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Summary 
High and low flows may cause several problems to society. Flood forecasting, low flow forecasting 
and hydrological forecasting in general are important to mitigate the negative consequences of 
extreme flow events and for economic use of a river. Ensemble prediction systems are increasingly 
used for hydrological forecasting. These systems provide an ensemble of forecasts for each forecast 
period instead of a single, deterministic forecast. There have been various studies on ensemble flow 
forecasting, but these studies have mainly focused on large river catchments and exclusively on flood 
forecasting or low flow forecasting. The objective of this study is to develop an ensemble flow 
forecasting system for the Biała Tarnowska catchment (~1000 km2) in Poland and to investigate the 
performance of this system for lead times from 1 to 10 days, for low, medium and high flows and for 
different hydrological circumstances. 

The ensemble flow forecasting system consists of a deterministic lumped hydrological (HBV) model 
with input data in the form of ensemble precipitation and temperature forecasts from the European 
Centre for Medium-Range Weather Forecasts (ECMWF). The meteorological ensemble forecast data 
from ECMWF consists of 1 control forecast and 50 perturbed ensembles. The deterministic 
calibration of the hydrological model has been based on observed precipitation, temperature and 
discharge data. It turned out that pre-processing of the precipitation forecasts with Quantile 
Mapping is best when it is applied separately for each lead time. For the temperature forecasts the 
best results are obtained if in addition seasonal distinction in a summer and winter season is applied. 
However, the best flow forecasts are obtained when no pre- or post-processing with Quantile 
Mapping is applied at all. Therefore no pre-processing of meteorological forecast and no post-
processing of flow forecasts has been applied. To improve the representation of the current situation 
in the catchment at the forecast day, the initial conditions in the hydrological model are updated 
based on discharge observations at one day before the forecast day. 

The performance of the flow forecasts deteriorates with lead time. The skill of the flow forecasts is 
determined with respect to the best reference forecast set, which are flow forecasts based on an 
ensemble of historical observations of precipitation and temperature on the same calendar day over 
the past 20 years. In general the skill of the flow forecasts is positive and maximum between lead 
times of 2 and 5 days, but this is very different for the low, medium and high flow forecasts. The low 
flow forecasts do not have skill until a lead of 2 days and after that they show a small positive skill. 
The medium flow forecasts do not provide skill for all lead times. The highest skills are obtained for 
the high flow forecasts. This has to do with the performance that historical observations of 
precipitation and temperature on the same calendar day provide for these flow categories and that 
the same initial conditions are used to generate the ensemble flow forecasts and the reference 
forecasts. Since in low flows initial conditions are more important, it is more difficult for the 
ensemble flow forecasting system to deviate from the reference forecasts and thus to be able to 
generate skilful flow forecasts.  

The forecast skill is also very different for different high flow and low flow producing processes. 
Regarding high flow forecasts the highest skill is obtained for the short-rain floods, but the skill 
decreases considerably for lead times larger than 5 days. Long-rain floods and snowmelt floods are 
more dependent on the initial conditions in the catchment, which leads to small forecast skills at 
short lead times. From a lead time of respectively 3 days and 2 days also long-rain floods and 
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snowmelt floods are skilfully forecasted. The low skill of low flow forecasts is mainly caused by low 
rainfall/high evapotranspiration generated low flow forecasts, while the skill of snow accumulation 
generated low flows is relatively high. These results provide information about the system and in 
which situations it can be used to generate skilful flow forecasts.  

The performance of the flow forecasting system has also been researched on different properties of 
forecast quality. The sharpness of the forecasts is good, because forecast probabilities of low and 
high flows are most often close to 0 or 1, instead of forecast probabilities close to the mean 
probability. The resolution is also good, with high hit rates compared to false alarm rates for high and 
low flow forecasts. However, the reliability of the system is not good, particularly for small lead 
times. To improve the reliability of the ensemble flow forecasts it is recommended to also include 
hydrological model parameter and initial condition uncertainty, or to improve post-processing of the 
flow forecasts. In addition it is recommended to do further research to improve the reliability of the 
precipitation and temperature forecasts.  

The relative contribution of meteorological forecast errors and hydrological model errors (including 
initial conditions) has been researched to give recommendations about how the ensemble 
forecasting system can be improved effectively. In general the relative contribution of meteorological 
forecast errors increases with lead time and the relative contribution of hydrological model errors 
decreases with lead time. Regarding the different flow categories, when the objective of further 
research is to improve the high flow forecasts it is recommended to focus further research mainly on 
improving the meteorological forecasts, because in high flow forecasts errors from the 
meteorological forecasts are relatively more important. When the objective is to improve the low 
flow forecasts it is recommended to focus further research at first mainly on the hydrological model 
performance. The calibration was skewed to high discharges, so it is expected that an easy 
improvement of the forecasts can be achieved when the hydrological model would be calibrated on 
low flow situations. Besides improvement of the hydrological model, further research should be done 
to improve the meteorological forecasts.  

After all, it is recommended to extend the research to other catchments and (if possible) with a 
longer period of data, to be able to draw more general conclusions and to test more extreme high 
and low flow thresholds before the system is potentially applied operationally. In addition, it is 
recommended to incorporate statistical tests for the evaluation scores to increase confidence in the 
conclusions.  
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1. Introduction 
This chapter provides an introduction to the research. At first background information and relevance 
of the topic is described in section 1.1. Previous research is discussed in section 1.2. In section 1.3 
and section 1.4 the research gap and research objective are defined. In section 1.5 follow the 
research questions and in section 1.6 the methodology and reading guide are presented.  

1.1 Background and relevance 
Floods and low flows cause several problems to society. Flood damage mitigation can be provided by 
structural and non-structural strategies (Carpenter et al., 1999; Yazdi et al., 2014). Yazdi et al. (Yazdi 
et al., 2014) recommend non-structural strategies instead or besides structural measures, because of 
insufficiency of structural methods for flood damage reduction and because of economic and 
environmental advantages of non-structural approaches. Yazdi et al. (Yazdi et al., 2014) mention 
watershed management techniques, flood forecasting and warning, flood insurance and flood 
management in reservoirs as frequently used non-structural measures for flood mitigation. Providing 
early flood warnings is an effective strategy in reducing flood damage, intangible impacts (stress) and 
loss of life due to flooding (Penning-Rowsell et al., 2000; Werner et al., 2006), because it gives civil 
protection authorities and the public more preparation time and thus reduces the impacts of the 
flood (Cloke & Pappenberger, 2009; Werner et al., 2006). Flood protection have risen on the political 
agenda over the last decade, for example in the Netherlands (Ministerie van Verkeer en Waterstaat 
et al., 2009). According to the Ministerie van Verkeer en Waterstaat et al. (2009), especially along 
rivers flood warning can be an effective component in the policy of flood protection, because a flood 
can be predicted some days before the event.  

Besides floods also low flows regularly appear in rivers and these may also negatively affect several 
river functions like water supply, power production, navigation, ecological protection and water 
quality control (Demirel et al., 2013a; Fundel et al., 2013; A. Ye et al., 2015). To anticipate to possible 
low flow events, low flow forecasts up to 10 days ahead are essential (Demirel et al., 2013a). Low 
flow forecasts are usually investigated on a seasonal time scale, but forecasts on a monthly or lower 
time scale are also relevant (Fundel et al., 2013). Forecasting medium discharges is relevant for water 
supply, generating hydropower and controlling procedures for reservoirs and dams. 

It can be concluded that flood forecasting, low flow forecasting and flow forecasting in general are 
relevant to mitigate the negative consequences of extreme flow events and for economic use of a 
river. This is increasingly important because as a result of global climate change it is expected that 
the frequency and intensity of low flow and high flow events will increase in many areas in the world 
(Intergovernmental Panel on Climate Change, 2014) and due to economic development also the 
economic consequences increase (Ministerie van Verkeer en Waterstaat et al., 2009). A warning 
must be provided at such a time before the event that it is possible to take responsive actions 
(Werner et al., 2006). Medium-range forecasting, with lead times up to 10 days (European Centre for 
Medium-Range Weather Forecasts (ECMWF), 2012; Werner et al., 2006), provides appropriate lead 
times for this purpose.  

Hydrological forecasting systems are more and more implemented as ensemble prediction systems 
(Cloke & Pappenberger, 2009). These systems provide an ensemble of river flow forecasts for each 
forecast period, which can be understood as a probabilistic forecast of future river flows, instead of 
relying on one deterministic forecast (Cloke et al., 2013). Advantages of ensemble flow forecasts are: 
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• Extended lead times: Meteorological forecasts are required to obtain hydrological forecasts 
with lead times longer than the concentration time of the catchment (Cloke & Pappenberger, 
2009; Werner et al., 2006). Meteorological forecasts are nowadays often provided in the 
form of ensemble forecast data, from meteorological services like ECMWF, the 
Meteorological Service of Canada (MSC) and the National Centers for Environmental 
Prediction (NCEP) (Buizza et al., 2005).  

• Account for uncertain information in flow forecasts: Traditionally low flow (Demirel et al., 
2013a) and high flow forecasts (Verbunt et al., 2007) are given as one deterministic value, 
even though there is uncertainty in the forecast. There is an increasing interest to account 
for uncertain information in decision support systems (Cloke & Pappenberger, 2009; Demirel 
et al., 2013a).  

• Earlier information about the possibility of an event: With an ensemble flow forecast there is 
earlier knowledge about the possibility of a flood event and there can be anticipated to the 
possible flood event by the development of different flood scenarios, responses and actions 
and reinforced monitoring of the meteorological and hydrological conditions over the 
coming days (Thielen et al., 2009a). If one or a few ensemble members forecast a high flow 
event this indicates the possibility of a flood, while the ensemble mean forecast or 
deterministic forecast might still be below the warning threshold.   

1.2 Previous research 
Various previous studies have investigated hydrological ensemble forecasting systems. An important 
flood forecasting system is the European Flood Alert System (EFAS), which is an operational 
ensemble flood prediction system at a large-scale European level. The objective of this system is to 
predict high flows in large European rivers basins for lead times between three and ten days, so that 
preventive measures can be taken to reduce the consequences (Thielen et al., 2009a). On average, 
skilful predictions are found over the whole 10-day forecast range, increasing with increasing 
upstream area (Alfieri et al., 2014). Alfieri et al. (2014) attribute this to the more gradually varying 
discharge in large river catchments and the influence of initial discharge compared to forecasted 
precipitation input is larger in large catchments than in smaller catchments (more water is already in 
the system).  There is a clear deterioration of scores for catchments smaller than 300 km2, although 
in practice EFAS uses a minimum upstream area of 4000 km2 to issue flood alerts to partner institutes 
(Alfieri et al., 2014). Thielen et al. (2009a) describe that there can be large discrepancies between 
model results and discharge observations, so critical flood warning thresholds are based on 
simulated discharges instead of thresholds directly extracted from observations. EFAS is aimed at 
providing early warnings of possible flooding, not to provide specific river flow forecasts (Demeritt et 
al., 2013). De Jong et al. (2012) argue that EFAS is not meant to provide precise estimations of 
discharge, because this is something that countries can better do by themselves. It can be concluded 
that the system should be used at the level at which it has been built, namely at large-scale European 
level. To provide detailed forecasts of discharge, smaller scale ensemble flow predictions systems are 
needed. 

There have been several studies on smaller scale ensemble flow prediction systems (most of them 
not operational). Roulin and Vannitsem (2005) developed an ensemble flow prediction system for 
two Belgian catchments, using a water balance model with meteorological forecasts from ECMWF as 
input, and evaluated this system for high discharges. They found that the skill (compared to 
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reference forecasts based on historical precipitation observations) of ensemble streamflow forecasts 
is greater than the skill of precipitation forecasts and that the flow forecasts remain skilful beyond a 
lead time of 9 days, although skill is decreasing with increasing lead time. After all they found that 
during the winter period high discharge forecasts are more skilful than during the summer period. 
Precipitation forecasts were also more skilful during winter than during summer (Buizza et al., 1999; 
Roulin & Vannitsem, 2005). Also other studies investigated the performance of ensemble forecasts 
for different lead times, like Ye et al. (2014) for ECMWF’s medium-range ensemble precipitation 
forecasts, Thielen et al. (2009b) and Alfieri et al. (2014) for the EFAS system, Renner et al. (2009) for 
flow forecasts for the River Rhine, Olsson and Lindström (2008) for flow forecasts for various 
catchments in Sweden and Bennett et al. (2014) for various catchments in Australia, which all found 
a deterioration of performance with increasing lead time. Demirel et al. (2013a) investigated the 
effect of different uncertainty sources on the skill of medium-range (until 10 days) ensemble low 
flow forecasts. They concluded that hydrological model parameter uncertainty has the largest effect 
and input uncertainty has the smallest effect on the uncertainty in low flow forecasts. On the other 
hand Werner et al. (2006) argue that if meteorological forecasts are used to extend the forecast lead 
time, the uncertainty in the precipitation forecasts will dominate uncertainties in the flow forecasts.  

In the field of seasonal hydrological ensemble forecasting the limitations and uncertainties of 
forecasts has been researched extensively (e.g. (H. Li et al., 2009; Paiva et al., 2012; Yossef et al., 
2013)). The underlying idea of these studies was that it is important to know the role of initial 
condition errors and meteorological forcing errors for the practical design of a forecasting system 
and where to focus on with further research to improve these systems.  

Some studies investigated the contribution of errors in the meteorological forecast data and the 
hydrological model in errors of the medium-range hydrological forecasts. From the study of 
Demargne et al. (2010) follows that hydrological model uncertainty (initial conditions, model 
parameters and model structure) is more significant for short lead times and more important in low 
flow forecasts than in high flow forecasts. Renner et al. (2009) found an underprediction of high 
flows, while Olsson and Lindström (2008) found an overprediction of high flows. Both studies 
conclude that this bias mainly originates from the meteorological forecasts. Renner et al. (2009) also 
found an overprediction of low discharge, which they contribute to both the hydrological model and 
the meteorological input data. After all, Olsson and Lindström (2008) found an underestimation of 
the spread of hydrological ensemble forecasts and they concluded that the meteorological forecasts 
and the hydrological model have a comparable contribution to this.  

1.3 Research gap 
The studies that are mentioned in the previous paragraph are a selection of studies that has been 
done in this research field. One of the research directions is the EFAS system. However, this system is 
not suitable to generate detailed forecasts for the entire hydrograph (low, medium and high flows), 
as described in section 1.1, and for small river catchments.  

Cloke and Pappenberger (2009) and Cloke et al. (2013) mention that more quantitative studies on 
hydrological ensemble prediction systems are required. Previous studies on medium-range ensemble 
flow forecasting have mainly focused on flood forecasting (i.a. Alfieri et al., 2014; Bürger et al., 2009; 
Olsson & Lindström, 2008; Roulin & Vannitsem, 2005; Thielen et al., 2009a, 2009b) or low flows 
(Demirel et al., 2013a; Fundel et al., 2013). There are some studies (Demargne et al., 2010; Renner et 
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al., 2009) that include all flow categories, but they do not explicitly address performance under 
different hydrological circumstances. In addition, previous research has mainly focused on flow 
forecasts at a large spatial scale. Generating flow forecasts at a smaller spatial scale is relevant for 
regional problems, like local floods and the operation of dams, and potentially as building blocks for 
larger hydrological systems. In a relatively small river catchment short and local meteorological 
processes play a more important role and it is interesting to investigate whether these processes can 
be captured in medium-range flow forecasting systems.   

In studies on seasonal hydrological ensemble forecasting by Li et al. (2009), Paiva et al. (2012) and 
Yossef et al. (2013) the sources of errors in hydrological forecasts are investigated to give a 
recommendation about how to improve these forecasts. Previous studies on medium-range 
ensemble flow forecasting have linked the contribution of errors from meteorological forecast data 
and the hydrological model to different flows (high and low flows), but this has not been linked to 
different underlying processes for high and low flows.  

1.4 Research objective  
The objective is to investigate the performance and limitations of ensemble flow forecasts in a 
relatively small river catchment, by setting-up an ensemble flow forecasting system for the Biała 
Tarnowska catchment (~1000 km2) with meteorological ensemble input data and investigating the 
performance of this system for different purposes and hydrological circumstances. 

1.5 Research questions 
The research objective is broken down into the following research questions: 

1. What is the most appropriate set-up of input data, the hydrological model and the calibration 
procedure to obtain an ensemble flow forecasting system for the Biała Tarnowska 
catchment?  
This research question is aimed at developing the ensemble flow forecasting system to 
generate good flow forecasts.  

2. How does the ensemble flow forecasting system perform for different purposes and how does 
this relate to errors from meteorological input data and the hydrological model? 
In this research question is focused on the use of the system for different purposes. Purposes 
that will be investigated are lead times from 1 day to 10 days ahead and different flow 
categories (low, medium and high flows).  

3. How does the ensemble flow forecasting system perform for different hydrological 
circumstances and how does this relate to errors from meteorological input data and the 
hydrological model? 
There are different processes underlying low flows and high flows and the question is how 
the system performs for these processes. While research question 2 focuses on the use of 
the system, this is a scientific question that should provide more insight into the performance 
of the system under different hydrological circumstances. This provides valuable information 
about the system and in which situations it can be used. 
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1.6 Research methodology and report outline 
In Figure 1 the research scheme is presented, showing the activities that will be carried out in this 
study. In research question 1 an ensemble flow forecasting system will be developed which should be 
able to reliably forecast low flows, medium flows and high flows based on meteorological forecasts. 
After the ensemble flow forecasting system has been developed the results will be investigated for 
different purposes (research question 2) and hydrological circumstances (research question 3).  

The same approach that is used in the mentioned studies on seasonal hydrological forecasting will be 
applied, so in the first place it is investigated to which purposes and circumstances the ensemble 
flow forecasting system is limited for skilful forecasts and in the second place it is investigated what 
the dominant error source is (input or model) to give recommendations about how to improve the 
system effectively. 

By using meteorological ensemble forecasts the uncertainty of meteorological input is incorporated. 
This is one of the most popular ways to generate ensemble flow forecasts (Cloke et al., 2013). Other 
sources of uncertainty are hydrological model parameters, initial conditions and model structure 
(Zappa et al., 2011). It is often assumed that the uncertainty of meteorological forecasts is the largest 
source of uncertainty beyond 2-3 days (Bennett et al., 2014; Cloke & Pappenberger, 2009), and 
therefore only meteorological forecast uncertainty is incorporated in many studies (Bennett et al., 
2014). This is however also disputed in literature, for example by Cloke and Pappenberger (2009), 
Demirel et al. (2013a) and Zappa et al. (2011). In this study only uncertainty from the meteorological 
forecasts will be incorporated to focus the research on the effect of ensemble meteorological 
forecasts on flow forecasts.  

The study will be applied to the Biała Tarnowska catchment, located in a mountainous part of 
southern Poland (Napiorkowski et al., 2014). The catchment has an area of about 1000 km2. This is a 
suitable catchment for this research, because there is a large variation in flows and different 
processes are taking place in this catchment (rainfall and snowmelt related processes).  

In Figure 1 it is also mentioned where the methods and results are described in the report. In chapter 
2 the study area and data are described. Chapter 3 explains the methods that are used in this project, 
including the choices for several techniques. The results are analysed in chapter 4, in chapter 5 
follows the discussion and in chapter 6 the conclusions and recommendations are given.  
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Figure 1: Research scheme and structure of the report 

 

Research question 1 

Research  
question 2 

Research question 3 
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2. Study area and data 
In section 2.1 the study area is characterized and in section 2.2 the observation data are described. 
The meteorological forecast data are introduced in section 2.3. 

2.1 Study area 
The Biała Tarnowska catchment has been selected as study area. This is a suitable study catchment, 
because different hydrological processes are taking place in this catchment during the year. Both 
snowmelt and precipitation are important driving mechanisms for discharge. In addition, the 
Institute of Geophysics Polish Academy of Sciences (IGF PAN) has used this catchment in earlier 
studies, precipitation, temperature and discharge measurement data are available and IGF PAN 
already has a hydrological model and ensemble forecast data available for this catchment (Kiczko et 
al., 2015). Figure 2 presents an overview of the Biała Tarnowska catchment. The Biała Tarnowska 
river catchment is located in a mountainous part of southern Poland (Napiorkowski et al., 2014). It is 
a sub-catchment of the River Dunajec, which is a tributary of the River Vistula. The total length of the 
river is 101.8 km and the catchment area is 956.9 km2 (Napiorkowski et al., 2014). The average 
elevation is 376 m.a.s.l., but this varies considerably over the catchment. Napiorkowski and 
Piotrowski (2014) describe the river and the catchment. The majority of the river has unregulated 
banks and is in a natural state. The southern area of the catchment (about 25% of the catchment 
area) is a wooded mountainous part with an average river slope of 10‰. The northern area has deep 
river valleys and in general this area is deforested. The river slope in the northern part is in the range 
of 0.9-5‰. The Biała Tarnowska catchment is characterized by high precipitation amounts and a 
large variation of runoff during summer (Kiczko et al., 2015). During winter and spring snow plays an 
important role.  

 
Figure 2: Location and overview of the Biała Tarnowska catchment (957 km2). The Digital Elevation Model has been 

constructed by the Geographic Survey of the Polish Army 
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2.2 Observation data 
The meteorological and discharge observation data are provided by the Institute of Meteorology and 
Water Management in Poland. A description of the measurement stations and how the observation 
data are aggregated to catchment-average data is presented in section 2.2.1. The meteorological 
observation data are characterized in section 2.2.2 and the discharge observations are characterized 
in section 2.2.3.  

2.2.1 Measurement stations 
The meteorological input data to the hydrological model, in the form of precipitation and 
temperature, originate from 5 measurement stations (Figure 3). These measurement stations have 
been selected because of coverage and data completeness. However, none of them is situated in the 
river catchment itself, which might degrade a reliable application of this input data. Since the 
catchment is relatively small it is expected that there are no large differences due to location. There 
can be differences due to elevation, for which a correction will be introduced in section 3.1. In Figure 
3 other measurement stations are indicated in or close to the catchment, but they have shorter time 
series and/or contain gaps (Osuch, personal communication, 2015). The measurement data from the 
5 measurement stations are aggregated to catchment-average precipitation and temperature by 
weighting factors based on Thiessen polygon surface areas (also indicated in Figure 3). Table 1 and 
Table 2 include the weightings of the measurement stations. The discharge measurements are 
provided by a water level measurement station at the downstream end of the river and water levels 
are translated into discharges using rating curves. Measurements are available for the period 1-1-
1971 to 31-10-2013 at a daily time interval.  

 
Figure 3: Locations of the measurement stations and Thiessen polygons of the selected meteorological stations 
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2.2.2 Meteorological observation data 
The meteorological input data consists of precipitation and temperature. In this section the 
precipitation (section 2.2.2.1) and temperature (section 2.2.2.2) observation data are characterized.  

2.2.2.1 Precipitation 
Precipitation measurements are provided in millimetres per day with one decimal accuracy. Table 1 
presents precipitation characteristics per measurement station. It can be seen that there are quite 
large differences in average precipitation per year at the different measurement stations. This 
indicates a relationship between precipitation and elevation, although other factors like on which 
side of the mountain a measurement station is located can also play a role. This is further elaborated 
in section 3.1.1. The uncorrected catchment-average precipitation per year over the catchment is 
741.2 mm/year, and the runoff fraction (runoff divided by precipitation) is 41.3%. The highest daily 
precipitation amounts and most extreme precipitation events occur during summer. All maxima per 
measurement station that are presented in Table 1 occurred during the summer months June and 
July.   

Table 1: Characteristics of the precipitation observation data over the period 1-11-1971 to 31-10-2013 
Measurement station Areal weight [%] Elevation station 

[m.a.s.l.] 
Average precipitation 

[mm/year] 
Maximum in period 

[mm/day] (date) 
Nowy Sącz 24.40 292 724.3 82.6 (30-6-1973) 
Tarnów  30.67 209 725.1 90.7 (29-7-2000) 
Biecz-Grudna  27.22 285 704.6 113.0 (3-6-2010) 
Krynica K/Muszyny 13.86 585 843.7 94.5 (7-6-1999) 
Wysowa  3.85 517 867.0 84.5 (3-6-2010) 
Weighted areal average (uncorrected) 741.2 77.0 (3-6-2010) 
 
2.2.2.2 Temperature 
Temperature measurements are provided in Celsius degrees with one decimal accuracy, from the 
same measurement stations as precipitation observations. The temperature observation data per 
measurement station are summarized in Table 2. Also temperature will be corrected for elevation 
differences over the catchment (section 3.1.2). Temperature is used to calculate potential 
evapotranspiration and as input to the snow accumulation and snowmelt module in the hydrological 
model.   

Table 2: Characteristics of the temperature observation data over the period 1-11-1971 to 31-10-2013 
Measurement station Areal weight [%] Elevation station [m.a.s.l.] Average temperature [oC] 

Nowy Sącz 24.40 292 8.5 
Tarnów  30.67 209 8.8 
Biecz-Grudna  27.22 285 7.8 
Krynica K/Muszyny 13.86 585 6.1 
Wysowa  3.85 517 6.1 
Weighted areal average (uncorrected) 8.0 

 
2.2.3 Discharge observation data 

The average discharge over the period 1972-2013 is 9.4 m3/s, with a standard deviation of 19.9 m3/s. 
This means that there is a large variation in discharge, with very extreme peaks compared to the 
average discharge. The highest discharge that has been measured is 611 m3/s. In Figure 4 the 
distributions of average discharge and extreme events over the year are presented. During spring the 
average discharge per day is largest, which is a result of snowmelt. Also during summer discharge 
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peaks occur frequently. These peaks are caused by high precipitation events, which mainly occur in 
summer. By laying the observation time series of precipitation and discharge side by side it appears 
that the lag time between precipitation peaks and discharge peaks is in general between 1 and 3 
days.  Hydrological years start on 1 November. The hydrological year that begins on 1-11-1971 will be 
called 1972. 

 
Figure 4: a. Average discharge per day b. Number of extreme events (exceedance probability of 5%, 28.3 m3/s) per day, 

over 1972-2013 

2.3 Meteorological forecast data 
The THORPEX Interactive Grand Global Ensemble (TIGGE) project, developed by The Observing 
System Research and Predictability Experiment (THORPEX), provides historical ensemble forecast 
data from several forecast services (Bougeault et al., 2010). Buizza et al. (2005) have compared 
meteorological ensemble forecasts from three services, from ECMWF, MSC and NCEP. Their 
conclusion is that most verification measures indicate that the ECMWF ensemble forecast system 
provides the best overall performance, with the NCEP system being competitive during the first days 
and the MSC system during the last few days of the 10-day forecast period. Tao et al. (2014) conclude 
that among the evaluated numerical weather prediction models, ECMWF and the Japan 
Meteorological Agency have the best overall performance in both raw and processed forecasts. Of 
course the performance of the different services can be different for other locations. Because in 
previous literature it turned out that the performance of ECMWF forecasts is relatively good, these 
data have often been used in studies on hydrological ensemble forecasting (Cloke & Pappenberger, 
2009) and IGF PAN already has experience with these data (Kiczko et al., 2015), the meteorological 
ensemble forecast data of ECMWF will be used in this project.  

The forecasting system of ECMWF consists of several components, including an atmospheric General 
Circulation Model (GCM), an ocean wave model, a land surface model, an ocean GCM and 
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perturbation models (used for the ensemble forecasts) (Persson & Andersson, 2013). ECMWF 
provides global medium-range weather forecasts consisting of a high-resolution forecast (HRES) and 
an ensemble of lower-resolution forecasts (ENS) (ECMWF, 2012). The high-resolution forecast is the 
most accurate prediction of future weather ECMWF can provide, up to 10 days ahead (ECMWF, 
2012). The meteorological forecasting system is run at a coarser resolution to generate 50 ensemble 
forecasts and a control forecast (Buizza et al., 2005). By providing ensemble results it is recognized 
that forecasts should be considered as stochastic forecasts (Tracton & Kalnay, 1993). Errors in a 
single, deterministic forecast arise as a result of initial condition errors and model errors, and the 
effect of these causes is inseparable (Leutbecher & Palmer, 2008). Persson and Andersson (2013) 
explain that to estimate the effect of possible initial state errors and model uncertainty and the 
related uncertainty of the forecasts, an ensemble of 50 different perturbed initial states (like surface 
pressure) is generated. In fact a set of 25 global perturbations is developed and reversed to obtain a 
mirrored set of 25 global perturbations (Persson & Andersson, 2013). Model uncertainty is 
incorporated by two stochastic perturbation techniques, which randomly perturb the tendencies in 
the physical parameterisation schemes and the vorticity tendencies (Persson & Andersson, 2013). It 
should be realized that the consequence of modifying the initial conditions around the most likely 
estimate of the truth is that the quality of the perturbed analysis is on average slightly lower than the 
quality of the control forecast (Palmer et al., 2006; Persson & Andersson, 2013). However Palmer et 
al. (2006) argue that trying to make each member of the ensemble forecast relatively more skilful 
compared to the control forecast by reducing the initial perturbations of ensemble members will not 
make a better ensemble prediction system, because this will not give a realistic indication of the 
unpredictability of the weather. The individual ensemble forecasts are on average less skilful than 
the control forecast, but by their large number they should form a good ensemble mean value and a 
reliable estimation of uncertainty in meteorological variables (Persson & Andersson, 2013). Persson 
and Andersson (2013) state: “The information should be used in its totality, i.e. from all the members 
in the ensemble. The low proportion of perturbed members “better” than the control forecast in the 
short range makes the task of trying to select the “member of the day” very difficult and, perhaps, 
impossible. There are no known methods to a priori identify the “best” ensemble member beyond 
the first day or so.” (p. 32) It can be concluded that the ensemble forecasts should always be used as 
a set. 

Raw (unprocessed) historical forecast data of ECMWF are available via the TIGGE data portal from 1-
10-2006 until recently. Because observation data are available until 31-10-2013, ECMWF data are 
downloaded for the period 1-11-2006 until 31-10-2013. The original resolution of the ensemble and 
control forecasts is 32*32 km (ECMWF, 2012), but via the TIGGE data portal this is interpolated to a 
regular grid (Bougeault et al., 2010) with a cell size of  0.25o x 0.25o (~17.9 km x 27.8 km). ECMWF 
uses a bi-linear interpolation technique (Persson & Andersson, 2013). Each grid cell that covers a part 
of the catchment is selected and they are weighted according to the relative area of the catchment 
that they cover (Figure 5 and Table 3). To run the hydrological model, the meteorological variables 
precipitation and temperature are required. The ECMWF ensemble data consists of 50 members and 
also the control forecast is used, following Renner et al. (2009), Demirel et al. (2013a), Olsson and 
Lindström (2008) and the EFAS system (Thielen et al., 2009a). It is considered that no perturbation is 
also a possible state of the atmosphere. ECMWF forecasts are available with a time interval of 
12 hours or 24 hours, until a maximum lead time of 360 hours. Observation data are available at a 
daily time interval and the hydrological model works on a daily basis, so also for the forecasts a time 
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interval of 1 day is used. A maximum lead time of 10 days is used, following the World 
Meteorological Organization (WMO) that defines medium-range forecasts as lead times from 3 days 
to 10 days (ECMWF, 2012) and many other studies on ensemble flow forecasting that also used 
9 days or 10 days as maximum lead time (e.g. (Olsson & Lindström, 2008; Renner et al., 2009; Roulin 
& Vannitsem, 2005; Verkade et al., 2013)). Precipitation forecasts are provided as values 
accumulated over a time interval (Bougeault et al., 2010; Persson & Andersson, 2013). Precipitation 
forecasts per day are extracted by calculating the increase in accumulated precipitation between two 
days. As with observation data, it is considered that a forecast is representative for a calendar day. In 
Figure 6 an example precipitation forecast is presented. Temperature forecasts are not provided as 
mean temperatures over a period, but as values at a certain time (forecast at 00:00 applies to 00:00). 
This means that temperature could not directly be considered as representative for the whole day. 
To obtain a representative temperature it needs to be averaged over the day. Therefore temperature 
forecasts are downloaded with origin times 00:00 and 12:00, both with an interval time of 24 hours. 
To calculate an average temperature for the whole day, the temperature at 00:00 is weighted with 
25%, the temperature at 12:00 with 50% and the temperature at 24:00 (00:00 of the next day) with 
25%. It should be realized that this is a very simple method, which of course will introduce errors. But 
in general this should provide suitable daily average temperatures and it is a better approximation of 
daily average temperature than the temperature at 00:00 or 12:00.  

 
Figure 5: Locations of the measurement stations and ECMWF grids that cover the Biała Tarnowska catchment 

Gridcell Weight [%] 
860 8.3 
861 0.1 
886 24.3 
887 39.9 
888 21.9 
913 3.6 
914 1.9 

Table 3: Grid cell weights 
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Figure 6: Example of an ensemble precipitation forecast from ECMWF 
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3. Methodology 
This chapter describes the steps that are taken to fulfil the objective of this study. Figure 1 presents 
an overview of the methods that are applied. In section 3.1 the preparation of observation data is 
described. In section 3.2 the hydrological model is explained and in section 3.3 the calibration 
method is described. In section 3.4 an update state procedure is developed and in section 3.5 
different pre- and post-processing strategies are implemented. In section 3.6 the ensemble flow 
forecasting system is described. These methods lead to an answer to research question 1. In section 
3.7 to section 3.9 the evaluation procedure is described to answer research questions 2 and 3.  

3.1 Data preparation observation data 
In this section the preparation of the precipitation and temperature observation data is described. 
Due to elevation differences over the catchment, it is needed to correct the precipitation and 
temperature measurements.  

3.1.1 Elevation correction of precipitation 
There are quite large differences in elevation over the catchment (also see Figure 3). In general 
precipitation increases with elevation, particularly on windward slopes (Sevruk, 1997). In basins with 
large elevation differences the catchment-average precipitation may be underestimated if only 
measurement stations at low elevations are available (Martinec et al., 2008; Zhang et al., 2014), and 
in general most measurement stations are located in the valleys (Panagoulia, 1995; Sevruk, 1997). 
The precipitation gradient (in mm/100 m or %/100 m), which is the increase in precipitation 
proportionate to the increase in elevation, is often used for precipitation extrapolation (Panagoulia, 
1995; Zhang et al., 2014). For the Biała Tarnowska catchment this linear relationship is presented in 
Figure 7, based on the elevation (from metadata) and annual average precipitation of the 5 
measurement stations during the period 1971-2009 (full period of data that was available at this 
moment in the study). An increase in annual precipitation of 44.84 mm/year per 100 m is found, 
which is an increase of 6.1% per 100 m (relative to uncorrected catchment-average precipitation).  

 
Figure 7: Relationship precipitation with elevation: Precipitation = 0.448*Elevation + 595 (6.1 %/100 m) 
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Zhang et al. (2014) and several studies that are mentioned by Zhang et al. (2014) show variability of 
the precipitation gradient over the year. Figure 8 is based on relationships as in Figure 7, but for each 
month separately. In absolute sense the precipitation gradient is larger during the summer months, 
because precipitation is larger in these months and the absolute differences between the stations 
are larger. The relative precipitation gradient is larger during the winter months, especially from 
December until February, so in these months precipitation increases relatively more with elevation 
than during the other months. A possible explanation for this is that during the months December 
until February the air is colder at higher elevations and there is snowfall at these locations, while at 
the lower elevations there is no precipitation. Possibly this is mixed in November, which shows a 
slightly higher precipitation gradient compared to the other months between March and November. 
From Figure 8 two periods are distinguished, namely December – February with a high relative 
precipitation gradient and March – November with a low relative precipitation gradient. This is not 
done per month, because within these periods the differences are not large and using separate 
months would decrease the amount of data on which the relationships are based. The precipitation 
gradients for these periods (10.5 %/100 m and 5.4 %/100 m) are used to calculate the correction 
factors. It is assumed that the linear precipitation gradients can be extrapolated to higher elevations 
than the elevations of the measurement stations on which they have been based. 

 
Figure 8: Precipitation gradient variation over the year in mm/month/100 m relative to uncorrected catchment-average 

precipitation 

It is difficult to compare these values with other studies, because many studies do not provide the 
precipitation gradient as a percentage but in mm/100 m (like Sevruk (1997) and Zhang et al. (2014)). 
In the study of Sevruk (1997) the precipitation gradient varies strongly over Switzerland, and for this 
study it has been estimated that it varies roughly between 0%/100 m and 10%/100 m. For the study 
of Zhang et al. (2014) precipitation gradients of about 6%/100 m has been estimated, which in 
relative sense do not vary much between months. Panagoulia (1995) found a precipitation gradient 
of 12.6%/100 m for a catchment in Greece, based on only 4 measurement stations. The default value 
that is applied in Hydrologiska Byråns Vattenbalansavdelning (HBV) models is 10%/100 m. In general 
it can be said that the precipitation gradients that are found in this study are in the same order of 
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magnitude as the values in literature. Although the number of measurement stations is only 5, which 
is few, it has been chosen to use the calculated values instead of a default value from literature. 
There is a clear difference between two periods of the year, so one default value over the whole year 
is not appropriate. In addition the points are close to the fitted lines, so this provides confidence in 
the obtained precipitation gradients.  

Column 3 and 4 in Table 4 and Table 5 present the elevation of the measurement stations (from 
metadata) and the mean elevation of the Thiessen polygon they represent. The elevation of most 
Thiessen polygons is under-represented by the elevation of the measurement station, which means 
that also precipitation over this part of the catchment is underestimated. Panagoulia (1995) proposes 
the following equation to calculate the correction factor: 

𝜆𝜆𝑃𝑃,𝑖𝑖 = 1 +
𝑒𝑒𝑐𝑐,𝑖𝑖 − 𝑒𝑒𝑖𝑖
𝑃𝑃𝑖𝑖

𝛾𝛾𝑃𝑃            [3.1] 

𝜆𝜆𝑃𝑃,𝑖𝑖 = Relative correction factor of precipitation for elevation per measurement station i [-] 
 𝑒𝑒𝑐𝑐,𝑖𝑖 = Thiessen polygon catchment elevation per measurement station i [m.a.s.l.] 

𝑒𝑒𝑖𝑖 = Elevation of measurement station i [m.a.s.l.] 
𝑃𝑃𝑖𝑖 = Uncorrected precipitation at measurement station i [mm] 
𝛾𝛾𝑃𝑃 = Rate of precipitation variation with elevation [mm/m] 
 

Panagoulia (1995) applied this formula to the whole catchment after weighting of the measurement 
stations. It is more suitable to apply this to the individual measurement station-Thiessen polygon 
combinations, since these are the basic units that need to be corrected. For ec,i in equation 3.1 the 
elevation distribution in a Thiessen polygon (from the elevation distribution histograms) is used, 
instead of the mean elevation in a Thiessen polygon. This gives the correction factors per 
measurement station in column 6 in Table 4 and Table 5. Subsequently, to correct the precipitation 
observations from the measurement stations and average them to catchment-average precipitation, 
the original Thiessen polygon weighting factors are multiplied by the correction factors (column 7 in 
Table 4 and Table 5). On average, the elevation correction results in an increase of precipitation over 
the entire catchment of 7.0% in the period December – February and an increase of 3.4% in the 
period March – November, but on a daily basis this can be much different depending on distribution 
of precipitation over the measurement stations.  

By using relative correction factors, instead of absolute differences, large precipitation amounts are 
in absolute sense increased more than low precipitation amounts. Using a fixed absolute correction 
would mean that even on days with zero or very low precipitation there would be precipitation after 
correction. As a result of precipitation correction the average annual precipitation increases from 
741.2 mm to 768.4 mm.  

Topographic effects are not included in this simple correction method. According to Sevruk (1997) 
larger precipitation gradients are found for measurement stations in valleys compared to 
precipitation gradients that are based on measurement stations on the slopes. Since in general most 
measurement stations are located in valleys (Panagoulia, 1995; Sevruk, 1997), this will result in an 
overestimation of the precipitation gradient. The effect of wind is also not included. This might be 
present in the observations, but the number of measurement stations is too few to establish 
different gradients for the windward and leeward slope of mountains. 

 



3.1 Data preparation observation data 

17 

Table 4: Calculation of precipitation correction factors per measurement station for the period December-February 

Table 5: Calculation of precipitation correction factors per measurement station for the period March-November 

 
3.1.2 Elevation correction of temperature 

Temperature also varies with elevation. The temperature lapse rate is defined as the decrease of 
temperature with elevation in oC/100 m. According to Martinec et al. (2008) the temperature lapse 
rate can be determined from historical temperature observations from different measurement 
stations or it must be adopted from other basins or with regard to climatic conditions. The 
temperature lapse rate can vary between the dry adiabatic lapse rate (0.98 oC/100 m) and the 
isothermal lapse rate (0 oC/100 m) (Dobrowski et al., 2009; Zhang et al., 2014). Dobrowski et al. 
(2009) explain that the actual temperature lapse rate will be close to the dry adiabatic lapse rate 
during summer and close to the isothermal lapse rate for low temperatures. The global standard 
atmospheric lapse rate is 0.65 oC/100 m (Dobrowski et al., 2009; Zhang et al., 2014). Li et al. (2013) 
mention that commonly a fixed temperature lapse rate in the range of 0.60 oC/100 m - 0.65 oC/100 m 
is used for hydrological models. The default value that is applied in HBV models is 0.60 oC/100 m.  

However, the temperature lapse rate can differ substantially in space and time and several studies, 
like Li et al. (2013) and Zhang et al. (2014), did not use a fixed temperature lapse rate but calculated 
how the lapse rate differs in time and in space. Based on 533 meteorological stations over the 
mainland of China, Li et al. (2013) found substantial spatial and seasonal differences in the 
temperature lapse rate. Also Zhang et al. (2014) found for a high mountainous area in the Himalayan 
Mountains, based on 4 meteorological stations, that the temperature lapse rate varies over the year, 
with larger gradients in spring, summer and fall and smaller or even temperature inversion during 
winter. Li et al. (2013) found that temperature lapse rates were weaker than 0.65 oC/100 m over 
most regions, but the temperature gradients are steeper in some regions. According to Li et al. 
(2013) this shows that the usually assumed fixed value is not appropriate for China. There have been 
many more studies on temperature lapse rates or where temperature lapse rates are applied, but 
many of them focus on high mountainous areas and/or glaciers. This is because elevation differences 
are larger in these areas and thus the temperature gradient is more important. In this study there are 
not enough measurement points available to establish temperature lapse rates that vary spatially 
over the catchment and in addition the catchment is relatively small so it is expected that there are 

Measurement 
station 

Weighting 
[%] 

Elevation station 
[m.a.s.l.] 

Mean elevation 
Thiessen polygon 

[m.a.s.l.] 

Average precipitation 
Dec-Feb [mm/day] 

Weighted average 
correction factor 

Dec-Feb [-] 

New 
weighting 

Dec-Feb [%] 
Nowy Sącz 24.40 292 403.5 1.075 1.127 27.50 
Tarnów  30.67 209 274.2 1.146 1.070 32.81 
Biecz-Grudna  27.22 285 339.2 1.070 1.063 28.93 
Krynica K/Muszyny 13.86 585 553.5 1.473 0.973 13.49 
Wysowa  3.85 517 642.1 1.506 1.103 4.25 
Sum 100     106.98 

Measurement 
station 

Weighting 
[%] 

Elevation station 
[m.a.s.l.] 

Mean elevation 
Thiessen polygon 

[m.a.s.l.] 

Average precipitation 
Dec-Feb [mm/day] 

Weighted average 
correction factor 

Dec-Feb [-] 

New 
weighting 

Dec-Feb [%] 
Nowy Sącz 24.40 292 403.5 2.241 1.061 25.89 
Tarnów  30.67 209 274.2 2.225 1.036 31.77 
Biecz-Grudna  27.22 285 339.2 2.180 1.031 28.06 
Krynica K/Muszyny 13.86 585 553.5 2.567 0.985 13.64 
Wysowa  3.85 517 642.1 2.636 1.059 4.08 
Sum 100     103.44 
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no large differences in temperature lapse rate over the catchment. In Figure 9 it can be seen that the 
temperature lapse rate does not vary much over the year, but it is higher than the global standard 
atmospheric lapse rate and default HBV value. One fixed temperature lapse rate is appropriate in this 
case. The temperature lapse rate based on complete years would be 0.77 oC/100 m. Li et al. (2013) 
found that when the number of meteorological stations is less than 16, the resulting temperature 
lapse rate shows a great variation, which indicates a larger uncertainty. Therefore it has been chosen 
to apply the global standard temperature lapse rate of 0.65 oC/100 m. In chapter 5 the used 
precipitation gradients and temperature lapse rate are further discussed.  

 
Figure 9: Temperature lapse rate variation over the year 

Martinec et al. (2008) propose the following equation to calculate the elevation adjustment of 
temperature: 

𝛥𝛥𝑇𝑇𝑖𝑖 = 𝛾𝛾𝑇𝑇�𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑐𝑐,𝑖𝑖� �
1

100
�             [3.2] 

𝛥𝛥𝑇𝑇𝑖𝑖 = Absolute temperature correction for elevation per measurement station i [oC] 
 𝛾𝛾𝑇𝑇 = Temperature lapse rate = 0.65 °𝐶𝐶/100 𝑚𝑚  

𝑒𝑒𝑖𝑖 = Elevation of measurement station i [m.a.s.l.] 
 𝑒𝑒𝑐𝑐,𝑖𝑖 = Thiessen polygon catchment elevation per measurement station i [m.a.s.l.] 
 
With equation 3.2 a temperature correction per measurement station is calculated, constant over 
the year. As with precipitation correction the elevation distributions in the Thiessen polygons are 
used to calculate an average correction factor per measurement station. In this case an absolute 
correction is used, because temperature is not bounded by zero like precipitation. So precipitation is 
increased with a relative amount and temperature with an absolute amount. This is the same 
approach as Akhtar et al. (2009) used. The resulting temperature adjustment values are presented in 
Table 6. After temperature correction the annual average potential evapotranspiration decreases 
from 695.3 mm to 674.4 mm.  
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Table 6: Correction factors of temperature per measurement station 
Measurement 
station 

Elevation station 
[m.a.s.l.] 

Mean elevation 
Thiessen polygon 

[m.a.s.l.] 

Average 
temperature [oC] 

Temperature 
adjustment [oC] 

Nowy Sącz 292 403.5 8.5 -0.7 
Tarnów  209 274.2 8.8 -0.4 
Biecz-Grudna  285 339.2 7.9 -0.4 
Krynica K/Muszyny 585 553.5 6.1 0.2 
Wysowa  517 642.1 6.0 -0.8 

3.2 Hydrological model description 
Hydrological models are an essential part of ensemble flow forecasting systems. In a hydrological 
model the input data, in the form of precipitation, temperature and potential evapotranspiration 
over a catchment are translated into runoff from the catchment by simulating the relevant 
hydrological processes. Precipitation and temperature are provided by observation data or forecasts 
and potential evapotranspiration is based on temperature data. In section 3.2.1 the hydrological 
model is further explained and in section 3.2.2 the choice for a method to calculate potential 
evapotranspiration is explained.  

3.2.1 Hydrological model 
A variety of hydrological models exists, inter alia presented by Singh (1995). In this study the 
Hydrologiska Byråns Vattenbalansavdelning (HBV) model will be used. The HBV model was already 
developed in the early 1970s, but since then it has been further developed (Lindström et al., 1997). 
The model has been applied in more than 90 countries and for several applications, including 
hydrological forecasting (Bergström & Lindström, 2015). According to Bergström and Lindström 
(2015) the model is suitable to generate ensemble forecasts, because of the limited demand for 
computer power. It has also been applied in several previous studies on ensemble flow/flood 
forecasting (Cloke & Pappenberger, 2009; Demirel et al., 2013a; Olsson & Lindström, 2008; Renner et 
al., 2009; Verkade et al., 2013), it has been used earlier at IGF PAN (Kiczko et al., 2015; Osuch et al., 
2015; Romanowicz et al., 2013) and at the University of Twente (Booij, 2005; Demirel et al., 2013a; 
Knoben, 2013; Maat, 2015; Van den Tillaart, 2010). In addition the HBV model contains a snow 
accumulation routine, which is an important process in the study catchment.  

The HBV model is a conceptual rainfall-runoff model (Knoben, 2013; Werner et al., 2006). A 
conceptual hydrological model includes the relevant hydrological processes to determine the 
relationship between input (meteorological variables) and output (runoff) (Knoben, 2013). Not all 
parameters have a direct physical meaning, so they have to be calibrated against observation data 
(Pechlivanidis et al., 2011). The HBV model is based on several storage boxes, fluxes between these 
storage boxes and fluxes in (precipitation) and out (evapotranspiration and runoff) of the 
hydrological system. Nowadays the HBV-96 version, developed by Lindström et al. (1997), is often 
used. The HBV model that is currently used by IGF PAN, and that will be used in this project, contains 
14 parameters. In Figure 10 the HBV model structure is presented. In appendix 1 the HBV model 
structure and equations are further described.  

In addition to the discharge observations at the downstream end of the river (see section 2.2.1), also 
discharge observations are available halfway the river. Nevertheless the HBV model will be applied as 
a lumped model over the Biała Tarnowska catchment, because the study catchment is relatively 
small and it is not expected that separating the catchment in different sub-catchments will result in 



3.2 Hydrological model description 

20 

an improvement of the model performance. In a lumped model the whole catchment is treated as 
one hydrologic entity within which different hydrological processes are taking place.  

 
Figure 10: Structure of the applied HBV model (Knoben, 2013), further explained in appendix 1 

3.2.2 Estimation method for potential evapotranspiration 
Potential evapotranspiration is one of the required inputs to the hydrological model. Potential 
evapotranspiration is defined as the amount of water that could evaporate and transpire from a 
vegetated landscape without restrictions other than atmospheric demand (Lu et al., 2005). Different 
methods to estimate the potential evapotranspiration will give significantly different results (Rao et 
al., 2011) and in this way this has influence on how the hydrological model performs. Previously, IGF 
PAN used the method of Hamon to calculate the potential evapotranspiration because it is a simple 
method and it has provided good results in several impact studies (Osuch, personal communication, 
2015). Oudin et al. (2005) recommend to use a temperature-based potential evapotranspiration 
model in a daily rainfall-runoff model, among which the method of Hamon is mentioned. Lu et al. 
(2005) only compares actual evapotranspiration and potential evapotranspiration rates from 
different methods on annual basis, for which the actual evapotranspiration is estimated by the water 
balance of the catchments. According to Lu et al. (2005) care must be paid to selecting the 
appropriate method for a particular catchment, because different methods produce inconsistent 
results for some catchments and years. Lu et al. (2005) recommend to use the Priestley-Taylor 
method if radiation data are available, and otherwise the method of Hamon could be used. ECMWF 
provides radiation forecasts but there are no radiation measurements available, so the method of 
Hamon is the better choice. The method of Hamon will be used, because in general this method was 
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able to provide reasonable results in previous studies and it is simple to use with the available 
meteorological data (only temperature is needed as input). In appendix 2 it is further elaborated how 
the method of Hamon has been applied. 

3.3 Calibration 
The calibration procedure consists of several elements. At first in section 3.3.1 an objective function 
is chosen and in section 3.3.2 the calibration and validation period are defined. The calibration 
procedure will be started with a sensitivity analysis (section 3.3.3) to identify the most sensitive 
parameters that are important in the calibration. Next to that the calibration algorithm to find the 
optimum parameter set is explained (section 3.3.4). Two calibration rounds will be applied. In the 
first calibration round all 14 parameters in the HBV model are calibrated and in the second 
calibration round only the most sensitive parameters are calibrated. After all an uncertainty analysis 
will be executed to assess the uncertainty of the calibrated parameters (section 3.3.5).  

3.3.1 Objective function 
An objective function quantifies the quality of the model with a certain parameter set. Different 
objective functions measure different properties of the quality of the simulations. They can for 
example be conditioned on peak flows or low discharges. Since this study focuses on flows in general, 
the model should perform well during low, medium and high flows. An objective function that is 
often used to calibrate hydrological models is the Nash-Sutcliffe coefficient (NS) (Nash & Sutcliffe, 
1970; Romanowicz et al., 2013). With NS the shape of the hydrograph is evaluated (Van den Tillaart, 
2010). However, NS is more sensitive to peak flows, which can be at the expense of model 
performance during low flows. The relative volume error (RVE) quantifies volume errors, so that 
consistent over- or underprediction of discharge is prevented. Akhtar et al. (2009) incorporated NS 
and RVE into one objective function, called Y. Y is calculated as follows: 

𝑌𝑌 =
𝑁𝑁𝑁𝑁

1 + |𝑅𝑅𝑅𝑅𝑅𝑅|            [3.3] 

𝑁𝑁𝑁𝑁 = 1−
∑ [𝑄𝑄𝑠𝑠(𝑡𝑡) −𝑄𝑄0(𝑡𝑡)]2𝑡𝑡=𝑁𝑁
𝑡𝑡=1
∑ [𝑄𝑄0(𝑡𝑡) −𝑄𝑄0����]2𝑡𝑡=𝑁𝑁
𝑡𝑡=1

            [3.4] 

𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ [𝑄𝑄𝑠𝑠(𝑡𝑡) −𝑄𝑄0(𝑡𝑡)]𝑡𝑡=𝑁𝑁
𝑡𝑡=1

∑ 𝑄𝑄0(𝑡𝑡)𝑡𝑡=𝑁𝑁
𝑡𝑡=1

            [3.5] 

𝑄𝑄𝑠𝑠  = Simulated discharge [m3/s]     
𝑄𝑄0  = Observed discharge [m3/s] 
𝑄𝑄𝑜𝑜���� = Average observed discharge [m3/s] 
𝑡𝑡 = Time step [day] 

 𝑁𝑁 = Total number of time steps [days] 
 
NS can range between -∞ and 1. Higher values indicate a better agreement between observed and 
modelled discharge, with 1 being a perfect fit (Qs equal to Qo) (Knoben, 2013). For a NS value of 0 the 
model does not perform any better than the mean value of observed discharges (WMO, 2015). The 
RVE can be positive and negative. Positive values indicate that over the whole time period discharge 
is oversimulated by the model and negative values indicate that discharge is undersimulated. The 
optimum value of the RVE is 0%, which means that there is no difference between observed and 
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simulated volumes (Knoben, 2013). Thus in the optimum situation (perfect simulation) NS has a value 
of 1 and RVE has a value of 0%, which gives an optimum value of 1 for Y. 

3.3.2 Calibration and validation period 
To calibrate and validate the hydrological model a split-sample test will be applied, which means that 
the calibration is based on one time period and the validation is performed on another period of data 
of the same catchment (Klemes, 1986). This has been chosen because the calibrated model will only 
be applied to one study catchment. It is assumed that catchment characteristics stay the same over 
the calibration period and the period of application. Observation data are available from 1971, while 
the model will be applied to ensemble forecast data over the period 2006-2013. 1971-2000 is chosen 
as calibration period and 2001-2013 as validation period. To ensure that the calibration is done on 
full hydrological years the model is calibrated over the period 1-11-1971 to 31-10-2000 and validated 
over the period 1-11-2000 to 31-10-2013. This provides 10 months of initialization before the 
calibration period to set initial conditions (because observational data are available from 1-1-1971) 
and before the validation period an initialization period of 1 year will be used. With two simple 
executions of the calibrated HBV model it has been proven that after 250 days the difference in 
discharge output between the model running from 1-11-1971 and the model running from 1-11-2004 
is consistently below 0.001 m3/s, so it is considered that an initialization period of 10 months is 
sufficient. 

3.3.3 Sensitivity analysis 
The HBV model contains 14 parameters, which are many parameters to calibrate a model. Therefore, 
in a second calibration round and to establish a more efficient parameter uncertainty analysis only 
the parameters that have a considerable influence on the model output are varied. A sensitivity 
analysis will be used to identify the model parameters with the highest influence on the model 
results (Hamby, 1994; Song et al., 2015). 

A number of sensitivity analysis techniques exists (Hamby, 1994; Song et al., 2015). One form of 
sensitivity analysis is screening. The purpose of a screening method is to identify which parameters 
contribute significantly to the output uncertainty, rather than to quantify sensitivity exactly (Song et 
al., 2015). This fits the purpose of the sensitivity analysis here, because it is not the purpose to 
quantify sensitivity exactly but only to classify parameters in sensitive and insensitive parameters. 
When the objective is to obtain insights into the characteristics of sensitivity indices, quantitative 
methods are more appropriate (Song et al., 2015). One of the most commonly used global screening 
methods in hydrological modelling is the method of Morris (1991) (Song et al., 2015), for example 
also used by Osuch et al. (2015). Campolongo et al. (2007) state that the method of Morris has 
proven to be a very good compromise between accuracy and efficiency, especially for the analysis of 
large models. The method of Morris is especially suitable for models where the number of uncertain 
factors is high and/or the model is expensive to compute (Campolongo et al., 2007). It has lower 
computational costs compared to other global sensitivity analysis methods and it is easy to 
implement and interpret (Song et al., 2015). Song et al. (2015) mention several studies on 
hydrological modelling in which the method of Morris has been used. For distributed hydrological 
models Herman et al. (2013) conclude that the method of Morris provides results sufficiently similar 
to the Sobol’ method, at a greatly reduced computational expense. The results suggest that the 
method of Morris is not able to reliably reproduce the precise ranking of high-sensitive parameters 
provided by the Sobol’ method, but the method successfully distinguishes sensitive from insensitive 
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parameters (Herman et al., 2013). Also Shin et al. (2013) found that the results of the method of 
Morris are similar to the results of the Sobol’ method, although there are slight differences in the 
ordering of parameter sensitivities. Since the purpose of this sensitivity analysis is to identify the 
sensitive parameters the method of Morris is a suitable method to use. The choice for the method of 
Morris has been made in view of efficiency and easiness to understand and apply the method. In the 
next section the method of Morris is further explained.  

3.3.3.1 Method of Morris 
The method of Morris is based on repeating individually randomized one-factor-at-a-time 
experiments (Campolongo et al., 2007; Morris, 1991). Campolongo et al. (2011) explain that to each 
factor a so-called elementary effect is assigned, which is defined as the ratio between the variation in 
the model output (represented by an objective function) and the variation in the input factor itself. r 
different elementary effects are estimated for r different trajectories of parameter values 
(Campolongo et al., 2011). One trajectory contains a sequence of M perturbations, one for each 
parameter (Herman et al., 2013). It is possible to calculate the elementary effects of each parameter 
with only 𝑀𝑀 + 1 model evaluations. However, this would make the result highly dependent on the 
location of the initial parameter set and it does not account for interactions between parameters 
(Herman et al., 2013). Therefore this is repeated over multiple trajectories (Campolongo et al., 2011; 
Herman et al., 2013). Basic statistics of the resulting elementary effects are calculated, which reflect 
the sensitivity of the model on each parameter (Campolongo et al., 2007; Morris, 1991). The 
sensitivity measure μ (mean) and σ (standard deviation) are calculated from the elementary effects 
for each parameter (Campolongo et al., 2007). μ indicates the overall influence of the parameter on 
the output and σ estimates the higher order effects, which are non-linear and/or interaction effects 
(Campolongo et al., 2007; Song et al., 2015). The problem of μ as sensitivity measure is that if the 
distribution of Elementary Effects contains positive and negative elements, some effects may cancel 
out others (Campolongo et al., 2007). Campolongo et al. (2007) introduced an additional sensitivity 
measure μ*. μ* is the mean of absolute values of the Elementary Effects. This measure solves the 
problem of opposite signs in the Elementary Effects, but it does not provide information about the 
sign of the effect. The sensitivity measures allow to classify the inputs in three groups: inputs having 
negligible effects, inputs having linear and additive effects and inputs having non-linear and/or 
interaction effects (Morris, 1991).  

Regarding the sampling strategy of parameter values, Campolongo et al. (2007) propose an 
improvement compared to the original method of Morris (1991) which should provide a better 
scanning of the input domain without increasing the number of model executions. The idea is to 
select the r trajectories that maximise dispersion in the input space (Campolongo et al., 2007). The 
procedure starts with a high number of Morris trajectories (C), and then r trajectories with the 
highest spread are selected. It is assumed that parameters are uniformly distributed between their 
predefined lower and upper bounds (Campolongo et al., 2007). 𝑟𝑟 ∗ (𝑀𝑀 +  1) parameter sets are 
generated and for each of these parameter sets the hydrological model is run and the objective 
function is calculated, to see what happens if one of the parameter values changes.  

There are also limitations of the method of Morris. At first, this screening method cannot quantify 
the effects of different parameters on outputs (Song et al., 2015). Since the objective of this 
sensitivity analysis is not to quantify the effect but just to distinguish sensitive and insensitive 
parameters this screening method is sufficient here. Another drawback is that type II errors might 
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occur with this method, which means that an important parameter might be classified as non-
influential (Song et al., 2015). Both the Sobol’ method and the method of Morris are vulnerable to 
produce these errors (Shin et al., 2013). This should be kept in mind when parameters are classified 
as insensitive. Song et al. (2015) conclude that the best choice for a sensitivity analysis is to use a 
combination of more than one sensitivity analysis method. 

3.3.3.2 Application method of Morris 
A Matlab script to execute the method of Morris with the extensions of Campolongo et al. (2007) has 
been provided by IGF PAN. This has been applied to the calibration period, using Y as objective 
function. It is expected that the parameter values from the first calibration round are already in the 
good direction of the true global optimum. This is confirmed by running a second calibration with 14 
parameters, which resulted in a different parameter set but the parameter values were close to each 
other. The problem with using the full parameter range as defined in appendix 1 is that the sensitivity 
of parameters is tested in situations far away from the optimum. Therefore it has been chosen to 
estimate the sensitivity in a range of 20% of the original parameter range around the calibrated 
parameter value and bounded by original parameter range boundaries. The other settings that are 
used are given in Table 7. In total this yields 300 runs of the hydrological model (𝑟𝑟 ∗ (𝑀𝑀 + 1) = 300). 

Table 7: Settings of the sensitivity analysis with the method of Morris 
Setting Description Value 
M Number of model parameters 14 
C Number of different Morris trajectories. Typically between about 500 and 1000 

(Campolongo et al., 2007) 
1000 

r Final number of trajectories. Typically 4 – 8 (Campolongo et al., 2011), but this is 
increased to 20 trajectories. The number of varying parameters is relatively small 
(reduces number of model runs) and it turned out that the results can change per 
application of the method of Morris with 8 trajectories. With 20 trajectories the 
results are more reliable.   

20 

p Number of levels. Each variable can vary across p levels over the parameter range.  10 
 

3.3.4 Deterministic calibration 
The objective of the calibration procedure in this study is to obtain an optimum deterministic 
parameter set. As calibration algorithm Differential Evolution with Global and Local neighbourhoods 
(DEGL) will be applied, because it is efficient in finding the global optimum deterministic parameter 
set (Osuch, personal communication, 2015). The hydrological model will be calibrated with 
precipitation and temperature observation data as input data and evaluated against the discharge 
observations. The optimum deterministic parameter set will be applied to generate ensemble flow 
forecasts with meteorological forecast data as input. One parameter set is used for all lead times, 
because the catchment characteristics do not change with lead time.  

Differential Evolution (DE) and DEGL have been described extensively by Das et al. (2009). DE is a 
simple and efficient scheme for global optimization over continuous spaces. However, DE faces 
problems of stagnation (stop proceeding to the global optimum) and premature convergence 
(converges to a local optimum, losing its diversity). Das et al. (2009) mention that the performance of 
DE deteriorates with the growth of the dimensionality of the search space. With DE an initial 
population of parameter vectors is generated, assuming uniform distributions between predefined 
lower and upper parameter boundaries. By mutation and crossover algorithms a next generation is 
created and to keep the population size constant it is determined whether the target or trial vector 
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survives to the next generation, based on the objective function. Most population-based search 
algorithms try to balance between two contradictory aspects of their performance, namely 
exploration and exploitation. The ability to explore means that the algorithm is able to search every 
region of the feasible search space, while exploitation means the ability to efficiently converge to 
near-optimal solutions. These abilities depend on the mutation scheme that is applied. In the case of 
the DE variant ‘DE/target-to-best/1’ the best vector of the population is used to generate donor 
vectors. This promotes exploitation, since all vectors are attracted towards the same best position. 
As a result of this, the population loses its global exploration ability within a relatively small number 
of generations. So it will converge to some locally optimal point in the search space. The DEGL 
algorithm is based on the DE principle. With DEGL Das et al. (2009) has improved the trade-off 
between exploration and exploitation by using two kinds of neighbourhood models, a local 
neighbourhood model and a global mutation model. Within the local neighbourhood model each 
vector is mutated using the best position found in a small neighbourhood of it and in the global 
neighbourhood model the globally best vector of the entire population is used for mutating a 
population member. In the end the local and global model are combined using a weight factor. Das 
et al. (2009) provide different schemes for selection of the weight factor, one of them is a self-
adaptive weight factor. In the study of Das et al. (2009) at first a low weight factor (favouring 
exploration) and then an increasing of the weight factor is observed (favouring exploitation).  

Das et al. (2009) show that compared to other DE variants and other evolutionary optimization 
techniques DEGL is clearly and consistently superior for most benchmark functions. DEGL with the 
self-adaptive weight factor gave the best performance (Das et al., 2009). This variant has been used 
earlier by IGF PAN to calibrate hydrological models and it will also be used in this study. A Matlab 
script to apply DEGL has been provided by IGF PAN and in Table 8 the settings that are used are 
mentioned. In appendix 1 the parameter ranges in the calibration are presented. In the first 
calibration round all 14 parameters will be calibrated, while in the second calibration round the 
insensitive parameters (after a sensitivity analysis, see section 3.3.3) are fixed. The second calibration 
round, with only the most sensitive parameters, will be done to ensure that indeed the global 
optimum has been found in the first calibration round.  

Table 8: Settings of the DEGL calibration procedure. F, Cr, rk and wr are adopted from best-performing variant that Das et 
al. (2009) report and these settings are also used earlier by IGF PAN to calibrate hydrological models.  

Setting Description Calibration 1 Calibration 2 (on 
the most sensitive 

parameters) 
M Number of model parameters to calibrate 14 8 
MaxFunEvals Maximum number of model runs. Initially set by 

IGF PAN.  
50000 50000 

TolFun Calibration is stopped if the objective function is 
very close to the optimum value of the objective 
function (Y = 1).  

1.0*10-16 1.0*10-16 

Npop Number of elements in the population. For DE Das 
et al. (2009) indicate that a reasonable size of the 
population is 5 ∗ 𝑀𝑀  to 10 ∗ 𝑀𝑀 . 5 ∗ 𝐷𝐷  has been 
used earlier by IGF PAN and this is retained.  

70 40 

randchild Number of individuals needed to generate 
random offspring.  

2 2 

F Scaling factor. In literature values of F are in the 
range 0.4 – 1 (Das et al., 2009). 0.8 is adopted 

0.8 0.8 
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from the best performing set-up of Das et al. 
(2009).  

Cr Crossover rate. Values that are mentioned in 
literature are in the range of 0.3 to 1, with higher 
values if the parameters are dependent. 0.9 is 
adopted from Das et al. (2009). 

0.9 0.9 

rk Radius size of neighbourhood for local model. Das 
et al. (2009) used a neighbourhood size of 10% of 
the population size (Npop). Neighbourhood size is 
2rk + 1, so 10% of population size. Adopted from 
Das et al. (2009).  

3 2 

wr Initial weight factor balancing the global and local 
neighbourhood models (Das et al., 2009). 
Randomly set between 0.05 and 0.95. After the 
initial value the weight factor is determined with a 
self-adaptive scheme, following the best 
performing set-up of Das et al. (2009).  

0.05 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 1)
∗ 0.9 

0.05 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 1)
∗ 0.9 

 
In section 3.3.5 it will be explained how parameter uncertainty is estimated with the Generalized 
Likelihood Uncertainty Estimation (GLUE) approach. Another option to calibrate the parameters and 
provide parameter uncertainty is by the calibration scheme Shuffled Complex Evolution Metropolis 
algorithm (SCEM-UA), described by Vrugt et al. (2003). However, the main objective of the 
calibration is to obtain the optimum deterministic parameter set and it is considered that DEGL is a 
robust and efficient scheme for this purpose. It is also an option to calibrate the model with a Monte 
Carlo analysis, but this would require more model runs to obtain a reliable parameter set.  

3.3.5 Parameter uncertainty analysis 
To estimate parameter uncertainty and to provide more insight in the calibrated parameter values 
GLUE will be used. The idea of GLUE is that many different sets of parameters and model structures 
can fit the data acceptably well and therefore it may be impossible to distinguish between them as 
useful predictors of the system (equifinality concept) (Beven, 1993). GLUE is based on a Monte Carlo 
analysis, it is simple to understand and easy to implement and it allows to use the same objective 
function as before (Demirel et al., 2013a; Jin et al., 2010; Shen et al., 2012). The main limitations of 
the GLUE method, that have been discussed frequently in literature, are the subjective choices that it 
contains and not using a formal representation of model error (Stedinger et al., 2008; Thiemann et 
al., 2001). Demirel et al. (2013a) and Shen et al. (2012) distinguish three steps in the GLUE method:    

1. Definition of the likelihood function: The objective function (Y) that is used in the calibration will 
also be used as likelihood function in the GLUE analysis. The model will be run over the 
calibration period.  

2. Sampling parameter sets: Only the parameters for which it appeared that the output is sensitive 
will be varied (see sensitivity analysis in section 3.3.3). The GLUE analysis would result in very 
uncertain parameters for insensitive parameters, because a very wide range of parameter values 
will result in more or less the same output. These parameters are not interesting to include in the 
GLUE analysis because their influence on the output is small. Due to model simplification, i.e. 
setting fixed values to certain parameters, the uncertainty analysis is focused on parameters that 
are important for the simulations. Most studies use a uniform parameter distribution, because of 
a lack of knowledge about the true distributions (Demirel et al., 2013a). Another option is to use 
for example a normal distribution. This would mean that in fact an a priori estimation of 
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parameter uncertainty is defined and in addition it would be very subjective to choose the shape 
of such a distribution. A uniform parameter distribution will be applied with the earlier defined 
parameter ranges (see appendix 1). It has been chosen to apply 50000 model runs (equal to the 
number of model runs in the calibration) and parameter values are sampled with Latin 
hypercube sampling. Other studies used more model runs, for example Demirel et al. (2013a) 
used 120000 model runs, but they also used GLUE to calibrate the model. In this project the 
optimal parameter set has already been found by DEGL and GLUE is only applied to investigate 
uncertainty, so it is considered that 50000 model runs is sufficient.  

3. Threshold definition for behavioural model parameter selection: The 50000 tested parameter sets 
are divided into behavioural (accepted) parameter sets and nonbehavioural (rejected) parameter 
sets. The threshold for behavioural parameter sets significantly affects uncertainty estimation 
and it should be determined very carefully (Zheng & Keller, 2007). However, in literature no 
suggestions have been found to determine an appropriate threshold. Obviously a lower 
threshold leads to wider parameter uncertainty (Jin et al., 2010). Different thresholds and 
percentages of the sample have been used in previous studies. Zak and Beven (1999) used 20% 
of the parameters sets as behavioural. However, absolute thresholds are of course dependent on 
the used model and application, while percentages are also dependent on the applied parameter 
ranges. So it is difficult to adopt an appropriate threshold from previous literature, and in 
addition no previous studies are found that applied GLUE with likelihood function Y. It has been 
chosen to apply a threshold value of 0.5, because it is considered that this gives acceptable 
model performance. It must be realized that choosing an appropriate threshold for behavioural 
model selection is a very subjective element in the GLUE method (Blasone et al., 2008). 

The behavioural parameter sets provide an estimation of the parameter uncertainty, but this will not 
be used to generate ensemble flow forecasts. In section 1.6 it has been explained that parameter 
uncertainty will not be included in the flow forecasts, but in section 5.4 and in appendix 9 a simple 
implementation of parameter uncertainty is tested to investigate the effect of including hydrological 
model parameter uncertainty.  

3.4 Update state procedure 
In this section it is described how model states/storages in the hydrological model are updated. 
Hydrological models are far from perfect and in order to better represent the current situation in the 
catchment the model inputs, states or output need to be updated continuously (Wöhling et al., 
2006). To obtain a more accurate forecast model, simulations can be combined with real-time data 
(Moradkhani et al., 2005; Werner et al., 2006). Werner et al. (2006) explain that both the model 
simulations and the available real-time data must be seen as sources of information about the 
behaviour of the catchment. Both will also contain some degree of uncertainty, resulting in 
differences between the observed data and the simulated data and these differences can be taken 
into account by a feedback mechanism (Refsgaard as cited in Werner et al. (2006)), with the 
objective to reduce uncertainty in the forecasts (Werner et al., 2006). Reliable operation of a 
hydrological forecasting model requires continuous correction of the forecast as observational data 
become available (Moradkhani et al., 2005). In section 3.4.1 different approaches to establish an 
updating procedure are explained. Next to that in section 3.4.2 an appropriate updating procedure is 
chosen and in section 3.4.3 it is explained how this procedure is incorporated in the hydrological 
model.  
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3.4.1 Updating approaches 
Refsgaard (as cited in Werner et al. (2006)) distinguishes four main approaches of data assimilation, 
depicted in Figure 11 and further explained below the figure.  

 
Figure 11: Schematization of 4 approaches of data assimilation (Refsgaard, as presented in Werner et al. (2006)): 

A. Updating of input variables: Input variables are adjusted to minimize the differences between model 
output and observed variables (Werner et al., 2006).  

B. Updating of state variables (storages in HBV model): State variables in the hydrological model are updated 
(Werner et al., 2006; Wöhling et al., 2006). Measurements of actual states in the catchment are not 
available in this project, but actual discharge observations also provide information about actual states.  

C. Updating of model parameters: It is considered that flow is a non-stationary process, so a completely fixed 
model with constant parameters will not be able to characterize the catchment behaviour for all 
circumstances in the future (Young, 2002). This can be seen as a constant recalibration of the model 
(Werner et al., 2006).  

D. Updating of output variables or error prediction: Establish a statistical structure of the model error and 
based on this a forecast of the error is incorporated in the simulated value to obtain an updated forecast 
(Werner et al., 2006). 

The approaches differ in what is adapted to minimize the model error. Disadvantages of approach A 
are that the model itself is in the optimization loop and that the number of degrees of freedom 
results in a badly posed optimization problem (Werner et al., 2006). Werner et al. (2006) suggest that 
this approach is most applicable to situations where the water is already in the catchment 
(precipitation has already fallen in the catchment). Approach C is mainly applied to data-driven 
models, since in a more physically based model the parameters have a physical meaning and it is 
unlikely that these parameters will vary with the same dynamics as model errors (Werner et al., 
2006). In addition, Serban and Askew (1991) state that updating of model parameters is not 
recommended because in most models the parameters are not independent and the modification of 
one parameter would require the modification of other parameters. Approach D is also not suitable 
in this project because in forecasting systems based on meteorological forecasts the statistical 
correlation of model errors is often not very persistent for longer lead times (Werner et al., 2006). In 
addition, for flood forecasting the performance is worse because in the vicinity of floods the error 
persistence between the measured and computed hydrographs is the smallest and errors show a 
tendency to oscillate rapidly and widely (Serban & Askew, 1991).  

It can be concluded that approach B, the updating of state/storage variables, is most appropriate 
here. Initial conditions are important for the generation of runoff. State variable updating is an often 
used updating approach in hydrological forecasting (e.g. (Demirel et al., 2013a; Werner et al., 2006; 
Wöhling et al., 2006)). Otherwise initial conditions are taken from continuous deterministic near-
real-time model runs (Verkade et al., 2013; Zappa et al., 2008). Demirel et al. (2013a) explain that the 
estimation of model states based on observed discharge is superior to deterministic near-real-time 
model runs, because there can be errors between simulated and observed discharge affecting the 
model states. Werner et al. (2006) mention that there is number of methods to bring this updating 
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approach into practice, ranging from a simple method like direct insertion, where a state variable is 
substituted by an observed variable to more advanced methods like Kalman Filter approaches. In the 
next section an appropriate updating procedure will be selected.   

3.4.2 Selection of an updating procedure 
In real-time flow forecasting often the Kalman Filter method and its derivatives are used (i.a. (Chen et 
al., 2013; Komma et al., 2008; Moradkhani et al., 2005; Serban & Askew, 1991; Weerts & El Serafy, 
2006)). In addition a simpler model state updating procedure will be examined that is used by 
Demirel et al. (2013a). There are many more updating methods and some of them are mentioned in 
the discussion in section 5.1.3.  

3.4.2.1 (Ensemble) Kalman Filter 
The underlying idea of the Kalman Filter is to provide an estimate of a state vector based on model 
information and measurements and balancing out the errors of the two by minimizing the state error 
variance (Komma et al., 2008). Originally the Kalman Filter was developed for linear systems, but 
with the Extended Kalman Filter this can also be applied to nonlinear models (Serban & Askew, 
1991). If the nonlinearities in the model are strong the linearization of the Extended Kalman Filter 
becomes very inaccurate, which led to the development of the Ensemble Kalman Filter (Burgers et 
al., 1998). 

3.4.2.2 Direct model storage updating 
Although the Kalman Filter is an often used updating procedure it is a complicated method to 
understand and apply. The method that Demirel et al. (2013a) used is simpler and it is a more 
directly physically based method. At first the hydrological model is run with the calibrated parameter 
set. The next step is to establish an empirical relationship between simulated discharge and the 
fraction of fast runoff to be able to divide the observed discharge in a fast and a slow runoff 
component (see Figure 10 for the HBV model structure). These components are used to update the 
fast runoff reservoir and slow runoff reservoir to what the storages should have been to generate the 
observed discharge. Because the model storages are updated directly with a simple relationship with 
observed discharge, this method will be called ‘direct model storage updating’ in this report. 

3.4.2.3 Procedure choice 
According to Chen et al. (2013) several studies showed that the Ensemble Kalman Filter method is 
easy to implement, offers flexibility in covariance modelling, is robust and computationally efficient. 
Weerts and El Serafy (2006) conclude that the Ensemble Kalman Filter is more robust in flow 
forecasting with real data than particle filters methods and they recommended to use the Ensemble 
Kalman Filter. However Xiong and O’Connor (2002) report that, although there are high expectations 
among hydrologists about the Kalman filter as an updating tool, also reservations are made. Xiong 
and O’Connor (2002) mention that in an earlier study updated forecasts produced by a simple 
standard autoregressive model were practically identical to results obtained with a Kalman Filter. 
Wöhling et al. (2006) have based their study on the idea that Kalman Filters are mathematically too 
complex to be easily implemented in the highly non-linear hydrological models, and they therefore 
developed a simple and effective updating procedure. Also Serban and Askew (1991) indicated that 
the efficiency of Kalman filters is still open to discussion with respect to phase and shape errors of 
floods. A disadvantage of the Ensemble Kalman Filter that is proposed by Weerts and El Serafy (2006) 
is that you need a priori uncertainty in states, precipitation input and discharge. There are simpler 
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methods, like autoregressive approaches and artificial neural networks (Xiong & O’Connor, 2002) and 
direct model storage updating (Demirel et al., 2013a). The effectiveness of direct model storage 
updating as proposed by Demirel et al. (2013a) and the Kalman Filter are not compared in an earlier 
study. It seems that the main reservation about the Kalman Filter is that simpler techniques produce 
nearly as good results. Because of this, because direct model storage updating is a simpler approach 
and because in the limited available time in this project it is not possible to compare different 
updating procedures, the direct model storage updating approach of Demirel et al. (2013a) will be 
applied. An updating procedure with an iterative process, like Wöhling et al. (2006) applied, will not 
be used to keep the procedure simple and computationally easy.  

3.4.3 Implementation of direct model storage updating 
With the approach of Demirel et al. (2013a) an empirical relationship between simulated discharge 
and the fraction of fast runoff is established to divide the observed discharge in a fast and a slow 
runoff component. These components are used to update the surface water (fast runoff reservoir) 
and groundwater (slow runoff reservoir) storages in the HBV model. For the storages that cannot be 
updated directly with observed discharge, because there is no direct link with discharge (see Figure 
10), the deterministic near-real-time model runs are used with a minimum initialization period of 
1 year. The formulas to update the surface water and groundwater storages are: 

𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) = �
𝑘𝑘 ∗ 𝑞𝑞0(𝑡𝑡)

𝐾𝐾𝑓𝑓
�

1
1+𝛼𝛼

            [3.6] 

𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) = Surface water storage [mm] 
𝑘𝑘 = 𝑓𝑓(𝑄𝑄0) = Fraction of fast runoff (Qf/Qt), based on an empirical relationship with observed 
discharge (in m3/s) [-] 
𝑞𝑞0(𝑡𝑡) = Observed discharge [mm/day]  
𝐾𝐾𝑓𝑓 = Fast runoff parameter [d-1] 
𝛼𝛼 = Non-linearity parameter of fast runoff [-] 

 

𝑆𝑆𝑔𝑔𝑔𝑔(𝑡𝑡) =
(1 − 𝑘𝑘) ∗ 𝑞𝑞0(𝑡𝑡)

𝐾𝐾𝑠𝑠
            [3.7] 

𝑆𝑆𝑔𝑔𝑔𝑔(𝑡𝑡) = Groundwater storage [mm] 
𝐾𝐾𝑠𝑠 = slow runoff parameter [d-1] 
 

The relationship between total discharge and the fraction of fast runoff is yet unknown. In Figure 12 
it is clearly visible that the fraction of runoff that comes from the fast runoff reservoir (k) increases 
when total discharge increases. This relationship could be expected, because runoff from the fast 
runoff reservoir (or surface water storage) reacts faster and to a larger extent to precipitation and 
snowmelt while outflow from the slow runoff reservoir represents the slower response from the 
groundwater (base flow). Total discharge will be used as basic variable to estimate k, analogously to 
Demirel et al. (2013a). However k as a function of total discharge shows a large uncertainty (see 
Figure 12). For example for a total simulated discharge of 10 m3/s, k varies between 0 and about 0.6 
and for a total discharge of 20 m3/s k varies between about 0.3 and 0.7. This spread can be explained 
by the non-updated initial conditions. Different combinations of slow and fast runoff can result in the 
same total discharge and thus in a spread of k as a function of total discharge. Therefore it will be 
investigated whether using the non-updated storages from the HBV model can provide an 
improvement to the method of Demirel et al. (2013a). This gives the updating scheme in Figure 13.  
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Figure 12: Fraction of fast runoff to total simulated discharge as a function of the total simulated discharge, established 

over the calibration period. See text below for an explanation about the fitted lines and the 90% confidence interval.    

 
Figure 13: Updating scheme of direct model storage updating including the use of current storages from the HBV model 

The aim is to relate the spread in k as a function of discharge to non-updated initial storages from the 
HBV model. A storage that could be useful is the soil moisture storage. However this gives problems 
when there is snow accumulation, because the storage can be high (wet conditions in the catchment) 
but due to snow accumulation precipitation will not form direct runoff and there is also no seepage 
then. So there can be high soil moisture storage, but no generation of fast runoff. Therefore it will be 
investigated whether the sum of direct runoff and seepage minus capillary transport on day t-1 (this 
can form discharge at day t) can be used to explain the spread in k. The sum of these fluxes forms the 
net inflow into the fast runoff reservoir storage and is dependent on the soil moisture state and 
whether there is snow accumulation or not. Figure 14 provides insight into the relationship of the net 
inflow with the spread in k. Below Figure 14 it is explained how the figure has been constructed. It 
can be seen that the different lines in Figure 14 are close to each other, so the net inflow does not 
really explain the spread in k. This can be explained by the fact that also the initial storages in the fast 
runoff reservoir and slow runoff reservoir are important.  
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Figure 14: Fraction of fast runoff to total simulated discharge as a function of the total simulated discharge for different 
percentiles of net inflow (e.g. below the 25% percentile) in percentile bins of simulated discharge. Discharges within one 
percentile bin of simulated discharge (on x-axis) are considered as one discharge, so different net inflows give different k 

for the same discharge. 

A second option is to relate the spread in k to the non-updated storage of the fast runoff reservoir 
(Ssw) or slow runoff reservoir (Sgw). The fast runoff reservoir has the highest correlation with k for high 
and low discharges, so k will be related to discharge and non-updated initial fast runoff reservoir 
storage. Figure 15 provides insight into the relationship of these storages with the spread in k. With 
an high initial storage in the fast runoff reservoir storage the fraction of fast runoff is higher, which 
makes sense because of the definition of k. For discharges larger than 40 m3/s the difference in k 
related to differences in initial fast runoff reservoir storage are much smaller and also the spread of k 
is less, so for this spectrum it is decided to relate k only to discharge.   

It is possible to fit lines through the points in Figure 15, but the question would be which line should 
be applied to which situation. After all, the lines do not apply to a certain percentile of all initial fast 
runoff reservoir storages in the calibration period, but they apply to a percentile of storages within 
one discharge bin of 1 percentile. k should be related to both discharge and initial surface water 
storage, which can be established by surface fitting in the Curve Fitting Toolbox of Matlab. In Figure 
12 the fitted lines if k is only related to discharge are plotted and in Table 9 all resulting equations are 
given. The simplest (least parameters) polynomial functions are used that fit the data acceptably 
well. This has been done in multiple parts, because there are many points in a certain part of the 
domain and as a result of this in other parts large deviations from one fitted line would occur. The 
thresholds Q25 (exceedance probability of 25%) and 40 m3/s have been used for this. The threshold of 
40 m3/s has been chosen in line with what will be used when also initial storages are incorporated. In 
addition the ‘confidence intervals’ of k related to discharge and initial storage are presented in Figure 
12, based on the 5% percentile and 95% percentile lines like in Figure 15. These confidence intervals 
will be used as upper and lower limit for the surface plots, to prevent that unrealistically large 
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deviations from the relationship in Figure 12 can occur. This was not possible for the highest flow 
category, because there are too few points here. For the low category of flows (Q0 ≤ Q25) the 
maximum difference between the plotted surface function and the points is 0.04 and for the medium 
flow category (Q25 < Qobs ≤ 40 m3/s) this is 0.02. As explained above, for the highest flow category k is 
only related to discharge. In appendix 3 the contour plots of the surface functions are shown, to give 
an indication about how k depends on both discharge and non-updated storages. Also the fitted 
surface plot for the highest flow category is added. 

 
Figure 15: Fraction of fast runoff to total simulated discharge as a function of the total simulated discharge for different 

percentiles of initial fast runoff reservoir storages in percentile bins of simulated discharge. 

Table 9: Fitted and implemented lines to relate the fraction of fast runoff to observed discharge and initial fast runoff 
reservoir storage 

 Q0 ≤ Q25 Q25 < Q0 ≤ 40 m3/s 40 m3/s < Q0 
k related 
to Q 

𝑘𝑘 = 1.9 ∗ 10−5 ∗ 𝑄𝑄𝑜𝑜 3.9 + 1.6 ∗ 10−4 𝑘𝑘 = 0.49 ∗ exp(0.011 ∗ 𝑄𝑄𝑜𝑜) 
−1.4 ∗ exp (−0.12 ∗ 𝑄𝑄𝑜𝑜) 

𝑘𝑘 = min (1, 0.90 ∗ exp(2.0 ∗ 10−4 ∗ 𝑄𝑄𝑜𝑜) 
−0.64 ∗ exp(−0.031 ∗ 𝑄𝑄𝑜𝑜)) 

k related 
to Q and 
Ssw 

𝑘𝑘 = max (0, 3.4 ∗ 10−4 − 3.5 ∗ 10−4𝑄𝑄𝑜𝑜 
+0.84𝑆𝑆𝑠𝑠𝑠𝑠 + 9.3 ∗ 10−5𝑄𝑄𝑜𝑜2 − 0.14𝑄𝑄𝑜𝑜𝑆𝑆𝑠𝑠𝑠𝑠 
+0.34𝑆𝑆𝑠𝑠𝑠𝑠2 − 9.0 ∗ 10−6𝑄𝑄𝑜𝑜3 
+0.0081𝑄𝑄𝑜𝑜2𝑆𝑆𝑠𝑠𝑠𝑠 − 0.030𝑄𝑄𝑜𝑜𝑆𝑆𝑠𝑠𝑠𝑠2 ) 

𝑘𝑘 = max (0, 0.30− 0.070𝑄𝑄𝑜𝑜 + 0.56𝑆𝑆𝑠𝑠𝑠𝑠 
+0.0050𝑄𝑄𝑜𝑜2 − 0.044𝑄𝑄𝑜𝑜𝑆𝑆𝑠𝑠𝑠𝑠 + 0.066𝑆𝑆𝑠𝑠𝑠𝑠2  
−1.1 ∗ 10−4𝑄𝑄𝑜𝑜3 + 0.0011𝑄𝑄𝑜𝑜2𝑆𝑆𝑠𝑠𝑠𝑠

− 0.0024𝑄𝑄𝑜𝑜𝑆𝑆𝑠𝑠𝑠𝑠2 ) 

For this spectrum the relationship 
between k and only Q0 will be used 
(explained in the text). 

 
There are three points in the HBV model where this updating of storages could be implemented, 
namely at the beginning of the time step, after calculation of the fluxes or after calculation of the 
initial storages for the next time step. Implementing the updating procedure at the beginning of the 
time step means that the observed discharge is always perfectly simulated, because the observed 
discharge of the same time step is divided over the surface water storage and groundwater storage. 
This is unrealistic, since in practice the discharge observations are not available at the beginning of a 
time step. Implementing the updating of storages at the end of the time step to calculate the initial 
storages for the next time step means that always the observed discharge of the previous time step 
is exactly simulated. Therefore the updating procedure will be implemented after calculation of the 
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fluxes and before the calculation of the new storages. In this way the fluxes depend on the initial 
storages as they were calculated in the previous time step and the fluxes also have influence on the 
initial storages for the next time step. Regarding the updating procedure in which k is related to 
discharge and the fast runoff reservoir storage, for the fast runoff reservoir storage previously 
updated or non-updated storages can be used. When updated storages are used, the fast runoff 
reservoir storage that is used in the formula to determine k has been updated in the previous time 
step. On the other hand, when non-updated storages are used the storage that is used is adopted 
from a deterministic model run without updating. Both variants will be tested, so in total 3 updating 
procedures are tested.  

3.5 Pre-processing and post-processing of ensemble forecasts 
In this report (from a hydrological point of view) the term pre-processing will be used for the 
correction of input variables (precipitation and temperature forecasts) and the term post-processing 
will be used for the correction of output (flow forecasts). Several studies mention pre-processing and 
post-processing  as an important step to improve meteorological and hydrological forecasts (i.a. 
(Bürger et al., 2009; Cloke & Pappenberger, 2009; Olsson & Lindström, 2008; Roulin & Vannitsem, 
2005; Verkade et al., 2013; Zalachori et al., 2012)). At first it will be outlined why processing of input 
and output might be necessary (section 3.5.1), then a suitable data processing technique is chosen 
(section 3.5.2) and different processing strategies are developed (section 3.5.3).  

3.5.1 Data processing 
The reasons for pre-processing are described in section 3.5.1.1 and the reasons for post-processing 
are explained in section 3.5.1.2.  

3.5.1.1 Meteorological data pre-processing 
Obviously the quality of the flow forecasts is highly dependent on the quality of the meteorological 
forecasts. Several studies indicate that forecasts from meteorological models need some form of 
prior correction before being used in hydrological models (Cloke et al., 2013). This is related to data 
assimilation approach A (Figure 11). In the study of Tao et al. (2014) (statistical) processing of 
meteorological forecasts from ECMWF substantially improved the raw precipitation forecasts. This is 
also found by Bürger et al. (2009), who downscaled ECMWF’s ensemble forecasts to obtain 
precipitation and temperature for a small river catchment in Germany (50 km2). Bürger et al. (2009) 
compared their results with the study of Roulin and Vannitsem (2005). This is a comparable 
ensemble flood forecasting study applied to the Demer (1775 km2) and Ourthe (1616 km2) in 
Belgium. However much lower skill scores has been found in this study. Roulin and Vannitsem (2005) 
did not apply a processing procedure at all and Bürger et al. (2009) contribute the difference in skill 
to the pre-processing step that they applied. Problems that were observed in precipitation output 
from GCMs are a low number of dry days, a bias in the mean and the inability to reproduce high 
precipitation events (Piani et al., 2010). Pre-processing of meteorological forecasts is needed because 
of the points mentioned below:  

1. Scale of weather forecasts: The numerical weather forecasting products are often generated at a 
too coarse spatial scale compared to relevant catchment scales (Cloke et al., 2013; Schaake et al., 
2010; Tao et al., 2014). According to Bürger et al. (2009) the spatial scale of typical flood 
producing weather systems is often much below the smallest scales of numerical weather 
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predictions. Downscaling is required to obtain probabilistic meteorological forecasts at an 
appropriate scale (Bürger et al., 2009; Cloke & Pappenberger, 2009).  

2. Grid values: The grid values provided by ECMWF should not be considered as representing the 
weather conditions at the exact location of a grid point, but as a time-space average within a 
two- or three-dimensional grid box (Persson & Andersson, 2013). Numerical weather prediction 
systems are based on large computational cells, while hydrological models usually need data at a 
finer resolution or direct point measurements (Kiczko et al., 2015). When the meteorological 
forecasts are compared with point observations, additional systematic and non-systematic errors 
are introduced, due to the unrepresentativeness of the location and the sub-grid variability, 
partly appearing as under-dispersivity and bias (Persson & Andersson, 2013).  

3. Under-dispersivity: In the case of under-dispersivity of meteorological forecasts they do not 
display the variability of the observations and underestimate uncertainty of the forecasts (Cloke 
& Pappenberger, 2009; Schaake et al., 2010). Renner et al. (2009) mention that in their study the 
global ECMWF ensemble forecasts do not produce enough variability, because their spatial 
resolution is very coarse compared to the hydrological scales.  

4. Systematic bias: The meteorological forecasts often contain systematic biases (Cloke & 
Pappenberger, 2009; Schaake et al., 2010). This means that there is a difference between 
climatological statistics of ensemble predictions and corresponding statistics of observations 
(Cloke & Pappenberger, 2009). Wilks (as cited in Schaake et al., 2010) states that bias and 
dispersion errors in meteorological forecasts arise from limitations in the description of the 
physical processes in the meteorological models, errors in the subgrid-scale parameterisations 
and uncertainties in the initial state. 

To correct for point 1 and 2, to obtain meteorological data at a relevant hydrological scale and area, 
dynamical or statistical downscaling should be applied. Dynamical downscaling is a model-based 
methodology, in which sub-grid scale meteorological features are obtained by an increase of the 
spatial resolution of a physical model (Boé et al., 2007). Statistical downscaling is characterized by a 
statistical relationship between a local variable (predictand) and large-scale variables (predictors), 
modelled by a global or regional model (Wetterhall et al., 2012). The ECMWF data has been 
downloaded at a resolution of 0.25o x 0.25o and 7 grid cells are used to cover the catchment (see 
Figure 5). The meteorological ensemble forecasts will not be downscaled further, because a lumped 
hydrological model is used and it is considered that the scale of the meteorological forecast grids is 
already comparable with the scale of the application.  

In climate studies after dynamical downscaling the output of Regional Climate Models (RCM) still 
needs a bias and dispersion correction step before the meteorological forecasts can be applied to 
hydrological models (point 3 and 4) (Wetterhall et al., 2012; Wood et al., 2004). The results of the 
RCM still contain biases, especially concerning precipitation, and therefore raw RCM results need to 
be corrected (Wood et al., 2004). Also in the study of Renner et al. (2009) the forecasted 
precipitation from the COnsortium for Small-scale MOdeling Limited Area Ensemble Prediction 
System (COSMO-LEPS) still contain bias and dispersion errors. COSMO-LEPS is a dynamic downscaling 
approach of ECMWF ensemble forecasts (Renner et al., 2009). Bias and dispersion errors can be 
improved by bias and dispersion correction techniques. With a bias and dispersion correction 
technique a statistical relationship between simulated forecast variables and observations is 
established. Bias and dispersion correction is distinguished from statistical downscaling, because the 
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forecast variables are not downscaled to a higher resolution. Many different bias and dispersion 
correction techniques exist, this is further explained in section 3.5.2.  

3.5.1.2 Post-processing of flow forecasts 
By correction of meteorological forecasts and using the simulated flow forecasts without correction it 
is assumed that the hydrological model is perfect. However, hydrological models also often introduce 
simulation biases that degrade forecast quality (Hashino et al., 2007). Instead of correction of 
meteorological input data an alternative method is to correct for bias and dispersion errors in the 
outcomes of the hydrological model (Cloke & Pappenberger, 2009). This is related to data 
assimilation approach D (Figure 11). By post-processing of flow forecasts based on raw 
meteorological forecasts against observed discharges, meteorological and hydrological uncertainties 
are treated together (Verkade et al., 2013). It is also possible to post-process the flow forecasts 
based on a correction between observed discharge and simulated discharge generated with 
observed precipitation and temperature input (‘perfect forecasts’). This correction accounts for 
hydrologic uncertainties, where it is assumed that meteorological bias and dispersion errors have 
been addressed adequately in a correction step of meteorological forecasts (Verkade et al., 2013; 
Zhao et al., 2011). 

Most studies indicate that post-processing of flow forecasts is more effective to improve the forecast 
skill than pre-processing of meteorological input data. The results of Verkade et al. (2013) indicate 
that after pre-processing of meteorological forecasts the improvements in these forecasts were 
modest, especially regarding precipitation. Moreover the improvements in precipitation and 
temperature did not translate proportionally into improvements in the flow forecasts (Verkade et al., 
2013). In addition, pre-processing of meteorological forecasts is generally complex, resource 
intensive and imperfect regarding space-time covariability (Verkade et al., 2013). Verkade et al. 
(2013) therefore propose other methods to improve the skill of flow predictions, such as data 
assimilation and post-processing techniques. According to Kang et al. (2010), to generate flow 
forecasts pre-processing should always be accompanied with post-processing to effectively reduce 
the hydrological model uncertainty. Zalachori et al. (2012) found that pre-processing of 
meteorological ensemble forecast data improves the skill of flow forecasts, but correction of flow 
forecasts results in a higher improvement. They conclude that the errors linked to hydrological 
modelling remain a key-component of the total predictive uncertainty of hydrological ensemble 
forecasts. Although correction of meteorological forecasts is of high importance to obtain reliable 
inputs to the hydrological model, corrections made to meteorological forecasts lose their effect 
when propagated through the hydrological model (Verkade et al., 2013; Zalachori et al., 2012). The 
results of Zalachori et al. (2012) indicate that implementation of pre- and post-processing techniques 
together gives the highest forecast quality. Zalachori et al. (2012) did not test exclusively post-
processing of flow forecasts based on raw meteorological forecasts. Olsson and Lindström (2008) 
found that the spread in the ensemble flow forecasts (based on raw meteorological forecasts) was 
systematically underestimated and they improved this by post-processing of the flow forecasts. 
Olsson and Lindström (2008) conclude that a simple calibration on simulated ensemble forecasts can 
substantially improve the ensemble spread. According to Olsson and Lindström (2008) total 
adjustment of discharge output has advantages over applying both pre-processing and post-
processing, because one combined adjustment requires less effort in design and management of the 
system and with separate adjustments it has to be verified whether integrating these techniques in 
one system is indeed able to generate accurate ensemble flow predictions.  
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3.5.2 Pre-processing and post-processing techniques for ensemble forecasts 
The previous section explains why bias and dispersion correction are required in a pre-processing and 
post-processing step. There are many bias and dispersion correction techniques, partly similar to 
techniques that are used in statistical downscaling. Techniques that have been used in previous 
studies are the delta method for pre-processing (Déqué, 2007; Wetterhall et al., 2012), distribution-
based scaling for pre-processing (Wetterhall et al., 2012), (conditional) Quantile Mapping (QM) for 
pre-processing (Boé et al., 2007; Déqué, 2007; Kang et al., 2010; Kiczko et al., 2015; Verkade et al., 
2013; Wetterhall et al., 2012) and post-processing (Kang et al., 2010; Madadgar et al., 2014; Shi et al., 
2008), (conditional) regression for pre-processing (Verkade et al., 2013) and post-processing 
(Hashino et al., 2007; A. Ye et al., 2015), event bias correction for pre-processing (Hashino et al., 
2007), Copula functions for post-processing (Madadgar et al., 2014), Bayesian joint probability 
modelling for post-processing (Bennett et al., 2014) and more, sometimes combined with the 
Schaake shuffle to ascribe realistic spatial and temporal patterns (e.g. (Bennett et al., 2014; Verkade 
et al., 2013)). With conditional correction additional predictors are used (Verkade et al., 2013). 

Wetterhall et al. (2012) compared three simple correction techniques for precipitation forecasts 
from a RCM: the delta method, QM and distribution-based scaling. The more sophisticated methods 
QM and distribution-based scaling performed better than the delta method (Wetterhall et al., 2012). 
The distribution-based scaling that was conditioned on circulation patterns resulted in the best 
performance, although the scores are not statistically significant higher than for the other methods 
(Wetterhall et al., 2012). With the delta method all forecasts are corrected with one factor. 
Wetterhall et al. (2012) suggest that in a study where floods are also important the delta method is 
not appropriate and in addition the delta method has the major limitation that there is no correction 
for dispersion errors. So the delta method will not be used here. QM is easier to establish than 
distribution-based scaling, because with QM the probability density function is based on 
observations while with distribution-based scaling a theoretical density function needs to be defined 
first. QM is the most popular post-processing technique in hydrological forecasting (Madadgar et al., 
2014). According to Kang et al. (2010) QM generally performs well in both pre- and post-processing. 
Hashino et al. (2007) advise to use QM, looking at the good performance in sharpness and 
discrimination and the simplicity of this method. This recommendation by Hashino et al. (2007) is 
also mentioned by Cloke and Pappenberger (2009). According to Wilks and Hamill (2007) there is no 
unambiguous answer to what is the most efficient correction technique for all applications. Finding 
the ‘optimal’ technique could be a complete research on its own, so it is chosen to apply QM to both 
pre-processing of meteorological forecasts and post-processing of flow forecasts. In an earlier study 
of IGF PAN Kiczko et al. (2015) focused on the same river catchment and applied QM to correct the 
ECMWF forecasts. In the study of Kiczko et al. (2015) QM significantly improved the prediction skills 
of the forecasting system.  

3.5.2.1 Quantile Mapping 
The principle of QM is shown in Figure 16. The cumulative distribution function (CDF) of forecasts 
over a control period is matched to the CDF of the observations over the same period, after which a 
correction function is generated (Boé et al., 2007). This is based on the idea that the meteorological 
prediction model is able to correctly simulate ranked categories of the variable, for example that 
‘very high precipitation’ is correctly simulated by the model and by QM this is corrected to observed 
‘very high precipitation’ (Déqué, 2007). This means that the correction is conditional on the value of 
the forecasted variable itself. 
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Figure 16: Principle of bias correction by QM (Madadgar et al., 2014). At first the CDFs of the forecasts and observations 
are made over the training period. To correct a forecast, the probability of non-exceedance is extracted from the CDF of 

the forecasts and in the CDF of the observations the corresponding observation value is found. 

3.5.3 Application of Quantile Mapping in different strategies 
At first QM is applied as pre-processing technique in different set-ups (section 3.5.3.1). Then 
different processing strategies (combinations of pre-processing and post-processing) are proposed 
(section 3.5.3.2).  

3.5.3.1 Pre-processing set-up 
In section 4.1.4 it will be explained that there are doubts about the quality of observation data during 
2008 and especially during 2007. Therefore the empirical CDF of the observations and forecasts will 
be established on the training period 1-11-2011 to 31-10-2013 (two hydrological years) and validated 
over the period 1-11-2007 to 31-10-2011. This training period is very short compared to other 
studies, but also a sufficient period of data is needed for evaluation and this should not overlap with 
the training period.  

Several set-ups of the QM procedure will be tested for pre-processing (see Table 10). The set-ups 
differ in (not) distinguishing different lead times and seasons. Establishing a different CDF per 
ensemble member does not make sense, because ensemble member 1 is not specifically related to 
ensemble member 1 of a new forecast. The meteorological forecasts are first aggregated to 
catchment-average forecasts (see section 2.3) and then corrected against catchment-average 
observations, so that the corrections are applied at the same spatial level as the level at which the 
forecasts will be applied.  

Table 10: QM set-ups for pre-processing of precipitation and temperature forecasts 
Set-up Lead times Seasons 
Set-up 0 No correction 
Set-up 1 All lead times together No seasonal distinction 
Set-up 2 Separately for lead times from 0 days to 9 days, 

like Verkade et al. (2013) also applied. The 
distributions can be different for different lead 
times, so it is expected that this gives better 
performance than set-up 1.  

No seasonal distinction 
 

Set-up 3 Idem as set-up 2 Seasonal distinction in a summer and winter 
season. Bias can depend on weather type, so 
previous studies have applied independent QM 
distributions for different seasons (Boé et al., 2007) 
or weather patterns (Wetterhall et al., 2012). Only 
two seasons will be distinguished, because the 
available training period is very short. The winter 
period is defined as November until April and the 
summer period is defined as May until October. 
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After establishing the empirical CDFs of observations and forecasts during the training period, the 
forecasts are matched to the CDF of the observations. In accordance with Boé et al. (2007), if 
forecasts exceed the maximum or minimum forecast during the training period a simple 
extrapolation is applied based on the edges of the CDFs. Otherwise all forecasts would be bounded 
by the maximum observation during the training period. As with correction for elevation (section 
3.1), to precipitation a relative correction is applied if the forecasts that will be corrected exceed the 
maximum forecast during the training period and to temperature an absolute correction is applied 
equal to the correction at the edge.  

Boé et al. (2007) and Piani et al. (2010) mention the problem that meteorological models tend to 
forecast a very low precipitation instead of zero precipitation (tending to drizzle). The relative 
frequency of nonzero precipitation in the forecasts is thus greater than the relative frequency of 
nonzero precipitation in the observations. To ensure that the probability of nonzero precipitation in 
the forecasts is equal to the probability of observed nonzero precipitation, if the non-exceedance 
probability of a forecast is lower than the non-exceedance probability of 0 mm precipitation in the 
observations the precipitation forecast is set to 0 mm.  

The ECMWF forecast data are not corrected for elevation like observation data. It is assumed that 
the grid cells of the ECMWF forecasts are representative for their part of the catchment, so it is not 
needed to correct for this. Persson and Andersson (2013) dispute this. However, consistent bias is 
also corrected by QM.  

In Figure 17 and Figure 18 two example CDFs of precipitation and temperature are presented. In both 
figures over the largest part of the cumulative probability domain the CDFs of the forecasts and 
observations are quite close to each other, so no large corrections are made here. Regarding 
precipitation the correction (from CDF of forecasts to CDF of observations) is over the largest part of 
the cumulative probability domain in the same direction and of about the same magnitude for the 
summer and winter period. Based on this it is expected that QM with seasonal distinction will not 
result in an improvement of precipitation forecasts compared to QM without seasons. Important 
corrections are made near a precipitation 0 mm, where for the winter period all forecasted non-
exceedance probabilities below 0.35, corresponding to a forecasted precipitation of 0.24 mm/day, 
are corrected to 0 mm/day and for the summer period all forecasted non-exceedance probabilities 
below 0.42 (forecasted precipitation of 0.27 mm/day) are corrected to 0 mm/day. For very extreme 
precipitations, above a non-exceedance probability of 0.99, also large corrections are made.  

In Figure 18 it is clearly visible that the CDF of temperature is much different in winter than in 
summer and also the direction of corrections is different. For the winter period the CDF of the 
observations is quite close to the CDF of the forecasts, while for the summer period a bias is present 
over a large part of the cumulative probability domain. Since the correction is different in summer 
and winter it might be expected that QM with seasonal distinction will result in an improvement of 
temperature forecasts compared to QM without seasonal distinction. However the effectiveness of 
QM to improve the meteorological forecasts totally depends on whether during the validation period 
the same conditional bias is present as during the training period.  
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Figure 17: Example CDFs of precipitation observations and forecasts for two seasons, training period 2012-2013 

 
Figure 18: Example CDFs of temperature observations and forecasts for two seasons, training period 2012-2013 

3.5.3.2 Processing strategies 
In Table 11 different combinations of pre-processing and post-processing are presented. The best 
pre-processing set-up will be chosen as pre-processing approach (see the results in section 4.2.1). 
Post-processing will be applied separately for lead times from 1 day to 10 days and it is tested 
whether QM with seasonal distinction or QM without seasonal distinction gives better results. 
Forecasted flows that are beyond the maximum and minimum forecasted flows during the training 
period are corrected in the same way as precipitation, so the correction is equal to the relative 
correction of the edge. Discharge is the same kind of variable as precipitation (not bounded by zero). 
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When post-processing is applied (strategy 2 and 3) the deterministically simulated discharges based 
on observed precipitation and temperature data are also corrected, because these simulations will 
also contain hydrological model bias. This is important for the evaluation of flow forecasts (see 
section 3.7.1). For strategy 3 this is done like in strategy 2, so based on the difference between 
deterministically simulated discharges and observed discharges.   

Table 11: Pre-processing and post-processing strategies 
Strategy Pre-processing Post-processing 
Strategy 0 No correction No correction 
Strategy 1 Precipitation: QM separately for lead times from 

0 days to 9 days and no seasonal distinction (set-
up 2).  
Temperature: QM separately for lead times from 
0 days to 9 days and seasonal distinction (set-up 
3).  
These are the best performing QM set-ups for 
pre-processing (see section 4.2.1). 

No correction 

Strategy 2 Idem as strategy 1 Correction of flow forecasts based on the correction 
between deterministically simulated discharges 
with observed temperature and precipitation data 
and observed discharges:  

A. Without seasonal distinction 
B. With seasonal distinction (summer and 

winter) 
It is expected that this will not result in a large 
improvement, because ‘easy’ consistent bias should 
already be captured by the calibration procedure.  

Strategy 3 No correction Correction of flow forecasts based on the correction 
between flow forecasts generated with raw 
meteorological forecasts and observed discharges.  

A. Without seasonal distinction 
B. With seasonal distinction (summer and 

winter) 
 
The possible strategy of no pre-processing and post-processing like strategy 2 will not be tested, 
because this strategy does not make sense when there is looked to which errors can be present in 
the flow forecasts. Meteorological forecast errors would be intentionally not corrected.  

3.6 Ensemble flow forecasting system 
Meteorological ensemble forecasts from ECMWF are used as input data to the hydrological model to 
generate flow forecasts. Figure 19a presents the model set-up to generate ensemble flow forecasts. 
The forecast day refers to the first day for which no observations are available and meteorological 
forecasts should be used to generate flow forecasts. If for example the forecasts are made on 1-11-
2006, this is the forecast day. It is considered that when the forecasts are made on this day no 
observations of precipitation, temperature and discharge available for 1-11-2006 and later, so 
meteorological forecasts should be used. A lead time of 0 days refers to the forecast day.  

The update state procedure (section 3.4) provides initial model storages for the forecast day. In the 
updating procedure the surface water storage and groundwater storage are updated by using 
observed discharge, but for the soil moisture storage, melt water storage and snowpack the 
analogous deterministic model run is used with an initialization period of at least 1 year. At a lead 
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time of 0 days all ensemble flows are equal to the deterministic flow from the HBV model, because 
the flow on this day is fully determined by the initial states. The spread of meteorological forecasts at 
a lead time of 0 days has effect on the flow forecasts at a lead time of 1 day. Each ensemble member 
develops independently. So ensemble member 1 of the precipitation forecasts and ensemble 
member 1 of the temperature forecast are used as input to the hydrological model and the initial 
states following from this are used again with ensemble member 1 as input data. The initial states 
are not updated after day 0, because there are no observations available in future. This results in 
‘spaghetti hydrographs’ for each day in the period from 1-11-2006 to 31-10-2013, consisting of 
51 ensembles with lead times from 0 days to 10 days. Flow forecasts do not apply to a certain time 
(like 12:00), but they represent the flow on a calendar day. The hydrological model also runs at a 
daily time interval.  

Besides ensemble flow forecasts also deterministically simulated flows are generated (see Figure 
19b), based on the same updated initial states at day 0 and observed precipitation and temperature 
as input data. These flows are also called ‘perfect forecasts’ (Olsson & Lindström, 2008).  

 
Figure 19: a. Model set-up to generate ensemble flow forecasts b. Model set-up to generate deterministically simulated 

forecasts (‘perfect forecasts’)  

3.7 Evaluation criteria 
In this section it is explained how the ensemble flow forecasting system will be evaluated. Forecast 
evaluation allows to monitor the forecasts, it provides an objective comparison between different 
forecast sets and it enables to improve the forecast quality by discovering strengths and deficiencies 
(Renner et al., 2009; Wilks, 2006). At first it is explained which flows form the reference flows to 
which the ensemble forecasts are compared (section 3.7.1) and after that appropriate evaluation 
scores are selected (section 3.7.2 to 3.7.7). 
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3.7.1 Reference flows 
The ensemble flow forecasts are compared to reference flows. The reference flow determines what 
is actually evaluated. The evaluation of ensemble flow forecasts against observed discharge contains 
error components from the meteorological forecasts, the hydrological model and discharge 
observation measurement errors (Renner et al., 2009). Hydrological model errors also include errors 
in the (updated) initial conditions. By using perfect flow forecasts (see Figure 19b) as reference flows, 
the hydrological model error component and discharge observation measurement errors are 
eliminated (Demargne et al., 2010; Olsson & Lindström, 2008; Renner et al., 2009). If it is assumed 
that observation errors can be neglected, evaluation against observed discharge contains errors from 
the meteorological forecasts and the hydrological model and evaluation against perfect flow 
forecasts contains errors from the meteorological forecasts (Demargne et al., 2010; Olsson & 
Lindström, 2008; Renner et al., 2009). Observed discharge will be used as basic score to investigate 
the limitations of the forecasting system and the results will be compared with evaluation based on 
perfect flow forecasts to investigate whether hydrological model errors or meteorological forecast 
errors are dominant (see Figure 20). It is not possible to compare evaluation scores of flow forecasts 
and meteorological forecasts, because the general evaluation score (explained in section 3.7.3) 
depends on the magnitude of the investigated parameter.  

 
Figure 20: Evaluation approach 

3.7.2 Evaluation scores 
The evaluation scores for ensemble forecasts are different from common verification scores for 
deterministic forecasts, because it is not useful to compare individual ensemble members to the 
reference discharge (Renner et al., 2009). After all the ensemble forecasts should be used as a set. 
Forecasts from an ensemble flow forecasting system can be considered as probabilistic forecasts and 
the evaluation procedure should be arranged to that. There are many evaluation scores available. A 
single evaluation score is generally inadequate to evaluate the overall performance of a forecasting 
system (Demargne et al., 2010; Hamill et al., 2000). Three properties of forecast quality are reliability, 
sharpness and resolution (WMO, 2015). The different scores that will be used should evaluate the 
different properties of forecast quality. From the workshop on ‘Ensemble Forecasting in the Short to 
Medium Range’ it has been concluded that at least the following measures should be used (Hamill et 
al., 2000):  

1. Probabilistic (skill) scores such as the Brier Score and/or the Continuous Ranked Probability Score 
(CRPS). These scores can provide an overall, single-number score for judging the quality of 
probabilistic forecasts. In this study the CRPS will be used, because this is a generalization of the 
Brier Score over more than one probability threshold (Hersbach, 2000; Wilks, 2006). Hersbach 
(2000) has shown that the CRPS can be decomposed into a reliability part and a 
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resolution/uncertainty part. However, Velázquez et al. (2010) mention that, because of the 
complexity of the CRPS, other ways to assess reliability are often used in parallel. Wilks (2006) 
also argues that single-number summaries of forecast performance can provide a convenient 
quick impression, but for a comprehensive evaluation of forecast quality the full joint distribution 
of forecasts and observations should be evaluated. It is considered that the CRPS is a suitable 
general score, but it does not provide thorough insight into reliability, sharpness, resolution and 
uncertainty of the ensemble flow forecasts. Therefore in addition to CRPS specific scores are 
used for these specific properties. In section 3.7.3 the CRPS is further explained.  

2. Reliability diagrams, plotted together with a decomposition of the Brier score and a histogram of 
sample size (for sharpness). The Brier score will not be used here, because the CRPS will be used 
(see point 1 above). Reliability diagrams will be used to qualitatively evaluate reliability, 
sharpness and resolution. In section 3.7.4.3 the reliability diagram is further explained.  

3. The Relative Operating Characteristic (ROC) curve, providing information about resolution of the 
ensemble forecast system. In section 3.7.6 the ROC curve is further explained.  

4. Rank histograms to detect model bias and under- or overdispersion of the ensemble flow 
forecasting system. The rank histogram is further explained in section 3.7.4.2.  

In addition to these scores the Relative Mean Absolute Error (RMAE) and the Relative Confidence 
Interval (RCI) will be used. This means that many evaluation scores will be used and when the results 
are examined it must be clear what each score measures. In section 3.7.3 to 3.7.7 the evaluation 
scores will be further explained, starting with the general evaluation scores (section 3.7.3), then the 
RMAE, rank histogram and reliability diagram to evaluate reliability (section 3.7.4), the reliability 
diagram to evaluate sharpness (section 3.7.5), the ROC to evaluate resolution (section 3.7.6) and the 
RCI to quantify the uncertainty that the ensemble flow forecasts contain (section 3.7.7).  

3.7.3 General evaluation scores 
The CRPS combines different properties of forecast quality. It is a frequently used score in 
meteorological sciences (Velázquez et al., 2010) and hydrological sciences (Bennett et al., 2014; 
Pappenberger et al., 2015; Velázquez et al., 2010). Pappenberger et al. (2015) argues that for most 
cases it is the recommended evaluation score. The CRPS is not limited to binary events, like several 
other scores to evaluate probabilistic forecasts (Hersbach, 2000). According to Hersbach (2000) the 
CRPS provides a broader view of performance. In section 3.7.3.1 it will be explained how the CRPS 
can be calculated and in section 3.7.3.2 an appropriate reference score is developed to calculate the 
skill of the ensemble flow forecasts.  

3.7.3.1 Continuous Ranked Probability Score 
In Figure 21 the concept of the CRPS is presented. With the CRPS the correspondence between the 
CDFs of the forecasts and observations is quantified (Pappenberger et al., 2015; Verkade et al., 2013). 
Instead of two options like in the Brier Score (event occurs or does not occur) the range of the 
predicted parameter is divided into more classes (Hersbach, 2000). With the Continuous Ranked 
Probability Score there is an infinite number of classes with zero width to evaluate all possible 
discrete events (Hersbach, 2000; Verkade et al., 2013). Hersbach (2000) argues that the CRPS can be 
considered as the integral of the Brier score over all possible probability threshold values. 
Advantages of the CRPS are that it is sensitive to the entire range of the outcome of interest and it 
does not require the introduction of predefined classes (Hersbach, 2000; Trinh et al., 2013). The 
score can be calculated with the following equation (Velázquez et al., 2010): 
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            [3.8] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = Continuous Ranked Probability Score [unit of x] 
𝐹𝐹𝑡𝑡(𝑥𝑥) = Non-exceedance probability of event x in the forecasts (𝐹𝐹𝑡𝑡  is the CDF of the 

forecasts) [-] 
𝐻𝐻(𝑥𝑥 ≥ 𝑋𝑋𝑟𝑟) = Probability of the event according to the observations. Generally this is a 

Heavyside function, which equals 1 for ensemble members larger than the observed 
value and 0 for ensemble members lower than the observed values (Figure 21). [-]  

𝑥𝑥 = Ensemble forecast member [unit of variable] 
𝑋𝑋𝑟𝑟 = Reference observation or simulation [unit of variable] 

 
A CRPS value of 0 indicates a perfect simulation (Hersbach, 2000; Velázquez et al., 2010; WMO, 2015; 
J. Ye et al., 2014), which can only be achieved in the case of a perfect deterministic forecast 
(𝐹𝐹𝑡𝑡(𝑥𝑥) = 𝐻𝐻(𝑥𝑥 ≥ 𝑋𝑋𝑟𝑟) ) (Hersbach, 2000). Equation 3.8 evaluates the correspondence between one 
observation-forecasts pair is evaluated. In practice the CRPS of all pairs is averaged (Hersbach, 2000; 
Velázquez et al., 2010; Verkade et al., 2013). The result is also denoted by CRPS. To bring the CRPS 
into practice the Matlab-script written by Shrestha (2014) is used. To determine the CDF of the 
forecasts an empirical CDF is developed.  

 
Figure 21: Concept of the Ranked Probability Score (Eumetcal, n.d.; Wilks, 2006) 

A property of the CRPS is that in practice the value will not go to zero, but it becomes the average 
value of the studied outcome (with the same unit as the investigated parameter) (J. Ye et al., 2014). 
This means that the CRPS cannot directly be compared amongst different areas, seasons or flow 
categories (J. Ye et al., 2014). Comparison between different lead times is possible, because there are 
no different average discharge values expected with increasing lead time. The CRPS can be 
normalized by dividing it by the standard deviation of the investigated parameter observations (Trinh 
et al., 2013; J. Ye et al., 2014) or normalized against a reference CRPS (J. Ye et al., 2014). It turned out 
that after normalizing the CRPS with the standard deviation, the value is still correlated with 
discharge magnitude (Trinh et al., 2013), so the normalized CRPS can still not be compared among 
different forecast categories. Normalizing against a reference flow has the advantage that it does not 
only eliminate the effect of the magnitude of the investigated parameter, but it also compares the 
forecasts with a relevant reference forecast (J. Ye et al., 2014). In the next section this is further 
elaborated.  

3.7.3.2 Continuous Ranked Probability Skill Score 
To evaluate the skill of the ensemble flow forecasting system and compare them over different 
situations the score of the system relative to a reference system should be used (Demargne et al., 
2010; Verkade et al., 2013). The Continuous Ranked Probability Skill Score (CRPSS) is defined as 
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follows (Bennett et al., 2014; Demargne et al., 2010; Renner et al., 2009; Velázquez et al., 2010; 
Verkade et al., 2013; J. Ye et al., 2014): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1−
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

            [3.9] 

The reference forecast set can be seen as alternative forecasts without using meteorological 
forecasts. A system with perfect skill gives a score of 1 and negative values indicate that the forecast 
system has a worse CRPS score than the reference (Demargne et al., 2010; J. Ye et al., 2014). The 
most useful reference forecast for the evaluation of flow forecasts is easy to determine and difficult 
to beat (Bennett et al., 2013; Pappenberger et al., 2015). It is common practice to apply hydrological 
persistency or hydrological climatology as a reference (Bennett et al., 2014; Pappenberger et al., 
2015; Renner et al., 2009; J. Ye et al., 2014), but Pappenberger et al. (2015) conclude that this can 
result in an overestimation of forecast skill because other reference forecasts might be more difficult 
to beat. Bennett et al. (2013) show that hydrological climatology is easy to beat because discharge is 
strongly autocorrelated at short lead times and it can be biased because it is based on a different 
period. Hydrological persistency is easy to beat because persistence forecasts generally perform very 
poorly at longer lead times (> 1 day) (Bennett et al., 2013). Pappenberger et al. (2015) and Bennett et 
al. (2013) both advise to use an ensemble of past observation sequences of precipitation and 
temperature at the same calendar day over the past 20 years (so 20 ensemble members) to run the 
hydrological model and use this as an ensemble of reference discharges.  

It will be investigated whether reference forecasts based on past meteorological observations 
(following the method of Pappenberger et al. (2015)), hydrological persistency or hydrological 
climatology are better to use, by comparing the CRPS. This is the same approach as Bennett et al. 
(2013) (in addition they used NS and a bias score) and Pappenberger et al. (2015) applied. With 
hydrological persistency the most recent discharge observation is used (at the forecast day – 1) as 
forecast for all lead times. With hydrological climatology the average observed discharge over the 
last 20 years on the same calendar day is used after applying a moving average window of 31 days, 
following Bennett et al. (2013). Hydrological persistency flows and hydrological climatology are 
deterministic variables. Hersbach (2000) shows that when two deterministic forecasts are compared 
the CRPS simplifies to the Mean Absolute Error (MAE).  

In Figure 22 the CRPS values of the reference forecast sets are presented. One reference forecast set 
will be selected for all flow categories, so one general CRPS is calculated. It can be seen that the 
forecasts based on an ensemble of historical observations of precipitation and temperature has the 
best score, so these are most appropriate as reference flow. Even for a lead time of 0 days this gives 
a better CRPS than hydrological persistency. The discharge forecasts at a lead time of 0 days are 
totally generated by the initial storages at the beginning of this time step, so this shows that the 
updating procedure results in simulations closer to the observations than the observation of 1 day 
earlier. The performance of hydrological persistency also depends on how fast the hydrological 
circumstances in the catchment change. 

The CRPS and CRPSS will be used to perform a general evaluation for each lead time, for the low, 
medium and high flow categories (defined in section 3.8) and different hydrological circumstances 
(defined in section 3.9).  
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Figure 22: CRPS of three different reference forecast sets, evaluation period 2008-2013 

3.7.4 Reliability 
Reliability refers to the statistical consistency between simulations and observations (Candille & 
Talagrand, 2005; Velázquez et al., 2010) and whether uncertainty is correctly represented in the 
forecasts (Bennett et al., 2014). WMO (2015) defines reliability as the agreement between the 
forecasted probability of an event and the mean observed frequency of that event. The reliability 
scores differ in how they measure reliability, some are general over all flow categories (unconditional 
bias: RMAE, rank histogram and percentile-based evaluation) and others apply to pre-defined 
forecast situations (conditional bias: reliability diagrams). Percentile-based evaluation measures the 
same as the rank histogram (Olsson & Lindström, 2008) and the rank histogram provides a more 
clear interpretation, so the rank histogram will be used. Below the RMAE (section 3.7.4.1), rank 
histogram (section 3.7.4.2) and reliability diagram (section 3.7.4.3) are explained.  

3.7.4.1 Relative Mean Absolute Error 
The RMAE measures the average absolute difference between the mean of the ensemble forecasts 
and the reference flows, relative to the magnitude of the reference flows. The ensemble mean is 
commonly used for single-valued representation of the ensemble forecast (Demargne et al., 2010).  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ |𝑋𝑋𝑟𝑟(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)������|𝑡𝑡=𝑁𝑁
𝑡𝑡=1
∑ 𝑋𝑋𝑟𝑟(𝑡𝑡)𝑡𝑡=𝑁𝑁
𝑡𝑡=1

            [3.10] 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = Relative Mean Absolute Error [-] 
𝑋𝑋𝑟𝑟 = Reference observation or simulation [unit of variable] 
𝑥̅𝑥 = Mean of the ensemble forecasts [unit of variable x] 
𝑡𝑡 = Time step [day] 

 𝑁𝑁 = Total number of time steps [days] 
 
The RMAE provides a measure of unconditional bias in the mean of the ensemble forecast (Verkade 
et al., 2013). The RMAE will be used as a basic score to evaluate the effect of pre- and post-
processing. It will not be used to evaluate the flow forecasts, because of the principle that ensemble 
flow forecasts should be used as a set.  
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3.7.4.2 Rank histogram 
The rank histogram enables to diagnose average errors in the mean and spread of the ensemble 
forecasts (Hamill, 2001). According to Wilks (2006) this is the most common approach to evaluate 
consistency of the ensemble forecasts. The consistency condition states that the true state is just one 
more member of the ensemble and it should be statistically indistinguishable from the forecast 
ensemble (Wilks, 2006). To construct the rank histogram the observed value is added to the 
simulated ensemble set, to obtain a new set of n+1 members (Velázquez et al., 2010). The rank 
associated with the observed value is determined and the rank histogram is constructed based on 
the resulting ranks (Velázquez et al., 2010). In case that (multiple) ensemble members and the 
observation have the same value, like 0 mm precipitation, the associated rank is determined 
randomly (like Hamill and Colucci (1998) also did).  

In an ensemble prediction system with perfect spread each member is equally likely, so all ranks of 
the observation are equally likely and the rank histogram will be uniform (Hamill, 2001; Hersbach, 
2000; Wilks, 2006; WMO, 2015; Zalachori et al., 2012). According to Hamill (2001), Velázquez et al. 
(2010) and Wilks (2006) an asymmetrical histogram is an indication of bias in the mean of the 
forecasts. U-shaped histograms indicate that the simulations are under-dispersed (overconfident), 
since this means that many of the observations are close to the outer range of the ensemble 
prediction (Hamill, 2001; Velázquez et al., 2010; Wilks, 2006). However, Hamill (2001) suggests that 
this can also be caused by conditional bias and/or imperfect reference flows. If the rank histogram is 
clock shaped the predictive distribution is over-dispersed (underconfident), since in that case many 
of the observations are close to the median of the ensemble forecast (Hamill, 2001; Velázquez et al., 
2010; Wilks, 2006). The rank histogram is a visual way to assess the reliability of an ensemble 
prediction. It can be used to see if an ensemble forecast is calibrated well (Renner et al., 2009). 
Candille and Talagrand (2005) use a numerical indicator δ to reflect the flatness of the rank 
histogram. However, with the flatness coefficient of Candille and Talagrand (2005) it is impossible to 
compare different forecast sets, because the value is proportional to the length of the time series 
(Velázquez et al., 2010). This is a problem when the flatnesses of the different hydrological flow 
categories are compared (defined in section 3.8). Therefore the MAE will be used as flatness 
indicator, which measures the deviation of the relative frequencies per rank with the relative 
frequency in a uniform distribution, described in equation 3.11:  

𝛿𝛿 =
1

𝑛𝑛 + 1
� |𝑓𝑓(𝑧𝑧) − 𝑦𝑦|

𝑧𝑧=𝑛𝑛+1

𝑧𝑧=1

            [3.11] 

𝛿𝛿 = Flatness coefficient [-] 
𝑓𝑓(𝑧𝑧) = Predicted relative frequency in rank z [-] 
𝑦𝑦 = 1

𝑛𝑛+1
= Theoretical relative frequency [-] 

𝑛𝑛 = number of ensemble members [-] 
 
In a perfectly reliable forecast system the number of elements in each rank is equal to the theoretical 
number of elements (Velázquez et al., 2010). This gives an optimum value of δ equal to 0. It should 
be realized that the rank histogram and the flatness coefficient contain a random element if multiple 
ensemble members and the observation have the same value, like 0 mm precipitation. In addition, a 
uniform rank histogram is no guarantee that the ensemble forecasts are reliable at each point in the 
evaluation period (Hamill, 2001).   
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In this study the rank histogram will be used to examine whether the ensemble flow forecasting 
system has been calibrated well on bias and dispersion for all lead times and for different flow 
categories to see whether the dispersion of ensemble members is different for high and for low flows 
and whether conditional biases are present. Hamill (2001) explains that a different shape of the rank 
histogram over different flow categories indicates conditional bias in the ensemble forecasts. After 
all, the rank histogram is used to evaluate the effect of pre- and post-processing.  

3.7.4.3 Reliability diagram 
The reliability diagram is a common way to summarize and evaluate the reliability of probabilistic 
forecast systems (Bröcker & Smith, 2007), for example used by Olsson and Lindström (2008), 
Velázquez et al. (2010), Bennett et al. (2014) and Demirel et al. (2013a). This diagram consists of a 
plot of the observed relative frequency against the predicted probability for a certain event (Bröcker 
& Smith, 2007; Demirel et al., 2013a). For a well calibrated forecasting system the reliability diagram 
is close to the 1:1 diagonal (Ranjan, 2009; WMO, 2015). Wilks (2006) and WMO (2015) explain that 
the curve below the diagonal line indicates overforecasting, which means that forecasted 
probabilities are too high, and the curve above the diagonal indicates underforecasting (see Figure 
23). The deviation from the diagonal line gives the conditional bias, which can be linked to resolution 
(see section 3.7.6) (Wilks, 2006; WMO, 2015). 

 
Figure 23: Interpretation of reliability diagram (Wilks, 2006; WMO, 2015) 

The reliability diagram is implemented for the low and high flow categories that are defined in 
section 3.8. The forecast probability bins that are used are 0%-20%, 20%-40%, 40%-60%, 60%-80% 
and 80%-100%, which was also used by Demirel et al. (2013a) and Bennett et al. (2014). Smaller bins 
are possible but this increases uncertainty of the points in the reliability diagram, because the bins 
will contain less time steps. Bennett et al. (2014) did not plot a point in the reliability diagram if the 
bin contains less than 100 forecasts, but this has not been applied here. It should however be 
realized that for points in the reliability diagrams for which a few forecasts were available, 
conclusions should be drawn cautiously. The bins to which this applies are mainly the medium 
probability bins (see the interpretation of the histogram in a reliability diagram in section 3.7.5).  
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The implementation of the reliability diagram in Matlab is based on an existing Matlab-script, 
developed by Skynet (2009). For low and high flow forecasts it is determined how many forecasts fall 
in a certain forecast probability bin (forecast probability) and how often this corresponds to the 
observations (observed relative frequency). Following Bröcker and Smith (2007) the observed 
frequencies are plotted against the average of forecast probabilities per bin instead of the bin 
average. Plotting against bin averages (so 10%, 30%, etc.) can cause substantial deviations from the 
diagonal (Bröcker & Smith, 2007).  

In addition to reliability more properties of an accurate forecasting system can be derived from the 
reliability diagram. The sample size in each probability bin is often included as a histogram, and this 
shows the sharpness of the forecasts (Ranjan, 2009; Renner et al., 2009; WMO, 2015) (for more 
information see section 3.7.5). In addition, the flatter the reliability diagram the less resolution the 
forecasts have (WMO, 2015) (resolution is explained in section 3.7.6). According to Renner et al. 
(2009) the reliability diagram is a useful tool in the evaluation process, because it displays most 
forecast properties (when it includes the histogram) and it can be prepared for any threshold and any 
lead time. The reliability diagram will be used to qualitatively evaluate reliability, sharpness and 
resolution of the low flow forecasts and high flow forecasts for all lead times.   

3.7.5 Sharpness 
Ranjan (2009) and WMO (2015) define sharpness as the tendency to forecast probabilities of 
occurrence of an event near 0 or 1, as opposed to values clustered around the mean (climatological) 
probability. If an ensemble forecasting system always forecasts an event probability close to 
climatological probability, instead of close to 0 or close to 1, this forecasting system is not useful, 
although it might be well calibrated (Ranjan, 2009; Wilks, 2006). This is independent of the 
corresponding observations of forecasts (Wilks, 2006). The histogram accompanied with a reliability 
diagram, showing the sample size in each probability bin, indicates the sharpness of the forecast 
(Ranjan, 2009; Renner et al., 2009; WMO, 2015). For a sharp forecast, this histogram should be U-
shaped (Ranjan, 2009). This histogram will be used to qualitatively assess the sharpness of the low 
flow and high flow forecasts. This approach is also used by Ranjan (2009).  

3.7.6 Resolution 
Resolution is the ability of the forecast model to correctly forecast the occurrence or non-occurrence 
of events (Demirel et al., 2013a; Martina et al., 2006). According to WMO (2015) resolution is the 
ability of the forecasting system to resolve the set of events into subsets with different frequency 
distributions. When event A was forecasted the distribution of outcomes should be different from 
the distribution of outcomes than when event B was forecasted (WMO, 2015). A flat curve in the 
reliability diagram indicates that the forecast system has no resolution on the considered event, since 
for all forecast probabilities bins the same observed relative frequency (climatology) is found (Wilks, 
2006; WMO, 2015). So the reliability diagram will be used to qualitatively assess and compare the 
resolution of the forecast system for low flow and high flow forecasts. Contingency tables and ROC 
curves can be used to evaluate whether the forecast model correctly forecasts the occurrence and 
non-occurrence of events. It has been chosen to apply ROC as a score for this, because ROC is a score 
over more than one probability threshold like single contingency tables. In addition, WMO (2015) 
states that reliability diagrams and ROC are good partners, because the ROC is conditioned on the 
reference flows and the reliability diagram is conditioned on the forecasts.  
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3.7.6.1 Relative Operating Characteristic 
The ROC is based on two-by-two contingency tables. Contingency tables are the basis to measure 
resolution, since they indicate the ability of the system to correctly discriminate between two 
alternative outcomes (Demargne et al., 2010; Velázquez et al., 2010). The combinations between 
observed, not observed, forecasted and not forecasted events are defined in Table 12. A forecasted 
event applies when a certain number of ensembles exceeds the flow threshold (probability 
threshold). With a low probability threshold more hits will be observed, but there will also be more 
false alarms (Komma et al., 2007). With the ROC this trade-off is evaluated (Komma et al., 2007; 
Mason & Graham, 2002). Although the ROC curve does indicate potential usefulness of the 
forecasting system (WMO, 2015), it cannot be used as a general evaluation score because specific 
numerical values of forecasts are not incorporated (Wilks, 2006).  

Table 12: Contingency table 
 Observed Not observed 
Forecasted Hit False alarm 
Not forecasted Miss Correct negative 

 
The skill of a forecasting system to predict events can be represented by the hit rate and the false 
alarm rate (Martina et al., 2006; Velázquez et al., 2010). The hit rate and false alarm rate can be 
calculated as follows (WMO, 2015):  

𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖 +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
            [3.12] 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
            [3.13] 

For the hit rate a score of 1 is perfect and for the false alarm rate a score of 0 is perfect (WMO, 
2015). To establish the ROC score a set of contingency tables is made, one for each examined 
probability threshold and these form a hit rate/false alarm rate graph for one predefined flow 
threshold (Atger, 2001; Buizza et al., 1999; Fawcett, 2006; WMO, 2015). The probability thresholds 
are usually defined according to the number of ensemble members that forecast the event (from 1 to 
the number of ensemble members) (Atger, 2001). Every pair in the ROC curve indicates the 
performance of a deterministic forecast that would be based on the fact that at least that number of 
ensemble members forecasts the considered event (Atger, 2001). The area under the ROC curve 
(AUC) can be used to obtain a single score for performance (Fawcett, 2006; Wilks, 2006). A perfect 
ensemble forecasting system has an area of 1 under the ROC curve (100% hit rate, 0% false alarm 
rate for all probability thresholds), while a forecast system with zero skill has a diagonal ROC curve 
with an area of 0.5 (coincides with diagonal) (Fawcett, 2006; Velázquez et al., 2010; WMO, 2015). 
Buizza et al. (1999) state that it is common practice to consider an area of more than 0.7 as indicative 
for useful prediction systems and 0.8 for good prediction systems. A limitation of using the AUC as 
performance measure is that for relatively good forecast systems the AUCs tend to be quite similar 
(Marzban, 2004).  

The ROC score has been brought into practice by calculating the hit rate and false alarm rate for 
requested exceedance probabilities of 1 to 51 of the ensemble members that exceed the predefined 
low or high flow threshold. Also the two endpoints (0,0) and (1,1) are included (Fawcett, 2006; Wilks, 
2006). (0,0) represents the strategy of never issuing a positive classification and (1,1) represents the 
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strategy of unconditionally issuing positive classifications (exceedance of 0 ensemble members is 
required) (Fawcett, 2006). After all, following Fawcett (2006) the AUC is calculated with a trapezoidal 
approximation. This score will be calculated for different lead times for the low and high flow 
thresholds that are defined in section 3.8.  

3.7.7 Relative uncertainty of flow predictions 
The RCI will be used to describe the uncertainty that the ensemble flow forecasts contain. The RCI is 
defined as follows (Demirel et al., 2013a): 

𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑁𝑁
∗�

𝑄𝑄95(𝑡𝑡) − 𝑄𝑄5(𝑡𝑡)
𝑄𝑄50(𝑡𝑡)

𝑡𝑡=𝑁𝑁

𝑡𝑡=1

∗ 100            [3.14] 

𝑅𝑅𝑅𝑅𝑅𝑅 =Relative confidence interval [%] 
𝑄𝑄5 = 95% percentile of ordered ensemble flows [m3/s]   
𝑄𝑄95 = 5% percentile of ordered ensemble flows [m3/s] 
𝑄𝑄50 =  50% percentile of ordered ensemble flows [m3/s] 
𝑡𝑡 = Time step [day] 

 𝑁𝑁 = Total number of time steps [days] 
 
This score quantifies how wide the ensemble predictions are and thus how uncertain the flow 
predictions are. The RCI will be used to quantify uncertainty in the ensemble predictions for different 
lead times and for different flow circumstances. This is not a true evaluation score, since ensemble 
members are not evaluated against reference flows and there is no good or bad score.  

3.8 Evaluation of ensemble flow forecasting purposes 
To fulfil the research objective the ensemble flow forecasting system will be evaluated for different 
purposes. This includes different lead times, from 1 day to 10 days ahead. At second the model will 
be evaluated for different hydrological flow categories to see how the model performs during low 
discharges, medium discharges and high discharges. To define the flow thresholds certain percentiles 
of observed discharges during the evaluation period (1-11-2007 until 31-10-2013) are used, to 
guarantee a sufficient number of data points in the evaluation. As low flow threshold Q75 
(exceedance probability of 75%) is chosen, analogously to Demirel et al. (2013b). This guarantees a 
sufficient number of events in the evaluation and discharges below this threshold still affect river 
functions (Demirel et al., 2013b). Similarly to the definition of the low flow threshold, for high 
discharges the threshold Q25 is used. It should be realized that flows below Q75 and above Q25 are not 
necessarily very extreme discharges, but a sufficient number of data points is needed in the 
evaluation. All flows in between Q75 and Q25 are classified as medium flows. The flow categories are 
summarized in Table 13. A certain flow category applies when the observed discharge on a day falls 
in this category. The results of evaluation on different purposes are presented in section 4.3. 

Table 13: Definition of hydrological flow categories 
Flow category Thresholds Discharges of thresholds 
Low flows 𝑄𝑄0 ≤ 𝑄𝑄75 𝑄𝑄0 ≤ 2.76 𝑚𝑚3/𝑠𝑠 
Medium flows 𝑄𝑄75 < 𝑄𝑄0 ≤ 𝑄𝑄25 2.76 𝑚𝑚3/𝑠𝑠 < 𝑄𝑄0 ≤ 10.35 𝑚𝑚3/𝑠𝑠 
High flows 𝑄𝑄25 < 𝑄𝑄0 10.35 𝑚𝑚3/𝑠𝑠 < 𝑄𝑄0 
 

3.9 Evaluation of hydrological circumstances 
After evaluation of the different hydrological flow categories the next step is to see whether there 
are differences in the performance of high flow forecasts (section 3.9.1) and low flow forecasts 
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(3.9.2) with different driving processes. This will not be done for medium flows, because these are 
non-extreme flows that are probably not clearly caused by a certain driving process. The observed 
discharges will be classified, so that independent of the ensemble forecasts or lead time a flow falls 
in a certain driving process category.  

3.9.1 High flow producing processes 
High flows can be caused by different driving processes. A range of variables, like rainfall regime, 
snowmelt and state of the catchment, can give rise to floods (Merz & Blöschl, 2003). Merz and 
Blöschl (2003) distinguish long-rain floods, short-rain floods, flash floods, rain-on-snow floods and 
snowmelt floods. Vormoor et al. (2015) used fluxes from the HBV model to classify events into 
rainfall (2/3 rainfall generated), snowmelt (2/3 snowmelt generated) and rainfall + snowmelt. Merz 
and Blöschl (2003) used time of the year, rainfall in the days before the event, snowmelt rates from a 
HBV model, snow water equivalents from the HBV model and soil moisture conditions from the HBV 
model to manually classify flood events into one of the mentioned high flow producing processes. 
Merz and Blöschl (2003) mention that the relationships between flood indicators and process types 
are very complex, so the development of quantitative rules is not straightforward. In this project 
fewer processes will be distinguished and characterization rules provide more insight into the actual 
characterization, so it has been chosen to establish quantitative characterization rules.  

Flash floods cannot be distinguished in this study, because only daily observations and forecasts are 
available. Therefore short-rain floods will also contain flash floods. Rain-on-snow floods and 
snowmelt floods are considered as one category, because they cannot reliably be distinguished. In 
Table 14 the high flow producing processes are further explained.  

In this study all high flows where snowmelt is involved will be classified as snowmelt generated 
floods, because when snow and rainfall occur together the snowpack plays an important role in the 
runoff process. All events in which no snowmelt is involved are classified as rainfall generated flows. 
If the precipitation at the day before the flow event is above the precipitation amount of 10 mm the 
event is classified as a short-rain flood. From the time series of observed precipitation, observed 
discharge and HBV model storages it has been found that with low initial storages a precipitation 
amount of 10 mm/day at one day before the flow event is able to cause a discharge event above the 
high flow threshold. 10 mm/day is not a very extreme amount of precipitation, but a flow threshold 
that is exceeded by 25% of the discharges is also not very extreme. All remaining events are classified 
as long-rain floods. The classification rules are related to fluxes and storages at one day before the 
event, because in the HBV model it takes one day before the rainfall and snowmelt fluxes end up in 
the fast runoff and slow runoff reservoir and can form runoff. The ensemble flow forecasts are 
evaluated for these high flow producing processes in section 4.4. In section 5.3 the classification 
procedure is discussed, inter alia the subjectivity in this classification and the problem of classifying 
high discharges that are generated by a combination of processes.  

In Figure 24 the distribution of high flow producing processes over the year is presented. This seems 
a reliable distribution of the processes, with snowmelt flows in winter, short-rain floods mainly in 
summer and long-rain floods during the whole year.  
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Table 14: Characterization of the high flow producing processes 
Process Characterization Characterization rules 
Snowmelt 
floods 

Snowmelt floods occur when there is a snowpack and a 
warm weather spell causes melting (Merz & Blöschl, 
2003). With rain-on-snow floods the rainfall enhances 
snowmelt from an existing snow cover and due to 
antecedent snowmelt the catchment can already be 
saturated and the rainfall and melted snow water will 
directly form runoff (Merz & Blöschl, 2003). These 
floods are considered as one category, because both 
are related to snowmelt processes and in the HBV 
model snowmelt and precipitation falling as rainfall are 
strongly related (both based on temperature). It would 
not be possible to reliably distinguish between these 
processes. Therefore all high flow events where snow is 
involved are characterized as snowmelt floods. 

• Snowpack present at day-1: The 
event is related to snowmelt.   

Short-rain 
floods 

Merz and Blöschl (2003) explain that rainfall of short 
duration and high intensity can saturate parts of the 
catchment. Flood runoff results from a combination of 
runoff from saturated areas, overland flow due to high 
rainfall intensities and fast subsurface flow (Merz & 
Blöschl, 2003). Wet antecedent conditions enhance the 
magnitude of this type of event (Merz & Blöschl, 2003). 
Flash floods also fall in this category.  

• No snowpack present at day-1: 
The event is not related to 
snow.  

• Rainfall at day-1 above 10 mm:  
The event is caused by high 
rainfall at the day before. 

Long-rain 
floods 

Rainfall over several days or weeks can saturate the 
catchment. When the storage capacity of the 
catchment is exceeded any additional rain generates a 
flood event (Merz & Blöschl, 2003). 
This category applies when a flow event is not directly 
generated by snowmelt or high precipitation. 

• No snowpack present at day-1: 
The event is not related to 
snow.  

• Rainfall at day-1 below 10 mm: 
The event is not caused by high 
rainfall at the day before. 

 

 
Figure 24: High flow producing processes throughout the year, based on 1-11-2007 to 31-10-2013 
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3.9.2 Low flow producing processes 
The processes that cause low flows are snow accumulation and the combination of low rainfall and 
high evapotranspiration (precipitation deficit) during a period before the event. These processes are 
characterized in Table 15.  

As for high flow producing processes also for low flow producing processes characterization rules are 
established to characterize all low flow events in the period of interest. If in the period before the 
day of the event the precipitation is accumulated as snow this is the reason that the fast runoff and 
slow runoff reservoir have a low actual storage. In the HBV model precipitation is stored in the 
snowpack then. In the case that no snowpack is present it is assumed that the low flow must be 
caused by low rainfall and high evapotranspiration. The evaluation results of the ensemble flow 
forecasts for these low flow producing processes are presented in section 4.5. In section 5.3 the 
classification of low flow producing processes is discussed.  

In Figure 25 the distribution of low flow producing processes over the year is presented. Especially 
from December to February the low flows are caused by snow accumulation. In the rest of the year 
the low flows are mainly caused by low rainfall, with most low flow events in the months from 
August to October.  

Table 15: Characterization of the low flow producing processes 
Process Characterization Characterization rules 
Snow 
accumulation 

If temperature is low and precipitation falls as snow, 
this water is accumulated in the catchment and does 
not form runoff at that moment.  

• Snowpack (HBV) at day-1: 
The event is related to snow 
accumulation. 

Low rainfall/ high 
evapotrans-
piration 
 

If there falls no or very low rainfall and there is a high 
evapotranspiration during a long period the  
conditions in the catchment will become dry and 
discharge will be low.  

• No snowpack (HBV) at day-
1: The event is not related to 
snow accumulation.  

 

 
Figure 25: Low flow producing processes throughout the year, based on 1-11-2007 to 31-10-2013 
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4. Results 
This chapter presents and explains the results. In section 4.1 the calibration and validation results are 
presented and in section 4.2 the pre- and post-processing strategies are evaluated. In section 4.3 the 
ensemble flow forecasts are evaluated for different purposes. In section 4.4 and section 4.5 the flow 
forecasts are evaluated for respectively high flow producing processes and low flow producing 
processes.  

4.1 Calibration and validation results deterministic hydrological model 
This section presents the results of the sensitivity analysis (section 4.1.1), the calibration and 
validation (section 4.1.2), an estimation of parameter uncertainty (section 4.1.3) and the model 
performance per year of the evaluation period (section 4.1.4). In section 4.1.5 the effect of different 
updating procedures is evaluated and in section 4.1.6 the hydrological model performance is 
examined for different purposes.  

4.1.1 Results sensitivity analysis 
The results of the sensitivity analysis will be used to see which parameters do not have a large 
influence on the model output and thus to which parameters a fixed value can be assigned in the 
second calibration round and in the uncertainty analysis. In Figure 26 the influence of parameters is 
presented. It must be noted that the picture of Figure 26 is slightly different every time the sensitivity 
analysis is run, but the relative position of the parameters is more or less the same.  It follows that 
especially FC, α, Kf, CFMAX and PERC have a large influence on the model output. Also TT, LP and β 
have a considerable influence. Since with the method of Morris there is a risk that parameters are 
classified as non-influential while they are important (Song et al., 2015), also TT, LP and β are 
included in the calibration procedure. 

 
Figure 26: Result of the sensitivity analysis with the method of Morris. Based on this it has been chosen to calibrate on 

FC, α, Kf, CFMAX, PERC, TT, LP and β in the second calibration round. 
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4.1.2 Optimum parameter set 
In Table 16 the resulting values of the objective function of the calibration and validation are 
presented, with uncorrected and corrected input data for elevation (section 3.1). By correction for 
elevation differences over the catchment, precipitation is corrected for underestimation and 
temperature is corrected for overestimation of the catchment averages. Without correction, these 
systematic errors would be (partly) captured in the calibration. The calibration and validation results 
have improved after elevation correction, so these systematic errors were not completely captured 
in the calibrated parameters. In addition, and this is more important in this study, the hydrological 
model will also be applied with the meteorological forecasts from ECMWF. So it must be prevented 
that in one of the input data sets a systematic bias is present, because the optimum model 
parameters are dependent on this bias. The resulting optimum parameter values are presented in 
Table 17. Over the calibration period larger values of the objective function are obtained, because 
the parameters are optimized for this period. The positive RVE values in the validation indicate that 
over the whole validation period the volume of the observed discharge is overestimated by the 
model. The values of the objective function of the validation period are rather low compared to the 
results of Van den Tillaart (2010), comparable with the results of Akhtar et al. (2009) and Knoben 
(2013) and higher than the results of Maat (2015). 

DEGL is a global optimization procedure, which means that it is supposed to find the global optimum 
parameter set. However, by repeating the calibration procedure with 14 parameters with the same 
settings but different starting points of parameter values, this resulted in a slightly different 
parameter set. The same objective function is obtained over the calibration period, which is the 
reason that different parameter sets could result from the calibration. Due to the high number of 
parameters in the HBV model (14 parameters) overparameterisation may be present, which means 
that different parameter sets can give equally good output performances (Booij, 2005). This is also 
explained by Song et al. (2015) who state that in practice a large number of parameters (from tens to 
hundreds) leads to the curse of dimensionality where parameter estimation becomes a high-
dimensional and mostly nonlinear problem. According to Song et al. (2015) it is often not feasible or 
necessary to include all model parameters in the calibration process. Therefore before the 
calibration, insensitive model parameters should be locked at a fixed value to facilitate more efficient 
calibration (Song et al., 2015). However, assigning a fixed value (from the first calibration round) to 
the insensitive parameters from the sensitivity analysis (see section 4.1.1) and applying the same 
calibration procedure to the 8 most sensitive parameters gives exactly the same result as their initial 
calibration with 14 parameters (with different starting points). You would expect that two 
calibrations with 14 parameters give a different optimum parameter set, but two calibrations with 
the 8 most sensitive parameters should give one optimum parameter set. Apparently the fixed values 
of the insensitive parameters already define the global optimum that will be found by DEGL. This 
indicates that the output is also sensitive to one or more of the parameters that were classified as 
insensitive.  

Although it is undesirable to find a different parameter set each time the calibration is run, in this 
case it is accepted because the differences between the parameters sets from the two calibrations 
are quite small for most parameters. Only for the parameters FOCFMAX, CFR and WHC a very large 
difference was found (>10%). This can be explained by the fact that from the sensitivity analysis it 
appeared that these are insensitive parameters, so different values of these parameters will result in 
almost the same output. The difference of CFMAX between the two found optimum parameter sets 
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was about 10%, the difference between all remaining parameters was below 5% and for FC, β, LP and 
TTI even almost 0%. Also the NS and RVE over the validation period are almost the same (NS = 0.7657 
and 0.7658 and RVE = 6.7164% and 6.7098%). During the validation period the maximum relative 
difference in simulated discharges between both parameter sets is 8.9% (absolute difference 
0.0230 m3/s) and the maximum absolute difference is 1.79 m3/s (with relative difference 0.26%). 
Both parameter sets result in almost the same simulated discharges, so one of the parameter sets 
resulting from calibration with 14 parameters is accepted as the optimum parameter set.  

Table 16: Calibration and validation results 
Calibration run Calibration (1-11-1971 to 31-10-2000) Validation (1-11-2000 to 31-10-2013) 

Y NS RVE Y NS RVE 
0. Calibration with 
uncorrected input data 

0.78 0.78 0% 0.69 0.74 6.5% 

1. Calibration with 
corrected input data (see 
section 3.1) 

0.81 0.81 0% 0.72 0.77 6.7% 

 
Table 17: HBV model parameter values from the calibration with corrected input data 

Parameter Parameter value Unit 
FC 122 mm 
β 2.65 - 
LP 1.00 - 
α 0.267 - 
Kf 0.232 d-1 
Ks 0.0782 d-1 
PERC 2.18 mm d-1 
CFLUX 0.875 mm d-1 
TT 0.129 oC 
TTI 7.00 oC 
CFMAX 1.75 mm oC-1 d-1 
FOCFMAX 0.879 - 
CFR 0.222 - 
WHC 1.49*10-14 mm mm-1 

 
4.1.3 Parameter uncertainty 

The highest objective function over the calibration period that followed from the Monte Carlo 
simulations is Y = 0.68, which confirms that DEGL is a smarter way to approach the global optimum 
than a simple Monte Carlo analysis. Only 0.82% of the parameter sets (50000 model runs) is assigned 
behavioural (Y > 0.5). This is a very small percentage compared to other studies. In the study of Jin et 
al. (2010) ~18% of the parameter sets is behavioural and in the study of Demirel et al. (2013a) ~9% of 
the parameter sets is behavioural. This percentage is dependent on several factors, like the threshold 
value for behavioural parameter sets, the parameter ranges and the used model and application.  

The results of the GLUE analysis are presented in appendix 4. Sharp histogram distributions indicate 
well identifiable parameters, while flat distributions indicate a larger parameter uncertainty (Jin et 
al., 2010). For the parameters FC, β, LP and α the peak of behavioural parameter sets is well 
identifiable (Figure 52 in appendix 4) and except of β the distributions focus around the parameter 
values that were found by DEGL. These parameters have a relatively low parameter uncertainty. For 
the parameters Kf, PERC, TT and CFMAX the distributions are flatter, which indicates a larger 
parameter uncertainty of these parameters. This is also visible in the Monte Carlo simulations 



4.1 Calibration and validation results deterministic hydrological model 

59 

scatterplots (Figure 51 in appendix 4), in which over a wide parameter range high objective functions 
are found for these parameters. The calibrated value of 1 for LP and the tendency of behavioural 
parameter values to 1 are treated in the discussion (section 5.1.2).  

4.1.4 Hydrological model performance per year 
In Table 18 the objective functions per hydrological year in the evaluation period are presented. In 
2007 and 2008 the agreement between observed discharge and simulated discharge based on 
observed precipitation and temperature is very poor, especially in 2007. In the discussion (section 
5.1.1) possible explanations are mentioned for this. The NS below 0 means that it would be even 
better to use the average discharge in this year than to use the output of the hydrological model. In 
Figure 27 observed and simulated discharge over 2007 and 2008 are shown. It is clearly visible that 
during a long period in 2007 observed discharge is overestimated by the model and therefore this 
year will be excluded from the evaluation period. The hydrological year 2008 will not be excluded, 
because in this year there is no period where errors are visibly consistently larger than in other years. 
At the discharge peaks large errors are made, but this also happens sometimes during other years 
(not for all peaks) and this is probably the reason for the bad NS value in 2008.  

Table 18: Objective functions per hydrological year in the evaluation period 
Hydrological year NS RVE [%] Y 
2007 -1.34 43.41 -0.94 
2008 0.22 17.14 0.19 
2009 0.53 -4.67 0.51 
2010 0.93 0.07 0.93 
2011 0.59 6.20 0.55 
2012 0.62 19.47 0.52 
2013 0.46 12.79 0.41 
2007-2013 0.81 8.68 0.74 
2009-2013 0.86 3.34 0.83 

 
Figure 27: Hydrograph of observed and simulated discharge during the hydrological years 2007 and 2008 
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4.1.5 Effect of the updating procedure 
The effect of the updating procedure will be examined by calculating the objective function over the 
validation period, for the different updating procedures that are explained in section 3.4. The 
effectiveness of the updating procedures will be assessed for the deterministic model with observed 
precipitation and temperature data, because this model is also used in the ensemble flow forecasting 
system. In Figure 28 the resulting Y is presented for different lead times. In this figure a lead time of 
0 days means that the initial states are updated every day. A lead time of 10 days means that the 
initial states are updated and then the model is run 10 days without updating. To correct the 
overestimation of flows (positive RVE in Table 16), in general the updating procedure decreases the 
surface water storage and groundwater storage compared to simulated non-updated storages. It can 
be seen that for a lead time of 0 days there is a considerable improvement of the objective function. 
For larger lead times the improvement becomes smaller, because with larger lead times the initial 
conditions at day 0 are relatively less important and the summed effect of fluxes becomes more 
important.  

The fraction of fast runoff shows considerable differences between the updating procedures. The 
differences in discharge are damped, because the outflow from the reservoirs is a part of the total 
storage in it. The updating procedure that uses total discharge and initial storage to determine k is 
sometimes better and sometimes worse than the simple relationship. According to Figure 28 in 
general it does not result in an improvement of updating of initial states compared to the simple 
model. Therefore it has been chosen to use the simplest method (relation between total discharge 
and k). Although the relationship of k with initial storage is clear (Figure 15), apparently it does not 
lead to an improved performance of the deterministic HBV model. 

 
Figure 28: Resulting values of the objective function over the validation period after implementation of the three 

updating procedures. The lines of the three updating procedures are almost on top of each other.  

4.1.6 Hydrological model performance for different purposes 
In the ensemble flow forecasting system the hydrological model will be applied to different lead 
times and different hydrological flow categories. In Table 19 the performance of the deterministic 
hydrological model with input from observed precipitation and temperature data is presented for 
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different lead times and hydrological flow categories. The NS has not been used here, because the NS 
will not result in a fair comparison between the different hydrological flow categories. Therefore in 
addition to the RVE the RMAE has been used.    

In Table 19 it can be seen that the results are much better for high flow simulations than for low flow 
simulations when no updating is applied. This means that the hydrological model parameters are 
primarily trained on high flows, which is the result of the chosen objective function (also see the 
discussion in section 5.1.2). Also with updating there is a clear difference between low and high flow 
simulations, with medium flow simulations in most cases in between these flow categories. The 
effect of updating on high flows and low flows is visualized in Figure 29 for an example period. It is 
visible that due to updating the simulations are getting closer to the observations. The updating 
procedure results in the largest improvement for low flow simulations. The effectiveness of the 
updating procedure depends on the autocorrelation of discharge, because the updating is based on 
observations of discharge of the previous time step. In low flow periods there is usually a high 
autocorrelation of discharge. The HBV model does not perform well for low flows so the 
performance deteriorates for larger lead times, but it is still much better than with the simulations 
without updating. The updating has less effect on high flows, because in these flows initial states 
have relatively less influence and the autocorrelation of discharge is usually less than in low flows.  

In Figure 29 a result of the updating procedure that is based on a previous discharge observation can 
be seen after the small peak at 4-7-2012. The updating procedure adapts the initial states to this 
small discharge peak and as a result of this the simulated discharges that are based on updating with 
this peak are also larger than other simulated discharges. The falling limb is simulated much flatter 
than in the observations, so this effect stays until the maximum lead time of 10 days.  

Table 19: Evaluation scores of low, medium and high flow simulations with updated initial states at a lead time of 0 days 
Lead time RVE [%] RMAE [-] 
 Low flows Medium flows High flows Low flows Medium flows High flows 
No updating 43.3 7.3 1.8 0.71 0.43 0.33 
0 3.2 4.7 2.2 0.11 0.16 0.25 
1 6.4 7.2 2.6 0.19 0.21 0.29 
2 8.6 8.8 2.5 0.23 0.25 0.31 
3 11.5 9.6 2.3 0.29 0.28 0.32 
4 13.6 10.1 2.2 0.33 0.30 0.32 
5 15.9 10.4 2.0 0.37 0.31 0.32 
6 18.2 10.4 2.0 0.41 0.32 0.32 
7 19.2 10.5 2.0 0.43 0.34 0.32 
8 20.6 10.3 2.1 0.45 0.35 0.32 
9 22.9 10.1 2.1 0.49 0.35 0.32 
10 24.0 10.0 2.1 0.50 0.36 0.32 
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Figure 29: Example of the effect of updating at different lead times 

4.2 Validation results of the processing strategies 
In section 3.5 3 set-ups of QM in pre-processing and 4 strategies of combining pre- and post-
processing are introduced. In this paragraph these set-ups (section 4.2.1) and strategies (section 
4.2.2) are evaluated and the most appropriate set-up and strategy are chosen.  

The effectiveness of the different QM set-ups and strategies will be evaluated with the CRPS. In 
section 3.7.3 it has been explained that this is a general evaluation score that combines different 
properties of forecast quality. This score is also used by other studies to evaluate the effectiveness of 
pre-processing and post-processing techniques, as single score (Kang et al., 2010) or as one of the 
evaluation scores (Madadgar et al., 2014; Pagano et al., 2013; Verkade et al., 2013; Zalachori et al., 
2012). For an adequate evaluation of the performance of a forecasting system a set of evaluation 
scores is needed (also argued for in section 3.7), but in this study one of the processing strategies 
needs to be selected and it is considered that it is not needed to thoroughly analyse the performance 
on all properties of forecast quality. The set-up with the lowest CRPS over lead times from 0 days to 
9 days will be used as pre-processing set-up and the strategy with the lowest CRPS will be used as 
processing strategy. In addition the RMAE (section 3.7.4.1) and rank histogram flatness coefficient 
(section 3.7.4.2) are used to show the effect of processing on the relative bias of the ensemble mean 
and on dispersion of the ensembles. The validation period is from 1-11-2007 to 31-10-2011.  

4.2.1 Best pre-processing set-up 
In Figure 30, Figure 31 and Figure 32 the evaluation results of the QM set-ups are presented. 
Regarding precipitation the three QM set-ups all result in an almost equal (little) improvement of the 
CRPS. The RMAE and especially the flatness coefficient improve considerably by QM. These results 
indicate that the correction has improved the precipitation forecasts. The CRPS and RMAE are almost 
equal for all QM set-ups and the flatness coefficient of QM separately for each lead time (set-up 2) is 
on average slightly better, so it has been chosen to apply set-up 2 to pre-process the precipitation 
forecasts. However the differences are very small, especially when it is remembered that there is a 
random element in the rank histograms of precipitation forecasts (explained in section 3.7.4.2).  
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Regarding temperature the CRPS of QM with separate lead times and two seasons (set-up 3) is 
slightly better than the other QM set-ups for most lead times and this is on average approved by the 
RMAE and flatness coefficient. Therefore it is chosen to use set-up 3 to correct the temperature 
forecasts, which was also expected based on Figure 18 (explained in section 3.5.3.1). A larger 
improvement is achieved for the temperature forecasts than for the precipitation forecasts. The 
reason for this is that in the temperature forecasts a more consistent bias is present, so the 
temperature forecasts are easier to pre-process based on a training period. This bias might be 
introduced by calculating the daily average temperature (see section 2.3). Over a large part of the 
cumulative probability domain the CDF of the pre-processed precipitation forecasts during the 
validation period is actually farther away from the CDF of the observations during the validation 
period than before the correction. In the temperature forecasts the bias is more consistent, so after 
pre-processing the CDF of the forecasts is closer to the CDF of the observations than before.  

In appendix 5 the rank histograms of precipitation and temperature forecasts are presented for each 
lead time, before and after pre-processing. The rank histograms of uncorrected precipitation and 
temperature forecasts are substantial non-uniform. These U-shaped histograms indicate under-
dispersion or conditional biases (Hamill, 2001), possibly as a result of under-dispersion and/or bias in 
the initial states of the meteorological model and as a result of the meteorological model itself. At 
larger lead times the flatness improves, which is a well-known feature of operational meteorological 
ensemble prediction systems (Candille & Talagrand, 2005). At larger lead times the influence of initial 
conditions is less and the spreading of the forecasts becomes larger. In general QM improves the 
flatness of the rank histograms considerably for both precipitation and temperature forecasts. 
Regarding precipitation, for small lead times (up to a lead time of 3 days) the histograms still show a 
non-uniform distribution after pre-processing. Regarding temperature, after pre-processing the rank 
histograms are non-uniform at all lead times and more non-uniform than the precipitation forecasts.  
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Figure 30: CRPS of the QM set-ups and uncorrected forecasts of precipitation (a) and temperature (b), over the validation 

period 2008-2011. Lines of the different set-ups are almost on top of each other.  

 
Figure 31: RMAE of the QM set-ups and uncorrected forecasts of precipitation (a) and temperature (b), over the 

validation period 2008-2011. Lines of the different set-ups are almost on top of each other. 
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Figure 32: Rank histogram flatness coefficients of different QM set-ups and uncorrected forecasts of precipitation (a) and 

temperature (b) forecasts, over the validation period 2008-2011  

4.2.2 Best processing strategy 
The best QM set-up for precipitation and temperature forecasts from section 4.2.1 is applied in 
strategy 1 and 2 (see Table 11). In Figure 33, Figure 34 and Figure 35 the validation results of the 
different pre- and post-processing strategies are presented. It is very remarkable that strategy 0 (no 
correction) results in the best CRPS values. Since the flatness coefficient has also worsened by post-
processing, the spread of the flow forecasts is worse after post-processing. There is not a large effect 
on the RMAE, so on average the ensemble mean flow forecasts have not clearly been improved or 
got worse. The best performing processing strategy over the validation period will be applied to the 
flow forecasts, so no correction at all (strategy 0). Since no processing will be applied, the training 
period does not need to be excluded from the evaluation period of the ensemble flow forecasts. So 
the ensemble flow forecasts can be evaluated over the period 2008-2013.  

In section 3.5.3 it has already been mentioned that the effectiveness of QM depends on whether 
during the validation period the same bias is present between the CDF of observations and the CDF 
of forecasts as during the training period. In Figure 36 it is visible that this bias is not the same over 
the whole cumulative probability domain for all years. Especially during the hydrological year 2010 
(green line) the bias is different, but also for other years on some parts of the cumulative probability 
domain the correction is in the other direction than during the validation period. Over the cumulative 
probability domains 0 - 0.2 and 0.85 - 1 the bias during the validation period is in the other direction 
than during the training period. In addition between a cumulative probability of about 0.4 and 0.7 
the bias during the training period is much larger than during the validation period, so in this range 
the correction is in the good direction but the correction is too large. As a result of these points many 
corrected forecasts deviate further away from the observations than the uncorrected forecasts. QM 
usually functions effectively in cases with distant CDFs (consistent bias over whole cumulative 



4.2 Validation results of the processing strategies 

66 

probability domain) (Madadgar et al., 2014), which is clearly not the case here. Madadgar et al. 
(2014) describe that when two distributions are relatively close, which will be the case for a well-
calibrated model, this deficiency of QM becomes more significant. This is further elaborated in the 
discussion in section 5.2.  

In appendix 6 the effects of the different processing strategies on the CRPS, RMAE and flatness 
coefficient during the training period are shown. These figures show the potential of processing with 
QM when a consistent bias is present. Over the training period strategy 3 with seasonal distinction 
gives the best performance.  

 
Figure 33: CRPS of the post-processing strategies, over the validation period 2008-2011 

 
Figure 34: RMAE of the post-processing strategies, over the validation period 2008-2011 
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Figure 35: Rank histogram flatness coefficients of the post-processing strategies, over the validation period 2008-2011 

 
Figure 36: Difference between the CDFs of the observations and the CDFs of the uncorrected flow forecasts per 

hydrological year. This example is for a lead time of 5 days. 

4.3  Evaluation of purposes of ensemble flow forecasts 
For research question 2 the ensemble flow forecasts are evaluated for lead times until 10 days and 
for the low, medium and high flow categories. The hydrological year 2007 has been excluded from 
the evaluation period (see section 4.1.4), so the ensemble flow forecasts are evaluated over the 
period from 1-11-2007 to 31-10-2013. Figure 37 presents an example hydrograph forecast. The high 
flow event at a lead time of 4 days is generated by a rainfall amount of 15 mm at a lead time of 
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2 days (see Figure 6). From lead times of 1 day and more the flow forecasts are spread, because at a 
lead time 0 days the discharge is totally determined by the initial states. The spread of 
meteorological forecasts has effect on the flow forecasts from a lead time of 1 day.  

 
Figure 37: Example of an ensemble flow forecast (see Figure 6 for the precipitation forecast at the same day) 

4.3.1 General evaluation 
In Figure 38 the CRPSS against the reference forecasts is presented. For all flows in general the CRPSS 
is clearly positive for all lead times, so on average the flow forecasts are better than the reference 
forecasts. The forecast skill is maximum between a lead time of 2 and 5 days. Both the flow forecasts 
and the reference forecasts are simulated with the same hydrological model and initial conditions, so 
skill is only generated by the meteorological forecasts compared to historical meteorological 
observations. This also explains that the values of the CRPSS are not very high, because the 
hydrological model and the initial conditions are usually very important in the simulation of 
discharge. For a lead time of 0 days the forecasts have no skill, because both the flow forecasts and 
the reference forecasts are totally determined by the initial conditions on the forecast day.  

Regarding low flows, for small lead times (1-2 days) reference forecasts are better or have almost the 
same performance. Initial conditions are very important for low flows (explained below Figure 38) 
and the same initial conditions are used for the reference forecasts and the flow forecasts, so it is 
difficult to generate skill for low flow forecasts at small lead times. The negative skill at small lead 
times indicates that for small lead times historical observations of precipitation and temperature are 
even better forecasts than meteorological ensemble forecasts from ECMWF for this category of 
flows. Possibly low flow periods are often in the same period of the year, so that historical 
observations are reasonable forecasts. In addition it often happens that the precipitation and/or 
temperature observations are totally missed by the meteorological forecasts, especially at short lead 
times (see the rank histograms of precipitation in appendix 5). After all, meteorological models tend 
to forecast drizzle instead of zero precipitation (also see section 3.5.3). For lead times of 3 days and 
more there is a positive skill of low flow forecasts and this is increasing with lead time, although the 
skills are still not very high. Apparently from a lead time of 3 days the accumulated effects of the 
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meteorological forecasts are more skilful than historical observations. Regarding medium flows the 
flow forecasts do not have a clear positive skill for all lead times, which can be explained by the fact 
that historical discharges are often around the medium discharge so historical observations are a 
good approximation for these flows. The high flow forecasts have a clear positive skill. Initial 
conditions are relatively less important in these events, so the flow forecasts and reference forecasts 
can easier deviate. In addition these events will be less well captured in historical observations and 
thus in the reference forecasts, because high flow periods are often shorter and not bounded to 
specific days like low flow periods.  

 
Figure 38: Skill of the flow forecasts, expressed by the CRPS of the flow forecasts compared to the CRPS of the reference 

forecasts 

In Figure 39a the CRPS of the flow forecasts is presented and in Figure 39b the relative contribution 
of meteorological forecast errors (high ratio) and hydrological model errors (low ratio) is presented. 
The CRPS increases with lead time for all different flow categories, so the performance of the flow 
forecasts compared to observations decreases with lead time for all flow categories (Figure 39a). As 
explained in section 3.7.3.1 the CRPS of the different flow categories cannot directly be compared.  

In Figure 39b it can be seen that the relative contribution of meteorological forecast errors increases 
with lead time, although the model error increases with lead time (Table 19). This is caused by two 
effects. In the first place the performance of the meteorological forecasts deteriorates with lead time 
(see Figure 30) and the errors in the meteorological forecasts accumulate with lead time. In the 
second place the effect of the initial conditions at the forecast day becomes smaller (part of the 
hydrological model error), because more water is added to the system. It is expected that the effect 
of initial condition errors will last longer in larger basins, because more water is already in the system 
and precipitation needs more time to form discharge at the outflow point.  

By comparing the different flow categories it can be seen that for high flow forecasts the 
meteorological forecast error is relatively more important, while for low flow forecasts the 
hydrological model error is relatively more important. In the first place initial conditions have less 
influence on high flows. Relatively more water is added to the runoff system by rainfall or snowmelt, 
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while low flows are mainly generated by the initial conditions. In the second place the hydrological 
model performance is better for high flows than for low flows, especially at larger lead times (see 
Table 19), so that meteorological forecast errors are relatively more important. The difference in 
quality of the meteorological forecasts in low and high flow situations is unknown. 

 
Figure 39: a. CRPS against observations. b. Ratio of errors in meteorological forecasts (CRPSsim) to meteorological + model 

errors (CRPSobs) 

4.3.2 Evaluation of reliability 
Reliability of the ensemble flow forecasting system is evaluated with the rank histogram (section 
4.3.2.1) and the reliability diagram (section 4.3.2.2). 

4.3.2.1 Rank histogram 
In Figure 40 the flatness coefficients of the flow forecasts at different lead times are plotted and in 
appendix 7 the corresponding rank histograms are presented. The rank histograms are far from flat 
for all lead times. The U-shaped rank histograms in appendix 7 indicate under-dispersion and/or 
conditional bias in the flow forecasts. The flatness coefficients of the flow forecasts are higher than 
the flatness coefficients of the precipitation and temperature forecasts. This must be the result of 
the initial hydrological model conditions and the hydrological model. The flatness of the rank 
histogram of flow forecasts improves for larger lead times, so the spread of the ensemble flow 
forecasts improves with lead time. This could be expected (Bennett et al., 2014; Pagano et al., 2013), 
because with ensemble meteorological forecasts the dominant source of uncertainty at larger lead 
times is incorporated (precipitation), while the dominant source of uncertainty at shorter lead times 
(hydrological processes) is not incorporated (Bennett et al., 2014). 

For most lead times the flatness coefficient of high flows is better than the flatness coefficient of low 
and medium flows. The meteorological forecasts are relatively more important in high flow forecasts 
than in low flow forecasts and the flatness coefficient of the meteorological forecasts is better, so 
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this (partly) explains the lower rank histogram flatness. In addition, the results in section 4.1.6 
suggest that in low flow forecasts bias from the hydrological model is more present than in high flow 
forecasts. In appendix 7 the rank histograms of the low, medium and high flow categories are 
presented. It is clearly visible that a conditional bias is present in the flow forecasts. High flows are in 
general underestimated by the ensemble flow forecasting system and this effect is increasing with 
lead time. On the other hand, low flows are overestimated. This can be the result of biased 
meteorological forecasts and/or hydrological model bias. 

It is very remarkable that the flatness coefficient of high flow forecasts increases again after a lead 
time of 6 days, while all other patterns (including precipitation and temperature forecasts) do not 
show this. This might be caused by an increased conditional bias in high flow forecasts at larger lead 
times.  

 
Figure 40: Rank histogram flatness coefficients. The flatness coefficients of the precipitation and temperature forecasts 

refer to one lead time earlier. 

4.3.2.2 Reliability diagram 
In Figure 41 the reliability diagrams of high and low flow forecasts are presented for all lead times. 
Just like the rank histograms, also the reliability diagrams do not show a good reliability, especially 
for small lead times. From the reliability diagrams it appears that for low flow forecasts the observed 
relative frequency is in general larger than the forecast probability, so observed relative frequencies 
are underestimated. The probability bins 0 - 0.2 and 0.8 - 1 are closest to the diagonal line, which 
makes sense because when the forecast probability is close to 0 or 1 the observation will most often 
correspond to this.  

Regarding the high flow forecasts it is very remarkable that observed relative frequencies are 
overestimated, while it followed from the rank histograms that high flows are in general 
underestimated by the hydrological model (conditional bias). This is possible because to construct a 
rank histogram all observations and forecasts are directly compared, while to construct the reliability 
diagram the observations and forecasts are compared to the low flow threshold and high flow 
threshold.  
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Figure 41: Reliability diagrams (top) and histograms of sample size per bin (under) of low and high flow forecasts for lead 

times from 1 to 10 days 

4.3.3 Evaluation of sharpness 
From the frequency histograms accompanied with the reliability diagrams (Figure 41) it can be seen 
that forecast probabilities close to 0 and 1 most often occur, which qualitatively indicates a good 
sharpness of the ensemble flow forecasting system. The sharpness decreases with lead time, also see 
section 4.3.5 for an explanation about this.  
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4.3.4 Evaluation of resolution 
The reliability diagrams in Figure 41 do not show flat curves so it can be qualitatively concluded that 
the ensemble flow forecasts have a good resolution for both high and low flows. For different 
forecast probabilities also different relative observed frequencies are found. So if for a certain 
ensemble forecast the forecast probability of a high flow is close to 1, it is likely that the observation 
is also above the threshold instead of an observed relative frequency that is always close to a certain 
value independent of whether the forecast probability is close to 0 or close to 1.  

In appendix 8 the ROC curves of low flow forecasts and high flow forecasts are presented and in 
Figure 42 the AUC values of the curves are presented for lead times from 1 day to 10 days. All AUC 
values are above 0.8, which is indicative for good prediction systems according to Buizza et al. (1999). 
A high AUC value means that the hit rate is high compared to the false alarm rate. Low flow forecasts 
and high flow forecasts perform more or less equal.  

 
Figure 42: AUC of ROC curves for low and high flow forecasts for lead times from 1 to 10 days 

4.3.5 Relative uncertainty of predictions 
In Figure 43 it can be seen that the uncertainty in the flow forecasts as a result of uncertainty in the 
meteorological input increases with lead time. The relative uncertainty at a lead time of 0 days is 0, 
because all ensemble flow forecast members are equal at this lead time. The relative uncertainty of 
high flow forecasts is larger than the relative uncertainty of medium flow and low flow forecasts.  

The relative uncertainty of the ensemble forecasts is related to the reliability and sharpness of the 
ensemble forecasts. Especially the rank histograms provide insight into this relation. If the spread is 
larger (larger relative uncertainty) the probability that the observation will be smaller or larger than 
all ensemble members is smaller, so the under-dispersion will be less pronounced. This means that if 
additional sources of uncertainty like initial condition uncertainty and model parameter uncertainty 
are included the RCI will increase and the spread in the rank histograms will also improve. On the 
other hand the sharpness will probably get worse.  
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Figure 43: RCI for different flow categories for lead times from 1 day to 10 days 

4.4 Evaluation of high flow producing processes 
The performance of high flow forecasts is further investigated for different high flow producing 
processes. The high flow producing processes are defined in section 3.9.1. The skill of the different 
high flow producing processes is presented in Figure 44a and the relative contribution of errors from 
the meteorological forecasts and from the hydrological model is presented in Figure 44b. 

4.4.1 Short-rain floods 
In Figure 44a it can be seen that at short lead times high flows generated by short-rain have a large 
positive skill, so for these flows the precipitation forecasts have much added value compared to 
historical meteorological observations. Two effects play a role in this. At first, by definition short-rain 
floods are mainly generated by rain that has fallen one day before the high flow event and the flow is 
relatively less influenced by the initial conditions. Figure 44b shows that in short-rain flood forecasts 
the errors in meteorological forecasts are very dominant in the total error, which indicates the 
importance of meteorological forecasts in these events. As a result, differences between the 
ensemble flow forecasts and the reference forecasts can be larger and it is better possible to 
generate forecast skill. At second, short-rain floods are by definition caused by short and heavy rain. 
Such events do occur mainly in certain periods of the year, but the specific days of these events are 
different each year. These rainfall events are therefore less well captured in historical meteorological 
observations. For larger lead times the skill of short-rain generated floods decreases again. This must 
be the result of a decreased performance of the forecasts of extreme precipitation for larger lead 
times.  

In Figure 44b it is very remarkable that the ratio between the CRPS against perfect forecasts and the 
CRPS against observations is above 100%. This means that the forecasts are closer to the 
observations than to the perfect forecasts. An example of this is presented in Figure 37 at a lead time 
of 3 days. This is caused by the fact that in the HBV model always a lag time of 1 day between a high 
rainfall and the discharge peak is present, while in reality this lag time varies between 1 and 3 days 
(see section 2.2.3). Especially in a small catchment the timing of the rainfall event on the day (early 
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or late) is very important in this. The timing of the observed precipitation peak and the forecasted 
precipitation peak can be shifted a day with regard to each other. This can cause that the peak of the 
flow forecasts better corresponds to the observations than the peak of the perfect flow forecasts, 
and the results in Figure 44b indicate that this is regularly the case for this kind of events. 

4.4.2 Long-rain floods 
The skill of long-rain floods is low for small lead times (Figure 44a). By definition for these events the 
initial conditions are much more important than for short-rain floods. This is also represented by the 
larger contribution of model errors (Figure 44b). Since the initial conditions are important it is 
difficult to deviate from the reference forecasts and thus to generate skilful flow forecasts at small 
lead times. In addition the results indicate that the meteorological forecasts do not result in positive 
skill compared to historical meteorological observations for small lead times. With larger lead times 
the accumulation of rainfall in the catchment becomes important, which is confirmed by a larger 
contribution of meteorological forecast errors (Figure 44b). Skill is generated from a lead time of 
3 days and the highest skill is obtained for lead times between 6 and 10 days.  

4.4.3 Snowmelt floods 
Regarding snowmelt generated floods Figure 44a shows that the highest skill is obtained for forecasts 
between 2 and 8 days. For the generation of snowmelt generated floods the initial conditions (also 
see the relatively large model error contribution in Figure 44b) and temperature forecasts are 
important. Apparently at lead times of 0 and 1 days the temperature forecasts are not better than 
the historical observations. For lead times larger than 8 days the skill decreases again. Since the 
reference forecasts start with the same initial conditions and the same model is used, this must be 
the result of a decreasing skill of temperature forecasts for larger lead times. This is confirmed by an 
increasing contribution of meteorological forecast errors in the total error (Figure 44b). 

 
Figure 44: a. Skill of high flow producing processes. b. Ratio of errors in meteorological forecasts (CRPSsim) to 

meteorological + model errors (CRPSobs). 
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4.5 Evaluation of low flow producing processes 
The performance of low flow forecasts is further investigated for different low flow producing 
processes that are defined in section 3.9.2. In Figure 45a the skill of low flow producing processes is 
presented and in Figure 45b the relative contribution of errors from the meteorological forecasts and 
from the hydrological model is presented. Figure 45a shows that the low skill of low flow forecasts is 
mainly caused by low rainfall/high evapotranspiration generated low flow forecasts. The skill of low 
flows that are caused by snow accumulation is relatively high. For both snow accumulation and low 
rainfall generated low flows errors from the HBV model and initial conditions make up a large part of 
the total error (Figure 45b). These errors are also present in the reference forecasts, so this cannot 
explain the large difference in skill between snow accumulation and low rainfall generated low flows. 

4.5.1 Low rainfall/high evapotranspiration generated low flows 
For low rainfall generated low flows the precipitation forecasts are important. Apparently the 
precipitation forecasts before low flow events are worse than historical observations for small lead 
times. This might have to do with the fact that low rainfall periods often occur in the same period of 
the year and with the tendency of (uncorrected) meteorological models to forecast drizzle instead of 
zero precipitation (also see section 3.5.3). For larger lead times the skill increases, so the 
accumulated precipitation forecasts from ECMWF are better than from historical observations at 
larger lead times. The fact that the influence of initial conditions at the forecast day decreases for 
larger lead times (also see Figure 45b) adds to the skill at larger lead times.  

4.5.2 Snow accumulation generated low flows 
For snow accumulation generated low flows temperature forecasts are especially important. The 
results indicate that temperature forecasts provide more skill than historical observations of 
temperature on the same calendar day. For larger lead times (lead time of 9 and 10 days) the skill 
decreases, like this was also the case with snowmelt generated floods. So also with low flows there is 
a decreasing skill of temperature forecasts with larger lead times. However, even for a lead time of 
10 days the snow accumulation generated low flows and snowmelt generated high flows are skilful 
forecasts.  
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Figure 45: a. Skill of low flow producing processes b. Ratio of errors in meteorological forecasts (CRPSsim) to 

meteorological + model errors (CRPSobs). 
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5. Discussion 
In this chapter the research methodology will be reviewed critically (section 5.1 to 5.3) and the 
results are compared with other studies (section 5.4). 

5.1 Input data and calibration of the hydrological model 
5.1.1 Input data 
Calibration of the HBV model is based on observations of precipitation, temperature and discharge 
starting from 1971. The quality of the observations over this period is unknown. It has been found 
that the performance of the hydrological model over the hydrological years 2007 and 2008 is worse 
than during other years of the evaluation period (Table 18). Also with another model (Data Based 
Mechanistic methodology (DBM)) with the same observation data the performance was worse 
during these years (Kiczko et al., 2015). In 2007 during a low flow period of at least 3 months the 
observed discharge is largely below the simulated discharge and this continues during high flow 
periods in 2008 (Figure 27). It is expected that this is the result of errors in the discharge, 
precipitation and/or temperature observations and/or human influence, because for each year the 
same hydrological model is used and it is unlikely that in this period different hydrological processes 
are taking place that are not captured well by the HBV model and by the DBM model. This period is 
very notable, but also during the rest of the validation period and during the calibration period 
observation errors can be present. On top of this there can be systematic errors in the observations. 
Errors in the observations have effect on the calibrated model parameters and as a consequence, on 
the ensemble flow forecasts. This is the indirect effect of observation errors on the flow forecasts. 

The precipitation and temperature observations are corrected for elevation differences over the 
catchment. In the simple correction method that has been applied some assumptions have been 
made, which are mentioned in section 3.1. Data from only 5 measurement stations have been used 
to calculate the precipitation gradient and temperature lapse rate. This is a small number of stations 
compared to other studies. Li et al. (2013) found that when the number of measurement stations is 
less than 16, the resulting temperature lapse rates show a great variation, which indicates a large 
uncertainty in the used correction factors. For temperature the global standard atmospheric lapse 
rate has been used, because the number of measurement stations is small and the temperature 
lapse rate does not vary significantly over the year. On the contrary the applied precipitation 
gradients have been based on the measurement stations, because the precipitation gradient clearly 
varies over the year. It is considered that in this case the determined precipitation gradients for two 
periods of the year based on 5 measurement stations are more reliable than one default value from 
literature. Without correction the systematic errors in the precipitation and temperature observation 
data would be partly captured in the calibration. However, since the hydrological model is also used 
with another dataset this must be prevented. 

In this study meteorological forecasts from ECMWF are used. According to Persson and Andersson 
(2013) the ECMWF forecasts may represent a land elevation that is significantly different from the 
real elevation in a grid. If this systematic bias is present this should have been captured by a pre-
processing step with QM. QM of the meteorological forecasts did result in an improvement of the 
meteorological forecasts, but this did not result in an improvement of the flow forecasts (also see 
section 5.2). This means that still a systematic bias might be present in the meteorological forecasts. 
In addition, although ECMWF generates an ensemble of meteorological forecasts it should be 
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realized that ECMWF also uses a meteorological model with certain assumptions, and as a result the 
meteorological uncertainty might be underrepresented. This can be one of the reasons of under-
dispersive meteorological and flow forecasts. To incorporate additional meteorological uncertainty 
the meteorological forecasts from other forecast systems can be included to establish a ‘super-
ensemble’. This approach is used by Fleming et al. (2015) and He et al. (2009) and Bennett et al. 
(2014), Bougeault et al. (2010) and Ranjan (2009) mention this as an option to improve the forecasts. 

5.1.2 Calibration procedure 
The calibration procedure contains several choices regarding the objective function, calibration 
period, sensitivity analysis technique, calibration algorithm and parameter ranges. These subjective 
choices will affect the calibrated parameter values and the model results.  

An important choice that directly influences the parameter values is the objective function. The 
objective function Y that has been used is a combination of RVE and NS. It appears that the RVE is 
almost zero after calibration, so on top of this NS almost exclusively determines the value of Y. 
However, NS is more sensitive to errors in high discharges so the calibration is skewed to high 
discharges. Table 19 confirms that the error in low flow simulations is relatively larger than in high 
flow simulations. Using another objective function or calibrating separately on different flow 
categories would result in different optimum parameter sets.  

Due to the large number of parameters in the HBV model (14 parameters) the problem of 
overparameterisation might be present (Booij, 2005). This problem is observed in this study, since 
with two calibrations with 14 parameters two different optimum parameter sets are obtained with 
the same values of Y. This is undesirable, because the simulated discharges will be different with two 
different parameter sets. In an attempt to circumvent this problem a second calibration round has 
been applied with only the 8 of the 14 most sensitive parameters. However in the second calibration 
round the same parameter values were found as in the calibration with 14 parameters for both 
independent calibrations. This means that the fixed values of the classified insensitive parameters 
already define the optimum parameter set that has been found. This might be caused by the risk that 
is reported for the method of Morris to classify important parameters as non-influential (type II 
error) (Song et al., 2015). In this project one of the calibrated parameter sets is accepted as the 
optimum deterministic parameter set, because the hydrological model is used as a tool, the 
differences between most parameters are small and the relative and absolute differences between 
simulated discharges produced with the two different optimum parameter sets are very small. 
However, it should be realized that this kind of subjectivity increases uncertainty in the flow forecasts 
and in the evaluation results.  

The calibrated value of the parameter LP is 1 (see Table 17), equal to the upper boundary of the 
parameter range. Also in the GLUE analysis the majority of behavioural LP values is near 1. This 
means that the actual evapotranspiration will only reach potential evapotranspiration if the soil 
moisture storage is completely saturated. In many other applications of the HBV model the value of 
LP is lower, for example 0.26 and 0.39 are found by Van den Tillaart (2010), 0.23 and 0.87 by Maat 
(2015) and 0.48 by Demirel et al. (2013a). This value of LP suggests that something is wrong with the 
water balance of the system. Precipitation observations are too low, potential evapotranspiration 
values are too high or discharge observations are too high. Regarding the potential 
evapotranspiration, Rao et al. (2011) and references by Rao et al. (2011) found that the method of 



5.2 Pre- and post-processing of forecasts 

80 

Hamon tends to underestimate potential evapotranspiration from forests, although correction 
factors has been applied for this. On the other hand, in the study of Prudhomme and Williamson 
(2013) the method of Hamon showed an overestimation of potential evapotranspiration during a 
large part of the year (spring, summer and autumn).  

5.1.3 Update state procedure 
The update state procedure that has been applied assumes that one relationship between the 
fraction of fast runoff and observed discharge can be used. In Figure 12 it can be seen that this 
relationship contains a large uncertainty. Because this uncertainty is not included, the total 
uncertainty in the flow forecasts might be underestimated. 

The updating procedure direct model storage updating has been chosen, because it is a simple 
method and in earlier studies it has been found that simple updating models (not direct model 
storage updating) produce nearly as good results as complex Kalman Filters. It can be researched 
whether in this application the direct model storage updating produces the same results as more 
sophisticated updating procedures. Examples are the (Ensemble) Kalman Filter that has been applied 
to update initial states in several studies on flow forecasting, autoregressive approaches (Xiong & 
O’Connor, 2002), artificial neural networks (Xiong & O’Connor, 2002), particle filter approaches 
(Weerts & El Serafy, 2006) and updating of flow forecasts with an error model (Bennett et al., 2014; 
Piotrowski & Napiorkowski, 2012).  

5.2 Pre- and post-processing of forecasts 
It turned out that processing with QM was not effective in improving the ensemble flow forecasts. 
QM has several limitations which might have played a role in this. At first, each variable is corrected 
independently, while bias in precipitation might be related to bias in temperature (Boé et al., 2007). 
At second, the temporal autocorrelation properties of the forecasts are not corrected. If for example 
the simulated wet periods are too short, they remain too short after correction (Boé et al., 2007; 
Verkade et al., 2013). At third, the spatial correlation (correlation between locations) is not corrected 
(Boé et al., 2007). The space-time covariability of the meteorological forecasts is important, because 
the hydrological model integrates the forcing in time and in space (Clark et al., 2004). It is expected 
that this limitation does not play a large role here, because a relatively small catchment is studied, a 
lumped model is applied and catchment-average forecasts are corrected against catchment-average 
observations. When multiple sub-catchments are combined in one system, this can become a 
problem. At fourth, by QM all ensemble members are corrected independently and the original 
spreading of the ensemble members is changed. To improve this, an extra procedure should be 
introduced that takes the spreading of the ensemble members into account.  

An essential point for pre- and post-processing in general is the length of available observation and 
forecast data. The effectiveness of QM depends on whether during the validation period the same 
bias is present between the CDF of the observations and the CDF of the forecasts as during the 
training period. In Figure 36 it is shown that the correction of flow forecasts is too large or even in 
another direction than is required during the validation period over large parts of the cumulative 
probability domain. A result of this is that in some cases the corrected forecasts even deviate further 
away from the observations than uncorrected forecasts. QM usually functions effectively in cases 
with distant CDFs (consistent bias over whole cumulative probability domain) (Madadgar et al., 
2014), which is clearly not the case here. If two distributions are relatively close, which will be the 
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case for a well-calibrated model, this deficiency of QM becomes more significant (Madadgar et al., 
2014). It has been shown that the evaluation results of the flow forecasts improve over the training 
period after post-processing (appendix 6), which shows the potential of processing with QM when a 
consistent bias is present. Possibly with a longer period of data individual deviating years (like 2010) 
will have less influence and a more consistent bias can be obtained over the whole cumulative 
probability domain. In addition it is possible to distinguish different weather patterns to potentially 
obtain a more consistent bias for different weather patterns. An additional problem, however, is that 
the joint distribution of observations and forecasts is often nonhomogeneous in time, for example 
due to improvement of forecasting systems over time (Verkade et al., 2013).  

QM is a relatively simple pre- and post-processing technique. Several previous medium-term 
meteorological and flow forecast studies have applied more sophisticated pre- and post-processing 
techniques, which are based on other kind of relationships between forecasts and observations and 
additional predictors. To ascribe realistic spatial and temporal patterns the Schaake shuffle can be 
used (Clark et al., 2004). Wetterhall et al. (2012) states that the most appropriate method also 
depends on the objective of the study and that it is important to test different bias correction 
techniques prior to use one. It should however be realized that the application of all techniques is 
limited by the limited period of available forecast data and the non-consistent bias over this period.  

5.3 Evaluation methodology 
Evaluation of the ensemble flow forecasts is an important part of this study, but several reservations 
should be taken into account. At first, discharge observations are considered as ‘truth’, but the 
discharge observations also contain measurement and sampling errors (WMO, 2015). This is the 
direct effect of observation errors (also see section 5.1) on the evaluation of flow forecasts.  

At second, the period of available meteorological forecast data is quite short (6 years). This is the 
reason that the defined thresholds for low and high flows are not very extreme, because a sufficient 
number of events is required to evaluate the results. It should be realized that flows below Q75 and 
above Q25 are not necessarily very extreme events. If a longer period of data would be available the 
thresholds for low and high flows could be more extreme. In addition, a longer period of data would 
provide more confidence in the conclusions.  

At third, several assumptions have been made to establish quantitative rules for the classification of 
low flow and high flow producing processes. It has been assumed that the snow accumulation history 
before an event is embedded in the initial snowpack storage of the day before the event and if snow 
is involved the event is classified as a snowmelt flood or snow accumulation low flow. This is of 
course a strong simplification, because when there is a snowpack in the model there is not 
necessarily a snowpack over the whole catchment and in addition snow accumulation is not 
necessarily the most important process in these situations (also see examples described below). 
Snowmelt floods and rain-on-snow floods are considered as one category, because both processes 
are related to snowmelt and in the HBV model snowmelt and rainfall are strongly related (both 
depend on temperature). It is not possible to reliably distinguish between these processes. If no 
snowpack is present, it has been assumed that the low flow event or high flow event is caused by 
low/high rainfall. To distinguish between short-rain floods and long-rain floods a semi-arbitrary 
rainfall threshold amount of 10 mm is used. The threshold of 10 mm is a subjective element in the 
characterization (see section 3.9.1 for the motivation). When rainfall was below 10 mm and there 
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was no snowpack present at one day before the event it has been assumed that the high flow must 
have been caused by long-rain. This has large consequences for the classification of high flows that 
are caused by a combination of processes. For example, snowmelt has caused saturated conditions in 
the catchment but if after some time the snowpack has disappeared, a low rainfall can cause high 
flows. This event will be classified as a long-rain flood because a small amount of rain is the direct 
driver of the flood, although the wet initial conditions are caused by snowmelt. Another example is 
that a period of rain causes wet conditions and if on top of this an extreme daily rainfall of at least 
10 mm occurs the event will be classified as a short-rain flood, while the long-rain certainly has a role 
in this flood. These kind of combined processes often occur in practice and they will cause the 
highest floods, but it is difficult to properly classify them. Another point is that only recent 
information (one day before the flow event) is used to classify the processes, although it has been 
assumed that the snow accumulation history is embedded in the snowpack storage from the HBV 
model. The lag time between precipitation peaks and discharge peaks is not always 1 day, like this is 
incorporated in the HBV model and the characterization rules. This has the consequence that for 
example the high flow at the day after a high rainfall amount is classified as a short-rain high flow, 
while the discharge peak might come one day later and this day will be classified as a long-rain high 
flow (see for example Figure 6 and Figure 37). Using only recent information is even a larger 
simplification for low flow classification, because low flow processes usually happen over a longer 
term. These assumptions must be kept in mind when the evaluation results are interpreted. 
Nevertheless the classification is based on data that are available and, although it has many 
limitations, it is considered that it is appropriate for the objective of this study. Another option to 
examine the performance on different processes could be to use different seasons. However, using 
these categories instead of seasons provides more insight into the underlying processes and it is for 
example not necessarily the case that a high flow event in spring is generated by snowmelt (also see 
Figure 24). 

At fourth, statistical significance of the evaluation scores has not been tested in this study. This 
involves the risk of type I errors, which means that it is concluded that a supposed effect exists when 
in fact it does not exist (Davis, 2002). In literature several statistical tests are published to test the 
significance of evaluation scores, like the significance of non-uniformity of rank histograms (Hamill, 
2001), confidence intervals around ROC curves (Fawcett, 2006; Wilks, 2006), statistical significance of 
the AUC (Mason & Graham, 2002) and confidence intervals around reliability diagrams (Bröcker & 
Smith, 2007; Wilks, 2006). Including these tests would provide more confidence in the evaluation 
results. To include these tests this study requires an extension with a more statistical point of view.  

In this study a combination of 5 evaluation scores is used to evaluate the different properties of 
forecast quality. The different evaluation scores also have limitations in them, which are mentioned 
in section 3.7. Regarding the CRPSS it has been found that the CRPSS of all flows in general seems to 
follow the pattern of the CRPSS of high flows, so probably the high flows have the largest influence 
on the value of the CRPSS. Instead or besides these scores other scores could be used, which could 
have led to different conclusions. Possibilities of other scores are the Brier (Skill) Score, percentile-
based evaluation, Probability Integral Transform curves, discrimination diagrams, cost-loss functions 
and the error-spread score (a new score developed by Christensen et al. (2015)).  
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5.4 Evaluation results 
To examine the performance of the developed ensemble flow forecasting system relative to other 
ensemble flow forecasting systems the results are compared with previous studies. A similarity 
between all found studies is that the performance of the flow forecasts decreases with lead time. It is 
impossible to directly compare the general score CRPS to other studies, because CRPS is dependent 
on the magnitude of the evaluated variable. Bennett et al. (2014) also used historical observations of 
precipitation and temperature to generate reference forecasts, so the CRP Skill Score (CRPSS) can be 
compared. The skills of the flow forecasts in this study have the same magnitude and show the same 
pattern over lead times from 1 to 9 days as in the study of Bennett et al. (2014). The flow forecasting 
system of Bennett et al. (2014) is different on several points, like different meteorological forecasts 
with a larger spatial resolution, post-processing of meteorological forecasts, a different hydrological 
model and an updating procedure of flow forecasts, nevertheless the skill of the forecasts is very 
comparable. The forecast skill of high flows in the study of Roulin and Vannitsem (2005), expressed 
by the Brier Skill Score, is in winter higher and in summer comparable with the skill values that has 
been found in this study. However, the forecast skill decreases for higher flow thresholds (from Q20 
to Q10 and Q5) (Roulin & Vannitsem, 2005), so this might also be the case with the flow forecasting 
system in this study. In the introduction multiple studies are mentioned that investigated the 
contribution of errors in the meteorological forecasts and the hydrological model to errors in the 
flow forecasts. The results in previous studies do correspond to the findings in this study. The 
performance on the different hydrological processes cannot be compared with previous studies, 
because no studies have been found that have investigated the performance of an ensemble flow 
forecasting system on different hydrological processes.  

Ignoring hydrological model and initial condition uncertainty can result in under-dispersive and 
overconfident flow forecasts (Bennett et al., 2014; Pagano et al., 2013), especially for short lead 
times (Bennett et al., 2014). The rank histograms of the flow forecasts are more non-uniform than 
the rank histograms of the precipitation and temperature forecasts, so this must be the result of the 
hydrological model and the initial conditions. The additional under-dispersion can potentially be 
improved by including hydrological model parameter and initial condition uncertainty. In appendix 9 
it is shown that incorporating model parameter uncertainty by a GLUE analysis results in general in a 
better performance of the flow forecasts at small lead times, especially for medium and high flow 
forecasts. The flatness of the rank histograms has improved by including model parameter 
uncertainty, but the flow forecasts are still under-dispersed. After all the uncertainty of the flow 
forecasts (expressed by RCI) has increased, especially at small lead times. In appendix 9 the results 
are discussed more extensively. The GLUE analysis that has been applied contains a large subjectivity 
and many assumptions, but this simple implementation shows the effect of including model 
parameter uncertainty. With another threshold for behavioural model parameter selection the 
results are very different. For example with a lower threshold (Y = 0.3) the relative frequencies of the 
most extreme ranks in the rank histograms become slightly better and the RCI increases. Possibly this 
lower threshold is required to correctly incorporate the model parameter uncertainty, but this 
requires further research. 
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6. Conclusions and recommendations 
The research questions are answered in the conclusions in section 6.1. The results are further 
explained in chapter 4. From the conclusions and the discussion follow several recommendations 
that are mentioned in section 6.2.  

6.1 Conclusions 
In section 1.5 three research questions have been formulated. In the first research question the 
ensemble flow forecasting system is set-up for the Biała Tarnowska catchment, in the second 
research question the performance of the flow forecasting system is investigated for different 
purposes and in the third research question the performance is investigated for different 
hydrological circumstances.  

Research question 1: What is the most appropriate set-up of input data, the hydrological 
model and the calibration procedure to obtain an ensemble flow forecasting system for the 
Biała Tarnowska catchment?  

In the first research question it is investigated how the ensemble flow forecasting system should be 
developed to generate ensemble flow forecasts for the Biała Tarnowska catchment. This consists of 
several steps. In general it can be concluded that the most elaborated techniques are not always the 
best techniques.  

To calibrate the lumped deterministic hydrological (HBV) model precipitation, temperature and 
discharge observation data have been used. The precipitation and temperature observation data are 
corrected for differences in elevation between the observation stations and the rest of the 
catchment, because precipitation and temperature are dependent on elevation. The calibration and 
validation results are better with the corrected input data than with the uncorrected input data, 
which means that the systematic underestimation of precipitation and systematic overestimation of 
temperature were not totally captured in the calibrated parameters. The hydrological model is 
calibrated with DEGL, because this is an efficient method to find the global optimum deterministic 
parameter set. The calibration has resulted in a Y value of 0.72 over the validation period, with NS 
equal to 0.77 and RVE equal to 6.7%. The performance of the deterministic HBV model with observed 
precipitation and temperature is much better for high flow simulations than for low flow simulations.  

To improve the representation of the current situation in the catchment the initial model conditions 
are updated based on available discharge observations. As updating procedure direct model storage 
updating has been chosen, because this is a simple approach and in earlier studies it has been found 
that simple updating procedures produce nearly as good results as complex Kalman Filtering 
algorithms. The simplest implementation of direct model storage updating and more elaborated 
implementations in which also non-updated initial conditions are used result in almost the same 
improvement of the deterministic simulations, so it has been chosen to use the simplest approach. 
The updating results in a considerable improvement of especially low flow simulations and this effect 
is still noticeable after 10 days without updating.  

Ensemble precipitation and temperature forecasts from ECMWF are used as input data to the 
hydrological model to generate flow forecasts. In theory raw meteorological forecasts need to be 
pre-processed, because the scale at which they are generated is usually coarser than the application, 
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the forecasts are provided as grid values and because of under-dispersivity and systematic bias in the 
meteorological forecasts. It has been considered that downscaling to correct for the first two points 
is not required, because a lumped hydrological model is used and the scale of the meteorological 
forecast grids is already comparable with the scale of the catchment. To correct for under-
dispersivity and systematic bias a pre-processing step should be applied. Post-processing of flow 
forecasts is required, because hydrological models also introduce simulation biases that degrade 
forecast quality. It has been chosen to apply QM as bias and dispersion correction technique, 
because it is a simple method and it has often been advised and used by previous studies in both pre- 
and post-processing procedures. For the pre-processing step it turned out that for the precipitation 
forecasts the best set-up is to apply QM separately to each lead time and for the temperature 
forecasts the best set-up is to apply in addition also separate relationships for the summer and 
winter season. However, the best flow forecasts were obtained if no pre- or post-processing is 
applied at all.  

Research question 2: How does the ensemble flow forecasting system perform for different 
purposes and how does this relate to errors from meteorological input data and the 
hydrological model? 

The purposes that are evaluated are lead times from 1 day to 10 days and low, medium and high flow 
forecasts. The performance of the flow forecasts deteriorates with lead time in terms of the CRPS. 
The skill of the flow forecasts is determined with respect to the performance of a reference forecast 
set. It has been found that reference forecasts based on an ensemble of historical observations of 
precipitation and temperature on the same calendar day over the past 20 years are the most 
appropriate reference forecasts.  

In general the skill of the flow forecasts is positive and maximum between lead times of 2 and 5 days. 
The forecast skill is very different for the low, medium and high flow categories. The low flow 
forecasts do not have skill until a lead time of 2 days and after that they show a small positive skill. 
They even have a small negative skill for small lead times, which means that it would be better to use 
the reference flow forecasts than the flow forecasts that are generated by the meteorological 
forecasts. Apparently the historical observations of temperature and precipitation are in this case 
better than the meteorological forecasts from ECMWF. The medium flow forecasts provide no skill. 
The highest skills are obtained for high flow forecasts. High flow forecasts can easier deviate from the 
reference forecasts than low flow forecasts, because initial conditions are less important. In addition, 
historical meteorological observations will be less good compared to the meteorological forecasts, 
because high flow periods are in general shorter and not bounded to specific days like low flows.  

It applies to all flow categories that the relative contribution of meteorological forecast errors 
increases and the relative contribution of hydrological model errors (including initial conditions) 
decreases with lead time. In low flow forecasts errors from the hydrological model are relatively 
more important, while in high flow forecasts errors from the meteorological forecasts are relatively 
more important.  

Three properties of forecast quality of ensemble forecast systems are reliability, sharpness and 
resolution. The sharpness of the forecasts is good, because forecast probabilities of high and low 
flows are most often close to 0 and 1, instead of forecast probabilities close to the mean 
(climatological) probability. The ROC curves show a good resolution with areas under the ROC curve 



6.1 Conclusions 

86 

well above 0.8, which is indicative for good prediction systems (Buizza et al., 1999). This means that 
the hit rates of high and low flow forecasts are high compared to the false alarm rates. However, the 
rank histograms and reliability diagrams show that the reliability of the flow forecasting system is not 
good, especially for small lead times. The rank histograms show a clear non-uniform pattern. This 
indicates under-dispersion and/or conditional bias in the flow forecasts. Since the general 
performance in terms of the CRPS is better at small lead times, the spreading of the ensemble flow 
forecasts is not good at small lead times but the ensemble members are on average closer to the 
observations than at larger lead times. The rank histograms of the low, medium and high flow 
forecasts show that conditional bias is present. High flows are in general underestimated and low 
flows are overestimated. The reliability improves with lead time. With increasing lead time the 
relative uncertainty of the ensemble forecasts increases and as a result of this the reliability increases 
and the sharpness decreases. 

Research question 3: How does the ensemble flow forecasting system perform for different 
hydrological circumstances and how does this relate to errors from meteorological input data 
and the hydrological model? 

Three different high flow producing processes have been distinguished, which are short-rain floods, 
long-rain floods and snowmelt floods. The forecast skill compared to the reference forecast set is 
very different for these processes. The highest skill is obtained for the short-rain flood forecasts, but 
the skill decreases considerably for lead times larger than 5 days. In the generation of long-rain 
floods and snowmelt floods initial conditions are by definition much more important, which is also 
reflected in the higher relative contribution of hydrological model errors. This means that it is more 
difficult for the flow forecasts to deviate from the reference forecasts and thus to generate skilful 
forecasts at small lead times. The flow forecasting system generates skilful long-rain flood forecasts 
for lead times of 3 days and more and skilful snowmelt flood forecasts for lead times of 2 days and 
more. The skill of snowmelt flood forecasts is higher than the skill of long-rain flood forecasts until a 
lead of 6 days, so it can be concluded that the temperature forecasts that generate snowmelt floods 
provide more skill compared to historical observations than the meteorological forecasts that 
generate long-rain floods. With larger lead times the skill of the flood forecasts decreases again, 
which must be the result of a decreasing skill of meteorological forecasts compared to historical 
observations for larger lead times. This is confirmed by an increasing contribution of meteorological 
forecast errors in the total error. The skill of short-rain flood forecasts decreases the most and at the 
shortest lead time (from a lead time of 6 days).  

As low flow producing processes low rainfall/high evapotranspiration generated low flows and snow 
accumulation generated low flows have been distinguished. The low skill of low flow forecasts is 
mainly caused by low rainfall/high evapotranspiration generated low flow forecasts, while the skill of 
snow accumulation low flows is relatively high (also compared to the skill of high flow forecasts). It 
can be concluded that temperature forecasts are more skilful than precipitation forecasts for the 
generation of these events compared to historical observations on the same calendar day. Regarding 
the low rainfall/high evapotranspiration generated low flows for lead times until 4 days there is even 
a negative forecast skill, so the meteorological forecasts are worse than historical observations. For 
both snowmelt floods and snow accumulation generated low flows there is decreasing skill from a 
lead time of 8 days, so there is a decreasing skill of temperature forecasts at large lead times. 



6.2 Recommendations 

87 

6.2 Recommendations 
The discussion and conclusions lead to several recommendations for the use of and further research 
to ensemble flow forecasting systems, which are mentioned below. The most important 
recommendations are recommendations 1, 5 and 9. 

1. The developed ensemble flow forecasting system can be used to generate skilful flow forecasts 
for high flows and for low flows that are generated by snow accumulation in the Biała 
Tarnowska. Medium flows and low flows that are generated by low rainfall/high 
evapotranspiration are not skilfully forecasted, compared to reference flow forecasts that are 
based on historical observations of precipitation and temperature on the same calendar day.  

2. It is expected that recommendation 1 also applies to comparable catchments, but it is 
recommended to also research other catchments to be able to draw more general conclusions. If 
it is possible it is also recommended to evaluate the flow forecasting system with a longer period 
of data, to increase confidence in the conclusions and to test more extreme high and low flow 
thresholds, before the system is potentially applied operationally.  

3. Potentially the ensemble flow forecasting system of the Biała Tarnowska catchment can be 
combined with systems for other catchments to generate flow forecasts at a larger hydrological 
scale (e.g. the Dunajec catchment). When multiple sub-catchments are combined in one flow 
forecasting system the spatial correlation of meteorological forecasts should get attention in a 
pre-processing step. 

4. When the ensemble flow forecasting system is used for all flows together, like in this study, it is 
recommended to choose another objective function or to calibrate separately on high and low 
flows.  

5. It is recommended to start further development of the ensemble flow forecasting system with a 
consideration of what the objectives of the system are. When this or another flow forecasting 
system is (further) developed with the objective to generate high flow forecasts it is 
recommended to focus further research mainly on improving the meteorological forecasts. This 
can be obtained with improved meteorological forecasts (like the higher resolution forecasts 
from COSMO-LEPS (Renner et al., 2009)) or by improving the pre-processing step. When the flow 
forecasting system will be applied to forecast low flows it is recommended to focus further 
research at first mainly on the hydrological model performance. As mentioned in the discussion 
the calibration was skewed to high discharges, so it is expected that an ‘easy’ improvement of 
the forecasts can be achieved when the hydrological model would be calibrated on low flow 
situations. Besides improvement of the hydrological model, further research should be done to 
improve the meteorological forecasts, especially the precipitation forecasts (problem of drizzle).  

6. With QM a relatively simple pre- and post-processing technique has been applied. It is 
recommended to do further research to other pre- and post-processing techniques to improve 
the meteorological and flow forecasts.  

7. When the flow forecasting system is applied exclusively on low or high flow forecasts the 
reference forecast set should be reconsidered. Probably there will be another most appropriate 
reference forecast set when the system is only applied to low or high flows, instead of all 
discharges.  

8. The updating procedure results in a large improvement of the discharge simulations from the 
model, so it is advised to always use an updating procedure in an ensemble flow forecasting 
system. The procedure that has been used results in a considerable improvement of the 
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simulations, but it can be researched whether other updating procedures could result in a larger 
improvement.  

9. In this study a simple implementation of GLUE to incorporate hydrological model parameter 
uncertainty has resulted in an increase of the reliability of the flow forecasts. It is recommended 
to further research how hydrological model and initial condition uncertainty should be included 
in the ensemble flow forecasting system to improve the reliability of the flow forecasts. An 
alternative way to improve the reliability is by post-processing of the flow forecasts (Olsson & 
Lindström, 2008; Pagano et al., 2013), although post-processing was not successful in this study. 

10. Not only the ensemble flow forecasts show non-uniform rank histograms and bad reliability, but 
also the precipitation and temperature forecasts do show this (to a less extent). So to improve 
the reliability of the flow forecasts it is recommended to also research how the reliability of the 
meteorological forecasts can be improved, potentially by including meteorological forecasts from 
other forecast systems (‘super-ensemble’) or by pre-processing.  

11. In this study meteorological forecasts until a maximum lead time of 10 days have been used, 
following the definition of medium-range forecasts. However, via the TIGGE data portal ECMWF 
forecasts are available until a lead time of 15 days, so these data can be used to extend the 
ensemble flow forecasting system until a lead time of 15 days.  

12. This study has focused on the use of ensemble meteorological forecasts to generate ensemble 
flow forecasts. The study could be extended with investigating the use of deterministic 
meteorological forecasts, for example the high-resolution forecasts (HRES) of ECMWF. In section 
1.1 theoretical advantages of ensemble forecasts have been mentioned, and by also investigating 
the use of deterministic meteorological forecasts the added value of ensemble forecasts could be 
confirmed or weakened.  

13. To increase confidence in the conclusions, this study should be extended with a more statistical 
point of view to incorporate statistical tests for the evaluation scores.  
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Appendix 1: HBV model description 
The hydrological model that is used to simulate discharge is a HBV model, provided by IGF PAN in 
Matlab. The used HBV model matches to a large extent to the model that has been used by Knoben 
(2013). The description below is based on the provided HBV model in Matlab and the report of 
Knoben (2013). Figure 46 presents the structure of the applied HBV model. Below the figure the 
symbols of parameters, storages and fluxes are declared and the equations that are used in the HBV 
model are given. The model works with a daily time step and the output of the model is discharge in 
m3/s, representing the discharge on a certain calendar day.  

 
Figure 46: Structure of the applied HBV model. Numbers correspond to equation numbers. Figure is adopted from 

Knoben (2013). 
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Table 20: Parameter symbols in the HBV model. The parameter ranges (parameter minimum and maximum) are adopted 
from an earlier application of the HBV model to the same catchment by IGF PAN. 

Parameter  Explanation (Knoben, 2013; Lindström et al., 1997) Parameter 
minimum 

Parameter 
maximum 

Unit 

FC  Field capacity, maximum soil moisture storage 0.10 1000 mm 
β  Non-linearity parameter of seepage 0.01 7 - 
LP Limit for potential evapotranspiration 0.10 1 - 
α  Non-linearity parameter of fast runoff 0.10 3 - 
Kf   Fast runoff parameter 0.0005 0.3 d-1 
Ks  Slow runoff parameter 0.0005 0.3 d-1 
PERC  Rate of percolation 0.001 6 mm d-1 
CFLUX  Rate of unlimited capillary rise 0 4 mm d-1 
TT  Threshold temperature for which 50% of precipitation 

occurs as snow and 50% as rain 
-3 4 oC 

TTI  Interval length between which precipitation occurs 
partly as snow and partly as rain 

0 7 oC 

CFMAX  Snowmelt rate 0 20 mm oC-1 d-1 
FOCFMAX  CFMAX parameter corrected for forests 0 1 - 
CFR  Refreezing factor 0 0.8 - 
WHC  Water holding capacity of snow 0 1 mm mm-1 
FFO Percentage of forest to correct snowmelt, snow 

refreezing and evapotranspiration.  
Not calibrated: 11% % 

FFI Percentage of non-forest.  Not calibrated: 89% % 
CEVPFO Correction factor for evaporation in forest areas.  Not calibrated: 1.15 - 

 
Table 21: Storage symbols in the HBV model 

Storage Unit Explanation (Knoben, 2013; Lindström et al., 1997) 
Ssp mm Snowpack 
Smw mm Melt water storage 
Ssm mm Soil moisture storage 
Ssw mm Fast runoff reservoir. This is also called surface water storage.  
Sgw mm Slow runoff reservoir. This is also called groundwater storage.  

 
Table 22: Flux symbols in the HBV model 

Flux Unit Explanation (Knoben, 2013; Lindström et al., 1997) 
P  mm/d Precipitation 
Ps mm/d Snowfall 
Pr mm/d Rainfall 
qsm mm/d Snowmelt. Theoretical snowmelt flux is not limited by current 

snowpack.  
qsr mm/d Snow refreezing. Theoretical snow refreezing flux is not limited 

by current melt water storage.  
qin mm/d Total infiltration leaving the melt water storage 
qd  mm/d Direct runoff to fast runoff reservoir 
ETp0 mm/d Potential evapotranspiration, calculated by method of Hamon 

(see appendix 2) 
ETp mm/d Potential evapotranspiration corrected for different 

evapotranspiration rates from forests 
ETa mm/d Actual evapotranspiration 
qseep mm/d Seepage from soil moisture to fast runoff reservoir 
qc mm/d Capillary rise from fast runoff reservoir to soil moisture  
PERC mm/d Percolation from fast runoff reservoir to slow runoff reservoir 
qf mm/d Outflow from fast runoff reservoir 
qs mm/d Outflow from slow runoff reservoir 
Qt m3/s Total runoff from the catchment 
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A1.1 Precipitation and snow accumulation routine 
Precipitation is an incoming flux into the 
hydrological system. Based on temperature it is 
determined whether precipitation occurs as 
rainfall, snowfall or partly as rainfall and partly as 
snowfall. With temperature equal to parameter 
TT, 50% of the precipitation occurs as rainfall and 
50% as snowfall. The division of rainfall and 
snowfall is visualized in Figure 47 and described in 
equation A1.1.  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑃𝑃𝑠𝑠(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)    
𝑃𝑃𝑟𝑟(𝑡𝑡) = 0         

                                                                                            𝑇𝑇(𝑡𝑡) < 𝑇𝑇𝑇𝑇 −
𝑇𝑇𝑇𝑇𝑇𝑇

2
→ 100% 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

_______________________________________________________________________________

𝑃𝑃𝑠𝑠(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) ∗
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇

2 − 𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇   

𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) ∗
𝑇𝑇 − 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇

2
𝑇𝑇𝑇𝑇𝑇𝑇   

    𝑇𝑇 ≥ 𝑇𝑇𝑇𝑇 −
𝑇𝑇𝑇𝑇𝑇𝑇

2  𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 < 𝑇𝑇𝑇𝑇 +
𝑇𝑇𝑇𝑇𝑇𝑇

2 → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

_______________________________________________________________________________

 
𝑃𝑃(𝑡𝑡) = 0         
𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)                                                                                                      𝑇𝑇 ≥ 𝑇𝑇𝑇𝑇 +

𝑇𝑇𝑇𝑇𝑇𝑇
2

→ 100% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 [𝐴𝐴1.1] 

Snow is directed into the snowpack storage and rainfall into the melt water storage. The interaction 
between these storages in the form of snowmelt and refreezing fluxes is described by equation A1.2 
and equation A1.3. 

𝑞𝑞𝑠𝑠𝑠𝑠,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ (𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹) ∗ (𝑇𝑇(𝑡𝑡)− 𝑇𝑇𝑇𝑇)         𝑇𝑇(𝑡𝑡) > 𝑇𝑇𝑇𝑇
0                                                                                                        𝑇𝑇(𝑡𝑡) ≤ 𝑇𝑇𝑇𝑇             [𝐴𝐴1.2] 

𝑞𝑞𝑠𝑠𝑠𝑠,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = �𝐶𝐶𝐶𝐶𝐶𝐶 ∗ (𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ (𝑇𝑇𝑇𝑇 − 𝑇𝑇)     𝑇𝑇(𝑡𝑡) < 𝑇𝑇𝑇𝑇
0                                                                                                           𝑇𝑇(𝑡𝑡) ≥ 𝑇𝑇𝑇𝑇             [𝐴𝐴1.3] 

These are theoretical snowmelt and refreezing fluxes, because the real fluxes are limited by the 
actual storage in respectively the snowpack storage and snowmelt storage.  

A1.2 Soil moisture routine 
The soil moisture storage provides an estimation of the wetness of the catchment (Bergström, 1995). 
Precipitation seeps into the soil moisture routine via the infiltration flux. Infiltration is described by 
equation A1.4. Infiltration is based on available water in the snowmelt storage, but part of this water 
is temporarily retained in the snowpack. It is prevented that infiltration can become negative.  

𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) = max ��𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡) + 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑃𝑃𝑟𝑟(𝑡𝑡) − 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) −𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡)� , 0�             [𝐴𝐴1.4] 

By equation A1.4 the total infiltration is obtained. The part of the infiltration that would exceed the 
field capacity (parameter FC) forms direct runoff to the fast runoff reservoir and qin – qd flows into 
the soil moisture storage.  

𝑞𝑞𝑑𝑑(𝑡𝑡) = max�(𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝐹𝐹𝐹𝐹), 0�             [𝐴𝐴1.5] 

Figure 47: Division of precipitation in rainfall and 
snowfall (Knoben, 2013) 
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Outgoing fluxes from the soil moisture storage are actual evapotranspiration and seepage. To 
calculate the actual evapotranspiration at first potential evapotranspiration is adopted from the 
method of Hamon based on temperature input (see appendix 2). Evapotranspiration is higher from 
forests so at first potential evapotranspiration is corrected for the percentage of forest in the 
catchment (equation A1.6). The actual evapotranspiration is limited by the actual soil moisture 
storage (water that is available for evapotranspiration), LP and the potential evapotranspiration 
(equation A1.7).  

𝐸𝐸𝑇𝑇𝑝𝑝(𝑡𝑡) = 𝐸𝐸𝑇𝑇𝑝𝑝0(𝑡𝑡) ∗ (𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐹𝐹𝐹𝐹𝐹𝐹)            [𝐴𝐴1.6] 

𝐸𝐸𝑇𝑇𝑎𝑎(𝑡𝑡) = min�𝐸𝐸𝑇𝑇𝑝𝑝(𝑡𝑡)
𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡)
𝐿𝐿𝐿𝐿 ∗ 𝐹𝐹𝐹𝐹

,𝐸𝐸𝑇𝑇𝑝𝑝(𝑡𝑡)�             [𝐴𝐴1.7] 

Seepage (equation A1.8) flows from the soil moisture storage into the fast runoff reservoir. Seepage 
cannot be below 0 (flux from fast runoff reservoir to soil moisture storage is described by capillary 
transport).  

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = max ���
𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡)
𝐹𝐹𝐹𝐹

�
𝛽𝛽

∗ �𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑞𝑞𝑑𝑑(𝑡𝑡)�� , 0�             [𝐴𝐴1.8] 

Capillary rise is the flow from the fast runoff reservoir to the soil moisture storage (equation A1.9). 
Capillary rise is limited by the actual soil moisture storage.  

𝑞𝑞𝑐𝑐(𝑡𝑡) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗
𝐹𝐹𝐹𝐹 − 𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡)

𝐹𝐹𝐹𝐹
            [𝐴𝐴1.9] 

A1.3 Runoff generation routine (fast and slow runoff) 
From the fast runoff reservoir and slow runoff reservoir respectively fast runoff (equation A1.10) and 
slow runoff (equation A1.11) are released. The fast runoff and slow runoff together make total 
runoff, i.e. discharge in the river in m3/s (equation A1.12). Percolation from the fast runoff reservoir 
to the slow runoff reservoir is described by the calibrated parameter PERC.  

𝑞𝑞𝑓𝑓(𝑡𝑡) = 𝐾𝐾𝑓𝑓 ∗ 𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡)1+𝛼𝛼            [𝐴𝐴1.10] 

𝑞𝑞𝑠𝑠(𝑡𝑡) = 𝐾𝐾𝑠𝑠 ∗ 𝑆𝑆𝑔𝑔𝑔𝑔(𝑡𝑡)            [𝐴𝐴1.11] 

𝑄𝑄𝑡𝑡(𝑡𝑡) =
�𝑞𝑞𝑓𝑓(𝑡𝑡) + 𝑞𝑞𝑠𝑠(𝑡𝑡)� ∗ 𝐴𝐴

86400
10−3

            [𝐴𝐴1.12] 

All fluxes in the model are based on storages in the current time step. Precipitation will not have 
effect on discharge in the same time step, so there is always a lag time of at least 1 day. This 
corresponds to observations of precipitation and discharge, where in general a lag time of 1 to 3 days 
is observed (see section 2.2.3).  
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A1.4 Storages  
The last step is to determine the storages for the next time step. This is based on water balances, so 
the storages for the next time step are the storages of the current time step plus and minus the 
fluxes that go in and out of these storages. 

A1.4.1 Snowpack 
Incoming fluxes into the snowpack are snowfall and refreezing of melt water. There is one outgoing 
flux, namely snowmelt. This gives the water balance in equation A1.13. Snowpack storage cannot 
become below 0, because snowmelt is already limited by Ssp(t).  

𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡 + 1) = 𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑃𝑃𝑠𝑠(𝑡𝑡) + 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡)            [𝐴𝐴1.13] 

A1.4.2 Melt water storage 
Incoming fluxes into the melt water storage are rainfall and snowmelt, while outgoing fluxes are 
refreezing of melt water and outflow from the melt water storage as infiltration (equation A1.14). 
Melt water storage cannot become below 0, because snow refreezing and infiltration are limited by 
the actual melt water storage.  

𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡 + 1) = 𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡) + 𝑃𝑃𝑟𝑟(𝑡𝑡) + 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡)            [𝐴𝐴1.14] 

A1.4.3 Fast runoff reservoir 
The water balance to calculate the new fast runoff reservoir storage is given in equation A1.15. The 
new fast runoff reservoir is calculated before the new soil moisture storage, because negative fast 
runoff reservoir storage is corrected with capillary rise (equation A1.16). Actual percolation is limited 
to the amount of water that flows into the fast runoff reservoir (direct runoff + seepage).  

𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡 + 1) = max�𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑞𝑞𝑑𝑑(𝑡𝑡) + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� , 0� − 𝑞𝑞𝑓𝑓(𝑡𝑡)−min�𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡),𝑞𝑞𝑐𝑐(𝑡𝑡)� , 0)      [𝐴𝐴1.15] 

𝑞𝑞𝑐𝑐(𝑡𝑡) = �max �𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑞𝑞𝑑𝑑(𝑡𝑡) + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�, 0� − 𝑞𝑞𝑓𝑓(𝑡𝑡), 0�     𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡 + 1) = 0
min (Ssw(𝑡𝑡),𝑞𝑞𝑐𝑐(𝑡𝑡))                                                                                           𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡 + 1) ≠ 0

   [𝐴𝐴1.16] 

A1.4.4 Soil moisture storage 
Now the capillary rise is known the new storage in the soil moisture reservoir can be calculated 
(equation A1.17). Soil moisture storage cannot become below 0 or higher than the field capacity (FC), 
because all fluxes are limited to these lower and upper limits.  

𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡 + 1) = 𝑆𝑆𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑞𝑞𝑑𝑑(𝑡𝑡) − 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑞𝑞𝑐𝑐(𝑡𝑡) − 𝐸𝐸𝑇𝑇𝑎𝑎(𝑡𝑡)            [𝐴𝐴1.17] 

A1.4.5 Slow runoff reservoir 
The last storage that needs to be updated is the slow runoff reservoir, defined in equation A1.18. 
This storage cannot become below 0 because slow runoff is limited by the current slow runoff 
reservoir storage.  

𝑆𝑆𝑔𝑔𝑔𝑔(𝑡𝑡 + 1) = 𝑆𝑆𝑔𝑔𝑔𝑔(𝑡𝑡) + min�𝑞𝑞𝑑𝑑(𝑡𝑡) + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡),𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� − 𝑞𝑞𝑠𝑠(𝑡𝑡)            [𝐴𝐴1.18] 
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Appendix 2: Potential evapotranspiration by method of Hamon 
Potential evapotranspiration is one of the required inputs to the HBV model. Potential 
evapotranspiration is defined as the amount of water that could evaporate and transpire from a 
vegetated landscape without restrictions other than the atmospheric demand (Lu et al., 2005). With 
the method of Hamon temperature measurements or temperature forecasts are used to calculate 
potential evapotranspiration. In Table 23 the inputs are explained, coefficient values are provided in 
Table 24 and in Table 25 other variables are characterized.  

Table 23: Inputs to the method of Hamon 
Input variable (Value) [Unit] Explanation  
T oC Daily mean air temperature based on temperature observations or 

forecasts 
J - Julian day of the year. This is used for day length. In a leap year 29 

February has been given the same Julian day as 28 February.  
ϕ 49.75o Representative latitude of the catchment 

 
Table 24: Coefficients in the method of Hamon 

Coefficient Value Explanation  
a 6.108 Same value as used by Lu et al. (2005) and Rao et al. (2011) 
b 17.26939 Same value as used by Lu et al. (2005) and Rao et al. (2011) 
c 237.3 Same value as used by Lu et al. (2005) and Rao et al. (2011) 
kpec 1.2 Calibration coefficient. Same value as used by Lu et al. (2005). 

 
Table 25: Variables in the method of Hamon 

Variable Unit Explanation (Lu et al., 2005; Rao et al., 2011) 
d rad Solar declination 
Ωs rad Sunset solar angle 
ω hrs Daytime length 
es mbar Saturated vapour pressure at a given temperature 
ρsat g/m3 Saturated vapour density at a given temperature 
ETp0 mm/day Potential evapotranspiration 

 
Below the equations of the method of Hamon are given, adopted from a Matlab script provided by 
IGF PAN and also described by Lu et al. (2005) and Rao et al. (2011). The calculation of potential 
evapotranspiration is based on air temperature and day length (Prudhomme & Williamson, 2013; 
Rao et al., 2011). The equations to calculate the day length are also provided by Prudhomme and 
Williamson (2013). At first the solar declination is determined in equation A2.1 and the sunset solar 
angle is determined in equation A2.2.   

𝑑𝑑 = 0.4093 ∗ sin�
2 ∗ 𝐽𝐽 ∗ 𝜋𝜋

365
− 1.405�             [𝐴𝐴2.1] 

𝛺𝛺𝑠𝑠 = acos �−𝑡𝑡𝑡𝑡𝑡𝑡 �
2 ∗ 𝜋𝜋 ∗ 𝜑𝜑

360 � ∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝑑𝑑)�             [𝐴𝐴2.2] 

With the sunset solar angle the number of hours per day can be determined, by equation A2.3.  

𝜔𝜔 =
24 ∗ 𝛺𝛺𝑠𝑠
𝜋𝜋

            [𝐴𝐴2.3] 
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Temperature is used to calculate the saturated vapour pressure (equation A2.4) and saturated 
vapour density (equation A2.5).  

𝑒𝑒𝑠𝑠 = 𝑎𝑎 ∗ exp �𝑏𝑏 ∗
𝑇𝑇

𝑇𝑇 + 𝑐𝑐
�             [𝐴𝐴2.4] 

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 =
216.7 ∗ 𝑒𝑒𝑠𝑠
𝑇𝑇 + 273.3

            [𝐴𝐴2.5] 

Now the potential evapotranspiration can be calculated, based on daytime length and saturated 
vapour density (equation A2.6). The potential evapotranspiration is set to 0 when the temperature is 
below 0. This is not done in all studies where the Hamon method is applied, but in some studies like 
Lu et al. (2005) this has been done.  

𝐸𝐸𝑇𝑇𝑝𝑝0 = �
0.1651 ∗ 𝜔𝜔 ∗ 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝

12
       𝑇𝑇 > 0  

0                                                  𝑇𝑇 ≤ 0 
             [𝐴𝐴2.6] 

According to Rao et al. (2011) and other studies (references in Rao et al. (2011)) the uncorrected 
Hamon method largely underestimates potential evapotranspiration in forests. A solution could be to 
apply a correction factor for the potential evapotranspiration from forests  (Rao et al., 2011). It 
appeared that correction factors fluctuate largely between different forest types and during the year 
(Rao et al., 2011). The maximum and minimum correction factors that Rao et al. (2011) found are 
summarized in Table 26. In line with IGF PAN and Lu et al. (2005) a calibration coefficient of 1.2 (kpec) 
is used to increase the potential evapotranspiration over the whole catchment. In addition a 
correction factor for evaporation from forests of 1.15 is used, adopted from an earlier application of 
the method of Hamon to this catchment by IGF PAN (see equation A1.6). Looking at Table 26 this 
seems a small correction.  

Table 26: Required correction factors of potential evapotranspiration calculated with the method of Hamon for forests 
(Rao et al., 2011) 

 Conifer forest Deciduous forest 
Maximum correction factor 2.6 (in March) 1.9 (in March) 
Minimum correction factor 1.5 (in August) 1.0 (in December) 
Annual correction factor 1.9 ± 0.5 1.3 ± 0.5 

 
Actual evapotranspiration is also limited by water availability in the catchment. This is incorporated 
in the HBV model (equation A1.7).  



 

105 

Appendix 3: Contour plots of k as a relation of discharge and storage 
In this appendix the contour plots of the fraction of fast runoff (k) as a relation of both simulated 
discharge and initial surface water storage are presented. For the lowest category of flows (Figure 
48) and the medium category of flows (Figure 49) it can be seen that for the same discharge and 
increasing initial surface water storage the fraction of fast runoff increases. The other way around, 
with the same initial storage but increasing discharge the fraction of fast runoff decreases. This is 
because there is also correlation between discharge and surface water storage and usually with a 
higher discharge there is also higher surface water storage. For the lowest category of flows the 
maximum difference between the plotted function and the points is 0.04 and for the medium 
category this is 0.02. The relationship in Figure 50 for high flows is more difficult to see, because of 
the large domain of discharge and initial storage. The relationship looks like in Figure 49, but with 
less spread in k. For larger discharges there is even less spread, but this is also because there are only 
a few points here.  

 
Figure 48: Contour plot of k (fraction of fast runoff) as a function of simulated discharge and surface water storage for 

the lowest category of discharge (Q0 ≤ Q25). The contours are bounded by the 5% and 95% confidence lines as explained 
in section 3.4.3  
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Figure 49: Contour plot of k (fraction of fast runoff) as a function of simulated discharge and surface water storage for 

the medium category of discharge (Q25 < Q0 ≤ 40 m3/s). The contours are bounded by the 5% and 95% confidence lines as 
explained in section 3.4.3 

 
Figure 50: Contour plot of k (fraction of fast runoff) as a function of simulated discharge and surface water storage for 

the highest category of discharge (40 m3/s < Q0). For this flow spectrum it was not possible to establish 5% and 95% 
confidence lines like in Figure 48 and Figure 49 (see section 3.4.3), so k values are bounded by 0.65 and 1.  
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Appendix 4: Parameter uncertainty results 
In this appendix the results of the Monte Carlo simulations (described in section 3.3.5) are presented. 
In Figure 51 the scatterplots of behavioural parameter sets are given and in Figure 52 the 
distributions of behavioural parameter sets over the parameter range are presented.  
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Figure 51: Monte Carlo simulations of behavioural parameter sets (Y > 0.5) of the 8 most sensitive parameters against 

objective function Y 

 
Figure 52: Frequency histograms of behavioural parameter sets from GLUE 
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Appendix 5: Rank histograms of precipitation and temperature 
In this appendix the rank histograms of precipitation and temperature forecasts before and after pre-
processing over the validation period 2008-2011 are presented. 

 
Figure 53: Rank histograms of uncorrected and corrected precipitation forecasts with QM with separate lead times, over 

the validation period 2008-2011 

 
Figure 54: Rank histograms of uncorrected and corrected temperature forecasts with QM with separate lead times and 

two seasons (summer and winter), over the validation period 2008-2011 
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Appendix 6: Evaluation results post-processing strategies over the 
training period 

This appendix presents the evaluation results of the post-processing strategies over the training 
period. This indicates the potential of processing with QM when a consistent bias would be present. 
Over the training period strategy 3 with seasonal distinction gives the best performance.  

 
Figure 55: CRPS of the post-processing strategies, over the training period 2012-2013 

 
Figure 56: RMAE of the post-processing strategies, over the training period 2012-2013 
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Figure 57: Rank histogram flatness coefficients of the post-processing strategies, over the training period 2012-2013 
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Appendix 7: Rank histograms of flow forecasts 
This appendix presents the rank histograms of all flow forecasts (Figure 58) and the rank histograms 
for low, medium and high flow forecasts (Figure 59), established over the evaluation period 2008-
2013.  

 
Figure 58: Rank histograms of the flow forecasts 

 
Figure 59: Rank histograms of the different flow forecast categories 
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Appendix 8: Relative Operating Characteristic curves 
This appendix presents the ROC curves of the low flow forecasts and high flow forecasts, established 
over the evaluation period 2008-2013.   

 
Figure 60: ROC curves and AUCs for low and high flow forecasts for lead times from 1 to 10 days 
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Appendix 9: Flow forecasts with parameter uncertainty 
Only uncertainty in the meteorological input data has been included in the developed ensemble flow 
forecasting system. Hydrological model parameter uncertainty, initial condition uncertainty and 
model structure uncertainty are not included, which has been motivated in section 1.6. However the 
rank histograms (section 4.3.2.1) show a large under-dispersion of the flow forecasts, especially at 
small lead times. This indicates that the forecasts are over-confident. This could be expected, 
because not all sources of uncertainty has been included in the forecasting system (Bennett et al., 
2014; Pagano et al., 2013). Precipitation forecasts are the dominant source of uncertainty at longer 
lead times and hydrological processes are the dominant source of uncertainty at shorter lead times 
(Bennett et al., 2014). Reliability of the flow forecasts might be improved by also incorporating 
hydrological model parameter uncertainty and initial condition uncertainty, which will be 
demonstrated with a simple approach in this appendix. Model structure uncertainty will not be 
included, because additional hydrological models should be introduced to do this. In section A9.1 it is 
explained how model parameter uncertainty is included in the flow forecasts and in section A9.2 the 
general performance, reliability and relative uncertainty of the flow forecasts will be investigated 
when meteorological input uncertainty and model parameter uncertainty are included.  

A9.1 Include model parameter uncertainty with GLUE 
This section explains how hydrological model parameter uncertainty is included. In section 4.1.3 the 
parameter uncertainty of the 8 most sensitive parameters has been described with a GLUE analysis. 
0.82% of the 50000 tested parameter sets has been assigned behavioural and these parameter sets 
will be used to incorporate model parameter uncertainty. To calculate the likelihood of the 
behavioural parameter sets they are weighted linearly between the threshold for behavioural model 
parameter selection (Y = 0.5) and the maximum Y that has been found in the Monte Carlo analysis (Y 
= 0.68). Next to that the likelihoods are scaled, so that the sum of the likelihoods is 1 (Beven, 1993). A 
run of the ensemble model over the period from 1-11-2006 to 31-10-2013 with 1 parameter set and 
51 meteorological ensembles takes about 6 minutes. To limit the computational time not all 
behavioural parameter sets are used, but they are sampled (with replacement) according to their 
likelihood. It has been chosen to select the same number of parameter sets as the number of 
meteorological ensembles, so 50 sampled parameter sets and the optimum calibrated parameter set 
are used. Instead of the 51 ensembles originating from the meteorological ensemble forecasts, now 
2601 ensembles are generated.  

Initial condition updating is done with the sampled parameter set, so the updated initial conditions 
are also different with different parameter sets. This follows the approach of Demirel et al. (2013a) 
to include initial condition uncertainty. However, it should be researched whether this is a valid 
approach, because the relationship between the fraction of fast runoff and observed discharge has 
been based on the optimum parameter set. 

A9.2 Evaluation of flow forecasts including parameter uncertainty 
Figure 61 presents the skill of the forecasts that include parameter uncertainty relative to the original 
flow forecasts, in terms of the CRPS. For all flows together the CRPS of the forecasts that include 
model parameter uncertainty is lower (better) for lead times until 3 days and for lead times of 4 days 
and more the forecasts that do not include parameter uncertainty are slightly better. This pattern is 
mainly caused by the high flow forecasts, although also for the low and medium flow forecasts the 
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skill decreases for increasing lead times. It has been expected that parameter uncertainty has the 
largest effect on the performance at small lead times. That the lowest skill values are found for the 
low flow forecasts can be explained by the fact that also the behavioural parameter sets from the 
Monte Carlo analysis are mainly calibrated on high flows. Apparently the behavioural parameter sets 
that should represent model parameter uncertainty perform even worse for low flow situations than 
the optimum parameter set. The improvement of reliability (see Figure 62) does not compensate for 
this.  

In Figure 62 the rank histograms of the flow forecasts including parameter uncertainty are presented. 
The relative frequencies of the highest and lowest possible ranks are less than half of the original 
relative frequency, so the flatness of the rank histograms has improved by including model 
parameter uncertainty. However, the relative frequencies of the most extreme ranks are still much 
higher than the expected relative frequency in a system with perfect reliability, which indicates that 
the ensemble flow forecasts are still under-dispersive. The under-dispersion in the meteorological 
forecasts (see appendix 5) will also play a role in this. Figure 62 also shows the flatness coefficients of 
the flow forecasts that include parameter uncertainty. However these flatness coefficients cannot be 
compared to the original flatness coefficients, because the number of possible ranks differs.  

In Figure 63 it can be seen that in general the relative uncertainty in the forecasts increases as a 
result of including hydrological model parameter uncertainty in the flow forecasts. This could be 
expected because with model parameter uncertainty an additional source of uncertainty is 
incorporated. In this case the RCI for a lead time of 0 days is not equal to 0, because the different 
model parameter sets already induce a spread in the ensemble flow forecasts at a lead time of 0 
days. Especially at small lead times the RCI becomes larger. At larger lead times the difference 
between the RCI with and without including parameter uncertainty is less, because at larger lead 
times the uncertainty from the meteorological forecasts is dominant (Bennett et al., 2014).  

It turned out that with another threshold for behavioural model parameter selection the results of 
the CRPS are very different. With a lower threshold for behavioural model parameter selection (Y = 
0.3) the CRPS values of low and medium flow forecasts that include model parameter uncertainty are 
much better and the CRPS values of high flow forecasts are worse. Possibly with a lower threshold 
also parameter sets that perform well for low and medium flows are included. In the rank histograms 
the relative frequencies of the most extreme ranks become slightly lower (better) and the RCI 
increases. This makes sense, because with a lower threshold the range of model parameter 
uncertainty that is included is larger.  
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Figure 61: Skill of the flow forecasts including hydrological model parameter uncertainty relative to flow forecasts 

without hydrological model parameter uncertainty 

 
Figure 62: Rank histograms of flow forecasts with and without hydrological model parameter uncertainty 
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Figure 63: RCI of flow forecasts with and without hydrological model parameter uncertainty 


