81. The react-method is only ever called from within act, which, as mentioned
before, executes on a single thread. It uses a synchronized block to take the messages from the guarded sendbuffer

and to append them to the mailbox. Once the mailbox is up to date, the previously examined method searchMailbox
is called to check if any message matches the patterns provided to react by the PartialFunction handler. The
difference with the call via send is that resumeOnSameThread is passed as false, resulting in the continuation being
scheduled on a new thread when a matching message is found.

react never returns, which is signalled by its return type of Nothing, as it always throws a SuspendActorControl.
Therefore the rest of the computation performed by the actor should be contained in the continuation. The specification
reflects the use of the lock and the execution ending in an exception.

Practically, react schedules a handler task when new messages are to be handled and then suspends the actor. cf.
receive which we will discuss in depth in Listing 84, which always executes on the same thread, blocking when there
are no matching messages. Because react never finishes, receiving messages continuously needs to manually use
recursion or the loop construct, as shown in Section 6.3. We will look in depth at loop and the other combinators
when examining the Actor trait in Section 6.5.5.
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6.5.4 CanReply & ReactorCanReply & ReplyReactor

<<Trait>>

-T, +R

CanReply

+!?(msg : T) : R
+!?(msec : Long, msg : T) : Option[R]
+!!(msg : T) : Future[R]
+!![P](msg : T, handler : PartialFunction[R, P]) : 
Future[P]

<<Trait>>

ReactorCanReply

+!?(msg : Any) : Any
+!?(msec : Long, msg : Any) : Option[Any]
+!!(msg : Any) : Future[Any]
+!![A](msg : Any, handler : 
PartialFunction[Any, A]) : Future[A]

<<Trait>>

ActorCanReply

+!?(msg : Any) : Any
+!?(msec : Long, msg : Any) : Option[Any]
+!!(msg : Any) : Future[Any]
+!![A](msg : Any, handler : 
PartialFunction[Any, A]) : Future[A]

<<Trait>>

ReplyReactor

-senders : List[OutputChannel[Any]]

+forward(msg : Any)

-onTimeout : Option[TimerTask]
#sender : OutputChannel[Any]

+!(msg : Any)

-resumeReceiver(item : (Msg, 
OutputChannel[Any]), handler : 
PartialFunction[Msg, Any], onSameThread : 
Boolean) 
-searchMailbox(startMbox : MQueue[Msg], 
handler : PartialFunction[Msg, Any], 
resumeOnSameThread : Boolean)
-makeReaction(fun: () => Unit, handler: 
PartialFunction[Any, Any], msg: Any) : 
Runnable

#react(handler: PartialFunction[Any, Unit]): 
Nothing
#reactWithin(msec : Long)(handler: 
PartialFunction[Any, Unit]): Nothing

+getState() : Actor.State.Value

Figure 175: Class Diagram of CanReply, ReactorCanReply & ReplyReactor

The CanReply trait functions as an interface defining the !!- and !?-operators. These operators are then implemented in
the ReactorCanReply and ActorCanReply traits, which we will be examining here, starting with the implementations
of !! in Listing 82.

The basic specification of !! is relatively straightforward, as it merely specifies access to the Actor singleton and
the need for messages to be immutable. It yields a predicate, abstracting permissions, as the method returns an
anonymous implementation of Future[T], resulting in the same issues as with function closures. All the methods in
the implementation of Future[T] are specified using this predicate.

The method functions by defining a ReactChannel and an anonymous implementation of an OutputChannel to itself.
The OutputChannel is used as an argument to send, specifying a return address. The result of this is, that, when a reply
to msg is sent using this channel, the SyncVar is set to this reply. The ReactChannel is a specialized InputChannel

which proxies the given Reactor, but wraps all messages in a container with the channel. Using this convolutedmethod,
it is possible to respond to a future returned by !!. In the returned Future[T], the apply- and the isset-methods
are implemented using the same SyncVar as before. respond is implemented using the ReactChannel.

The specification of the !?-operator is not noteworthy, as it is trivially implemented using !!.

ActorCanReply extends /ReactorCanReply/ with timed variants of the operators, which we omit here.
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/*@

public normal_behaviour:

requires Perm(\epsilon, Actor) ** \rec_imm(msg)

ensures Perm(\epsilon, Actor)

yields state

*/

def !![A](msg: Any, handler: PartialFunction[Any, A]): Future[A] = {

val myself = Actor.rawSelf(this.scheduler)

val ftch = new ReactChannel[A](myself)

val res = new scala.concurrent.SyncVar[A]

val out = new OutputChannel[Any] {

def !(msg: Any) = {

val msg1 = handler(msg)

ftch ! msg1

res set msg1

}

def send(msg: Any, replyTo: OutputChannel[Any]) = {

val msg1 = handler(msg)

ftch.send(msg1, replyTo)

res set msg1

}

def forward(msg: Any) = {

val msg1 = handler(msg)

ftch forward msg1

res set msg1

}

def receiver =

myself.asInstanceOf[Actor]

}

this.send(msg, out)

/*@ pred state = Perm(\epsilon, this) ** Perm(\epsilon, res) **

res.state<1> ** Perm(\epsilon, ftch) */

new Future[A] {

/*@ given state; requires state; ensures state; yields state */

def apply() = {

if (!isSet)

fvalue = Some(res.get)

fvalueTyped

}

/*@ given state; requires state; ensures state; yields state */

def respond(k: A => Unit): Unit =

if (isSet) k(fvalueTyped)

else inputChannel.react {

case any => fvalue = Some(any); k(fvalueTyped)

}

/*@ given state; requires state; ensures state; yields state */

def isSet =

!fvalue.isEmpty

/*@ given state; requires state; ensures state; yields state */

def inputChannel = ftch

}

}

Listing 82: the !!-operator in ReactorCanReply
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The methods implemented in ReactorCanReply depend on the ability to specify return addresses to send. This func-
tionality is implemented partially in Reactor, but lacks the proper variant of searchMailBox to function. ReplyReactor
implements this method – which is shown in Listing 83 along with the additional senders-field.

The implementation of searchMailbox is virtually identical to the one in Reactor, with the only difference being that
it sets senders to the matching actor. In addition to in searchMailbox, senders is also set in makeReaction, but as
there is no additional functionality besides that, we shall omit another listing. senders will be used primarily in the
Actor-trait.

Besides the reply-functionality, ReplyReactor lays the groundwork for timed operations. As these add complication
and little additional insight, we shall omit them from the case study.
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private[actors] var senders: List[OutputChannel[Any]] = List()

/*@

private normal_behaviour:

requires

startMBox.state<1> ** Perm(1, senders)

mailbox.state<1> **

(!(\exists int i; i >= 0 && i < startMbox.size(),

startMbox.queue<alpha, startMbox.first> **

handler.isDefinedAt(alpha[i].msg)) =>

Lockset(S) ** (S contains this -* inv) **

this.initialized)

ensures

startMBox.state<1> **

mailbox.state<1> **

!(\exists int i; i >= 0 && i < startMbox.size(),

startMbox.queue<alpha, startMbox.first> **

handler.isDefinedAt(alpha[i].msg)) =>

Lockset(S) * (S contains this -* inv) **

((\exists int i; i >= 0 && i < startMbox.size(),

startMbox.queue<alpha, startMbox.first> **

handler.isDefinedAt(alpha[i].msg)) =>

senders == alpha[i].session)

also private exceptional_behaviour:

ensures waitingFor == handler

signals SuspendActorControl

*/

private[actors] override def searchMailbox(startMbox: MQueue[Any],

handler: PartialFunction[Any, Any],

resumeOnSameThread: Boolean) {

var tmpMbox = startMbox

var done = false

while (!done) {

val qel = tmpMbox.extractFirst((msg: Any, replyTo: OutputChannel[Any]) => {

senders = List(replyTo)

handler.isDefinedAt(msg)

})

if (tmpMbox ne mailbox)

tmpMbox.foreach((m, s) => mailbox.append(m, s))

if (null eq qel) {

synchronized {

// in mean time new stuff might have arrived

if (!sendBuffer.isEmpty) {

tmpMbox = new MQueue[Any]("Temp")

drainSendBuffer(tmpMbox)

// keep going

} else {

waitingFor = handler

// see Reactor.searchMailbox

throw Actor.suspendException

}

}

} else {

resumeReceiver((qel.msg, qel.session), handler, resumeOnSameThread)

done = true

}

}

}

Listing 83: searchMailbox in ReplyReactor



6 SPECIFICATION OF SCALA ACTORS: A CASE STUDY 122

6.5.5 Actor

<<Trait>>

Actor

-isSuspended : Boolean

+receive[R](f : PartialFunction[Any, R]) : R

-received : Option[Any]
-links : List[AbstractActor]
-trapExit : Boolean
-exitReason : AnyRef
-shouldExit : Boolean

+receiveWithin[R](msec : Long)(f : PartialFunction[Any, R]) : R
+react(handler: PartialFunction[Any, Unit]): Nothing
+reactWithin(msec : Long)(handler: PartialFunction[Any, Unit]): Nothing
+?() : Any

+getState() : Actor.State.Value
+start()

+link(to: AbstractActor) : AbstractActor
+link(body : () => Unit) : AbstractActor
+unlink(from : AbstractActor)

#scheduler() : IScheduler
#exit(reason : AnyRef) : Nothing
#exit() : Nothing

-startSearch(msg: Any, replyTo: OutputChannel[Any], handler: PartialFunction[Any, Any])
-makeReaction(fun: () => Unit, handler: PartialFunction[Any, Any], msg: Any): Runnable

-suspendActor()
-scheduleActor(f : PartialFunction[Any, Any], msg: Any)

-resumeActor()

-blocker : ManagedBlocker

-exiting()
-dostart()
-linkTo(to : AbstractActor)
-unlinkFrom(from : AbstractActor)
-exitLinked() : () => Unit
-exitLinked(reason : AnyRef) : () => Unit
-exit(from : AbstractActor, reason : AnyRef)
-onTerminate(f : () => Unit)

<<object>>

Actor

-tl  : ThreadLocal[ReplyReactor]

-rawSelf() : ReplyReactor

+State : Enumeration

-suspendException : SuspendActorControl

-self(sched : IScheduler) : Actor

-rawSelf(sched : IScheduler) : ReplyReactor

-timer : Timer

-parentScheduler() : IScheduler

+self() : Actor

+exit(reason : AnyRef) : Nothing

+clearSelf()

+unlink(from : AbstractActor) : AbstractActor

+eventloop(f : PartialFunction[Any, Unit]) : Nothing

+link(to : AbstractActor) : AbstractActor
+mailboxSize() : Int
+reply()

+receive(f : PartialFunction[Any, A]) : A

+sender() : OutputChannel[Any]
+reply(msg : Any)

+reactWithin(msec : Long)(f : PartialFunction[Any, Unit]) : Nothing

+resetProxy()

+?() : Any

+actor(body : () => Unit) : Actor

+react(f : PartialFunction[Any, Unit]) : Nothing
+receiveWiithin(msec : Long)(f : PartialFunction[Any, A]) : A

+reactor(body : () => Responder[Unit]) : Actor

+exit() : Nothing

<<companion>>

ActorTask

Figure 176: Actor Class Diagram

The Actor-trait resides at the bottom of the inheritance hierarchy and combines all the previously discussed func-
tionality, along with the blocking receive-method and the linking functionality. The receive-method is shown in
Listing 84.



6 SPECIFICATION OF SCALA ACTORS: A CASE STUDY 123

/*@

protected normal_behaviour:

requires Lockset(S) ** (S contains this -* inv) ** this.initialized

ensures Lockset(S) ** (S contains this -* inv)

*/

def receive[R](f: PartialFunction[Any, R]): R = {

assert(Actor.self(scheduler) == this, "receive from channel belonging to other actor")

synchronized {

if (shouldExit) exit() // links

drainSendBuffer(mailbox)

}

var done = false

while (!done) {

val qel = mailbox.extractFirst((m: Any, replyTo: OutputChannel[Any]) => {

senders = replyTo :: senders

val matches = f.isDefinedAt(m)

senders = senders.tail

matches

})

if (null eq qel) {

synchronized {

// in mean time new stuff might have arrived

if (!sendBuffer.isEmpty) {

drainSendBuffer(mailbox)

// keep going

} else {

waitingFor = f

isSuspended = true

scheduler.managedBlock(blocker)

drainSendBuffer(mailbox)

// keep going

}

}

} else {

received = Some(qel.msg)

senders = qel.session :: senders

done = true

}

}

Listing 84: The receive method in Actor

The implementation and specification of receive is very similar to that of react, but when no matching message is
found, the current thread is blocked, using the scheduler and a ManagedBlocker. The override of startSearch –
shown in Listing 85 – unblocks the actor to handle incoming messages, using the resumeActor-method, which is a
wrapper for notify().
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/*@ inherited from Reactor.startSearch

private normal_behaviour:

requires Lockset(S) ** S contains this ** inv ** \rec_imm(msg)

requires handler != Reactor.WaitingForNone

ensures Lockset(S) ** S contains this ** inv

ensures cs \result () <cs> |=> cs

yields cs

*/

private[actors] override def startSearch(msg: Any, replyTo: OutputChannel[Any], handler: PartialFunction[Any, Any]) =

if (isSuspended) {

() => synchronized {

mailbox.append(msg, replyTo)

resumeActor()

}

} else super.startSearch(msg, replyTo, handler)

Listing 85: The startsearch method in Actor

The Actor companion object houses all the syntax and wrapper methods which allow for the practical use of the
actors library, as demonstrated in Section 6.3. Because of this it adds very little implementation, as it mostly proxies
instances of Actor, and we shall cover relatively little of the methods defined. Something that is of importance is the
definition of the State enumeration, which we show in Listing 86.

object State extends Enumeration {

val New,

Runnable,

Suspended,

TimedSuspended,

Blocked,

TimedBlocked,

Terminated = Value

}

Listing 86: Actor States

The following states are defined for actors:

• New: The actor has not yet been started.

• Runnable: The actor is executing.

• Suspended: The actor is suspended inside a react.

• TimedSuspended: The actor is suspended inside a reactWithin.

• Blocked: The actor is suspended inside a receive.

• TimedBlocked: The actor is suspended inside a receiveWithin.

• Terminated: The actor has been terminated.

Linking functionality, as mentioned in Section 6.3, is a nonessential and advanced feature, which we shall currently
omit from our case study.
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6.5.6 Issues Encountered

A practical issue to consider when specifying multi-threaded applications with Separation Logic, is the notion of
interleaving. Take the following example specification:

class Simple

{

var x = 0

/*@

inv = PointsTo(x, 1, _)

*/

/*@

requires Lockset(S) ** (S contains this -* inv) ** initialized

ensures Lockset(S) ** (S contains this -* inv) ** PointsTo(x, 1, \old(x)+1)

*/

public def inc() : Int

{

synchronized

{

x = x+1

x

}

}

/*@

requires Lockset(S) ** (S contains this -* inv) ** initialized

ensures Lockset(S) ** (S contains this) -* inv ** PointsTo(x, 1, 1)

*/

public def reset()

{

synchronized

{

x = 1

}

}

}

Listing 87: An Example Specification

In Listing 87 we see a method incwhich increments x by 1 and returns it and amethod resetwhich sets it to one, both
within a synchronized-block such that these methods cannot interfere in a multi-threaded scenario. Furthermore we
see the resource invariant protecting write access to x and the standard pre- and postconditions for situations involving
locking. We also see the effect of the methods mentioned in the postcondition; for inc, x points to its previous value
plus one, and for reset, x points to 1.

Unfortunately, the specification given in Listing 87 is incorrect, and this has to do with interleaving. Multithreaded
programs are interleaved in atomic chunks, the base chunk being a single atomic operation and larger ones being
formed by locks. In this case, the synchronized blocks are atomic, but the specifications are not part of it. This means
that after the synchronized block has finished executing, other statements can be interleaved, for instance in this case
modifying the value of x. We have visualized this in Fig. 177. Recently however, progress has been made in this area
by Blom, Huisman, and Zaharieva-Stojanovski [11], where abstract program actions are logged in a so-called history;
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using such a history we could in this case have at least specified in our postcondition that at one point in the history,
the increment has occurred.

1. Execution of inc() starts.
2. Precondition of inc() holds.
3. Synchronized block executes, 𝑥 = 1.
4. Execution of reset() is interleaved.
5. Precondition of reset() holds.
6. Synchronized block executes, 𝑥 = 0.
7. Postcondition of reset() holds.
8. Execution returns to the postcondition of inc().
9. Postcondition is violated.

Figure 177: Interleaving

The end result is that our postcondition cannot say anything regarding the value of x, restricting us to the resource
invariant. While certain specifications can be moved into the locked region as assertions as in Listing 88, this still only
has meaning within the synchronized block, making it hard to keep track of the state of the program.
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class Simple

{

var x = 0

/*@

inv = PointsTo(x, 1, _)

*/

/*@

requires Lockset(S) ** (S contains this -* inv) ** initialized

ensures Lockset(S) ** (S contains this -* inv)

*/

public def inc() : Int

{

synchronized

{

x = x+1

/*@ assert PointsTo(x, 1, \old(x)+1) */

x

}

}

/*@

requires Lockset(S) ** (S contains this -* inv) ** initialized

ensures Lockset(S) ** (S contains this) -* inv

*/

public def reset()

{

synchronized

{

x = 1

/*@ assert PointsTo(x, 1, 1) */

}

}

}

Listing 88: The Example with Asserts

These types of issues regarding the specification of (partially) concurrent methods, means it requires a very detailed
mental model, of the concurrent interactions inside a program, to specify it.

An issue regarding the use of separation logic, is that methods that have overrides in subclasses may have stricter
preconditions in the overridden variant, because they might touch more state. This seems in conflict with the general
principle that preconditions may only be weakened.

Another issue is the specification of interfaces, which is often preferred. As separation logic is implementation-
specific by definition, interfaces can only be specified either without using the separation logic assertions, or by
wrapping everything inside of predicates. It also raises the question whether locking can and should be specified on
interfaces.



6 SPECIFICATION OF SCALA ACTORS: A CASE STUDY 128

6.6 Conclusions

Using our specification language, we have managed to specify a significant portion of the actors library. While there
were no unsurmountable issues, finding the proper level of abstraction remains an issue in these types of specifications
and is complicated by the low-level nature of specifications using separation logic. Furthermore, while using separation
logic will allow you to prove race-freedom, it requires very detailed knowledge of the thread-interactions in the
program beforehand. In this case any proofs regarding race-freedom are complicated by the fact that much of the
concurrency-related work is delegated to the scheduler, which resides in a core Java library which (currently) lacks
these types of specifications. The library did provide a means to demonstrate our operator on functions with closures,
but it also highlighted the difficulties in cases of nested function definitions and the fact that a similar approach is still
lacking for anonymous classes and their methods and unsugared instances of function objects, such as instances of
PartialFunction.
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7 Conclusions & Future Work

7.1 Summary

In this work we developed a partial approach to the formal specification of Scala programs using separation logic.
We started this in Section 2 and Section 3 by providing a compact overview of program verification using separation
logic and the Scala programming language. While the explanations in Section 2 are limited and do not cover the exact
approach we eventually decided to use in Section 5, it helps in understanding the basics, without immediately diving
into complex logic and mathematics. Similarly, Section 3 only provides a very shallow look at the Scala programming
language; Enough to develop a taste for it and to understand this thesis, but not nearly covering the entire scope of the
language.

In Section 4 we set out to explain and use the program context approach [37] to create a small-step semantics for
a subset of Scala we called Scala Core. This approach turned out to be well-suited to describe the semantics of the
language, but was at times overly verbose, by having to manage the context in detail and thus requiring many additional
reduction steps. In addition, with our language being an expression language, steps to reduce the verbosity, such as
head reduction for pure expressions as used by Krebbers and Wiedijk [37] could not be used. Therefore, while this
approach sufficed for our purposes and explicitly demonstrated all steps of the language semantics, a more abstract
approach as used by Birkedal et al. [10] could have been more compact and more practical in preparation for the work
on the separation logic in Section 5.

Additionally, while focusing on a particular subset of a language to reduce the scope is necessary, in our case we
partially lost what makes Scala, Scala, in the creation of Scala Core, e.g. pattern matching and algebraic datatypes.
This had a positive side in that our work is more generically applicable for any expression language with first class
functions and reducing the clutter. However, it can be said that the clutter of language features is a defining aspect of
the Scala programming language. At the same time, our model language is quite powerful and most missing elements
of Scala can be translated to it. However, this also requires a translation from contracts established with regards to
Scala to ones with the same meaning to the Scala Core translation. Finally, we also abstracted away from the intricate
typing system used in Scala, once again helping our focus, but distancing us from what we set out to do, which is adapt
separation logic specifically to Scala.

Then in Section 5 we set out to create a separation logic which is applicable to Scala Core. We used a highly abstract
approach, developed by Birkedal et al. [10], to construct a semantics for a type system and a separation logic. While
this is one of the few applicable approaches to deal with complex matters such as nested Hoare triples, which we
require to deal with first class functions and closures, it creates an incredibly dense read. Additionally, the lack of small
practical examples, makes it difficult to reach an intuitive understanding at first, or even second glance. Furthermore
the aspect of concurrency is only briefly touched upon and hardly a mention is made of soundness.

Finally in Section 6 we provided a case study on the practical viability of Scala programs. We demonstrate the
difficulty of specifying nested functions and the general issue of abstraction levels in writing specifications. Missing
however, is a clear link from the specification language used to the separation logic developed in Section 5. Also, while
demonstrating specification of an actual library is interesting, we ran into the issue of it simply being too big to serve
as a practical overview and we would probably have benefited from multiple smaller examples.

All in all, we delivered a viable outline to the specification of expression languages with first class functions and
closures, which can be applied to the Scala programming language. Much fleshing out, of both the model language
and the separation logic, is still required to reach the full extent of Scala.

7.2 Contribution

In our work we have made the following contributions:

1. We have defined a model language with a formal semantics for a subset of Scala using a novel program context
approach, which allows first-class functions, which are executed in their defining context, allowing full lexical
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closures.

2. We have designed a separation logic for use with the model language with a Kripke-style many-worlds semantics,
which uses nested Hoare triples to specify first-class functions, along with supporting classes, exceptions and
the basic framework for permissions which allows for the future extension to multithreading.

3. We have done a case study on the practical applicability of specification with this logic on a real-world library.

7.3 Future Work

For future work there remains a comprehensive proof of the soundness of our approach, a proper extension of the
separation logic to multithreading, as well as the more close integration of the Scala type system. It would also be
interesting to see how our approach would deal with first class functions as introduced in Java 8.0, which is statement
and not expression based and which only allows final fields to be referred to in functions, similarly to their abstract
classes. Another interesting thing to look at is the approach to locks by Buisse, Birkedal, and Støvring [15], which
more tightly integrates with our approach to the separation logic, while providing additional benefits at the cost of a
sound magic wand operator. There remains also the potential work to be done on automated tooling support, which
would take our approach from the theoretical realm to practical applications.
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