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Abstract— This paper aims to find out how well the biometric
graph matching (BGM) method, that has shown promising
results on retina vein images with equal error rates (EERs) of
0.5%, is suitable for use on finger vein images, using the best
performing available vein vessel network extraction method.
The biometric graph matching method takes two extracted
graphs and aligns them before trying to match the edges of
the graphs. The amount of matched edge pairs are a measure
for the similarity of the graphs. Graphs are obtained from
images from the UTwente finger vein image database. Finger
vein graphs are more complex to extract than retina vein images
due to the nature of the images of the finger veins where low
contrast leads to very noisy graphs. However since the BGM
method is a matching algorithm that is robust against noise, we
expect it to perform well on our graphs. As we want to improve
the performance and find out how we can make the system
more specific to finger vein images, several enhancements of
the initial biometric graph matching method are examined,
including a new proposed line distance that has a better balance
between a difference in orientation and difference in length. The
adaptation in the distance score and including graph pruning
leads to EERs down to 0.93% using a 10% subset of the
UTwente finger vein image database. However when using a
40% subset, EERs rise to 2.89%. When compared to the state
of the art work (tested on the full dataset), EERs are as low as
0.37%, so our system does not perform well enough to compete
with the state of the art work. High EERs are shown to exist due
to the poor quality of the graphs. Certain veins are not always
detected, and when detected, might still not be matched due to
small side-branches. This demonstrates that the graphs created
from finger veins using the best available vein extraction method
(Miura‘s maximum curvature method) are not well suited for
biometric graph matching.

I. INTRODUCTION

In modern day many users of electronic equipment store
sensitive information on their computers. To ensure privacy
of this information, a need for biometric security systems,
for example finger print comparison and iris comparison, has
risen. In a biometric comparison two samples are examined
to see how similar they are. With this we have a similarity
score, on which we can perform a threshold to determine
whether or not the two samples are from the same instance.
The past few years finger print authentication has become
very popular for unlocking devices like computers and mo-
bile phones. However, since copying fingerprints has proven
to be possible, the need for a more secure non-invasive
system for personal identification has risen.

With vascular finger vein pattern recognition we aim to
develop a more secure, yet reliable alternative for biometric
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authentication solutions like finger print comparison. Finger
vein pattern comparison for authentication has several po-
tential advantages. Finger veins are internal features of the
finger, so they will be harder to copy than external features.
Also we can perform a liveliness detection as discussed by
[13]. Previous research has shown several methods have been
developed and succeeded in obtaining error rates below 1%
(also see Section II).

A weighted Local Binary Pattern (LBP) method using
a support vector machine (SVM) is used by [2], reporting
equal error rates (EERs) of 0.049%. EERs as low as 0.37%
using the principal curvature method with adaptive histogram
equalization (AHE) are reported by [13].

We decided to investigate the biometric graph matching
(BGM) method, which has been developed for retina vein
images where EERs of 0.5% are reported [34]. The BGM
method is a structure based method which does not look at
the vein image as an image, but actually looks at the structure
of the veins.

Images from finger veins are low in contrast, which is
likely to give noise in our results when we try to extract
graphs. An example of two of an image is given in Figure
1.

Fig. 1. Sample image of a finger before and after adaptive histogram
equalization (AHE) .

As the BGM method is tolerant to noise in graphs accord-
ing to [34], we believe it may work well on graphs created
from finger vein images as well. The purpose of this research
is to find out how well biometric graph matching, that has
been proven to be a reliable method for authentication on
retina vein images, will perform in finger vein authentication
systems. This leads to a number of research questions:

1) Is the biometric graph matching method as described
by [34] a suitable method for comparing finger vas-
cular patterns, given that we use the best performing
existing vein vessel network extraction method given
in [13]?
• How does the performance of this basic system

compare to the state of the art work?
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2) How can we improve the performance of our imple-
mentation of the biometric graph matching method?
• Is there another vein vessel network extraction

method which gives better results?
• What are the best parameter settings?
• Why are these the best settings and best vein vessel

network extraction method?
3) How can we make the biometric graph matching

method more specific to finger vein authentication in
order to improve the recognition performance?
• What would be the influence of including the

width of the veins as a cost-label on the perfor-
mance?

• Which other improvement points are there that we
can explore?

For this we will describe related work (Section II), the
used method in Section III and our implementation of the
system in Section IV. Results are given in Section V. We
will analyze and discuss the results and determine whether or
not the biometric graph matching method is a viable method
for authentication using finger vein images in Section VI and
say something about future work in Section VII.

II. RELATED WORK

In the past research has been done on finger vein images
using several methods. It is important to be able to compare
our results with the results of other research. In order to
get an idea of the different results from recent research,
a short summary of the results of a few papers is given
in Table I. Table II will give an overview of the results
of several methods used on the Peking Database V4 and
the UT Database, both with and without adaptive histogram
equalization (AHE) [13].

Results in Table I are hard to compare due to the different
datasets, and limited information on exact procedures regard-
ing the image acquisition and the way the methods were
implemented, etc. Therefore it is hard to directly compare
results. To make our results comparable to other methods,
we will perform our experiments on the same database as
used by [13] for Table II.

III. METHOD

Biometric graph matching is a method for matching two
graphs to determine whether it’s from the same instance or
not. It is a vein vessel network-based method that uses graphs
to represent the structure of the vein vessel networks. The
different image samples might vary due to noise, rotation,
translation, scaling, illumination or other factors, so called
capture imperfections. This leads to noisy spatial graphs.
This means graphs that are similar but not exactly the same.
The BGM method was chosen as it is an error- and noise
tolerant matching algorithm. The BGM method is described
in [20], [34], [35] consists of several steps, which are shown
in Figure 2.

Firstly a skeleton of the veins must be extracted. This is
then converted into a graph. After this the biometric graph

Authors Method Database EER (%)

[8] normalized
cross-correlation

678 persons, 1 finger per
person, 2 images per finger

0.00

[29] repeated line
tracking

678 persons, 1 finger per
person, 2 images per finger

0.145

[30] maximum
curvature

678 persons, 1 finger per
person, 2 images per finger

0.0009

[31] multiscale,
curvelets

400 persons, 8 fingers per
person, 1 image per finger

0.128

[9] local binary pat-
terns

60 persons, 8 fingers per
person, 10 images per finger

0.081

[2] weighted local
binary patterns

120 persons, 8 fingers per
person, 10 images per finger

0.049

[32] restoration,
skeletonization

80 persons, 8 fingers per
person, 10 images per fin-
ger,

0.76

[33] principal curva-
ture

unknown amount of
persons, unknown amount
of fingers per person, 29
unique fingers, unknown
amount of images per
finger, 118 images in total

0.36

[10] wide line detec-
tor

5208 persons, 1-4 fingers
per person, 10140 unique
fingers, 5 images per finger

0.87

[26] radon transform 10 persons, 1 finger per per-
son, 10 images per finger

0.01

[24] skeletonization 102 persons, 8 fingers per
person, 10 images per finger

1.164

[28] local derivative
pattern

30 persons, 8 fingers per
person, 10 images per finger

0.89

[3] 2D-Gabor + fea-
ture extraction

50 participants, 250 finger
vein images (1 finger, 5 im-
ages)

0.79

[7] Rotation invari-
ant: sobel edge +
SIFT vs. LBP

95 persons, 11 images per
person (1 finger)

1.71-2.98

TABLE I
OVERVIEW OF DIFFERENT PAPERS AND THEIR RESULTS AS GIVEN BY

[13] WITH ADDITIONAL PAPERS.

Method Original
Paper

Peking Database V4 UT Database

EER (%) No AHE AHE No AHE AHE

Normalized
cross-
correlation

0.00 14.67 9.81 3.15 1.99

Maximum cur-
vature

0.00 1.22 1.32 0.63 0.49

Repeated line
tracking

0.15 6.75 5.90 1.04 0.99

Principal cur-
vature

0.36 2.72 2.20 0.89 0.37

Wide line de-
tector

0.87 4.66 2.73 1.72 0.89

TABLE II
OVERVIEW OF RESULTS OF RESEARCH CONDUCTED BY [13]. SEVERAL

METHODS WERE TESTED OM BOTH THE PEKING DATABASE V4 AND THE

UT DATABASE. ALL EXPERIMENTS WERE PERFORMED BOTH WITH AND

WITHOUT ADAPTIVE HISTOGRAM EQUALIZATION (AHE).
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Fig. 2. Schematic overview of our method. In order to perform a biometric
graph matching, skeletons must be derived from the images, which are
then converted into graphs. These graphs are aligned and matched, giving
a similarity score .

matching is performed, which gives a similarity score. This
similarity score is a measure for how similar the graphs are.
These steps will now be explained in more detail.

A. Skeleton creation

In order to create a skeleton from the veins, several steps
must be taken. An overview of this is given in Figure 3.
Firstly there is some image enhancement taking place to
enhance contrast of the given image. An example of this can
be found in Figure 1. Now the image is enhanced in such
a way that the vessels are more clearly visible, the skeleton
extraction takes place. More on how this is implemented can
be found in Section IV. An example of a skeleton can be
found in Figure 4.

Fig. 3. Schematic overview of the high level idea of converting pictures
into skeletons

The skeleton has termination points (endpoints of edges),
Y-splittings (bifurcations) and X-splittings (crossovers) (the
latter two being two types of branchpoints). Termination
point paths might be due to noise if they are small, and
can be removed if their branches are smaller than a certain
amount of pixels (in [34] for example they use 15 pixels).

Fig. 4. Sample image of a skeleton found before and after throwing away
small noise bits .

B. Graph creation

Once the skeleton is found, it is going to be represented
as a more abstract graph, where small noisy fluctuations in
edges are not relevant anymore. A high-level overview of
this is given in Figure 5.

Fig. 5. Schematic overview of the high level idea of converting pictures
into skeletons

The skeletons are converted to a graph by looking at the
connected branch- and endpoints in the graph. In order to
match two graphs, we need to define graphs in a uniform
way. The graph representation is defined as:

g = (V ,E,µ,v) (1)

In this V is our set of feature points (bifurcation-, end- and
branchpoints) and E is the set of connected pairs of vertices,
which form an edge (so which points are connected by a
edge). Bifurcation points are a special type of branchpoints,
specifically where 1 vein splits to two veins. µ : V → R2

maps each vertex (point in a graph) v to the corresponding
Cartesian coordinates (q1,q2) (this is to be able to show the
point in the image space). v : E→ R2 maps each edge (also
called line) e to (l,θ) where the straight line between the
connected pair of feature points has a length l and a slope
θ . An example of this can be seen in Figure 6.

Fig. 6. Sample image of a graph
.

The different image samples might vary due to noise,
rotation, translation, illumination or other factors, so called
capture imperfections. This leads to noisy spatial graphs.
This means graphs that are similar but not exactly the same.
The Biometric Graph Matching algorithm is a noisy spatial
graph matching technique involving 2 parts: graph alignment
and error-tolerant graph matching. A schematic overview can
be found in Figure 7.

Two graphs are input, and will be aligned for the Ni
best matching edge pairs. Every time a similarity score is
calculated, and the score representing the best matching will
be our similarity score. We will briefly discuss the alignment
and similarity score now.
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Fig. 7. Schematic overview of the high level idea of finding the similarity
score between two graphs

C. Graph alignment and matching

Graph registration is done to ensure that both graphs are on
same spatial frame, free from rotation and translation. This
is done using a greedy RANSAC algorithm (this is described
in detail in [34], Algorithm 1).

Every pair of edges is scored using a dissimilarity score
based on the edge labels (length and orientation are used,
but not the exact location, as this may be different due to
the translation of the graphs). This dissimilarity score sab, as
used by [34]:

sab =
1

0.5∗ (la + lb)
∗
√
(la− lb)2 +(θa−θb)2 (2)

In which la and lb are the lengths of the respective edges
in graph a and graph b and θa and θb are their respective
angles. When the lengths are equal and the angles are equal,
the square root will go to zero, giving a distance between
the edges of 0.The distance is normalized for the length by
dividing by the sum of the lengths. The angle difference is
not weighted compared to the length difference, which is why
we have doubts on how this distance measure will reflect the
reality. Therefore we will later introduce a new dissimilarity
score, which we will explain in subsection III-D.

With this dissimilarity score sab we aim to find most
similar edge pairs, these are considered to give the best
alignment of the graphs we want to compare. For each of
these edge pairs, the compared graphs are translated and
rotated to make these two edges lay horizontal, starting in
the origin.

The vertices of the translated and rotated graphs are
compared using an Euclidean distance. If this distance is
less than certain tolerance ε , we have a match. The number
of matched edges ( C ) is used to calculate the similarity
score (also called distance score) dk:

dk = 1− C
amax ∗bmax

(3)

Here dk is the similarity score between two graphs (0 being
a total match, 1 being no match at all), C being the number
of matching edges, amax and bmax being the total number
of edges in graph a and b. This distance score is calculated
for the first Ni best matching edge pairs, as these are most
likely to give a good alignment of the graph. The minimum

distance score that is found among these matches is used
as the distance score between graphs. From all Ni possible
rotations that are tested, the one with smallest distance score
is kept and used.

Once the similarity scores are calculated for all genuine
matches and the impostor matches, we can threshold the
distance scores. If the score is below the threshold value
we decide that we have a match. With this we can find the
equal error rate (EER).

D. System Improvements

Besides the initial implementation we also studied our
second and third research question: How can we improve
the performance of our initial implementation and how can
we make it more specific to finger vein images?

One thing to investigate is pre-aligning the graphs in order
to make the angle differences as small as possible before
starting. If this would work well, we could perhaps omit
looking at the rotation in the step of aligning the graphs.
Together with this, besides sorting the edge pairs by sab,
sorting by angle difference (∆θ ) might be a good idea,
especially after pre-rotation. Also an increase in Ni, the
maximum number of attempts to align the graphs, might
have a positive effect on the performance.

We will also investigate different vein extraction methods
to see if this brings improvements in the system performance.
Besides this we will also investigate the parameter values
and how we might gain some performance improvements
by tuning those some more. Also graph simplification by
throwing out small edges will be investigated.

As shown in the initial implementation, we have a point
where we sort the edge pairs to find the best matching edge
pairs for the alignment. It was sorted by sab, but we could
also sort by the angle difference ∆θ . For the dissimilarity
score we do not only want to look at the length of the
edges, but also the orientation is important. As the current
dissimilarity score (see Equation 2) does not balance well
between angle difference and edge difference, we introduce
a new dissimilarity score that balances better between angle
and edge length, which is defined as:

dnorm(s1,s2) =
|l1eJθ1 − l2eJθ2 |√

l2
1 + l2

2

(4)

This equation can be simplified to:

dnorm(s1,s2) =
√

1−2ρ1ρ2 cos(θ1−θ2) (5)

In this equation, ρ is defined as:

ρi =
li√

l2
1 + l2

2

(6)

In this θ1 and θ2 are the angles of the edge in respectively
graph 1 and 2. l1 and l2 are the lengths of the edge in the first
and second graph. When both lengths and both angles are
equal, the distance is 0. However when there is a difference
in angle or length, the dissimilarity score will get larger, up
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to 1. In this equation both lengths and angles are equally
important and make a normalized and balanced dissimilarity
score that will allow better edge matching.

Besides this we can also try to enhance the results by
giving more weight to certain edges that are matched that
come from wider or longer veins in the original image. For
example, a vein with a length of 10 pixels would get a weight
of 10, while a vein with a length of 2 pixels would get a
weight of 2. In this way we could make the long and/or wide
main veins more important than some sub-veins or noise.

As stated before, the graphs created with the maximum
curvature method give quite noisy graphs with lots of side-
branches. Therefore we want to simplify the graphs a bit,
such that noisy edges will have less influence on the match-
ing. One way is to remove all edges between branch-points
and end-points smaller than N pixels. This process is called
pruning.

Besides this, it is also possible to combine several smaller
edges into one bigger edge. This is important because due
to the noisy nature of the graphs, you might not get a proper
match while they are in fact the same finger. A simplified
example is given in Figure 8.

Fig. 8. Sample image of 3 fictional graphs of the same finger. In (a) a
noisy side-branch is found in the middle, (b) shows an clear match with a
noisy side-branch at the end, (c) shows a clean graph.

Three fictional graphs of the same instance are shown. In
Figure 8(a) a noisy side-branch is found in the middle, (b)
shows a clear match with a noisy side-branch at the end and
(c) shows a clean graph. When we want to match the clean
graph (c) to the graph with a noise edge at the end (b), we
will have 1 edge that matches, which is a big edge, so the
graphs are probably a match. However when we have a noise
edge in the middle, like with (a), the big edge is split into
two smaller edges, which implicates they are not the same
edge (e.g. two small edges is not the same as the one big
edge), and we thus have 0 matching edges, and therefore
it’s not a matching graph. Therefore we want to apply a
edge-combination after the pruning to combine smaller edge-
parts that were separated by the noisy side-branch before. An
example of this is shown in Figure 9.

Fig. 9. Sample image where on the right the edge combinations are added
to the graph of the left to enhance the matching performance.

Finally we want to see what the effect is of using the edge
length as a weight-factor. For this, the way of calculating

the similarity between graphs is slightly altered. This is now
defined as:

dk =
C

(
amax
∑

i=1
la,i +

bmax
∑
j=1

lb, j)/2
(7)

where C is defined as:

C =
m

∑
n=1

lan + lbn

2
(8)

In this, lan is the edge of the n’th matching pair of the
first graph, lbn is the edge of the n’th matching pair of the
second graph and m is the total number of all matching edge
pairs. With this we take the average length of the two edge,
as they might not be exactly the same length, and both are
equally likely as the real length. This total matching length
C is now divided by the total average length of the edges in
the graphs in order to determine a ratio of how much of the
edges are matching. This way we make longer edges more
important to match than smaller edges.

IV. IMPLEMENTATION

For the implementation of the Biometric Graph Matching
method, several design choices were made. We made use of
work previously done by [13]. Parts of the already available
code is re-used for this research.

The system has been subdivided into three parts, such that
we can investigate some intermediate results which we can
save for use in the later parts. In this way we can reduce the
calculation time by not re-computing the same intermediate
results over and over again. These three parts are getting
the skeleton of the veins from a finger vein image, creating
a graph from the skeleton, and aligning and matching two
graphs to get a similarity score.

A. Converting input images to skeletons

In Figure 10 a schematic overview of converting pictures
to skeletons is shown. This section will explain the work-
flow and give some example images to clarify the process.

Fig. 10. The work-flow of the conversion of images into skeletons, where
the input image is processed such that the finger vein skeleton is found.

The original images are resized and an adaptive histogram
equalization (AHE) is done to enhance the contrast of the
image. An example result of this is shown in Figure 1.

These images are then input for Miura‘s Maximum Cur-
vature Method as developed by [30] and implemented by
[13]. This method is chosen as it showed the most promising
EERs according to [12], [13], which is an indication for good
finger vein extraction. Visual inspection confirms that this
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method provides a proper finger vein vessel extraction. Next
a threshold is applied to the result to obtain a binary version
of the resulting image. This threshold (0.005 for the UTwente
database, which will be described in more detail later) is
experimentally determined by visual inspection, such that as
little detail of the veins would disappear as possible. An
example of the result of this method can be seen in Figure
11.

Fig. 11. Sample image of unbinarized and binarized detected veins
.

This image is used to make a skeleton, which is imple-
mented by Matlab’s skeletonize function. Components with
less then n pixels are likely due to noise and are therefore
removed. An example of this is shown in Figure 4. In our
experiments we have chosen for n = 100 pixels, which, by
visual inspection, has shown to keep the relevant parts of
the vein vessel network. A part is relevant if it gives viable
information about the structure of the vein vessel network.
This gives us the skeleton image, which is an intermediate
result.

B. Converting skeletons to graphs

Now the skeleton of the vessels is extracted, we can find
the feature points; termination points, Y-splittings (bifurca-
tions) and X-splittings (crossovers). We can find these points
by scanning the skeleton with a 3x3 window for points
where we only have 2 white pixels (end point) or more
than 3 white pixels (branchpoint). Endpoint paths can be
removed if their branches are smaller than a certain number
of pixels (in [34] a minimum length of 15 pixels is used). A
simplified schematic overview of this part is given in Figure
12. In this overview, together with the skeleton image, a
list of the branchpoints (bifurcations and crossovers) and
endpoints (termination points) is used for the conversion of
the skeletons to graphs.

Fig. 12. The work-flow of the second part of the implementation, where
the skeleton image is processed into a graph.

In order to create a graph from a skeleton, we need to
know which branch- and endpoints are connected and need
to be an edge in the graph. For this we made a line tracer. The
line tracer starts at a given branch- or endpoint and traces the

line to the next branch- or endpoint. In this way the edges of
the graph are found. All these edges are saved in a large list,
which afterwards will be checked for double entries (tracing
from A to B or from B to A gives the same edge). These
will then be formalized into the graph as defined in Equation
1. An example of such a graph can be seen in Figure 6.

In practice we save our graph as the x- and y-positions
of the vertices, and we save l and θ to make sure we are
able to sort the edges more easy, for example when we need
the have the edge pairs with small angle differences, like we
will need for the experiments (more about this later).

For debugging purposes it is also possible to plot a
graphical representation of the graph onto the original image.
An example of this is shown in Figure 13. We see here that
the skeleton fits the veins by visual inspection, but there are
some edges that might be due to noise. The resulting graphs
will be saved and will be the input for the third part of our
implementation.

Fig. 13. An example of a graph displayed on the input image (after AHE
to make the veins more visible). .

C. From graphs to a similarity score

The third and last part of implementation is to compare
two graphs and find a similarity score. A schematic overview
is given in Figure 7. When we want to do a comparison,
we take two graphs and send them into the graph matching
code, which calculates the similarity score (see Equation 3)
between the two graphs. The pseudo-code of this can be
found in [34], Algorithm 1. This score is normalized between
0 and 1, where 0 is two graphs exactly matching, and 1 is
not any similarity at all.

V. RESULTS

Several experiments were performed to get an idea of how
well the system will perform with different conditions. For
this we will first introduce the dataset that was used, after
which we will explain something about our experiments and
give the results.

A. Dataset

There are several datasets available with finger vein im-
ages. In order to make our results as comparable as possible,
we use the UTwente Database, containing finger vein images
of 60 participants, with 4 pictures of 6 different fingers per
participant. From those 4 images, there are 2 weeks between
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two sets of 2 images. Previous results using this database
were given by [13], and can also be found in Table II. Also
the Peking V4 database, that was also used by [13] was
considered, but when trying to create initial graphs, it showed
the image quality was not sufficient to create useful graphs.

B. Overview of the experiments

We decided to use the maximum curvature method as this
one gave the best results when looking at both with and
without adaptive histogram equalization, and therefore we
expect it to be the most stable option. When only looking at
the results with adaptive histogram equalization, the principal
curvature method shows slightly better results, and might be
considered as well.

There are several ways in which we can sort the edge pairs
in matching algorithm as described in [34]. The initial way
is to find the Ni smallest dissimilarity scores between edge
pairs and use those for rotation. However, as we can assume
that the images are oriented in the same way, we can also
only take a look at the smallest Ni angle differences.

Also the distance between two edges (so how far two
edges are away from each other) in the distance-matching
(where we find how many edges in the graphs are matching
in total after rotation and translation) should be less than
a certain value ε . With some experimental matching of the
first few images we found that ε = 10 was a reasonable value
to obtain good results. For matching two edges, we decided
that the minimum length of a edge should be 10 pixels, to
prevent random small pieces from matching.

For the experiments we made two sets of graphs. One
set that was taken directly from the input pictures (normal
graphs), and one set that was pre-aligned using rotation
based on the finger contour (pre-aligned graphs). For this, the
middle line of the finger was determined using the average
of the top-line of the finger and the bottom-line of the finger.
The idea is that if a rough pre-rotation based on the contour is
good enough to give proper results, we can save calculation
time on the rotation in the algorithm.

To calculate the equal error rates (EER), distance scores
for N genuine matches and N impostor matches are calcu-
lated. Then we step by step increase the threshold value to
determine the false acceptance rate (FAR) and false rejection
rate (FRR). The EER is the point where the FRR and FAR
are equal.

The first experiment is done to get a baseline result to
which we can compare the results of our changes to the
initial implementation. In our second experiment we orient
all the edges in the same direction to examine the orientation-
dependence of the algorithm. The third experiment removes
all small edges from the graph to see if these small edges, that
may be considered to be noise, will improve the performance.
The fourth experiment studies the amount of edge pairs that
need to be tried for alignment in order to get good results.
Our fifth experiment investigates a the new balanced dissim-
ilarity score dnorm. Experiment 5a attempts image blurring as
noise reduction and Experiment 5b investigates different vein
vessel network extraction methods to see whether this could

lead to an improved performance. Experiment 6 investigates
graph pruning as a more subtle way of edge removal. Exper-
iment 7 investigates edge combining to see if reconstructing
longer vessels again will improve the number of matching
edge pairs. Experiment 8 investigates the influence of using
the lengths as a weight for how important an edge match is.

C. Experiment 1: Initial implementation

The first experiment was done on 10% of the dataset to re-
duce long calculation times. This 10% is, in all experiments,
selected using the images of the first 6 persons from the
dataset. This gives us 36 unique fingers with 4 images each.
With this we have 216 genuine matches. We randomly select
216 impostor matches to compare against. Extrapolating the
time of the small experiment, matching all 1440 images
with their corresponding images, which is 2160 genuine
comparisons, and calculate 2160 impostor pairs would take
well over 4 hours, given Ni = 120, which means we try to
rotate and match the two graphs with the first 120 possible
edge pair matches. The results of the first experiment can be
found in Table III.

EER (%) Normal graphs pre-aligned graphs

Sorted by sab 10.2 10.2
sorted by ∆θ 4.63 8.33

TABLE III
RESULTS OF EXPERIMENT 1: 10% OF THE DATASET IS USED, OF WHICH

BOTH PRE-ALIGNED AND NOT PRE-ALIGNED GRAPHS ARE MADE. THE

BEST MATCHING EDGE PAIRS ARE FOUND BY SORTING ON EITHER

DISTANCE OR ANGLE DIFFERENCE.

From this test it seems that sorting by angle rather than by
distance between the edges is a promising option. However
it should be noted that the sorting by angle is slower in
generating results than sorting by distance. This might be
due to the fact that most small distances are caused matches
between small edges, which will not be calculated all the
way through as they get filtered ([34], Algorithm 1, line 12,
an additional length threshold is performed to prevent these
small edges from matching) because they would generate
unreliable results, while with angle differences that is not
necessarily the case as long edges can also have a small
angle difference if they’re oriented in the same direction
(most veins are oriented horizontally), which is likely with
the fingers in our images.

The EERs are still very high in Experiment 1. When
analyzing the data, it seemed that seemingly similar edges
were rejected. When we look at the way the distance measure
is constructed, it doesn’t take the direction of the edge into
account. As we traced from all points, the edge in one images
might have been detected from left to right while in the other
image it was detected right to left. This would lead to a non-
match while it would be a proper match.
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D. Experiment 2 - Orientation of the edges
Because of the directional dependency, we decided to

orient all edges in such a way that the smallest X-value is
on the begin-coordinate and the largest X-value on the end-
coordinate. In this way, all edges would be oriented from
left to right. And as the veins are generally oriented in a
horizontal way, we do not have to add a sorting in the Y-
direction for these rare cases where there might be a small
vein with two same X-value for both the begin-coordinate
and end-coordinate of the edge. With these oriented edges
we performed our second experiment. The rest of the system
is unchanged compared to our first experiment. The results
can be seen in Table IV.

EER (%) Normal graphs pre-aligned graphs

Sorted by sab 4.63 4.17
sorted by ∆θ 1.85 5.09

TABLE IV
RESULTS OF EXPERIMENT 2: THE CONDITIONS ARE THE SAME AS IN

EXPERIMENT 1, ONLY THE ORIENTATION OF THE EDGE IS CORRECTED

SUCH THAT THE SMALLEST X-VALUE IS ALWAYS IN THE

BEGIN-COORDINATE.

With this change there was an instant improvement of all
EERs. It is interesting to see that the EERs are nearly equal
for pre-aligned and non pre-aligned graphs (1 match more
or less is a 0.46% difference in EER given the 10% of the
dataset) when we sort by the edge distances, while when we
look at the smallest angles for matching, the pre-alignment
clearly has a negative effect on the EER.

When we analyzed the errors with the pre-rotation, it
seemed that these images were not properly rotated due to
deformation of the finger in one of the two images. An
example of two images that give a mismatch is given in
Figure 14.

Fig. 14. An example of two images that give worse results due to pre-
alignment.

One can see that the left image is rotated clockwise very
slightly compared to the right image when you look at the
structure of the veins. However when you look at the contour
the rotation seems to be much larger, mostly due to the fact
that in the bottom contour of the right image it goes slightly
upwards, therefore giving a larger pre-rotation than needed
when we want to do a good angle comparison. The fact
that the pre-alignment gives worse results shows that the
alignment that is used is not very robust. This is probably
due to the dissimilarity score sab, which we will investigate
further in Experiment 5.

E. Experiment 3 - Removing small edges

In our third experiment the aim was to find out whether our
hypothesis that the small edges caused many errors was in
fact true. We decided to see what would happen if we remove
all edges from the graph that are smaller than 10 pixels, as
these are not valid for matching either way for the distance
measure. This would allow for more useful matches to be in
the 120 matching edge pairs that we try for rotation. Also it
would make the total number of edges smaller, which should
make Equation 3 more robust, as there is less influence of a
random number of small edges in our graphs. The results of
this experiment can be found in Table V.

EER (%) Normal graphs pre-aligned graphs

Sorted by sab 6.02 5.56
sorted by ∆θ 1.85 3.24

TABLE V
RESULTS OF EXPERIMENT 3: THE CONDITIONS ARE THE SAME AS IN

EXPERIMENT 2, ONLY THE SMALL EDGES ARE REMOVED FROM THE

GRAPHS.

In case of the distance matching by sab this removing
seems to have a negative effect on the matching results.
However when we look at the results with the angle-sorting,
results stayed the same or improved as expected. This
suggests that in a few cases either the number of longer
edges in the graphs is more random than we expected, and
thus making the distance score more random rather than more
reliable, or that we accidentally remove edges that we used
to rotate our graphs properly, and we need to search further
in our list of Ni edge matches for a good match. To see if
the latter is indeed the case, we investigated the influence of
the value Ni.

F. Experiment 4 - Influence of Ni

In our fourth experiment the influence of the choice of
Ni is studied. As we do not know for sure whether our best
rotation will be found when looking at the first 120 matching
edge pairs (out of at least several thousands of edge pairs)
for rotation. Ni was increased in 5-fold to 600 to see whether
the results would improve. The results of this experiment can
be found in Table VI.

EER (%) Normal graphs pre-aligned graphs

Sorted by sab 1.39 2.78
sorted by ∆θ 0.93 1.85

TABLE VI
RESULTS OF EXPERIMENT 4: THE CONDITIONS ARE THE SAME AS IN

EXPERIMENT 3, ONLY NOW WITH Ni = 600 INSTEAD OF Ni = 120.

As we can see, the increase of Ni has a great effect on the
results, as all EER’s are decreasing. On one hand that tells us
that we may need to increase our Ni value further to get better
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results. On the other hand it also tells us that both sorting
methods are still not ideal, as the best matching rotated
graphs don’t come from the edge pairs that are necessarily
on the top of the list. The threshold value when using the
angle difference an non-rotated graphs is found to be 0.786.

To get some information about reproducibility of the
EERs, the 0,93% EER of Experiment 4 was validated by run-
ning the experiment 5 more times. This gave EERs of 1.39%,
0.93%, 0.93%, 1.39% and 0.93%. As 0.46% corresponds to
1 image more or less matched, we can conclude that the
results are reproducible within a small error-range (0.46%, 1
image). To get an idea of the distribution of distance values
we plotted them against their number to get a useful density
plot. This plot can be seen in Figure 15.

Fig. 15. The density plot of the distance scores. It can be clearly seen that
the band in which the impostor match distance scores are is quite narrow,
while the values of the genuine matches are quite spread.

As can be seen, the density of impostor matches is very
high in the band with a distance score of 0.8-0.9 (0 being
an absolute match, 1 being no match at all). On the other
hand we can see that the band of the genuine matches is
much wider and spans a much wider range of 0.4-0.8. This
can be explained by the fact that when you try to match two
images that are not exactly the same, there will always be
some disturbances and veins that are detected in one image
but not in the other. What we can see however is that in
general the quality of the images, and with that the graphs,
can differ much, which is an explanation for the wider band
of genuine matches. From this result we can conclude that
the impostor matches are usually well-defined such that the
scores are very similar. So if two images are not a match,
we are very well able to detect that they are not a match.
However when it comes to matching two genuine graphs, it
seems to be more difficult. Therefore in order to improve
the performance of the system it is suggested to improve the
matching for the genuine matches and try to find out why
certain graphs have more difficulty matching than others.

In order to see how the system would change when using a
larger piece of the dataset, we also did an experiment where
we increased the part of the dataset we use from 144 images
to 600 images. As this drastically increases the calculation
times, it was decided to only calculate the value for the
situation that already gives us the lowest EER, so using the
angle difference for sorting and the normal non pre-rotated
graphs. This gave us an EER of 3.67%, which is significantly
higher than the initial equal error rate of 0.93% on 10% of
the dataset. The corresponding threshold value is 0.795.

While our initial testing, given the conditions as used
in Experiment 4 (Ni = 600, small edges removed, sorted
edges and 10% of the dataset used) showed error rates
around 0.93%, which is in edge with the results produced
by the methods tested by [13], using a larger part of the
dataset has a drastic effect on the performance, with an EER
around 3,67%. As shown in the density plot of Figure 15, all
impostor scores are well-defined in a small bandwidth. With
this we can assume that in the larger part of the dataset, there
are probably more low-quality graphs that are categorized as
impostors. A further increase of Ni was done to see where
the optimum would be, but this did not make a difference
for the EER, and therefore was not investigated further.

G. Experiment 5 - Changing the dissimilarity score

As said before, the number of edge pairs used for the
alignment of the graphs had to be increased to Ni = 600 to
obtain good results. As we want to find a good match as
early as possible, we decided to have a look at the way the
dissimilarity score between two edges is defined for sorting
before the rotation. We replace the original dissimilarity
score sab as given in Equation 2 by the new balanced and
normalized dissimilarity score dnorm as shown in Equation 5
as explained in the previous section. This gave the following
results (given Ni = 600):

EER (%) Using first 144 images
of the dataset

using first 600 images
of the dataset

Sorted by ∆θ 0.93 3.67
sorted by dnorm 1.39 3.89

TABLE VII
RESULTS WHEN COMPARING THE OLD DISTANCE MEASURE sabFOR

SORTING EDGES COMPARED TO THE NEW DISTANCE MEASURE dnorm FOR

BOTH A SMALL AND LARGER PART OF THE DATASET.

The results, as can be seen, are quite similar. Again, the
0.46% difference in EER at 10% of the dataset comes down
to one more match or mismatch, which is most likely due
to the random selection of impostors. The 0.22% difference
in EER at the larger part of the dataset comes down to two
matches difference. These are again very small deviations in
EER (1 image in 10% of the dataset or 2 images in 40% of
the dataset), which leads to believe that the new dissimilarity
score, even though results look slightly worse at first sight,
be a good idea.

To see if the new dissimilarity score indeed helps the
sorting, we investigate a decrease of Ni to Ni = 120 again.
The EER given 10% of the dataset was again 1.39%. This
leads to the conclusion the new dissimilarity score dnorm
indeed sorts better than the old dissimilarity score sab and
gets the right edge pairs for rotation sorted in the first 120
edge pairs. Therefore we decided to keep Ni = 120 with the
new dissimilarity score.
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H. Experiment 5a - Blurring images
The graphs that were created show noisy results as can

be seen in Figure 6. Therefore we decided to try to reduce
the noise by pre-filtering. We applied a Gaussian blur to the
AHE image in order to see if it helps to remove the small
noisy bits of the graphs. When doing an initial test with a
Gaussian blur (σ = 25), error rates went up from 0.93% to
4.17%. An example image of a blurred image with the found
graph is shown in Figure 16.

Fig. 16. An example of a graph created using a Gaussian blurred image,
displayed on the blurred image.

The image is the same as used in Figure 13. The graph
created with the blurred image as input clearly gives a less
accurate graph of the veins and still contains many noisy
small edges. As this initial test shows that blurring does not
improve our graphs, we decided to focus on other possible
improvements.

I. Experiment 5b - Different vein vessel network extraction
methods

Besides blurring our image to reduce the amount of noise
in our images, we also wanted to answer part of our second
research question: What is the influence of the vein vessel
network extraction method. We decided to take a look at the
different methods as explored by [13]. An example image of
the different methods is given in Figure 17.

Fig. 17. An example of four different vein vessel network extraction
methods. From left to right, top to bottom: Maximum curvature method,
principal curvature method, repeated line tracking, wide line detector.

We decided to create some skeletons with the principal
curvature method as well to see what the difference in
resulting graphs is. To demonstrate this, Figure 18 shows
the found skeleton with both methods.

Fig. 18. Two skeleton images of different vein extraction methods. (a)
shows the skeleton as extracted by the principal curvature method, (b) shows
the skeleton as extracted by the maximum curvature method. There is a clear
difference in noise levels visible in the skeleton images.

When we look at the different methods, we see that the
principal curvature method (right top) [13], [33] gives nice
and clear veins, but with very little detail when compared to
the other three methods. The repeated line tracking method
(left bottom) seems to give a more detailed overview of the
veins, but is filled with lots of noise that connects veins
that should not be connected. The wide line detector (right
bottom) also shows a noisy result that is not that useful
when trying to create a graph. This means that the only other
candidate besides the maximum curvature method (left top),
which gives a proper result in terms of detecting veins, would
be the principal curvature method. However when we look
at Figure 18, the lack of detail in this vein vessel network
would lead to very simplistic graphs with a very limited
number of edges. This in turn would lead to poor matching
results as there are just very few edges that may randomly be
interrupted by a small side-branch, and matching one edge
more or less in the matching will have a larger influence
then when this would happen in the maximum curvature
method. Therefore we decided to stick with the maximum
curvature method, even though this method’s finger vein
vessel networks are not perfect either.

J. Experiment 6 - Graph pruning

Another possible improvement is the pruning of the
graphs. This is a method to remove small edges, where we
remove all edges that have an end point, and are smaller than
N pixels. In our experiment we have chosen for N = 10,
as this will remove small noise edges, but keep the larger
edges that are probably genuine veins. It may be noted that
this is similar to Experiment 3, where we removed all edges
smaller than 10 pixels. However this time it is only the
small edges with at least one endpoint. The disadvantage of
this method is that it does not remove small edges between
branch points (for example two branch points that are most
likely 1 branchpoint in reality), but it may solve the problem
we had before, where the number of edges kept became more
random.

With the 10% of the dataset we get an EER of 0.93%,
which is the same as we had before, but now with Ni = 120.
However on the larger part of the dataset (600 images
in stead of the 144 images), error rates went down from
3.67% to 2.89%. This is 7 out of 900 genuine image pairs
that are properly classified. This is more than the 1 or 2
images difference that were the deviations in Experiment
5, and therefore this is a significant improvement. This is
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probably because the pruning decreases the opportunity for
small edges to make random matches that are treated equally
important to real matches of longer edges, yet it does not
influence the total number of edges so much.

An interesting thing to note is the change in threshold
value at which the EER is found. When increasing the size
of the dataset, the threshold value to determine whether it’s a
genuine match went from 0.754 to 0.768. This could indicate
that the quality of the first 144 images is higher than of the
following 456 images, as the threshold moves closer to the
impostor scores.

K. Experiment 7 - Edge combining

This experiment consists of combining edges as described
in the previous section. We combine the edges, but since
we are not sure whether the uncombined or combined edges
are better for matching, we decided to keep both in the same
graph. An example of this can be seen in Figure 19. To make
sure this adding of edges does not influence the results by
just having a larger number of edges to divide by in Equation
3, we decided to not increase amax and bmax, which is the
number of edges in the graph.

Fig. 19. An example of a graph where combined edges are added to
improve the performance.

EERs were 2.78% at the 10% of the database, or 3.56%
when taking the first 600 images, given Ni = 120. Investigat-
ing the results has shown that in genuine matches only one
or two extra matching edge pairs were found in the examined
cases. When we look at the threshold values, they were
respectively 0.787 and 0.791. Compared to the threshold
values of 0.786 and 0.795 respectively in Experiment 4, the
threshold values don’t really change, while it is expected to
have a lower threshold value if more edges on average were
matched (see Equation 3). This shows that combining edges
is not an effective way to improve the performance of our
system.

L. Experiment 8 - Adaptation in distance scores

Finally an experiment was performed with the new simi-
larity score using the edge length as a weight factor in the
matching process. In this, besides the normalized version as
described in Equations 7-8, also a non-normalized version
was made, where no division by the average total length of
both graphs was performed. In the not normalized condition
the EER was 5.09%, while in the normalized condition the
EER was 3.70%, given that we used 10% of the database
and Ni = 120. This proves that the normalization is working,
however the results themselves are not as well as in some of

the previous experiments. Apparently edges that are matched
in genuine comparisons are roughly the same length on
average as the matched edges in impostor comparisons. This
still leaves an option to investigate using the vein vessel
width as a weight for the matching.

M. Results overview & comparison to state of the art work

As we now have results, we want to compare them to the
state of the art work. In Table II an overview of EERs (on
the same database) is given as found by [13]. Our results are
briefly summarized in Table VIII.

EER (%) without pre-rotation with pre-rotation

Experiment sab ∆θ sab ∆θ

Experiment 1 10.2 4.63 10.2 8.33
Experiment 2 4.63 1.85 4.17 5.09
Experiment 3 6.02 1.85 5.56 3.24
Experiment 4 1.39 0.93 2.78 1.85

EER (%) 10% of the dataset 40% the dataset

Experiment ∆θ dnorm ∆θ dnorm

Experiment 5 0.93 1.39 3.67 3.89
Experiment 6 0.93 2.89
Experiment 7 2.78 3.56
Experiment 8 3.70

TABLE VIII
OVERVIEW OF RESULTS FROM THE EXPERIMENTS. A SHORT

EXPLANATION OF THE EXPERIMENTS CAN BE FOUND IN TABLE IX.

Experiment What was done

1 initial implementation
2 sorted edges (smallest X-value being the first coordinate)
3 removing all small edges
4 increasing the value of Ni from 120 to 600
5 changing the dissimilarity score measure sab to dnorm
6 graph pruning
7 combining edges
8 using edge lengths as a measure for the distance scores

TABLE IX
OVERVIEW OF THE EXPERIMENTS.

As can be seen, our EERs on a 10% of the dataset are still
in the range of the results found by [13] when we made some
changes to our implementation. However when we started
analyzing a larger part of the dataset, EERs went up to at
least 2.89%, which is not very good when compared to the
state of the art, where on the entire dataset EERs are obtained
below 1% (see Table I and II). This leads us to conclude that
the biometric graph matching method as it is now developed
and adapted to the finger veins, is not a suitable solution
for finger vein authentication when compared to some of the
other methods developed before.

In the future our system might be improved by taking
the width of the veins into account as a measure of how
important a vein is, and different ways of extraction the vein
vessel networks may be explored.
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VI. DISCUSSION & CONCLUSIONS

Our goal was to find out how well the biometric graph
matching (BGM) method would perform on finger veins
compared to the state of the art work. This gave us three
research questions:

1) Is the biometric graph matching method as described
by [34] a suitable method for comparing finger vas-
cular patterns, given that we use the best performing
existing vein vessel network extraction method given
in [13]?

2) How can we improve the performance of our imple-
mentation of the biometric graph matching method?

3) How can we make the biometric graph matching
method more specific to finger vein authentication in
order to improve the recognition performance?

Answering our first question, implementing the biometric
graph matching system as described by [20], [34] was
performed as described in Section IV. The EERs were up
to 10% on a 10% subset of the dataset, and therefore the
performance is worse than the 0.37% EER given in literature
before (see Table II) for finger vein images, of the 0.5% EER
for retina vein images using the BGM method [34]. Also a
small implementation change to assure the orientation of the
veins is the same did decrease the EERs down to 1.85%, but
this is still not near the performance of state of the art work.
This leads us to conclude that the biometric graph matching
method in its original form is not well-suited for comparing
finger vascular patterns.

To answer the question how we could improve our basic
method, a number of options were explored. Removing all
small edges gave varying results, but in case of sorting
the edge pairs for rotation by the angle, it did give an
improvement. However when sorting by sab the performance
went down.

When we wanted to optimize our parameters, the most
relevant choice was to change amount of edges pairs that are
attempted for alignment to see if the best graph rotation and
matching would happen within those first 120 possible edge
pairs. Therefore we increased this value to an experimental
value of 600, which decreased the EERs down to around 1%.
Increasing the value further did not enhance the performance.

Besides this, we also took a look at a new dissimilarity
score as found in Equation 5. This gave similar results as
before, so it was not a big improvement, though matching
edge pairs were generally found earlier so we could go back
to 120 matching edge pairs, saving computational time. As
we tune these parameters manually on the dataset we use, it
might give somewhat rosy results.

Other vein vessel network extraction methods were ex-
plored such as the principal curvature method. This method
showed vein vessel networks that were less noisy, but also
had less detail, making the graphs too generic to compare.
The repeated line tracking method and wide line detector
both showed detailed finger vein vessel network images, but
were more noisy than the maximum curvature method, and
were therefore not further investigated.

Simplifying graphs by pruning small end-edges did make
an improvement in EERs from 3.67% to 2.89%. This is
probably due to the fact that the number of edges in the
graph amax and bmax got smaller, making the matching more
about the genuine veins rather than the noisy bits. This leads
to the conclusion that in order to improve the performance
of our implementation, increasing the number of attempts
for alignment could help. Our new dissimilarity score helps
to find the proper edge pairs for alignment earlier. Pruning
our graphs also helps to obtain better results, as this removes
some of the noise.

Our third research question was how we can improve the
system performance by making the method more specific for
finger vein authentication. We attempted to combine smaller
edge pieces into bigger edges, but this had a negative effect
on the error rates. When analyzing several images, it was
found that only one or two additional edges were matched.
As the threshold values were staying the same, this leads to
think that on average there are no extra edges matched, as
more edges matching would mean a smaller distance between
graphs, and therefore a smaller threshold value.

Including the edge length as a weight factor for the graph
matching is one other thing we tried. Longer edges would
get more important than smaller edges in this way. So rather
than counting the number of matching edges, one would
match on the total length of matched edges. With the initial
experiment, EER’s went up to 3.70% when normalized to the
length and 5.09% in the unnormalized case. Even though
normalizing for the total average length of the edges in
the graphs is a good idea, it does not get the EERs down
to a point where it is an improvement. This is probably
because edges that are matched in genuine comparisons have
roughly the same length on average as the matched edges
in impostor comparisons, so our initial assumption that in
genuine matches the matched edges are longer than in the
randomized case is rejected. This leads to the conclusion
that our attempts to make the authentication more specific to
finger veins did not work as intended.

In general, our conclusion is that the system is not suitable
for finger vein graph matching due to the extremely noisy
vein patterns when compared to retina or hand vein patterns.
Compared to the state of the art work our system doesn’t
perform well enough.

VII. FUTURE WORK

As our system does not perform well enough due to the
noisy nature of the graphs we get, the first thing that would
need improvement is the graph extraction process. One could
look into other vein vessel network extraction methods, or
try to optimize one of the existing methods in order to get
more detail and less noise.

Besides this it would be interesting to investigate a weight-
factor for the matched edges based on the width of the veins
in the extracted vein vessel network image. In this way, big
veins would become more important than smaller veins (that
could also be noise). In this way the system may become
more robust against noise.
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