

Empirical study of the effects of

software reuse in videogames on

game and project performance

Author: ing. Paul van den Bosch, S1243667

Supervisors: Dr. ir. Erwin Hofman, Dr. ir. Klaasjan Visscher

Key words: Software reuse, Game engine, Game Components,

Game Assets, Game development, Quality.

1

Abstract

In this paper we represent the results of an empirical study of the effects of software

reuse on game performance outcomes (review scores) and project performance

outcomes (cost efficiency, development time efficiency, quality, profitability). This study

started with an extensive literature review on software reuse and product modularity

followed by an exploratory study through several interviews with game and software

developers. The results of the literature review and exploratory study was then used to

formulate a research model, hypothesis and survey questionnaire. A random sample of

124 games were targeted for this study that were published during the period 2009-2014

on pc and consoles. The period of study is between February 2014 and June 2015.

We framed our research mainly around the reuse of Game Components and Game

Assets. All game engines contain a familiar set of core components, including the

artificial intelligence components, rendering components, physics components,

animation components, visual effects components, audio components and the Game

specific subsystems. Game Assets are a collection of data files such as models, textures,

sound and animation data which support gameplay and are used as input data for the

Game engine. The term “game engine” refers to software that is extensible and can be

used as the foundation for many different games.

In Game development, Game Components and Game Assets are more easy identifiable

across different games over general known software abstractions such as lines of code,

number of classes, modules, procedures, functions and prove to be distinct parts that

together make up a video game. These specific software parts, often functioning as

executable units of independent production, acquisition and deployment can be

composed into a functioning game system. It is therefore that investigating these

domains typically seen in game development should give game developers more practical

value over the generally known software abstractions to further base their game engine-

technology and component and assets sourcing strategies upon. To our knowledge no

other study has previously reported how reuse impacts game scores and software

development economics.

Our findings show that there are significant statistical correlations between the factors of

software reuse and project and game performance outcomes. Significant statistical

correlations were found between the different Overall reuse and Specific reuse factors

and project and game performances outcomes. In our study we found a statistically

significant positive correlation between Overall degree of component and Cost efficiency.

Looking at the specific components level, Rendering components show a statistically

significant positive correlation with Cost efficiency. The Animation components shows

both a statistical positive correlation with Cost efficiency and Development time

efficiency. This study also found a significant negative correlation between the Overall

degree of software reuse and Graphics, Sound & Music, Story and presentation and the

Overall game score.

The Overall degree of external reuse correlated negatively with profitability and quality,

however this relationship was not significant. The Overall degree of External reuse also

correlated negatively with all Review score criteria and Gameplay score showing a

statistically significant negative relationship.

Direct implications for game developers and game directors are that they not only need

to pay attention the specific game components and game assets they are reusing but

2

also to the degree they are reusing it. Managers need to find a certain balance in the

levels of reuse, as too much reuse can negatively affect game performance outcomes.

Our results showed for example for Asset Reuse that as the degree of Overall Game

Assets reuse increases, Overall Game score increases but only up to a certain point

where we can see that as the degree of Overall Game Assets reuse increases, Overall

Game score decreases. The same is concluded for the Specific assets and Game score.

The study also shows there is a significant difference between the Low and High reuse

modes of Overall components and Project Performance variables. Firms applying a high

mode of Overall component reuse scored better on Costs efficiency and Development

time efficiency.

Other variables such as whether a Middleware / Internal game engine was used and

having a small / large team size reported the same level of effects on the amount of

Reuse and the Product and Project performance outcomes and these categories were not

statistically different from each other. Firms employing a high level of Systematic reuse

process resulted in significant differences in game performance outcomes. The study

results show that a Low/high systematic reuse process differ on Game Scores with a Low

systematic reuse process scoring higher than a High systematic reuse process on AI,

Gameplay, Graphics, Personal Slant, Sound & Music, Story & Presentation and Overall

game score.

In sum, game developers, Technical- and Art directors should consider our study results

and analyze and compare their own specific reuse choices and the effects on

development time and development costs and Game scores. By implementing a

systematic reuse process they can potentially achieve substantial benefits in Cost

efficiency but they must keep in mind that although a high level of Systematic reuse is

positively related to better Cost efficiency it does not necessary result in a ‘good’ game.

Game developers should therefore find a balance in where and where not to follow a

systematic reuse process in the different stages of game development and game design

which should be further integrated in the firm’s software development process.

Also, in addition to a systematic reuse process, component reuse can help to achieve

higher levels of Cost efficiency. We did not found any statistically significant positive

correlations between the Overall degree of software reuse and the four project

performance variables Cost efficiency, Development time efficiency, Quality and

Profitability. The result imply that applying a systematic component strategy that

includes a high level of reuse of the Rendering components, Animation components and

Game specific subsystems can help firms to achieve higher levels of Cost efficiency.

Furthermore, as the reuse of Game specific components was significantly negatively

correlated with review scores it underscores the importance and need of tailoring Game

specific components to the game to achieve higher review scores.

Understanding these reuse effects on project and game performance could help game

developers to put emphasize on the right management efforts and financial resources in

the different stages of software development and game design. E.g. it can help whether

it is worth investing in particular game components or new development methodologies

in system and game design to improve development time efficiency, cost efficiency or

game quality. While this study hypothesized and found several associations between the

variables of software reuse and project- and game performance variables, results need to

be interpreted cautious due to small sample size and therefor a larger confirmatory study

is needed. A larger sample size provides more precise results.

3

Acknowledgements

My dad used to program simple video games for my brother and me when we were kids.

This triggered my interest and passion for creating computer software. In 2007, while

still in high-school my twin-brother and I started our first Internet company specialized in

creating websites, webshops and e-commerce software. It is therefore no coincidence

that the topic for my master thesis had to be about computer software.

As an Internet Entrepreneur I am always interested in developing successful software

products more easier and faster for our potential customers. In my free time not

developing new Internet services or other software I love to play a video game on my

PC, Playstation 3, Playstation 4, Xbox 360 or Nintendo Wii as well.

When my research supervisor Dr. ir. Erwin Hofman opted the idea for a research topic

about software reuse in the gaming industry this immediately caught my interest. This

had to be the research subject where I wanted to spent my master thesis on.

I owe my thanks to Dr. ir. Erwin Hofman for this research topic and mentoring me during

my research. He always found the time for me to provide constructive feedback and

recommendations on my research study. There were never problems in making

appointments or contacting him and I got to know him as a very open, calm and at the

same time very enthusiastic person.

I also want to thank Dr. ir. Klaasjan Visscher for his suggestions and recommendations

for improvements on my research and survey questionnaire. I feel that his contributions

and remarks really improved the quality of this study.

Lastly, I want to thank my loving parents Jan van den Bosch and Annelies Kooi for all

their support during my pre-university Education, Higher Vocational Education and

Academic years. I am very thankful for their infinite support for all those many, many

years and that they have given me the opportunity to achieve my educational goals. I

feel that without them, I would not be even close to where I am today.

Ing. Paul van den Bosch

Enschede,

07 September 2015

4

1. Introduction:

The Gaming industry has become serious business. According to Gartner, a leading

information technology research and advisory company, the global video game

marketplace will see an annual growth rate of 18.3% in 2013 and will reach $128 billion

by 2017, up from $79 billion in 2012 (“Forecast: Video Game Ecosystem, Worldwide,

4Q13,” 2015).

Producing large video games can take years of development, with large teams consisting

of hundreds of people on board producing the game, even spanning across multiple

studios. Developing a game for the Nintendo Wii can cost $5 million to $10 million.

Games for Xbox 360 and PS3 on average cost between USD 20 million and USD 50

million to develop (“Will the Wii be a set-top box? - CNET,” 2007).

Due to significant advances in hardware games have evolved in scale and complexity. As

a result AAA games
1
 grow more complex and larger in scale by the year and the costs for

these games have increased tremendously. It is expected that development costs for the

current generation games (PS4, Xbox one) on average may exceed $60 million (“Games

to cost $60m, says Ubisoft boss - Eurogamer.net,” 2009). As technology advances and

consumers demand the latest features, games will be required to continue to grow in

terms of size and their complexity. In order for development houses to keep costs

acceptable, certain realities must be faced: Games can no longer be coded entirely from

scratch. To manage development productivity effectively it’s important to research

strategies to lower development costs and shorten time to market, and analyzing their

effects on project- and product performance in the context of the gaming industry.

Software reuse can help organizations to lower development costs and improve software

quality. Considerable research has been directed at how software reuse influences

productivity, quality and IT project performance (V.R. Basili, Briand, & Melo, 1996); (de

O. Melo, S. Cruzes, Kon, & Conradi, 2013);(W. Frakes & Terry, 1996); (Ajila & Wu,

2007).

Software reuse is the systematic use of existing software assets to construct new or

modified software or products (Mohagheghi & Conradi, 2007, p. 472). Software assets in

this view may be source code or executables, design templates, free standing

Commercial-Off-The-Shelf (COTS) or Open Source Software (OSS) components, or entire

software architectures and their components forming a product line or product family.

The major motivation for reusing software artifacts is to decrease software development

costs and cycle time by reducing the time and human effort required to build software

products. Some research suggests that software quality can be improved by reusing

quality software artifacts. Some work has also stated that software reuse is an important

factor in reducing maintenance costs because, when reusing quality objects, the time and

effort required to maintain software products can be reduced (V.R. Basili, 1990).

For these reasons the reuse of software products, software processes, and other software

artifacts is often considered the technological key to enabling the software industry to

achieve required levels of productivity and quality (V.R. Basili & Rombach, 1988).

Copying some source files onto a project, calling an API function, or instantiating a class

written by someone else, are all different forms of code reuse. A way to reduce the

development costs of games in particular is to reuse specific Game Components or Game

Assets in the game. A Game Component can be for example an AI-, Animation-, or

Rendering component that is used by the game. These Game Components are generally

designed for composability and enable the easy assembly and upgrading of systems out

of independent developed pieces of software (Mohagheghi & Conradi, 2007, p. 472).

Game Assets are designed for generality and allow cost reduction through reuse of

previously developed assets in the development of new games. They usually come in the

form of a collection of data files such as models, textures, sounds, animations and

1
 Pronounced as “”triple A” games, these are highly expected big budget games with high levels of promotion.

E.g. GTA 5 with 52 million copies sold and an estimated development and marketing budget of $250 million.

5

support gameplay. Adopting complete licensed 3D engines, Commercial Of The Shelf

(COTS) components (or Middleware Components) and Game Assets have become widely

preferred approaches over proprietary technology to simplify and shorten the

development process, potentially leading to better quality, productivity and a shorter

time-to-market (Rollings & Morris, 2004).

In this paper, we examine the concepts of software reuse in the context of the video

game industry and we frame our investigation around the reuse of Game Components

and Game Assets. The aim of this study is to analyze the effects of game Component and

game Asset reuse on different game performance outcomes (review scores) and project

performance outcomes (cost efficiency, development time efficiency, quality and

profitability).

We therefore state the following research question:

RQ: What are the effects of software reuse on game and project performance?

In order to answer this question we investigated empirically whether:

1. The degree of Components reuse has effect on review scores and project

performance outcomes (cost efficiency, development time efficiency, quality and

profitability).

2. The degree of Assets reuse has effect on review scores and project performance

outcomes (cost efficiency, development time efficiency, quality and profitability).

3. There is a difference between internal and external software reuse (via COTS or

open-source) on review scores and project performance outcomes.

4. A systematic reuse process affects the degree of software reuse and project

performance outcomes.

While there are many articles and various books covering game development aspects

such as programming (Rollings & Morris, 2004);(Gregory, 2009);(Schmidt, Crnkovic, &

Heineman, 2007) project-management and game design (McGuire & Chadwicke Jenkins,

2008) we found little empirical studies and conclusions about the application of software

reuse within the context of the gaming industry and the effect on product- and project

performance. This paper aims to fill this gap by exploring facets of software reuse

commonly seen in game development and analyzing their effects on different game

performance outcomes and project performance outcomes.

To our knowledge no other study has previously reported how reuse impacts game

scores and software development economics. This study could be highly beneficial to

different entities like independent developers, large game development studios or game

publishers that are considering making a game or are in the process of making a game.

Additionally it aims to further expand on current literature such as the works (V.R. Basili

et al., 1996); (W. Frakes & Terry, 1996); (Ajila & Wu, 2007) about the effects of

software reuse on productivity and quality which will further grow our academic

knowledge on this subject. Understanding these reuse choices and their effect on product

performance could help game developers to put emphasize on the right management

efforts and financial resources in the different stages of software development.

This study is based on an extensive literature review within the fields of software reuse

and software quality. In addition we also conducted interviews with game and software

developers to develop a model for our study and identifying variables.

A survey questionnaire was eventually developed and analyzed which formed the basis of

our empirical study in the context of the Gaming industry.

6

Our findings show that there are strong significant statistical correlations between the

factors of software reuse and project and game performance outcomes. The study also

shows there is a significant difference between the Low and High reuse modes of Overall

components and Project Performance variables. The study results imply that game

developers and game directors not only need to pay attention the specific components

and assets they are reusing but also to the degree they are reusing it. Furthermore,

by implementing a systematic reuse process they can achieve substantial benefits in Cost

efficiency but they must keep in mind that although a high level of Systematic reuse is

positively related to better Cost efficiency it does not necessary result in a ‘good’ game.

The remainder of this paper is organized as follows:

Section 2 and 3 introduces the theoretical framework, reviews relevant literature and

introduces our hypotheses and illustrates the research constructs. Section 4

presents our research methodology, sample and measures. Section 5 presents results

from the conducted survey on video game development. Section 6 contains an overview

and discussion of our findings and provides suggestions for further research.

7

2. Theoretical Background and hypotheses

In the paragraphs below literature around software reuse, areas of reuse, reuse

strategies and reuse in computer games is reviewed. Hypotheses are then developed

how software reuse in video games affects project and game performance.

2.1 Definition of Software reuse

The following generic definition has been adopted from (Biggerstaff & Perlis, 1989): "The

reuse of software is renewed use of artifacts and collected knowledge arising from the

development of a software system when developing a new software system, in order to

reduce the expenditure for creating and maintaining this new system."

Another definition for software reuse as a whole, i.e. for the reuse process, is provided by

(Ezran, Morisio, & Tully, 2002): "Software reuse is the systematic practice of developing

software from a stock of building blocks, so that similarities in requirements and/or

architecture between applications can be exploited to achieve substantial benefits in

productivity, quality and business performance."

2.2 Reuse artifacts

Reuse is a very broad term covering the general concept of a reusable asset.

An asset can be any artifact that is used in the development and maintenance of

software (Schach, 2011, p. 3). Software assets may be source code or executables,

design templates, free standing Commercial-Off-The-Shelf (COTS) or Open Source

Software (OSS) components, or entire software architectures and their components

forming a product line or product family.

Software reuse can apply to any life cycle product, such as documents, system

specifications, design structures, and any other development artifacts not just fragments

of software code (Barns & Bollinger, 1991).

In Ajila & Wu (2007) the authors explain that reuse can also occur in many levels of

granularity which could be a few lines of code, methods, component, classes or whole

systems (Ajila & Wu, 2007). Table 1 lists a set of assets that can be reused across

software projects.

Intermediate artefact Implemented artefact Project management and

quality assurance artifacts

Requirements (sub)systems Process models

Architectures Frameworks, components,
modules, package

Planning models

Designs UML models, interfaces, patterns Cost models

Algorithms Libraries Review and inspection forms

Documentation Test cases Analysis models

Program code Classes, procedures, routines,
functions, methods, source code,
data

Design & coding conventions

Table 1. A variety of reusable assets (adopted from Biggerstaff 1983).

8

Freeman (1993) also identified and classified different types of reusable artifacts:

 Code fragments, which come in a form of source code, PDL, or various charts;

 Logical program structures, such as modules, interfaces, or data structures;

 Functional structures, e.g. specifications of functions and their collections;

 Domain knowledge, i.e. scientific laws, models of knowledge domains;

 Knowledge of development process, in a form of life-cycle models;

 Environment-level information, e.g. experiential data or users feedback;

 Artefact transformation during development process.

Technical approaches to reuse mentioned in literature include:

 Compositional; reuse of functions or subroutines (fine-grained);

 Reuse of templates which can be of any kind;

 Reuse of software modules or components;

 Object-Oriented (OO) frameworks;

 Domain engineering for product families;

 Component-based with adherence to component models such as

CORBA/CCM/EJB;

 Generative programming;

 Reuse repository or library, which can be generic or domain-specific, and can be

combined with other approaches.

2.3 Software reuse and the effect on software development economics

The main motivations found in literature for reusing software artifacts is the potential of

increased software quality and productivity in software development and lower

maintenance costs (V.R. Basili et al., 1996); (de O. Melo et al., 2013); (W. Frakes &

Terry, 1996); (Ajila & Wu, 2007).

Research shows that there is positive and significant evidence on lower problem density

(defect-, error- or fault density) and effort spent on corrections (rework effort) with

introducing systematic reuse of quality software artifacts.

Because work products are used multiple times, the accumulated defect fixes results in a

higher quality work product (Lim, 1994). Reused components may be designed more

thoroughly and be better tested, since faults in these components affect several products

and the prevention costs are amortized over several products (Mohagheghi, Conradi,

Killi, & Schwarz, 2004). Research also indicates that Rework effort is significantly reduced

with systematic reuse. In (Selby, 2005), rework effort is lowest for modules reused

verbatim and small in size. The difference is also significant for modules with slight

revision. In component-comparison studies, systematic reuse (either verbatim, with

slight modification or mixed with new code) is related to significant decrease in problem

density in four studies (Lim, 1994); (Mohagheghi et al., 2004); (Selby, 2005); (Thomas,

Delis, & Basili, 1997).

There is positive and significant evidence on apparent productivity gains in small and

medium-scale studies. Apparent productivity improves significantly with systematic reuse

(Lim, 1994); (Morisio, Romano, & Stamelos, 2002); (Baldassarre, Bianchi, Caivano, &

Visaggio, 2005) and the positive relation with reuse rate is reported in (Lim, 1994).

Because the work products have already been created, tested and documented, apparent

productivity will increase. However, increased productivity does not necessarily shorten

time-to-market because reuse must be used effectively on the critical path of a

development project (Lim, 1994).

Additionally, the study of (V.R. Basili et al., 1996, p. 115) offers significant results

showing the strong impact of reuse on productivity and product quality, or defect density

and rework density, in the context of Object Oriented systems. Some work has also

stated that software reuse is an important factor in reducing maintenance costs because,

when reusing quality objects, the time and effort required to maintain software products

can be reduced (Victor R. Basili, 1990).

9

2.4 Reuse types

On average, only about 15 percent of any software product serves a truly original

purpose. The other 85 percent of the product in theory could be standardized and reused

in future products (Jones, 1984, p. 1). Software reuse appears in two major forms:

systematic and ad-hoc. Implementing systematic reuse within a company can be

expensive as it takes time to specify, design, implement, test, and document a software

component. Ad-hoc reuse means that reuse is opportunistic and not part of a repeatable

process, as opposed to systematic reuse; meaning planned reuse. Verbatim reuse means

reusing an asset “as-is” in a black-box style; or modified in a white-box style to make an

asset reusable for a new target. In Frakes & Terry (1996) different types of reuse have

been identified as shown in table 2.

Type of reuse Description

Ad-hoc Refers to the selection of components which are not
designed for reuse from general libraries. Reuse is
conducted by the individual in an informal manner.

Systematic (planned) Planned reuse is the systematic and formal practice of
reuse as found in software factories.

Compositional Compositional reuse is the use of existing
components as building blocks for new systems.

Black-box / Verbatim Reuse of software components without modification
or “as is”.

White-box Reuse of components by modification and adaption.

Internal Software items come from an internal repository.

External Software items come from an external repository.

Table 2. Types of reuse adapted from Frakes & Terry (1996).

2.5 Benefits of software reuse:

Reuse-based software engineering is a software engineering strategy where the

development process is geared to maximize the reuse of existing software. The move to

reuse-based development has been in response to demands for lower software

production and maintenance costs, faster delivery of systems, and increased software

quality. An obvious advantage of software reuse is that overall development costs should

be reduced. Fewer software components need to be specified, designed, implemented,

and validated. Sommerville (2011) lists multiple benefits of reusing software assets and

impediments to reuse (Sommerville, 2011, p. 427).

Benefit Explanation

Increased dependability Reused software, which has been tried and tested in
working systems, should
be more dependable than new software.

Reduced process risk Less uncertainty in development costs due to known
costs and possible risks of existing software.

Effective use of specialists Application specialists can
develop reusable software that encapsulates their
knowledge.

Standard compliance Some standards, such as user interface standards,
can be implemented as a set of reusable components.

Accelerated development Reusing software can speed up system production
because both development and validation time may
be reduced.

Table 3. Advantages of software reuse adapted from (Sommerville, 2011, p. 427).

10

2.6 Drawbacks of software reuse:

Literature addresses several impediments (See table 4) to reuse which can be for

example of Managerial & organizational (lack of management support, procedures, or

incentives), economical (investment hurdle), psychological (NIH syndrome, threat to

creativity and independence), legal (liabilities, data rights) and technical nature

(Sametinger, 1997, p. 15).

Technical difficulties around reuse have been explained by Talvalsairi (1993) and

include: Agreeing on what a reusable component constitutes, understanding what a

component does and how to use it, understanding how to interface reusable components

to the rest of a design, designing reusable components so that they are easy to adapt

and modify (in a controlled way), and organizing a repository so that programmers can

find and use what they need (Taivalsaari, 1993).

In addition, successful reuse requires having a wide variety of high-quality components,

proper classification and retrieval mechanisms, sufficient and proper documentation of

components, a flexible means for combining components, and a means of adapting

components to specific needs (Sametinger, 1997).

Risks

Explanation

Increased maintenance costs If the source code of a reused software system or
component is not available, then maintenance costs
may be higher because the reused elements of the
system may become increasingly incompatible with
system changes.

Lack of tool support Some software tools do not support development with
reuse.
It may be difficult or impossible to integrate these
tools with a component library system.

Not-invented-here syndrome Some software engineers prefer to rewrite
components because they believe they can improve
on them.
This is partly to do with trust and partly to do with the

fact that writing original software is seen as more
challenging than reusing other people’s software.

Creating, maintaining and using a component library Populating a reusable component library and ensuring
the software developers can use this library can be
expensive. Development processes have to be
adapted to ensure that the library is used.

Finding, understanding and adapting reusable
components

Software components have to be discovered in a
library, understood and, sometimes, adapted to work
in a new environment. Engineers must be reasonably
confident of finding a component in the library before
they include a component search as part of their
normal development process.

It can be difficult to find suitable assets that can
potentially be used to solve a given problem. It is
difficult to match a problem description to a solution
description.

limited extensibility and modifiability. Another impediment arises when commercial off-the-
shelf (COTS) components are reused. Rarely are
developers given the source code of a COTS
component, so software that reuses COTS
components has limited extensibility and modifiability.

Table 4. Problems with software reuse adapted from (Sommerville, 2011, p. 427).

11

3. Software reuse in the gaming industry

The gaming industry is increasingly making use of Commercially-off-the-shelf middleware

components like the movie industry (Rollings & Morris, 2004, p. 382); (Gregory, 2009, p.

13).

To help solve customers’ heterogeneity and distribution problems, and thereby enable

the implementation of an information utility, software vendors are offering distributed

system services that have standard programming interfaces and protocols. These

services are called middleware, because they sit ‘‘in the middle,’’ layering above the OS

and networking software and below industry-specific applications (Philip A. Bernstein,

1993).

As development of new titles have become so complex and development of games can

take years of development it is no longer financially practical and reasonable to also

completely rewriting core components such as AI behavior or character animation

systems. As a game developer, time not being spent on a new 3d-engine or an engine

feature is time that can be spent on creating a better game instead. Also on a publisher

point of view, the use of common set of (middleware) components and standard game

assets assures that a project can be easily moved to another developer.

“At one point you just have to decide if you want to develop technology or make creative

experiences,” – Adrian Tingstad Husby, - Krillbite Studio.

Using complete COTS 3D engines, commercial off-the-shelf (COTS) components (or

middleware components) and standard game assets have now become widely preferred

approaches over developing proprietary technology to simplify and shorten the

development process, potentially leading to better productivity and a shorter time-to-

market. The next section will concentrate about specific reusable areas of computer

games.

3.1 Game engines:

In order to understand which parts of a game are specific and which are general we

have researched different game engines that allows us to understand

the separations and relations between the different parts of a game design.

The term “game engine” refers to software that is extensible and can be

used as the foundation for many different games without major modification.

Virtually all game engines contain a familiar set of core components, including the

rendering engine, the collision and physics engine, the animation system, the audio

system, the game world object model, the artificial intelligence system and so on

(Gregory, 2009, p. 3).

Latest game engines provide a full development studio that provide core functionalities

such as a rendering engine, sound-engine, animation, scripting, AI, networking,

memory management, and publishing modules which makes it easy to publish the game

to various platforms.

Next sections will further discuss a game engine’s software architecture, identifies

reusable areas of games and we will introduce our related hypotheses.

12

3.2 Software architecture in games

A product architecture is the scheme by which the function of a product is allocated to

physical components. The architecture of the product can be a key driver of the

performance of the manufacturing firm (Ulrich, 1995, p. 419).

Architectural decisions are linked to the overall performance of the firm and to specific

R&D issues, including the ease of product change, the division between internal and

external development resources, the ability to achieve certain types of technical product

performance and the way development is managed and organized.

In software products, the highest level abstraction is called the software architecture i.e.

the fundamental organization of a system, embodied in its components, their

relationships to each other and the environment, and the principles governing its design

and evolution. The software architecture is an important artifact in the development of

any system as it allows early analysis of the provided quality of a system such as

performance, maintainability. (“ISO/IEC Standard for Systems and Software Engineering

- Recommended Practice for Architectural Description of Software-Intensive Systems,”

2007).

A game engine generally consists of a tool suite and a run-time component.

Figure 1. on the next page shows all of the major runtime components (these

components exist while the system is running) that make up a typical 3D game engine.

Notice the various different engine layers that make up the game engine and its

hierarchy in the system.

13

Figure 1. Game engine architecture. Adopted from (Gregory, 2009, p. 29)

14

3.3 Software Components

Games are complex software systems in that they comprise a large number of

components with many interactions between them. During architectural design (also

called high-level design), a modular decomposition of the product is developed. In this

phase specifications are carefully analyzed, and a module structure that has the desired

functionality is produced. The output from this activity is a list of the modules and a

description of how they are to be interconnected (Schach, 2011, p. 466). During

architectural design, the existence of certain modules is assumed and the design then is

developed in terms of those modules.

This concept of modularity has become increasingly important (Miguel, 2005, p. 165). In

many industrial sectors like automotive (Morris, Donnelly, & Donnelly, 2004), computers

and software (Baldwin & Clark, 1997), electronics systems (Sanchez & Mahoney, 1996,

p. 67) migrate toward increasing modularity to deal with the growing complexity in

systems. Some systems that were originally tightly integrated may be disaggregated into

loosely coupled components that may be mixed and matched, allowing much greater

flexibility in end configurations (Schilling, 2000, p. 313).

Component Based Software Engineering is a branch of software engineering and a reuse

based approach to defining, implementing and composing loosely coupled independent

components into systems. It encourages the use of predictable architectural patterns and

standard software infrastructure, thereby leading to a higher-quality result.

Software components are executable units of independent production, acquisition, and

deployment that can be composed into a functioning system. Composite systems

composed of software components are called component software and provides a

rationale for breaking a product into modules as a way to reduce the cost of maintenance

which is a major component of the total software budget (Stevens, Myers, & Constantine,

1974). The maintenance effort is reduced when there is maximal interaction within each

module and minimal interaction between modules. A good software design thus is a

design in which modules have high cohesion and low coupling.

Abstractions, such as procedures, classes, modules, or even entire applications, could

form components, as long as they are in an executable form that remains composable

(Szyperski, Gruntz, & Murer, 2002, p. 4).

The goal of component-based technology is to construct a standard collection of reusable

components. Then, instead of reinventing the wheel each time, in the future all software

will be constructed by choosing a standard architecture and standard reusable

frameworks and inserting standard reusable code artifacts into the hot spots of the

frameworks. For this technology to work, the components have to be independent and

fully encapsulated and like objects and only communicate by means of exchanging

messages. This principle allows for reduction of development time through technical

facilities that enable the easy assembly and upgrading of systems out of independently

developed pieces of software over multiple projects (Schach, 2011, p. 594).

From a high-level business perspective, both CBSE and Reuse-oriented software

engineering have the same goals: Increasing productivity and quality. Research shows a

positive and significant evidence on lower problem density (defect-, error- or fault

density) and effort spent on corrections (rework effort) with introducing systematic reuse

in industry (V.R. Basili et al., 1996); (de O. Melo et al., 2013); (W. Frakes & Terry,

1996); (Ajila & Wu, 2007); (Mohagheghi et al., 2004).

15

3.4 COTS Game Components

A way to reduce the development costs of games in particular is to reuse specific Game

Components in the game. Rather than reinventing the wheel when developing a game

engine, a physics engine or a network component, game developers can choose to use

an existing components from an internal component library or use Commercial of the

Shelf (COTS) Components.

COTS-Game engines and COTS-components have become widely preferred approaches

over proprietary technology to simplify and shorten the development process, potentially

leading to better productivity and a shorter time-to-market.

A survey by gamesutra.com in 2009 found that 55% of the respondents were using a

middleware game engine, such as the Unreal Engine on their project (“Gamasutra: Mark

DeLoura’s Blog - The Engine Survey: Technology Results,” 2009).

Commercially available middleware 3d engines are for example Unity 3d, Unreal Engine &

Cry-engine. These packages are evolving to become the industry-standard game

development studios with all necessary tools and components such as graphics, AI

,animation, sound, scripting, publishing and multi-platform support built in to it to

simplify game development.

One of the primary reasons for using a COTS is to give programmers and artists more

time to work on the title, especially during the prototyping and early concept stage

allowing more refined or unique gameplay. Financial and creative efforts can be put into

creating a game, rather than on the R&D that is needed for creating a modern game

engine.

It also allows programmers to focus on creating technology that distinguishes the game

from others of a similar genre. Another benefit that comes with COTS components is that

it is easier to hire somebody who has already experience with a COTS Engine as opposed

to a custom engine. Finally, a big advantage of the usage of a third-party game engine is

that financial and creative efforts can be put into creating a game, rather than on the

R&D that is needed for creating a modern game engine (“Gamasutra: Mark DeLoura’s

Blog - The Engine Survey: Technology Results,” 2009).

Some concerns come with using a COTS game engine as well. For example, a particular

game engine may not work for a specific game genre or can be tied to specific platforms.

Another concern is the difficulty of working with, extending and modifying an unfamiliar

code base. Some developers pointed out that they have spent more time debugging

poorly-crafted middleware than they would have spent writing it from scratch

themselves. Source code access is also a vital concern to being able to evaluate the

engine to make sure that it integrates well with existing or other COTS libraries. Legal

agreements is also another issue in case of a company files bankruptcy or is acquired by

another company.

In addition a COTS based approach benefits the game industry as a whole as successful

COTS developers can focus on one particular aspect of a game e.g. physics, or even

building a complete 3d engines.

This allows them to advance their technology at a faster rate than when they were

building games. These advances are then available for more games to use, which

benefits the industry.

16

3.5 Reusable game components and project performance

All game engines contain a familiar set of core components, including the rendering

engine, the collision and physics engine, the animation system, the audio system, the

game world object model and the artificial intelligence system (Gregory, 2009, p. 29).

Because of the rapid evolution of video games the last decade, game developers now can

choose from a wide variety of components dealing with various aspects of games e.g.

rendering, object management, physics, artificial intelligence and so on.

By studying various game engine architectures we have identified the following major

components or specialized game domains that we found present across several game

engine architectures. These components can be seen as some part of a software system

that is identifiable and reusable.

We will further use the term asset to denote a unit of reuse and component to denote a

unit of composition.

 Identified components Description

Artificial Intelligence components

Component handling path finding, actions, goals &
decision making etc.

Rendering components

Component handling terrain rendering, materials &
shaders, cameras, static & dynamic lightning, Scene
Graph etc.

Physics components

Component handling collision, ragdoll, cloth etc.

Animation components

Component handling HDR lighting, Post effects,
Particle & Decal systems, Light mapping & shadow
etc.

Visual effects components

Component handling DSP/effects, 3d audio model,
audio playback /management etc.

Game specific subsystems Component handling Player mechanics, Game
Cameras, weapons, power-ups, puzzles etc.

Table 5. Reference Game engine components.

In the beginning reuse can be expensive as states three costs that are involved: The cost

of making something reusable, the cost of reusing it, and the cost of defining and

implementing a reuse process. Tracz (1994) estimates that just making a component

reusable increases its cost by at least 60 percent (Tracz, 1994).

It is expected that when the Game Components are used multiple times, the

accumulated defect fixes eventually results in a higher quality work product (Lim, 1994).

Over time reused Game Components may be designed more thoroughly and be better

tested, since faults in these components affect several products and the prevention costs

are amortized over several products (Mohagheghi et al., 2004).

A big advantage of the usage of a third-party game engine is that financial and creative

efforts can be put into creating a game, rather than on the R&D needed for the in-house

technology creation that is needed, which is likely to exist in current game engines.

Component reuse holds the potential to reduce overall system development costs and

development time because many high quality components (such as AI-, physics-, audio-

or animation components) can be bought off-the-shelf or reused from other projects

instead of having to be developed from scratch. Buying the component is usually cheaper

as the development costs for the component are being spread out over the multiple

game titles in which the component is incorporated.

A higher quality of game components is also to be expected as one can assume that

bought or reused components are being used in different games, in different

environments; more rigidly testing and stressing the quality of the component than in a

single game setting.

17

Based on our initial exploratory study through several interviews with game and software

developers (Chapter 4.1 and Appendix A) and the earlier claimed benefits on software

reuse in our literature review we propose the following hypotheses related to the degree

of game components reuse and project performance and the degree of Overall software

reuse on Project performance:

H1 (a): An increase in the degree of component reuse has a positive effect on cost

efficiency.

H1 (b): An increase in the degree of component reuse has a positive effect on the

development time efficiency of the game.

H1 (c): An increase in the degree of component reuse has a positive effect on product

quality.

H1 (d): An increase in the degree of component reuse has a positive effect on

profitability.

H1 (e): An increase in the degree of overall software reuse has a positive effect on

project performance.

3.6 Reusable game components and game performance

A large number of games have been built with existing game technologies. (“100 Most

Popular Game Engines - Mod DB,” 2015). For many years FPS engines like the Doom

engine, Unreal, Cry-engine, have set the standard in terms of graphical fidelity and they

have spawned numerous successful games. These game engines have primarily focused

on the rendering technology and relevant sub domains such as AI, physics and animation

(“The evolution of PC graphics will blow your mind | TechRadar,” 2015).

New advances in computer hardware and rendering algorithms over the years caused the

average game engine to grow in scale and complexity with new engine features and

capabilities added each year. Each newly released game showcasing a typical new

feature would set the benchmark for future games. As a result, gamers are rapidly

expecting new features to be standard included in each new game. (“Matt Chat 99: Duke

Nukem with Scott Miller - YouTube,” 2014).

Since computer hardware becomes more powerful over time and most popular game

engines predominantly focus on producing better graphics, we posit the following

hypotheses:

H1 (f): An increase in the degree of reuse of the Rendering components and the Visual

Effects components has a positive effect on Graphics score.

H1 (g): An increase in the degree of reuse of AI components, Physics and Game specific

subsystems has a negative effect on Gameplay score.

In addition to above hypotheses we hypnotize that too much (unmodified) overall

software reuse and Overall component reuse in general throughout the game will

negatively impact review scores. Some components may need to be adapted specifically

to requirements of the game. If certain game components make it unmodified into the

game this could negatively affect the review scores of the game.

18

H1 (h): An increase in the overall degree of software reuse and overall degree of

component reuse has a negative effect on Review scores.

3.7 Reusable game assets and project performance

A game engine’s input data comes in a wide variety of forms, from 3D-mesh data to

texture bitmaps to animation data to audio files. Game Assets are a collection of such

data files such as models, textures, sounds, animations which support gameplay. These

assets are usually designed for generality and allow cost reduction trough software reuse

of previously developed assets in the development of new games.

The data files that make up an asset usually adhere to some particular asset conditioning

pipeline so that it can be used by the game-engine. This is because all the different data

formats used by digital content creation (DCC) applications are rarely suitable for direct

use in-game (Gregory, 2009, p. 49). Therefore, data produced by a DCC application is

usually exported to a more accessible standardized format, or a custom file format, for

use in-game. Once data has been exported from the DCC application, it often must be

further processed before being sent to the game engine. When a game studio is shipping

its game on more than one platform, the intermediate files might be processed

differently for each target platform.

Game Assets such as 3d-models, artwork, music, sound, animations, scripts, even

complete game libraries can be bought off the shelf or found for free on the Internet.

There are tons of libraries of 3D objects and animations available from various sources

such as Digimation.com, 3drt.com, tf3m.com and Maximo.com. Some COTS 3d-engines

such as the Unity 3d engine and Unreal 4 Engine even feature a built-in Asset Store

where it’s easy to purchase and sell specialized game components and game assets.

We identified the following game assets that can be reused in a computer game:

Identified assets Description

Game objects Any object in the game with special properties.

Game environments Complete game environments: e.g. a forest scene
complete with models of trees and grass.

3D models 3D models represent a 3D object using a collection of
points in 3D space.

Audio files Audio and music files.

Scripts Generally relatively small software code snippets to
automate certain domain tasks, e.g. AI.

Textures Images applied to the surface of a 2D or 3D objects.

Materials Materials that are attached to game objects to copy
real-life properties of objects.

Animations Animations animate an game object.

Shaders Shaders are used to create appropriate levels of color
in an image, for special effects or post-processing.

Story elements Specific story elements can be problems, plots,
characters.

Table 6. A collection of standard assets that can be reused across different game projects.

The above table makes clear that game engine must be fed a great deal of data, in the

form of game assets such as game objects, scripts, animations, audio files and so on.

With game worlds ever growing in size and more detailed game companies must

manage to create generic objects that can be used and combined in many ways

by environment artist to create new objects or complete environments.

These generic objects form the building blocks for artist such as level artist to create a

game scene. They will search through an asset manager and find the most appropriate

game assets and instance them into the game engine (van Beek & Valient, 2011).

19

In cases when game assets are bought of an Game Engine’s proprietary Asset store or

are used from an internal asset library these assets are generally directly suitable for

usage in the game engine. These assets have already been optimized for the Game

Engine’s asset conditioning pipeline by their creators (Gregory, 2009, p. 49) saving time

and potential costs, thus we posit the following hypotheses:

H2 (a): An increase in the degree of asset reuse has a positive effect on cost efficiency.

H2 (b): An increase in the degree of asset reuse has a positive effect on development

time efficiency.

There can also be significant cost associated with understanding whether or not an asset

is suitable for reuse in a particular situation, and in testing that asset to ensure its

dependability. Some external assets can be difficult to adapt and modify or have only

limited capabilities in this respect. It is therefore important to know one's own

requirements for external assets and, in case they do not completely fulfill them, to

determine whether it is possible and how difficult and time-consuming it is to make any

necessary modifications. However, in cases when an asset being reused already closely

matches the need evoked from the asset’s new requirement, contain a well-structured

document and have been designed for a comparable scenario as the modified asset

requirements then lower development cost, development time and a higher product

quality (less defects in the game) and therefor higher profitability is likely to be

expected. We propose the following hypotheses related to the degree of Game Assets

reuse and product quality and the degree of Game Assets reuse and Profitability:

H2 (c): An increase in the degree of asset reuse has a positive effect on product quality.

H2 (d): An increase in the degree of asset reuse has a positive effect on profitability.

3.8 Reusable Game Assets and Game performance

The greater assets are reused unmodified throughout a game such as 3d models,

textures and sounds the less diverse the game could look and feel. A perfect example are

Indie games created with COTS-game engines where people buy the same components

or assets over and over again from the Game Engine’s Asset store for a game engine

such as Unity or Unreal 4 and put them in into the game. Even complete game templates

in many different game genres can be bought of these Asset stores such as racing,

puzzle, or shooters (“Unity3d Asset Store,” 2015); (“Marketplace - UE4 Marketplace,”

2015). The result from this is that extra resources will be needed to more effectively

distinguish the game from other similar games.

Another good example are game sequels where the same assets from the previous game

could potentially be reused to save costs on the development of new game assets. Game

developers should wisely consider what to reuse and update or rebuild from scratch. If

certain assets make it unmodified into the game this could negatively affect the review

scores of the game. For example, too much reuse of visible elements could make the

levels look generic and less diverse, ultimately negatively affecting review scores.

(“Visceral Games Speaks Out on Battlefield Hardline Re-Using Battlefield 4 Assets,” 2014)

We hypnotize that too much (unmodified) reuse throughout the game negatively

impacts review scores.

H2 (e): An increase in the degree of asset reuse has a negative effect on Review scores.

20

3.9 Internal and External software reuse

Software considered for reuse may come from external sources through COTS or open-

source components developed by others outside the company and may have a significant

influence on product outcomes such in terms of performance, scalability, manageability,

portability and quality (Philip A. Bernstein, 1993).

The quality for example of external software components can be a major concern of

managers and developers. A list of known defects and reference sites may give a first

indication of a component's quality. In addition, any external component might prove

more effective if the component is well documented, generalized and of high quality

(Sametinger, 1997).

Using external components may reduce a product's development time, but it also means

increased dependence on component suppliers. Costs can potentially be avoided by not

having to develop and maintain certain game assets. Potential costs lie in the possibility

of having to adapt and modify them and integrating it into the product under

development, but this depends on the requirements.

Making reuse cost-effective can be accomplished by increasing the level of reuse, by

reducing the average cost of reuse, and by reducing investments to achieve reuse

benefits such as making components easy to find, adapt and integrate into new systems

(Barns & Bollinger, 1991).

We hypothesize that in general, an increase in external assets reuse increases

development time efficiency and costs efficiency compared to creating the asset from

scratch yourself.

H3 (a): An increase in the degree of external reuse has a positive effect on development

time efficiency.

H3 (b): An increase in the degree of external reuse has a positive effect on cost

efficiency.

It is also hypnotized that too much (unmodified) external reuse, could negatively affect

the novelty of a game, negatively affecting review scores for the same reasons as

discussed in previous chapter. We therefore propose the following hypothesis related to

external software reuse and review scores.

H3 (c): An increase in the degree of external reuse has a negative effect on review

scores.

21

Figure 2. Hypothesized conceptual model of the relationship between Game components

reuse, review scores and project performance.

22

Figure 3. Hypothesized conceptual model of the relationship between Game Assets reuse,

review scores and project performance.

23

Figure 4. Hypothesized conceptual model of the relationship between the degree of external

reuse and Review scores, Cost efficiency and Development time efficiency.

24

4. Methods

In the paragraphs below literature around software reuse, areas of reuse, reuse

strategies and reuse in computer games is reviewed. Hypotheses are then developed

how software reuse in video games affects project and game performance.

4.1 Sample and research methods

In February 2015 a random sample of 124 games were targeted for this study that were

published during 2010 – 2014 on any game platform (pc and consoles). The game titles

and developer names used in this study were randomly collected from Mobygames.com,

an online database listing various information about videogames such as reviews, credits

and game company information. Technical Directors and Creative directors and people

holding similar senior technical and creative functions at game companies with different

firm sizes were extracted out of the credits list of the games. We then collected the

person’s email addresses via the Internet manually from sources such as Linked-in, the

company’s website, or any personal sites. Unfortunately this proved a real time-

consuming task and it turned out that many personal email addresses were unfindable.

The people we did find an email address from were asked to fill in a questionnaire about

the specific game they had worked on. The unit of analysis in this study are video games,

the subjects for the study are game developers that have worked on a particular game.

The survey was eventually sent out to 211 personal email addresses of people that

worked on a game in our sample. If we found email addresses of people working on the

same game we included these in our mailing to increase the chance of a valid response

for a game. A total of 27 email addresses bounced and 13 were sent to non-personal

email addresses but to the info email addresses instead.

Prior to the survey we did an extensive literature review on the concepts of software

reuse and product modularity and did an initial exploratory field study through several

interviews with game and software developers. Our objective of these interviews was to

understand possible areas of software reuse and how reuse is done, identifying

challenges and benefits of software reuse.

Five interviews were also held in a semi-structured way to understand the strategic

choices from the development team’s perspective and how they affected product and

project performance (Appendix A).

The result of our literature review and interviews provided insight in the following

questions:

 How can software reuse be defined?

 What are potential areas of software reuse in games?

 What are the positive and negative effects of software reuse on different software

development economics?

 What are the main decision making aspects when deciding between reuse or

building something new?

The results of the literature review and exploratory study was then used to formulate the

research model, hypotheses and our survey questionnaire.

25

4.2 Response

Out of 124 games approached, 16 people that had also worked on 16 different games

completed the survey. Since 27 email bounced and 13 were sent to non-personal info

addresses the survey’s response rate is 16 / 82 =19.5%. The full survey is included in

Appendix B.

The Likert scale questions for the degree of reusable Game Components, Game Assets

and project performance had no missing values. There were some values missing about

the development budget (3 missing), used game engine name (2 missing), and game

size in terms of code due to lack of knowledge on this question or non-discloser on this

subject. Overall, the few missing values did not cause a problem and contained sufficient

data for further analysis. No entire cases were excluded for doing analyses related to

Project performance. However three cases were left out when analyzing the Game

performance measures because for these games there was missing review data.

4.3 Operationalization

Variables and measurement

We developed 7-point bipolar Likert-type questions for our study variables. For each item

the scale ranges from 1 “Strongly Disagree” and 7 “Strongly Agree”). Item ratings were

summarized to form an average (overall) rating scale for the independent and dependent

variables consisting of multiple Likert items. Where possible we used existing items or

question format from existing studies.

Based on our exploratory study and literature review we identified the following

independent variables, dependent variables and control variables:

4.3.1 Independent variables:

While software reuse can occur in many levels of granularity such as a few lines of code,

methods, component, classes or whole systems in this study we frame our investigation

mainly around the reuse of Game Components and Game Assets. These parts should be

more easy identifiable across different games over abstractions such as procedures,

number of classes, modules, lines of code, functions and have proven to be distinct parts

that together make up a video game as explained in Chapter 3.3 – 3.9. The degree of

software reuse in this study is thereof measured in terms of:

 Degree of reuse of used Game Components & Game Assets:

Game Components:

Artificial components, Rendering components, Physics components,

Animation Components, Visual effects Components, Audio components,

Game specific subsystems. Adopted from (Gregory, 2009, p. 29), (“Game

Systems | HeroEngine,” 2012). The reuse scale ranges from (1) No reuse

at all - (7) Full reuse.

26

Game Assets:

Game objects, game levels,3d Models, audio files, shaders, scripts,

textures, materials, animations and story elements. Mostly adopted from

(“Unity3d Asset Store,” 2015). The reuse scale ranges from (1) No reuse at

all - (7) Full reuse.

 Degree of external software reuse – The extent to which developers have used

external components via Open-Source & COTS-Components. (Philip A. Bernstein,

1993). The reuse scale ranges from (1) Fully internal - (7) Fully external.

4.3.2 Dependent variables

The items for the dimensions of the dependent variable measuring project performance

(profitability, development time efficiency, cost efficiency and product quality) were

adapted from existing literature and measured using a 7-point bipolar Likert scale.

Reviews scores were collected from an online database.

We identified the following dependent variables:

 Game performance – Review scores were collected from Mobygames.com. A

combined overall rating from different game review sites and target platforms is

summarized for different game scoring criteria (Gameplay, Graphics, Personal

slant, sound & music, Story & presentation. The scale ranges from (1) very poor -

(5) very good.

 Project performance – We operationalized this variable by measuring multiple

project performance criteria. Whether the project was completed in a time

efficient manner, Items were adapted from (Kessler, 1999), whether the project

was cost efficient, adapted from (R. G. Cooper & Kleinschmidt, 1987), whether

the project met quality goals adapted from (Atuahene-Gima, 2003); (Sahay &

Riley, 2003); (Mohagheghi et al., 2004) and met profitability goals, adapted from

(Song & Parry, 1997). The scale ranges from (1) strongly disagree - (7) strongly

agree.

4.3.3 Control variables

Three control variables were included in the data analysis.

Because systematic software reuse was found to be significantly related to lower problem

density (defects, faults or errors), lower rework effort and increased apparent

productivity in earlier studies (Lim, 1994); (Mohagheghi et al., 2004); (Selby, 2005);

(Thomas et al., 1997) we included this variable as our first control variable. Software

reuse is most effective when it is planned as part of an organization-wide reuse program.

A reuse program involves the creation of reusable assets and the adaptation of

development processes to incorporate these assets in new game titles (Sommerville,

2011, p. 427). Having a low or high degree of systematic reuse process in the firm can

potentially influence our performance outcomes and thus we included this control

variable in the data analysis.

Another variable that could potentially confound our study results is the used Game

engine type: Using an internal or external middleware (COTS) game engine may have a

different effect on the measures Project performance variables (“Gamasutra: Mark

DeLoura’s Blog - The Engine Survey: Technology Results,” 2009). Because there could be

27

a difference between games using an internal or external middleware game engine in the

degree of software reuse and project performance outcomes this control variable was

also included in the study.

Lastly, we controlled for the development Team size because larger firms may have other

heterogeneous firm resources that could significantly contribute to product and project

performance outcomes (Barney, 1991). For example, larger teams could have more

experience, financial resources or larger R&D capacity available that could influence the

product and project performance outcome.

 Systematic reuse process – Whether the firm has a structured, systematic reuse

process for reuse that is applied and integrated in the firms development process,

uses databases listing standard components and has flexible means for combining

components trough standard interfaces among modules to achieve substantial

benefits in productivity, quality and business performance. Measures were

adapted from (Sametinger, 1997); (Taivalsaari, 1993); (Worren, Moore, &

Cardona, 2002); (Tiwana, 2008). The scale ranges from (1) strongly disagree -

(7) strongly agree.

 Game engine type – Whether the game engine used was a proprietary game

engine or a middleware (COTS) game engine.

 Team size - Total number of full time developers that have worked on the game.

We differentiated between small (<55 FTE) and large sized development teams

(>55 FTE) as the measure of team size. For this we looked at the median value of

the development team. Team size values lower than the median were recoded

into the low team size category and values higher than the median were recoded

into the high nominal category. The median value group was recoded to the same

value of the smallest frequency, e.g. the lower frequency of the low or high

category.

4.4 Instrument validation

A pilot study was conducted by distributing the preliminary survey to a game developer

working at a large game studio in the Netherlands and also two professional staff

members of the University of Twente in the Netherlands. The contacted game developer

was asked to examine with his colleagues at the game studio whether the preliminary

questionnaire captured the measured constructs well and whether the questionnaire was

clear and understandable to them. Based on received feedback of the pilot minor

adjustments were made in the instrument before sending out the full survey. Content

validity was tested by defining the topic of concern, describing items to be scaled,

developing scales to be used and using a test panel of experts to maximize the quality of

the construct (D. R. Cooper & Schindler, 2014).

Measurement reliability is the extent to which a set of measurements is free

from random error variance. In more practical terms, reliability refers to the consistency

of a set of measures. Cronbach’s alpha (Cronbach, 1951) provides an estimate of

reliability by assessing the internal consistency of a set of items in a scale or test.

Cronbach’s alpha are widely used in business research (Chau, 1999) with reflective

models for reliability assessment and is based on correlations among the indicators that

compromise a measure with higher correlations among the indicators associated with

high alpha coefficients. Cronbach’s alpha were calculated for all constructs and

dimensions in the conceptual model. The Cronbach alpha’s alpha values for degree of

28

Component reuse (α = 0.898), Asset reuse (α = 0.952), project performance (table 7)

and the control variable of Systematic reuse (α = 0.838) all exceeded the suggested

value of 0.70 standard advocated by (Cohen, 2003) in empirical research and thus the

measures can be considered reliable.

Construct Dimension Cronbach’s alpha

Project Performance Profitability 0.926

 Development time efficiency 0.850

 Cost efficiency 0.861

 Product quality 0.869

Control variable Systematic reuse process 0.838

Table 7. Cronbach’s alpha scores of the project performance dimensions

5. Results

5.1 Analysis

We started the analysis by testing for normality. Visual inspection of the data and

Shaphiro Wilk test indicated that all outcome variables regarding Project Performance

and Game Performance in the study were approximately normally distributed (Appendix

D). Inspection of the independent variables indicated that all independent variables

relating to asset reuse were approximately normally distributed but the sample data for

the overall component reuse, specific components reuse, specific assets reuse and

external reuse were not normally distributed but slightly skewed.

Because different people with different functional backgrounds have responded we first

tested whether there were significant differences between the multivariate means of the

different populations (respondents with either a Technical background or a Creative

background). It is therefore important to verify if the groups did not give significantly

different answers. A MANOVA test (multivariate analysis of variance) was executed to

test for homogeneity and it was concluded that there is no significant difference in the

answers for the two different backgrounds. Wilks λ=.023, F(14,1)=3.07, p = .422, partial

n2= .997.

We used Pearson product-moment correlation coefficient (Pearson r) to test for

correlations between all study variables. The Pearson product-moment correlation

coefficient is a measure of the strength of the linear relationship between two variables

and therefore used for testing our hypotheses. We also visually inspected and described

the data when there was no linear statistical relationships associated between the

variables to explain the exact relationship using a polynomial term–a quadratic (squared)

or cubic (cubed) term- that turns a linear regression model into a curve as means of

further exploration.

Additionally we did an analysis of variance (ANOVA) to check whether a low/high degree

of reuse affects game and project performance to complement our managerial

recommendations. For this we looked at the median score of the average (overall) score

of the reuse variables. Scores lower than the median were recoded into the low reuse

category and scores higher than the median were recoded into the high nominal

category. The median value group was recoded to the same value of the smallest

frequency, e.g. the lower frequency of the low or high categories. This method preserves

as much of the actual data's variance as possible within the reduced two value response

data set. To ensure our data set met the ANOVA assumptions we examined the data for

linearity, homogeneity of variance and multi-collinearity.

29

5.2 Results

The descriptive statistics and the correlation matrix for the variables are shown in Table

8.

Table 8. Descriptive statistics and correlation coefficients for the project performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Examination of the means for Overall degree of software reuse and Overall estimated

Components reuse in our study have an average score of 4.56 and 4.25 which is close to

middle of the scale. The Overall reuse estimation for the Game Assets was 2.94. These

overall means closely match the means of the of the specific Components and Assets

scale that were averaged being 4.47 for Components and also 2.94 for Assets. The mean

of the primary source of the reuse proportion scale was 2.56 indicating slightly more

internal reuse than external reuse. The means of the dependent variables for

Development time efficiency, Cost efficiency and Quality were slightly higher than the

middle of the scale ranging from 4.06 – 4.97. Profitability was slightly lower than the

middle of the scale with an average score of 3.59. Examination of the correlations

between the variables indicate that the Overall degree of reuse is highly positively

correlated with the degree of System component reuse measured by an Overall reuse

estimation of System components and the 7 averaged Specific components in the study.

The same applies for the degree of Asset reuse. The degree of Component reuse both for

the overall measure and the 7 averaged specific components measures were significantly

positively correlated with Cost efficiency and Development time efficiency was also

significantly positively correlated with the Cost efficiency. Table 8 shows that Systematic

reuse process was significantly positively correlated with the overall degree of software

reuse, overall- and specific components, and Cost efficiency and Team size was

significantly positively correlated with profitability.

The descriptive statistics and the correlation matrix for the Game Scores are shown in

Table 9.

Table 9. Descriptive statistics and correlation coefficients for the game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

30

Examination for the means for the dependent variables for the Game scores have a score

less than 4.0 which is more than the middle of the Game score scale. The means of the

dependent variable for Overall degree of software reuse and Overall reuse of system

components were higher than the middle of the scale. An examination of the correlations

between the variables indicate that Overall degree of reuse is significantly negatively

correlated with Acting, Graphics, Sound and Music, Story and presentation and Overall

game score. Table 9 shows that more external reuse was negatively correlated with

Gameplay score. A systematic reuse process significantly was negatively correlated with

Gameplay, Graphics, Sound & Music and Overall score.

5.2.1 Specific components reuse on project performance

Hypothesis 1 (a) – To examine whether an increase in the degree of component reuse

has a positive effect on Cost efficiency Pearson r was used. Table 8 shows that there is a

statistically significant positive correlation (r=.57, p<0.05) between the Overall

components degree level and Cost efficiency. The averaged Specific components

measure shows a statistically significant correlation positive as well (r =.56, p<0.05).

Games with a higher level of overall reuse score better on Cost efficiency. Hypotheses

1(a) is there for supported in our model.

Hypothesis 1 (b) – Whether an increase in the degree of component reuse has a positive

effect on Development time efficiency of the game was not supported as Table 8 shows

that there is no statistically negative correlation between the Overall degree of

components reuse and Development time efficiency. However we can’t reject the null

hypotheses yet until we examine the correlations between the Specific components

attributes and Development time efficiency in more detail.

Hypotheses 1 (c-d) – Whether an increase in the degree of component reuse has a

positive effect on product Quality and Profitability were also not supported in the analysis

of Table 8 by looking at the overall reuse and Overall degree of components reuse

measure. However again we can’t reject the null hypotheses yet until we examine the

correlations between the Specific components attributes and Quality and Profitability in

Table 10.

Table 10. Descriptive statistics and correlation coefficients for the project performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Table 10 supports the analysis in Table 8 with respect to the correlation between the

degree of Component reuse and Cost efficiency. The Rendering and Animation

components and Game specific subsystems have a significant positive relationship with

Cost efficiency. The Rendering components show a statistically significant positive

correlation with Cost efficiency (r= .67 p<0.01). The Animation components show both a

statistical positive correlation with Cost efficiency (r= 0.58, p<0.05) and Development

time efficiency (r= 0.58, p<0.05). Therefore games with a higher level of Animation

31

components reuse score better on Cost efficiency and Development time efficiency.

Hypothesis 1 (b) is there for supported in our model.

The results in Table 10 shows no statistical linear relationships between the degree of

Specific component reuse and Product quality and Specific component reuse and

Profitability. Therefore, hypotheses (1 c-d) were not supported. Further analysis using a

polynomial term– a quadratic (squared) or cubic (cubed) term - which turns a linear

regression model into a curve shows a slight curvilinear relationship between Specific

components reuse and Quality.

The curvilinear relationship did not fit the data better than a linear equation (p=.428)

between the degree of Specific components reuse and Quality as can be seen in Table

and Appendix C. A stronger curvilinear relationship is found between the degree of

Specific components reuse and profitability. The results show that a quadratic equation

(p= .337) fits the data better than a linear equation (p = .638). As the degree of specific

components reuse increases, profitability decreases but only up to a certain point where

we can see that as the degree of Specific components reuse increases, further

profitability increases, leading to a clear U shape in the right plot above.

Lastly, hypothesis 1 (e) – Whether an increase in the degree of Overall reuse has a

positive effect on Project performance was not supported as Table 8 shows that there are

no statistically significant positive correlations between the Overall degree of software

reuse and the four performance variables Cost efficiency, Development time efficiency,

Quality and Profitability.

32

5.2.2 Specific Components reuse on Game Performance

Table 11. Descriptive statistics and correlation coefficients for the game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

Hypothesis 1 (f) examines whether an increase in the degree of reuse of the Rendering

components and the Visual Effects components has a positive effect on Graphics score.

Table 11 shows a statistical significant negative correlation between Overall degree of

software reuse and Graphics, Sound & Music, Story and presentation and the Overall

game score (r= -.61, p<0.05 and r= -.63,p< 0.05 and r= -.58, p<0.05 and r = -.60,

p<0.05). However on the Overall component and averaged Specific components level

there is no significant correlation with any of the Game performance variables. Again, we

can’t reject the null hypotheses yet until we examine the correlations between the

Specific components attributes and the attributes of the Game performance scores.

Table 12. Descriptive statistics and correlation coefficients for the Game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Table 12 shows no significant statistical positive relationship between the degree of reuse

of the Rendering components and Graphics score nor the Visual effects components and

Graphics score. In fact, this relationship was slightly negative for the Rendering

components and Visual effects components on Graphics score. Hypotheses 1 (e) is

therefore rejected in our model. Further analysis indicated that these specific relations

appeared not to be curvilinear and a linear relationship model best fitted the data

(Appendix E).

Hypothesis 1 (g) – Whether an increase in the degree of reuse of AI components, Physics

and Game specific subsystems has a negative effect on Gameplay score was supported

for the effect of Game Specific subsystems on Gameplay scores, showing a statistically

significant negative correlation (r = -.58, p< 0.05). In addition, Game Specific

subsystems also show a statistical significant negative correlation with Acting, Graphics,

Personal slant, Sound and Music, Story and Presentation and Overall score (r= -.81,

p<0.01 and r= -.71, p< 0.01 and r= -.65, p<0.05 and r = -.82, p<0.01 and r = -.64,

33

p<0.05 and r = -.74, p<0.01). AI components however, was not significantly correlated

with Gameplay score.

Lastly, Hypothesis 1 (h): Whether an increase in the Overall degree of software reuse

and Overall degree of component reuse has a negative effect on Review scores was

supported for the effect of Overall degree of software reuse on Review scores. Table 11

shows a statistical significant negative correlation between Overall degree of software

reuse and Graphics, Sound & Music, Story and presentation and the Overall game score

(r= -.61, p<0.05 and r= -.63,p< 0.05 and r= -.58, p<0.05 and r = -.60, p<0.05). On

the Overall component and averaged Specific components level there is no significant

correlation with any of the Game performance variables.

5.2.3 Specific Game Assets on Project Performance

Table 13. Descriptive statistics and correlation coefficients for the Project performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

Hypotheses 2 (a-c) – Whether an increase in the degree of asset reuse has a positive

effect on Cost efficiency, Development time efficiency and Profitability was not supported

in the analysis of Table 13. Table 13 shows that there is no statistically significant

correlation found on the Overall asset degree reuse level and averaged Specific game

assets level on Development time efficiency and Cost efficiency.

Table 14. Descriptive statistics and correlation coefficients for the Project performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Further examination of the correlations between the Specific game assets and Project

performance measures in Table 14 shows that only Audio files were significantly

correlated with Development time efficiency (r= .57, p<0.05). Therefor H2 (b) was

supported for the degree of audio files reuse. Further analysis using a polynomial term

shows a slight curvilinear relationship between Overall Asset reuse and Cost efficiency as

can be seen on the next page.

34

The results show that a quadratic equation (p= .351) fits the data slightly better than a

linear equation (p = .560) while this was not the case for Overall reuse of Assets and

Development time efficiency.

Hypothesis 2 (d) - An increase in the degree of asset reuse has a positive effect on

product quality was also rejected as Table 11 shows no statistically significant positive

correlation on the Overall asset degree reuse level and Specific assets level on Product

quality. Further analysis using a polynomial term shows a curvilinear relationship

between Overall reuse of Assets and Quality and Specific reuse of Assets and Quality.

The quadratic equation (p= .364) fits the data slightly better than a linear equation (p =

.596). A stronger curvilinear relationship is found between the degree of Specific Assets

reuse and Quality: The quadratic equation (p= .179) fits the data better than a linear

equation (p = .546).

As the degree of Overall Game Assets reuse increases, Quality decreases but only up to a

certain point where we can see that as the degree of Overall Game Assets reuse

increases, Quality increases further, leading to a clear U shape in the right plot above.

The same holds for the Specific assets and Quality.

35

5.2.4 Specific Game Assets on Game performance

Table 15. Descriptive statistics and correlation coefficients for the Game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Hypothesis (2e) - Whether an increase in the degree of asset reuse has a negative effect

on Review scores was not supported in the analysis of Table 15. Table 15 shows that

there is no statistically negative significant correlation found on the Overall assets,

Averaged specific assets and Game scores. Examination at the individual Specific Assets

level on Game scores in Table 16 confirms that there is no statistical relationships found

between the degree of asset reuse and Game performance. Hypothesis 2 (d) is there for

not supported in our model.

Table 16. Descriptive statistics and correlation coefficients for the Game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Further analysis using a polynomial term shows a slight curvilinear relationship between

Overall reuse of Assets reuse and Quality and Specific reuse of Assets reuse and Game

score. The results show that a quadratic equation (p= .337) fits the data better than a

linear equation (p = .179) for the relationship between Overall Assets and Game score

and the Specific assets and Game score. As the degree of Overall Game Assets reuse

increases, Overall Game score increases but only up to a certain point where we can see

that as the degree of Overall Game Assets reuse increases, Overall Game score

36

decreases, leading to a clear inverted-U shape. The same holds for the Specific assets

and Game score.

5.2.5 Internal and External software reuse.

Table 17. Descriptive statistics and correlation coefficients for the Game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Hypotheses 3 (a-b) examines whether an increase in the degree of external reuse has a

positive effect on Development time efficiency and Cost efficiency.

Table 17 shows no significant negative relation between the degree of External reuse and

Development time efficiency and Cost efficiency. Hypotheses 3 (a-b) is therefore not

supported in our model. Table 17 also shows that the degree of external reuse correlated

negatively with Profitability and Quality. However this relation was not statically

significant.

As the degree of External reuse increases, Cost efficiency decreases but only up to a

certain point where we can see that as the degree of External reuse increases, Cost

efficiency increases causing the inverted-U shape.

37

Table 18. Descriptive statistics and correlation coefficients for the Game performance variables.

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Table 18 considers the relationship between External reuse and Game performance. The

Overall degree of External reuse correlated negatively with Review scores, Gameplay

score showing a statistically significant negative relationship (r= -.66, p <0.05).

Hypothesis 3 (c): Which posit that an increase in the degree of external reuse has a

negative effect on Review scores is therefore confirmed.

5.2.6 Low vs. high reuse and the effect on project and game performance.

ANOVA was used to understand if there are any real differences in Project and Game

performance based on the amount of reuse. We differentiated between a low and high

reuse mode and tested the direct effect on the Project and Game performance variables.

Our ANOVA results (Appendix F) show that Overall low/high reuse did not significantly

differ from each other when considered jointly on the Project performance variables. This

means that the groups of low overall reuse, and high overall reuse did not score

significantly different on project performance, Wilk’s λ = .379, F(4,11)=1.16, p = .38,

partial n2 = .30. At the univariate level, the separate ANOVA’s for each dependent

variable also showed no statistically significant results.

Further analysis indicate a significant difference between low/high reuse of Overall

components when considered jointly on the Project Performance variables, Wilk's λ =

.390, F(4,11) = 4.29, p= .025, partial n2=.610. A separate ANOVA at the univariate level

was conducted for each dependent variable, with each ANOVA evaluated at the 0.025

level. An alpha correction is made to account for the multiple ANOVA’s being run (using

the Bonferroni correction) thus we accept statistical significance at p < .025.

There was a significant difference between low/high Overall component reuse on

Development time efficiency, F(1,14)=5.59, p =.033, partial n2=.285 at the 0.05 alpha

level, with high reuse scoring higher (M= 5.00) than low reuse (M= 2.857). However

since we only accept statistical significance at p < .025 using the Bonferroni adjusted

level of alpha this result was not truly significant.

There was also a significant difference between low/high Overall component reuse on

Cost efficiency, F(1,14)=7.00, p =.019, partial n2=.333. Also, since this p value is lower

than p < .025 we can say that a low/high Overall component reuse differ on Cost

efficiency with high reuse scoring higher (M= 5.56) than low reuse (M= 3.33).

Further examination of the other dependent variables indicated that there were no

significant differences between low and high Overall component reuse on Profitability and

Quality. There was also no significant difference between low/high reuse of Overall game

assets when considered jointly on the Project Performance variables, Wilk's λ = .895,

F(4,11) =.32, p=.858, partial n2=.105.

38

At the Specific components level, there was a significant difference between low/high

reuse when considered jointly on the Project Performance variables, Wilk's λ = .356,

F(4,11) = 4.99, p= .015, partial n2=.64. A separate ANOVA was conducted for each

dependent variable, with each ANOVA evaluated at the 0.025 level. There was no

significant difference between low/high specific component reuse on profitability,

F(1,14)=4.89, p =.044, partial n2=.259, with high reuse scoring higher (M= 4,47) than

low reuse (M= 2,72). Further examination of the other dependent variables indicated

that there were no significant differences between low and high reuse of the Specific

components on Development time efficiency, Cost efficiency and Quality. There was also

no significant difference between low/high reuse of Specific assets when considered

jointly on the Project Performance variables, Wilk's λ = .895, F(4,11) = .32, p= .858,

partial n2=.105

There was also no significant difference between internal/external reuse when considered

jointly on the Project Performance variables, Wilk's λ = .830, F(4,11) = .56, p=.694,

partial n2=.170. At the univariate level, the separate ANOVA’s for each dependent

variable also showed no statistically significant results. There was also no significant

difference between internal/external reuse groups when considered jointly on the Game

Performance variables, Wilk's λ = .498, F(8,4) = .503, p=.810, partial n2=.502. At the

univariate level, the separate ANOVA’s for each dependent variable showed no

statistically significant results.

At the Game performance level, there was no significant difference between Overall

low/high reuse when considered jointly on the Game Performance variables, Wilk's λ =

.432, F(8,4) =.66 p= .715, partial n2=.59. At the univariate level, the separate ANOVA’s

for each dependent variable showed no statistically significant results.

Neither was there a significant difference between low/high Overall components reuse

when considered jointly on the Game Performance variables, Wilk's λ = .543, F(8,4)=

.421= p=.862, partial n2=.457. Also at the univariate level, the separate ANOVA’s for

each dependent variable showed no statistically significant results.

Lastly, ANOVA results showed no significant difference between low/high Overall assets

reuse when considered jointly on the Game Performance variables, Wilk's λ = .417,

F(8,4) =.700= p=.691, partial n2=.583. Also at the univariate level, the separate

ANOVA’s for each dependent variable showed no statistically significant results.

At the Specific assets level there was no significant difference between low/high reuse

when considered jointly on the Game Performance variables. Wilk's λ = .417, F(8,4)

=.700= p=.691, partial n2=.583. Also at the univariate level, the separate ANOVA’s for

each dependent variable showed no statistically significant results. There was no

significant difference between low/high reuse when considered jointly on the Project

Performance variables. Wilk's λ = .895, F(4,11) =.32, p=.858, partial n2=.105.

39

5.2.7 Control variables

We also tested whether existence of Low / high degree of Systematic reuse in the firm,

using an Middleware / Internal game engine or and having a small (n = 8) or large

development team (n = 8) would have a different effect on the amount of Reuse and the

Product and Project performance outcomes using ANOVA. Using a Middleware / Internal

game engine and having a small / large team size reported the same level of effects on

the amount of Reuse and the Product and Project performance outcomes and these

categories were not statistically different from each other.

Employing a high level of Systematic reuse process in the firm did show significant

differences in performance outcomes. The analysis show that a Low/high systematic

reuse process did differ on Game Scores with a Low systematic reuse process scoring

significantly higher than a High systematic reuse process on all the Game performance

variables except for the Acting review score. In all these cases the p value is lower than p

< .025, thus we accept a true significant difference in Game performance between the

two groups. This result is interesting for developers because although a high level of

Systematic reuse is positively related to Cost efficiency (Table 8) it does not necessary

result in a ‘good’ game as indicated by the lower Review scores in table 19. Firms

employing a high level of systematic reuse scored significantly lower on AI, Gameplay,

Graphics, Personal Slant, Sound & Music, Story & Presentation and overall Game score

when if they employed a low level of Systematic reuse process.

Table 19 shows also that there was a nearly statistically significant difference in Overall

degree of software reuse, but as we only accept statistical significance at p < .025 using

the Bonferroni adjusted level of alpha this result was not truly significant.

 Low Systematic reuse

(n= 7)

High Systematic reuse

(n=9)

Sig. Partial

n
2

 Mean SD Mean SD

Degree of reuse

Overall degree of software

reuse

3.71 1.38 5.22 1.20 .035 .280

Overall reuse estimation

components

3.71 1.604 4.67 1.12 .183 .123

Overall reuse estimation

Game Assets

2.71 1.38 3.11 2.09 .672 .013

Specific components 3.92 1.76 4.90 1.21 .204 .113

Specific Asset 2.70 1.22 3.12 1.97 .628 .017

Project Performance

Profitability 4.07 .67 3.22 .59 .361 .60

Development time

efficiency

4.10 .80 4.04 .71 .957 .000

Cost efficiency 3.81 .72 5.19 .64 .174 .128

Quality 5.07 .61 4.89 .54 .826 .004

Game Performance Low Systematic reuse

(n= 5)

High Systematic reuse

(n= 8)

Sig. Partial

n
2

 Mean SD Mean SD

Acting 4.16 .24 3.61 .19 .097 .230

AI 4.02 .18 3.34 .14 .012 .454

Gameplay 4.26 .17 3.36 .13 .002 .615

Graphics 4.36 .21 3.46 .17 .006 .507

Personal Slant 4.12 .23 3.24 .18 .012 .448

Sound & Music 4.18 .29 3.50 .15 .016 .422

Story & Presentation 4.02 .26 3.16 .20 .024 .385

Overall Score 4.16 .18 3.38 .14 .006 .515

Table 19. Low systematic reuse vs. High systematic reuse.

40

6. Discussion

6.1 Overview

This study investigated the effects of software reuse on different game performance

outcomes and project performance outcomes. Specifically, we examined the relationships

between different levels of software reuse including 7 specific Game Components and 10

specific Game Assets on project outcomes (Cost efficiency, Development time efficiency,

Quality and Profitability) and Game performance outcomes (Review scores).

We started the study with an extensive literature review on the concepts of software

reuse and product modularity and did an initial exploratory field study though several

interviews with software and game developers. The outcome of this exploratory study led

to the development of a questionnaire, development of hypotheses and the identification

of variables and research model.

Our research model was empirically tested with data from a random sample of 124

games that were targeted for this study and that were published during 2010 – 2014 on

any game platform (pc and consoles).

Based on the hypotheses that were tested in our study we conclude that:

 Games with a higher level of Overall component reuse tend to score better on

Cost efficiency Hypothesis 1 (a) is there for supported in our model. There is a

statistically significant positive correlation (r=.57, p<0.05) between the Overall

components degree level and Cost efficiency. The averaged Specific components

measure shows a statistically significant positive correlation as well (r =.56,

p<0.05). This result imply that higher levels of cost efficiency can be achieved

when reusing major parts of components.

 Hypothesis 1 (b) - Whether an increase in the degree of component reuse has a

positive effect on Development time efficiency is supported. Looking at the

specific components level, Rendering components show only a statistically

significant positive correlation with Cost efficiency (r= .67 p<0.01). The Animation

components however shows both a statistical positive correlation with Cost

efficiency (r= 0.58, p<0.05) and Development time efficiency (r= 0.58, p<0.05).

This finding suggest that these specific components in particular are worth

investigating for managers to improve Development time efficiency or Cost

efficiency.

 Hypotheses (1 c-d) are not supported: An increase in the degree of Overall

component reuse and Specific component reuse does not have a positive effect on

product Quality and Profitability. A curvilinear relationship is found between the

degree of Specific components reuse and profitability. The results show that a

quadratic equation (p= .337) fits the data better than a linear equation (p =

.638). As the degree of specific components reuse increases, profitability

decreases but only up to a certain point where we can see that as the degree of

Specific components reuse increases, further profitability increases. This finding

suggests that Specific components should either have a minimum level of reuse or

be reused in full for maximum profitability.

 Hypothesis 1 (e) – Whether an increase in the degree of Overall software reuse

has a positive effect on Project performance was not supported as Table 8 shows

that there are no statistically significant positive correlations between the Overall

41

degree of software reuse and the four project performance variables Cost

efficiency, Development time efficiency, Quality and Profitability. This finding

underscores the importance of investigating other granularities of software reuse,

such as game Components and Game Assets and not just overall software reuse.

 Hypothesis 1 (f) examines whether an increase in the degree of reuse of the

Rendering components and the Visual Effects components has a positive effect on

Graphics score and is rejected. We found a statistically significant negative

correlation between Overall degree of software reuse and Graphics, Sound &

Music, Story and presentation and the Overall game score (r= -.61, p<0.05 and

r= -.63,p< 0.05 and r= -.58, p<0.05 and r = -.60, p<0.05). However on the

Overall, Averaged Specific- and individual Specific components level there is no

significant correlation with any of the Game performance variables. This finding

suggests that Specific components should either have a minimum level of reuse or

be reused in full for maximum profitability.

 Hypothesis 1 (g) – Whether an increase in the degree of reuse of AI components,

Physics and Game specific subsystems has a negative effect on Gameplay score is

supported for the effect of Game Specific subsystems on Gameplay scores. We

found a significant negative correlation between the degree of Game Specific

subsystems reuse and Gameplay scores (r = -.58, p< 0.05). In addition, Game

Specific subsystems also show a statistical significant negative correlation

between with Acting, Graphics, Personal slant, Sound and Music, Story and

Presentation and Overall score. The results imply that more reuse of these specific

components in particular works negatively towards review scores and addresses

that tailoring Game specific components to the game is important to achieve

higher review scores.

 Hypothesis 1 (h) - Whether an increase in the Overall degree of software reuse

and increase in the Overall degree of component reuse has a negative effect on

Review scores was only supported for the effect of Overall degree of software

reuse on Review scores. A significant negative correlation is found between the

Overall degree of software reuse and Graphics, Sound & Music, Story and

presentation and the Overall game score (r= -.61, p<0.05 and r= -.63,p< 0.05

and r= -.58, p<0.05 and r = -.60, p<0.05). This implies that a high degree of

software reuse in general and in different levels of granularity can have a negative

effect on review scores and should be something to constantly consider while

applying software reuse.

 Hypotheses 2 (a-c) – whether an increase in the degree of asset reuse has a

positive effect on Cost efficiency, Development time efficiency and Profitability is

not supported for the Overall asset degree reuse level and averaged Specific

game assets level on Development time efficiency and Cost efficiency. Further

analysis using a polynomial term shows a slight curvilinear relationship between

Overall reuse of Assets reuse and Cost efficiency. A quadratic equation (p= .351)

fits the data slightly better than a linear equation (p = .560) while this was not

the case for Overall reuse of Assets and Development time efficiency.

 Hypothesis 2 (b) is supported for the degree of audio files reuse. Examination of

the correlations between the Specific game assets and Project performance

measures in Table 14 shows that only Audio files were significantly correlated with

Development time efficiency (r= .57, p<0.05). This result is somewhat

counterintuitive as we expected more game assets types with a higher level of

reuse would significantly lead to better Development time efficiency. Game

42

objects (r= .46) and Game levels (r= 0.42) were also positively related to

Development time efficiency but the results were not significant.

 Hypothesis 2 (d) - Whether an increase in the degree of asset reuse has a positive

effect on product Quality is also rejected. Further analysis using a polynomial term

shows a curvilinear relationship between Overall reuse of Assets reuse and Quality

and the Specific reuse of Assets reuse and Quality. The quadratic equation (p=

.364) fits the data slightly better than a linear equation (p = .596). A stronger

curvilinear relationship is found between the degree of Specific Assets reuse and

Quality and the quadratic equation (p= .179) fits the data better than a linear

equation (p = .546). This finding suggests that for a maximum level of Quality,

assets should have a very low level of reuse or be reused in full for maximum

Quality.

 Hypothesis 2 (e) - Whether an increase in the degree of asset reuse has a

negative effect on Review scores is not supported. Examination at the Overall and

individual Specific Assets level on Game scores confirms that there is no statistical

linear relationship found between the degree of asset reuse and Game

performance. A quadratic equation (p= .337) fits the data better than a linear

equation (p = .179) for the relationship between Overall Assets and Overall Game

score and the Specific assets and Game score. The result imply that a minimum

level asset reuse is accepted and has a positively effect on Game score but after a

certain point, too much reuse without modification will negatively affect Game

score. It is therefore important to try not to reuse Game Assets in full and

introduce enough modification in the Game Assets.

 Hypotheses 3 (a-b) - Whether an increase in the degree of external reuse has a

positive effect on Development time efficiency and Cost efficiency is not

supported. There is no significant negative relation between the degree of

External reuse and Development time efficiency and Costs efficiency. The overall

degree of External reuse correlated negatively with Review scores, Gameplay

score showing a statistically significant negative relationship (r= -.66, p <0.05).

This finding suggest that more external reuse does not introduce benefits in

project performance over internal reuse, in fact external reuse correlated slightly

negatively with Quality (r = -.40) and profitability (r = -.26). Potential costs may

lie in the possibility of still having to adapt the external software and integrating it

into the product under development depending on the requirements. If adapting

the externally reused artifact is not thoroughly executed this could negatively

impact Quality.

 Hypothesis 3 (c): An increase in the degree of external reuse has a negative effect

on review scores is confirmed. On the Overall software reuse level, External reuse

is found to correlate negatively with all Review score criteria and Gameplay score

showing a statistically significant negative relationship (r= -.66, p <0.05). This

finding implies that a higher level of external reuse works negatively towards

review scores. Again, if the externally reused artifact is not thoroughly adapted,

modified and integrated into the game this could negatively impact the quality

and lead to lower review scores. Also any external reused artifact might prove

more effective if it is well documented, generalized and already of high quality.

43

In sum, the results from our analysis indicate that there are significant statistical

correlations between the factors of software reuse and project and game performances

outcomes. The study also shows there is a significant difference between the Low and

High reuse modes of Overall components and Project Performance variables. Firms

applying a high mode of Overall component reuse scored better on Development time

efficiency and Cost efficiency. In this study we found no statistical significant differences

in software reuse and project performance when using a Middleware or Internal game

engine or having a small or large development team.

The overall degree of external reuse correlated negatively with profitability and quality,

however this relationship was not significant. The overall degree of External reuse also

correlated negatively with Review scores, Gameplay score showing a statistically

significant negative relationship.

Lastly, it was concluded that employing a high level of Systematic reuse process resulted

in significant differences in performance outcomes. The study results show that a

Low/high systematic reuse process differ on Game Scores with a Low systematic reuse

process scoring higher than a High systematic reuse process on AI, Gameplay, Graphics,

Personal Slant, Sound & Music, Story & Presentation and overall Game score.

6.2 Theoretical implications

The main contribution of this study is that it provides one of the first empirical

investigation of the effects of different degrees and forms of reuse on project and game

performance outcomes. From a theoretical perspective this study supports that software

reuse has a positive impact on Development time efficiency and Cost efficiency in a game

development context. Games with a higher level of Overall reuse tend to score better on

Cost efficiency. These results are consistent with other software reuse-oriented studies

that examined the effect of software reuse on project performance (V.R. Basili et al.,

1996); (de O. Melo et al., 2013); (W. Frakes & Terry, 1996); (Ajila & Wu, 2007) and

component based development (Schach, 2011, p. 594).

There are very few empirical studies and conclusions drawn about the application of

software reuse within the context of the gaming industry and the effect on product- and

project performance. To our knowledge, no earlier study explored facets of software

reuse commonly seen in game development and analyzed their effects on different game

performance outcomes and project performance outcomes. Our study is thus able to

extend and contribute to our current knowledge already known from software

development articles and books covering game development aspects such as

programming (Rollings & Morris, 2004); (Gregory, 2009); (Schmidt et al., 2007) project-

management and game design (McGuire & Chadwicke Jenkins, 2008).

In addition, we think we have added value by studying various game engine

architectures and identifying specific components or specialized game domains that we

found present across several game engine architectures. These components can be seen

as parts of a software system that are identifiable and reusable. While traditional

software studies mainly focused on measuring abstract forms of software reuse such as

lines of code, function points, procedures, classes and design patterns, we specifically

targeted our study around the concepts of Game Components and Game Assets. These

specific software parts, often functioning as executable units of independent production,

acquisition, and deployment can be composed into a functioning game system. We think

44

it should give game developers more practical value to research these particular domains

typically seen in game development over the generally known software abstractions to

further base their engine-technology and component sourcing strategies upon.

Furthermore, our study contributes reliable and valid measures for software reuse

constructs related specific for the creation of video games that should be useful for future

research on game development.

Our results extend the findings by (V.R. Basili et al., 1996); (W. Frakes & Terry, 1996);

(Ajila & Wu, 2007) where the effects of software reuse on productivity was examined and

where it was concluded that software reuse has a strong impact on productivity, product

quality and defect density. In line with their findings, our study showed that game

development companies applying a high mode of Overall component reuse scored better

on Development time efficiency and Cost efficiency. Surprisingly our findings do

challenge these authors’ findings regarding their conclusions about Product quality. In

our study Overall reuse, Component and Asset reuse did not lead to higher levels of

product quality, in fact a higher reuse level turns out to work many times slightly

negative towards quality. This contradicts current findings in the literature regarding

software reuse and the effect on quality. This finding is unsuspected as literature argues

that reusing high quality artifacts that have been tested should deliver higher levels of

quality, then when building it from scratch. We measured product quality partly as the

perceived quality by the respondents as we could not exactly measure quality in terms of

real defect density (number of faults and errors / software size) due to practical reasons

and time limitations but which the other studies did do. In a future study we could try to

add and operationalize these quality in terms of defect density like other studies did and

verify if it introduces different results in the level of quality.

In our study Systematic reuse was found to be positively related to Project performance

in terms of Cost efficiency and these findings are in line with various studies on software

reuse (W. Frakes & Terry, 1996); (Ezran et al., 2002); (Victor R. Basili, 1990); W. B.

Frakes & Isoda, 1994). To achieve significant payoffs a reuse program must be

systematic (W. B. Frakes & Isoda, 1994) and organizations implementing systematic

software reuse programs must be able to measure their progress and identify the most

effective reuse strategies. Our study thus confirms and underscores the importance of

having a structured, systematic reuse process that is applied and integrated in the firms

development process, using databases to list standard components and having flexible

means for combining components trough standard interfaces among modules can help

game development companies to achieve substantial benefits in Cost efficiency and

Development time efficiency.

Although a high level of Systematic reuse was found to be positively related to Project

performance in terms of Cost efficiency it does not necessary result in a ‘good’ game

product as indicated by the lower Review scores. Firms employing a high level of

systematic reuse scored significantly lower on AI, Gameplay, Graphics, Personal Slant,

Sound & Music, Story & Presentation and overall Game score when if they employed a

low level of Systematic reuse process. These findings are in line with our earlier

expectations about using unmodified software in games. (“Visceral Games Speaks Out on

Battlefield Hardline Re-Using Battlefield 4 Assets,” 2014). If certain Game Components

and Game Assets make it unmodified into the game this could negatively affect the game

scores, for example too much reuse of visible elements could make the levels look

generic and less diverse or negatively affect the users experience, ultimately negatively

affecting review scores.

45

Because a Low systematic reuse process scores significantly higher than a High

systematic reuse process on all the Game performance variables except for the Acting

review score it is reasonable to think that other factors such as the amount of specific

tweaking, optimizing or the way Game Assets and Components are integrated is also

important for good review scores or higher product quality. This area offers new research

possibilities to be explored in a future study on game development.

6.3 Managerial implications

Our study results could be of great advantage to different entities like independent

developers, large game development studios or game publishers that are considering

making a game or are in the process of making a game.

Direct implications for game developers and game directors are that they not only need

to pay attention the specific components and assets they are reusing but also to the

degree they are reusing it. Our findings show that there are significant statistical

correlations between the different Overall reuse and Specific reuse factors and project

and game performances outcomes. Looking at the specific components level, Rendering

components show a statistically significant positive correlation with Cost efficiency. The

Animation components shows both a significant statistical positive correlation with Cost

efficiency and Development time efficiency.

There is a statistical significant negative correlation between Overall degree of software

reuse and Graphics, Sound & Music, Story and presentation and the Overall game score.

The results also shows there is a significant difference between the Low and High reuse

modes of Overall components and Project Performance variables. Firms applying a high

mode of Overall component reuse scored better on Development time efficiency and Cost

efficiency. Game Assets are important as well for managerial investigation and

considerations. The overall degree of external reuse correlated negatively with

profitability and quality, however this relationship was not significant. The overall degree

of External reuse also correlated negatively with Review scores, Gameplay score showing

a statistically significant negative relationship. Game developers and game directors

should consider said effects cautiously during development, e.g. during architectural

design and while sourcing specific components or assets for their game.

Another implication is that managers need to find a certain balance in the levels of reuse,

as too much reuse can negatively affect project and performance outcomes. Our study

showed for example for Asset reuse that as the degree of Overall Game Assets reuse

increases, Overall Game score increases but only up to a certain point where we can see

that as the degree of Overall Game Assets reuse increases, Overall Game score

decreases. The same is concluded for the Specific assets and Game score.

What this implicates is that a too high level of reuse can negatively impact Game score.

Game developers should therefor wisely consider what assets to reuse, update or rebuild

from scratch. If certain assets make it unmodified into the game this could negatively

affect the review scores of the game. The game design workflow may be further

improved to allow maximum efficiency and flexibility for level designers and artist. Artists

should have a workflow in which they are able to create unique assets or groups of

assets in an easy and efficient way which level designers should then easily be able to

grab, use or recombine into new assets while adding the right amount of changes to each

asset.

46

Also when the Overall Game Assets reuse increases, Quality decreases but only up to a

certain point where we can see that as the degree of Overall Game Assets reuse

increases, Quality increases further, the same holds for the Specific assets and Quality.

Too much reuse however, - as we see with firms that employ a high level of systematic

reuse - could eventually negatively impact Game performance leading to lower Game

scores. Game developers should thus be aware that a reuse strategy that is focused on

reusing software where possible should be generally considered as bad practice.

In sum, game developers, Technical- and Art directors should wisely consider and

interpreted our study results and analyze and compare their own specific reuse choices

and the effects on development time and development costs and Game score. By

implementing a systematic reuse process they can achieve substantial benefits in Cost

efficiency but they must keep in mind that although a high level of Systematic reuse is

positively related to better Cost efficiency it does not necessary result in a ‘good’ game.

Firms employing a high level of systematic reuse scored significantly lower on AI,

Gameplay, Graphics, Personal Slant, Sound & Music, Story & Presentation and overall

Game score when if they employed a low level of Systematic reuse process.

Game developers should therefore find a balance in where and where not to follow a

systematic reuse process in the different stages of game development and game design

which should then be further integrated into the software development process.

In addition to having a systematic reuse process, component reuse can help to achieve

significant higher levels of Cost efficiency. We found no statistically significant positive

correlations between the Overall degree of software reuse and the four project

performance variables Cost efficiency, Development time efficiency, Quality and

Profitability. The result imply that applying a systematic component strategy that

includes a high level of reuse of the Rendering components, Animation components and

game specific subsystems can help firms to achieve higher levels of Cost efficiency. Also,

as the reuse of Game specific components was significantly negatively correlated with

review scores it underscores the importance and need of tailoring Game specific

components to fit the game right in order to achieve higher review scores.

Understanding above reuse choices and their effect on product performance could help

game developers to put emphasize on the right management efforts and financial

resources in the different stages of software development. For example, the results can

help managers deciding whether it is worth investing in particular game components such

as the Rendering components, Animation components and Game specific subsystems or

new game development methodologies in system- and game design to improve

development time efficiency, cost efficiency or game quality.

47

6.4 Limitations and suggestions for future research

A limitation of our study is that the measures for the independent variables and

dependent variables project performances were based on the perceptions of the

respondents and were single sourced. The answers are thus limited by the person’s

truthfulness and estimate accuracy that the person makes in answering the questions.

This means their answers could be biased even though senior developers and managers

should be able to oversee different development aspects fairly well. However our

extensive literature review, exploratory field study though several interviews with game

and software developers, pilot study of the preliminary survey and reliability analysis

should provide some assurance of the instrument being able to capture useful measures.

In a next study we could include both lead artists, lead developers and project managers

answering only specific parts of the survey, now the complete survey was based on the

perceptions of just one person with either a technical or less technical background. A

homogeneity test of variance however pointed out that these two groups with different

specialism did not give statistically different answers.

Another limitation is the very small sample size in this study. While this study

hypothesized and found several associations between the variables of software reuse and

project- and game performance variables, results need to be interpreted cautious due to

small sample size and therefor a larger confirmatory study is very much required. A

larger sample size provides more precise results because it has a small standard error

leading to narrow 95% confidence intervals which gives us a more precise estimate of

the effect and firm conclusions. With smaller sample sizes, such as in this study it is

harder to distinguish between a real effect and random variation due to a large standard

error and wide 95% confidence interval. Therefor we get imprecise estimates of the

effects and thus less firm conclusions can be drawn. A future larger study, should provide

us more reliable results and should be executed as a follow up study. This study should

therefore be replicated in the gaming industry and academia to confirm the results and

enhance and refine our research model. Replication of the study in the gaming industry

can help managers to further investigating investments in certain game components to

improve project and game performance. Replication in academia can help to compare

reuse methods against the traditional forms of software reuse methods such as those

that are mentioned in Chapter 2.2. Replication can also help to increase the study’s

external validity. Because this study primarily focused on reuse concepts specifically used

in game development, external validity beyond the software and gaming industry is

considered low and other reuse concepts may apply for different industries.

An interesting topic for future research would be to differentiate between different game

engines such as games made in Unreal Engine or Unity3d or a proprietary game engine.

This study did not differentiate between popular game engines as our study had too few

respondents in the same game engine category. Knowing which game engine was

associated with a better project or game performance would be interesting for developers

as choosing a game engine is one of the first steps in creating a video game.

Another interesting research choice would be to differentiate between different game

type such as Remakes, Sequels and Ports of games and analyze the degree of reuse and

effects on game and project performance. It would be reasonable interesting as well to

know the proportion of Game Components and Game Assets that were sourced

externally. Using middleware components and assets seems like a new trend in game

development, especially for smaller game studios as they use to have smaller teams and

48

less resources that big game development studios have. This study did not distinguish

between the two on a component and asset level.

Because a Low systematic reuse process scores significantly higher than a High

systematic reuse process on all the Game performance variables except for the Acting

review score concepts such as Tweaking, Optimizing and the way how specific Game

Assets and Components are being integrated could be further explored as this could

potentially give further insight why a high degree of systematic reuse scores lower on

review scores. This area offers new research possibilities to be explored in future studies

on game development.

In spite of the aforementioned limitations, we think this study adds value to existing

literature about videogame development and software reuse in a Gaming industry

context. It emphasizes that reuse in general, component reuse and specific reuse can

affect project- and game performance.

49

Appendix A: Interview guide

Name Function Date Company

Michael Angelo
Groeneveld

Senior software
developer

03/07/14 El-Nino B.V.

Teun Lassche Senior software
developer

05/07/14 T.H. Lassche
Webdevelopment

Pieter van den Bosch Jr. Software developer 20/07/14 Magdeveloper.com

Lee Bamber Senior software
developer

07/08/14 The game creators
Ltd.

Hans Wichman Tutor, independent

game developer

15/08/14 Inner Drive Studios

Main Questions:

 What are potential areas of software reuse in your company?

 What are the positive and negative effects of software reuse on different software

development economics?

 What are the main decision making aspects when deciding between reuse or building

something new?

 What are the general implementing problems/challenges developers face when

implementing a middle ware component / external component.

 What concepts of programming/tweaking/tricks are involved in optimizing performance.

50

Interview: Lee Bamber, Co-founder The Game creators, 07/10/14

Q1: How do you optimize a third party middle-ware software such as an AI or Physics system to best fit your
game, if any? What are the general implementing problems and challenges developers face when implementing

a middle ware component as, for example an AI component?

LEE: All the middle-ware we use (open source and free) comes with full source code so we can step through the
alien code at the lowest level and study the performance metrics. By creating timers in different sections of the
code, we can measure how long each section takes to execute and identify areas that are consuming an
unusually large portion of the overall run-time. As to what constitutes 'unusually large' is down to experience
and the budget we work with which is about 16 milliseconds per game cycle. The biggest hurdle to
implementing middle ware is the availability of good documentation, examples and availability of experiencial
advice from say a forum. If you have those, the implementation is smooth.

Q2: What are the main decision making aspects when deciding between reuse of components or own
development? When do you decide to reuse a component instead of developing it yourself for your FPS reloaded
product?
LEE: Ten years ago I would have argued that everything be written yourself, keep the I.P and you know exactly
where to go if you need to fix something. These days I would say there are some middle ware choices that will
accelerate overall development without sacrificing creative or legal freedoms, nor incur a significant financial
burden. The decision boils down to whether it's quicker/cheaper to buy-in/license the code rather than put
someone in front of a PC and ask them to create one from scratch.

Referring to: ""We will always be looking at clever tricks and tweaks to increase performance further. ""

Q3: How did you manage to get the 30% performance increase for FPS reloaded?
What concepts of programming/tweaking/tricks are involved? (So we can do more research on these
concepts/principles.)

LEE: The 30% was gained by thoroughly breaking down the modules used in the game cycle and deciding how
many milliseconds to give to each one to get a better FPS score. Through measuring all these components we
discovered the AI system was eating quite a lot of processing, which turned out to be a series of features the
final engine did not use, so by removing them from the AI sub-system we gained extra speed. We also
introduced code in various parts of the renderer so that we only render what is absolutely needed to be on the
screen rather than everything that was in the game. Culling objects from reflective water, from behind
buildings, from a distance too far to see the object, by hiding them from the render step we tax the GPU less
and gain more frame rate as a result. The process of getting more performance is exactly the same now. We
take what we have and we apply measurements to all the known modules and decide which is the next 'most
expensive and unusually large' consumption and see if we can trim it down a touch.

Interview: Hans Wichman, Senior software developer, Inner Drive studios, 15/08/14

Q1.What are potential areas of software reuse in your company?

Mainly Game Components and Assets from the Unity 3d asset store, music and texture libraries, also scripts

and algorithms.

Q2.What are the positive and negative effects of software reuse on different software development economics

in your company ?

By reusing components both internally or externally that are properly documented or have examples we are

able to improve quality and potentially lower development costs compared when building the same thing from

scratch.

Q3. What are the main decision making aspects when deciding between reuse or building something new?

Can we build it ourselves? Do we have the resources: Time, budget , required knowledge to build the

component. Is there something commercially available that matches most of the requirements we need for the

game?

Q4. What are the general implementing problems/challenges developers face when implementing a middle

ware component or external component

Good developer examples and good documentation are key in integrating a component. For some problems

there are just no standard, easy solutions thus there can be need in creating something yourself for a particular

problem.

51

Q5. What concepts of programming/tweaking/tricks are involved in optimizing the performance of your

software.

Timing the software, CPU-profiling, there are also automated tools which allows us to step through the program

to find any performance bottlenecks.

Interview: Michael Angelo Groeneveld, Senior software developer El-Nino B.V, 03/07/14

Q1.What are potential areas of software reuse in your company?

There are many based on the nature of the product / system to be built. We try to reuse as much as possible to

cut down time and effort. We have a large base software that we use for most of our systems. This base

software is regularly updated to improve the stability and performance of the implemented systems.

Q2.What are the positive and negative effects of software reuse on different software development economics

in your company ?

We don't reuse software enough. But the advantages we already notice is that development time has reduced

drastically when it comes to creating admin screens. We are trying to make similar steps when it comes to

frontend development.

Q3. What are the main decision making aspects when deciding between reuse or building something new?

Usually time and cost. Standard functionality already present in the base system is always used.

Q4. What are the general implementing problems/challenges developers face when implementing a middle

ware component or external component

Usually bad documentation, bugs in code made by external companies / programmers. Slow connection times

and functional limitations of external software.

Q5. What concepts of programming/tweaking/tricks are involved in optimizing the performance of your

software.

Code re-formating, caching mechanisms, gulp, server clusters, database technology and offloading processes

using frontend technologies like angularjs and backbone.

Interview: Teun Lassche, Senior software developer, T.H. Lassche Webdevelopment, 05/07/14

Q1.What are potential areas of software reuse in your company?

Mostly in backend components, we use auto generate software to generate the reusable parts of our software.

Q2.What are the positive and negative effects of software reuse on different software development economics

in your company ?

Development time reduces, however it may come with a lower amount of innovation. By reusing the software

the revenue generated for the customer will increase in lower time.

Q3. What are the main decision making aspects when deciding between reuse or building something new?

Costs.

Q4. What are the general implementing problems/challenges developers face when implementing a middle

ware component or external component

Low code quality or ambiguities in the core itself. Lots of components are not actively maintained anymore.

Most of the components fit 90% of the functionality but miss the other essential 10% and are therefore only

partly usable.

Q5. What concepts of programming/tweaking/tricks are involved in optimizing the performance of your

software.

52

Caching, key value storages. Making heavy tasks a-sync so end user doesn't notice increased loading times.

Furthermore, by writing efficient code.

Interview: Pieter van den Bosch, Jr. software developer, Magdeveloper.com, 20/07/14

Q1.What are potential areas of software reuse in your company?

We mainly use software development tools that require a yearly license. There are several categories of which

we use software. One aspect is the reuse of certain architecture and to reuse some modules throughout

software development.

General license reuse/updates

Component reuse e.g. modules in different webshops but same architecture.

Reuse software for promotions

Requiring a yearly license often forces us to think in long term.

Q2.What are the positive and negative effects of software reuse on different software development economics

in your company ?

We use several reuse methodologies that help us to be more agile in the building processes leading in better

cost control and faster development time. As explained earlier we sometimes are dependent in yearly perpetual

licenses that forces us to think long term. When we purchase a license we often ask ourselves is this the best

software that we want to use for a year?

Q3. What are the main decision making aspects when deciding between reuse or building something new?

The main aspects are the timeframe, budget and speed (can we build it ourselves) of the project.

Q4. What are the general implementing problems/challenges developers face when implementing a middle

ware component or external component

Sometimes the component lacks technical documentation this forces us to investigate more if the component

does not work out of the box correctly which can happen with software. A challenge also is with third party

software that your employee has to remember how and what specific part the external component may be good

for.

Q5. What concepts of programming/tweaking/tricks are involved in optimizing the performance of your

software.

We mainly do stress tests and trial and error tests. One big advantage is that we closely work with the

customer who also tests our software. Our general idea is that software development is never finished so most

of the time we provide continuous support for the customer allowing to work according mile stones. During all

our development we closely work with programmers who know the iterative concept of building on top of

components they or other have created. Due to objective programming and community support we know the

market changes and can quickly adapt to changes that may be required in our software.

53

Appendix B: Survey questionnaire

54

55

56

57

58

Appendix C: Reliability analysis

59

60

61

Appendix D: Normality tests

Independent variables

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

AVG_Components ,234 16 ,019 ,878 16 ,04

AVG_Assets ,190 16 ,124 ,891 16 ,06

a. Lilliefors Significance Correction

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Artificial intelligence

components
,27 16,00 ,00 ,84 16,00 ,01

Rendering components ,31 16,00 ,00 ,81 16,00 ,00

Physics components ,23 16,00 ,02 ,80 16,00 ,00

Animation components ,28 16,00 ,00 ,83 16,00 ,01

Visual effects components ,27 16,00 ,00 ,87 16,00 ,03

Audio components ,26 16,00 ,00 ,81 16,00 ,00

Game specific subsystems ,22 16,00 ,04 ,91 16,00 ,13

Overall reuse estimation

system components
,27 16,00 ,00 ,87 16,00 ,03

a. Lilliefors Significance Correction

62

63

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Game objects ,218 16 ,041 ,860 16 ,019

Game levels ,279 16 ,002 ,708 16 ,000

(3D) Models ,230 16 ,024 ,787 16 ,002

Audio files ,215 16 ,047 ,848 16 ,013

Shaders ,210 16 ,058 ,897 16 ,073

Scripts ,260 16 ,005 ,878 16 ,036

Textures ,269 16 ,003 ,828 16 ,007

Materials ,206 16 ,068 ,839 16 ,010

Animations ,265 16 ,004 ,823 16 ,006

Story elements ,298 16 ,000 ,704 16 ,000

Overall reuse estimation

game assets
,202 16 ,080 ,903 16 ,088

a. Lilliefors Significance Correction

64

Reuse levels

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Overall degree of

software reuse
,24 16,00 ,01 ,92 16,00 ,18

Overall reuse estimation

system components
,27 16,00 ,00 ,87 16,00 ,03

Overall reuse estimation

game assets
,20 16,00 ,08 ,90 16,00 ,09

Primary source of the

total reuse portion
,30 16,00 ,00 ,83 16,00 ,01

a. Lilliefors Significance Correction

65

Dependent Variables:

Project Performance

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Profitability ,173 16 ,200
*
 ,944 16 ,41

Devtime ,128 16 ,200
*
 ,931 16 ,25

Dev_budget ,146 16 ,200
*
 ,922 16 ,18

Quality ,157 16 ,200
*
 ,903 16 ,09

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

66

Review Scores

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Acting ,19 12,00 ,20
*
 ,92 12,00 ,27

AI ,21 12,00 ,16 ,90 12,00 ,15

Gameplay ,15 12,00 ,20
*
 ,94 12,00 ,48

Graphics ,17 12,00 ,20
*
 ,90 12,00 ,17

Personal Slant ,23 12,00 ,07 ,92 12,00 ,28

Sound & music ,22 12,00 ,12 ,91 12,00 ,25

Story & Presentation ,18 12,00 ,20
*
 ,92 12,00 ,28

Overal score ,22 12,00 ,13 ,91 12,00 ,23

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

67

Control Variables

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Systematic

reuse

process

,170 16 ,200
*
 ,930 16 ,248

Synergistic

Specificity
,106 16 ,200

*
 ,978 16 ,941

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

68

Appendix E: Curvilinear relationships testing

69

70

71

Appendix F: ANOVA Results

Overall reuse level on Project Performance

Statistics

 Overall degree of

software reuse

Overall reuse

estimation system

components

Overall reuse

estimation game

assets

Primary source of

the total reuse

portion

N Valid 16 16 16 16

Missing 0 0 0 0

Mean 4,56 4,25 2,94 2,56

Median 5,00 5,00 2,50 2,00

Mode 5 5 1
a
 2

Std. Deviation 1,459 1,390 1,769 1,263

Variance 2,129 1,933 3,129 1,596

a. Multiple modes exist. The smallest value is shown

Statistics

 avg_components avg_Assets

N Valid 16 16

Missing 0 0

Mean 4,4732 2,9375

Median 5,2143 2,3500

Mode 3,57
a
 1,60

a

Std. Deviation 1,50619 1,64838

Variance 2,269 2,717

a. Multiple modes exist. The smallest value is shown

72

Between-Subjects Factors

 Value Label N

Reuse Level 1,00 Low Reuse 6

2,00 High Reuse 10

Descriptive Statistics

Reuse Level Mean Std. Deviation N

Profitability Low Reuse 3,2917 1,62340 6

High Reuse 3,7750 1,92372 10

Total 3,5938 1,77688 16

Dev_time Low Reuse 3,1667 2,38281 6

High Reuse 4,6000 1,74129 10

Total 4,0625 2,05559 16

Dev_budget Low Reuse 3,5556 2,40986 6

High Reuse 5,2000 1,45890 10

Total 4,5833 1,97203 16

Quality Low Reuse 5,3333 1,76541 6

High Reuse 4,7500 1,49071 10

Total 4,9688 1,56758 16

Box's Test of Equality

of Covariance

Matrices
a

Box's M 24,854

F 1,582

df1 10

df2 506,163

Sig. ,108

Tests the null

hypothesis that the

observed covariance

matrices of the

dependent variables

are equal across

groups.

a. Design: Intercept +

Reuse_level

73

Multivariate Tests
a

Effect Value F Hypothesis df Error df Sig.

Partial Eta

Squared

Intercept Pillai's Trace ,957 61,805
b
 4,000 11,000 ,000 ,957

Wilks' Lambda ,043 61,805
b
 4,000 11,000 ,000 ,957

Hotelling's Trace 22,475 61,805
b
 4,000 11,000 ,000 ,957

Roy's Largest Root 22,475 61,805
b
 4,000 11,000 ,000 ,957

Reuse_level Pillai's Trace ,297 1,162
b
 4,000 11,000 ,379 ,297

Wilks' Lambda ,703 1,162
b
 4,000 11,000 ,379 ,297

Hotelling's Trace ,423 1,162
b
 4,000 11,000 ,379 ,297

Roy's Largest Root ,423 1,162
b
 4,000 11,000 ,379 ,297

a. Design: Intercept + Reuse_level

b. Exact statistic

Levene's Test of Equality of Error Variances
a

 F df1 df2 Sig.

Profitability ,026 1 14 ,873

Dev_time 1,115 1 14 ,309

Dev_budget 3,230 1 14 ,094

Quality ,184 1 14 ,674

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.

a. Design: Intercept + Reuse_level

Reuse Level

Dependent Variable Reuse Level Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Profitability Low Reuse 3,292 ,744 1,696 4,887

High Reuse 3,775 ,576 2,539 5,011

Dev_time Low Reuse 3,167 ,814 1,421 4,913

High Reuse 4,600 ,631 3,247 5,953

Dev_budget Low Reuse 3,556 ,757 1,931 5,180

High Reuse 5,200 ,587 3,942 6,458

Quality Low Reuse 5,333 ,651 3,937 6,729

High Reuse 4,750 ,504 3,669 5,831

74

Specific Components on Project Performance

Between-Subjects Factors

 Value Label N

Componts grouped 1,00 Low reuse 8

2,00 High reuse 8

Descriptive Statistics

Componts grouped Mean Std. Deviation N

Profitability Low reuse 2,7188 1,73430 8

High reuse 4,4688 1,41697 8

Total 3,5938 1,77688 16

Dev_time Low reuse 3,1250 2,28131 8

High reuse 5,0000 1,35693 8

Total 4,0625 2,05559 16

Dev_budget Low reuse 3,7083 2,35997 8

High reuse 5,4583 1,00692 8

Total 4,5833 1,97203 16

Quality Low reuse 4,8125 1,79657 8

High reuse 5,1250 1,40789 8

Total 4,9688 1,56758 16

Box's Test of Equality

of Covariance

Matrices
a

Box's M 9,766

F ,666

df1 10

df2 937,052

Sig. ,756

Tests the null

hypothesis that the

observed covariance

matrices of the

dependent variables

are equal across

groups.

a. Design: Intercept +

Components_grouped

75

Multivariate Tests
a

Effect Value F Hypothesis df Error df Sig.

Partial Eta

Squared

Intercept Pillai's Trace ,980 131,905
b
 4,000 11,000 ,000 ,980

Wilks' Lambda ,020 131,905
b
 4,000 11,000 ,000 ,980

Hotelling's Trace 47,966 131,905
b
 4,000 11,000 ,000 ,980

Roy's Largest Root 47,966 131,905
b
 4,000 11,000 ,000 ,980

Components_grouped Pillai's Trace ,644 4,985
b
 4,000 11,000 ,015 ,644

Wilks' Lambda ,356 4,985
b
 4,000 11,000 ,015 ,644

Hotelling's Trace 1,813 4,985
b
 4,000 11,000 ,015 ,644

Roy's Largest Root 1,813 4,985
b
 4,000 11,000 ,015 ,644

a. Design: Intercept + Components_grouped

b. Exact statistic

Levene's Test of Equality of Error Variances
a

 F df1 df2 Sig.

Profitability 1,243 1 14 ,284

Dev_time 3,272 1 14 ,092

Dev_costs 12,030 1 14 ,004

Quality 1,670 1 14 ,217

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.

a. Design: Intercept + Components_grouped

76

Components grouped

Dependent Variable Componts grouped Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Profitability Low reuse 2,719 ,560 1,518 3,920

High reuse 4,469 ,560 3,268 5,670

Dev_time Low reuse 3,125 ,664 1,702 4,548

High reuse 5,000 ,664 3,577 6,423

Dev_budget Low reuse 3,708 ,641 2,333 5,084

High reuse 5,458 ,641 4,083 6,834

Quality Low reuse 4,813 ,571 3,589 6,036

High reuse 5,125 ,571 3,901 6,349

I perform a curvilinear regression analysis in SPSS. Specifically, I test a quadratic effect (one bend in

the regression line) using a hierarchical multiple regression approach. I point out the key to the

analysis, which is the F change value associated with the squared independent variable. I discuss the

beta weights and how they are not particularly interpretable. I also discuss multicolinearity and why

it is not a problem in the nonlinear regression case. I also show how to do the nonlinear analysis

using a second approach in SPSS which gives more useful scatter plots in the nonlinear regression

case

77

Specific Assets on Project Performance

Between-Subjects Factors

 Value Label N

avg_ass_gr 1,00 low 8

2,00 high 8

Descriptive Statistics

avg_ass_gr Mean Std. Deviation N

Profitability low 3,6250 1,85646 8

high 3,5625 1,82125 8

Total 3,5938 1,77688 16

Dev_time low 3,7500 1,90863 8

high 4,3750 2,27783 8

Total 4,0625 2,05559 16

Dev_budget low 4,5833 2,02171 8

high 4,5833 2,06059 8

Total 4,5833 1,97203 16

Quality low 5,1563 1,72657 8

high 4,7813 1,48467 8

Total 4,9688 1,56758 16

Box's Test of Equality

of Covariance

Matrices
a

Box's M 8,792

F ,600

df1 10

df2 937,052

Sig. ,815

Tests the null

hypothesis that the

observed covariance

matrices of the

dependent variables

are equal across

groups.

a. Design: Intercept +

Assets_grouped

78

Multivariate Tests
a

Effect Value F Hypothesis df Error df Sig.

Partial Eta

Squared

Intercept Pillai's Trace ,959 64,332
b
 4,000 11,000 ,000 ,959

Wilks' Lambda ,041 64,332
b
 4,000 11,000 ,000 ,959

Hotelling's Trace 23,394 64,332
b
 4,000 11,000 ,000 ,959

Roy's Largest Root 23,394 64,332
b
 4,000 11,000 ,000 ,959

avg_ass_gr Pillai's Trace ,105 ,321
b
 4,000 11,000 ,858 ,105

Wilks' Lambda ,895 ,321
b
 4,000 11,000 ,858 ,105

Hotelling's Trace ,117 ,321
b
 4,000 11,000 ,858 ,105

Roy's Largest Root ,117 ,321
b
 4,000 11,000 ,858 ,105

a. Design: Intercept + avg_ass_gr

b. Exact statistic

Levene's Test of Equality of Error Variances
a

 F df1 df2 Sig.

Profitability ,012 1 14 ,915

Dev_time ,392 1 14 ,541

Dev_budget ,051 1 14 ,824

Quality ,309 1 14 ,587

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.

a. Design: Intercept + Assets_grouped

79

Assets grouped

Dependent Variable Assets grouped Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Profitability 1,00 3,625 ,650 2,231 5,019

2,00 3,563 ,650 2,168 4,957

Dev_time 1,00 3,750 ,743 2,157 5,343

2,00 4,375 ,743 2,782 5,968

Dev_budget 1,00 4,583 ,722 3,035 6,131

2,00 4,583 ,722 3,035 6,131

Quality 1,00 5,156 ,569 3,935 6,377

2,00 4,781 ,569 3,560 6,002

80

Overall degree of game components on Project Performance

Between-Subjects Factors

 Value Label N

Overall_comp_gr 1,00 low 7

2,00 high 9

Descriptive Statistics

Overall_comp_gr Mean Std. Deviation N

Profitability low 2,9643 1,71652 7

high 4,0833 1,75891 9

Total 3,5938 1,77688 16

Dev_time low 2,8571 2,32425 7

high 5,0000 1,26930 9

Total 4,0625 2,05559 16

Dev_budget low 3,3333 2,27710 7

high 5,5556 ,98601 9

Total 4,5833 1,97203 16

Quality low 5,1071 1,71912 7

high 4,8611 1,53659 9

Total 4,9688 1,56758 16

Box's Test of Equality of

Covariance Matrices
a

Box's M 8,826

F ,593

df1 10

df2 786,795

Sig. ,821

Tests the null hypothesis that the

observed covariance matrices of

the dependent variables are

equal across groups.

a. Design: Intercept +

Overall_comp_gr

81

Multivariate Tests
a

Effect Value F

Hypothesis

df Error df Sig.

Partial Eta

Squared

Intercept Pillai's Trace ,973 97,737
b
 4,000 11,000 ,000 ,973

Wilks' Lambda ,027 97,737
b
 4,000 11,000 ,000 ,973

Hotelling's

Trace
35,541 97,737

b
 4,000 11,000 ,000 ,973

Roy's Largest

Root
35,541 97,737

b
 4,000 11,000 ,000 ,973

Overall_comp

_gr

Pillai's Trace ,610 4,293
b
 4,000 11,000 ,025 ,610

Wilks' Lambda ,390 4,293
b
 4,000 11,000 ,025 ,610

Hotelling's

Trace
1,561 4,293

b
 4,000 11,000 ,025 ,610

Roy's Largest

Root
1,561 4,293

b
 4,000 11,000 ,025 ,610

a. Design: Intercept + Overall_comp_gr

b. Exact statistic

Levene's Test of Equality of Error Variances
a

 F df1 df2 Sig.

Profitability ,090 1 14 ,768

Dev_time 2,936 1 14 ,109

Dev_budget 5,458 1 14 ,035

Quality ,247 1 14 ,627

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.

a. Design: Intercept + Overall_comp_gr

82

Overall_comp_gr

Dependent Variable Overall_comp_gr Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Profitability low 2,964 ,658 1,553 4,376

high 4,083 ,580 2,839 5,328

Dev_time low 2,857 ,680 1,399 4,315

high 5,000 ,600 3,714 6,286

Dev_budget low 3,333 ,630 1,982 4,684

high 5,556 ,556 4,364 6,747

Quality low 5,107 ,611 3,796 6,418

high 4,861 ,539 3,705 6,017

83

Overall degree of Game Assets on Project Performance

Between-Subjects Factors

 Value Label N

avg_ass_gr 1,00 low 8

2,00 high 8

Descriptive Statistics

avg_ass_gr Mean Std. Deviation N

Profitability low 3,6250 1,85646 8

high 3,5625 1,82125 8

Total 3,5938 1,77688 16

Dev_time low 3,7500 1,90863 8

high 4,3750 2,27783 8

Total 4,0625 2,05559 16

Dev_budget low 4,5833 2,02171 8

high 4,5833 2,06059 8

Total 4,5833 1,97203 16

Quality low 5,1563 1,72657 8

high 4,7813 1,48467 8

Total 4,9688 1,56758 16

Box's Test of Equality

of Covariance

Matrices
a

Box's M 8,792

F ,600

df1 10

df2 937,052

Sig. ,815

Tests the null

hypothesis that the

observed covariance

matrices of the

dependent variables

are equal across

groups.

a. Design: Intercept +

avg_ass_gr

84

Multivariate Tests
a

Effect Value F Hypothesis df Error df Sig.

Partial Eta

Squared

Intercept Pillai's Trace ,959 64,332
b
 4,000 11,000 ,000 ,959

Wilks' Lambda ,041 64,332
b
 4,000 11,000 ,000 ,959

Hotelling's Trace 23,394 64,332
b
 4,000 11,000 ,000 ,959

Roy's Largest Root 23,394 64,332
b
 4,000 11,000 ,000 ,959

avg_ass_gr Pillai's Trace ,105 ,321
b
 4,000 11,000 ,858 ,105

Wilks' Lambda ,895 ,321
b
 4,000 11,000 ,858 ,105

Hotelling's Trace ,117 ,321
b
 4,000 11,000 ,858 ,105

Roy's Largest Root ,117 ,321
b
 4,000 11,000 ,858 ,105

a. Design: Intercept + avg_ass_gr

b. Exact statistic

Levene's Test of Equality of Error Variances
a

 F df1 df2 Sig.

Profitability ,012 1 14 ,915

Dev_time ,392 1 14 ,541

Dev_budget ,051 1 14 ,824

Quality ,309 1 14 ,587

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.

a. Design: Intercept + avg_ass_gr

85

avg_ass_gr

Dependent Variable avg_ass_gr Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Profitability low 3,625 ,650 2,231 5,019

high 3,563 ,650 2,168 4,957

Dev_time low 3,750 ,743 2,157 5,343

high 4,375 ,743 2,782 5,968

Dev_budget low 4,583 ,722 3,035 6,131

high 4,583 ,722 3,035 6,131

Quality low 5,156 ,569 3,935 6,377

high 4,781 ,569 3,560 6,002

References:

100 Most Popular Game Engines - Mod DB. (2015, July 31). Retrieved August 5, 2015, from

http://www.moddb.com/engines/top

Ajila, S. A., & Wu, D. (2007). Empirical study of the effects of open source adoption on software

development economics. Journal of Systems and Software, 80(9), 1517–1529.

doi:10.1016/j.jss.2007.01.011

Atuahene-Gima, K. (2003). The Effects of Centrifugal and Centripetal Forces on Product Development

Speed and Quality: How Does Problem Solving Matter? Academy of Management Journal,

46(3), 359–373. doi:10.2307/30040629

Baldassarre, M. T., Bianchi, A., Caivano, D., & Visaggio, G. (2005). An industrial case study on reuse

oriented development (pp. 283–292). IEEE. doi:10.1109/ICSM.2005.20

Baldwin, C. Y., & Clark, K. B. (1997). Managing in an age of modularity. Harvard Business Review,

75(5), 84–93.

Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17,

99–120.

Barns, B. H., & Bollinger, T. B. (1991). Making reuse cost-effective. IEEE Software, 8(1), 13–24.

doi:10.1109/52.62928

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software development. IEEE Software,

7(1), 19–25. doi:10.1109/52.43045

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software development. Software, IEEE,

7(1), 19–25.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). How reuse influences productivity in object-oriented

systems. Communications of the ACM, 39(10), 104–116.

Basili, V. R., & Rombach, H. D. (1988). The TAME project: towards improvement-oriented software

environments. IEEE Transactions on Software Engineering, 14(6), 758–773.

doi:10.1109/32.6156

1

Biggerstaff, T. J., & Perlis, A. J. (Eds.). (1989). Software reusability. New York, N.Y. : Reading, Mass:

ACM Press ; Addison-Wesley.

Chau, P. Y. K. (1999). On the use of construct reliability in MIS research: a meta-analysis. Information

& Management, 35(4), 217–227. doi:10.1016/S0378-7206(98)00089-5

Cohen, J. (Ed.). (2003). Applied multiple regression/correlation analysis for the behavioral sciences

(3rd ed.). Mahwah, N.J: L. Erlbaum Associates.

Cooper, D. R., & Schindler, P. S. (2014). Business research methods (12th ed.). New York: McGraw-

Hill.

Cooper, R. G., & Kleinschmidt, E. J. (1987). New Products: What Separates Winners from Losers?

Journal of Product Innovation Management, 4(3), 169–184. doi:10.1111/1540-5885.430169

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3),

297–334. doi:10.1007/BF02310555

de O. Melo, C., S. Cruzes, D., Kon, F., & Conradi, R. (2013). Interpretative case studies on agile team

productivity and management. Information and Software Technology, 55(2), 412–427.

doi:10.1016/j.infsof.2012.09.004

Ezran, M., Morisio, M., & Tully, C. J. (2002). Practical Software Reuse. London: Springer London :

Imprint : Springer. Retrieved from http://dx.doi.org/10.1007/978-1-4471-0141-3

Forecast: Video Game Ecosystem, Worldwide, 4Q13. (2015, January 15). Retrieved January 15, 2015,

from https://www.gartner.com/doc/2606315/forecast-video-game-ecosystem-worldwide

Frakes, W. B., & Isoda, S. (1994). Success factors of systematic reuse. IEEE Software, 11(5), 14–19.

doi:10.1109/52.311045

Frakes, W., & Terry, C. (1996). Software reuse: metrics and models. ACM Computing Surveys (CSUR),

28(2), 415–435.

Gamasutra: Mark DeLoura’s Blog - The Engine Survey: Technology Results. (2009, March 16).

Retrieved April 19, 2015, from

2

http://www.gamasutra.com/blogs/MarkDeLoura/20090316/903/The_Engine_Survey_Techn

ology_Results.php

Games to cost $60m, says Ubisoft boss - Eurogamer.net. (2009, June 16). Retrieved November 21,

2014, from http://www.eurogamer.net/articles/games-to-cost-USD60m-says-ubisoft-boss

Game Systems | HeroEngine. (2012). Retrieved March 19, 2014, from

http://www.heroengine.com/heroengine/game-systems/

Gregory, J. (2009). Game Engine Architecture. Taylor & Francis.

ISO/IEC Standard for Systems and Software Engineering - Recommended Practice for Architectural

Description of Software-Intensive Systems. (2007). ISO/IEC 42010 IEEE Standard 1471-2000.

doi:10.1109/IEEESTD.2007.386501

Jones, T. C. (1984). Reusability in Programming: A Survey of the State of the Art. Software

Engineering, IEEE Transactions on, (5), 488–494.

Kessler, E. (1999). Speeding up the pace of new product development. Journal of Product Innovation

Management, 16(3), 231–247. doi:10.1016/S0737-6782(98)00048-4

Lim, W. C. (1994). Effects of reuse on quality, productivity, and economics. IEEE Software, 11(5), 23–

30. doi:10.1109/52.311048

Marketplace - UE4 Marketplace. (2015). Retrieved August 6, 2015, from

https://www.unrealengine.com/marketplace

Matt Chat 99: Duke Nukem with Scott Miller - YouTube. (2014, October 12). Retrieved December 10,

2013, from http://www.youtube.com/watch?v=n_i3-aoHnww

McGuire, M., & Chadwicke Jenkins, O. (2008). Creating Games: Mechanics, Content, and Technology.

A K Peters/CRC Press. Retrieved from

http://www.amazon.com/gp/product/1568813058/ref=as_li_tf_tl?ie=UTF8&tag=casueffe06-

20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1568813058

Miguel, P. A. C. (2005). Modularity in product development: a literature review towards a research

agenda. Product: Management & Development, 3(2), 165–174.

3

Mohagheghi, P., & Conradi, R. (2007). Quality, productivity and economic benefits of software reuse:

a review of industrial studies. Empirical Software Engineering, 12(5), 471–516.

doi:10.1007/s10664-007-9040-x

Mohagheghi, P., Conradi, R., Killi, O. M., & Schwarz, H. (2004). An empirical study of software reuse

vs. defect-density and stability (pp. 282–291). IEEE Comput. Soc.

doi:10.1109/ICSE.2004.1317450

Morisio, M., Romano, D., & Stamelos, I. (2002). Quality, productivity, and learning in framework-

based development: an exploratory case study. IEEE Transactions on Software Engineering,

28(9), 876–888. doi:10.1109/TSE.2002.1033227

Morris, D., Donnelly, T., & Donnelly, T. (2004). Supplier parks in the automotive industry. Supply

Chain Management: An International Journal, 9(2), 129–133.

doi:10.1108/13598540410527024

Philip A. Bernstein. (1993). Middleware An Architecture for Distributed System Services. Digital

Equipment Corporation 1993.

Rollings, A., & Morris, D. (2004). Game architecture and design: a new edition. Indianapolis, Ind.: New

Riders.

Sahay, A., & Riley, D. (2003). The Role of Resource Access, Market Considerations, and the Nature of

Innovation in Pursuit of Standards in the New Product Development Process. Journal of

Product Innovation Management, 20(5), 338–355. doi:10.1111/1540-5885.00033

Sametinger, J. (1997). Software engineering with reusable components. Springer.

Sanchez, R., & Mahoney, J. T. (1996). Modularity, flexibility, and knowledge management in product

and organizational design. Strategic Management Journal, 17, 63–76.

Schach, S. R. (2011). Object-oriented and classical software engineering. New York: McGraw-Hill.

Schilling, M. A. (2000). Toward a general modular systems theory and its application to interfirm

product modularity. Academy of Management Review, 25(2), 312–334.

4

Schmidt, H. G., Crnkovic, I., & Heineman, G. T. (2007). Component-Based Software Engineering: 10th

International Symposium, CBSE 2007, Medford, MA, USA, July 9-11, 2007, Proceedings.

Springer.

Selby, R. W. (2005). Enabling reuse-based software development of large-scale systems. IEEE

Transactions on Software Engineering, 31(6), 495–510. doi:10.1109/TSE.2005.69

Sommerville, I. (2011). Software engineering (9th ed.). Boston: Pearson.

Song, X. M., & Parry, M. E. (1997). A cross-national comparative study of new product development

processes: Japan and the United States. The Journal of Marketing, 1(18).

Stevens, P., Myers, J., & Constantine, L. (1974). Structured design. IBM Systems Journal, Volume

13(Issue 2), 115–139.

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component Software: Beyond Object-Oriented

Programming (2nd ed.). Addison-Wesley.

Taivalsaari, A. (1993). A critical view of inheritance and reusability in object-oriented programming.

Jyväskylä [Finland]: University of Jyväskylä.

The evolution of PC graphics will blow your mind | TechRadar. (2015, March 27). Retrieved August 5,

2015, from http://www.techradar.com/news/gaming/the-evolution-of-pc-graphics-will-

blow-your-mind-1289593

Thomas, W. M., Delis, A., & Basili, V. R. (1997). An analysis of errors in a reuse-oriented development

environment. Journal of Systems and Software, 38(3), 211–224. doi:10.1016/S0164-

1212(96)00152-5

Tiwana, A. (2008). Does technological modularity substitute for control? A study of alliance

performance in software outsourcing. Strategic Management Journal, 29(7), 769–780.

doi:10.1002/smj.673

Tracz, W. (1994). Software reuse myths revisited (pp. 271–272). IEEE Comput. Soc. Press.

doi:10.1109/ICSE.1994.296788

5

Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research Policy, 24(3),

419–440.

Unity3d Asset Store. (2015). Retrieved July 23, 2015, from https://www.assetstore.unity3d.com/en/

van Beek, J. B., & Valient, M. (2011). Guerrilla Games - Publications - The Creation of Killzone 3.

Retrieved July 21, 2015, from http://www.guerrilla-games.com/publications.html

Visceral Games Speaks Out on Battlefield Hardline Re-Using Battlefield 4 Assets. (2014, June 17).

Retrieved July 21, 2015, from http://www.playstationlifestyle.net/2014/06/17/visceral-

games-speaks-out-on-battlefield-hardline-re-using-battlefield-4-assets/

Will the Wii be a set-top box? - CNET. (2007, November 24). Retrieved November 20, 2014, from

http://www.cnet.com/news/will-the-wii-be-a-set-top-box/

Worren, N., Moore, K., & Cardona, P. (2002). Modularity, strategic flexibility, and firm performance: a

study of the home appliance industry: Modularity, Strategic Flexibility and Firm Performance.

Strategic Management Journal, 23(12), 1123–1140. doi:10.1002/smj.276

