
GreenMirror: A Visualization and Animation Framework

for State-Transition Models

Bachelor assignment

K.M. El Assal (s1097539)

University of Twente

P.O. Box 217, 7500AE Enschede, the Netherlands

k.m.elassal@student.utwente.nl

Exam committee:

prof.dr.ir. A. Rensink

dr. H.K. Hemmes

repository: https://github.com/iisys-/GreenMirror

August 13, 2015

Abstract

State-transition models are often used to analyse the discrete dynamic behaviour of
systems, although analysis may prove to be tedious when a system has a huge amount
of possible states. A tool is being developed using the Java programming language and
the JavaFX library to provide a di�erent approach. Continuing previous work, this report
describes the next step that has been made in the development of a framework that can
visualize a system's states and animate transitions that result from a list of state-transitions.
The user can de�ne complex state-transition models during runtime which will be visualized
according to the state-transitions the user also provides during runtime. The framework has
been speci�cally designed to support future development by being modular, extensible and
maintainable.

1

https://github.com/iisys-/GreenMirror

Contents

1 Introduction 4

1.1 Background . 4

1.2 Glossary . 4

1.3 Stakeholders . 5

1.4 Project de�nition . 6

2 The ferryman 9

3 Features 13

3.1 Client and server . 13

3.2 Nodes and relations . 13

3.3 Node placement . 14

3.4 Commands . 15

3.5 Log . 17

3.6 The GridBuilder class . 18

4 Design and implementation 19

4.1 Package structure . 19

4.2 General work-�ow . 20

4.3 Detailed work-�ow . 20

4.4 Interface design . 22

4.5 Implemented design patterns . 24

4.6 Internal representation of visual node properties 27

4.7 Internal representation of states and state-transitions 27

4.8 Interchange formats . 28

5 Validation 29

6 Discussion 33

A Service extension instructions 35

A.1 ModelInitializer . 35

A.2 TraceSelector . 35

A.3 FxWrapper . 35

2

A.4 FxPropertyWrapper . 35

A.5 Placement . 36

A.6 Command . 36

A.7 CommandHandler . 36

A.8 CommandLineOptionHandler . 36

A.9 Log . 37

B Sequence diagrams 38

3

1 Introduction

This report describes the GreenMirror framework: a tool for visualizing and animating state-
transition models. The current section contains background information needed to understand
this project and the rest of the report. Section 2 gives an example of the usage of the GreenMirror
application. The example model is the ferryman puzzle and shows how one can switch from a
state space generation tool to the GreenMirror tool. The features of the application and their
usage are described in section 3, which is particularly useful for the end-users of GreenMirror.
Section 4 follows with a description about how the design and implementation of the GreenMirror
framework look like and is useful for future developers and also in part for tool owners. Validation
of the system is described in section 5 and this report concludes with section 6 discussing the
developed system and providing suggestions for future improvements. This report has been
written for anyone who wants to use the GreenMirror tool, which is why the current structure
has been chosen: �rst can be seen why the system has been developed, then what the possibilities
of the system are and �nally how the system is developed and how the project was de�ned.

1.1 Background

State-transition models describe the discrete dynamic behaviour of a system or process. Such a
model de�nes how the state of a system changes as the result of a trigger, and following its set
of model rules. In the �eld of computer science, these models are used for system veri�cation
and analysis. Veri�cation and analysis are done, for example, to con�rm and prove a process
can not enter a deadlock state. One way of analysing a state-transition model is by analysing
its state space, which a state space generation tool such as GROOVE [10] can generate.

State spaces can become huge, complex and di�cult to analyse. The research group Formal
Methods and Tools1 of the University of Twente has set out to develop a framework based on
the Java programming language and the JavaFX library that enables researchers to analyse
state-transition models using a di�erent approach. The idea is to visualize the system state and
animate the state-transitions of a user-speci�ed state-transition model with the goal of gaining
a better understanding of the model and its �aws.

The �rst step in the development of this framework has been made by Alex Aalbertsberg [1].
This report describes how his framework has been redesigned and how it has implemented more
extensive features. The current version has been named GreenMirror. Although the project is
far from complete, hopefully these contributions will eventually lead to better state-transition
model research.

1.2 Glossary

Some terms in this report can be ambiguous or unclear in their meaning. For that reason, the
following glossary is provided which will make their meaning de�nitive.

The application This refers to the GreenMirror application as used by the user to reach the
goal as intended by the developer. It is a compiled version of the source code that is the
GreenMirror framework.

The framework This refers to the application in development and speci�cally its source code.

GreenMirror The name of this project. It does not have a profound meaning, it is chosen to
be a short designation to indicate that this project is meant in certain contexts.

1http://fmt.cs.utwente.nl/

4

http://fmt.cs.utwente.nl/

FX This refers to the visual appearance linked to a GreenMirror node (which can, but does not
per se equal the corresponding JavaFX node).

JavaFX The visualization library of the Java programming language.

JavaFX node A visual node of JavaFX. See "node".

JavaFX transition The animation of a JavaFX node property from one value to another. A
JavaFX transition is always meant when talking about an animation in a JavaFX context.

The (researched/user-de�ned) model The model that the user wants to visualize and re-
search using the GreenMirror application.

(GreenMirror) node The term "node" is used for two types of nodes: for a node in the
model: a GreenMirror node; and a node of JavaFX. When speaking simply of a node, a
GreenMirror node is intended. In any other case, the words "JavaFX node" will be used.
It is also possible both a GreenMirror and its corresponding JavaFX node are meant. In
that case, it will be clear from the context. It shall be made clear explicitly if other types
of nodes are meant anywhere in this report.

State The state of a user-de�ned model.

State-transition A transition from one state of the user-de�ned model to another. In the
visualizer, this can contain multiple JavaFX transitions.

State-transition model A model that describes how a system transitions from one state to
another.

Trace A sequence of state-transitions.

User The user is the researcher that uses the framework to visualize certain models (see sec-
tion 1.3).

Visualizer The component of the GreenMirror application that actually visualizes the states
and the state-transitions.

1.3 Stakeholders

It is assumed that any stakeholder knows what he is doing when interacting with the system
in the sense that the stakeholder knows about the context and the tools he is using. There are
three ways of interaction, so the groups of stakeholders are divided as such.

The user The end-user, or "user" for short, is the stakeholder that uses the application for
its main purpose: visualizing models. The "user" can also be renamed "the visualization
builder", but in this report the term "user" will be retained. The user is expected to have
a basic understanding of programming in general and speci�cally of the Java language.
The user can also be one who only sees the visualization, but does not build it, in which
case he can be renamed "the visualization viewer". This type of user will be considered
the same as the "end-user" and will be taken into account by making the user interface of
the visualization as straightforward as possible.

The state space tool owner Researchers might want to connect their own state space tool to
the GreenMirror framework. The development of a suitable interface for this is taken into
account in the design of the framework. Any person that writes a new extension to connect
his state space tool to the GreenMirror framework is called a "state space tool owner", or
"tool owner" for short, and will be considered in the design and development phases.

5

The developer The GreenMirror framework is intended to be extended and otherwise improved
over time. The developers that will do so are also seen as a relatively small group of
stakeholders. To extend and improve the framework developers will need an in-depth
understanding of the framework, contrary to tool owners who only need to understand the
interface between their tool and the framework. Hence, large part of this report is written
for developers.

1.4 Project de�nition

The main goal of this project is to make it possible for researchers to visually analyse the temporal
behaviour of state-transition models. These models are already de�ned and might have already
been visualized and analysed in a di�erent way. Several requirements and use cases have been
de�ned that mark the scope of this project. Furthermore, three test cases have been chosen that
GreenMirror must be able to visualize. The ultimate goal for a �nal version of this tool is to be
able to create and alter state-transition models from a visualizer or other kind of graphical user
interface. This means that not only should the tool turn a model into visualizations, but also
it should also, eventually, be able to turn visualizations into a model. This unfortunately lies
beyond the scope of this project.

The requirements of this project have been divided into architectural, functional and perfor-
mance requirements and are listed in table 1. The architectural requirements are de�ned for the
framework, so they are also inherent to the application. The developer is the main stakeholder
concerning the architectural requirements, since he has most to gain from a well-de�ned soft-
ware system. The tool owner is also an important stakeholder, but mostly in the extensibility
requirement. The architectural requirements are fairly general and vague, but are important
and have to be stated nevertheless. All functional requirements relate to the application, see-
ing as the application contains functionality and the framework does not. Therefore, the user
is the main stakeholder in these requirements. In general, the application has to be �exible.
The user is assumed to be a researcher, which implies that the user wants to have as much
freedom as possible in deciding what the application does, how it works and what it gives as
output. This notion is the basis for all functional requirements. The performance requirements
also relate to the application and primarily concern the smooth and uninterrupted execution of
visualizations. All requirements are formulated, sorted (in groups of the requirement type) and
prioritized according to the MoSCoW method.

Table 1: project GreenMirror requirements

Architectural requirements

Req. 1
The framework must be easily extensible.
Future research might require new functionalities, so a developer or tool owner
must be able to extend easily instead of heavily modify the source code. Fayad
& Schmidt [3] call these extensibility points "hot spots".

Use case 1: as a developer (or tool owner), I want to be able to extend the
framework with as less source code alterations as possible.

Req. 2
The framework must be maintainable.
A developer must have little to no e�ort in understanding the source code when
improvements or extensions are developed. Programmed structures and patterns
must be easily recognizable and well documented.

6

Functional requirements

Req. 3
The application must become aware of the researched model and how to
visualize it.
This process is divided into several parts, although it still treated as one require-
ment.

� The application must become aware of the initial nodes and relations the
researched model is composed of.

� The application must become aware of how these initial nodes and relations
should be visualized.

� The application must become aware of how state-transitions should be vi-
sualized.

Use case 2: as a user, I want to choose how the application becomes aware of my
model.

Use case 3: as a user, I want to choose the source the application retrieves my
model from.

Req. 4
The application must become aware of the trace.

Use case 4: as a user, I want to choose the source that the application retrieves
my trace from.

Req. 5
The application must generate visualizations of the user's model pro-
gressing through the state-transitions on the trace.

Additionally, the following sub-requirements are de�ned:

� Req. 6: the application must visualize simple geometric shapes,
such as rectangles and circles.

� Req. 7: the application must visualize text nodes.

� Req. 8: the application must visualize images.

� Req. 9: the application must visualize simple animations, such as
node movement and creation.

� Req. 10: the application must visualize the placement of nodes

with respect to other nodes, without receiving coordinates from the
user.

Use case 5: as a user, I want to view the visualizations that the application
generated from my model.

Req. 11
The application should provide a detailed log about all relevant events.
This helps in debugging, in improving the application and in analysing the re-
searched model.

Use case 6: as a user, I want to view a detailed log.

Req. 12
The application should be able to browse back and forth between the
visualized states, while consistently seeing the proper visualization and without
errors or reduced performance. This way the user doesn't have to rerun the
complete application on each examination of the model.

Use case 7: as a user, I want to browse back and forth between the visualized
states of my model.

7

Performance requirements

Req. 13
The application should transition from state to state without noticeable
delay caused by memory or processing problems.
This requirement only applies to the point in time where the model has been
completely loaded into GreenMirror.

Req. 14
The application should not crash or terminate otherwise while transitioning
from state to state.
This requirement only applies to the point in time where the model has been
successfully loaded into GreenMirror and all model logic has been deemed valid
and without errors.

The �rst test case is the ferryman puzzle as discussed in section 2. The second test case is
the well-known game ConnectFour. The third is the Dining Philosophers problem (Dijkstra [2]),
which is often used to illustrate concurrency problems such as shared resources and deadlock
scenarios. The problem scenario consists of a certain amount of forks and an equal amount of
philosophers that sit around a table. Each philosopher has a plate of spaghetti in front of him
and each pair of philosophers has a fork between them. The goal is to come up with a fair way
for each philosopher to eat and not die of starvation. The following constraints are in place.

1. Philosophers do only one of three things: think, be hungry or eat. They do not communi-
cate with each other.

2. A philosopher needs two forks to eat and can only use the two forks on his immediate sides.

3. When a philosopher is thinking, he does not have forks and does not do anything at all.

4. When a philosopher gets hungry, he tries to obtain the two forks on his sides and will wait
for their availability. He will not put down his �rst fork before he gets to eat.

5. After a philosopher is done eating, he releases the two forks.

The forks represent shared resources in a concurrency problem. The constraints represent syn-
chronization measures. A deadlock can, for example, occur when all philosophers get hungry at
the same time and pick up the fork on their right.

8

2 The ferryman

The following is an example of a simple state-transition model sometimes used to illustrate
the concept of state-transition models [6]. First, the model con�guration is shown in the state
space generation tool GROOVE. Then the same model is shown in a con�guration that can be
interpreted by GreenMirror. Finally, the result from the GreenMirror visualization is shown.
This demonstrates the basic features, how GreenMirror can be used and how simple its usage
can be.

The ferryman puzzle consists of four active objects: the wolf, the goat, the cabbage and the
ferryman. In the initial state of the system, the �rst three objects are on the left bank of a river.
The ferryman is moored to the same bank with his ferry. The goal is to transport the wolf, the
goat and the cabbage to the right bank of the river without the wolf eating the goat or the goat
eating the cabbage. The following rules apply.

1. The ferryman can only bring one passenger at a time.

2. If the wolf and the goat are together on either side of the river without the ferryman
present, the wolf eats the goat.

3. If the goat and the cabbage are together on either side of the river without the ferryman
present, the goat eats the cabbage.

GROOVE uses grammars to describe the rules of a model. The grammar describing the initial
state of the ferryman model is seen in �gure 1. Wolf, Goat and Cabbage are subtypes of the
Cargo type. The grammars for the �nal states are omitted here because they are less relevant
than those shown in �gures 1 and 2.

Figure 1: GROOVE grammar of the initial state of the ferryman model

The state space generated from this model is seen in �gure 3. This state space contains
35 states and 70 transitions and is excellent for analysing state-transitions needed to get to a
speci�c state. However, if one wants to visualize and animate the state-transitions that result
in a speci�c state, these space generations tools don't have much to o�er. GreenMirror can
visualize this relatively easy.

This model can be translated easily into �les that can be interpreted by GreenMirror. For
this example, the Groovy script model initializer and �le trace selector implementations will be
used (see section 4.4). Listing 1 shows how the model is initialized. On line 1, the visualizer
is initialized with a width of 500 pixels, a height of 300 pixels and a default JavaFX transition

9

(a) transition: load (b) transition: cross (c) transition: unload

Figure 2: GROOVE grammars for state-transitions of the ferryman model. The Cargo and
Bank nodes are types: they indicate any cargo or river bank, respectively, that is selected with
the state-transition. After the state-transition is complete, edges with a dashed blue line are
removed and those with a solid green line are created. The red node and edge means: "if Boat
has no other Cargo on it."

Figure 3: GROOVE generated state space of the ferryman model, using the breadth-�rst explo-
ration strategy and �nal states acceptor, visualized using the compact tree layout and spanning
tree �lter. The blocks are the unique states and the labelled lines between them are the state-
transitions. Note: because of the size of the image, the states and state-transitions are practically
unreadable. This does not make the image any less relevant: it's an illustration of how a state
space can become unclear easily and how it can be used to for analysis.

duration of 1000 milliseconds. On lines 3 to 46, the initial state is de�ned: the background,
the ferry, the wolf, the goat and the cabbage nodes and all relations between them are created.
These lines are roughly equivalent to �gure 1, with additional visualization information. Lines
49 to 58 are equivalent to �gure 2a. A clear di�erence lies in the conditional that the ferry can
not already hold a cargo node: GROOVE simply does not explore the states resulting from that
state-transition, whereas GreenMirror gives an exception and aborts when this state-transition
is erroneously encountered on a trace. Lines 61 to 68 and 71 to 80 are equivalent to respectively
�gures 2b and 2c.

Listing 1: example Groovy code for the ferryman model

1 i n i t i a l i z e (500 , 300 , 1000) ;
2

3 addNodes (
4 // Background .
5 new Node ("bank : l e f t ")
6 . s e t (fx (" r e c t ang l e ") . s e t S i z e (150 , 300) . s e tPo s i t i o n (0 , 0)
7 . s e t F i l l (" l i n e a r−grad i en t (to r ight , darkgreen 0%,

l imegreen 92.5% , #00F0F0 100%)")) ,
8 new Node (" r i v e r ")
9 . s e t (fx (" r e c t ang l e ") . s e t S i z e (200 , 300) . s e tPo s i t i o n (150 , 0)

10 . s e t F i l l (" l i n e a r−grad i en t (to r ight , #00F0F0 0%, #00
DEDE 50%, #00F0F0 100%)")) ,

11 new Node ("bank : r i g h t ")
12 . s e t (fx (" r e c t ang l e ") . s e t S i z e (150 , 300) . s e tPo s i t i o n (350 , 0)
13 . s e t F i l l (" l i n e a r−grad i en t (to l e f t , darkgreen 0%,

l imegreen 92.5% , #00F0F0 100%)")) ,
14 // Ferry .
15 new Node (" f e r r y ")

10

16 . s e t (fx (" image") . setImageFromFile (" t e s t c a s e s /img/boat . png")
17 . setFitWidth (100) . s e tPre s e rveRat i o (t rue)) ,
18 // Cargo .
19 new Node (" cargo : goat ")
20 . s e t (fx (" image") . setImageFromFile (" t e s t c a s e s /img/goat . png")
21 . setFitWidth (50) . s e tPre s e rveRat i o (t rue)) ,
22 new Node (" cargo : wol f ")
23 . s e t (fx (" image") . setImageFromFile (" t e s t c a s e s /img/wol f . png")
24 . setFitWidth (50) . s e tPre s e rveRat i o (t rue)) ,
25 new Node (" cargo : cabb")
26 . s e t (fx (" image") . setImageFromFile (" t e s t c a s e s /img/cabbage . png")
27 . setFitWidth (50) . s e tPre s e rveRat i o (t rue)) ,
28) ;
29

30 // Re la t i on s .
31 Relat ion onRelat ion = new Relat ion ("on") . setNodeB (node ("bank : l e f t "))
32 . setPlacement (Placement .RANDOM) ;
33 addRelat ions (
34 new Relat ion () . setNodeA (node (" f e r r y "))
35 . setName ("moored_to")
36 . setNodeB (node ("bank : l e f t ")) . setPlacement (Placement .EDGE_RIGHT) ,
37 onRelat ion . c l one () . setNodeA (node (" cargo : goat ")) ,
38 onRelat ion . c l one () . setNodeA (node (" cargo : wol f ")) ,
39 onRelat ion . c l one () . setNodeA (node (" cargo : cabb")) ,
40 new Relat ion () . setNodeA (node (" cargo : wol f "))
41 . setName (" l i k e s ")
42 . setNodeB (node (" cargo : goat ")) ,
43 new Relat ion () . setNodeA (node (" cargo : goat "))
44 . setName (" l i k e s ")
45 . setNodeB (node (" cargo : cabb"))
46) ;
47

48 // Trans i t i on : load .
49 addTrans i t ion (" load_ (goat | wol f | cabb) " , { St r ing cargo −>
50 i f (node (" f e r r y ") . getRelatedNodes (−1 , "on") . ofType (" cargo ") . s i z e () > 0) {
51 f a i l ("The f e r r y can only hold one cargo ob j e c t . ") ;
52 }
53 switchPlacementRelat ion (
54 new Relat ion ("on") . setNodeA (node (" cargo : " + cargo))
55 . setNodeB (node (" f e r r y "))
56 . setPlacement (Placement .RANDOM) . s e tR ig id (t rue)
57) ;
58 }) ;
59

60 // Trans i t i on : c r o s s .
61 addTrans i t ion (" c r o s s " , {
62 switchPlacementRelat ion (
63 node (" f e r r y ") . g e tRe la t i on (1 , "moored_to")
64 . c l one ()
65 . setNextNodeB (nodes () . ofType ("bank"))
66 . setNextPlacement (Placement .EDGE_RIGHT, Placement .EDGE_LEFT)
67) ;
68 }) ;
69

70 // Trans i t i on : unload .
71 addTrans i t ion ("unload" , {
72 f o r (Node cargo : node (" f e r r y ") . getRelatedNodes (−1 , "on") . ofType (" cargo ")) {
73 switchPlacementRelat ion (
74 new Relat ion () . setNodeA (cargo)
75 . setName ("on")
76 . setNodeB (node (" f e r r y ") . getRelatedNode (1 , "moored_to"))
77 . setPlacement (Placement .RANDOM)
78) ;
79 }
80 }) ;

The trace chosen for this example is the shortest trace that leads to the successful solution of

11

the ferryman puzzle. In �gure 3, it is the path starting from the initial state, shown left in the
�gure, and ending in the state, shown in the bottom right corner of the �gure. All other �nal
states are unsuccessful solutions where either the goat or the cabbage gets eaten, or states that
transition back into one of the displayed unique states. The trace is shown in listing 2.

Listing 2: example trace for the ferryman model

1 load_goat
2 c r o s s
3 unload
4 c r o s s
5 load_wolf
6 c r o s s
7 unload
8 load_goat
9 c r o s s

10 unload
11 load_cabb
12 c r o s s
13 unload
14 c r o s s
15 load_goat
16 c r o s s
17 unload

Figure 4: a screenshot of the by Green-
Mirror visualized �nal state of the fer-
ryman model as de�ned in listings 1
and 2

The ferryman model and trace from respectively list-
ings 1 and 2 result in the GreenMirror visualization of
which the �nal state is shown in �gure 4. With just
80 lines of code and a pre-de�ned trace, the ferryman
model of �gures 1 to 3 can be visualized and animated
in GreenMirror for further analysis. It took GreenMir-
ror about one second to interpret the model and the
trace, followed by roughly �ve seconds to add all data
to the visualizer after which the user could start moving
through the model states. As is seen from the code in
listing 1, images, geometric shapes such as rectangles
and directed relations can be used. Furthermore, nodes
can be placed according to their relations and complex
(programming) logic can be added. Section 3 contains
more information about the currently available features.

12

3 Features

Knowledge of the features of GreenMirror is imperative when using the application. The two
parts GreenMirror is composed of and their usage is �rst described in section 3.1. The way a
model is interpreted is then elaborated upon in section 3.2, followed by a description of an integral
part of the visualizations in section 3.3: node placement. Further possibilities are presented by
discussing all currently available commands in section 3.4. Sections 3.5 and 3.6 brie�y expand
upon two auxiliary functionalities: the log and the GridBuilder class, respectively.

3.1 Client and server

The GreenMirror application is divided into two distinct components: the client and the server.
The client interprets the user's model and translates it into commands. The server performs
the actual visualization on the basis of these commands. Due to this decoupling, the frame-
work is more maintainable and extensible and can thus be easily linked to other components or
component versions.

Both components have to be executed using command line options. For the client to run, it
needs a server to be available. To start the server, only one option has to be provided: the port.
Use, for example, the option −−port=81 to run the server on port 81. The −−verbose option can
be added to enable verbose output to the log and −−help to show all available command line
options.

The client has three required options: −−host, −−model and −−trace. If a GreenMirror server
is running local on port 81, the �rst option would look like −−host=127.0.0.1:81. To initialize a
model using a Groovy script (which is currently the only supported model initializer), use −−
model=groovyscript:<groovy�le> and to select a trace using the �le selector (which is currently the
only supported trace selector), use −−trace=�le:<trace�le>. <∗�le> should, of course, be replaced
with the corresponding �le names. Similar to the server, −−verbose and −−help can also be used
with the client. For more details, see sections 4.2 to 4.4.

3.2 Nodes and relations

Tools such as GROOVE [10] use nodes and edges to de�ne their model. This terminology can
not simply be copied, because the de�nition and usage of an edge is slightly di�erent than the
equivalent entity used in GreenMirror. GreenMirror uses nodes and directional relations to de�ne
the model. State-transitions consist of adding and removing nodes, altering the appearance of
nodes and changing relations between nodes.
Node properties include a type, a name, labels and an appearance wrapper, all of which are
optional. When the node is added to the model, it receives an internal identi�cation number;
"ID" for short. The user does not have to interact with this ID in any way. Nodes also store
their relations with other nodes.
Relations are always directional, going from "node A" to "node B". All relations have a name,
a placement, a rigidity and a temporary appearance for node A, of which the latter lasts for the
duration of the relation. These properties are optional, although it is recommended to always
specify a name. There are two kinds of relations: placement relations, indicating that node A
has a placement relative to node B on the visualizer, and non-placement relations, where the
placement is set to NONE. The rigidity property can only be set for placement relations. When
set to true it indicates that node A should follow when node B moves on the visualizer. If the
rigidity is set to false, the placement is only calculated and applied when the relation is created:
it won't be maintained when node B moves.

13

Each GreenMirror node that has a visual appearance needs to store and track the properties
of its FX. This is internally done using implementations of the abstract FxWrapper class. The FX
type can only be de�ned once for every GreenMirror node. The currently supported FX types
are:

• rectangle;

• circle;

• text; and

• image (with a local or remote source).

Per FX type, certain properties can be set only initially and some can also be set or changed
after the node's FX initialization. Due to the nature of GreenMirror, all properties of the latter
type must be animatable. The opacity property, for example, is animatable by default by the
JavaFX library. The width of a rectangle, on the other hand, is not animatable by default.
GreenMirror includes animation support for some properties such as width so these properties
can be changed during state-transitions. GreenMirror also supports the animation of some
discrete properties, such as the text property of the text FX type. This is done by using a fast
fade-out on the JavaFX node, changing the property and then using a fast fade-in. Support
for additional FX types and FX type properties can be easily added to the framework. See
section 4.6 and appendices A.3 and A.4.

3.3 Node placement

Placements are an important aspect of the visualization of nodes and their relations. They
provide a level of abstraction and let the user worry rather about the model than about the
actual coordinates of nodes on the visualizer. Placement relations between nodes indicate that
one node of the relation, node A, is placed in a speci�c respect to the other node of the relation,
node B. There are currently several extensions of the abstract Placement class implemented which
are described below and are illustrated in �gure 5. Every instance of Placement also has an
optional position relative to the placement. For example: if a node A has an edge top placement
with relative position (0, −20) on node B, node A is placed 20 pixels above (and centred on) the
edge of node B.

Corner*Placement A placement on any of the corners of a JavaFX node: top left, top right,
bottom right or bottom left.

Edge*Placement A centred placement on any of the edges of a JavaFX node: top, right, bottom
or left.

MiddlePlacement A placement in the exact middle of a JavaFX node.

EdgePlacement A placement on the edge of a JavaFX node, according to a speci�ed angle. An
angle of zero degrees is the equivalent an edge top placement, and an angle of 90 degrees
(positive) is the equivalent of an edge right placement.

CustomPlacement A placement where only the relative position data is used to determine the
coordinates. The relative position data is relative to the coordinates calculated for the
MiddlePlacement.

RandomPlacement A random placement on a JavaFX node. Upon receiving this placement
data, the server replaces this with a CustomPlacement where the relative position is set to
the calculated, relative coordinates of the RandomPlacement. This is done so the random

14

coordinates aren't recalculated every time node B moves (in the case of a rigid placement
relation).

NoPlacement The default for a relation.

Figure 5: an example available placements on a circle FX node. The green circles have a corner*
(or at least, what would have been the corner), edge* or middle placement, the blue ones an
edge placement with -10 and 10 degrees, the black one a custom placement with relative position
(−10, 0) and the red one a random placement.

3.4 Commands

In the current version of GreenMirror, communication between the client and the server is one
way: all supported commands are meant to be sent from the client to the server. With the
information in this section and section 4.8, one can develop a completely new client or server
that can work with the current version of GreenMirror. For a better overview, the commands
have been divided into tables 2 and 3: the �rst is about commands relating to the visualizer
and the handling of state-transitions, the second is about changes in the model. In the tables,
the command name is in the upper left corner, the parameters, their type and their description
on the right and the command description underneath those. This section is meant to give an
overview of the currently available commands used within GreenMirror: it is not as detailed as
the JavaDoc documentation that is available on the repository of this project.

Table 2: commands pertaining to the visualizer and the handling of state-transitions

Initialization
width integer

The width of the visualizer window.

height integer

The height of the visualizer window.

defaultAnimationDuration double

The default time animations will take to complete.

rotateRigidlyRelatedNodesRigidly boolean

Whether the "A" node of a rigid relation should rotate rigidly when
the "B" node is rotated.

The initialization command initializes and opens the visualizer with the passed parameters.
This should come before any command pertaining to the model.

15

SetAnimationDuration
duration double

The duration of all following animations, in milliseconds.

This sets the duration of all atomic animations. For example: if the animation duration is
set to 1000 milliseconds and �ve animations will be played sequentially, the total animation
duration is 5000 milliseconds.

Flush
delay double

The delay that is added after the previous animation, in milliseconds.

By default, all animations resulting from one state-transition are played parallel to each
other. This command creates a new queue: the set of parallel animations created after this
command are played after the set of previously created animations. Optionally, a delay can
be added between the previous and upcoming set of animations. Also see section 4.7.

EndTransition

This command signals the server that the state-transition has ended.

StartVisualization

The command that tells the server that the visualizations may start. The current version of
this server handles this by transitioning to the �rst state.

ExitVisualizer

This command communicates to the server that the visualizer should exit. In this version
of GreenMirror, the client sends this command if a fatal error is encountered in the user's
model.

Table 3: commands pertaining to the user's model

AddNode
id integer

The unique, internal ID of the GreenMirror node.

identifier string

The identi�er of the GreenMirror node: the user-de�ned type and name.

This signals that a node has been added to the user's model. The visualizer doesn't have to
do anything yet: the FX is yet to be de�ned at this point.

AddRelation
name string

The name of the relation.

nodeA integer

The internal ID of node A.

nodeB integer

The internal ID of node B.

placement string

The placement data of node A on node B.

16

rigid boolean

Whether the relation is rigid or not.

tempFX FxWrapper

The temporary FX of node A.

This indicates that a relation has been added between a node "A" and a node "B". If
placement is set, the server should handle this. The same goes for tempFX.

RemoveNode
id integer

The internal node ID.

This commands signals that a GreenMirror node has been removed from the user's model.
Consequently, all relations have also been removed.

RemoveRelation
id string

The unique ID of the relation.

nodeA integer

The internal ID of node A.

This commands signals that a relation has been removed. The server should also handle

restoring the FX of node A in the case a temporary FX was set.

SetNodeFX
id integer

The internal ID of the GreenMirror node.

fx FxWrapper

The FX values.

This commands communicates with what properties and values the FX of a node should be

set. The fx parameter can include all properties that can be set, initially or otherwise (see
section 3.2).

ChangeNodeFX
id integer

The internal ID of the GreenMirror node.

fx FxWrapper

The new FX values.

This commands indicates that the FX of a GreenMirror node has been changed. The fx

parameter can include only animatable properties (see section 3.2).

3.5 Log

It is assumed that any stakeholder working with the tool wants as much data and information
as possible about what is happening. GreenMirror uses a static Log class that accepts any
implementation of PrintStream. During runtime both the client and the server send data and
information to their respective log sinks. A time stamp that is accurate to the millisecond is
included with each entry, so performance can also be analysed. The client uses System.out as its
log sink, seeing as it does not have a graphical user interface. The server uses System.out and, as
it does have a graphical user interface, GreenMirror's WindowLogger implementation (depicted in

17

�gure 6). As was brie�y mentioned in section 3.1, a verbose option can be enabled which results
in the log being �lled with more raw data.

Figure 6: an instance of WindowLogger right after the server has been executed

3.6 The GridBuilder class

Figure 7: the result of
the GridBuilder example
code of listing 3

GreenMirror has an auxiliary GridBuilder class created to take away
the tedious work of building a grid of nodes. It supports properties
such as the amount of cells, the cell width and height, cell spacing, cell
colour, borders, a background colour and the type and name pre�x for
every GreenMirror node it creates. It builds the grid by creating one
GreenMirror node per cell and one for the background, all of which
have the rectangle FX type. Listing 3 shows an example of how short
the code is to create a TicTacToe grid, in contrast to de�ning every
single GreenMirror node, not to mention the tedious work of getting
their exact positioning right. Doing the same without the GridBuilder

class takes roughly 30 lines of sloppy code. The result of listing 3 is
visible in �gure 7.

Listing 3: example code the user can use to build a grid of nodes

1 new GridBui lder (" ticTacToeGrid : c e l l_ ")
2 . s e tCe l lCount (3 , 3)
3 . s e tC e l l S i z e (50 , 50)
4 . s e t C e l l F i l l (" l i n e a r−grad i en t (to bottom , #FFF, #DDD)")
5 . s e tCe l l Spac ing (5)
6 . s e tBorde rS i z e (5) // top , r i ght , bottom and l e f t
7 . s e tBackgroundFi l l (" b lack ")
8 . bu i ld (10 , 10) // Coordinates on the v i s u a l i z e r
9 . getNodes ()

18

4 Design and implementation

This section gives more detailed information about the design of GreenMirror and some details
of its implementation. GreenMirror is written with version 8 of the Java Runtime Environment
and developed under Eclipse Luna. It highly depends on the integrated JavaFX library and uses
JUnit [7] for testing, JOpt Simple [5] for handling the command line options (see section 4.3),
Groovy [4] (see section 4.4) for its JSON implementation and scripting capabilities and the
Eclipse JDT annotation package for using NonNull annotations. GreenMirror is composed of 114
classes in 12 packages, which sums up to a total of 7429 lines of code.

4.1 Package structure

GreenMirror's package structure is fairly self-evident. Still, a short explanation per package
is in place. Details about how to extend certain subpackages are available in appendix A.
Corresponding class diagrams depicting all relations between the classes are unfortunately too
large to be a useful addition to this report, although they are available on the repository.

greenmirror is the main package containing classes shared by the client and server.

greenmirror.client contains all classes that pertain solely to the client.

greenmirror.client.modelinitializers contains all implemented model initializers that can
be used by the client. See section 4.4.

greenmirror.client.traceselectors contains all implemented trace selectors that can be
used by the client. See section 4.4.

greenmirror.commandlineoptionhandlers contains all command line option handlers, both
for the client and the server. The @ClientSide and @ServerSide annotations indicate where
they are used. See section 4.3.

greenmirror.commands contains all commands that are sent from the client to the server and
vice versa. It also contains all handlers that interpret and handle received commands. The
handlers have @ClientSide and @ServerSide annotations to indicate where their respective
commands are received.

greenmirror.fxpropertywrappers contains all implemented wrappers for FX properties. See
section 4.6.

greenmirror.fxwrappers contains all implemented FX wrappers. See sections 3.2 and 4.6.

greenmirror.placements contains all implemented placements. See section 3.3.

greenmirror.server contains all classes that pertain solely to the server.

greenmirror.server.playbackstates contains the playback states of the visualizer. See sec-
tion 4.5.

greenmirror.tests contains several unit tests to validate the workings of GreenMirror. See
section 5.

19

Figure 8: simpli�ed activity diagram of the general work-�ow

4.2 General work-�ow

The general work-�ow of a typical execution of the application is illustrated in the simpli�ed
activity diagram of �gure 8. This is meant to be fairly general: the exact work-�ow depends on
the used model initializers, the used trace selector and the user's model. In the current version,
the visualization can only start when the whole model has been interpreted by the client and has
been sent to the server. This behaviour is meant to ensure top performance while transitioning
through the states, but can be easily modi�ed.

4.3 Detailed work-�ow

The �rst thing that occurs when operating the application is starting up the client or server
and parsing the command line options. GreenMirror uses the JOpt Simple library [5] to parse
command line options in the same way options can be used with executables of *nix operating
systems. Available command line options implement the CommandLineOptionHandler interface.
This contains everything needed to handle options: option and argument speci�cation, processing
order, argument validation and option processing. See �gure 15 (appendix B) for the (simpli�ed)
sequence of these events. From the diagram can be seen that the options are all validated before
they are processed. This prevents partial processing without having all required and valid options
(for example: initializing the model without a valid server address).
The importance of the validating, parsing and processing of command line options, however,

20

should be explicitly stated. The complete set of the application's functions work as a direct
consequence of the processing of these options. For example: the handler for the −−host option
handles establishing the connection to the server and the handler for the −−trace option executes
the trace. This results in the fact that new functionalities that should be executed during start-
up can be easily added by implementing and adding new option handlers (see appendix A for
instructions).

Figure 9: simpli�ed sequence dia-
gram of the handling of the −−host

command line option

Next are the implemented command line option han-
dlers of the client. From here on out, the assumption is
made that all required options are passed (−−host, −−
model and −−trace) and that their arguments are valid. If
that would not be the case, GreenMirror would have ob-
served this before processing and would have noti�ed the
user before terminating, as is described in the previous
paragraph. The �rst option that will be processed is the
−−host option, which connects to the server. This is very
straightforward and will requires no further elaboration.
See �gure 9.

Handling the model initializer option −−model is far
more interesting. Several notable things are worth stating when looking at the sequence diagram
in �gure 16 (appendix B). Firstly, it can be seen that multiple model initializers can be selected.
This is designed this way so the user can de�ne the model in more than one way, perhaps even
with the use of modules. In practise this can be used by simply passing the −−model option
multiple times. Multiple model initializers are executed in the same order as they were passed
via the command line. Secondly, a model initializer should de�ne the model with the initial
state and the state-transitions. The initial state can be de�ned by de�ning the initial nodes
and relations and adding them to the controller. This sends the information directly to the
server. Each state-transition is de�ned as an instance of the ModelTransition class and holds a
groovy.lang.Closure �eld. This is code that is executed when the transition is executed and should
transition the model to the next state. How the model initializer exactly de�nes the initial state
and the state-transitions is up to the implementation (see section 4.4). Finally, when the model
initializers have been executed and thus the initial state has been de�ned, GreenMirror sends
the StartVisualization command to the server, indicating that the transition to the �rst state can
be performed.

The −−trace option is handled next. See �gure 17 (appendix B) for the sequence diagram.
This follows somewhat the same structure as the model initializer option handler, with a few
slight di�erences. Only one TraceSelector can be used. However, multiple ModelTransitions can be
executed with each transition from the trace, due to the fact that the ModelTransition instance
has a regular expression pattern that matches with zero to unlimited transitions from the trace.
These transitions are executed in the order in which the model initializer added them to the
controller. After each executed transition, GreenMirror sends an EndTransition command to the
server, indicating that a new state has been reached. If the user wants GreenMirror to refrain
from sending this command, perhaps because the executed transition is part of the next one, the
supplemental �ag of the ModelInitializer instance can be set to true.

The client is now �nished and will close. In the meanwhile, the server has received the
commands the client has sent. Every command is passed to the correct CommandHandler in the
sequence as shown in �gure 10. What exactly happens in the handle(CommunicationFormat, String)

method of the CommandHandler entirely depends on the received command.

After the client has sent the StartVisualization command, the server starts the transition to
the �rst state. Upon �nishing, the correct toolbar buttons are enabled and the user can start
interacting with the visualizer. What is seen in the sequence diagram of the user interaction

21

Figure 10: simpli�ed sequence diagram of the server receiving data

(�gure 18 in appendix B) is that all visualization parameters of the state-transition are derived
from the button the user clicked on.

4.4 Interface design

This section discusses the available interfaces for tool owners that provide ways of loading models
into GreenMirror, and the current implementations. Loading a model consists of two parts:
de�ning the model and providing the trace that de�nes in which order state-transitions will take
place. Both parts have corresponding interfaces: respectively ModelInitializer and TraceSelector.

The model initializer has a few responsibilities. First and foremost it must, in the most general
sense and not surprisingly, initialize the model according to the speci�cations of the user. More
speci�cally: it must receive information from the user about how the initial state of the model is
de�ned and how di�erent state-transitions in�uence the model and the visualization. How the
model initializer receives or retrieves this information is up to the implementation. Once it has
received this information, it can add nodes to the client controller, remove nodes, add relations,
etcetera. These changes are automatically conveyed to the server. The model initializer can
also use the interface with the controller to send commands directly to the server, by use of the
currently available commands in the greenmirror.commands package. This behaviour is, however,
not recommended, because this circumvents the logic incorporated in updating the model via
the controller. It is meant to provide the possibility to send auxiliary commands such as the
SetAnimationDuration command.

The model initializers must de�ne which state-transitions can happen by adding new instances
of ModelTransition to the controller. As mentioned in section 4.3, this class has a groovy.lang.Closure

�eld that changes the model when the closure is executed. This type is chosen to directly support
the �rst implemented model initializer, although it is not restricted to this �rst implementation.
The closure can accept arguments based on the transitions on the trace. This is best explained
using an example. Suppose the user wants to visualize a ConnectFour game. It would be
unwieldy to de�ne a state-transition for every possible move (although there are only seven at
the most), so the user de�nes one state-transition that uses the regular expression ^move([0−6])\$

to accept transitions from a trace. This means it needs the number of the column as an argument
in the closure that executes the state-transition. Fortunately, the Groovy library supports this
and GreenMirror takes advantage of this by supporting string and integer type arguments.

The server could be completely re-purposed by implementing di�erent commands and com-

22

mand handlers. However, if the server is used as a visualizer, the model initializer has the
responsibility of making sure the server �rst receives the initialization command. Without it,
there is no JavaFX stage to which JavaFX nodes can be added. A tool owner developing a new
model initializer could choose to delegate this responsibility to the user.

The model initializer that has been implemented in this �rst version of GreenMirror is based
on Groovy [4]. Groovy is a dynamic language for the Java platform and provides a vast array
of useful features. Speci�cally, the model initializer uses Groovy's script functionalities. This
choice was made due to the following reasons.

1. The user receives the power and �exibility of a full-featured programming language, but
still is easy to learn. This means that both advanced programmers and users without much
experience can use it.

2. The user scripts can be executed during runtime, meaning that, while employing a complete
programming language, the GreenMirror framework doesn't have to be recompiled every
time the user alters his model.

3. A clear interface with the controller can be provided to the user, which Groovy calls a base
class. The user can refer in his script to the base class' methods without referring to any
object. This works as if the user is programming in the context of one of the methods of
the base class (which it also comes down to, internally).

Listing 4 shows an example of a user script that can be executed by the Groovy script model
initializer. Figure 11 shows a screenshot of its resulting visualization. It can be seen from the
listing that chained statements are possible and actually encouraged to improve the readability
of the script. Another notable advantage is that it is easily seen that calls to the base class (and
thus indirectly to the controller) indicate a read from or a write to the model. For example,
creating a new Node instance does not mean it is added to the model: addNodes() takes care of
that.

Listing 4: example Groovy script de�ning the user's state-transition model

1 i n i t i a l i z e (480 , 200) ;
2 addNodes (
3 new Node (" l o c : 1 ") . s e t (fx (" r e c t ang l e ")
4 . s e t S i z e (160 , 200) . s e tPo s i t i o n (0 , 0)
5 . s e t F i l l (" r ad i a l−grad i en t (c en te r 80px 100px , "
6 + " rad iu s 150px , white , red) ")) ,
7 new Node (" l o c : 2 ") . s e t (fx (" r e c t ang l e ")
8 . s e t S i z e (160 , 200) . s e tPo s i t i o n (320 , 0)
9 . s e t F i l l (" r ad i a l−grad i en t (c en te r 400px 100px , "

10 + " rad iu s 150px , white , red) ")) ,
11 new Node (" obj ") . s e t (fx (" c i r c l e ")
12 . setRadius (20)
13 . s e t F i l l (" l i n e a r−grad i en t (to bottom , l imegreen , black) "))
14) ;
15 addRelat ion (
16 new Relat ion ("on") . setNodeA (node (" obj "))
17 . setNodeB (node (" l o c : 1 "))
18 . setPlacement (Placement .MIDDLE)
19) ;
20

21 addTrans i t ion (" switch " , {
22 switchPlacementRelat ion (
23 node (" obj ") . getPlacementRelat ion () . c l one ()
24 . setNextNodeB (nodes (" l o c : "))
25) ;
26 }) ;

23

Figure 11: a screenshot of the executing visualization of listing 4 with the trace from listing 5

After the model initializer has set the initial state and saved all ModelTransitions, the selected
TraceSelector is executed. The current FileTraceSelector implementation retrieves the trace from
a text �le where the transitions are separated by a newline. In the visualization example of
�gure 11, the trace �le looked like listing 5. In the toolbar of �gure 11 a state count of four can
be seen, while three transitions are in the trace. This is naturally because the initial state is
included in the count.

Listing 5: example trace �le for the model de�ned in listing 4

1 switch
2 switch
3 switch

Both the ModelInitializer and TraceSelector interfaces accept one argument from the command line.
This should be the source of the model and the trace, respectively. In GroovyScriptModelInitializer it
is the �le name of the Groovy script, while in FileTraceSelector it is the name of the �le containing
the trace. In future implementations that, for example, connect GreenMirror to another tool,
this could be the name of the model.

4.5 Implemented design patterns

GreenMirror conforms to several design patterns [8, 11] to stimulate future development and
the overall maintainability of the framework. Table 4 describes several implemented patterns, in
alphabetical order. The name on the left side is the name of the design pattern. The right side
describes the classes or structures that use the design pattern and contain information about the
contexts in which the patterns are implemented.

24

Table 4: design patterns used in the GreenMirror framework

Builder
GridBuilder

This class �rst accepts several required and optional parameters,
after which it constructs the grid and �nally returns the NodeList
instance that contains the nodes that make up the grid. See sec-
tion 3.6 for more information and an example.

Command
Command

Whenever a subclass of Command is instantiated, the arguments
are passed to its constructor. The prepare() method is called, in
which the command can optionally execute preparations. Finally,
the getFormattedString(CommunicationFormat) is called to re-
trieve a string that will be sent to the peer, formatted according
to the parameter.

Memento
states and state-transitions

The memento pattern is speci�cally designed to store and retrieve
the internal state of an object. This object is, in the case of
GreenMirror, the visualizer. The internal state data is composed
of the collection of JavaFX nodes and their properties, and the
JavaFX transition data to progress to a next state. This pattern
is implemented with the Visualizer and VisualizerMemento

classes. Needless to say, VisualizerMemento ful�ls the memento
rule. The Visualizer class ful�ls both the caretaker and origina-
tor roles, implementing the VisualizerMemento.Caretaker and
VisualizerMemento.Originator interfaces to make this more ex-
pressive. It should be noted that the current version of Green-
Mirror only has need to store the JavaFX transition data in the
memento. More on this will be explained in section 4.7.

Model-view-controller
Node, Relation - Visualizer, Log - GreenMirrorController

GreenMirror uses the MVC pattern to improve maintainabil-
ity. The model is represented by Node instances. If the
user changes the model, the Client instance (which extends
GreenMirrorController) is noti�ed and in turn noti�es Log and
the server. The view and the model have no interaction whatso-
ever on the client's side. On the server's side, however, the con-
troller role is shared by the Visualizer and ServerController

instances because of the integrated functionalities. The view on
the server's side is implemented by both Visualizer and Log, al-
though it can also be argued that the server as a whole represents
the view.

Null object
NullNode

Any GreenMirror node that gets removed in the user's model is
replaced by an instance of NullNode. This makes sure the model
throws expected exceptions and ensures the user will get properly
noti�ed if he tries to access it.

Observer
Node

The Client controller is noti�ed of model updates, but only of
nodes that have been added to the visualizer.

FxWrapper

Every Node instance also is an observer: it observes any changes
made in its FX.

25

Prototype
FxWrapper, Placement

All implemented subclasses are instantiated using the built-in
java.util.ServiceLoader injector. When a new instance of
FxWrapper or Placement is requested based on a data string, the
string is compared to the stored instances and if a match is found,
a clone of the matched instance is returned. Placement imple-
mentations can also be instantiated using the new operator, but
both FxWrapper and Placement are at some point constructed via
the prototype design pattern.

Proxy
FxWrapper

The FxWrapper class is exactly what the name says: a wrapper
for the FX of a GreenMirror node. It generalizes handling the FX
and provides intelligent access to certain FX properties.

FxPropertyWrapper

The FxPropertyWrapper implementations primarily provide in-
telligent access to several methods that are often used. It is added
to simplify adding support for di�erent FX types and properties.

State
PlaybackState

The visualizer has a �nite set of playback states it can be in.
Certain things depend on the visualizer's playback state, such as
which of toolbar buttons are enabled. The context role is taken
up by the Visualizer instance, whereas the playback state is rep-
resented by instances of implementations of the PlaybackState

class. Figure 12 shows the state machine diagram belonging to
the playback states.

Strategy
CommandHandler, CommandLineOptionHandler, FxWrapper,
ModelInitializer, TraceSelector

All classes that implement the strategy design pattern do this so
their subclasses can handle data in their own way. Which strategy
(and thus which subclass of one of the above classes) is passed is
determined at runtime. For example: every ModelInitializer

implementation has its own executeInitializer() method
that initializes the user's model in its own way. Which
ModelInitializer is executed, depends on which the user se-
lects during runtime. The Log class also uses this pattern, only it
accepts PrintStream subclasses as strategies.

Figure 12: the state machine diagram for the visualizer's playback states

26

4.6 Internal representation of visual node properties

The FxWrapper class and its subclasses store and track the FX properties of GreenMirror nodes,
as is explained in section 3.2. Using a wrapper instead of directly using a JavaFX node instance
has the following reasons.

1. FxWrapper provides general methods such as converting FX data into an object that can
be shared between client and server, or changing general properties like the rotation and
opacity of a JavaFX node.

2. The implementations of abstract methods of FxWrapper used by GreenMirror might di�er
per type of JavaFX node. For example: the calculations of a speci�c placement on the
edge of a circle di�er from the calculations of a placement on the edge of a rectangle.

3. For the logic in the user's model and the proper creation of state-transitions on the server,
properties have to be set and changed during the processing of state-transitions in the model
without directly a�ecting the FX in the visualizer. As will be explained in section 4.7,
changing actual properties of JavaFX nodes happens as a consequence of the execution
of JavaFX transitions. To work with these values without directly visualizing them, a
wrapping layer is needed providing 'virtual' values.

4. Support for new types of JavaFX nodes can be easily added. Examples include ellipses,
three-dimensional shapes and composite nodes.

The way FxWrapper converts its properties to an object that can be sent over the network, is
generalized in the sense that support for new types of properties can also be implemented easily.
The following example will clarify this. One of the supported properties of ImageFxWrapper is the
X coordinate of type double. In the current GreenMirror version, FX data is sent to the server
in JSON format (see section 4.8). The value of the X coordinate can be easily converted to and
from a string format, as would the boolean-type preserveRatio property. So how would the image

property of type javafx .scene.image.Image be converted to and from a valid JSON string? The
implementations of FxPropertyWrapper handle the FX properties to make this modular and easily
extensible. In the case of the example about the image, the ImageFxProperty class handles the
image property.

4.7 Internal representation of states and state-transitions

Figure 13: an example of one stored
state-transition in JSON notation

State data is not stored in the current version of Green-
Mirror, because it is unnecessary. To understand why
this is, an explanation must be provided about how state-
transition data is stored and how JavaFX handles its tran-
sitions (animations, in this case).

GreenMirror uses classes that extend javafx .animation.

Transition. These classes hold all data needed to perform
an animation: start and end value of an FX property
and a method that handles the temporal behaviour of
the value. JavaFX also provides two special transition
implementations: ParallelTransition and SequentialTransition.
These handle other transitions that are added to their lists
in parallel or sequentially, respectively, and can be nested.
This is also how GreenMirror stores a state-transition:
one SequentialTransition instance holding one or multiple

27

ParallelTransition instances (separated by a PauseTransition to incorporate an optional delay) which
in turn hold the individual Transition instances that animate the change in properties. Initially,
every change in the model the server receives ends up in the same top-level ParallelTransition .
The user might want to show several sequential animations during one state-transition. For this
scenario, the �ush command has been implemented. This results in the server creating a new
ParallelTransition instance in the root SequentialTransition in which all further transitions will be
stored. For an example of these nested transitions of one state-transition, see �gure 13. JavaFX'
transition classes also have another interesting functionality: the rate property. When set to a
negative value, the animation reverses. This makes browsing backwards through the model's
states very easy and removes the need to recalculate FX property values of JavaFX nodes.

These reasons make storing state data unnecessary. State-transition data is composed of the
JavaFX animations needed to go from one state to another, including the start and end values
of the relevant FX properties, whichever direction the user wants to go.

4.8 Interchange formats

Nothing is currently being stored of the result of a visualization. The formats associated with
de�ning the user's model and the corresponding trace are discussed in section 4.4. This leaves
the protocol used between the client and the server. This is very simple and has the form
command:commanddata. The part before the colon holds the name of the command as it is
presented in section 3.4. This is included so the receiver knows which CommandHandler imple-
mentation can handle the command data. The part after the colon holds the command data,
formatted in the selected CommunicationFormat. The JSON format is currently the only supported
format. An example of a command is shown in listing 6.

Listing 6: an example command sent from the client to the server in the JSON communication
format, indicating that a node as been added to the model

1 AddNode : { " id " : 2 , " i d e n t i f i e r " : "nodetype : nodename"}

28

5 Validation

Unit tests have been written with the JUnit library that validate the classes the user works
with the most: Node, Relation, NodeList, RelationList, FxWrapper, FxWrapper's subclasses, Placement

and Placement's subclasses. The unit tests include the various ways of instantiating new objects,
calling their methods with extreme values and in the case of the Placement tests, they verify the
calculations made to place a node in a certain respect to another node. These tests all worked
as expected.

Due to the visual nature of GreenMirror, further veri�cation is based on an extensive system
test, written for use with the Groovy script model initializer. This test also works to some extent
as a unit test: it tests several classes and speci�c functionalities. Furthermore, it showcases and
explains how certain functionalities work and how they can be used. Among other sub-tests, it
tests the following:

• setting the duration of animations;

• using parameters from state-transition names;

• adding nodes;

• setting the FX of nodes;

• altering the general properties of nodes;

• altering properties speci�c for shape nodes (rectangle, circle and text nodes);

• altering properties of a rectangle node;

• altering properties of an image node;

• altering properties of a text node;

• adding and removing simple relations between nodes;

• adding and replacing placement relations;

• using rigid placement relations;

• using chained, rigid placement relations; and

• removing nodes.

A coverage of 84.8% has been achieved with all tests combined. GreenMirror uses the @NonNull

annotation with �elds and method arguments and return types. Not all sub-packages of Java
formally guarantee that they return a non-null object (although they do informally), resulting
in several non-null checks that are e�ectively futile and practically non-reachable code.

All test cases discussed in section 1.4 have been successfully visualized. A screenshot of the
results are illustrated in �gures 4, 14a and 14b. They were all fairly easy to construct using the
Groovy script model initializer. The realization of the ferryman case was a bit more elaborate
compared to the realization discussed in section 2, although the case itself and �gure 4 are
essentially the same for both realizations. The test case, for example, also includes the state-
transition where one cargo object 'eats' another. Table 5 lists all relevant results of the three
test cases.

29

Table 5: test case results

Test case lines
of
code

trace
length

init.
time2

notable visualizations and used func-
tionalities

Ferryman 109 20 ≈ 48 s Parametrized state-transition names, rect-
angle FX types, image FX types, node resiz-
ing, node rotation, node removal, placement
relations, rigid placement relations, non-
placement relations, relation replacements,
colour gradients

ConnectFour 91 10 ≈ 8 s Parametrized state-transition names, rect-
angle FX types, circle FX types, text
FX types, node grid generated with
GridBuilder, node creation during state-
transition, colour gradients, font size set-
ting, placement relations, relation replace-
ments, complex model logic (determining
the cell number from the column number),
model failing (if an invalid move is encoun-
tered on the trace), altering animation du-
ration

Dining Philosophers 132 15 ≈ 10 s Parametrized state-transition names, cir-
cle FX types, image FX types, image al-
teration during state-transition, node rota-
tion, placement relations, non-placement re-
lations, relation replacement, model failing
(if an impossible state-transition is encoun-
tered)

The following list discusses how each requirement and use case is implemented and validated,
in the same order as they were de�ned in section 1.4.

Requirement 1 and use case 1
The framework is easily extensible due to the use of interfaces and abstract classes. One
example is the FxWrapper class: support for new FX elements can be easily added by
extending FxWrapper. Also, the use of common design patterns makes extension more easy.
See appendix A for a full list of extensible parts.

Requirement 2
The use of common design patterns, extensive documentation and the use of the checkstyle
plugin of Eclipse are the primary means of making the framework maintainable. Especially
the model-view-controller pattern is important because it tells which classes are responsible
for what. More details on the design patterns can be found in section 4.5.

Requirement 3 and use cases 2 and 3
The application becomes aware of the user's model via the use of the model initializers:
implementations of ModelInitializer . It depends on the implementation how this is done. The
choice of the implementation is how use case 2 is supported: by use of the command line
options and speci�cally the ModelCommandLineOptionHandler class that handles the choice.
This option handler accepts one argument: the source of the model (use case 3) and it

2Initialization time: the time GreenMirror needs to interpret the model and generate the visualizations.

30

(a) ConnectFour (b) Dining Philosophers

Figure 14: screenshots of two of the test cases

depends on the ModelInitializer implementation how this source is given (for example: a �le
name or a model name).

Requirement 4 and use case 4
The user can pass his choice for the trace source via the command line and gets handled
by the TraceCommandLineOptionHandler class. The user's chosen TraceSelector implementation
then retrieves the trace and that is how the application becomes aware of the trace.

Requirements 5 to 10 and use case 5
A few examples of where the validation of these requirements is visible (as seen in �gures 4,
14a and 14b): the ConnectFour test case visualizes rectangles, circles (requirement 6) and
text (requirement 7); the ferryman test case visualizes images (requirement 8); and the
dining philosophers test case visualizes the placement of nodes with respect to other nodes
(requirement 10). All test cases visualize simple animations (requirement 9), which of
course is not visible in the �gures. The fact that these test cases can be visualized validates
requirement 5 and use case 5.

Requirement 11 and use case 6
This is implemented by the Log class, as is discussed in section 3.5 and visible in �gure 6
(page 18).

Requirement 12 and use case 7
Browsing from state to state is implemented by use of a toolbar with navigation buttons.
The workings of these buttons are handled by the Visualizer controller in cooperation with
the PlaybackState implementations and ToolbarButton class. Section 4.5 discusses the playback
state and its e�ect on the toolbar buttons. The buttons are also visible on any of the
screenshots of GreenMirror in this report.

Requirements 13 and 14
Smoothly transitioning from state to state (requirement 13) is implemented by cleaning

31

up resources every time the visualizer is closed. This 'resets' the server so a new client can
connect. Crashing is prevented (requirement 14) by properly catching exceptions while
the model is being loaded: this makes sure the visualizer will not crash during the state-
transitions. If any exceptions are thrown, they will be displayed in the log.

32

6 Discussion

GreenMirror is the second step in the development of an extensive research tool. The work
of Aalbertsberg [1] was the �rst step, although except for minor design choices such as the
programming language and the client-server structure, his work bears virtually no resemblance
to the current version.

The intention for using a proper framework design was present during the design phase.
Examples include the work of Fayad & Schmidt [3] and Markiewicz & De Lucena [9], but this
has crept unwittingly into the background during the implementation phase. Some concepts
have been used (e.g. hot spots), but more research should be used while further developing the
GreenMirror framework. A somewhat similar point applies to the use of the MVC pattern. It
is implemented, as discussed in section 4.5, but there is room for improvement to increase the
framework's maintainability. For example: the distinction between the controller and view roles
on the server side could be made more apparent and the view role on the client side could be
improved beyond the use of just the Log class.

Help from work relating to GreenMirror's way of visualization could not be uncovered. Due
to the absence of related work backing the used visualization approach, this is a point of dis-
cussion. "Visualization approach" here means: the way of visualization (nodes and their FX
representation) and the internal representation, which are discussed in sections 3.2, 4.6 and 4.7.
I believe the current approach is optimal for the requirements set for this project. It makes sure
state-transitions can take place smoothly and without delay. It would probably, however, not
be su�ciently e�cient when GreenMirror is developed beyond the scope of this project. As is
discussed in section 5, it can take GreenMirror nearly a minute to convert a simple model to a
visualization. That model had merely 20 state-transitions. Therefore, my �rst recommendation
is to evaluate the current programmed structures and internal representations.

There is currently a TraceSelector implementation in development by the Formal Methods and
Tools research group of the University of Twente to select a trace from the GROOVE application.
A next improvement to GreenMirror could be the development of a ModelInitializer implementa-
tion that can load a model from an existing GROOVE Grammar. This would narrow the bridge
between the two tools and would certainly be considered a useful functionality. The user might
be required to provide extra information about how GROOVE's nodes should be represented on
the visualizer, should such an implementation be developed. Fortunately this can be done rather
simple: the user can provide a script that uses the Groovy script model initializer to supplement
the model, which is possible because the use of multiple model initializers is supported.

To conclude this report, some thoughts must be given about the ultimate goal of this tool.
In addition to generating visualizations from a de�ned model, the ultimate goal is, as is brie�y
mentioned in section 1.4, generating a model de�nition from of user interaction with visualiza-
tions.

Take a model where a state-transition results in the movement of a node from one location to
another. A next extension of GreenMirror could allow the user to drag a node in the visualizer
from one location to another. Assuming both location boundaries have been properly de�ned,
the application can recognize this as a state-transition. In this scenario the user can alter the
trace, adding state-transitions before, in-between or after the transitions on the original trace.

There are of course many more visualization possibilities than simply moving a node. Con-
tinuing and expanding on the previous scenario: in stead of the atomic interaction of dragging a
node to another location, the user could record multiple changes in the visualizer, resulting in a
new state-transition de�nition or in the recognition of a previously de�ned state-transition. This

33

might work �ne solely for recognizing state-transitions, but this still has considerable limitations
in the creation of new state-transitions.

The next step is the addition of the creation of model logic. In the GreenMirror application,
a transition in the model could be de�ned as such: "if node A and node B both have a relation
with node C, remove the relation between node A and node C and add a new relation between
node A and node D". In this step of the development of this extension, a user should be able to
create such logic based on his interactions with the visualizer. This can become complex very
fast, but that should be considered an interesting challenge to accept in the future.

The next and perhaps �nal step is to make a two-way connection with other tools that enable
or facilitate the research of state-transition models in di�erent ways. When the connection is
made between interactions with the visualizer and the creation of state-transition logic, this
could be translated into a format that can be accepted by other tools. This way, the need is
eliminated for researchers to rewrite their models into tool-speci�c formats when di�erent tools
are used.

References

[1] A. Aalbertsberg. Dynamic visualization of state transition systems. https://github.com/
Vaeil/StateTransAnimation/blob/master/report/report.pdf, 2015.

[2] E.W. Dijkstra. Co-operating sequential processes. F. Genuys (ed.): Programming Lan-
guages, pages 43�112, 1968.

[3] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Com-
mun. ACM, 40(10):32�38, October 1997.

[4] Groovy: A multi-faceted language for the java platform. http://groovy-lang.org/.

[5] P. Holser. JOpt simple: A java library for parsing command line options. https://pholser.
github.io/jopt-simple/.

[6] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, 2004.

[7] Junit: a simple framework to write repeatable tests. http://junit.org/.

[8] P. Kuchana. Software architecture design patterns in Java. CRC Press, 2004.

[9] Marcus Eduardo Markiewicz and Carlos J. P. de Lucena. Object oriented framework devel-
opment. Crossroads, 7(4):3�9, July 2001.

[10] A. Rensink. The GROOVE simulator: A tool for state space generation. Applications of
Graph Transformations with Industrial Relevance, pages 479�485, 2004.

[11] A. Shvets. Design Patterns Explained Simply. Sourcemaking.com.

34

https://github.com/Vaeil/StateTransAnimation/blob/master/report/report.pdf
https://github.com/Vaeil/StateTransAnimation/blob/master/report/report.pdf
http://groovy-lang.org/
https://pholser.github.io/jopt-simple/
https://pholser.github.io/jopt-simple/
http://junit.org/

A Service extension instructions

This appendix gives instructions on how to extend several components of the GreenMirror frame-
work. These components have been speci�cally designed to be easily extensible with as few steps
as possible. The �nal, omitted step after adding an extension is to recompile, so the extension can
be used. This section is meant for developers, although appendices A.1 and A.2 are mainly meant
for tool owners. Both of these stakeholder groups are assumed to have su�cient understanding of
the Java programming language to comprehend these instructions. Most extensible components
make use of the java. util .ServiceLoader injector. More in-depth details about implementing new
code is available in the JavaDocs on the repository of this project.

A.1 ModelInitializer

1. Implement greenmirror. client . ModelInitializer , making sure that it has a zero-argument con-
structor.

2. Add the fully-quali�ed binary class name of your new class with a new line to the �le
META−INF/services/greenmirror.client.ModelInitializer.

A.2 TraceSelector

1. Implement greenmirror. client .TraceSelector, making sure that it has a zero-argument construc-
tor.

2. Add the fully-quali�ed binary class name of your new class with a new line to the �le
META−INF/services/greenmirror.client.TraceSelector.

A.3 FxWrapper

1. Extend greenmirror.FxWrapper or greenmirror.FxShapeWrapper if the JavaFX node type your
new class is representing is an extension of javafx .scene.shape.Shape. In either case make sure
that it has a zero-argument constructor.

2. Add the JavaFX node properties you want to support (see appendix A.4).

3. Add the fully-quali�ed binary class name of your new class with a new line to the �le
META−INF/services/greenmirror.FxWrapper.

A.4 FxPropertyWrapper

1. Extend greenmirror.FxPropertyWrapper.

2. Support for this FX property type is being added to support a speci�c FX property
of an FxWrapper subclass. An entry must be added to one of two methods of the rel-
evant FxWrapper subclass. If the FX property can be animated, add an entry to the
getAnimatableProperties() method. If the property can only be set once, add it to the
getChangableProperties() method.

3. Add one or more get-methods to the FxWrapper subclass.

35

4. Add one or more set-methods to the FxWrapper subclass. The type of the argument of
the primary set-method depends on what the relevant FxPropertyWrapper's getPropertyType()

method returns.

5. If the property can be animated, but hasn't got a javafx .animate.Transition implementation
yet, create it. The abstract AbstractTransition and DoublePropertyTransition classes have been
created to provide several often used methods when extending javafx .animate.Transition.

6. If the property can be animated, add the animate method that returns the javafx .animate.

Transition that changes the value of the property when played.

7. If the user needs access to the new property type in the Groovy model initializer, add an en-
try to the IMPORTS constant of the greenmirror. client . modelinitializers .GroovyScriptModelInitializer

class.

A.5 Placement

1. Extend greenmirror.Placement, making sure that it has a zero-argument constructor.

2. If the placement has no further parameters (such as the angle parameter of EdgePlacement),
add a public constant to greenmirror.Placement holding an instance of your new class.

3. Add support for the new placement by adding the necessary calculations to the calculatePoint

(Placement) methods of all implemented FxWrappers and to the static calculatePointOnRectangle

(double, double, Placement) method of the FxWrapper class.

4. Add the fully-quali�ed binary class name of your new class with a new line to the �le
META−INF/services/greenmirror.Placement.

A.6 Command

1. Extend greenmirror.Command.

2. Add a corresponding CommandHandler. See appendix A.7.

A.7 CommandHandler

1. Extend greenmirror.CommandHandler, making sure that it has a zero-argument constructor
and that its getCommand() method returns the same string as the Command class that this
handler is meant to handle.

2. Add at least one of the @ClientSide and @ServerSide annotations, indicating on which "side"
the command should be handled.

3. Add the fully-quali�ed binary class name of your new class with a new line to the �le
META−INF/services/greenmirror.CommandHandler.

A.8 CommandLineOptionHandler

1. Implement greenmirror.CommandLineOptionHandler, making sure that it has a zero-argument
constructor.

36

2. Add at least one of the @ClientSide and @ServerSide annotations, indicating on which "side"
the command line option should become available.

3. Add the fully-quali�ed binary class name of your new class with a new line to the �le
META−INF/services/greenmirror.CommandLineOptionHandler.

A.9 Log

1. Extend java. io .PrintStream.

2. Add a Log.addOutput(instance); statement to the entry point of the component you want to
add it to. The entry point of the client is the static main(String[]) method of the greenmirror.

client .Client class. The entry point of the server is the start (Stage) method of the greenmirror

.server . Visualizer class.

37

B Sequence diagrams

All diagrams are simpli�ed in the sense that they do not show every atomic operation and that
they show only validation and error handling when it is relevant and essential to the understand-
ing of the sequences. They are simpli�ed to improve the overall orderliness and comprehensibility
of the diagrams.

Figure 15: simpli�ed sequence diagram of the general start-up. There is a slight di�erence on
the server side: if the options are all handled correctly, the controller doesn't close the streams,
but starts listening for incoming connections.

38

Figure 16: simpli�ed sequence diagram of the handling of the −−model command line option

39

Figure 17: simpli�ed sequence diagram of the handling of the −−trace command line option

40

Figure 18: simpli�ed sequence diagram of user interaction with any one of the toolbar buttons
(but not with the pause button)

41

	Introduction
	Background
	Glossary
	Stakeholders
	Project definition

	The ferryman
	Features
	Client and server
	Nodes and relations
	Node placement
	Commands
	Log
	The GridBuilder class

	Design and implementation
	Package structure
	General work-flow
	Detailed work-flow
	Interface design
	Implemented design patterns
	Internal representation of visual node properties
	Internal representation of states and state-transitions
	Interchange formats

	Validation
	Discussion
	Service extension instructions
	ModelInitializer
	TraceSelector
	FxWrapper
	FxPropertyWrapper
	Placement
	Command
	CommandHandler
	CommandLineOptionHandler
	Log

	Sequence diagrams

