[1] S.C. Terry, J.H. Jerman, and J.B. Angell. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on electron devices, 26(12):1880-1886, 1979. [2] A. Manz, N. Graber, and H.M. Widmer. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B1, 1(1-6):244-248, 1990. [3] A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, H. Miyagi, and K. Sato. Design of an open-tubular column liquid chromatograph using silicon chip technology. Sensors and actuators B1, 1(1-6): 249-255, 1990. [4] I. Moser, G. Jobst, E. Aschauer, P. Svasek, M. Varahram, and G. Urban. Miniaturized thin film glutamate and glutamine biosensors. Biosensors & bioelectronics, 10(6-7):527-532, 1995. [5] G.M. Whitesides. The origins and future of microfluidics. Nature, 442(7101):368-373, 2006. [6] Elsevier. Scopus, January 2014. URL http://www.scopus.com/. [7] Thomson Reuters. Web of science, January 2014. URL http://apps.webofknowledge.com/. [8] S. Shoji, M. Esashi, and T. Matsuo. Prototype miniature blood gas analyser fabricated on a silicon wafer. Sensors and actuators, 14(2):101-107, 1988. [9] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter. A bidirectional silicon micropump. Sensors and actuators A: physical, 50(1-2):81-86, 1995. [10] C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, and J.P. Landers. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. PNAS, 103(51):19272-19277, 2006. [11] A.J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J.G. Lee-Edghill, A. Nordquist, R. Lenigk, M.D. Estes, J.P. Haley, C.R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliot, P. Koumi, F. Zenhausern, and G. Tully. Integrated microfluidic systems for rapid forensic dna analysis: sample collection to dna profile. Anal. Chem., 82(16):6991-6999, 2010. [12] E.T. Lagally, P.C. Simpson, and R.A. Mathies. Monolithic integrated microfluidic dna amplification and capillary electrophoresis analysis system. Sensors and actuators B: Chemical, 63(3):138- 146, 2000. [13] D.R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem., 74(12):2623-2636, 2002. [14] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem., 70(23):4974-4984, 1998. ¨ ¨ [15] J. Wang, M. Pumera, M.P. Chatrathi, A. Escarpa, R. Konrad, A. Griebel, W. Dorner, and H. Lowe. Toward dispocable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 23(4):596-601, 2002. [16] T.J. Johnson, D. Ross, and L.E. Locascio. Rapid microfluidic mixing. Anal. Chem., 74(1):45-51, 2002. [17] L.E. Locascio, C.E. Perso, and C.S. Lee. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. J. Chromatogr. A, 857(1-2): 275-284, 1999. [18] S.L.R. Barker, M.J. Tarlov, H. Canavan, J.J. Hickman, and L.E. Locascio. Plastic microfluidic devices modified with polyelectrolyte multilayers. Anal. Chem., 72(20):4899-4903, 2000. Master's thesis [19] D. Nilsson, S. Balslev, and A. Kristensen. A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclic-olefin copolymer (COC). J. Micromech. Microeng., 15(2):296-300, 2005. [20] P.S. Nunes, P.D. Ohlsson, O. Ordeig, and J.P. Kutter. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluidics and nanofluidics, 9(2-3):145-161, 2010. [21] H. Becker and L.E. Locascio. Polymer microfluidic devices. Talanta, 56(2):267-287, 2002. [22] S. Franssila. Introduction to microfabrication, chapter 18. John Wiley & Sons Ltd., 2 edition, 2010. ISBN 9780470749838. [23] D. Mijatovic, J.C.T. Eijkel, and A. van den Berg. Technologies for nanofluidic systems: top-down vs. bottom-up — a review. Lab Chip, 5(5):492-500, 2005. [24] J. Narasimhan and I. Paputsky. Polymer embossing tools for rapid prototyping of plastic microfluidic devices. J. Micromech. Microeng., 14(1):96-103, 2004. [25] H.A. Stone and S. Kim. Microfluidics: basic issues, applications, and challenges. AIChE J., 47 (6):1250-1254, 2001. [26] H.A. Stone, A.D. Stroock, and A. Ajdari. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 36(1):381-411, 2004. [27] A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, and A.J. deMello. Microdroplets: a sea of applications? Lab Chip, 8(8):1244-1254, 2008. [28] R. Arayanarakool. Toward single enzyme analysis in a droplet-based micro and nanofluidic system. PhD thesis, Universiteit Twente, Enschede, The Netherlands, 2012. [29] H. Song, J.D. Tice, and R.F. Ismagilov. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed., 42(7):768-772, 2003. [30] B. Zheng, L.S. Roach, and R.F. Ismagilov. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc., 125(37):11170-11171, 2003. [31] H. Song and R.F. Ismagilov. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc., 125(47):14613-14619, 2003. [32] N.R. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, and B.W. Colston. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal. Chem., 79 (22):8471-8475, 2007. [33] N.R. Beer, E.K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D.W. Arnold, C.G. Bailey, and B.W. Colston. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal. Chem., 80(6):1854-1858, 2008. [34] M.M. Kiss, L. Ortoleva-Donnelly, N.R. Beer, J. Warner, C.G. Bailey, B.W. Colston, J.M. Rothberg, D.R. Link, and J.H. Leamon. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal. Chem., 80(23):8975-8981, 2008. [35] S. Mohr, Y.-H. Zhang, A. Macaskill, P.J.R. Day, R.W. Barber, N.J. Goddard, D.R. Emerson, and P.R. Fielden. Numerical and experimental study of a droplet-based PCR chip. Microfluid. Nanofluid., 3(5):611-621, 2007. [36] F. Shen, W. Du, J.E. Kreutz, A. Fok, and R.F. Ismagilov. Digital PCR on a slipChip. Lab Chip, 10 (20):2666-2672, 2010. [37] W. Wang, Z.-X. Li, R. Luo, S.-H. Lu, A.-D. Xu, and Y.-J. Yang. Droplet-based micro oscillating-flow ¨ PCR chip. J. Micromech. Microeng., 15(8):1369-1377, 2005. [38] Y. Zhang and P. Ozdemir. Microfluidic DNA amplification — a review. Analytica Chimica Acta, 638 (2):115-125, 2009. [39] P. Kumaresan, C.J. Yang, S.A. Cronier, R.G. Blazej, and R.A. Mathies. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal. Chem., 80(10): 3522-3529, 2008. [40] A.D. Griffiths and D.S. Tawfik. Miniaturising the laboratory in emulsion droplets. Trends Biotechnol., 24(9):395-402, 2006. Master's thesis [41] B. Zheng, J.D. Tice, and R.F. Ismagilov. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem., 76(17):4977-4982, 2004. [42] D.S. Tawfik and A.D. Griffiths. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol., 16(7):652-656, 1998. [43] A. Aharoni, A.D. Griffiths, and D.S. Tawfik. High-throughput screens and selections of enzymeencoding genes. Curr. Opin. Chem. Biol., 9(2):210-216, 2005. [44] V. Taly, B.T. Kelly, and A.D. Griffiths. Droplets as microreactors for high-throughput biology. ChemBioChem, 8(3):263-272, 2007. [45] H. Song, D.L. Chen, and R.F. Ismagilov. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed., 45(44):7336-7356, 2006. [46] J. Bibette, F.L. Calderon, and P. Poulin. Emulsions: basic principles. Rep. Prog. Phys., 62(6): 969-1033, 1999. [47] I. Roland, G. Piel, L. Delattre, and B. Evrard. Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharm., 263(1-2):85-94, 2003. [48] H. Tian, A.F.R. Huhmer, and J.P. Landers. Evaluation of silica resins for direct and efficient ex¨ traction of DNA from complex biological matrices in a miniaturized format. Anal. Biochem., 283 (2):175-191, 2000. [49] C. Lui, N.C. Cady, and C.A. Batt. Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors, 9(5):3713-3744, 2009. [50] A. Mapes. The expectations within the criminal justice system on the use of mobile DNAtechnologies at the crime scene. Master thesis, University of Amsterdam, Amsterdam, The Netherlands, 2012. [51] T. de Wolff. The influence of using real-time DNA identification of techniques on searching, collecting, and analyzing DNA traces during the crime scene investigation. Master thesis, University of Amsterdam, Amsterdam, The Netherlands, 2013. [52] Justitie. Jaarverslag. Technical report, Nederlands Forensisch Instituut, 2013. Available online: https://www.forensischinstituut.nl/kenniscentrum/publicaties/jaarverslagen/index.aspx, last accessed 19-May-2014. [53] K.M. Horsman, J.M. Bienvenue, K.R. Blasier, and J.P. Landers. Forensic DNA analysis on microfluidic devices: a review. J. Forensic. Sci., 52(4):784-799, 2007. [54] Justitie. Jaarverslag. Technical report, Nederlands Forensisch Instituut, 2007. Available online: https://www.forensischinstituut.nl/kenniscentrum/publicaties/jaarverslagen/index.aspx, last accessed 19-May-2014. [55] Justitie. Jaarverslag. Technical report, Nederlands Forensisch Instituut, 2008. Available online: https://www.forensischinstituut.nl/kenniscentrum/publicaties/jaarverslagen/index.aspx, last accessed 19-May-2014. [56] Justitie. Jaarverslag. Technical report, Nederlands Forensisch Instituut, 2009. Available online: https://www.forensischinstituut.nl/kenniscentrum/publicaties/jaarverslagen/index.aspx, last accessed 19-May-2014. [57] Justitie. Jaarverslag. Technical report, Nederlands Forensisch Instituut, 2010. Available online: https://www.forensischinstituut.nl/kenniscentrum/publicaties/jaarverslagen/index.aspx, last accessed 19-May-2014. [58] Justitie. Jaarverslag. Technical report, Nederlands Forensisch Instituut, 2012. Available online: https://www.forensischinstituut.nl/kenniscentrum/publicaties/jaarverslagen/index.aspx, last accessed 19-May-2014. [59] L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance, and J.P. Landers. A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanolitervolume samples. Anal. Chem., 78(5):1444-1451, 2006. [60] J. Cheng, L.C. Waters, P. Fortina, G.E. Hvichia, S.C. Jacobson, J.M. Ramsey, L.J. Kricka, and P. Wilding. Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices. Anal. Biochem., 257(2):101- 106, 1998. Master's thesis [61] J. Cheng, M.A. Shoffner, G.E. Hvichia, L.J. Kricka, and P. Wilding. Chip PCR. II. investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucl. Acids Res., 24 (2):380-385, 1996. [62] A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, and M.A. Northrup. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem., 68(23):4081-4086, 1996. [63] P.C. Simpson, D. Roach, A.T. Woolley, T. Thorsen, R. Johnston, G.F. Sensabauch, and R.A. Mathies. High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc. Natl. Acad. Sci. USA, 95(5):2256-2261, 1998. [64] B.C. Giordano, J. Ferrance, S. Swedberg, A.F.R. Huhmer, and J.P. Landers. Polymerase chain ¨ reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal. Biochem., 291(1):124-132, 2001. [65] N.J. Munro, K. Snow, J.A. Kant, and J.P. Landers. Molecular diagnostics on microfabricated electrophoretic devices: from slab gelto capillaryto microchip-based assays for tand b-cell lymphoproliferative disorders. Clin. Chem., 45(11):1906-1917, 1999. [66] H. Tian, A. Jaquins-Gerstl, N.J. Munro, M. Trucco, L.C. Brody, and J.P. Landers. Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: a fast, simple method for detection of common mutations in BRCA1 and BRCA2. Genomics, 63(1):25-34, 2000. [67] H. Tian, L.C. Brody, and J.P. Landers. Rapid detection of deletion, insertion, and substitution mutations via heteroduplex analysis using capillaryand microchip-based electrophoresis. Genome Res., 10(9):1403-1413, 2000. ¨ [68] W.T. Hofgartner, A.F.R. Huhmer, J.P. Landers, and J.A. Kant. Rapid diagnosis of herpes simplex ¨ encephalitis using microchip electrophoresis of PCR products. Clin. Chem., 45(12):2120-2128, 1999. [69] Y. Shi, P.C. Simpson, J.R. Scherer, D. Wexler, C. Skibola, M.T. Smith, and R.A. Mathies. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal. Chem., 71(23):5354-5361, 1999. [70] A.G. Hadd, S.C. Jacobson, and J.M. Ramsey. Microfluidic assays of acetylcholinesterase inhibitors. Anal. Chem., 71(22):5206-5212, 1999. [71] J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem., 72(13): 2995-3000, 2000. [72] X. Chen, D. Cui, and J. Chen. Microfluidic chips for DNA extraction and purification, chapter 5. Onchip pretreatment of whole blood by using MEMS technology. Bentham Books, 1 edition, 2012. ISBN 9781608055289. [73] M.C. Breadmore, K.A. Wolfe, I.G. Arcibal, W.K. Leung, D. Dickson, B.C. Giordano, M.E. Power, J.P. Ferrance, S.H. Feldman, P.M. Norris, and J.P. Landers. Microchip-based purification of DNA from biological samples. Anal. Chem., 75(8):1880-1886, 2003. [74] J.M. Butler. Forensic DNA typing, chapter 3. Elsevier Academic Press, 1 edition, 2005. ISBN 9780121479527. [75] J. Wen, L.A. Legendre, J.M. Bienvenue, and J.P. Landers. Purification of nucleic acids in microfluidic devices. Anal. Chem., 80(17):6472-6479, 2008. [76] C.R. Reedy, K.A. Hagan, B.C. Strachen, J.J. Higginson, J.M. Bienvenue, S.A. Greenspoon, J.P. Ferrance, and J.P. Landers. Dual-domain microchip-based process for volume reduction solid phase extraction of nucleic acids from dilute, large volume biological samples. Anal. Chem., 82 (13):5669-5678, 2010. [77] J.M. Butler. Forensic DNA typing, chapter 7. Elsevier Academic Press, 1 edition, 2005. ISBN 9780121479527. [78] C.W. Price, D.C. Leslie, and J.P. Landers. Nucleic acid extraction techniques and application to the microchip. Lab Chip, 9(17):2484-2494, 2009. Master's thesis [79] J. Wen, C. Guillo, J.P. Ferrance, and J.P. Landers. Microfluidic-based DNA purification in a twostage, dual-phase microchip containing a reversed-phase and a photopolymerized monolith. Anal. Chem., 79(16):6135-6142, 2007. [80] P.E. Mason, G.W. Neilson, J.E. Enderby, M.-L. Saboungi, C.E. Dempsey, A.D. MacKerell Jr., and J.W. Brady. The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc., 126 (37):11462-11470, 2004. [81] K.A. Melzak, C.S. Sherwood, R.F.B. Turner, and C.A. Haynes. Driving forces for DNA adsorption to silica in perchlorate solutions. Journal of Colloid and Interface Science, 181(2):635-644, 1996. [82] C.J. Alden and S.-H. Kim. Solvent-accessible surfaces of nucleic acids. J. Mol. Biol., 132(3): 411-434, 1979. [83] N.C. Cady, S. Stelick, and C.A. Batt. Nucleic acid purification using microfabricated silicon structures. Biosensors and Bioelectronics, 19(1):59-66, 2003. [84] K.A. Hagan, W.L. Meier, J.P. Ferrance, and J.P. Landers. Chitosan-coated silica as solid phase for RNA purification in a microfluidic device. Anal. Chem., 81(13):5249-5256, 2009. [85] C.R. Reedy, C.W. Price, J. Sniegowski, J.P. Ferrance, M. Begley, and J.P. Landers. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate) (pmma) microdevice. Lab Chip, 11(9):1603-1611, 2011. [86] T. Nakagawa, R. Hashimoto, K. Maruyama, T. Tanaka, H. Takeyama, and T. Matsunaga. Capture and release of DNA using aminosilane-modified bacterial magnetic particles for automated detection system of single nucleatide polymorphisms. Biotechnology and Bioengineering, 94(5): 862-868, 2006. [87] P. Puget. Lab on a chip, volume 3 of Nanoscience, chapter 20. Springer-Verlag, 1 edition, 2007. ISBN 9783540886327. [88] Y. Xu, B. Vaidya, A.B. Patel, S.M. Ford, R.L. McCarley, and S.A. Soper. Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal. Chem., 75(13):2975-2984, 2003. [89] C.J. Elkin, P.M. Richardson, H.M. Fourcade, N.M. Hammon, M.J. Pollard, P.F. Predki, T. Glavina, and T.L. Hawkins. High-throughput plasmid purification for capillary sequencing. Genome Res., 11(7):1269-1274, 2001. [90] V. Reddy and J.D. Zahn. Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction module. Journal of Colloid and Interface Science, 286(1):158-165, 2005. [91] R.D. Oleschuk, L.L. Shultz-Lockyear, Y. Ning, and D.J. Harrison. Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal. Chem., 72(3):585-590, 2000. [92] D. Figeys and R. Aebersold. Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry. Anal. Chem., 70(18): 3721-3727, 1998. ´ [93] C. Yu, M.H. Davey, F. Svec, and J.M.J. Frechet. Monolithic porous polymer for on-chip solidphase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal. Chem., 73(21):5088-5096, 2001. ´ [94] T.B. Stachowiak, T. Rohr, E.F. Hilder, D.S. Peterson, M. Yi, F. Svec, and J.M.J. Frechet. Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis, 24(21):3689-3693, 2003. [95] N. Sarrut, S. Bouffet, F. Mittler, O. Constantin, P. Combette, J. Sudor, F. Ricoul, F. Vinet, J. Garin, and C. Vauchier. Enzymatic digestion and liquid chromatography in micro-pillar reactors — hydrodynamic versus electroosmotic flow. In I. Papautsky and I. Chartier, editors, Proceedings of SPIE: Microfluidics, BioMEMS, and Medical Microsystems III, volume 5718 of Proceedings of SPIE, pages 99-109, Bellingham, WA, USA, 2005. SPIE. [96] J.M. Bienvenue, N. Duncalf, D. Marchiarullo, J.P. Ferrance, and J.P. Landers. Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis. J. Forensic Sci., 51(2):266-273, 2006. Master's thesis [97] K.A. Hagan, C.R. Reedy, J.M. Bienvenue, A.H. Dewald, and J.P. Landers. A valveless microfluidic device for integrated solid phase extraction and polymerase chain reaction for short tandem repeat (STR) analysis. Analyst, 136(9):1928-1937, 2011. [98] Y. Liu, N.C. Cady, and C.A. Batt. A plastic microchip for nucleic acid purification. Biomed. Microdevices, 9(5):769-776, 2007. [99] K.A. Wolfe, M.C. Breadmore, J.P. Ferrance, M.E. Power, J.F. Conroy, P.M. Norris, and J.P. Landers. Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis, 23(5):727-733, 2002. [100] J. Wen, C. Guillo, J.P. Ferrance, and J.P. Landers. DNA extraction using a tetramethyl orthosilicate-grafted photopolymerized monolithic solid phase. Anal. Chem., 78(5):1673-1681, 2006. ˇ [101] M. Benˇ ina, A. Prodgornik, and A. Strancar. Characterization of methacrylate monoliths for puc rification of DNA molecules. J. Sep. Sci., 27(10-11):801-810, 2004. ´ [102] S. Hjerten, J.-L. Liao, and R. Zhang. High-performance liquid chromatography on continuous polymer beds. J. Chromatogr. A, 473:273-275, 1989. ˇ [103] T.B. Tennikova, M. Bleha, F. Svec, T.V. Almazova, and B.G. Belenkii. High-performance membrane chromatography of proteins, a novel method of protein separation. J. Chromatogr. A, 555 (1-2):97-107, 1991. ´ [104] F. Svec and J.M.J. Frechet. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem., 64(7):820-822, 1992. ´ [105] F. Svec and J.M.J. Frechet. New designs of macroporous polymers and supports: from separation to biocatalysis. Science, 273(5272):205-211, 1996. ´ [106] M. Petro, F. Svec, and J.M.J. Frechet. Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers. comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in highperformance liquid chromatography of polystyrenes. J. Chromatogr. A, 752(1-2):59-66, 1996. ´ [107] C. Yu, F. Svec, and J.M.J Frechet. Towards stationary phases for chromatography on a microchip: molded porous monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography. Electrophoresis, 21(1):120-127, 2000. ´ [108] C. Viklund, F. Svec, and J.M.J. Frechet. Monolithic, ”molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chem. Mater., 8(3):744-750, 1996. [109] K. Morishima, B.D. Bennett, M.T. Dulay, J.P. Quirino, and R.N. Zare. Toward sol-gel electrochromatographic separations on a chip. J. Sepl. Sci., 25(15-17):1226-1230, 2002. [110] T. Nakagawa, T. Tanaka, D. Niwa, T. Osaka, H. Takeyama, and T. Matsunaga. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. Journal of Biotechnology, 116(2):105-111, 2005. [111] W. Cao, C.J. Easley, J.P. Ferrance, and J.P. Landers. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal. Chem., 78(20):7222-7228, 2006. [112] L.A. Christel, K. Petersen, W. McMillan, and M.A. Northrup. Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J. Biomech. Eng., 121(1): 22-27, 1999. [113] B. Yoza, M. Matsumoto, and T. Matsunaga. DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. Journal of Biotechnology, 94(3):217-224, 2002. [114] B. Yoza, A. Arakaki, and T. Matsunaga. DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. Journal of Biotechnology, 101(3):219-228, 2003. [115] T. Matsunaga. Applications of bacterial magnets. Trends Biotechnol., 9(1):91-95, 1991. [116] S.E. Williams, P.R. Davies, J.L. Bowen, and C.J. Allender. Controlling the nanoscale patterning of AuNPs on silicon surfaces. Nanomaterials, 3(1):192-203, 2013. Master's thesis [117] K. van der Maaden, K. Sliedregt, A. Kros, W. Jiskoot, and J. Bouwstra. Fluorescent nanoparticle adhesion assay: a novel method for surface pka determination of self-assembled monolayers on silicon surfaces. Langmuir, 28(7):3403-3411, 2012. [118] B. Ashcroft, B. Takulapalli, J. Yang, G.M. Laws, H.Q. Zhang, N.J. Tao, S. Lindsay, D. Gust, and T.J. Thronton. Calibration of a pH sensitive buried channel silicon-on-insulator MOSFET for sensor applications. Phys. Stat. Sol. B, 241(10):2291-2296, 2004. ´ [119] L. Nony, R. Boisgard, and J.-P. Aime. DNA properties investigated by dynamic force microscopy. Biomacromolecules, 2(3):827-835, 2001. [120] Roche Applied Science. Taq DNA polymerase. Online: http://mvz.berkeley.edu/egl/inserts/RocheTaqPolymerase.pdf (last accessed 23-May-2014), November 2005. Datasheet of the Taq polymerase enzyme. [121] J.W. Park, K.-H. Choi, and K.K. Park. Acid-base equilibria and related properties of chitosan. Bulletin of Korean Chemical Society, 4(2):68-72, 1983. [122] M.L. Hair and W. Hertl. Acidity of surface hydroxyl groups. J. Phys. Chem., 74(1):91-94, 1970. [123] S. Hashioka, R. Ogawa, H. Ogawa, and Y. Horiike. Integrated DNA purification and detection device for diagnosis of infectious disease. Jpn. J. Appl. Phys., 46(4B):2775-2780, 2007. [124] J.R. Falsey, M. Renil, S. Park, S. Li, and K.S. Lam. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjugate Chem., 12(3):346-353, 2001. [125] S.D. Conzone and C.G. Pantano. Glass slides to DNA microarrays. Materials Today, 7(3):20-26, 2004. [126] J. Doh and D.J. Irvine. Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in t cells. Proc. Natl. Acad. Sci., 103(15):5700-5705, 2006. ´ [127] H.S. Mansur, W.L. Vasconcelos, R.F.S. Lenza, R.L. Orefice, E.F. Reis, and Z.P. Lobato. Sol-gel silica based networks with controlled chemical properties. J. Non-Cryst. Solids, 273(1-3):109- 115, 2000. [128] J. Bart, R. Tiggelaar, M. Yang, S. Schlautmann, H. Zuilhof, and H. Gardeniers. Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip, 9(24):3481-3488, 2009. [129] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed., 49(38):6830-6835, 2010. [130] J. Kim, P. Seidler, L.S. Wan, and C. Fill. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. Journal of Colloid and Interface Science, 329(1):114-119, 2009. [131] J. Sagiv. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc., 102(1):92-98, 1980. [132] K.M.R. Kallury, P.M. Macdonald, and M. Thompson. Effect of surface water and base catalysis on the silanization of silica by (aminopropyl)alkoxysilanes studied by X-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance. Langmuir, 10(2):492-499, 1994. [133] R.M. Pasternack, S.R. Amy, and Y.J. Chabal. Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir, 24(22):12963-12971, 2008. [134] E.T. Vandenberg, L. Bertilsson, B. Liedberg, K. Uvdal, R. Erlandsson, H. Elwing, and I. Lund¨ strom. Structure of 3-aminopropyl triethoxy silane on silicon oxide. Journal of Colloid and Interface Science, 147(1):103-118, 1991. [135] J.A. Howarter and J.P. Youngblood. Optimization of silica silanization by 3aminopropyltriethoxysilane. Langmuir, 22(26):11142-11147, 2006. [136] C.-H. Chiang, H. Ishida, and J.L. Koenig. The structure of γ -aminopropyltriethoxysilane on glass surfaces. Journal of Colloid and Interface Science, 74(2):396-404, 1980. ˚ [137] P. Herder, Vagberg L., and P. Stenius. ESCA and contact angle studies of the adsorption of aminosilanes on mica. Colloids Surf., 34(2):117-132, 1988/1989. Master's thesis [138] L.D. White and C.P. Tripp. Reaction of (3-aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces. Journal of Colloid and Interface Science, 232(2):400-407, 2000. [139] T. Kovalchuk, H. Sfihi, L. Kostenko, V. Zaitsev, and J. Fraissard. Preparation, structure and thermal stability of oniumand amino-functionalized silicas for the use as catalysts supports. Journal of Colloid and Interface Science, 302(1):214-229, 2006. [140] S.R. Culler, H. Ishida, and J.L. Koenig. Structure of silane coupling agents adsorbed on silicon powder. Journal of Colloid and Interface Science, 106(2):334-346, 1985. [141] S.R. Culler, H. Ishida, and J.L. Koenig. FT-IR characterization of the reaction at the silane/matrix resin interphase of composite materials. Journal of Colloid and Interface Science, 109(1):1-10, 1986. [142] Ch. Weigel and R. Kellner. FTIR-ATR-spectroscopic investigation of the silanization of germanium surfaces with 3-aminopropyltriethoxysilane. Fresenius Z. Anal. Chem., 335(7):663-668, 1989. ˜ [143] R. Pena Alonso, F. Rubio, J. Rubio, and J.L. Oteo. Study of the hydrolysis and condensation of γ -aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci., 42(2):595-603, 2007. [144] D.G. Kurth and T. Bein. Surface reactions on thin layers of silane coupling agents. Langmuir, 9 (11):2965-2973, 1993. [145] S.-H. Choi and B.-M. Zhang Newby. Suppress polystyrene thin film dewetting by modifying substrate surface with aminopropyltriethoxysilane. Surf. Sci., 600(6):1391-1404, 2006. [146] N.K. Kamisetty, S.P. Pack, M. Nonogawa, K.C. Devarayapalli, T. Kodaki, and K. Makino. Development of an efficient amine-functionalized glass platform by additional silanization treatment with alkylsilane. Anal. Bioanal. Chem., 386(6):1649-1655, 2006. [147] C.-H. Chiang, N.-I. Liu, and J.L. Koenig. Magic-angle cross-polarization carbon 13 NMR study of aminosilane coupling agents on silica surfaces. Journal of Colloid and Interface Science, 86(1): 26-34, 1982. [148] P. Dhawade and R. Jagtap. Comparative study of physical and thermal properties of chitosansilica hybrid coatings prepared by sol-gel method. Der Chemica Sinica, 3(3):589-601, 2012. [149] J.D. Bumgardner, R. Wiser, S.H. Elder, R. Jouett, Y. Yang, and J.L. Ong. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. of Biomater. Sci. Polymer Edn., 14(12):1401-1409, 2003. ´ ˜ [150] I. Aranaz, M. Meng´bar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed, and A Heras. ı Functional characterization of chitin and chitosan. Curr. Chem. Biol., 3(2):203-230, 2009. [151] G.S. Silva, P.C. Oliveira, D.S. Giordani, and H.F. de Castro. Chitosan/siloxane hybrid polymer: synthesis, characterization and performance as a support for immobilizing enzyme. J. Braz. Chem. Soc., 22(8):1407-1407, 2011. [152] K.R. Krishnapriya and M. Kandaswamy. Synthesis and characterization of a crosslinked chitosan derivative with a complexing agent and its adsorption studies toward metal(II) ions. Carbohydr. Res., 344(13):1632-1638, 2009. [153] I. Leceta, P. Guerrero, and K. de la Caba. Functional properties of chitosan-based films. Carbohydrate polymers, 93(1):339-349, 2013. [154] M. Rinaudo. Chitin and chitosan: properties and applications. Prog. Polym. Sci., 31(7):603-632, 2006. [155] X.-L. Luo, J.-J. Xu, Q. Zhang, G.-J. Yang, and H.-Y. Chen. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens. Bioelectron., 21(1):190-196, 2005. [156] S.B. Rao and C.P. Sharma. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of Biomedical Materials Research, 34(1):21-28, 1997. [157] Z. Deng, Z. Zhen, X. Hu, S. Wu, Z. Xu, and P.K. Chu. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 32(21):4976-4986, 2011. [158] X. Hu, Y. Wang, and B. Peng. Chitosan-capped mesoporous silica nanoparticles as pHresponsive nanocarriers for controlled drug release. Chem. Asian J., 9(1):319-327, 2014. Master's thesis [159] P. Innocenzi and T. Kidchob. Hybrid organic-inorganic sol-gel materials based on epoxy-amine systems. J. Sol-Gel Sci. Techn., 35(3):225-235, 2005. [160] G. Toskas, C. Cherif, R.-D. Hund, E. Laourine, B. Mahltig, A. Fahmi, C. Heinemann, and T. Hanke. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydrate Polymers, 94(2):713-722, 2013. [161] F.A. Carey. Organic Chemistry, chapter 16. McGraw-Hill Higher Education, 4 edition, 2000. ISBN 0072905018. ´ [162] L.S. Connell, F. Romer, M. Suarez, E.M. Valliant, Z. Zhang, P.D. Lee, M.E. Smith, J.V. Hanna, and J.R. Jones. Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J. Mater. Chem. B, 2(6):668-680, 2014. [163] Y. Shirosaki, K. Tsuru, S. Hayakawa, A. Osaka, M.A. Lopes, J.D. Santos, M.A. Costa, and M.H. Fernandes. Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater., 5(1):346-355, 2009. [164] Y.-L. Liu, Y.-H. Su, and J.-Y. Lai. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ -glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 45(20):6831-6837, 2004. [165] A.-C. Chao. Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus. J. Membr. Sci., 311(1-2):306-318, 2008. [166] J.G. Varghese, R.S. Karuppannan, and M.Y. Kariduraganavar. Development of hybrid membranes using chitosan and silica precursors for pervaporation separation of water + isopropanol mixtures. J. Chem. Eng. Data, 55(6):2084-2092, 2010. [167] S. Spirk, G. Findenig, A. Doliska, V.E. Reichel, N.L. Swanson, R. Kargl, V. Ribitsch, and K. StanaKleinschek. Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology. Carbohydrate Polymers, 93(1):285-290, 2013. [168] F. Al-Sagheer and S. Muslim. Thermal and mechanical properties of chitosan/SiO2 hybrid composites. J. Nanomater., 2010(3):1-8, 2010. [169] S.S. Rashidova, D.S. Shakarova, O.N. Ruzimuradov, D.T. Satubaldieva, S.V. Zalyalieva, O.A. Shpigun, V.P. Varlamov, and B.D. Kabulov. Bionanocompositional chitosan-silica sorbent for liquid chromatography. J. Chromatogr. B, 800(1-2):49-53, 2004. [170] G. Poologasundarampillai, C. Ionescu, O. Tsigkou, M. Murugesan, R.G. Hill, M.M. Stevens, J.V. Hanna, M.E. Smith, and J.R. Jones. Synthesis of bioactive class II poly(γ -glutamic acid)/silica hybrids for bone regeneration. J. Mater. Chem., 20(40):8952-8961, 2010. [171] U. Lehmann, C. Vandevyver, V.K. Parashar, and M.A.M. Gijs. Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed., 45(19):3062-3067, 2006. [172] D. Arpita. Electronic DNA detection and diagnostics. PhD thesis, Universiteit Twente, Enschede, The Netherlands, 2013. [173] C.R. Reedy, J.M. Bienvenue, L. Coletta, B.C. Strachan, N. Bhatri, S. Greenspoon, and J.P. Landers. Volume reduction solid phase extraction of DNA from dilue, large-volume biological samples. Forensic Science International: Genetics, 4(3):206-212, 2010. [174] P. Teeninga. Detection of nucleic acids. Lab-on-a-chip for forensics. Bachelor thesis, Saxion University of Applied Sciences, Enschede, The Netherlands, 2012. ¨ [175] S.C. Jacobson, R. Hergenroder, L.B. Koutny, R.J. Warmack, and J.M. Ramsey. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem., 66(7):1107-1113, 1994. [176] B. Baidya, T. Mukherjee, and J.F. Hoburg. Dispersion modeling in microfluidic channels for system-level optimization. International Conference on Modeling and Simulation of Microsystems - MSM 2002, pages 182-185, 2002. [177] G. Goranovic and H. Bruus. Simulations in microfluidics, chapter 5. Microsystem engineering of lab-on-a-chip devices. John Wiley & Sons Ltd., 1 edition, 2006. ISBN 9783527606368. [178] P.S. Williams, S.B. Giddings, and J.C. Giddings. Calculation of flow properties and end effects in field-flow fractioning channels by a conformal mapping procedure. Anal. Chem., 58(12):2397- 2403, 1986. Master's thesis [179] B. He, N. Tait, and F. Regnier. Fabrication of nanocolumns for liquid chromatography. Anal. Chem., 70(18):3790-3797, 1998. [180] J. Vangelooven. Optimal pillar configurations for on-chip chromatographic separation beds and flow distributors. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium, 2010. [181] J. Vangelooven, S. Schlautmann, F. Detobel, H. Gardeniers, and G. Desmet. Experimental optimization of flow distributors for pressure-driven separations and reactions in flat-rectangular microchannels. Anal. Chem., 83(2):467-477, 2011. [182] J. Vangelooven, W. de Malsche, J. op de Beeck, H. Eghbali, H. Gardeniers, and G. Desmet. Design and evaluation of flow distributors for microfabricated pillar array columns. Lab Chip, 10 (3):349-356, 2010. [183] H. Bruus. Theoretical microfluidics, chapter 3. Oxford University Press, 1 edition, 2007. ISBN 9780199235087. [184] B.R. Munson, D.F. Young, T.H. Okiishi, and W.W. Huebsch. Fundamentals of fluid mechanics, chapter 1. John Wiley & Sons Ltd., 6 edition, 2009. ISBN 9780470398814. [185] C.L.M.H. Navier. Memoire sur les lois du mouvemen