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Management summary 

 Motivation 

A semiconductor supply chain is complex and faces numerous challenges, such as volatile 

and uncertain demand, globalisation, a rapid changing environment, and long lead times. 

This results in demand- and supply-side uncertainties. Infineon hedges against these 

uncertainties by adding inventory and capacity buffers (also called contingencies). The 

Scenario and Flexibility Planning team built a supply chain simulation model, representing 

the internal supply chain, to study and balance these contingencies. However, the existing 

simulation model is not flexible enough to adjust to changes in the environment and is not yet 

accurate enough to ensure reliable results. 

 Research objective 

The objective of this research is to develop a simulation-based framework to balance 

inventory and equipment contingencies for Infineon. For this purpose, we should provide the 

existing supply chain simulation model with flexibility and increase its accuracy (maximal 

deviation of 5% from the real data). With that model we want to know how to achieve a 

specific inventory service level at lowest total costs (inventory and capacity), and how this 

service level and the costs depend on stock levels and utilisation. 

 Supply chain simulation model 

We extend the existing supply chain simulation model to improve its flexibility and accuracy. 

We achieve flexibility by enabling to load other bottleneck equipment into the simulation 

model automatically on model start-up. To increase its accuracy we improve the non-

bottleneck delay determination and lot size calculation, and introduce factors that make up 

for data discrepancies. These improvements lead to the desired overall accuracy for each 

Key Performance Indicator (KPI), except for Layer Out per Week. We explain this by the fact 

that wafer losses are currently not included in the simulation model. Our major achieved 

accuracy improvement is for the cycle time, which improved from -21.9% to 1.1%. 

 Optimising the trade-off between inventory and equipment contingencies 

We represent the inventory contingencies by the die bank and distribution centre (DC) stock 

levels and the equipment contingency by the utilisation and vary these in our experiments. 

We assume that the simulated optimal utilisation (in combination with the inventory 

contingency) corresponds with the fraction of the uptime that Infineon should use for the 

planning, also called the Plan Load Limit. For each simulated factor level combination we 
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collect the following KPIs: different service level types (adjusted non-stock out probability, fill 

rate, and adjusted fill rate) and the total costs. We use a simplified demand scenario as input 

for the experiments to be able to understand and quantify the relationships. 

 Balancing inventory and equipment contingencies 

Based on the outcomes of the experiments we identify the following relationships: 

- Lower costs do not always mean a lower service level. 

- Producing at a low utilisation has a big negative impact on the costs although this 

positively influences the service level. For example producing at 80% instead of at 75% 

utilisation you can reduce total costs with about 5.5% (depending on the stock levels). 

- Regardless of the service level type, a high inventory level is more important from a 

service level perspective, especially the inventory at stocking points close to the 

customer, because reaction time is the fastest there. DC stock is, however 2.6 times, 

more expensive than die bank stock in our case. 

- For each service level type different factor level combinations lead to the lowest costs. To 

achieve certain adjusted non-stock out probability, both a high die bank stock level and a 

high DC stock level are important. To achieve a specific fill rate at lowest costs, having a 

high die bank stock level and utilisation is more important than having a high DC stock 

level. We explain this by the fact that the fill rate does not consider backorders of 

previous weeks. To achieve a certain adjusted fill rate at lowest cost, it is more important 

to have a high DC stock level instead of a high die bank stock level.  

 Recommendations 

We recommend utilising the available equipment as high as possible and buffer at the DCs 

and die banks to make up for being less flexible and slower due to an increased flow factor 

(represents the variability in the process). What “as high as possible” means needs to be 

studied with a more detailed model. For further research, we propose Infineon to compare 

the current simplified model to a more detailed model. We laid the foundation by making the 

modelled bottlenecks flexible. Furthermore, we suggest to increase the reusability of the 

simulation model and to document the way data in the databases are obtained (when, where, 

and what) and to set-up databases that contain data specifically for simulation purposes. 

Moreover, we propose to include a more detailed backend and to extend the frontend object 

in the simulation model. For further experiments, we suggest to use a more realistic demand 

scenario with a broader product mix and to use a lower increment when increasing the factor 

levels. Moreover, we propose to replace the simplified planning function in the simulation 

model by a more advanced object. 
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1 Introduction 

In the semiconductor industry, supply chain management faces a lot of challenges, such as 

volatile demand, globalisation, and long lead times. Therefore, companies operating in this 

industry are looking for ways to deal with these challenges. Infineon Technologies AG 

(Infineon), with headquarters located in Neubiberg, near Munich, is such a company. To help 

their Supply Chain Operations Scenario and Flexibility Planning team by improving their 

simulation model of the whole internal supply chain and providing use-cases of the 

simulation model, we conduct this research. The research is part of the Master study 

“Industrial Engineering and Management”, with a focus on production and logistics 

management.  

In this chapter, we outline this project. Section 1.1 gives a brief description of the 

organisation we conduct this research for. Section 1.2 and Section 1.3 describe the 

motivation for this quantitative research and the research problem, respectively. Section 1.4 

states the objective of the project and Section 1.5 scopes the project. The last section of this 

chapter, Section 1.6, provides the research approach.  

1.1 Organisation 

In Section 1.1.1 we briefly introduce the company that the research is conducted for, Infineon 

and in Section 1.1.2 we describe its supply chain.  

1.1.1 Infineon Technologies 

Infineon is a leading semiconductor manufacturer with a focus on three application areas: 

energy efficiency, mobility, and security. For these applications, Infineon produces tens of 

thousands of different products. These products are divided into two technology classes: 

power semiconductors and complementary metal–oxide–semiconductors (CMOS). The 

power technology class focuses on high current and low resistance semiconductors, and the 

CMOS class on high switching frequency and high density semiconductors. Power 

technology is the core business of the company. (Infineon Technologies AG, 2014) 

The corporate supply chain department of Infineon is responsible for connecting the global 

value chain. At Infineon, supply chain management is regarded as a competitive advantage. 
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1.1.2 Infineon’s supply chain 

The Infineon supply chain consists of different stages. Figure 1-1 visualises a simplified 

supply chain as typical for a semiconductor manufacturer. The customers (and customers’ 

customers) and suppliers (and suppliers’ suppliers) are not included in this figure, because 

they are not in the focus of this research.  

To provide insight in the way Infineon has designed its supply chain, we give a simplified 

description of the flow through the manufacturing levels (encompassing fab, sort, assembly, 

and test) and stocking points, as shown in Figure 1-1, focusing on the components relevant 

for this research: 

1. The wafers are treated in a wafer fabrication facility (fab). This treatment consists 

generally of layering, etching, doping, polishing, cleaning, and lithography, but 

occasionally, for a few products, some of the treatments are left out. The sequence 

and the frequency of these steps are product type dependent. As these production 

steps regularly need to be repeated, the equipment for these steps is often visited 

multiple times by the same wafer. This results in up to 500 steps for the treatment of 

one wafer.  

2. The wafers go to the so-called ‘sort’ manufacturing level after their treatment in the 

wafer fab. Here the produced dies on the wafers are tested and the bad dies on the 

wafers are marked. One wafer consists of dies of one type. 

3. The dies are stored in an intermediate inventory: the die bank. There are thousands 

of different die types. 

4. At ‘assembly’, the wafers are sawn and the chips are assembled. This step consists 

of wire bonding, die bonding, moulding, and/or trim and form. This is, again, product 

type dependent.  

5. In the ‘test’ manufacturing level, the chips are tested and bad chips thrown away. 

6. The finished products are stored in a distribution centre (DC).  

BE FE 

Fab Sort Assembly Test 

DC 
Die 

bank 

Plan 

Figure 1-1 Simplified supply chain visualisation of Infineon Technologies 
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The first two manufacturing levels form the front end (FE) of the production process. Most of 

the value of the end-product is added in these stages. The FE cycle time (CT), defined as the 

length of time spent by a product unit in the FE system, from the release of the wafer into the 

fab until finishing the last step in sort, ranges typically from 40 to 100 days. In the FE, a 

Make-to-Stock strategy is typically followed, because the demand is often not yet known 

when production needs to be started to be able to deliver on time to the customers with short 

lead times. The lead time is the delivery time communicated to the customer. (Ehm, 2015) 

Manufacturing levels assembly and test form the back end (BE) of the production process. 

The BE CT is shorter than the FE CT and typically spans from 5 to 20 days. The BE CT is 

defined as the length of time spent by a product in the BE system; from the release of the 

semi-finished product in assembly until the product completes the testing step. In the BE an 

Assemble-to-Order strategy is typically followed. (Ehm, 2015) 

Infineon typically works with process groups in the FE and with packages in the BE. Process 

groups summarise products with similar process flows. A package consists of chips that are 

assembled the same way. 

 

At Infineon, the different steps in the supply chain are performed in different cities and 

countries (Figure 1-2). In this figure (and this thesis) the integration of International Rectifier, 

a company taken over by Infineon in 2015, is not included. The FE facilities are located in 

Villach (Austria), Kulim (Malaysia), Dresden (Germany), and Regensburg (Germany). The 

die banks are located both at FE and BE facilities. The BE facilities are located in Malacca 

(Malaysia), Regensburg (Germany), Warstein (Germany), Batam (Indonesia), Wuxi (China), 

Figure 1-2 Locations of FE and BE facilities of Infineon Technologies 



4 | P a g e  

 

Beijing (China), Cegléd (Hungary), Singapore (Indonesia), and Morgan Hill (USA). The DCs 

are located in Asia, Europe, the United States of America, and China.  

In the supply chain there are different ways to buffer. We define buffers as an excess 

resource that corrects for misaligned demand (e.g. due to forecast errors) and transformation 

(e.g. unforeseen losses), and takes on one of the three forms: inventory, time, and capacity 

(Hopp & Spearman, 2008). To be in-line with the company terminology, we refer to buffers as 

contingencies. In this thesis, we focus on inventory and capacity contingencies: the intented 

and planned spare capacity or inventory, which can be used to rapidly hedge against 

uncertainties. To improve the alignments of these contingencies, Infineon started to build a 

simulation model in 2014. We refer to this model as the “existing model”. To the version that 

we develop for this thesis we refer as the “updated model”. 

The objective of this research is to find a financial benificial balance between inventory and 

equipment contingencies under service level requirements by the use of discrete event 

simulation. Before being able to determine the balance between the considered 

contingencies, the existing simulation model has to be improved with regard to accuracy and 

flexibility. These contingencies have to ensure that a certain service level type at the DC is at 

a sufficiently high level. We explain which service level types we take into account in Section 

1.2. 

1.2 Research motivation 

Supply Chain Management in the semiconductor industry is a challenge, because of the 

rapidly changing environment. Since the transistor was invented in 1948, the number of 

transistors on a chip is approximately doubling every two years at decreasing costs per 

megabyte; this is also known as Moore’s law. The number of applications has increased over 

the years, which has also increased the demand and competition in the industry (Gupta, 

Ruiz, Fowler, & Mason, 2006). In the past few years it became easier, but also necessary, for 

companies to expand or move processes to other continents. This is not only considered for 

financial benefits, such as cheaper labour, but also to be closer to large customers. This 

globalisation does not only make Supply Chain Management more important, but also more 

challenging (Ehm, Ponsignon, & Kaufmann, 2011; Fowler & Rose, 2004; Jain, Lim, Gan, & 

Low, 1999). Furthermore, the industry faces volatile demand and the products have short life 

cycles and steep product ramps (Ehm et al., 2011; Brown, Lee, & Petrakian, 2000). In 

addition, demand is uncertain. This is because production needs to be started in anticipation 

of future demand to achieve competitive lead times for the customers.  
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Next to demand uncertainty, supply-side (production) uncertainty exists. Supply-side 

uncertainty is caused by all factors that contribute to uncertain future output quantities. For 

example, unstable CTs, together with yield losses of the (semi-)finished products, cause 

supply-side uncertainty.  

In the semiconductor industry the wafer fabs are the most complex and expensive facilities. 

This complexity is caused by the numerous and time-consuming process steps that are 

product specific and performed on expensive equipment (Fowler & Rose, 2004; Gupta et al., 

2007; Uszoy, Lee, & Martin-Vega, 1992). Most of this equipment is provided with very 

advanced technology and operators have to deal with unpredictable equipment failures or 

preventative maintenance (Gupta et al., 2006; Uszoy et al., 1992). This further increases the 

CT variability. Consequently, CTs are unstable, which leads to longer lead time commitments 

to the customers (Gupta et al., 2006).  

In this section we explained causes of both demand- and supply-side uncertainties that exist 

in the semiconductor industry. These uncertainties make it difficult to achieve a high service 

level which is essential in the highly competitive semiconductor industry. Therefore, 

semiconductor manufacturers need to find a way to cope with these uncertainties. One way 

to do so is to add inventory buffers of finished products, using product postponement and/or 

process postponement. Another way is to add spare capacity to equipment. Both are, 

however, associated with high costs. 

For the service level we consider three types for this research, because they all provide 

different information about the performance of the supply chain and the relating customer 

service. These service level types are: α, β, and γ service level (SLα, SLβ, and SLγ 

respectively). We define the SLα as the probability that demand can be met completely during 

a week, without considering backorders of previous weeks; this can be either 0 (not all 

demand can be met) or 1 (all demand can be met). This is an adjusted version of the non-

stock out probability known in the literature in which backorders of previous weeks are 

considered. The SLβ provides the proportion of order quantities fulfilled by stock including 

backorders of the current period and is also known in literature as the fill rate (Axsäter, 2006; 

Minner, 2012). The γ service level indicates how fast a production system can recover from 

all backorders and is also known as the adjusted fill rate or ready rate (Axsäter, 2006; 

Minner, 2012).  
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1.3 Problem description 

As explained above, semiconductor supply chains face various types of uncertainties. 

Therefore, semiconductor manufacturers add contingencies to hedge against these 

uncertainties. Typical kinds of contingencies are semi-finished and finished goods 

inventories, excess capacity, and inflated demand assumptions. However, the rapid price 

declines lead to lower margins. On the other side, lithography equipment costs several 

million euros and makes capacity unattractive. Moreover, interdependency between 

equipment uptime utilisation for manufacturing and inventory levels exists. We define the 

uptime utilisation for manufacturing as the ratio of time equipment is actually producing to the 

time the equipment is available for production (see Section 2.1.2). For convenience we will 

refer to the uptime utilisation for manufacturing as utilisation from now on. To explain the 

interdependency between equipment utilisation and inventory levels we give an example: 

running a wafer fab at a high utilisation to keep the return on investment high increases the 

manufacturing CT, which might require increased inventory levels to stay reactive towards 

demand variations on short notice, and to hedge against lost production time, because of 

equipment failures and more frequent maintenance measures that are needed at higher 

utilisation (Slack, Chambers, & Johnston, 2007). Therefore, Infineon aims at finding a 

balance between inventory and equipment contingencies, so that they are able to deliver on 

time to their customers at minimal costs. We expect that by aligning these contingencies 

competitive advantages can be gained. 

For this purpose, Infineon started to set up a simulation model that is suitable to study the 

phenomena described above. Since the system that is being modelled is complex, non-

linear, and dynamic, and has to cope with several uncertainties and a large number of 

parameters, the development of a simulation model is preferred to analytical modelling 

(Borshchev, 2013). Nevertheless, supply chain simulation is, besides the challenges of the 

semiconductor industry, a challenging, effortful task itself. This effort consists of high time to 

build, run, and maintain such a model. To cope with this problem, several approaches exist. 

An example, as Infineon is doing already, is building a model with a reusable library (Yuan & 

Ponsignon, 2014). Another example is increasing the flexibility of the model, which makes it 

easier to build future or extend existing simulation models. In this way, the model can be 

(partly) reused, and the time effort to build and maintain a model to answer questions in the 

future is reduced. Another approach is reducing the level of detail and to keep the model as 

simple as possible (Brooks & Tobias, 2000). The challenge here is to not sacrifice the 

required accuracy for the targeted question.  
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The Scenario & Flexibility Planning team at Infineon is currently building such a model on the 

internal supply chain level, but improvements can be made regarding the flexibility and 

accuracy of the model. For example, the model has to be flexible enough so that changes in 

the manufacturing environment, such as additional facilities or a different number of 

bottleneck work centres, and other scenarios, such as additional contingencies, can be 

incorporated easily in future studies. Therefore, this research identifies and implements 

possible improvements for the flexibility in the wafer fab part of the model. The accuracy and 

of the model is determined by comparing the simulation data with real data (see Section 

2.2.4 for more details). 

1.4 Research objective 

Based on the problem description we formulate the objective of this research. The objective 

of this research is to develop a simulation-based framework to balance inventory and 

equipment contingencies for Infineon, and by improving the existing supply chain simulation 

model with regard to flexibility and accuracy. In essence, we want to know how to achieve a 

specific service level at lowest costs. The improved simulation model should give a valid 

representation of the real world; we aim for increasing the overall accuracy of the simulated 

data to a maximal deviation of 5% from the real data. 

1.5 Scope 

The wafer fab is the most critical facility from a CT, cost, and value perspective. Therefore 

this research focuses on improving this part of the existing supply chain simulation model. 

Since there is already a preliminary simulation model of the wafer fab, a lot of existing data is 

available for this research. However, we need to check if this data fits our own simulation 

purposes. The experiments regarding balancing the equipment of the wafer fab and 

inventory contingencies are conducted with the whole internal supply chain simulation model, 

including all manufacturing levels in the supply chain. For this purpose each manufacturing 

level is modelled as an object. The wafer fab object in detail and the other objects less 

detailed. Moreover, we need to define a demand scenario that represents the customer order 

input. Figure 1-3 graphically shows this delineation of the project. 

Furthermore, this thesis focuses on equipment contingencies of the bottlenecks in the wafer 

fabs (i.e. not in sort, assembly, and test) and inventory contingencies of the die bank and DC 

level, to cope with the previously mentioned uncertainties. Business contingencies, for 

instance, are not taken into account. Nevertheless, we need to keep in mind that these other 

contingencies have to be integrated in the simulation model for future studies.  
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Considering the limited time available for this project, the system of which we want to build a 

simulation model needs to be simplified. Only wafers with a diameter of 200 mm (8”) are 

taken into account, because these are processed most. Consequently, the 100 mm (4”), 150 

mm (6”), and 300 mm (12”) wafers are left out. These wafers are in most cases processed on 

dedicated equipment and therefore do hardly overlap with the 8” equipment. Moreover, only 

in-house facilities are considered, i.e. external foundry partners and subcontractors are left 

out. Furthermore, this research only focuses on the products with the power technology class 

of Infineon, because this is the company’s core business. This also means that the 200mm 

fab in Dresden is left out, because they mainly process wafers with the CMOS technology 

class. 

The products produced on 8” wafers by Infineon’s own facilities belonging to the power 

technology class represent about 50% of Infineon’s production volume.    

1.6 Research approach 

In literature, different authors have formulated the steps that need to be taken in a simulation 

study (e.g., Banks, 1998; Fowler & Rose, 2004; Law, 2007; Shannon, 1988). The steps are 

sometimes named differently and are sometimes less or more aggregated compared to each 

other, but generally they come down to a similar sequence of actions. As there hardly exists 

a difference between the steps in the different literature, we decide to take the steps from the 

well-known book of Law (2007).  

Law (2007) defined ten steps in a simulation study (Figure 1-4). We add the possibility of 

new information that becomes available at the validation step, so that the previous steps are 

revised in case of new relevant information. We defined the research questions using this 

step-by-step approach of Law (2007). This chapter covers the first step. 

Fab Sort Assembly Test 

DC Die 

bank 

Plan: demand scenario 

Figure 1-3 Simulation model scope  

Improve, 

parameterise & 

evaluate accuracy 

Parameterise 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Formulate problem and 

plan the study 

Assumptions 

document valid and 

no new information 

available? 

Collect data and define a 

model 

Construct a computer 

program and verify 

 

Make pilot runs 

Programmed model 

valid and no new 

information 

available? 

Design experiments 

Make production runs 
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Figure 1-4 Ten steps in a simulation study, adapted from Law  (2007, p.67) 
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To solve the problem described in Section 1.3 and to reach the goals as described in Section 

1.4 the main research question that we need to answer is: 

How can the equipment and inventory contingencies be balanced  

in a most cost efficient way for a defined service level using a flexible and accurate supply 

chain simulation model of Infineon Technologies? 

To answer this main question, the following questions are set up. By answering these sub-

questions, we are able to give a solid answer to the main question.  

1. What is the current status of the supply chain simulation model and how are the 

inventory and equipment contingencies planned currently?  

We answer this first sub-question by examining and describing the current situation of both 

the simulation model and the current way of planning inventory and equipment contingencies 

in Chapter 2. This includes the identification of the most important performance measures. 

We discuss these topics during meetings with experts of the company to gain professional 

insights as well. This step is necessary to be able to compare the findings in literature with 

the current situation, so that we can identify possible improvement areas (see step 2 in 

Figure 1-4). Furthermore, we will be able to compare the results of the experiments with the 

current situation.  

2. What literature is available related to the topic of balancing equipment and inventory 

contingencies?  

To answer sub-question 2, we conduct a literature study on the topic of equipment and 

inventory contingencies as specified by step 2 (Chapter 3). In this way, we can design sound 

experiments. 

3. Based on the existing literature, what should be taken into account when developing 

a supply chain simulation model and in what ways can the wafer fabrication facility 

part be modelled accurately and flexibly?  

To answer sub-question 3, we conduct a literature study on supply chain simulation and on 

the modelling of wafer fabrication facilities. This also belongs to step 2 and we discuss this in 

Chapter 3 as well. 

Step 3 is about validating the collected data and the conceptual model. Validation means that 

we have to check if the conceptual model is an accurate representation of the real world. We 

do this during steps 1 and 2 and experts will do a final check in step 3.  
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Based on the outcomes of the first three sub-questions we improve the simulation model in 

step 4. We describe the conceptual model and its implementation in the existing supply chain 

simulation model in Chapter 4.  

4. How can the supply chain simulation model be verified and validated? 

After we have implemented the improvements, we verify and validate the simulation model to 

make sure that the model is accurate. This means solving all the bugs in the simulation 

model, so the simulation model can run smoothly, without errors, and checking that the 

simulation model matches the conceptual model. This corresponds to steps 4, 5, and 6 and 

we describe this in Chapters 3 and 4. 

5. How should the supply chain simulation model be parameterised to be able to 

determine the desired balance for inventory and equipment contingencies?   

Once the simulation model is valid, we design experiments to find a balance between 

inventory and equipment contingencies by varying parameters that represent these 

contingencies. This belongs to step 7 and we describe this parameterisation in Chapter 5. 

Furthermore, we need to define a demand scenario to be used as input of the simulation 

model. The answer on the sub-question 5 gives the input to the experimental design.  

6. How sensitive is the supply chain simulation model to changes in the values of the 

parameters? 

A sensitivity analysis is included in the experimental design in Chapter 5 by varying the 

parameters defined in the experimental design. After the execution of the experiments, step 

8, we answer this sub-question 6.  

7. How can the equipment and inventory contingency plans be balanced taking costs 

and the service level types into account? 

We answer the last sub-question based on the data analysis of the experiments in Chapter 6 

as specified by step 9 and this sub-question completes the answer to the main research 

question. We draw a conclusion in Chapter 6, in which we also present the implications. This 

corresponds with the last step in a simulation study, step 10. 
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2 Analysis of current situation 

Section 2.1 describes the relevant aspects of the inventory and capacity management of 

Infineon. The existing supply chain simulation model, with a focus on the wafer fab part, is 

described and analysed in Section 2.2. Finally, Section 2.3 draws conclusions based on the 

analysis in the previous sections. 

2.1 Inventory and equipment contingencies 

By the use of contingencies, Infineon hedges against demand and supply (production) 

uncertainty.  

Section 2.1.1 describes the inventory management practices, including inventory 

contingencies. The capacity management practices of Infineon, including equipment 

contingencies, are outlined in Section 2.1.2.  

2.1.1 Inventory Management 

The inventory contingency is meant for buffering fluctuations in the production network and 

order behaviour, as well as acting as a source for fast delivery by using (semi-)finished 

goods. The buffering is mainly done at the die bank and the DCs.  

At Infineon the supply chain planner is responsible for setting stock targets for different stock 

types, such as safety stock or ramp-up stock. This target setting is done based on a set of 

rules with the help of a software tool. The supply chain planner is able to manually set the 

rules in the tool, which is mostly based on his experience.  

The stock target (ST) is the quantity of stock that is needed to cover “reach” days of 

expected demand for each of the stock types. Hence, the reach is the number of days the 

supply chain planner wants the inventory to last, to be able to fulfil the average daily demand 

if production would stop immediately. The stock target is calculated by multiplying the 

average demand in units per day (Davg) with the reach (RE) (Equation 1).  

 𝑆𝑇 =  𝐷𝑎𝑣𝑔 ∗ 𝑅𝐸 (1)  

The supply chain planner has to set six other parameters, next to the reach: the stock target 

per product, the manufacturing level, so where he wants to place the stock (for example, at a 

DC or die bank), the stock type, and the demand type, such orders and/or forecasts. 

Furthermore, besides the demand type he has to choose between using the constrained or 

unconstrained demand and which periods he wants to consider for the average demand. We 
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explain these other six parameters in more detail in Appendix A, because they are not 

relevant for this thesis; only the reach is important for the inventory contingency. 

The reach is product and situation dependent and its value is mainly based on the 

experience of the planner. It is defined as a multiple of seven in most cases. A reach of 28 

days at both the die bank and the DC is most commonly used by the supply chain planner for 

the inventory planning at Infineon. 

2.1.2 Capacity Management 

Equipment contingency is meant for buffering against WIP waves, equipment breakdowns, 

and demand uncertainties. This buffer consists of planned spare production capacity time, 

also called the standby time, which can be used in reality if needed. The standby time is 

defined as the time or the share of the overall equipment time the equipment is in a condition 

to perform its intended function, but there is no operator, product or support tool available 

(Oechsner, et al., 2003). 

The standby time is closely interlinked with two concepts that are of significance for this 

thesis: Overall Equipment Effectiveness and Operating Curve Management. Overall 

Equipment Effectiveness helps to understand the terms and Operating Curve Management 

to understand the consequences. This section explains these concepts and describes how 

the capacity buffer is subsequently planned.  

 Overall Equipment Effectiveness 

The standby time is one of the machine states used by the Overall Equipment Effectiveness 

measurement concept and is often expressed as a percentage of the overall equipment time. 

The Overall Equipment Effectiveness is measured at Infineon by taking the product of the 

proportions of the availability of a machine (also called availability efficiency), the utilisation 

(also called uptime or operational efficiency), the process performance (also called rate 

efficiency), and the yield (also called quality efficiency) (Oechsner, et al., 2003; Infineon 

Technologies, 1998; Slack, Chambers, & Johnston, 2007).  

To determine the Overall Equipment Effectiveness, Infineon measures ten machine states 

(Infineon Technologies, 1998). To gain a clear understanding of this concept, we aggregated 

and reduced the machine states to the following four components (for detailed information 

see Appendix B): downtime, non-sales production time, sales production time, and standby 

time.  
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The non-sales (R&D) production time plus the sales production time is the time equipment is 

producing units and is also called the productive time. When the productive time is 

expressed as a share of the uptime (productive time plus the standby time), it represents the 

utilisation (Equation 17, Appendix C).  

These components are usually presented in a graph as for example shown in Figure 2-1. 

The graph shows how the overall equipment time is distributed over the components. The 

overall equipment time is a selected time period, for instance 168 hours, in which the 

equipment is present. In this time, the equipment can be used or not used. The downtime of 

the equipment corresponds to 12% of the overall equipment time, so the equipment was 

down for about 20 hours. The equipment was used for almost 98 hours for sales production, 

about 25 hours for non-sales production and was standby for about 25 hours as well.   

 Operating Curve Management 

Operating Curve Management is a methodology based on queuing theory (Aurand & Miller, 

1997). This sub-section describes the Operating Curve concept globally. A more detailed 

description, including the link to queueing theory, can be found in Appendix C.  

The planned standby time and the planned productive time of the equipment are an input for 

capacity planning. The amount of planned standby time influences the Flow Factor (FF), 

which represents how much the realised CT is bigger than the Raw Processing Time. The 

Raw Processing Time is the planned average cycle time needed for the process to meet the 

final performance criteria for the product in case of optimal conditions based on the average 
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lot size. It excludes the waiting time and process inefficiencies (Hopp & Spearman, 2008; 

Infineon Technologies, 2010). When no standby time is planned, the planned utilisation of 

the equipment is 100%, which leads according to Operating Curve theory to an infinitely high 

FF, thus to infinitely long CTs (see Appendix C).  

The operating curve visualises the relation between the FF and the utilisation (see Figure A-1 

in Appendix C). It shows the trade-off between high speed (low FF) and high throughput 

(high utilisation) when resources are limited. Operating Curve Theory also takes the 

variability (α) into account. α describes the quality of the non-uniformity of attributes in 

manufacturing systems, such as products and processes. Several characteristics, such as 

process times, machine failures, and quality measures, are prone to this non-uniformity 

(Hopp & Spearman, 2008). A low α indicates a good line performance. α is calculated by 

using the FF and the utilisation (UUm):  

 

𝛼 =  
(𝐹𝐹 − 1) ∗ (1 − 𝑈𝑈𝑚)

𝑈𝑈𝑚
 (2)  

As stated above, the FF will be higher in case of high utilisation of equipment (see Operating 

Curve theory in Appendix C). This typically also negatively affects α. The operating curve is 

used by Infineon as an indicator of the production process performance. 

 Capacity planning 

As described before, running a wafer fab at 100% utilisation is not desired. Therefore a Plan 

Load Limit is needed. This limit determines the maximal planned utilisation and therefore the 

maximal productive time.  

The capacity planner at Infineon is responsible for the capacity planning in the FE. This 

planner sets the planned uptime, which is the time the equipment is available for production. 

This consists of the standby time and the productive time. The remaining time is the planned 

downtime. Furthermore, the planner determines the Plan Load Limit of the planned uptime. 

The Plan Load Limit is the planned productive time of the equipment and is an empirically 

developed value based on historical data, tool stability, number of equipment and most of all, 

experience. This Plan Load Limit is set for an undetermined period, and only changes when 

there are changes in the system, for instance if the number of equipment alters. The Plan 

Load Limit typically varies between 94% and 75% of the uptime. Consequently, the planned 

utilisation (UUmplanned) is at most equal to the Plan Load Limit (PLL), which equals the 

maximum of the planned productive time (PRplanned) as a share of the planned uptime 

(UTplanned): 
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max. 𝑈𝑈𝑚𝑝𝑙𝑎𝑛𝑛𝑒𝑑 (%) = 𝑃𝐿𝐿 (%) =  
max. 𝑃𝑅𝑝𝑙𝑎𝑛𝑛𝑒𝑑

𝑈𝑇𝑝𝑙𝑎𝑛𝑛𝑒𝑑
 (3)  

The Plan Load Limit may be exceeded in the actual production, but on average this limit 

should be maintained to secure the production flow. For a better understanding of the 

important terms above, they are graphically represented in Figure 2-2.  

To give an example, for a single tool, if the overall equipment time is 168 hours of which the 

share of the uptime is 75%, the uptime is 126 hours. If the Plan Load Limit is then set at 94% 

of the uptime, this means that 118.44 hours capacity is available for the planning system 

(see Figure 2-2). The Plan Load Limit limits the planned production volume. When the Plan 

Load Limit is set high, the planned utilisation can be high. Subsequently, the planned CT 

becomes long, the uncertainty increases and the inventory levels should be high as well to 

fulfil demand. On the other hand, a low Plan Load Limit and therefore a low planned 

utilisation leads to a better product flow, because, of low CTs and less uncertainty. However, 

this requires more capacity to fulfil the same demand, which is expensive and therefore not 

always a preferred option. This is the trade-off we want to analyse in this research. 

By varying the Plan Load Limit in this research and balancing this limit with the stock reach, 

the best fit of the inventory and equipment contingencies can be determined. We use 

discrete-event simulation to determine this best fit. This method is chosen, among others, 

because Infineon’s supply chain is a complex system (this is reasoned more extensively in 

Section 3.2). 
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Figure 2-3 Top layer of the supply chain simulation model 

2.2 Supply chain simulation model 

Infineon started to build a supply chain simulation model to be able to study contingencies. In 

this section, we introduce the existing version of the simulation model (Section 2.2.1). 

Section 2.2.2 describes the wafer fab part of this supply chain simulation model. 

Furthermore, Section 2.2.3 describes the current inputs and outputs, followed by Section 

2.2.4, which indicates the accuracy status of the simulation model. Section 2.2.5 discusses 

possible problems and improvement areas of the simulation model. 

2.2.1 Supply chain simulation model for contingency optimisation 

The Supply Chain Innovation department of Infineon has defined four different levels for 

supply chain simulation models, presented in order of increasing scope: 

- the work centre level, which represents tools, 

- the factory level, in which a single facility is modelled,  

- the Infineon supply chain level, in which the internal supply chain is modelled,  

- the end-to-end supply chain level, which is the internal and external supply chain. 

This level includes silicon foundries, subcontractors, direct customers, end 

customers, and suppliers.  

The last two levels are suited best for scenario analysis, to gain insight into the impact on the 

supply chain.  

The supply chain simulation model for contingency optimisation covers the third level and is 

implemented in AnyLogic professional edition version 7.0.3 (AnyLogic, 2015). It is a discrete-

event simulation model. Law (2007, p.6) defines discrete-event simulation as “the modelling 

of a system as it evolves over time by a representation in which the state variables change 

instantaneously at separate points in time”. These points in time are dependent on specified 

events in the simulation model. Moreover, an object-oriented approach is used for the 

simulation, in which objects interact with each other over time (Law, 2007).  The model is 

schematically shown in Figure 2-3. It covers three main areas: data, plan, and make. 
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The plan function, as well as the data, and the objects of the manufacturing levels are 

represented at the top layer of the model (Figure 2-3). The plan function is called in the 

simulation model at the beginning of each simulated week. The main purpose of the plan 

function is to calculate how many lots of which product type need to be released during the 

following week, considering WIP, actual and targeted inventory levels, orders, forecasts, and 

unfulfilled requests from the previous weeks. We provide and explain the used formulas in 

Appendix D. We note that the current plan function incorporates no production smoothing, 

such as scheduling the demand earlier for production if capacity in a later period is not 

sufficient.  

The required data is provided by the data layer (see Section 2.2.3). Once a lot is released 

into the make part, the lots are processed according to the routes, specified in the data layer. 

In the make part all relevant manufacturing levels (fab, sort, assembly, and test) in the supply 

chain are modelled. As the wafer fab object is the focus for improvements, we explain this 

object in more detail in Section 2.2.2. 

2.2.2 Wafer fabrication facility simulation model  

The current wafer fab part of the simulation model is modelled at an intermediate level of 

detail and is a simplified representation of a semiconductor wafer fabrication facility. Brooks 

and Tobias (2000, p.1010) define this simplification as “a reduction in the number of 

components or connections”. This can for instance be done by removing components, such 

as non-bottleneck machines, or by aggregation, such as grouping the different products into 

product families (Brooks & Tobias, 2000).  

The simulation model consists of five layers, as shown in Figure 2-4. In the first, main, layer, 

all manufacturing levels are represented. Here all inputs and desired outputs are defined. We 

discuss these in Section 2.2.3. The fab object consists of different FE facility objects. In the 

simulation model, there are three FE facilities modelled representing Villach, Regensburg, 

and Kulim. These are the facilities where the 8” wafers used in the power technology are 

produced (see scope in Section 1.5). There is a delay object called ‘Others‘, which 

represents all other FE facilities, such as the facility in Dresden and the partner foundries. 

This delay time is specified by the planned CT, which is defined in the master data. The 

Villach, Regensburg, and Kulim objects contain instances of the production unit object. This 

is only shown for Villach in Figure 2-4. Note that the next layers, layer 3, 4, and 5, are also 

embedded in the other FE facility objects. At the production unit layer, some inputs that are 

important for the parameterisation of the equipment in the next layer are gathered. In this 
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next layer the equipment is modelled as stepper (lithography) work centres, sputter work 

centres, and non-bottleneck work centres. The non-bottleneck equipment is considered in 

the simulation model as a single delay (5b). The stepper and the sputter work centres are 

modelled in more detail (5a).  

Both bottleneck work centres have a certain number of tools assigned with a specific mean 

time to failure (MTTF) and mean time to repair (MTTR). The TTF and the TTR are both 

assumed to be exponentially distributed in the simulation model with parameter λ. For the 

TTR a mean (μ) of 1.25 hour is used (where 1/μ=λ). We calculate the λ for the TTF (λTTF) in 

hours-1 using the uptime (UT) as a fraction of the overall equipment time. This is available 

from historical data (see Section 2.2.3): 

 

 𝜆𝑇𝑇𝐹  =
1

𝑈𝑇
1 − 𝑈𝑇 ∗ 1.25 ℎ𝑜𝑢𝑟

 (4)  
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Figure 2-4 Wafer fabrication facility model in the existing simulation model 
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The lots in the queue in front of the bottleneck tools are prioritised according to first-in-first-

out (FIFO) in the simulation model. However, in reality this is done according to the Earliest 

Operation Due Date. This means that typically a lot with the earliest due date for the pending 

operation can leave the queue first (Smith, Minor, & Jen, 1995). However, in the simulation 

model the first lot arriving at the queue can leave the queue first. 

Non-bottlenecks are modelled in less detail than the bottlenecks. They are represented by a 

single delay object. The delay time is determined based on the Operating Curve Theory and 

is approximated by a theoretical FF measured at the end of the FE process (when leaving 

the wafer fab), and the Raw Processing Time. To do so, first α is calculated outside the 

simulation model by using the FF and the utilisation (UUm) by Equation 2 in Section 2.1.2. 

The utilisation and the FF used for this calculation are derived from historical data.  

Afterwards the FF is estimated in the wafer fab simulation model per location using the α, 

that was calculated outside the model, and the simulated average of the utilisation of the 

stepper equipment (UUm) (they assume this equipment to be most critical), measured at the 

time the lot arrives: 

 

𝐹𝐹 = 1 +  𝛼 ∗  
𝑈𝑈𝑚

1 − 𝑈𝑈𝑚
 (5)  

The delay of the non-bottleneck equipment (DelayNB) is calculated by multiplying the Raw 

Processing Time (RPT) with this FF (Equation 6, derived from Equation 17 in Appendix C). 

This is implemented as an estimate of the CT.  

 𝐷𝑒𝑙𝑎𝑦𝑁𝐵 = 𝑅𝑃𝑇 ∗ 𝐹𝐹 (6)  

The Raw Processing Time (RPT) is determined by multiplying the Raw Tool Time (RTT) with 

a predefined factor, called scaleRPT in the simulation model. This scaleRPT is currently 

empirically estimated by the developers of the model and makes up for the transportation 

time between equipment, which is not included in the raw tool time. The Raw Tool Time (in 

minutes) is based on 100 wafers in Infineon’s database (RTT). This is an input of the 

simulation model and needs to be adjusted to the size of the arriving lot. 

 

RPT = scaleRPT ∗ RTT𝑙𝑜𝑡 = scaleRPT ∗
RTT ∗ 𝑙𝑜𝑡 𝑠𝑖𝑧𝑒

100
 (7)  

To give an example, we illustrate the way of one lot of product X with lot size 25 through a 

sequence of bottlenecks and non-bottlenecks in Villach as shown in Figure 2-5. It visits three 

non-bottleneck steps. 
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Stepper 1 Non-Bottleneck Stepper 2

Non-Bottleneck Sputter 1 Non-Bottleneck

RTT100 = 110 min 

t=1 avgUUm = 75%

One product with
lot size 25

RTT100 = 90 min 

t=2 avgUUm = 80%

RTT100 = 130 min 

t=3 avgUUm = 79%

 

Figure 2-5 Process of product X for the delay of non-bottleneck determination example 

Outside the model, from historical data, we get, for example, for week 1 a FF of 2.5 (FFhist) 

and a utilisation of 80% (UUmhist). Then, we can calculate α from this historical data, which 

will be used in the simulation model: 

𝛼 = 
(𝐹𝐹ℎ𝑖𝑠𝑡 − 1)(1 − 𝑈𝑈𝑚ℎ𝑖𝑠𝑡)

𝑈𝑈𝑚ℎ𝑖𝑠𝑡
= 
(2.5 − 1)(1 − 0.80)

0.80
 = 0.38 

Inside the model, the lot has a workroute as shown in Figure 2-5. When the lot arrives at the 

first non-bottleneck step in the simulation model, we have to determine the delay. First, we 

calculate the FF, based on the empirically determined α and the average utilisation (UUmavg) 

observed at the steppers in the simulation model (we observe an UUmavg of 75%): 

𝐹𝐹 = 1 +  𝛼 ∗ 
𝑈𝑈𝑚𝑎𝑣𝑔

1 − 𝑈𝑈𝑚𝑎𝑣𝑔
= 1 + 0.38 ∗ 

0.75

1 − 0.75
= 2.13 

Before we can calculate the non-bottleneck delay for this step we determine the raw 

processing time, by using the given raw tool time for that step. The factor scaleRPT is 

assumed to be 1.6, which is empirically estimated by the developers of the model.  

𝑅𝑃𝑇 = 𝑠𝑐𝑎𝑙𝑒𝑅𝑃𝑇 ∗ 
𝑅𝑇𝑇100 ∗ 𝑙𝑜𝑡 𝑠𝑖𝑧𝑒

100
= 1.6 ∗  

110 ∗ 25

100
= 44 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

Now we can calculate the delay of the non-bottleneck step: 

𝐷𝑒𝑙𝑎𝑦𝑁𝐵 = 𝑅𝑃𝑇 ∗ 𝐹𝐹 = 44 ∗ 2.13 = 93.5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

The further non-bottleneck delay calculations for this example are described in Appendix E. 

2.2.3 Inputs and outputs 

The existing supply chain simulation model has several inputs and outputs, which we 

describe below. Figure 2-6 visualises the simulation model architecture. It shows that the 
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input file of the simulation model is connected to the databases of Infineon. After a simulation 

run, the output data are written into an output file.   

Infineon’s 

databases

Input file
Supply chain 

simulation model
Output file

 

Figure 2-6 Simulation model architecture 

 Input 

The input of the simulation model is divided in three groups of data: master data, historical 

data and assumed data. This input data is stored in the input file of the simulation model. 

The master data consists of product master data and route master data. The product master 

data and its terms are explained in Appendix F. The route master data contains detailed 

information about the manufacturing routes. The simulation model knows which wafer needs 

to be processed at which facility and on which equipment by combining the work route ID of 

the product master data with the route master data. How this works is clarified by an example 

in Appendix G.  

Historical data is used for parameterisation and validation of the simulation model. The input 

file provides the production volumes per week per basic type, the ID of the route, the week 

number, the lot size based on an estimated lot size per product, the number of lots, and the 

wafer fab facility. If there are incomplete data sets (missing data) in this input file or in the 

master data, such as a missing route ID for a specific basic type, they are removed from the 

input file for simulation and therefore not loaded into the simulation model. As a 

consequence, the input volume is lower in the simulation model than in reality.  

Other parameters that are an input for the simulation model, more specifically for the 

equipment, are the uptime and the number of tools. This uptime is used to determine the 

downtime of the equipment. The number of tools represents the capacity of the equipment, 
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but as this data was not stored in the past, this number is estimated based on the current 

number of equipment. 

Furthermore, α is used to calculate the FF of the non-bottleneck equipment as described 

earlier. 

Moreover, the scaleRPT factor is estimated based on the sum of the Raw Tool Times from 

the route data for a product and the Raw Processing Time per product, available from 

historical data. The lot sizes are estimated based on the expected lot size per product. 

 Outputs 

The currently used Key Performance Indicators (KPIs) are the number of wafer starts per 

week (WSPW), the number of layer starts per week (LSPW), the number of wafers leaving 

the facility per week (WOPW), the number of layers on wafers leaving the facility per week 

(LOPW), the utilisation of the bottleneck equipment, the WIP, the CT, and the FF. We explain 

these KPIs in detail in Appendix H.  

Within the FE facilities in the existing model, the KPI calculation complies with the calculation 

stated in the technical regulations of Infineon. These regulations define how the most 

important KPIs are measured within each facility. It is however unclear to the developers of 

the existing model how lots are to be handled exactly if they visit multiple facilities within one 

manufacturing level (e.g. three different FE facilities within the manufacturing level wafer 

fab), which is important from a supply chain perspective. We indicate this shortcoming of the 

existing simulation model by the fact that some KPIs (the WOPW, LOPW, CT, and even 

WSPW as well as LSPW) in the simulation model are significantly different from the 

database data which is used for comparison. 

2.2.4 Accuracy status 

To determine the accuracy of the simulation model we need to verify the KPIs calculation in 

the simulation model with the KPIs calculation in the databases. As stated in the previous 

section (Section 2.2.3) the measurement of the WSPW, WOPW, LSPW, LOPW, and the CT 

is unclear. Therefore, we need to review these calculations before we can determine the 

accuracy status of the simulation model.  

We do this by discussing the determination of the KPIs with several database experts of 

Infineon. We implement the discussed calculation for these KPIs in the simulation model and 

verify the calculations by several test runs, using the “traceln()” function of AnyLogic, and a 

structured walkthrough with a simulation expert. More information about how we 
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communicated this to the experts and how these KPIs are measured in the database is 

shown in Appendix I.  

For validation purposes we decide to leave the WIP out, as it is proportional to the CT as 

described by Little’s Law, and therefore it will not provide us additional insights (Brandon-

Jones & Slack, 2008). 

We run the existing model with a run length of 130 weeks, of which we use 52 weeks as first 

warm-up phase to reduce initialisation bias and 13 weeks as second warm-up phase to 

reduce transition bias. In the end, we have 65 weeks left for our accuracy analysis. We 

decide to replicate each run 10 times. How we determined these numbers and how we made 

these decisions is explained in more detail in Section 4.2.1 and Appendices J and K. With 

this approach we expect gain a good overview of the current status of the accuracy of the 

existing simulation model. The accuracy measure (Δtfk) is defined as the margin between the 

simulated KPIs (k) data of week t and the historical KPIs data of week t of facility f. A Δ close 

to 0 means a more accurate simulation model. 

 

∆ 𝑡𝑓𝑘 =
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑡𝑓𝑘 − ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑡𝑓𝑘)

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑡𝑓𝑘
 (8)  

This accuracy is determined for each KPI for all FE facilities, so as an overall value and for 

each KPI for the facilities in Villach, Regensburg, and Kulim separately. The average of ∆ 𝑡𝑓 

over all 65 weeks over all facilities per KPI is shown in Table 2-1. Appendix L shows the 

average of ∆ 𝑡𝑓 over all 65 weeks per facility per KPI for the existing simulation model. 

Table 2-1 Average overall accuracy per KPI 

KPI   WSPW WOPW LSPW LOPW CT Utilisation FF 

Δ 

 

-2.1% 2.5% -0.8% 4.4% -21.9% -3.0% -4.8% 

The difference for the WSPW, which should be equal to the historical data as this data is 

used as an input for the simulation model, is explained by the fact that the historical products 

of which data is missing, such as a route ID, are removed from the simulation input file (as 

described in Section 2.2.3). We analyse the ratio of missing WSPW, and can conclude that 

the ratio of missing values on average covers the calculated accuracy value for this KPI: an 

average of 2.2% is missing values versus an accuracy measure on average of -2.1%. This 

means, however, that we do not simulate these products, which will result in an 

underestimate of CT. This might be a reason for the large negative CT accuracy.  
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The accuracy of the CT of Kulim is the worst compared to the CT of the other facilities. This 

difference is clearly shown in Figure 2-7, as the two lines show a gap of about 10 days. For 

the other facilities, the graph looks similar. The simulated CT is for Regensburg and Kulim 

always lower than the actual CT. 

2.2.5 Possible problems and identified improvement areas 

The existing model lacks accuracy. Discrepancies exist between the historical KPIs values 

and the simulated output of these KPIs. Therefore, a relationship chart is set-up to determine 

the relationships in the simulation model and subsequently to determine possible causes 

(Figure 2-8). 

In Section 2.2.4 we find that the accuracy for the CT in the existing simulation model is the 

worst of the considered KPIs. All relations to the CT we identified in relationship chart, Figure 

2-8, can be indicated as the possible cause.  

Therefore, we decide to start at the left in the relationship chart (Figure 2-8): the WSPW and 

LSPW. As stated in Section 2.2.4 there are WSPW of certain products not considered in the 

simulation model due to missing data. Therefore, we conclude that we need to locate the 

missing data and complete them. 
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Figure 2-7 Comparison of the simulated CT and historical CT of Kulim 
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The next point we come across if we move to the right in the model, are the bottleneck 

equipment. Currently, the bottleneck equipment is considered to be all the steppers and 

sputter equipment at each FE facility. It is assumed that all stepper tools at a facility can be 

treated equally and that the sputter tools of each facility can be treated equally. However, an 

analysis of the bottleneck equipment shows otherwise (Figure 2-9). In Figure 2-9 we see the 

utilisation weighted with the number of tools for two aggregation levels (v01: aggregation 

level in existing simulation model; v02: aggregation level based on dedications of machines 

to production processes) for the three facilities, which names are anonymised for 

confidentiality reasons. We observe that there are sub-clusters that show very different 

utilisations. We assume a machine to be a bottleneck when the utilisation is above 75%. 

Although this is a low threshold value to indicate a machine as a bottleneck, this value is 

chosen based on expert knowledge considering the criticality of the equipment; the machines 

are expensive and sensitive to failures.  

Currently, all bottlenecks are the same for all FE facilities in the simulation model and 

bottlenecks cannot be easily adjusted when they change over time. We indicate this as a 

flexibility improvement area. 

Figure 2-8 Relationship chart 
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The next point we come across if we move to the right in the relationship chart (Figure 2-8) is 

the variability (α). This is related to the non-bottleneck delay. We think that this can be 

improved by using a less aggregated variability. An α that is process group- and facility-

specific can make a difference. The process group level summarises products with similar 

process flows. 

If we move further to the right we find another possible cause. The utilisation of the sputter 

equipment is not considered when calculating the FF for the delay of the non-bottlenecks. 

This relates to the utilisation in the relationship chart. Currently, only the utilisation of the 

stepper equipment is taken into account. Considering the sputter utilisation as well will give a 

better representation of the overall facility performance. 

The last point we come across if we move to the right in the relationship chart (Figure 2-8) 

that is related to the CT is the lot size. Therefore, we analyse the lot size mean and standard 

deviation over 78 weeks of historical lot size data and the simulated lot size data and 

conclude that the historical average lot size does not match the simulated lot size for most of 

the facilities (Table 2-2). Currently, this is determined based on average historical lot size per 

product. This has a direct impact on the CT, as the delays at the bottleneck and non-

bottleneck equipment depend on the lot size. It seems to be necessary to find another 

suitable calculation method for the facilities in Kulim and Regensburg. 

Figure 2-9 Analysis bottleneck equipment per equipment group and per location 
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Table 2-2 Lot size mean and standard deviation analysis 

  Mean Standard deviation 

Villach Historical 39.1 0.9 

 Simulated 39.3 0.8 

Kulim Historical 25.0 0.0 

 Simulated 30.3 0.8 

Regensburg Historical 30.9 1.3 

 Simulated 33.8 1.1 

2.3 Conclusion 

After an analysis of the current situation we can draw several conclusions. 

We conclude that the reach represents the inventory contingency well, because stock targets 

are dependent on this reach (and the average demand). The Plan Load Limit represents the 

equipment contingency best, as the maximum planned utilisation is dependent on this Plan 

Load Limit (and the uptime). The reach and Plan Load Limit must be varied in the 

experiments simultaneously, to find the right balance between inventory and equipment 

contingencies. 

Furthermore, we indicate improvement areas of the existing simulation model that lead to a 

more flexible and accurate simulation model: 

- Locate and complete missing data that leads to exclusion of WSPW for simulation 

purposes. 

- Disaggregate the selected bottlenecks into mutually exclusive subgroups and ensure 

the ability to adjust the facility-specific bottlenecks easily. 

- Use a facility and process group specific variability as input of the simulation model to 

determine the non-bottleneck delay. 

- Use the utilisation of all bottlenecks to determine the FF for the non-bottleneck delay. 

- Reconsider the lot size calculation. 
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3 Theoretical framework 

In this chapter, existing theory is used to build a framework for this research. Section 3.1 

describes how the relevance of balancing inventory and equipment contingencies in the 

semiconductor industry is supported by literature. Section 3.2 focuses on supply chain 

simulation. In this section we describe why simulation is suitable for this research. Finally, 

Section 3.3 draws conclusions from this theoretical framework. 

3.1 Balancing inventory and equipment contingencies 

According to Hopp & Spearman (2008) three forms of buffers exist: inventory, capacity, and 

time. These buffers are used to correct for misaligned demand and supply losses during 

transformation, such as yield (Hopp & Spearman, 2008).  

Bradley and Arntzen (1999) indicate that it is important to find an optimal combination of 

capacity and inventory what minimises costs and meets certain performance criteria. 

Typically, the KPIs for supply chain performance reflect the trade-off between costs and 

customer service (Van der Zee & Van der Vorst, 2005). The goal in the semiconductor 

industry is to minimise production costs and increase productivity and at the same time 

improving both quality and the service level. These costs are affected for a large part by 

yield, labour, materials, inventory, equipment and the number of wafer starts per week 

(Uszoy et al., 1992). Wafer fabrication facilities are very expensive. The investment needed 

can take up to billions of Euros (Jain, Lim, Gan, & Low, 1999; Wu, Erkoc, & Karabuk, 2005). 

The investment for a single machine can take up to 5 million Euros (Wu et al., 2005).  

Holding (semi-)finished goods inventories is a common approach to deal with the demand 

fluctuations and to buffer against them in the wafer fab (Balanchandran, Li, & 

Radhakrishnan, 2007; Uszoy et al., 1992). However, because the customer orders and the 

related due dates are often not yet known when wafers need to be released into in the FE 

and also because the equipment of wafer fab facilities are very expensive, semiconductor 

companies want to keep a high throughput and equipment utilisation, while reducing CTs and 

inventories (Jain et al., 1999; Uszoy et al., 1992). These are conflicting objectives and 

therefore trade-offs have to be considered while planning.  

Some models in literature developed for managing capacity (including inventory levels and 

excess production capacity) make use of service constraints to make sure a certain service 

level is maintained or reached (e.g., Gallego, Katircioglu & Ramachandran, 2006). 

Furthermore, most models in literature focus on minimising costs (e.g., Atamatürk & 
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Hochbaum, 2001; Gallego et al., 2006). Traditionally, inventory and capacity decisions are 

made independent from each other, although this can better be done simultaneously as it 

leads to a better financial outcome (Atamatürk & Hochbaum, 2001; Bradley & Arntzen, 

1999). Analytical models that combine these decisions, and other capacity decisions, are 

mostly based on Newsvendor-Style models (Wu et al., 2005). For instance, Van Mieghem 

and Rudi (2002), developed a Newsvendor Network model in which multiple products, 

echelon inventory and multiple processing points can be considered. We found no specific 

literature on integrating inventory and capacity decisions by the use of a simulation model. 

By planning inventory and capacity decisions simultaneously, it is possible to balance the 

conflicting objectives mentioned. As stated before, this balance should be obtained by 

minimising costs and maintaining a certain service level.    

3.2 Supply chain simulation 

Spreadsheet and queueing models are used when basic questions about a system need to 

be answered. However, in complex systems, such as in a supply chain in the semiconductor 

industry, discrete-event simulation is needed to answer more detailed questions (Chance, 

Robinson, & Fowler, 1996). Supply chain simulation can be used as a tool for decision-

support, as well as for experimenting with different scenarios. A lot of different scenarios are 

thinkable in complex supply chains and therefore one should pay attention to the simplicity 

and transparency (Van der Zee & Van der Vorst, 2005). The simulation model itself should 

be easily accessible, it should visualise the processes, by for instance using graphs, and give 

insight in the key decision variables. In this way decision makers can gain insight and 

oversight with regard to different supply chain scenarios and gain trust in the simulation 

model. This trust is needed to make the parties involved more likely to accept the outcomes 

of the simulation study (Chance et al., 1996; Van der Zee & Van der Vorst, 2005). Simulation 

provides further benefits. By the means of simulation, the real system does not have to be 

interrupted for experiments (Terzi & Cavalieri, 2004). Moreover, the costs of experimenting 

with different scenarios are negligible, whereas experimenting in the real world this can be 

pretty costly and risky (Fowler & Rose, 2004; Terzi & Cavalieri, 2004; Van der Zee & Van der 

Vorst, 2005; Yuan & Ponsignon, 2014).  

In literature, the most mentioned simulation method for supply chain simulation is discrete-

event simulation (e.g. Duarte, Fowler, Knutson, Gel & Shunk, 2000; Fowler & Rose, 2004; 

Morrice & Valdez, 2005). With this method many manufacturing and planning activities can 

be captured (Yuan & Ponsignon, 2014), which is important for this research. Discrete-event 
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models are dynamic, stochastic, and discrete. Dynamic, since the simulation model 

represents a system as it evolves over time. Stochastic, because probabilities are used for 

certain inputs, for instance for machine uptime or customer orders. Discrete, as the system 

changes in a countable number of points in time (Law, 2007). By discrete event simulation, 

lots can be tracked through all facilities in the supply chain (Fowler & Rose, 2004).  

Before starting the modelling we need to ask ourselves two major questions: do we want to 

reuse the simulation model? And at what level of detail do we want to model? Section 3.2.1 

and Section 3.2.2 explore these decisions respectively. Afterwards, the focus is drawn on 

wafer fab simulation (Section 3.2.3). Here the existing literature is reviewed and linked to this 

research. This is followed by a description of several validation and verification techniques 

for verifying and assessing the validity of simulation models (Section 3.2.4).  

3.2.1 Reusability 

If the purpose of a simulation model is to analyse different scenarios a reusable simulation 

model might be preferred. This reusability can be achieved in different ways: reusing small 

parts of codes, reusing larger components or reusing complete models (Robinson, Nance, 

Paul, Pidd, & Taylor, 2004). A reusable simulation model does not only enable to model 

more rapidly after the first model is built, but also reduces costs and modelling errors (Van 

der Zee & Van der Vorst, 2005; Yuan & Ponsignon, 2014).  

This is also the target for the supply chain model of Infineon. It is however hard to make a 

reusable simulation model on a high level (Robinson et al., 2004). To create a reusable 

simulation model on a supply chain level, flexibility should be incorporated to be able to 

change the simulation model easily in case of changes in the manufacturing environment, or 

when other scenarios need to be studied, in this case for example another contingency type. 

This flexibility also reduces the maintenance needed for the simulation model (Chance et al. 

1996). Moreover, Law (2007) states that object-oriented simulation supports reusability, as 

the developed objects can be reused or adjusted easily. 

However, there are also obstacles for the development and usage of a reusable model. 

Modellers might not want to develop such a simulation model, because it costs more time 

and others benefit from it. Furthermore, it can be hard to rely on someone else’s code and if 

the code is trusted, it might take time to fully understand the code someone else wrote 

(Robinson et al., 2004). The result of these obstacles could contradict the advantages of 

reusability; it could lead to more need of time and costs. Nonetheless, the last obstacle can 

probably be reduced by using good documentation. 
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Although aiming for reusability entails several obstacles, Infineon is confident they can 

reduce or overcome them for their supply chain simulation model. Infineon already has a lot 

of experience with complex reusable models on the work centre level and the facility level 

(see Section 2.2.1 for more information on the levels). 

3.2.2 Level of detail 

Finding the appropriate level of detail is important in supply chain simulation modelling  

(Fowler & Rose, 2004). For a less detailed simulation model also terms as reduced models 

or simplified models are used in literature. The term ‘simplified simulation model’ is defined in 

Section 2.2.2. A reduced simulation model or a model with a lowered level of detail is for this 

research defined the same. According to Sprenger & Rose (2011, p.453) a model can be 

simplified by, among others, “removing unimportant components of the model, using random 

variables to replace parts of the simulation model, considering less detail for the range of 

variables of the simulation model, and combining components of the simulation model into 

new and simpler components”.  

Simplification of the simulation model has several advantages and disadvantages. A 

simplified simulation model is often more easily understood than a complex simulation 

model. Furthermore, a simplified simulation model runs faster, so results can be obtained 

more quickly. However, the pitfall with simplified models is that if the simulation model is 

made too simple, important factors of the system might be omitted. This can lead to 

inaccurate results, which affects the comprehensibility and acceptance of the model. 

Moreover, by simplifying the model too much, the experiments that can be conducted with it 

are being limited (Brooks & Tobias, 2000).  

It is important to define the goal and use of the simulation model before deciding on the level 

of detail. For two cases Brooks & Tobias (2000) compared a complex and a simplified 

simulation model. They conclude that a simplified simulation model, in which equipment and 

buffers are both aggregated, whenever possible, performs better with respect to the running 

time and the comprehensibility of the simulation model. In addition, in the complex simulation 

models more errors in the construction are found (Brooks & Tobias, 2000).  

These results differ from the outcome of the research of Jain et al. (1999). They investigated 

what the level of detail for supply chain simulation modelling in the semiconductor industry 

should be by testing two levels of detail: supply chain simulation with only bottleneck 

equipment modelled in detail, and supply chain simulation with all equipment modelled in 

detail. In the bottleneck-only simulation model, the non-bottlenecks are modelled as delays, 
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considering the processing times, set-up times, waiting times and travel times. The 

bottlenecks are determined for each route based on their utilisation. In the detailed model all 

steps are modelled, where the equipment and operators are considered as constraints. Their 

conclusion is that a detailed simulation model gives more accurate results than the 

bottleneck-only simulation model when looking at typical KPIs for semiconductor supply 

chains (Jain, Lim, Gan, & Low, 1999). However, the results are not validated against a real 

system, because a fictional case is used. The results of the detailed simulation model are 

used as a reference level and the results of the bottleneck-only simulation model do not 

comply.  

Jain et al. (1999) modelled a process at a semiconductor manufacturer and Brooks & Tobias 

(2000) have researched cases outside the semiconductor industry. Both have different 

outcomes and we think that the results of the research of Jain et al. (1999) need to be 

questioned although the setting of their research is more similar to that of this research. The 

supply chain simulation model built by Infineon for contingency optimisation has a specific 

purpose and because of that very detailed, complex modelling is not necessary. 

Furthermore, the running time of the simulation model should not be too long as it would be 

useless for rapid scenario analysis. Moreover, the results should be communicated to other 

departments. A high level of detail might increase the credibility of the simulation model, but 

it takes more time consuming building, running and maintaining the simulation model (Brooks 

& Tobias, 2000; Fowler & Rose, 2004; Sprenger & Rose, 2011). Therefore, it is important to 

make the simulation model comprehensible and accessible for scenario analysis by building 

a more simplified simulation model of reality and to pay extra attention to the accuracy of the 

simulation model to make sure it is valid.  

3.2.3 Wafer fabrication simulation 

Simulation is an important tool for analysing and modelling wafer fabs and is described in 

different papers (e.g., Chien et al., 2011; Hung & Leachman, 1999; Peikert, Thoma & Brown, 

1998; Piplani & Puah, 2004; Jain et al., 1999; Rose, 2004; Rose, 2007; Sprenger & Rose, 

2011; Uszoy et al., 1992). The modelling of wafer fabs is difficult, because of the complexity 

described in Section 1.2. Sprenger & Rose (2011) reviewed existing approaches and build 

their research upon them. Therefore we decided to describe their approach in more detail. 

Moreover, the research of Peikert et al. (1998) is described in more detail, because their 

approach differs from the approach of Sprenger & Rose (2011) and it is close to the 

approach used by Infineon currently. 
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Sprenger & Rose (2011) have reduced the complexity of a wafer fab simulation model by 

modelling as few as possible pieces of equipment in detail and replacing the other equipment 

by delays. Equipment with a high utilisation is not replaced by a delay, because it has a large 

impact on the wafer fab and the behaviour of the lots. Furthermore, re-entries at bottleneck 

machines are considered as well, before entering the queue at the bottleneck equipment 

again (Figure 3-1).  

 

 

 

 

 

 

The authors have used the number of machines, a MTTR and a MTTF, processing times, 

set-up times and set-up rules as parameters for the bottleneck equipment group. The focus 

of their research is on two approaches to determine the delay in the loop and comparing 

them to the usage of static distributions for these delays, where all lots of a product are 

delayed using the same distribution. The two approaches are a delay approach and an 

interarrival time approach. In the delay approach, a delay distribution is determined for each 

product depending on the number of lots that need to be processed by the non-bottleneck 

equipment at any particular moment. In the interarrival time approach the delay is dependent 

on the interarrival distribution at the bottleneck queue of the lots from the loop, also 

depending on the number of lots that need to be processed by the non-bottleneck equipment 

at that moment. For this interarrival distribution three options are explored: based on the 

interarrival time between all lots, interarrival times between lots with all combinations of 

products, and interarrival times between lots of the same product. The first option has proven 

to be suitable in most cases.  

These two approaches have been tested by comparing the operating curve of a complex 

simulation model to the operating curve of the simple simulation model. Both approaches 

have been proved to work better than using a static delay distribution. The delay approach 

seems more applicable in case of changed product mix than the interarrival time approach. 

However, the interarrival time approach needs more research and improvement. Therefore, 

we conclude from their research that a dynamic delay distribution leads to a better 

Figure 3-1 Simple simulation model (Sprenger & Rose, 2011, p.454) 
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performance of the simplified simulation model than a static delay distribution. (Sprenger & 

Rose, 2011)   

A short coming of the study of Sprenger and Rose (2011) is that only six products are 

considered and only one single facility is modelled. This leads automatically to a simpler 

simulation model compared to the simulation model used for supply chain simulation at 

Infineon and could lead to different results when using the approach used by Sprenger and 

Rose (2011). Furthermore, they measured the performance of their simplified simulation 

model by using a complex and very detailed simulation model as a reference instead of using 

real data, which Jain et al. (1999) also did in their research. This was not possible, because 

they used a fictional case. Furthermore, the detailed simulation model was not validated 

against real data. However, a complex simulation model cannot always be assumed to be 

generating the right output values, especially when it is not validated against real data, 

because errors can be made in the construction (Brooks & Tobias, 2000). 

Peikert, Thoma & Brown (1998) have determined the non-bottleneck delay differently and 

used a real case; the wafer fab in Dresden of Siemens Microelectronics Center (is now 

Infineon). They modelled a single wafer fab and focussed on modelling only bottlenecks as 

well. Their simulation model looks similar to the simulation model of Sprenger & Rose (2011) 

captured in Figure 14. The lithography equipment, the steppers, are considered as 

bottlenecks and are therefore modelled in more detail; the rest of the equipment is captured 

in a ‘black box’ as dummy equipment with an unlimited number of servers. The delays have 

been determined by first calculating the processing time by adding all Raw Processing Times 

of the actual production steps. The delay time is subsequently determined by multiplying the 

Raw Processing Times of each step by a lead time factor, that is derived from historical data 

and correspond to the real FFs (Peikert et al., 1998). For the delay in the loop, Peikert et al. 

(1998) have used lead time factors for different product groups and the processing time has 

been drawn from a triangular distribution. These product groups have been determined by 

aggregating products with similar process routes at a combined wafer start rate. Rework has 

only been modelled for the stepper equipment and is based on the actual rework rate. Scrap 

is also considered for the stepper equipment by an average scrap rate based on historical 

data and is incorporated in each operation at this equipment. For the ‘black box’ equipment 

this was incorporated for all operations (Peikert et al., 1998). 

This is almost the same way the delays are calculated in the current simulation model of 

Infineon. The only difference is that for the simulation model of Peikert et al. (1998), only the 

lithography equipment is modelled as bottlenecks. However, there might be other or more 
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bottlenecks. Therefore, these are modelled in the current simulation model of Infineon as 

well. The loop used in the simulation model of Peikert et al. (1998) and Sprenger & Rose 

(2011) is also applicable for the current simulation model of Infineon. Although the bottleneck 

and non-bottleneck equipment is modelled on different layers, a possible re-entry is defined 

by the routes in the master data. Product aggregation is also used in the current simulation 

model of Infineon, for which the routes on this level are still correct. Scrap is already 

incorporated in the simulation model of Infineon as yield. Rework is however not considered 

in the current simulation model, because the rework time is negligible at the currently 

modelled bottleneck equipment.  

The simulation model of Peikert et al. (1998) is validated against historical data and obtained 

good results. The stepper utilisation has an accuracy of 90% and the CT an accuracy of 97% 

(Peikert et al., 1998), however, the exact calculation of this accuracy is unclear. 

Nevertheless, we conclude that way of delay modelling for the non-bottlenecks of Peikert et 

al. (1998) has proven to be working and that their method is more comparable to the current 

simulation model of Infineon than the approaches used by Sprenger & Rose (2011). 

Therefore, we decide to stick to this approach. 

3.2.4 Verification and validation 

There are different ways to determine whether a simulation model is ‘good enough’ 

described in literature. Sargent (2013) describes seventeen techniques for the validation and 

verification of a simulation model. Generally, a combination of these techniques is used. After 

a literature review on verification and validation (e.g., Kleijnen, 1995; Law, 2007; Sargent, 

2013) and a discussion with simulation experts of Infineon to check which techniques fit this 

project best, we decide to use five of the described techniques by Sargent (2013) to validate 

and verify the further developed supply chain simulation model: face validity, historical data 

validation, internal validity, operational graphics, and structured walkthrough. The use of 

these techniques is feasible with the resources that we have to our disposal and we believe 

these five will give a sound foundation for the verification and validation of our model. We 

explain each of the five techniques below: 

- Face validity is the extent to which individuals that are knowledgeable about the 

system think the simulation model and its behaviour represent reality (Sargent, 2013). 

Using animation is a good example to assess face validity (Kleijnen, 1995). 

- Historical data validation is the extent to which historical data of the system match the 

simulated data, like a comparison of KPIs. For this end, some historical data must be 
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used as inputs of the simulation model for testing (Sargent, 2013). This is also called 

‘trace driven simulation’ (Kleijnen, 1995). The required accuracy depends on the 

purpose the simulation model is intended for. Numerical statistics, such as the sample 

mean, sample variance and sample correlation, can be used for this comparison, as 

well as statistical tests. Furthermore, the comparison could be done by graphical 

representations, like box plots, histograms and spider-web plots (Law, 2007).  

- Internal validity is the extent to which the simulated output varies when several 

replications of a stochastic model are made (Sargent, 2013). Before starting the 

experiments it is necessary to determine the number of replications needed to make 

sure that the outcomes lie within a sufficiently low confidence interval, based on a 

relative error (Law, 2007). 

- Operational graphics are a graphical representation of different performance 

measures during the simulation run, so that the development can be checked over 

time. This is done to check if the simulation model and the KPIs behave correctly. 

(Sargent, 2013) 

- In a structured walkthrough the model developer shows the simulation model and its 

layers and objects to a peer group to check if the logic of the model is correct and if 

the necessary accuracy is obtained (Sargent, 2013). Furthermore, the simulation 

model’s assumptions need to be assessed on correctness and completeness (Law, 

2007). 

In literature several KPIs that are typical for the semiconductor manufacturing systems are 

mentioned, such as the utilisation, WIP, FF, CT, and service level (Chien et al., 2011; Duarte 

et al., 2002; Rose, 2007; Yuan & Ponsignon, 2014). We need to add the WSPW, WOPW, 

LSPW and LOPW to these KPIs to make sure the wafers enter and leave the facilities 

correctly in the simulation model as we model a network of facilities.  

3.3 Conclusion 

Although literature mentions that considering capacity and inventory levels simultaneously is 

financially beneficial and simulation is preferred over analytical models in case of complex 

systems, not much research has been done to balance these buffers by using simulation. We 

conclude, based on the advantages and disadvantages of simulation described in Section 

3.2, that this is the right method for this research on the supply chain level and that discrete-

event simulation fits the purpose of the project best. 
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It is important to consider if the simulation model needs to be reused and on what level of 

detail should be modelled. Reusability is important for Infineon, because the simulation 

model is needed for analysing various scenarios. By the use of object-oriented simulation 

and by introducing flexibility this can be reached. Furthermore, we conclude that it is not 

necessary to model the supply chain on a detailed level to reach good results. A bottleneck 

only approach works well, which means that only the bottleneck equipment is modelled in 

detail.  

We have found five verification and validation techniques that are important for this project: 

face validation, historical data validation, internal validation, operational graphics, and 

structured walkthroughs. The most used KPIs in this industry, which we choose to verify and 

validate the simulation model with, are the utilisation, FF, CT, service level, WSPW, WOPW, 

LSPW, and the LOPW.        
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4 Updated simulation model 

In this chapter we develop the simulation model that provides us the flexibility and accuracy 

which will help us to answer the main research question (Section 1.6). First, we describe the 

conceptual design and implementation of the updates in the existing supply chain simulation 

model (Section 4.1). Section 4.2 follows with the set-up and results of the validation 

experiment. We draw conclusions in Section 4.3. 

4.1 Concepts and implementation 

In Chapter 2 we discussed several improvement areas to the existing supply chain simulation 

model. This section outlines the conceptual design and implementation of the indicated 

improvement areas of the existing supply chain simulation model in Chapter 2 and is divided 

into 4 sub-sections. Section 4.1.1 describes the adaptions made to the wafer fabrication 

object introduced in Section 2.2, to improve its accuracy and flexibility. Section 4.1.2 explains 

how the rest of the supply chain is represented for the contingency experiments. Section 

4.1.3 lists the assumptions made and Section 4.1.4 describes the verification of the 

simulation model.  

4.1.1 Accuracy and flexibility improvement areas of the wafer fab object 

In this sub-section we describe the required changes and additions to the existing wafer fab 

object of the simulation model, as indicated in Section 2.2.5. This section focuses on the 

changes that are necessary for the validation experiment. 

 Facility-specific bottlenecks 

In Chapter 2 we concluded that the bottlenecks in the existing simulation model were too 

much aggregated. We decide to start with this improvement, because it focuses on improving 

both the accuracy and on the flexibility of the simulation model. These two aspects are both 

stated in the objective of this research (Section 1.4). The inclusion of facility-specific 

bottlenecks brings more detail into the simulation model, which we expect to lead to a more 

representative estimate of the fab utilisation. Therewith, we expect the CT to come closer to 

its historical value as well, because they are linked both directly (waiting time depends on 

utilisation) and indirectly (utilisation of the bottlenecks is used to calculate the delay at the 

non-bottlenecks) (see relationships in Figure 2-8). For this matter, we integrate a bottleneck 

object in the updated simulation model that is adjusted automatically when the bottlenecks 

change in the database.  



42 | P a g e  

 

To create the flexibility of changing the bottlenecks we have chosen to set the bottlenecks as 

an input and read them into the simulation model on initialisation. We link the input file to the 

corresponding database, which enables us to update the bottlenecks anytime and without 

much effort. Moreover, we can adjust the routes of the wafers accordingly. We ensure that 

the parameters of these bottlenecks (number of tools and availability) are updated in the 

model every simulated week. The implementation in the simulation model is described in 

Appendix I. Furthermore, we adjust the insertion of R&D (non-sales production) lots to these 

new bottlenecks in such a way that the share of R&D lots can be controlled individually for 

each bottleneck.  

 Delay determination non-bottlenecks 

According to the relations we visualised in Figure 2-8, the CT depends on the utilisation of 

the bottlenecks and variability (α) of the production (the quality of the non-uniformity of the 

production, see Section 2.1.2). These factors contribute to the delay determination at non-

bottleneck steps, which is based on the Operating Curve theory (see Section 2.1.2 and 

Appendix C for more details). We consider the following two improvement areas we identified 

in Chapter 2: the estimation of α and the utilisation used to calculate the non-bottleneck 

delay. By bringing more detail to the existing simulation model on these areas we expect that 

the FF will be estimated better as well, which leads a better estimate of the non-bottleneck 

delay and therefore to a more accurate CT (see relationships in Figure 2-8). 

To estimate α more accurately, we choose to use process group specific values of α. 

Alternative aggregation levels are facility specific values, as used in the existing simulation 

model, or on material number level (the product number used within Infineon), which would 

be very detailed. The process group level summarises products with similar process flows. It 

is therefore more detailed than the facility level, but requires less data than the material 

number level. In this way, we ensure that the simulation model does not have to store too 

much data which would affect the performance of the model negatively and we are still able 

to bring more detail to the model to provide a good representation of reality. We include 

these new values in the input file and adjust the existing simulation model in such way that it 

uses this new input to determine the non-bottleneck delay. 

To achieve this, we extract the FF per week for each process group from historical data and 

calculate the historical average utilisation of each bottleneck per facility per week. We do this 

by creating a query in the input file. α is then determined as we described in Section 2.2.2. 

Unfortunately, not for all process groups an α value is available every week. We have 
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decided to solve this problem by taking the historical average α per week per facility in case 

of a missing α per process group. The implementation is described in more detail in 

Appendix I. 

Besides improving the estimation of variability parameter α in the simulation model, we want 

to make sure that the utilisation of all bottlenecks is taken into account when determining the 

FF for the delay calculation of the non-bottlenecks. The rationale behind this is that including 

more bottleneck stations gives a better representation of the overall fab. 

To ensure that the utilisations of all bottleneck equipment are taken into account when 

determining the non-bottleneck delay, we store the utilisation of each bottleneck in a 

separate statistics dashboard. When the delay needs to be determined (i.e. when a lot 

arrives at a non-bottleneck step), the simulation model takes the average utilisation by 

summing the utilisation of all bottlenecks in the statistics dashboard and dividing this number 

by the number of bottlenecks of that facility. We describe this in more detail in Appendix I. 

 Facility-specific lot size determination 

As shown in Figure 2-8, the lot size both indirectly and directly influences the CT. As shown 

in Table 2-2 the lot size determination method, which is the same for all facilities in the 

existing model, does not represent reality for all facilities (Kulim and Regensburg). Therefore, 

we search a suitable calculation method for determining the lot sizes for each facility 

separately.  

We come up with facility-specific lot size determination methods by trying logical rules and by 

setting up rules based on information from experts working at the FE facilities. We discover 

that in Kulim a standard lot size of 25 is used. If the number of wafer starts cannot be divided 

by 25, the remainder is considered as one lot. For Regensburg we encounter that the lot 

sizes are a mix of lot sizes of 25 and 50. We analyse the historical lot sizes over 78 weeks, 

from fiscal week 401 to fiscal week 525, and we conclude that a mix of 2/3 of the products 

with lot size of 50 and 1/3 of the products (aggregated on material number level: product 

number used within Infineon) with lot size of 25 represents reality best. We compare the 

result of the new lot size determination to the historical lot size over 78 weeks of Regensburg 

in Figure 4-1. The graph shows that the new method reproduces reality to a high degree. 
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Figure 4-1 Mixed lot sizes analysis for Regensburg 

We calculate the lot size with the updated methods for Kulim and Regensburg and calculate 

the mean and standard deviation of the lot sizes over 78 weeks (Table 4-1). The mean and 

standard deviation are closer to reality than when using the previously used method in the 

existing simulation model (Table 2-2). 

Table 4-1 lot size mean and standard deviation of the existing and the updated method and the historical lot size 

  Mean Standard deviation 

Kulim Historical lot size 25.0 0.0 

 Lot size updated method 25.0 0.0 

 Lot size existing method 30.3 0.8 

Regensburg Historical lot size 30.9 1.3 

 Lot size updated method 30.4 0.6 

 Lot size existing method 33.8 1.1 

We describe the implementation in the input file of the simulation model in Appendix I. 

 Other adjustments 

We use data that was collected for other purposes than simulation. Therefore, we have to 

validate the data and make adjustments to fit the data to our own purposes. For example, the 

raw tool times in the database are based on 100 wafers. However, in our simulation model, 

not always 100 wafers are produced at once. This leads to deviations in the simulated raw 

tool time and the raw tool time in the database when we recalculate the raw tool time for 

each lot (see Section 2.2.2, Equation 7), e.g. because of different set-up time assumptions. 

We introduce factors, for example a raw tool time factor, to make up for these discrepancies. 

We explain other cases below and note that using factors is only a temporary solution to be 

used during the time data tailored to simulation purposes is not available.  
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We study the raw processing time per facility per week in the simulation model and conclude 

that these values do not match the historical raw processing time per facility for those weeks 

in Kulim and Regensburg. Since transportation time between equipment differs per facility, 

we decide to make the parameter scaleRPT, which translates the raw tool time of a product 

at the equipment to a raw processing time (more information in Section 2.2.2), facility-

specific.  

Most sputter equipment consists of cluster tools, which consist of chambers. These 

chambers can be used in parallel for production. Since (simulation) modelling of cluster tools 

is complex and we have limited time, we decide to use another approach: we include these 

chambers in the number of tools of that bottleneck by factors, so increase the capacity. For 

example, if the number of chambers is three, we use a capacity factor of 3 to increase the 

number of tools of the equipment. Instead of simulating 1 tool with 3 chambers we simulate 3 

tools with 1 chamber. 

4.1.2 Representation of sort, assembly, and test 

To be able to simulate the material flow from the release into the fab until the arrival at the 

DCs for our contingency experiments, we use a CT approximation approach for the 

manufacturing levels (see Section 1.1.2) sort, assembly, and test. This approximation is 

based on the planned CT and the historical deviation from this planned CT, the so called CT 

spread.  

This is an empirical simplified solution to include CT variability at these manufacturing levels 

and is chosen over a theoretical CT distribution. We made this decision because determining 

a theoretical distribution for all products on material number level (the product number used 

within Infineon) or another less aggregated level leads to many different distributions with 

different parameters, which is a lot of work to implement in the simulation software. 

Furthermore, we are of the opinion that one theoretical distribution for all products does not 

represent reality to such a degree that we are able to gain representative results when we 

use this method to represent the CT for sort, assembly, and test in our experiments. We think 

that our empirical approach is therefore the best fit for our purposes. 

We aggregate the CT spread for sort on process group level and the CT spread for assembly 

and test on package level. The process group level summarises products with similar 

process flows. The package level summarises chips that are assembled the same way. 

These are the aggregation levels Infineon typically works with in the FE and BE (as 

explained in Section 1.1.2). We use the following approach: 
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1. A deviation from the planned CT is observed over a period of 13 weeks (the third 

quarter of Infineon’s fiscal year 2014/2015) as for example shown in Figure 4-2. We 

obtain this data from Infineon’s reporting system. 

2. We extract quantiles 0, 5, 25, 50, 75, 95, and 100 from the database, which makes it 

possible for us to draw the CT spread as a probability density function.  

3. We translate the probability density function into a cumulative distribution function as, 

for example, shown in Figure 4-3. If, for instance, the CT spread value at Q5 is -2, we 

can conclude that 5% of the considered lots finished the corresponding 

manufacturing level two days faster than planned. 

4. When a lot arrives in the simulation model, AnyLogic draws a random number 

between 0 and 100 by using the uniform distribution to determine which quantile we 

consider. For example, if the simulation model draws the number 10, we want the 

value of quantile 10. Therefore, we consider quantile 5 and quantile 25, because 5 

and 25 form the limits of the interval quantile 10 belongs to. 

Planned Cycle Time 

Deviation from planned CT Deviation from planned CT 

Probability 

Figure 4-2 Graph visualising the observed planned CT over a period 

Probability (%) 

Cumulative distribution (CDF) 
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CT spread CT spread 

Figure 4-3 Cycle Time Spread PDF and CDF example 
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5. We interpolate between the quantiles associated with that product to get an 

estimation of the spread. If, for example, the random number drawn is 10 (uniform), 

we use the values of Q5 (Qminvalue) and Q25 (Qrefvalue) to interpolate by using the 

formula:  

 

𝐶𝑇 𝑠𝑝𝑟𝑒𝑎𝑑 =
 𝑄𝑟𝑒𝑓𝑣𝑎𝑙𝑢𝑒 −  𝑄𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒

𝑄𝑟𝑒𝑓 −  𝑄𝑚𝑖𝑛
 ∗ (𝑢𝑛𝑖𝑓𝑜𝑟𝑚 − 𝑄𝑚𝑖𝑛)

+ 𝑄𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒  
(9)  

If the value of Q5 is -2 and the value of Q25 -0.5 then the CT spread used for the CT 

approximation is -1.625. 

6. We add the CT spread to the planned CT and represent the obtained time by a delay 

in the simulation model.  

4.1.3 Assumptions and simplifications 

Further assumptions we made, besides those mentioned in Sections 4.1.1 and 4.1.2, when 

developing the simulation model are: 

- Transportation time and disturbances between the wafer fab locations can be 

neglected. 

- The factories operate 24 hours/day and 7 days per week. Downtimes are considered 

in the availability of the bottlenecks. 

- There are always enough operators available at the machines. Operators are not 

modelled. 

- The wafer lot size determined at the first facility remains constant within the FE.  

- A share of 5% utilisation at each modelled bottleneck due to R&D lots (non-sales 

production) is considered. This is a realistic value based on expert opinion. 

4.1.4 Verification 

As described in Section 3.2.4 there are multiple ways to verify the simulation model. The 

technique we use for verification is a structured walkthrough. We discuss the simulation 

model with peers during biweekly supply chain simulation meetings to assess the 

assumptions and to check the completeness and logic of the simulation model. Moreover, we 

use the “traceln()” function of AnyLogic to check the parameterisation and calculations during 

the simulation run. We solved all the errors in the simulation model that the model showed us 

in the console and the simulation model runs smoothly. 
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4.2 Validation experiment 

To determine the accuracy of the improved wafer fab part of the simulation model by the 

historical data validation technique, we perform a validation experiment (Section 4.2.3).  

Before we start this experiment we use other, less time consuming, quantitative and 

qualitative, validation techniques first. We use operational graphics, such as line charts and 

histograms in which we represent both the simulated and the historical (empirical) KPI values 

(as shown for the WOPW in Regensburg in Figure 4-4).  

 

Figure 4-4 Example of operational graphics in the simulation model 

Furthermore, we check the model with the face validity technique by using animation when 

we run the model. By this end, we can see the lots move through the different facilities and 

their corresponding bottlenecks.  

Section 4.2.1 discusses how to set the warm-up period, run length, and the number of 

replications used for the validation experiment. Section 4.2.2 describes the input data used 

for the validation experiment and Section 4.2.3 outlines the obtained results and therewith, 

the accuracy of the simulation model.  

4.2.1 Warm-up period, run length, and number of replications 

To reduce the initialisation bias, it is important to define a warm-up period. Furthermore, it is 

important to define the number of replications, to gain statistically significant results. We do 

this for all facilities for both the existing and the updated simulation model, to be able to 

quantify the improvement of accuracy of the updated simulation model due to the 

adjustments described in Section 4.1.1 as well. 

The idea behind using a warm-up period is to run a simulation model until it reaches a 

realistic initial state. The data obtained in this period is deleted for analysis.  

Hoad, Robinson, and Davies (2008) did an extensive literature review on methods to 

determine the length of the warm-up period. One of the 42 methods they found is a graphical 

method, which is also extensively described in Law (2007): Welch’s graphical procedure. 

This method is a well-known and widely used method and according to Law (2007) the 
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simplest and most general technique. Another way reduce the initialisation bias is to run the 

model for a longer time (Hoad et al., 2008).  

Generally speaking, we should use historical data to determine the warm-up period with 

Welch’s graphical procedure, but we have not enough historical data available. Furthermore, 

Infineon grew a lot during the last years and faced a lot of fast ramp-ups. Therefore, we 

cannot use the data of the 78 weeks we have available to determine the warm-up period; it 

will not be possible to reach a steady state. However, we need a warm-up period to fill the 

system and to cope with an initialisation bias. Therefore, we decide to use two warm-up 

phases for our warm-up period.  

We want to use a first warm-up phase, because we start our simulation with an empty 

system and want to fill the model. For this, we use the well-known method of Welch. As there 

is no steady state behaviour in our simulation model when we use historical data, we can run 

the model for a longer time to make the initialisation bias effect negligible (Hoad et al., 2008). 

We use this approach for our second warm-up phase. 

We find a first warm-up phase of 52 weeks. Appendix J describes the details. We take the 

first week of which we have appropriate data available and repeat this week 52 times to fill 

the model. Afterwards, we continue the simulation with the second week. As a second warm-

up phase we decide to delete the first 13 weeks of data of the ‘actual’ simulation run 

(excluding the first warm-up period). Hence, our second warm-up phase consists of 13 

weeks.  

This comes down to a run length of 130 weeks, if we use the 78 weeks of available historical 

data. Of these 130 weeks we use 52 weeks as a first warm-up to fill the model and 13 weeks 

as a second warm-up to reduce initialisation bias. In the end, we have 65 weeks left for 

output analysis. Figure 4-5 visualises this set-up and shows by an example how the 

development of a KPI can look like during this run. The line shows that the simulation model 

is filled after 52 weeks as the line reaches a steady state. After this phase the simulation 

starts simulating the other weeks. Our historical data show the growth of Infineon during the 

last years, which is also simulated by our simulation model. 

We determine the number of replications to ensure that our output lies in a 95% confidence 

interval (α=0.05) and has a relative error of less than 5% (γ=0.05). We need to execute the 

experiments at least 2 times. As this number is very low, we decide to replicate each of the 

experiments 10 times. According to our calculations this comes down to a confidence interval 

of >99.5% and a relative error of <0.5%. The calculations are described in Appendix K.  
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4.2.2 Input data  

For the validation experiment of the simulation model of July we use trace driven simulation, 

for which we use historical data of 78 weeks, from fiscal week 401 until fiscal week 525. This 

historical data consists of the number of lots started per week and the average lot size per 

product per week (on material number level, the product number used within Infineon), the 

variability (α) per process group per week, the number of tools per bottleneck per week, and 

the availability per bottleneck per week. 

4.2.3 Results 

By historical data validation we can determine the accuracy of the simulation model by 

comparing the simulated output with the empirical (historical) data. As stated in Section 1.4 

the goal of this research is to achieve a maximal overall average margin between the 

simulated KPIs data and the historical KPIs data, Δ (see 2.2.4, Equation 8) of 5%. Table 4-2 

shows the overall Δs of the averages of the KPIs over all facilities of both the existing and the 

updated simulation model (see Appendix H for a short description of the KPIs). Similar 

results are achieved for each facility (Appendix L).  

The accuracy of the simulation model has improved, especially when looking at the CT, for 

which the accuracy measure improves from -21.9% to 1.1%. We explain the differences 

between the existing and the updated simulation model and the current discrepancies in 

52 weeks 65 weeks 13 weeks 

Get statistics 

Figure 4-5 Overview of set-up of the run length, with an example of the development of a KPI during this run (blue) 
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phase #1 
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more detail in Appendix L. Besides for LOPW, all measures are better than the targeted level 

of accuracy.  

Below we provide explanations for why the simulated LOPW are too high in general and why 

the accuracy of this measure seems to have worsened (the deviation increased) in 

comparison to the existing model.  

First, we explain the increase in the accuracy measure from 4.4% in the existing model by 

1.6% points beyond the target of 5%. The reason is that we completed the input data when 

updating the model. By completing the input data, we simulate a higher production volume in 

the updated model as indicated by the improved accuracy (+1.7% points) of the WSPW 

measure. We see effects in a similar order of magnitude for the WOPW and the LSPW 

measures as well.  

Second, we observe that the output measures show a positive deviation (+6.0% and +3.7% 

for LOPW and WOPW, respectively). However, the input measures match reality closer 

(+1.1% and -0.4% for LSPW and WSPW, respectively). This discrepancy can be explained 

by the fact that we do not simulate wafer losses in both the existing and the updated model. 

Wafer losses refer to events in which whole wafers are damaged or show such a low yield 

that they are removed from further processing. In this case, they do not appear in WOPW 

and LOPW statistics in reality. In both versions of the simulation model (for validation 

purposes), however, all wafers that appear in the input measures (WSPW, LSPW) will 

appear in the output measures (WOPW, LOPW) as well. 

Both effects together, make the accuracy measure for LOPW violating its targeted level. 

Table 4-2 Overall accuracy per KPI; existing versus updated simulation model 

Simulation model WSPW WOPW LSPW LOPW CT Utilisation FF 

 

Existing -2.1% 2.5% -0.8% 4.4% -21.9% -3.0% -4.8% 

  Updated -0.4% 3.7% 1.1% 6.0% 1.1% -1.0% 2.4% 

4.3 Conclusion 

In this chapter we discussed the changes we made to the existing simulation model, leading 

to a more flexible and accurate simulation model. We obtained the flexibility by providing an 

easy way to change bottlenecks for each of the facilities in case the bottlenecks change. We 

conclude that we reached the overall accuracy goal (maximal deviation of 5% from the real 
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data) for all KPIs for the updated simulation model, except for LOPW, which, as explained, 

does not mean that the simulation model worsened on this point compared to the existing 

simulation model. It is a side-effect from completing the input data and the fact that wafer 

losses are not modelled. 

  



53 | P a g e  

 

5 Balancing inventory and equipment contingencies 

In Section 1.6 we formulated the main research question of this research: how can the 

equipment and inventory contingencies be balanced in a most cost efficient way for a defined 

α, β, or γ service level (SLα, SLβ, and SLγ) using a flexible and accurate supply chain 

simulation model of Infineon Technologies? By the results of this chapter, which we obtain by 

multiple experiments in which we vary the decision parameters (die bank reach, DC reach 

and utilisation) and collect statistics to determine the value of our KPIs (SLα, SLβ, and SLγ, 

and (total) costs), we are able to give an answer to this question.  

We first describe the KPIs in Section 5.1, followed by the experimental design in Section 5.2. 

Section 5.3 informs about the chosen warm-up period, the run length, and number of 

replications. Section 5.4 explains how we selected the input data. Section 5.5 lists the 

assumptions made for this experiment and Section 5.6 shows the obtained results of the 

contingency experiments. 

5.1 KPIs 

We want to perform a quantitative analysis on the experiments with respect to total costs and 

the different service level types SLα, SLβ, and SLγ as described in Chapter 1 (Section 1.2). 

These service levels refer to the service levels at the DC. How these KPIs are defined is 

explained in this section. 

For our research, SLα measures the probability that demand can be met completely during a 

certain time period, without considering backorders from previous weeks. It is an adjusted 

version of the in literature known non-stock out probability, in which the backorders from 

previous weeks are considered.  

For any product i in a week t, the SLα (SLrit
𝛼 ) is either 0 or 1, dependent on whether the 

demand of week t (without backorders of the previous weeks) can be fulfilled by the 

production completely (1) or not (0). Hence, if, for example, only 999 of the 1000 demanded 

products of a week are delivered from the DC to the customer, the SLα is 0. Aggregating 

across all products (i=1..I), weeks (t=1..T), and replications (r=1..R), we define SLα as 

follows: 

 

𝑆𝐿𝛼  =  
∑ ∑ ∑ 𝑆𝐿𝑟𝑖𝑡

∝𝑇
𝑡=1

𝐼
𝑖=1

𝑅
𝑟=1

𝑅 ∗ 𝑇 ∗ 𝐼
 (10)  
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The SLβ (fill rate) measures the relative backorder level. For a week t and product i the SLβ is 

the fraction of the targeted demand that can be fulfilled during this week (SLrit
𝛽
). This is based 

on the backorder change and the demand (Drit) of week t (Equation 11). The backorder 

change is calculated by subtracting the total number of backorders of at the end of the 

previous week (bori,t−1) from the number of backorders at the end of week t (borit). 

 

𝑆𝐿𝑟𝑖𝑡
𝛽
 =  𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 {

𝑏𝑜𝑟𝑖𝑡 − 𝑏𝑜𝑟𝑖,𝑡−1
Drit

, 0} , 0} (11)  

The number of backorders at the end of week t (borit) is determined by the demand 

(Driω) until week t and the actual delivered products (driω) until week t: 

 

𝑏𝑜𝑟𝑖𝑡 = 𝑚𝑎𝑥 {(∑ 𝐷𝑟𝑖𝜔 − 𝑑𝑟𝑖𝜔), 0

𝑡

𝜔=1

} (12)  

Aggregating across all products (i=1..I), weeks (t=1..T) and replications (r=1..R), we define 

SLβ as follows: 

 

𝑆𝐿𝛽  =  
∑ ∑ ∑ 𝑆𝐿𝑟𝑖𝑡

𝛽𝑇
𝑡=1

𝐼
𝑖=1

𝑅
𝑟=1

𝑅 ∗ 𝑇 ∗ 𝐼
 (13)  

SLγ (adjusted fill rate) extends the SLβ by including a time component and considers 

backorders of previous weeks as well. Hence, it indicates how fast a production system can 

recover from backorders. We calculate the SLγ for week t and product i (SLrit
γ
) by: 

 

𝑆𝐿𝑟𝑖𝑡
𝛾
 =  𝑚𝑎𝑥 {1 −

𝑏𝑜𝑟𝑖𝑡
𝐷𝑟𝑖𝑡

, 0} (14)  

Aggregating across all products (i=1..I), weeks (t=1..T) and replications (r=1..R), we define 

SLγ as follows: 

 

𝑆𝐿𝛾  =  
∑ ∑ ∑ 𝑆𝐿𝑟𝑖𝑡

𝛾𝑇
𝑡=1

𝐼
𝑖=1

𝑅
𝑟=1

𝑅 ∗ 𝑇 ∗ 𝐼
 (15)  

For simplification, we use average cost estimates for the financial analysis of the results. 

These estimates are not product-specific. Aggregating across all products (i=1..I), weeks 

(t=1..T) and replications (r=1..R), we determine the average total costs (TC) by: 

- the stock level of the die bank (srit
db) at the end of week t multiplied with the holding 

costs at the die bank (hcdb) 

- the stock level of the DC at the end of week t (srit
dc) multiplied with the holding costs at 

the DC (hcdc)  
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- the utilisation (UUm), as defined by the experiments, multiplied with the capacity costs 

(cc)  

- the WIP in the FE at the end of week t (WIPrit
FE) multiplied with the FE WIP costs 

(wcFE) 

- the WIP in the BE at the end of week t (WIPrit
BE) multiplied with the BE WIP costs 

(wcBE). 

This can be formulated as follows: 

 

𝑇𝐶 = (∑∑∑(𝑠𝑟𝑖𝑡
𝑑𝑏

𝑇

𝑡=1

 ∗  ℎ𝑐𝑑𝑏 + 𝑠𝑟𝑖𝑡
𝑑𝑐  ∗  ℎ𝑐𝑑𝑐 +  𝑈𝑈𝑚 ∗  𝑐𝑐

𝐼

𝑖=1

𝑅

𝑟=1

+    WIP𝑟𝑖𝑡
𝐹𝐸  ∗   wc𝐹𝐸  +  WIP𝑟𝑖𝑡

𝐵𝐸  ∗   wc𝐵𝐸))             
/ (𝑅 ∗ 𝑇) 

(16)  

All resources costs are included in our formulation. We decide to exclude the stock out costs 

from our total costs calculation, because these costs are related to the service levels. As we 

want to integrate service levels as a minimum requirement into our analysis, we want to keep 

the service levels and the total costs separated and independent from each other to make 

the factor level combinations (see Section 5.2) comparable. The resources costs are not 

related to the customer satisfaction (and therefore service level) and cause therefore no 

problem for our analysis. 

Due to confidentiality reasons we scale the costs for this thesis. The costs for the base case 

are the most expensive and are therefore translated to costs of 100%. The financial values 

are obtained based on the opinion of the financial expert of the Scenario and Flexibility 

Planning team and the current practices at Infineon (Stang, 2015). The relation between the 

WIP and holding costs is rated as follows: 0.20wcFE equals 0.39hcdb equals 0.64wcBE equals 

1hcdc. The capacity costs are based on the investment costs and a depreciation factor of 5 

years. 

5.2 Experimental design 

Running a wafer fab at a high utilisation to keep the return on investment high increases the 

manufacturing CT, which might require increased inventory levels to stay reactive towards 

demand variations on short notice. Therefore, Infineon aims at finding a balance between 

inventory and equipment contingencies, so that they are able to deliver on time to their 

customers against minimal costs. 
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(plan function) 

Reach Die 
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Yield 
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DC  
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 Plan Load Limit 

WIP 

Reach DC 

Figure 5-1 Relationships between production demand, the plan function and the utilisation 

Execution 

For the experiments to balance inventory and equipment contingencies we use the 

production plan function (Appendix D) of the model. This function uses a demand scenario 

(production demand) to calculate the number of lots to be released based on yield, WIP, 

stock levels, planned CT, and target reaches. These lots are released during the week 

following the call of the plan function with constant inter arrival times. The execution of the 

production plan results in a certain utilisation of the equipment. Based on this logic, shown in 

Figure 5-1, the experiments are designed. 

We define a base case, with a low utilisation of 75% of the steppers and a die bank and DC 

reach of 35 days. We expect with this low utilisation that the lead times will be short, which 

makes it easier to replenish the stocks, and that because of high stock levels the service 

level types are expected to be close to 100%. We note that this is the most expensive tested 

factor level combination, because utilisation is the lowest (unused capacity is the highest) 

and stock levels are the highest.  

We decide to start with a utilisation of 75% as this is the lowest value that is usually used as 

Plan Load Limit (see Section 2.1.2). We chose a die bank and DC reach of 35 days as upper 

limit, because a reach of 28 days is typically used by the supply chain planner for the 

inventory planning at Infineon. As this is based mainly on experience, we decide to study a 

higher reach of 35 weeks as well.  

We increase the utilisation (until 95% with an increment of 5%) of the stepper bottlenecks by 

using dummy products and we assume that the simulated utilisation (in combination with the 
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inventory contingency) corresponds with the fraction of the uptime that Infineon should use 

for the production plan: the Plan Load Limit. We only increase the utilisation of the steppers, 

because lithography equipment is the typical bottleneck in the semiconductor industry.  

The reach is varied at the die bank and the DC; from 0 till 35 days, with an increment of 7 

days. By balancing the inventory levels with equipment capacity we expect that more stock is 

needed. Table 5-1 summarises the factors and factor levels we want to experiment with. We 

make 5 replications of each experiment. How this number is determined was explained in 

Section 4.3.2.  

Table 5-1 Experimental design; bold the base case 

Factor Levels # levels # factor level combinations 

Utilisation (%) {75%, 80%, 85%, 90%, 95%} 5 

180 

Reach Die Bank 

(days) 
{0, 7, 14, 21, 28, 35}  6 

Reach DC 

(days) 
{0, 7, 14, 21, 28, 35} 6 

Number of simulation runs (5 replications per experiment): 900 

5.3 Warm-up period, run length, and number of replications 

We determine the warm-up period as described in Section 4.2.1. Based on the average 

utilisation of the steppers per week, we find a warm-up period of 52 weeks. We use the 

utilisation as a base, because it has to reach a steady state at 75%, 80%, 85%, 90% or 95% 

to represent the utilisation factor levels. We determine the warm-up period for the lowest and 

highest utilisation, on average 75% and 95%, respectively, over all stepper work centres and 

facilities, with a die bank and DC reach of 0 and 35 days. We assume these factor 

combinations to represent the upper and lower limit of the warm-up period. With a low 

utilisation we expect that the products can be processed smoothly which requires a low 

reach. This provides us the lower limit case. With a very high utilisation we expect that the 

production lead times will increase, which will require a high reach as described in Section 

1.3. This provides us the upper limit case. 
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We found a lower limit of 38 weeks (Villach, 75%, die bank and DC reach 0 days) and an 

upper limit of 52 weeks (Kulim, 95%, die bank and DC reach 35 days). Therefore we use the 

upper limit of 52 weeks for all experiments for better comparability. 

As we want to simulate one year, we set the run length to 104 weeks. Considering the warm-

up period, we only collect statistics between week 53 and 104 and base our results on this 

data. 

In Section 4.3.1 we wrote that we decided to replicate the contingency experiments 5 times. 

This number is established by analysing the average UUm in the fab per week per replication 

by the same procedure we used for the determination of the number of replications for the 

validation experiment as described in Appendix K. To ensure a confidence level of at least 

99%, with a relative error of at most 1%, we need to make at least 4 replications.   

5.4 Input data  

For our contingency experiments we use a stable demand pattern for 104 weeks. This 

demand is based on the historical data of fiscal week 525. Of this data we take per facility the 

three process groups with the highest production volume, based on the number of layers 

(lithography steps), and search for each process group a product on material number level 

(the product number used within Infineon). We take the average WSPW of each process 

group as an input starting point and scale the WSPW to reach the theoretical utilisation of the 

base case: 75%. This demand scenario is added to the input file and is read into the plan 

function (Appendix D). The plan function uses, among other factors, the planned CT per 

product. This planned CT is adjusted in reality when the manufacturing CT changes 

significantly as the manufacturing CT strongly depends on utilisation. Therefore, we adjust 

the planned CT for all utilisation levels for experimentation as well. We determine this 

planned CT by running the model one time (1 replication), with a die bank and DC reach of 

35 days, for each theoretical utilisation level and by taking the average CT per product over 

the last 52 simulated weeks.  

5.5 Assumptions 

The assumptions we made for the contingency experiments are: 

- All demand is committed by the customers. Demand is a production target, rather 

than customer demand, because there are no customers modelled. 

- Pre-delivery is not possible. 

- The different locations of the die banks and the DCs are aggregated. 
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- We only consider stepper bottlenecks for the capacity contingencies. 

- We have unlimited inventory storage space. 

5.6 Results 

We divided the analysis of the results in two parts: coherence and optimising equipment and 

inventory contingencies. 

 Coherence  

The results reveal several main relationships between the tested factors, service levels, and 

costs. Appendix M (Table A-9) lists the detailed results.  

As shown in Figure 5-2 with an example of a fixed DC reach of 21 days, the different service 

level types have the same pattern; a low utilisation and a high die bank leads to a high 

service level. The graph looks the same for all DC reaches (see Appendix M, Figures A-8,  

A-9 & A-10). Therefore, we conclude that also a high DC reach, combined with a low 

utilisation, leads to a high service level. As the lines for the different service level types have 

the same pattern (see Figure 5-2), we base further relationship figures only on SLβ.  

Figure 5-2 also shows the relationship between the utilisation and the different service levels. 

As the utilisation increases, SLα, SLβ, and SLγ typically decrease, because production lead 

times increase (as described in Section 1.3). This will harm the customer service.  

SLβ and SLγ increase when the utilisation increases from 90% to 95%. This is not the case 

for SLα. We expect that the cause lies in the level of backorders which are included in SLβ 
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and SLγ, but not in the SLα. Therefore, we analyse the backorder levels and notice that the 

backorder level at 95% utilisation is much lower than the backorder level at 90% utilisation 

(see Appendix M, Figure A-11). An explanation for this lower backorder level is that there are 

enough buffers. From the stock level data obtained by the experiments we see that with 95% 

utilisation die bank stock levels are lower, but DC stock levels are higher than with 90% 

utilisation (see Appendix M, Figure A-12). This explains the lower backorder level and the 

higher SLβ and SLγ, as the service levels are related to the DC.  

For a given die bank reach, the SLα, SLβ, and SLγ increase with an increasing DC reach and 

with decreasing utilisation. An example, with a fixed die bank reach of 35 days, is illustrated 

in Figure 5-3 (left).  

Remarkable is that a utilisation of 90% or 95% does not make much difference for the SLβ. 

We have two possible explanations. The first possible explanation for the small difference for 

the SLβ at 90% and 95% utilisation is that we reached the point that we have enough buffers, 

so it does not make sense to have more stock, as is also brought forward before. Another 

explanation is that it is caused by the fact that the simulated utilisation and the defined 

utilisation are not equal (see Table 5-2). Table 5-2 shows that Regensburg and Villach are 

not able to reach this utilisation on average in the simulation model, we suspect that this is 

caused by the fact that the plan function does not include production plan smoothing as 

discussed in Section 2.2.1. Unfortunately, we cannot determine the cause of this utilisation 

difference by the gathered data and since we are not able to simulate the defined utilisation 

we are not able to make a statement about the real cause.  

Table 5-2 Defined and simulated utilisation for Villach, Regensburg, and Kulim of the steppers 

Facility Defined utilisation Simulated utilisation 

Villach 
90% 86% 

95% 86% 

Regensburg 
90% 85% 

95% 88% 

Kulim 
90% 90% 

95% 95% 

For a given DC reach, the SLα, SLβ, and SLγ increase with an increasing die bank reach and 

with decreasing utilisation. For a DC reach of 35 days, the SLα, SLβ, and SLγ are 100% at 

75% utilisation, regardless the die bank reach. Even with a DC reach of 28 days, a SLβ and 
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SLγ can be reached of 99.8% at 75% utilisation, regardless the die bank reach. Figure 5-3 

(right) illustrates these relationships for a fixed DC reach of 35 days. 

From a service level perspective, the DC reach is preferable to the die bank reach. Figure 5-

3 shows that the DC reach has a higher impact on the SLα, SLβ, and SLγ than the die bank 

reach, e.g. at a high DC reach (35 days) the service level is 100% at 75% utilisation, 

regardless the die bank reach. A die bank reach of 35 days alone does not guarantee a 

service level of 100%.  

Table 5-3 shows the SLβ for the different reach factor level combinations (die bank reach and 

DC reach) and 75% utilisation. By comparing the increase in service level when going to the 

left in the table with the increase when going down in the table, we can confirm the higher 

impact of the DC reach for all factor level combinations, except for one; a die bank reach 

increase from 7 to 14 has a larger impact than a DC reach increase from 0 to 7. Although the 

DC reach has a larger impact on the different service levels than the die bank reach, from a 

cost perspective, inventory at the DC is 2.6 times more expensive than die bank inventory 

(Section 4.3.2). We elaborate on this trade-off later in this section. 
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Table 5-3 SLβ at the different (die bank and DC) reach combinations (at 75% utilisation) 

  DC reach (days)  

 0 7 14 21 28 35 

D
ie

 b
a

n
k
 r

e
a
c
h

 (
d

a
y
s
) 0 86,6% 87,1% 91,6% 97,2% 99,8% 100,0% 

7 87,2% 90,5% 94,7% 97,7% 99,8% 100,0% 

14 91,1% 93,5% 95,7% 97,8% 99,8% 100,0% 

21 93,2% 94,4% 95,7% 97,8% 99,8% 100,0% 

28 94,3% 94,6% 95,6% 97,8% 99,8% 100,0% 

35 94,4% 94,5% 95,8% 97,8% 99,8% 100,0% 

Figure 5-4 displays the costs related to the tested factor level combinations at a fixed DC 

reach of 0 days. Although in this figure only the curve for which the DC reach is 0 is shown, 

the other curves of the other DC reaches overlap these lines a lot and are very similar. 

Therefore, this figure is a good representation of the relationships between the costs and the 

factor levels. This figure shows that the utilisation has a large impact on the costs; a low 

utilisation leads to higher costs than a high utilisation. The die bank and DC reach on the 

other hand, only have a minor impact on the costs.  

This is what we expected, as the investment costs (capacity costs) are much higher than the 

inventory costs. As the utilisation increases, the cost difference for the die bank and DC 
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reach combinations becomes smaller (the lines become more horizontal). For a given DC 

reach, we see that changing the utilisation has a higher cost impact than changing the die 

bank reach, because the inventory costs are small compared to capacity costs, which makes 

the relative cost difference larger.   

 Optimising the trade-off between inventory and equipment contingencies 

The trade-off between inventory and equipment contingencies consists of choosing between 

certain SLα, SLβ, and SLγ and costs. Table A-9 in Appendix M lists the values of these KPIs 

of the experiments for each factor level combination. As Figure 5-5 shows, lower costs do not 

always mean a lower service level, because the reaches have a high impact on the service 

levels (almost vertical red lines) and are relatively cheap compared to the capacity costs 

(almost horizontal blue lines). These capacity costs contribute most to the total costs. The 

figure also confirms our previous findings that with a low utilisation and a high DC reach a 

high service level can be reached. 

Table 5-3 shows the main results for different targeted SLα, SLβ, or SLγ. For each target the 

factor level combination resulting in the lowest costs is displayed. To give an example: 

assume Infineon wants to achieve a SLβ of at least 95% at the lowest costs, then a die bank 

and DC reach of 35 days and a utilisation of 85% has to be chosen to plan production.  

As the table shows, to achieve a certain SLβ at lowest costs, having a high die bank reach 

and utilisation is more important than having a high DC reach. We explain this by the fact 

that SLβ does not include backorders of previous weeks, so only the demand that could not 

be fulfilled this week. On the contrary, if we want to achieve a certain SLγ, which also 

considers backorders of the previous weeks, at lowest cost, it is more important to have a 

high DC reach instead of a high die bank reach. By keeping the inventory at stocking points 

close to the customer, a better service level SLγ can be reached, because reaction time is the 

fastest there. We can also keep the utilisation low to reach a certain SLγ. To achieve certain 

SLα, both a high die bank reach and a high DC reach are important.  

The costs for aiming at a certain SLγ are higher than the costs for aiming at a certain SLα or 

SLβ. This can be explained by the fact that this service level measures how fast a company 

can recover from backorders and includes a time component the other two service level 

types have not. This service level type (SLγ) is lower by definition, as described in Section 5.1 

and shown in Figure 5-2, so it is harder to reach the same service level as SLα or SLβ. 
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Table 5-4 Main results of optimising the trade-off between inventory and equipment contingencies 

 

 

How to achieve target at lowest 

costs 

KPI values 

 

Target 

Reach 

die bank  

(days) 

Reach 

DC 

(days) 

Utilisation 

(%) 

SLα  

(%) 

SLβ  

(%) 

SLγ 

(%) 

Costs 

(%) vs. 

base 

case 
 

SLα  

(%) 

>95% 14 35 80% 96,2% 98,3% 96,6% 93,8% 

>90% 7 28 80% 90,9% 95,4% 89,5% 93,7% 

>85% 35 35 95% 85,3% 92,6% 74,4% 79,6% 

>80% 35 21 95% 81,3% 91,0% 69,9% 79,5% 
         

SLβ  

(%) 

>95% 35 35 85% 88,6% 95,6% 83,6% 88,5% 

>90% 35 14 95% 79,2% 90,3% 66,6% 79,4% 

>85% 28 0 95% 64,8% 85,9% 48,1% 79,2% 

>80% 0 0 95% 49,7% 81,6% 18,5% 79,2% 
         

SLγ 

(%) 

>95% 14 35 80% 96,2% 98,3% 96,6% 93,8% 

>90% 0 35 80% 93,4% 96,9% 93,6% 93,7% 

>85% 0 28 80% 87,3% 94,6% 85,5% 93,6% 

>80% 21 35 95% 86,4% 94,6% 81,8% 88,3% 

5.1 Conclusion 

In this chapter we discussed the experiments to balance inventory and equipment 

contingencies. We tested 180 factor level combinations to balance inventory and equipment 

contingencies. We used the SLα, SLβ, and SLγ and the total costs as KPIs to assess how we 

can achieve a targeted service level at lowest costs. We conclude that producing at a low 

utilisation has a big negative impact on the costs although this positively influences the 

service level. From a service level perspective, the DC reach is preferable to the die bank 

reach. We think this is a legitimate result, as the company can react faster to incoming orders 

and is also still able to deliver in case of disturbances in the supply chain. The die bank 

provides these benefits as well, but to a lower degree. However, it would be cheaper to place 

stock at the die bank. Therefore, there exists another trade-off which is out of scope in thesis, 

but should be investigated further. Furthermore, we find that for each service level type 

different factor level combinations lead to the lowest costs. 
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Figure 5-5 Relationship between the costs, SLβ, and the factor level combinations 
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6 Conclusion and recommendations 

Section 5.1 contains the conclusions of this research and discusses its limitations. In Section 

5.2 we give directions for further research and do several recommendations. 

6.1 Conclusion and discussion 

This research consisted of two parts: balancing inventory and equipment contingencies and 

adjusting the supply chain simulation model with which this balance can be found. We 

formulated the following main research question: 

How can the equipment and inventory contingencies be balanced  

in a most cost efficient way for a defined α, β, or γ service level using a flexible and an 

accurate supply chain simulation model of Infineon Technologies? 

We found several existing approaches in the literature for supply chain simulation in general, 

discussing reusability and the level of detail of modelling, and simulation approaches for 

modelling a wafer fab. We considered these approaches for the supply chain simulation 

model of Infineon.  

We developed a flexible supply chain simulation model in which the bottlenecks can be 

adjusted easily. With this model we conducted a validation experiment and compared it with 

empirical data. From this experiment we concluded that the simulation model is accurate 

enough for our following experiments on balancing inventory and equipment contingencies, 

with a maximal deviation of 5% from the real data. Especially the accuracy of the CT 

improved from -21.9% to 1.1%. The ability to model a wafer fab by using simplifications as 

discussed in literature has proven to represent reality in a simplified yet accurate way.  

In our experiments we varied the die bank and DC reach to represent the inventory 

contingency and the utilisation to represent the equipment contingency. For each simulated 

factor level combination we collected the following KPIs: SLα, SLβ, and SLγ and the total 

costs.  

We used a simplified demand scenario, as our goal was to understand and quantify the 

relationships. The observed relationships were plausible. We conclude that from a financial 

point of view, a high utilisation is beneficial compared to high inventory levels. However, from 

a service level point of view, regardless the service level type (SLα, SLβ, and SLγ), a high 

inventory level is more of use, especially the inventory at stocking points close to the 

customer, because reaction time is the fastest there. DC stock is, however, from a cost 

perspective less preferable than die bank stock, as the DC stock is more expensive (in the 
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considered case by a factor of 2.6) than the die bank stock because of the diversification of 

the product at the stock points and the added value at the BE. 

It appeared difficult for the simulation model to simulate a high utilisation of the bottlenecks, 

as difference in defined and simulated utilisation showed. We assume this is caused by the 

fact that the current plan function incorporates no production smoothing, such as scheduling 

the demand earlier for production if capacity in a later period is not sufficient. This makes, 

however, the obtained results for utilisations of 90% and 95% less legitimate, although this is 

the utilisation you want to be at as a company from a cost point of view. 

We have to note that the SLα, SLβ, and SLγ will be higher in reality, because in the simulation 

model dispatching is modelled as FIFO, but in reality this prioritisation is done based on 

Earliest Operations Due Date. Moreover, measures exist to prioritise lots that are urgently 

needed. Furthermore, we only used a limited number of products as input for our 

contingency experiments. This can lead to different results than when the full product mix is 

used.  

Despite the limitations of this research, the results give a good overview of the relationships 

between inventory and equipment contingencies and the related trade-offs.  

6.2 Recommendations 

We recommend utilising the available equipment as high as possible and buffer at the 

distribution centres and die banks to make up for being less flexible and slower due to an 

increased flow factor. What “as high as possible” means needs to be studied with more 

detailed scenarios and a more detailed simulation model. Therefore, we give both 

contingency-related and model-related recommendations in this section. 

We discuss the recommendations for future research in different categories: simplification, 

reusability, plan, make, contingency experiments, data, and inventory contingency.  

 Simplification 

We suggest to compare the current simplified model to a more detailed model. This is also 

seen in literature, but mostly no historical data is used as a reference point to measure 

accuracy performance. We think this could extend the existing literature and prove whether 

or not and to which extend a detailed model’s performance is better. 
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 Reusability 

We propose to increase the reusability of the simulation model. Some code lacks 

background information about the decisions made, so that others can follow the reasoning 

behind the code. More extensive comments in the simulation code increase reusability. We 

are of the opinion that at this moment, it takes a lot of time to get to know and understand the 

whole model.  

 Plan  

We recommend to replace the simplified planning function by a more advanced object. Two 

former graduate students at Infineon created simulation objects that include plan stability and 

represent the demand-supply matching of Infineon to a high degree (Guo, 2015; Würf, 2015). 

These objects also incorporate ways to smoothen the production plan. How and to which 

extend this can be incorporated in the supply chain simulation model needs to be 

researched.  

 Make  

We propose to include a more detailed BE and to extend the FE object in the simulation 

model. The BE facilities can be modelled with their own bottlenecks, following the same 

approach as the modelling approach for the wafer fab object. In the FE, we think that the 

equipment representation can be improved by, for instance, incorporating cluster tools. This 

makes the use of a capacity factor redundant. Apart from that, the inclusion of more 

bottlenecks can be tested. Furthermore, we think the simulation can be extended, for 

example by including the possibility to study other wafer diameters. The 300mm wafer facility 

in Dresden should also be modelled for this purpose. Moreover, we think that the possibility 

to change the queue prioritisation to Earliest Operations Due Date should be researched to 

gain more reliable service levels and hence, more reliable experimental results. 

 Contingency experiments  

We recommend to use a more realistic demand scenario with a broader product mix and 

level demand uncertainty and to use a lower increment when increasing the factor levels 

(e.g. the utilisation or the reaches). By this end, more specific answers can be obtained when 

conducting contingency experiments.  
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 Data  

We suggest to document the way data in the databases are obtained (when, where, and 

how) and to set-up databases that contain data specifically for simulation purposes. The next 

step is to link the simulation model to the databases that are tailored to simulation. As 

simulation is an upcoming scenario analysis tool at Infineon, we expect this to increase the 

accuracy of the simulation models. By this end, the use of scaling factors is not needed 

which increases the credibility of the simulation model for people outside the department. 

 Inventory contingency planning  

We propose to experiment with other inventory planning approaches. Even if there is a 

simulation model available, simulation studies take a long time for parameterisation, running 

the simulation model and analysing the outputs. Therefore, we need to make a pre-selection 

of the factor levels we want to test. In this context, analytical inventory planning approaches 

(such as models making use of echelon inventory policies (e.g., Van der Heijden, 2014; 

Simchi-Levi, Kaminsky, & Simchi-Levi, 2008)) can help to narrow down the solution space to 

a few relevant scenarios that are a starting point for analysis with a simulation model, such 

as the one developed in this thesis. 
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Appendices 

Appendix A: Stock target parameters in more detail  

At Infineon, stock targets are set by the supply chain planner based on experience. Efforts to 

use an advanced tool that calculates stock targets based on forecast errors, lead time, 

supply variability, and service level were not successful. (Álvarez Luque, 2015) 

In the current process, the parameters that need to be set are: 

 Product type 

The supply chain planner can choose to set a target stock for a specific product or product 

group. Furthermore, the supply chain planner can choose different granularities, for instance 

material number, sales product or product family (plan position type). We explain these terms 

in more detail in Appendix F.  

 Manufacturing level 

When defining the manufacturing level, the supply chain planner can choose where to store 

the targeted stock, for example at the die bank or at the DC.  

 Demand type 

The supply chain planner can choose to exclusively consider orders, to use only forecasts, or 

to consider both orders and forecasts.  

 Unconstrained or constrained demand 

Moreover, the supply chain planner can choose between using unconstrained or constrained 

demand. With unconstrained demand is meant the demand without constraints, such as 

capacity, so what could be sold to the customers when for example capacity is unlimited. 

This is the opposite of constrained demand.  

 Calculation period 

The supply chain planner also specifies the period for the average demand calculation. 

 Stock type 

For the stock type parameter, Infineon defined three different stock types and because the 

system has to know what to plan first, a priority is given to each of these stock types. The 
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stock types and their priorities are shown in Table A-1. For each of these stock types, stock 

targets can be set.  

Table A-1 Stock types and their priority 

Stock type Definition Priority 

Safety stock Inventory that protects against stock-outs due to 

fluctuations in demand and supply.  

         High 

 

 

 

 

         

         Low 

Ramp-up stock Inventory that protects against an imminent 

increase in demand for new product ramp-ups.  

Min stock This inventory can be used to (partly) fulfil a 

customer order. The min stock is replenished 

when sufficient capacity is available.  
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Appendix B: Clarification of Overall Equipment Effectiveness terms  

Machine state terms (Infineon Technologies, 1998) 

 Downtime 

Downtime can either be scheduled, non-scheduled or unscheduled. 

- Scheduled downtime is the scheduled time or proportion of the overall equipment 

time the equipment is not able to perform its intended function. This includes among 

others (preventive) maintenance, setups, and production tests. 

- Non-scheduled downtime is the unscheduled time or proportion of the overall 

equipment time equipment is not able to perform its intended function due to 

unplanned down events, for example in case of technical failures, or due to a too low 

quality of input materials.  

- Unscheduled downtime is the time or proportion of the overall equipment time the 

equipment is not utilised in a schedule to be utilised in production, for example during 

holidays, weekends, or when the equipment needs to be newly installed or relocated 

(Infineon Technologies, 2008).  

 Non-sales production 

Non-sales production consists of time the equipment produces units for in-house use, mainly 

for research and development (R&D).  

 Sales production  

The sales production is the time the equipment produces units for sale.  

 Standby time 

The standby time is the remaining time and can be defined as the time the equipment is not 

used for unit processing or engineering, but is however available for production.  
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Appendix C: Operating curve theory 

Operating curve theory is based on G/G/1/ queueing theory (Aurand & Miller, 1997). The G 

stands for a general arrival distribution (the first and second G can differ), the 1 stands for a 

one-machine station, and  for unlimited capacity in the buffers (Hopp & Spearman, 2008). 

The FF is usually calculated by the formula:  

 

                                       𝐹𝐹 = 
𝐶𝑇

𝑅𝑃𝑇
 (16)  

In queueing theory the RPT is often notated as E(S) or 1/μ, which stands for the mean 

service time.   

The utilisation (UUm), or notated as ρ in queueing theory, is calculated using the productive 

time (PR) and the standby time (SB) by the formula: 

 

𝑈𝑈𝑚 = 
𝑃𝑅

𝑃𝑅 + 𝑆𝐵
  (17)  

The utilisation and the FF are determined as an average per week. The operating point is 

subsequently determined in a graph with the FF on the y-axis and the utilisation on the x-

axis.  

The shape of the operating curve is dependent on the variability (α) for which a low value 

indicates a good line performance. Alpha represents the variability of all aspects regarding 

the production process and defines the form of the operating curve. Alpha (α) can be 

calculated using the FF and the utilisation (UUm):  

 

𝛼 =  
(𝐹𝐹 − 1) ∗ (1 − 𝑈𝑈𝑚)

𝑈𝑈𝑚
 (18)  

This alpha can be seen as the overall queue variability. For a G/G/1/ queue this is equal to 

the squared coefficient of variation of the time between arrivals of a station plus the squared 

coefficient of variation of effective process time of a station (Ce
2) divided by two (Hopp & 

Spearman, 2008): 

 

𝛼 = 
𝐶𝑎
2 + 𝐶𝑠

2

2
 (19)  

The curve can be drawn by calculating the FF by using the calculated alpha value (α) of a 

week and the utilisation (UUm), varying from 0 to 1: 
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𝐹𝐹 = 1 +  𝛼 ∗  
𝑈𝑈𝑚

1 − 𝑈𝑈𝑚
 (20)  

This formula can be derived from Kendall’s notation for mean cycle times, in which the CT is 

most commonly notated as E(T) : 

 

𝐸(𝑇) = 𝐸(𝑆) ∗ (1 + 
𝐶𝑎
2 + 𝐶𝑒

2

2
∗ 

𝜌

1 − 𝜌
) (21)  

Two examples of the operating curve are drawn in Figure A-1. Example 1: first, the Operating 

Point is drawn in the graph. This is done based on the FF and the utilisation that week, which 

for this example have the values of 3 and 0.6 respectively. To draw the curve with the help of 

Equation 20, we calculate the α value (Equation 18). In this case α has a value of 1.33. 

Example 2: again the Operating Point is drawn in the graph, based on a FF of 2.7 and a 

utilisation of 0.7. This leads to an alpha value of 0.73. The curve is then drawn with the help 

of Equation 20. As demonstrated by this curve, a lower FF can be achieved at higher 

utilisation when the variability (α) is low.   
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Figure A-0-1 Example of the Operating Curve 
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Appendix D: Plan function 

In the planning part the release quantities per product into the FE (assuming infinite supply of 

raw materials) and from the die bank into the BE, are calculated backwards, considering 

WIP, actual and targeted inventory levels, orders, forecasts and unfulfilled production 

requests from previous weeks. The current version of the simulation model does not yet 

consider the Plan Load Limit, i.e. does not constrain the released quantities according to 

capacity restrictions. 

The planning procedure is executed in the simulation model at the beginning of each week t 

with a planning horizon of 26 weeks. At this point in time, a snapshot of the current situation 

is taken. We explain below how the backward calculation of the release of lots works. An 

overview of the mathematical notations used can be found in Table A-2. 

First we determine how many products should be released from the die bank into the BE 

based on backorders (unfulfilled requests from the DC) of the previous week reqDCuf, t-1), 

WIP in the assembly (assyWIP), the test (testWIP), the BE yield (yBE) and the test yield 

(yTEST). The yield is the proportion of the number of units for sale to the total number of all 

units processed. Furthermore the release quantity is based on the demand that we expect at 

the beginning of period t during period t+τ (τ=0,1..25) (Dt,t+τ) . τ is the planned CT in Assembly 

and Test and is given on a material number level (see Appendix F for more details for more 

details on these terms). Moreover, the targeted DC stock, which is based on the reach and 

the average demand pulled from the DC (dDCavg), based on the expectation of the future 

demand, the reach set for the DC (RE_DC) in days, and the actual DC stock (stDC) 

contribute to the quality we want to release from the die bank into the BE. This has to be 

divided by the BE yield (yBE) to make sure the output corresponds the desired output.  

The targeted quantity to be released for the die bank into the BE (prodBEtarget) is calculated 

with the formula: 

 

𝑝𝑟𝑜𝑑𝐵𝐸𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 = (𝑟𝑒𝑞𝐷𝐶𝑢𝑓,𝑡−1 + ∑ 𝐷𝑡,𝑡+𝜏

𝐵𝐸 𝐶𝑇

𝜏=0

− (𝑎𝑠𝑠𝑦𝑊𝐼𝑃𝑡 ∗ 𝑦𝐵𝐸 + 𝑡𝑒𝑠𝑡𝑊𝐼𝑃𝑡 ∗ 𝑦𝑇𝐸𝑆𝑇)

+
𝑅𝐸_𝐷𝐶 ∗ 𝑑𝐷𝐶𝑎𝑣𝑔,𝑡

7
− 𝑠𝑡𝐷𝐶𝑡)/𝑦𝐵𝐸 

(22)  

where, 

 

∑ 𝐷𝑡,𝑡+𝜏

𝐵𝐸 𝐶𝑇

𝜏=0

= ∑ 𝐷𝑡,𝑡+𝜏 + 𝐷𝑡,𝑡+𝐵𝐸 𝐶𝑇 

𝐵𝐸 𝐶𝑇−1

𝜏=0

 (23)  
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Subsequently, the requested quantities required to be released into BE (reqBE) are 

determined. The requested quantities for BE manufacturing can get negative when, for 

example, the demand goes down or the yield is high. Therefore, the requested quantity gets 

a value of either zero or the minimum value of the maximum quantity that can be released 

from the die bank (maxRelDB), based on the actual die bank stock (stDB), and the targeted 

BE quantity multiplied by the number of chips to be produced in case of multichips (mcqty). 

Multichips are assembled in the BE and consist, as the name already implies, of multiple 

chips. Thus, one multichip end-product consists of multiple semi-finished products. In case 

the end-product is not a multichip the value of mcqty is one.  

 

𝑟𝑒𝑞𝐵𝐸𝑡 = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛{𝑚𝑎𝑥𝑅𝑒𝑙𝐷𝐵𝑡, 𝑝𝑟𝑜𝑑𝐵𝐸𝑡𝑎𝑟𝑔𝑒𝑡,𝑡& ∗ 𝑚𝑐𝑞𝑡𝑦}} (24)  

where, 

It is not always possible to release all these requested products from the die bank, so there 

are also unfulfilled die bank requests (reqDBuf) for this week (t); there is a discrepancy in 

what we want to release and what we can release. The released requests are also called to 

be fulfilled (reqDBf). To back-up the unfulfilled requests, a targeted FE quantity to be 

produced should be determined. To determine this, first the demand expected after the FE 

CT period (Dt,t + FE CT) is determined by the formula:  

 𝐷𝑡,𝑡+𝐹𝐸 𝐶𝑇 = 𝑟𝑒𝑞𝐷𝐵𝑓,𝑡 + 𝑟𝑒𝑞𝐷𝐵𝑢𝑓,𝑡 (26)  

After that, the targeted FE quantity to be produced for the die bank (prodFEtarget) is 

calculated. The targeted products to be produced that week is dependent on the unfulfilled 

requests of the previous weeks, the demand that we expect at the beginning of period t 

during period t+τ (τ=0,1..25) (Dt,t+τ). This τ depends on the planned FE CT per FE facility per 

product, WIP in the assembly (fabWIP). Furthermore, the targeted products to be produced 

that week is dependent on the test (sortWIP, the number of chips that need to be produced in 

case of multichips (mcqty), the targeted die bank stock which is based on the reach, and the 

average demand pulled from the die bank (dDBavg) based on the expectation of the future 

demand, the reach set for the die bank (RE_DB), and the actual die bank stock (stDB).  

 

 𝑚𝑎𝑥𝑅𝑒𝑙𝐷𝐵𝑡 = 𝑠𝑡𝐷𝐵𝑡/𝑚𝑐𝑞𝑡𝑦 (25)  
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𝑝𝑟𝑜𝑑𝐹𝐸𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 = (𝑟𝑒𝑞𝐷𝐵𝑢𝑓,𝑡−1 + ∑ 𝐷𝑡,𝑡+𝜏

𝐹𝐸 𝐶𝑇

𝜏=0

∗ 𝑚𝑐𝑞𝑡𝑦

− (𝑓𝑎𝑏𝑊𝐼𝑃𝑡 + 𝑠𝑜𝑟𝑡𝑊𝐼𝑃𝑡) +
𝑅𝐸_𝐷𝐵 ∗ 𝑑𝐷𝐵𝑎𝑣𝑔,𝑡 ∗ 𝑚𝑐𝑞𝑡𝑦

7
− 𝑠𝑡𝐷𝐵𝑡) 

(27)  

where, 

Subsequently, the requested quantities to be released into the FE (reqFE) are determined: 

 

𝑟𝑒𝑞𝐹𝐸𝑓,𝑡 = 𝑚𝑎𝑥 {
0

𝑝𝑟𝑜𝑑𝐹𝐸𝑡𝑎𝑟𝑔𝑒𝑡,𝑡
 (29)  

Afterwards, the lots that need to be started in the FE (lsFE) are calculated by taking the yield 

(yFE), chips per wafer (cpw) and the lot size in the FE (lsizeFE) into account: 

 

𝑙𝑠𝐹𝐸𝑡 = ⌈
𝑅𝑒𝑞𝐹𝐸𝑓,𝑡

𝑦𝐹𝐸 ∗ 𝑐𝑝𝑤 ∗ 𝑙𝑠𝑖𝑧𝑒𝐹𝐸
⌉ (30)  

Finally, the lots that need to be started in the BE (lsBE) are calculated by dividing the fulfilled 

die bank requests by the lot size in the BE (lsizeBE): 

 

𝑙𝑠𝐵𝐸𝑡 = ⌈
𝑅𝑒𝑞𝐷𝐵𝑓,𝑡

𝑙𝑠𝑖𝑧𝑒𝐵𝐸
⌉ (31)  

The lot sizes used in the existing version of the simulation model are equal for each product, 

period and each facility. There is only differentiated between BE and FE lot sizes.  

 

 

 

 

 

 

∑ 𝐷𝑡,𝑡+𝜏

𝐹𝐸 𝐶𝑇

𝜏=0

= ∑ 𝐷𝑡,𝑡+𝜏 + 𝐷𝑡,𝑡+𝐹𝐸 𝐶𝑇 

𝐹𝐸 𝐶𝑇−1

𝜏=0

 (28)  
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Table A-2 Mathematical notation backwards calculation lot starts 

Notation Explanation 

assyWIP WIP in ‘assembly’ 

cpw Number of chips per wafer 

dBECTafter Demand after the BE CT: the production units demanded that have to be started to be 

produced in time in the BE 

dBECTduring Demand during the BE CT: the demand that should be covered by releases into the BE in 

one of the previous weeks 

dDBavg Average demand pulled from the die bank 

dDCavg Average demand pulled from the DC 

dFECTafter Demand after the FE CT: the production units demanded that have to be started to be 

produced in time in the FE 

dFECTduring Demand during the FE CT: the demand that should be covered by releases into the FE in 

one of the previous weeks  

fabWIP  WIP in ‘fab’ 

lsBE Number of lots to be started in the BE 

lsFE Number of lots to be started in the FE 

lsizeBE Lot size in the BE 

lsizeFE Lot size in the FE 

maxRelDB Maximum quantity that can be released from the die bank 

mcqty Number of chips to be produced in case of multichips 

prodBEtarget Targeted BE quantity to be produced in the BE for the DC 

prodFEtarget Targeted FE quantity to be produced for the die bank 

RE_DB Reach for the die bank 

rDC Reach for the DC 

reqBE Requested quantities to be fulfilled by production in the BE 

reqDBf Fulfilled die bank requests 

reqDBuf Unfulfilled die bank requests 

reqDCuf Unfulfilled DC requests (backorders) 

reqFE Requested quantities to be fulfilled by production in the FE 

sortWIP WIP in ‘sort’ 

stDB Actual die bank stock 

stDB Actual die bank stock 

stDC Actual DC stock 

testWIP WIP in ‘test’  

yBE BE yield 

yFE FE yield 
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Appendix E: Non-bottleneck delay determination (existing model) 

 

Stepper 1 Non-Bottleneck Stepper 2

Non-Bottleneck Sputter 1 Non-Bottleneck

RTT100 = 110 min 

t=1 avgUUm = 75%

One product with
lot size 25

RTT100 = 90 min 

t=2 avgUUm = 80%

RTT100 = 130 min 

t=3 avgUUm = 79%

 

Figure A-0-2 Process of product X for the delay of non-bottleneck determination example 

For the first non-bottleneck step we calculated a delay of 93.5 minutes. Now we have to 

determine the second and third non-bottleneck step delays (as shown in Figure A-2). The 

alpha remains 0.38. 

When a lot arrives at the second non-bottleneck step (t=2), we calculate the FF: 

𝐹𝐹 = 1 +  𝛼 ∗ 
𝑈𝑈𝑚

1 − 𝑈𝑈𝑚
= 1 + 0.38 ∗ 

0.80

1 − 0.80
= 2.5 

Before we can calculate the non-bottleneck delay for this second step we also have to 

determine the raw processing time, by using the given raw tool time for that step. The 

scaleRPT is again assumed to be 1.6, which is also the assumption in the simulation model.  

𝑅𝑃𝑇 = 𝑠𝑐𝑎𝑙𝑒𝑅𝑃𝑇 ∗ 
𝑅𝑇𝑇100 ∗ 𝑙𝑜𝑡 𝑠𝑖𝑧𝑒

100
= 1.6 ∗ 

90 ∗ 25

100
= 36 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

Now we calculate the delay of the second non-bottleneck step: 

𝐷𝑒𝑙𝑎𝑦𝑁𝐵 = 𝑅𝑃𝑇 ∗ 𝐹𝐹 = 36 ∗ 2.5 = 90 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

Note that the sputter utilisation is not taken into account for the third non-bottleneck step 

delay (t=3), however, the average UUm at t=3 is 0.79. Therefore, we have to calculate the FF 

again: 

𝐹𝐹 = 1 +  𝛼 ∗  
𝑈𝑈𝑚

1 − 𝑈𝑈𝑚
= 1 + 0.38 ∗ 

0.79

1 − 0.79
= 2.41 

We determine the raw processing time, by using the given raw tool time for that step. The 

scaleRPT is still assumed to be 1.6.  
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𝑅𝑃𝑇 = 𝑠𝑐𝑎𝑙𝑒𝑅𝑃𝑇 ∗ 
𝑅𝑇𝑇100 ∗ 𝑙𝑜𝑡 𝑠𝑖𝑧𝑒

100
= 1.6 ∗  

130 ∗ 25

100
= 52 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

Now we can calculate the delay of the third non-bottleneck step: 

𝐷𝑒𝑙𝑎𝑦𝑁𝐵 = 𝑅𝑃𝑇 ∗ 𝐹𝐹 = 52 ∗ 2.41 = 125.32 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 
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Appendix F: Product master data 

The product master data includes the material number, the sales product, the construction 

number, the number of manufacturing routes, the product family, the position in the facility 

chain, the facility type, the facility code, the manufacturing level, the location abbreviation, 

the planned CT, the multi-chip quantity, the technology class, the technology, the process 

class, the process group, the process line, the basic type identifier of the items in a specific 

facility, the basic type identifier for the DC, the manufacturing route number, the number of 

lithography layers (stepper visits), the package class, the package group, the package, the 

division, the business line and the product line. These terms are clarified in Table A-3.  

Table A-3 Clarification of product master data 

Term Abbreviation 

used in 

Infineon’s 

databases 

Clarification 

Material Number MA The product number used within Infineon. Every MA can be 

linked to one SP. 

Sales Product SP The product number communicated to the customer. One SP 

can be linked to multiple MAs.  

Construction Number BNR The construction number changes every manufacturing level. 

Manufacturing route MR In case of a multichip, the different chips might have to follow 

different routes before they are assembled. 

Product family PPOS type Distinguishes between chips, bare dies, multichips and 

devices. The chips and bare dies are processed only in the FE, 

the multichips and devices in both the FE and BE.  

Position in the facility 

chain 

Pos IF The process steps from DC counted backwards.  

Facility type Facility type Distinguishes between facilities (=F) and warehouses (=L). 

Facility code Facility The facility names in code:  

Facilities - Regensburg = _1702, Villach = _1502, Kulim = 

_WFKUL.  

Die banks - Regensburg = _LGDPR, in Villach = _LAGERV, in 

Kulim = _LGK, and many others (not relevant).  

DCs/Hubs - Europe = DCE, China = DCC, Asia = DCA, USA = 

DCU. 
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Manufacturing level ML Refers to the steps in the supply chain: fab = FAB, sort = 

SORT, die bank = DIEBANK, assembly = ASSY, test = TEST 

and DC = VKL. 

Location abbreviation Loc key The abbreviated facility names: 

Facilities & die banks - Regensburg = RBG, Villach = VIH, 

Kulim = KLM.  

DCs - Europe = DCE, Asia = DCA, USA = DCU, China (local 

hub only) = DCC  

Planned cycle time Planned CT  The planned cycle time in days for a specific product for a 

specific manufacturing level. 

Multi-chip quantity FE qty The quantity of the corresponding basic type (IF) in the final 

product.  

Technology class TC Technology class  

Technology Technology  Distinguishes, among others, between the power and CMOS 

technology classes. 

Process class Process class Letter-number combinations that stand for the aggregation of 

process groups. 

Process group Process group Letter-number combinations that stand for the aggregation of 

similar process lines. 

Process line Process line Name within Infineon’s global data system for all unit process 

steps to be performed in order to manufacture a product.  

Basic type identifier of 

the items in a specific 

facility 

Basic type (IF) A logistical identifier for the items in a specific facility.  

Basic type identifier 

for the DC 

Basic type 

(DCBNR) 

A logistical identifier for delivery to a DC. 

Manufacturing route 

number 

Workroute Letter-number combinations that stand for a specific route in 

that facility.   

Number of lithography 

equipment visits 

Litho steps The number of lithography steps needed for that product in that 

facility.  

Package class Package class Letter-number combinations that stand for the aggregation of 

package groups. 

Package group Package group Letter-number combinations that stand for the aggregation of 

similar process packages. 

Package Package The letter-number combinations that stand for chips that are 

assembled the same way. 

Division Division Defines for which division of Infineon the product is produced. 

Distinguishes between Automotive (ATV), Power Management 
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& Multimarket (PMM), Industrial Power Control (IPC), Chip 

Card & Security (CCS) or Other Operating Segment (OOS). 

Business line BL The number identification of the business line. A business line 

consists of one or multiple product lines. 

Product line PL The number identification of the product line. One product line 

is linked to a business line. 
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Appendix G: Route master data 

To explain how the routing in the simulation model is determined, an example is given. Part 

of the master data of a fictional product with MA001 is shown in Table A-4. 

Table A-4 Part of master data of a product with material number 001 

MA BNR PPOS 

type 

Pos 

IF 

ML Loc 

Key 

CT 

(plan) 

Technology Process 

Group 

Basic 

Type 

(DCBNR) 

Workroute 

MA001 00000001 Chip 14 FAB VIH   PT ST1D_8 A0001A AA-000AA1 

MA001 00000002 Chip 10 FAB RBG   WAFERFINISH SE3EIR A0001A SE-000SE1 

MA001 00000003 Chip 6 FAB VIH 21 WAFERFINISH AN3ADR A0001A AA-000AA2 

MA001 00000004 Chip 5 SORT VIH 7     A0001A   

MA001 00000004 Chip 4 DIEBANK VIH       A0001A   

MA001 00000005 Chip 1 VKL DCE       A0001A   

For this product, wafers are first processed in Villach, second in Regensburg, and third, 

again in Villach. After that, they stay in Villach for the ‘sort’ step and are stored at the die 

bank at the same location. From the die bank they are transported to the Europe DC. This 

product is not processed in the BE facilities, because the PPOS type is ‘chip’. In these 

facilities, the wafers each follow a different route, which is indicated with a special letter-

number combination. This is visualised in Figure A-3. 

Figure A-0-3 Visualisation of the process of a product with material number 001 

The letter-number combination for the route indication corresponds with a more detailed 

route-information the route table. Here is indicated which equipment the wafers visit in which 

sequence. For MA001 the route-information for the first process in Villach, with letter-number 

combination AA-000AA1, can be found in Table A-5. As can be read in this table, also the 

Raw Tool Times (RTT) of this product on each of the equipment are stated, as well as the 

facility code. Which is in the case of Villach 1502. 
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Table A-5 Route-information route PD-4065V1 (Villach) 

ROUTE BOTTLENECK_AGGREGATED RTT   

(min/100 

wafer) 

FACILITY 

AA-000AA1 NONBN 1196.2 1502 

AA-000AA1 LITHO/STEPPER 80 1502 

AA-000AA1 NONBN 3694.2 1502 

AA-000AA1 LITHO/STEPPER 106.6 1502 

AA-000AA1 NONBN 2576.8 1502 

AA-000AA1 SPUTTERN 174 1502 

AA-000AA1 NONBN 121 1502 

AA-000AA1 LITHO/STEPPER 151 1502 

AA-000AA1 NONBN 1614.2 1502 

AA-000AA1 LITHO/STEPPER 178 1502 

AA-000AA1 NONBN 6459.3 1502 

The specified route on the equipment in Villach and its corresponding Raw Tool Time is 

visualised in Figure A-4. 

 

Figure A-0-4 Visualisation of route PD-4065V1 in Villach 

This is how the routing for every product is determined by the simulation model. 
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Appendix H: Key performance indicators for validation 

Data Definition 

WSPW Number of wafers started 

LSPW Number of layers the started wafers need to get (number of lithography  

visits) 

WOPW Number of wafers leaving the fab 

LOPW Number of layers (on wafers) leaving the fab 

Utilisation Loading of stepper and lithography equipment; the share of the productive 

time of the uptime 

WIP  The number of product units that entered the wafer fab, but have not left 

the fab yet 

CT The time spent by a product unit in the wafer fab, from the release of the 

wafer into the fab till leaving the wafer fab manufacturing level 

FF The flow factor measured at the end of the process, so from entering the 

first equipment the wafer fab until leaving the last equipment in the wafer 

fab. The CT and RPT are used to calculate this factor 
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Appendix I: Implementation improvements  

 Key performance indicators calculation alignment 

First three scenarios are set-up to determine if there is any difference in the calculation of the 

WSPW, WOPW, LSPW, LOPW, and the CT in different cases. Secondly we show the 

experts these KPIs measurements we believe are correct. This is both done in a structured 

and visual way so that it is easily understandable for the database experts. 

One lot with lot size 25 enters the system. The route of this lot is dependent on the scenario: 

- Scenario 1: one facility visit 

o Villach 

o Villach   – CT = 3 weeks – 7 lithography layers 

- Scenario 2: two facility visits 

o Villach  Regensburg 

o Villach   – CT = 3 weeks  – 7 lithography layers 

o Regensburg – CT = 2 weeks – 1 lithography layer 

- Scenario 3: three facility visits 

o Villach (1)  Regensburg  Villach (2) 

o Villach (1)   – CT = 3 weeks  – 7 lithography layers 

o Regensburg  – CT = 2 weeks  – 1 lithography layer 

o Villach (2)   – CT = 1 week  – 0 lithography layer 

The actual KPIs appear to be measured in the following way: 

- WSPW (red) & WOPW (green) 

Scenario 1: 

Scenario 2: 

1 2 3 4 5 6 7 

1502 

1 2 3 4 5 6 7 

1502 1702 
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Scenario 3: 

The WSPW is measured each time a lot enters the first wafer fab facility and is written to that 

facility. The WOPW is measured when a lot leaves the first facility for the last time in the 

route and written to that first facility. 

- LSPW (red) & LOPW (green) 

Scenario 1: 

Scenario 2: 

Scenario 3: 

The LSPW is measured each time a lot enters a wafer fab facility and written to that facility. 

The WOPW is measured every time a lot leaves a facility and written to that facility as well. 

  

1 2 3 4 5 6 7 

1502 1502 1702 

1 2 3 4 5 6 7 

1502 

1 2 3 4 5 6 7 

1502 1702 

1 2 3 4 5 6 7 

1502 1502 1702 
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- CT (purple) 

Scenario 1: 

Scenario 2: 

Scenario 3: 

The CT is measured from entering the first facility until leaving the last facility. The CT is 

written to the last facility visited. 

The FF and utilisation are calculated according to the corresponding formulas, Equation 16 

and Equation 17 of Appendix C respectively. The WIP is measured by adding the number of 

wafers to that variable when they enter a facility and subtract the number of wafers that leave 

a facility. This is measured for each facility, independent of the route. 

 Flexible bottleneck implementation 

Two main adjustments have been necessary to implement the flexible bottlenecks. 

On initialisation the bottlenecks are read into the simulation model by a function called 

“setBottlenecksFE”. The programming language used by AnyLogic is Java. 

//for all facilities  
for(int j=0; j<facilitiesFE.size();j++){ 
   //store all facility names in a collection   

1 2 3 4 5 6 7 

1502 

1 2 3 4 5 6 7 

1502 1702 

1 2 3 4 5 6 7 

1502 1502 1702 
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   String facilityFE = facilitiesFE.get(j).siteName;  
   
   //initialize "count" 
   int count = 0; 
  
   //for all indicated bottlenecks.  
   for(int i = 0; i<(inputsExternal.bottlenecks_FE_DB.size());i++){ 
  
 //when the facility equals the facility in the access input table 
 if(inputsExternal.bottlenecks_FE_DB.get(i).facility.equals(facilityFE)){ 
    //store the name of all the bottlenecks 

String bottleneckName =       
inputsExternal.bottlenecks_FE_DB.get(i).bottleneck;    

    
//the bottleneck name is equal to the bottleneck in the access input table      
if(inputsExternal.bottlenecks_FE_DB.get(i).bottleneck.equals(bottleneckNam
e)){ 

  
//add the bottleneck to the bottlenecks in productionUnitFE and add to 
the bottlenecksFE collection 

     count += 1;  
     
     //bottleneck agent is 1 by default 
     if (count > 1){ 
  //add bottlenecks to the bottleneck work center for each facility 
  facilitiesFE.get(j).productionUnitFE.add_bottlenecks(); 
     } 

    
    //fill a collection to be able to indicate the name of the bottleneck         

related to the index the bottleneck has 
facilitiesFE.get(j).productionUnitFE.bottleneckNamesIndices.put(bottlene
ckName, count-1); 

 
//set a parameter to be able to indicate the name of the bottleneck 
facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-1).nameWorkCenter = bottleneckName; 
 
//set the Raw Tool Time factor 
facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-1).factorRTT = 
inputsExternal.bottlenecks_FE_DB.get(i).factor; 

    
//add bottlenecks to facilitiesFE collection on main layer 
int max_bn_fac = 
(facilitiesFE.get(j).productionUnitFE.bottlenecks.size()-1); 
bottlenecksFE.add(facilitiesFE.get(j).productionUnitFE.bottlenecks.get(m
ax_bn_fac)); 

     
//set number of tools, availability for each bottleneck of each facility 
int tools = 
inputsExternal.tool_qty_FE.get(facilityFE).get(bottleneckName).get(1); 
double availabilityBottleneck = 
inputsExternal.availability_FE.get(facilityFE).get(bottleneckName).get(1
); 
 
facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-1).numberTools = tools; 
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facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-
1).resourcePool.set_capacity(tools); 
 
facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-1).numberToolsVar = tools; 
 
facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-1).availability = 
availabilityBottleneck; 
 
//read the real utilisation of the bottlenecks from the input data to 
compare the simulated utilisation in a graph per bottleneck 
double utilisationCerberus = 
inputsExternal.uum_FE.get(facilityFE).get(bottleneckName).get(1); 
 
facilitiesFE.get(j).productionUnitFE.bottlenecks.get(facilitiesFE.get(j)
.productionUnitFE.bottlenecks.size()-1).utilCerberus = 
utilisationCerberus; 

    
}    

 } 
   } 
} 
 
//make a reference to the routes for each bottleneck 
for(int i = 0;i<bottlenecksFE.size();i++){ 
 bottlenecksFE.get(i).MasterData_Ref.refToRoutes = routes; 

} 

The parameters set need to be updated when the simulation model is running. This is done 

in the function “adjustParameters”. This function is called at the beginning of every simulated 

week. 

//initialize "count" 
int count = 0; 
 
//for all facilities 
for(int i=0;i<facilitiesFE.size();i++){ 
  
   //get facility name 
   String facilityFE = facilitiesFE.get(i).siteName;  
  
   //flexible bottlenecks 
   count = 0; 
   
   //for all bottlenecks   
   for(int j = 0; j<(inputsExternal.bottlenecks_FE_DB.size());j++){  
      //when the facility equals the facility in the access input table  
      if(inputsExternal.bottlenecks_FE_DB.get(j).facility.equals(facilityFE)){ 
 //store the name of the bottleneck 
 String bottleneckName = inputsExternal.bottlenecks_FE_DB.get(j).bottleneck;
  
         //when the facility equals the facility in the access input table 
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if(inputsExternal.bottlenecks_FE_DB.get(j).bottleneck.equals(bottleneckNa
me)){ 

   
//update the tools and availability of the bottlenecks 
int toolsBottleneck = 
inputsExternal.tool_qty_FE.get(facilityFE).get(bottleneckName).get(we
ekAfterWarmUp); 
double availabilityBottleneck = 
inputsExternal.availability_FE.get(facilityFE).get(bottleneckName).ge
t(weekAfterWarmUp); 

      
   
 facilitiesFE.get(i).productionUnitFE.bottlenecks.get(count).numberToo
ls = toolsBottleneck; 
   
 facilitiesFE.get(i).productionUnitFE.bottlenecks.get(count).resourceP
ool.set_capacity(toolsBottleneck); 
   
 facilitiesFE.get(i).productionUnitFE.bottlenecks.get(count).numberToo
lsVar = toolsBottleneck; 
   
 facilitiesFE.get(i).productionUnitFE.bottlenecks.get(count).availabil
ity = availabilityBottleneck; 
  
//update "count" 
 count += 1; 

 
} 

} 

} 

} 

 Delay determination approaches implementation 

Less aggregated alpha 

Alpha calculation by creating a Microsoft Access query: 

The query contains the facility, the week, the average utilisation of the facility-specific 

bottlenecks, the process group, the FF, and the calculated alpha based on this data. This is 

based on Equation 18 in Appendix C. The following expression is implemented in the query: 

Alpha: ((([FF]-1)*(1-[AvgOfUUM_AVG]))/[AvgOfUUM_AVG]) 

The function to load this alpha value in the simulation model is called “getAlpha”: 

//initialize alpha value and get product 
double alpha = 0.5; 
int pos_if = lot.facilityCount-1; 
int mr = lot.mr; 
String ma = lot.ma; 
String facilityName = 
readFEInputs.masterData.masterDataProducts.get(ma).facility.get(mr).get(pos_if); 
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//if a less aggregated alpha value is available in the input file 
if 
(readFEInputs.inputsExternal.alpha_FE.get(lot.firstFab).containsKey(lot.firstProce
ssGroup)&&readFEInputs.inputsExternal.alpha_FE.get(lot.firstFab).get(lot.firstProc
essGroup).containsKey(readFEInputs.weekAfterWarmUp)){ 
 
    //alpha takes that value 
 alpha = 

readFEInputs.inputsExternal.alpha_FE.get(lot.firstFab).get(lot.firstProcessGro
up).get(readFEInputs.weekAfterWarmUp); 

} 
//if there is no less aggregated alpha value available in the input file 
else{ 
 //for all facilities 
 for(int i=0;i<readFEInputs.facilitiesFE.size();i++){ 
 
     //get facility name 

String facilityFE = readFEInputs.facilitiesFE.get(i).siteName;  
   
 //when the facility equals the facility in the access input table
 if (facilityFE.equals(lot.firstFab)) { 
  alpha = readFEInputs.facilitiesFE.get(i).alpha_PRISM; 
  break; 
 } 

 } 
} 

return alpha; 

Use all bottleneck utilisations to determine non-bottleneck delay 

For all bottlenecks the utilisation is stored in a variable called “uUm_now”, a dashboard 

called “statUUm_now” collects these statistics. The “uUm_now” is calculated based on the 

productive time and the standby time of the equipment (Equation 2, Appendix C).  

The function is triggered by an event that makes sure it is updated every four hours: 

//initialize “aveUtilTotalBottlenecks” 
double aveUtilTotalBottlenecks = 0; 
 
//for all bottlenecks 
for (int i = 0; i<bottlenecks.size(); i++){ 

//get the mean uptime utilisation for manufacturing and add it to 
“aveUtilTotalBottlenecks” 

 aveUtilTotalBottlenecks += bottlenecks.get(i).statUUm_now.mean(); 
 //reset the statistic for that bottleneck 

 bottlenecks.get(i).statUUm_now.reset(); 
//add value including time to the statistics 

 bottlenecks.get(i).statUUm_now.add(bottlenecks.get(i).uUm_now, time()); 
} 
 
//average utilisation is the sum of all uptime utilisations divided by the number 
of bottlenecks 
double aveUtil = aveUtilTotalBottlenecks/bottlenecks.size(); 

//add this value to a collection with historical delay data 
utilForDelayHistory.add(aveUtil); 
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 Implementation of lot size determination improvement 

The number of lots are determined by creating a Microsoft Access query: 

The query contains the week, the facility, the basic type, the material number, the 

manufacturing route, the number of started wafers, the number of lots with lot size 50, the 

number of lots with lot size 25, the number of lots with another lot size (the remainder wafers 

that did not fit in a lot of 25 or 50), the specified lot size for Villach based on historical data, 

the standard lot size for Villach if there is no specified lot size available, the started lots for 

Villach, the overall started lots, and the average lot size. The last two values are used in the 

simulation model. 

The following expressions are implemented in the query: 

Lots_Lotsize_50: IIf([FACILITY_NAME]="1702";Int(([STARTED_WAFERS]*(2/3))/50);0) 

Lots_Lotsize_25: 

IIf([FACILITY_NAME]="WFKUL";Int([STARTED_WAFERS]/25);IIf([FACILITY_NAME]="1702"

;Int(([STARTED_WAFERS]-([Lots_Lotsize_50]*50))/25);0)) 

Lots_Lotsize_Other:  

IIf([FACILITY_NAME]="WFKUL" Or [FACILITY_NAME]="1702";IIf([STARTED_WAFERS]-

([Lots_Lotsize_50]*50+[Lots_Lotsize_25]*25)>0;1;0);0) 

Lotsize_Vil: 

IIf([FACILITY_NAME]="1502";IIf(IsNull([Lotsize_SPEC]);[Standard_Lotsize_Vil];[Lotsize_SPE

C]);0) 

Standard_Lotsize_Vil: IIf([Facility_Name]="1502";50;0) 

STARTED_LOTS_INT_Vil:  

IIf([Facility_Name]="1502";-Int(-([STARTED_WAFERS]/[Lotsize_Vil]));0) 

STARTED_LOTS_INT: 

[Lots_Lotsize_50]+[Lots_Lotsize_25]+[Lots_Lotsize_Other]+[STARTED_LOTS_INT_Vil] 

AVE_LOTSIZE: [started_wafers]/[started_lots_int] 

Facility “1502” is Villach, facility “1702” is Regensburg and facility “WFKUL” is Kulim. 
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Appendix J: Warm-up period (first warm-up phase) 

As we start with an empty system we want to fill the model in such a way that it reaches a 

steady-state before starting the experiments. By this end, the initialisation bias will be 

reduced. The time the simulation models needs to reach a steady state we refer to as the 

warm-up period. In the first phase only the input data of the first week is sent into the system. 

After this period, the experiment starts with the historical data of the other weeks. 

For the determination of the first warm-up phase we follow the steps of Welch’s graphical 

method (Law, 2007). 

Since our purpose with this warm-up phase is to fill the model, we run a simulation in which 

the output is measured in WOPW per facility with a length (j) of 150 and make 10 

independent replications (r): 

 𝑊𝑂𝑃𝑊𝑗𝑟 (𝑗 = 1…150, 𝑟 = 1…10)  (32)  

After that, we calculate the mean of the ith observation over 10 runs:  

 

𝑊𝑂𝑃𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑗 = 

1

10
 ∑𝑊𝑂𝑃𝑊𝑖𝑗

10

𝑟=1

  (33)  

Next, we take average over a window (w) of 2 to smooth out high-frequency oscillations: 

 

𝑊𝑂𝑃𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑗(2) =  

1

4 + 1
 ∑ 𝑊𝑂𝑃𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗+𝑠

2

𝑠=−2

  (34)  

If i ≤ 2 we use w = i-1. 

Thereafter, we plot the moving averages and choose observation h beyond which the output 

seems to be stable. We plot the moving averages for both the simulation existing and the 

updated simulation model, as displayed in Figure A-5 and Figure A-6 respectively. The 

Figures show that the output stabilises after 52 weeks or less. Therefore, we use a first 

warm-up phase of 52 weeks for our experiments. 
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Figure A-0-5 Welch's graphical method for the existing simulation model 
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Figure A-0-6 Welch's graphical method for the updated simulation model 
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Appendix K: Replications 

To gain reliable results for our experiments, we need to replicate the simulation a certain 

number of times to ensure the results lie in the desired confidence interval with a small 

relative error. Our goal is to achieve a confidence interval of at least 95% (α = 0.05) and a 

relative error of less than 5% (γ = 0.05) for the output of each facility. We determine this for 

each facility for both the existing and updated simulation model. 

We run the model with a warm-up period of 52 weeks and continue the run for 78 weeks (i = 

1…78) with historical input data. We make, again, 10 independent replications (r = 1…10) of 

this run and analyse the output of the WOPW. 

We have to seek for the minimal n* for which the corrected target value ≤ γ/(1+γ) (Law, 2007) 

by Equation 35. To do this, we need the student-t distribution (ti-1,1-α/2), the average over the 

replications (X̅r), and the variance (Sr
2) over the replications.  

 

𝑛 ∗ =  𝑚𝑖𝑛

{
 

 

𝑡 ≥ 𝑛: 
𝑡𝑖−1,0.975√

𝑆𝑛
2

𝑖
|𝑋̅𝑛|

 ≤
0.05

1 +  0.05

}
 

 

  (35)  

We determine n* by using a sequential procedure. This means that we calculate the values 

for every n, until we find a value which is smaller than the corrected target value which leads 

to our desired relative error.  

Table A-6 summarises the results we obtained by this method. To ensure that we reach the 

relative error requirement and the desired confidence interval, we have to take the maximum 

number of replications found. According to our results in Table A-6, we need to make 2 

replications to obtain reliable results.  

Table A-6 Required number of replications for each facility for α = 0.05 and γ=0.05  

 

Villach Regensburg Kulim 

Existing model 1 1 2 

Updated model 1 1 2 

As this number is low, we also decided to check the number of replications if we want to 

obtain a relative error of at most 0.5% (γ = 0.005) and a confidence interval of at least 99.5% 
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(α = 0.005). These results can be found in Table A-7. This table shows that we need to make 

at least 9 replications to reach this new target.  

Table A-7 Required number of replications for each facility for α = 0.005 and γ=0.005 

 

Villach Regensburg Kulim 

Existing model 5 9 7 

Updated model 8 9 9 

As we already have data of 10 replications, we decide to use this number of replications. We 

can therefore conclude, that our results lie in a confidence interval >99.5% with a relative 

error <0.5%. 
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Appendix L: Accuracy 

Figure A-7 illustrates where we made changes to the existing simulation model based on the 

relationship chart we introduced in Section 2.2.5 (Figure 2-8).  

These changes explain the improved overall accuracy measure Δ (Table 4-2 (Section 4.2.3)) 

and the improved accuracy measure Δ for each facility (Table A-8) with respect to the 

existing simulation model. We explain this for each KPI separately: 

WSPW  

The overall Δ and the Δ per facility for the WSPW of the updated simulation model improved 

in comparison with the accuracy of the existing simulation model (Table 4-2 & Table A-8). 

This is due to the fact that most of the missing data for the WSPW, which were left out in the 

existing model, have been recovered. If we look at the relationship chart (Figure A-7), the 

positive change of the input data has an impact on the rest of the simulation model. 

 

 

 

 
 

 

 

 

Changes 

w.r.t. 

model 

April 

Figure A-0-7 Relationship chart with the improved areas marked 
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WOPW 

Even though the overall Δ and the Δ per facility for the WOPW shown by the tables (Table 4-

2 & Table A-8) did not improve in comparison with the existing simulation model, we cannot 

say if the simulation model performs worse in this case. As wafer losses, which are not 

included in the yield, are not taken into account in the simulation model, we can explain the 

deviation from the historical value. However, we do not know the real impact. Furthermore, 

the increased (positive) value can be explained by the fact that we completed the input data.  

LSPW 

We can explain the difference between the overall Δ and the Δ per facility for the LSPW and 

the Δs for the WSPW (Table 4-2 & Table A-8), by the fact that the routes of the lots (so also 

the lithography steps) are aggregated on process line level for the simulation model. 

However, the historical LSPW is determined per product and its individual route. 

LOPW 

The same reasoning can be used for the LOPW as for the WOPW. Moreover, in the 

completed input data the routes of the lots (so also the lithography steps) are aggregated on 

process line level. However, the historical LSPW is determined per product and its individual 

route. 

CT 

The accuracy of the CT increased greatly in the updated simulation model in comparison 

with the existing simulation model (Table 4-2 & Table A-8). This is due to the many changes 

made (Figure 30) that influence the CT, such as the facility-specific lot sizes, the facility-

specific and less aggregated bottlenecks, and the variability (α). 

Utilisation 

The accuracy of the utilisation improved in the updated simulation model existing simulation 

model in comparison with the accuracy of in the existing simulation model, both overall and 

per facility (Table 4-2 & Table A-8). The utilisation is influenced by the bottlenecks and their 

parameterisation (Figure A-7). This is where we made changes and it had a positive impact. 

FF 

The accuracy of the FF improved as well, caused by a lot of refinements we made to the 

existing simulation model (Table 4-2 & Table A-8), such as the process group specific 
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variability (α), the facility-specific utilisation used for the calculation, the less aggregated 

bottlenecks and their parameterisation, and the improved lot sizes (Figure A-7). 

Table A-8 Accuracy per KPI per facility per KPI for the existing model and the updated model 

 

  

Simulation model WSPW WOPW LSPW LOPW CT Utilisation FF 

Villach Existing -2,3% 1,1% -0,6% 2,8% -11,8% -2,4% -4,1% 

 

Updated -0,4% 2,9% 2,3% 5,8% 6,6% 0,6% 6,2% 

Regensburg Existing   -3,6% 1,9% -1,2% 5,1% -17,5% -1,5% -2,1% 

 

Updated  -0,7% 2,0% 1,4% 5,2% -0,3% -0,5% -1,8% 

Kulim Existing   -0,3% 4,4% -0,6% 5,3% -36,4% -5,0% -8,3% 

  Updated  0,0% 6,1% -0,4% 7,1% -3,0% -3,0% 2,8% 
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Appendix M: Results contingency experiments 

Table A-9 lists the results averaged over the 5 replications for each of the 180 factor level 

combinations. The base case is made bold. 

Table A-9 Experiment results 

Experiment 

Average 

Die Bank 

reach 

(days) 

Average 

DC 

reach 

(days) 

Theoretical 

utilisation 

(%) 

Costs 

(%) vs. 

base 

case SLα (%) SLβ  (%) SLγ (%) 

1 0 0 75% 99,44% 53,4% 86,6% 21,7% 

2 7 0 75% 99,46% 61,5% 87,2% 45,7% 

3 14 0 75% 99,48% 73,5% 91,1% 62,7% 

4 21 0 75% 99,50% 79,1% 93,2% 69,3% 

5 28 0 75% 99,57% 82,5% 94,3% 70,9% 

6 35 0 75% 99,60% 83,3% 94,4% 71,0% 

7 0 7 75% 99,47% 64,9% 87,1% 56,2% 

8 7 7 75% 99,51% 77,4% 90,5% 69,5% 

9 14 7 75% 99,57% 85,2% 93,5% 78,5% 

10 21 7 75% 99,61% 89,1% 94,4% 80,3% 

11 28 7 75% 99,64% 89,5% 94,6% 79,9% 

12 35 7 75% 99,67% 89,3% 94,5% 80,1% 

13 0 14 75% 99,53% 79,9% 91,6% 77,0% 

14 7 14 75% 99,60% 88,1% 94,7% 86,5% 

15 14 14 75% 99,63% 91,2% 95,7% 87,9% 

16 21 14 75% 99,69% 91,6% 95,7% 88,0% 

17 28 14 75% 99,71% 91,4% 95,6% 87,7% 

18 35 14 75% 99,74% 91,7% 95,8% 88,0% 

19 0 21 75% 99,62% 92,4% 97,2% 94,4% 

20 7 21 75% 99,67% 94,7% 97,7% 95,1% 

21 14 21 75% 99,72% 95,1% 97,8% 95,3% 

22 21 21 75% 99,77% 95,0% 97,8% 95,1% 

23 28 21 75% 99,79% 95,0% 97,8% 95,2% 

24 35 21 75% 99,83% 95,0% 97,8% 95,2% 

25 0 28 75% 99,69% 98,5% 99,8% 99,8% 

26 7 28 75% 99,77% 98,7% 99,8% 99,8% 

27 14 28 75% 99,82% 98,8% 99,8% 99,8% 

28 21 28 75% 99,83% 98,8% 99,8% 99,7% 

29 28 28 75% 99,87% 98,8% 99,8% 99,8% 
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Experiment 

Average 

Die Bank 

reach 

(days) 

Average 

DC 

reach 

(days) 

Theoretical 

utilisation 

(%) 

Costs 

(%) vs. 

base 

case SLα (%) SLβ  (%) SLγ (%) 

30 35 28 75% 99,91% 99,0% 99,8% 99,8% 

31 0 35 75% 99,78% 100,0% 100,0% 100,0% 

32 7 35 75% 99,84% 100,0% 100,0% 100,0% 

33 14 35 75% 99,91% 100,0% 100,0% 100,0% 

34 21 35 75% 99,95% 100,0% 100,0% 100,0% 

35 28 35 75% 99,99% 100,0% 100,0% 100,0% 

36 35 35 75% 100,00% 100,0% 100,0% 100,0% 

37 0 0 80% 93,42% 57,8% 85,5% 30,1% 

38 7 0 80% 93,37% 61,3% 86,5% 36,6% 

39 14 0 80% 93,38% 62,8% 87,4% 45,4% 

40 21 0 80% 93,48% 70,7% 89,4% 56,4% 

41 28 0 80% 93,45% 74,8% 91,6% 64,2% 

42 35 0 80% 93,58% 79,1% 92,4% 68,3% 

43 0 7 80% 93,30% 63,8% 86,9% 37,6% 

44 7 7 80% 93,46% 66,8% 86,6% 47,4% 

45 14 7 80% 93,51% 74,4% 88,9% 62,5% 

46 21 7 80% 93,61% 81,3% 90,8% 70,5% 

47 28 7 80% 93,62% 85,2% 92,6% 75,3% 

48 35 7 80% 93,66% 87,6% 93,3% 77,4% 

49 0 14 80% 93,54% 66,3% 86,3% 49,4% 

50 7 14 80% 93,60% 75,5% 88,7% 63,7% 

51 14 14 80% 93,62% 81,2% 90,7% 72,2% 

52 21 14 80% 93,64% 85,0% 92,4% 76,9% 

53 28 14 80% 93,58% 88,0% 94,5% 78,5% 

54 35 14 80% 93,64% 88,5% 94,5% 78,7% 

55 0 21 80% 93,55% 75,7% 90,1% 69,4% 

56 7 21 80% 93,57% 83,3% 92,5% 79,2% 

57 14 21 80% 93,58% 86,9% 94,3% 83,3% 

58 21 21 80% 93,66% 89,3% 94,7% 84,5% 

59 28 21 80% 93,70% 89,4% 94,8% 84,0% 

60 35 21 80% 93,79% 89,4% 94,5% 84,7% 

61 0 28 80% 93,58% 87,3% 94,6% 85,5% 

62 7 28 80% 93,69% 90,9% 95,4% 89,5% 

63 14 28 80% 93,71% 92,4% 96,0% 91,0% 
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Experiment 

Average 

Die Bank 

reach 

(days) 

Average 

DC 

reach 

(days) 

Theoretical 

utilisation 

(%) 

Costs 

(%) vs. 

base 

case SLα (%) SLβ  (%) SLγ (%) 

64 21 28 80% 93,75% 93,0% 96,3% 91,0% 

65 28 28 80% 93,87% 93,0% 95,7% 90,2% 

66 35 28 80% 93,82% 93,0% 96,5% 90,8% 

67 0 35 80% 93,71% 93,4% 96,9% 93,6% 

68 7 35 80% 93,78% 95,8% 98,0% 95,7% 

69 14 35 80% 93,78% 96,2% 98,3% 96,6% 

70 21 35 80% 93,83% 96,2% 98,3% 96,8% 

71 28 35 80% 93,88% 96,2% 98,3% 96,7% 

72 35 35 80% 93,94% 95,9% 98,0% 96,1% 

73 0 0 85% 87,93% 48,1% 84,5% 26,1% 

74 7 0 85% 87,95% 57,0% 85,2% 33,6% 

75 14 0 85% 88,01% 57,7% 85,8% 35,6% 

76 21 0 85% 88,00% 59,6% 86,0% 39,6% 

77 28 0 85% 88,05% 63,5% 87,8% 47,3% 

78 35 0 85% 88,06% 68,4% 89,6% 55,2% 

79 0 7 85% 87,95% 59,7% 85,4% 33,6% 

80 7 7 85% 88,01% 60,5% 85,6% 36,2% 

81 14 7 85% 88,06% 63,1% 86,3% 41,9% 

82 21 7 85% 88,10% 67,3% 88,0% 50,7% 

83 28 7 85% 88,08% 72,2% 89,3% 59,0% 

84 35 7 85% 88,14% 77,8% 91,1% 66,4% 

85 0 14 85% 88,06% 60,9% 85,8% 36,0% 

86 7 14 85% 88,08% 62,1% 86,2% 41,2% 

87 14 14 85% 88,09% 67,4% 87,8% 51,7% 

88 21 14 85% 88,10% 73,2% 89,7% 60,7% 

89 28 14 85% 88,11% 77,9% 91,2% 67,4% 

90 35 14 85% 88,21% 81,7% 92,5% 72,1% 

91 0 21 85% 88,09% 62,7% 86,3% 42,0% 

92 7 21 85% 88,10% 68,3% 88,0% 52,3% 

93 14 21 85% 88,17% 73,5% 89,9% 60,5% 

94 21 21 85% 88,20% 78,4% 91,2% 67,5% 

95 28 21 85% 88,24% 81,9% 92,6% 73,1% 

96 35 21 85% 88,28% 85,0% 93,7% 76,2% 

97 0 28 85% 88,12% 68,0% 88,1% 53,4% 
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Experiment 

Average 

Die Bank 

reach 

(days) 

Average 

DC 

reach 

(days) 

Theoretical 

utilisation 

(%) 

Costs 

(%) vs. 

base 

case SLα (%) SLβ  (%) SLγ (%) 

98 7 28 85% 88,16% 72,7% 89,6% 62,1% 

99 14 28 85% 88,22% 78,6% 91,5% 69,3% 

100 21 28 85% 88,24% 82,3% 92,6% 74,7% 

101 28 28 85% 88,31% 85,0% 93,8% 78,1% 

102 35 28 85% 88,36% 87,0% 94,4% 79,4% 

103 0 35 85% 88,18% 75,3% 90,7% 66,8% 

104 7 35 85% 88,22% 80,0% 92,2% 73,8% 

105 14 35 85% 88,36% 84,7% 93,7% 78,8% 

106 21 35 85% 88,34% 86,4% 94,6% 81,8% 

107 28 35 85% 88,39% 88,5% 95,0% 83,4% 

108 35 35 85% 88,46% 88,6% 95,6% 83,6% 

109 0 0 90% 83,27% 53,5% 83,6% 24,7% 

110 7 0 90% 83,26% 55,5% 83,5% 33,6% 

111 14 0 90% 83,38% 57,5% 84,2% 34,9% 

112 21 0 90% 83,36% 58,8% 84,7% 38,1% 

113 28 0 90% 83,39% 62,4% 86,2% 42,1% 

114 35 0 90% 83,38% 63,7% 86,9% 47,0% 

115 0 7 90% 83,29% 59,2% 83,8% 33,7% 

116 7 7 90% 83,33% 59,8% 83,9% 35,3% 

117 14 7 90% 83,34% 61,0% 84,5% 38,9% 

118 21 7 90% 83,42% 65,2% 85,9% 43,6% 

119 28 7 90% 83,44% 68,4% 87,2% 49,7% 

120 35 7 90% 83,45% 72,8% 88,6% 56,3% 

121 0 14 90% 83,35% 59,7% 83,9% 35,4% 

122 7 14 90% 83,39% 62,5% 84,9% 39,2% 

123 14 14 90% 83,44% 64,9% 85,9% 43,9% 

124 21 14 90% 83,46% 68,6% 87,5% 50,7% 

125 28 14 90% 83,51% 72,4% 88,5% 56,2% 

126 35 14 90% 83,50% 76,3% 89,9% 63,1% 

127 0 21 90% 83,39% 62,4% 84,9% 39,6% 

128 7 21 90% 83,46% 65,0% 86,0% 44,3% 

129 14 21 90% 83,51% 68,7% 87,2% 50,3% 

130 21 21 90% 83,56% 73,1% 88,7% 56,6% 

131 28 21 90% 83,49% 75,5% 89,7% 63,3% 
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Experiment 

Average 

Die Bank 

reach 

(days) 

Average 

DC 

reach 

(days) 

Theoretical 

utilisation 

(%) 

Costs 

(%) vs. 

base 

case SLα (%) SLβ  (%) SLγ (%) 

132 35 21 90% 83,56% 79,7% 91,3% 68,7% 

133 0 28 90% 83,48% 65,0% 86,1% 44,5% 

134 7 28 90% 83,54% 69,4% 87,6% 51,0% 

135 14 28 90% 83,55% 72,9% 88,7% 57,1% 

136 21 28 90% 83,56% 75,9% 89,8% 63,2% 

137 28 28 90% 83,63% 79,8% 91,6% 68,8% 

138 35 28 90% 83,64% 83,4% 92,6% 73,0% 

139 0 35 90% 83,55% 69,2% 87,5% 51,6% 

140 7 35 90% 83,52% 72,0% 88,4% 58,7% 

141 14 35 90% 83,64% 76,9% 90,0% 64,6% 

142 21 35 90% 83,64% 80,3% 91,5% 70,5% 

143 28 35 90% 83,73% 84,2% 93,0% 74,1% 

144 35 35 90% 83,74% 85,4% 93,5% 76,8% 

145 0 0 95% 79,19% 49,7% 81,6% 18,5% 

146 7 0 95% 79,20% 56,2% 82,4% 35,5% 

147 14 0 95% 79,22% 60,3% 83,3% 41,2% 

148 21 0 95% 79,26% 62,3% 84,3% 44,7% 

149 28 0 95% 79,23% 64,8% 85,9% 48,1% 

150 35 0 95% 79,31% 67,1% 86,9% 51,6% 

151 0 7 95% 79,21% 55,5% 82,4% 37,7% 

152 7 7 95% 79,24% 63,5% 83,5% 42,8% 

153 14 7 95% 79,29% 64,8% 84,3% 46,5% 

154 21 7 95% 79,30% 69,1% 85,7% 51,0% 

155 28 7 95% 79,33% 71,8% 87,0% 55,5% 

156 35 7 95% 79,35% 75,0% 88,5% 61,0% 

157 0 14 95% 79,27% 64,2% 83,4% 42,8% 

158 7 14 95% 79,30% 66,1% 84,3% 47,0% 

159 14 14 95% 79,32% 69,5% 85,6% 51,0% 

160 21 14 95% 79,32% 71,6% 86,9% 56,1% 

161 28 14 95% 79,38% 74,9% 88,5% 61,8% 

162 35 14 95% 79,40% 79,2% 90,3% 66,6% 

163 0 21 95% 79,31% 66,5% 84,7% 47,4% 

164 7 21 95% 79,35% 69,2% 85,7% 51,3% 

165 14 21 95% 79,41% 72,9% 86,9% 56,1% 
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Experiment 

Average 

Die Bank 

reach 

(days) 

Average 

DC 

reach 

(days) 

Theoretical 

utilisation 

(%) 

Costs 

(%) vs. 

base 

case SLα (%) SLβ  (%) SLγ (%) 

166 21 21 95% 79,44% 75,3% 88,6% 61,8% 

167 28 21 95% 79,47% 79,4% 90,2% 66,6% 

168 35 21 95% 79,49% 81,3% 91,0% 69,9% 

169 0 28 95% 79,36% 69,0% 85,7% 51,7% 

170 7 28 95% 79,43% 72,0% 87,2% 56,3% 

171 14 28 95% 79,45% 75,9% 88,8% 62,4% 

172 21 28 95% 79,48% 78,2% 90,1% 66,6% 

173 28 28 95% 79,51% 81,2% 91,1% 70,1% 

174 35 28 95% 79,55% 82,9% 92,0% 72,1% 

175 0 35 95% 79,43% 72,1% 87,3% 56,9% 

176 7 35 95% 79,46% 75,6% 88,9% 62,5% 

177 14 35 95% 79,56% 79,9% 90,3% 67,2% 

178 21 35 95% 79,54% 81,6% 91,5% 69,9% 

179 28 35 95% 79,57% 83,5% 92,0% 72,5% 

180 35 35 95% 79,63% 85,3% 92,6% 74,4% 
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Figures A-8, A-9, and A-10 show how the different service level types relate to each factor 

level combination. All the curves follow the same pattern. However, the distribution in the 

graph of the SLγ occupies a larger range than the other service level types. The graph 

visualising the distribution for the SLβ occupies the smallest range.  
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Figure A-8 Relationship between SLα and the factor level combinations 
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Figure A-9 Relationship between SLβ and the factor level combinations 
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Figure A-11 confirms our expected cause by an example with a die bank reach and DC 

reach of 21 days. The figure shows that the backorder level (including backorders of previous 

periods) which is used for the SLγ calculation is much lower and more constant for 95% 

utilisation than for 90% utilisation at which the backorder level keeps increasing.  
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Figure A-10 Relationship between SLγ and the factor level combinations 
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Figure A-12 shows the die bank and DC stock levels for 90% and 95% utilisation (at a die 

bank and DC reach of 21 days). The die bank stock level for 95% utilisation is lower than the 

die bank stock level for 90% utilisation. However, for the DC stock level it is the other way 

round. 
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Figure A-12 Stock levels at 90% and 95% utilisation 


