
Master Thesis

The Performance of ECC Algorithms in DNSSEC:

A Model-based Approach

Faculty: Electrical Engineering, Mathematics and Computer Science
Group: Design and Analysis of Communication Systems

Author
Kaspar Hageman

University of Twente
k.d.hageman@student.utwente.nl

Committee
Roland van Rijswijk-Deij, M.Sc

prof. dr. ir. Aiko Pras
dr. Anna Sperotto

dr. Ricardo de O. Schmidt

October 21, 2015

Abstract

The Domain Name System (DNS) resolves domain names to IP addresses on the Internet. Several
vulnerabilities in DNS led to the development and deployment of a secure extension, DNSSEC,
which provides authentication and data integrity by including digital signatures in DNS responses.
DNSSEC has its own flaws however, of which DDoS amplification potential, fragmentation related
issues and deployment complexity are the most severe ones. Where the RSA signature scheme
is currently widely deployed in DNSSEC, its elliptic curve (ECC) alternative, Elliptic Curve
Digital Signature Algorithm (ECDSA), is more recently standardized and supposedly reduces the
aforementioned flaws, by reducing the size of digital signatures and cryptographic keys. EdDSA
is another, more recent, digital signature scheme based on elliptic curve cryptography, and has
even more promising properties (e.g. smaller key size). The major drawback of ECC is that the
validation of signatures is computationally more intensive than RSA. A transition from RSA
towards ECC would introduce a significant increase in computational load caused by signature
validations for DNS resolvers. While some simple benchmark tests confirm that a single ECC
validation is computational costly, there exists no scientific proof that ECC can be deployed
on a large scale without causing any performance issues. In our research we have developed a
DNSSEC model based on measurement from three deployed resolvers. The resulting regression
model was applied to evaluate several scenarios, both current and future scenarios. Based on the
scenarios, we can conclude that the switch towards ECC can be made without encountering any
computational related issues for validating resolvers.

This research was conducted in collaboration with SURFnet, the Dutch national research and
education network which provides Internet and services to the research and education community
in the Netherlands.

Contents

List of terms 7

1 Introduction 9
1.1 Research goal . 10
1.2 Thesis structure . 11

2 Background 12
2.1 DNS . 12

2.1.1 Domain name space . 12
2.1.2 Domain authority and delegation . 12
2.1.3 DNS queries . 13
2.1.4 Cache poisoning . 15

2.2 DNSSEC . 16
2.2.1 Chain of trust . 17

2.3 Digital signatures . 19
2.3.1 RSA . 19
2.3.2 ECDSA . 20
2.3.3 EdDSA . 22

2.4 Comparison . 22
2.5 Consequences . 25

2.5.1 Distributed Denial of Service attacks . 25
2.5.2 Fragmentation issues . 26
2.5.3 Combined Signing Key . 26

3 Problem statement & Goals 27
3.1 Research goals . 27

4 Related work 29

5 Methodology 32
5.1 Modelling versus simulation . 32
5.2 Modelling approach . 34

6 Analysis of the current state 36
6.1 Measurement setup . 36

6.1.1 Data extraction . 36
6.2 Results . 38

6.2.1 Cache hit ratio . 38

5

6 CONTENTS

6.3 State of DNSSEC usage . 42
6.3.1 Cryptographic algorithm usage . 44
6.3.2 DNSSEC deployment . 45

6.4 Conclusions . 45

7 Model 46
7.1 Parameter estimation . 48

7.1.1 Measurement setup . 48
7.1.2 Correlation between the variables . 49
7.1.3 Regression . 50
7.1.4 Results . 51

7.2 Model validation . 52
7.2.1 Kolmogorov-Smirnov test . 53
7.2.2 Results . 54

8 Scenario evaluation 56
8.1 CPU benchmark . 56

8.1.1 Assumptions . 57
8.1.2 Results . 58

8.2 Current scenario . 60
8.2.1 Introducing the combined signing key . 61

8.3 Future scenarios . 61
8.3.1 DNSSEC deployment growth . 62
8.3.2 Increased outgoing queries . 63

9 Discussion 66

10 Conclusions and Future Work 68
10.1 Future work . 69

Appendices 75
A Unbound code . 76
B Results of regression . 80
C CPU load code . 82

List of terms

Abbreviations

AAF Amplification Attack Factor

CA Certificate Authority

CDF Cumulative Distribution Function

CHR Cache Hit Ratio

CSK Combined Signing Key

DANE DNS-based Authentication of Named Entities

DDoS Distributed Denial of Service

DNSSEC Domain Name System Security Extensions

DNS Domain Name System

DSA Digital Signature Algorithm

DoS Denial of Service

ECC Elliptic Curve Cryptography

ECDF Empirical Cumulative Distribution Function

ECDSA Elliptic Curve Digital Signature Algorithm

EDNS0 Extension Mechanisms for DNS

EdDSA Edwards Curve Digital Signature Algorithm

Eemo Extensible Ethernet MOnitor

FQDN Full Qualified Domain Name

ICANN Internet Corporation for Assigned Number and Names

ISP Internet Service Provider

KSK Key Signing Key

MTU Maximum Transmission Unit

7

8 List of terms

MUX Multiplexer

NIST National Institute of Standards and Technology

NS Name Server

RR Resource record

RSA Rivest-Shamir-Adleman

SHA Secure Hash Algorithm

SLD Second-Level Domain

SLR Simple Linear Regression

TCP Transmission Control Protocol

TLD Top-Level Domain

TTL Time To Live

UDP User Datagram Protocol

ZSK Zone Signing Key

ccTLD Country Code Top-Level Domain

eBATS ECRYPT Benchmarking of Asymmetric Systems

gTLD General Top-Level Domain

Parameters

αs The fraction of responses containing signatures

αv The fraction of signatures being validated

r̄ The average number of responses per outgoing query

s̄ The average number of signatures per signed response

Variables

Q Outgoing queries per second

R Incoming responses per second

Rn Incoming responses without signatures per second

Rs Incoming responses with signatures per second

S Incoming signatures per second

Sn Incoming non-validated signatures per second

Sv Signature validations per second

Chapter 1

Introduction

The Domain Name System (DNS) translates human-readable host names (e.g. www.example.com)
to IP addresses (e.g. 93.184.216.34). This translation occurs at name servers to which a client
sends its queries, asking for the IP address of a particular host name. Intermediate systems called
recursive DNS resolvers often perform DNS lookups on behalf of many clients. To reduce the
network traffic load and latency, DNS resolvers store retrieved DNS answers in a local cache for
answering future identical requests.

At the time of DNS development, security of the system was not taken into account. In 1993,
the first vulnerabilities in DNS were reported, but a very severe one was discovered in 2008:
the Kaminsky attack. In the Kaminsky attack, the most severe form of “cache poisoning”, an
attacker targets a DNS resolver by inserting malicious data in the cache of the resolver. An
attacker triggers a DNS lookup at the target and tries to send a spoofed response that looks
like it originated from the authoritative name server (i.e. the name server responsible for the
requested domain name). When successful, an attacker can redirect legitimate clients of that
particular resolver to an address of his choice. Cache poisoning attacks are possible because a
DNS resolver is not able to verify the authenticity and data integrity of the received response.

As a response to the existing DNS vulnerabilities, the Domain Name System Security Exten-
sions (DNSSEC) protocol was designed. DNSSEC provides the authenticity and data integrity
that DNS lacks. It achieves this by attaching a digital signature to each DNS response, which
proves that only the claimed sender could have sent the message and that the data was not
tampered with. Signatures are generated with public-key cryptography schemes, such as RSA
or ECDSA, where the private key is used to create a signature and the public key is used for
validation. Establishing a chain of trust provides complete authenticity and data integrity. Usually,
name servers use two cryptographic keys as part of the chain of trust: the Zone Signing Key
(ZSK) is used to sign the DNS data, where the Key Signing Key (KSK) is used to sign both
keys. Attaching signatures and keys to DNS responses causes them to become much larger than
traditional DNS responses.

While DNSSEC provides protection from cache poisoning attacks, it introduced several new
issues. Firstly, the protocol can be easily abused in so-called amplification attacks, a subset of
Distributed Denial of Service (DDoS) attacks. Amplification attacks rely on the fact that DNS re-
sponses are much larger than the requests, which allows an attack to generate large traffic volumes
by only sending a relatively small amount of traffic. Although DNS already suffered from amplifi-

9

10 1.1. RESEARCH GOAL

cation attacks, the large DNSSEC keys and signatures have increased this problem. Secondly,
the large keys and signatures cause DNSSEC responses to exceed the Maximum Transmission
Unit (MTU) more often, which causes these packets to be fragmented. Misconfigured firewalls
refuse to forward fragmented packets, making clients and resolvers behind the firewall unable
to resolve DNS queries. The choice of signature algorithm could potentially reduce these two issues.

RSA is currently used in most DNSSEC deployments to create digital signatures. More recently
its elliptic curve cryptography (ECC) alternative, Elliptic Curve Digital Signature Algorithm
(ECDSA), was standardized in DNSSEC [1] and this algorithm has some benefits over RSA.
Edwards-curve Digital Signature Algorithm (EdDSA) is a non-standardized algorithm, but has
even more favorable properties than ECDSA [2]. RSA and ECC provide the same cryptographic
functionality in DNSSEC, but due to fundamental differences in the underlying mathematics they
have very different properties. The most notable of these are as follows:

Key size - ECDSA has a much smaller key length than RSA [3, 4]. The key size of EdDSA
is even smaller.

Cryptographic strength - RSA - considering its most popular version with 2048 bits - is
cryptographically weaker than the weakest standardized ECDSA version, P-256 [5], as well
as EdDSA.

Signature size - The size of P-256 ECDSA and EdDSA signatures is significantly smaller
than 2048-bit RSA [3, 4].

Computation cost of signature validation - Validation of an ECDSA signature takes
much more time than validation of an RSA signature. EdDSA performs better than ECDSA,
but is still slower than RSA.

The smaller key- and signature size of ECDSA and EdDSA causes DNSSEC responses to
become smaller. This would reduce the two aforementioned issues with DNSSEC: DDoS potential
and fragmentation issues. In addition, ECC may allow us to replace the commonly used ZSK/KSK
scheme with a Combined Signing Key (CSK) scheme, which would reduce the size of DNSSEC
responses even more. The potential widespread deployment of ECC is met with reluctance,
because the impact on the computation load of validating resolvers is unknown. There currently
exists no extensive research into the performance of ECC in DNSSEC. Additionally, the impact of
ECC deployment on the DDoS potential and fragmentation issues of DNSSEC is also not known.

1.1 Research goal

In our research we have answered the following question: “What is the effect of deploying ECC
as a replacement of RSA in DNSSEC on the computation load of validating DNS resolvers?”.
The answer was obtained by predicting the number of signature validations in different scenarios,
using a prediction model. The model was developed based on passive measurements on the
DNS traffic of a set of deployed DNS resolvers. The data set was supplied by SURFnet, the
National Research and Education Network in the Netherlands1. Given the number of outgoing
queries per second, the linear model predicts the number of signature validations per second. The
model was validated with different data sets to prove that the model is indeed a good predictor
of the number of signature validations. Several scenarios (both current and future scenarios)
were defined in order to answer the research question. The results show that even in the most
unfavourable conditions, a validating resolver is able to cope with the computation load caused by

1http://www.surfnet.nl/en/

CHAPTER 1. INTRODUCTION 11

potentially deploying ECC globally as signature scheme in DNSSEC. Additionally, the DNSSEC
infrastructure is sufficiently future-proof because even with a full DNSSEC deployment (i.e. every
single domain in the world is signed), the computation load from signature validations is still no
issue.

1.2 Thesis structure

The remainder of this thesis is structured as follows. First, Chapter 2 provides a background of
DNS which includes the relevant details of DNS(SEC) and digital signatures. The background
chapter provides the required knowledge for those unfamiliar with DNS. Secondly, the problem of
the research is specified in several research questions in Chapter 3. This followed by Chapter 4 in
which the related work of the research is described. Chapter 5 states the approach that was taken
to answer the research questions. The results of the used approach are described in Chapters 6, 7
and 8. The thesis is ended with a discussion in Chapter 9 and the conclusions in Chapter 10.

Chapter 2

Background

2.1 DNS

The Internet works by allocating a unique IP address to every endpoint, such as hosts, servers
or routers. IP addresses are labels that consist of 32 bits in case of IPv4 or 128 bits in case
of IPv6. Resources on the Internet are often referred to by their names, rather than their IP
addresses. For example, instead of accessing 93.184.216.34 the domain name www.example.com

can be accessed to retrieve a web page. For us humans it is much easier to remember domain
names instead of IP addresses. For each host name on the Internet, there is a mapping to the
corresponding IP address. With millions of endpoints on the Internet, it is infeasible to maintain
a table with this mapping (which was used before DNS). The Domain Name System protocol
solves this issue by translating the hostnames to the IP address in a hierarchical and distributed
fashion.

2.1.1 Domain name space

DNS uses a hierarchical (tree) structure. The top of this structure is called the root, and is
denoted by a dot (.). The second level of the hierarchy consists of Top-Level domains (TLDs),
followed by Second-Level domains (SLDs) and zero or multiple lower levels. The TLDs can be
separated into two groups: Generic Top-Level domains (gTLDs), e.g. com, org and net, and
Country Code Top-Level Domains (ccTLDs), e.g. us, nl and uk. Each of the hierarchy layers
is separated by a dot. Each domain name in DNS consists of one or more parts, named labels.
The rightmost label of a domain name conveys the highest domain in the DNS tree structure.
Figure 2.1 shows how the domain name www.example.com. represents its place in the DNS tree
hierarchy. The domain name can be read from right to left, where the ‘.’ is the root, com is the
gTLD, example is the SLD and www is the hostname. In this example the domain name includes
the root symbol, but this is often discarded. A domain name that includes the root is called a
Full Qualified Domain Name (FQDN).

2.1.2 Domain authority and delegation

Each node in the domain name space is assigned to an authority, i.e. a party that is responsible
for the management of that node. Additionally, the party is also responsible for the entire sub tree
under the particular node. For example, the root node of DNS is authorized by the Internet Corpo-
ration for Assigned Number and Names (ICANN). The authority of a node can delegate authority

12

CHAPTER 2. BACKGROUND 13

www.example.com.

root
(.)

gTLD
(.com)

SLD
(.example)

hostname
(www)

Figure 2.1: The hierarchy of the DNS can be read from right to left, where the dot denotes the
root and www denotes the hostname.

for lower levels of that node to other parties. The part of the domain space that is authorized
by a single party is referred to as a zone. All authorities maintain one or multiple name servers,
which are able to respond to DNS requests for its zone. A name server that delegates author-
ity to other parties should be able to refer to a lower level name server that could answer the query.

Authoritative name servers maintain information of their zones in so called zone files. These
zone files consist of a collection of resource records (RRs). Each record has a name, a type (e.g.
A, NS, MX, etc.), a time-to-live (TTL), a class and type specific data. For example, an A record
contains an IPv4 address, an AAAA record contains an IPv6 address and an NS record contains
the name of an authoritative name server. Multiple resource records that share the same name,
type and class are referred to as a resource record set (RR set). Essentially, the DNS RR sets
form one giant, distributed database.

Resource records can be retrieved by sending DNS queries to name servers, which will respond
with the associated RR set, will send an NXDOMAIN response (i.e. the requested record does not
exist) or will refer the requester to a lower level name server that may be capable of providing
the answer.

2.1.3 DNS queries

All DNS communication is carried in a single message. The DNS message consists (besides a
header) of (i) a question section, (ii) an answer section, (iii) an authority section and (iv) an
additional section. The question section contains the requested domain name. The answer,
authority and additional sections contain a list of RRs. The answer section contains the resource
records that answer the question section. The authority section points to the authoritative name
server for the requested domain name. The additional section can contain supportive RRs, such
as the IP addresses for authoritative name servers for the requested domain.

Figure 2.2 shows the workflow for a DNS query. The DNS query is invoked when a user wishes
to resolve a hostname (such as www.example.com via a web browser). Note that in this example
the browser invokes the DNS protocol, but other types of applications exist that use DNS as well.
The following steps take place:

1. The browser invokes a local application named the stub-resolver, which is located on the
user’s computer system itself. The stub-resolver handles all DNS queries on behalf of the
user.

2. The stub-resolver sends the query to a recursive DNS resolver, which is often operated by
the Internet Service Provider (ISP).

14 2.1. DNS

User's system

Browser Stub
resolver

1 2

3

4

5

6

7

8

910

Authoritative
hierarchy

Internet
Service
Provider

Root
name
server

.com
name
server

.example.com
name
server

DNS resolver

Figure 2.2: An example of a DNS query.

3. The DNS resolver sends the query to one of the authoritative name servers (NS) for the
root zone. The resolver can reach the root servers, because the IP addresses of all root
servers are static and are by default included in DNS software.

4. The root server is not authoritative for the domain www.example.com, but has the IP
addresses of the authoritative NSs for the com domain. The root server responds with a
‘referral’ to all lower level NSs.

5. The DNS resolver sends the query to one of the com name servers.

6. The com NS is not authoritative for the domain www.example.com, but has the IP addresses
of the authoritative NSs for the example.com domain. The com server responds with a
‘referral’ to all lower level NSs.

7. The DNS resolver sends the query to one of the example.com name servers.

8. The example.com NS is authoritative for www.example.com (i.e. its zone file contains an
‘A’ record for the domain name) and responds with IP address = 93.184.216.34.

9. The DNS resolver responds to the stub-resolver with the IP address.

10. The stub resolver responds to the browser with the IP address.

Since DNS is intended to be lightweight, the User Datagram Protocol (UDP) is widely adopted as
transport layer protocol. DNS queries are sent from an arbitrary port to port 53. The associated
responses have the reverse port numbers; the source port is 53, where the destination port is the
arbitrary port that was defined by the requester [6]. While UDP is mainly used, the Transmission
Control Protocol (TCP) is also supported [7]. Initially the maximum size of a DNS message was
512 bytes, although this limited size was increased later with the Extension Mechanism for DNS
(EDNS0) [8].

For resolving a single domain name, DNS seems to generate a relatively large amount of
network traffic and also seems to respond slow due to the number of messages exchanged. To
solve these two problems, each DNS resolver maintains a cache. Each received RR set is stored
in the cache until the time-to-live (TTL) expires. The TTL guarantees that cache entries will
disappear eventually, so that RR sets need to be retrieved every once in a while. This ensures
that changes in zone files eventually propagate to DNS resolvers. Whenever a DNS resolver

CHAPTER 2. BACKGROUND 15

receives a DNS lookup, it first checks whether the requested domain name is cached. If so, the
corresponding cached RR set is returned, instead of invoking another name server. The TTL
value is determined by the zone operator and may vary per resource record.

2.1.4 Cache poisoning

One of the most severe threats to DNS is cache poisoning, and in particular the Kaminsky attack.
As mentioned before, DNS resolvers maintain a cache of DNS records to minimize network traffic
and to enhance the performance. In cache poisoning, a malicious party inserts so called bogus
data in the cache of a DNS resolver, causing it to give the malicious data to querying clients. For
example, an attacker might want to redirect clients of the domain name www.examplebank.com

to his own web server, where he can set up a website that tricks clients into giving important
data, while the clients themselves believe that they are browsing a legitimate website. The
Kaminsky attack - named after its discoverer Dan Kaminsky - was discovered in 2008 and is
the most harmful of the various variants of cache poisoning attacks that exist. It allows an
attacker to compromise an arbitrary domain with a high success rate in a short amount of time [9].

The Kaminsky attack is initiated by the attacker by sending a DNS lookup request to the
victim resolver. The domain name should not be cached by the resolver and the domain name
should be within the domain that the attacker wishes to compromise. For example, an attacker
queries the domain notexistingdomain.example.com to compromise the domain example.com.
Since the victim resolver has not cached the query it will forward the request to one of the name
servers of example.com. At this point, the DNS resolver expects an answer from the name server
that gives an IP address, an NXDOMAIN, or a referral to a lower level authoritative name server.
The attacker now generates a set of spoofed response messages that seem to originate from the
example.com name server. The spoofed messages contain a referral (the additional section in
DNS message) to a name server that is under control of the attacker. The victim resolver will
accept the first received valid response as an answer, so a cache poisoning attack can be considered
a race between an authoritative name server and the attacker. If the victim resolver accepts
one of the spoofed message as a valid response, the malicious name server referral is cached.
Future clients that request domain names within the domain example.com are redirected to the
attacker’s name server.

DNS resolvers only accept data when it is sent as response to a pending query; a response
that contains unexpected data is dropped by the DNS resolver. This means that an attacker
needs to carefully craft a response that makes sense to the victim’s system. In order to craft a
legitimate response, an attacker should match the following fields in the DNS message:

� The response to a query should arrive at the same UDP port as it was sent from. If the
source port is randomized correctly, there are roughly 216 possible source ports available.

� DNS resolvers often have multiple pending queries. Responses are correlated to the query
using the ‘query ID’ field in the DNS header. Therefore, the DNS response should have the
same ID as the DNS query. The query ID field in the DNS header is 16 bits long, which
results in 216 = 65536 number of unique possible query IDs.

� The DNS response contains the same question section as the sent query.

� The authority section should only contain names that are within the same domain as the
question.

� The additional section should contain the same NSs defined in the authority section.

16 2.2. DNSSEC

The attacker himself initiated the original DNS query and thus is fully aware of the question
section. The authority section is easily obtainable, since this field can be extracted from an
answer to a regular valid DNS response. The same holds for the additional section, although
the attacker intends to change these RRs. This leaves only the UDP port and the query ID as
unknown variables for the attacker, which need to be guessed correctly.

When port and query ID randomization is implemented, there are approximately 216 × 216 =
232 ≈ 4.3 billion combinations possible. Previous implementations of resolver software often
used a fixed UDP port and fixed query ID, which made guessing much easier for the attacker.
Even though an attack’s success rate can be heavily reduced by correctly implementing random-
ization, an attacker can invoke an almost unlimited amount of attacks, because the Kaminsky
attack is independent of domain name. If the attack on notexistingdomain.example.com has
failed, the attack can be slightly modified to target notexistingdomain1.example.com. Both
attacks would have resulted in compromising the domain example.com. Hubert [10] showed that
an almost undetectable Kaminsky attack can be performed with a 50% likelihood of success
in six weeks. Even with countermeasures, cache poisoning attacks still poses a huge threat to DNS.

Cache poisoning attacks show that DNS resolvers should be able to verify the identity of name
server, i.e. message authentication, and to detect data tampering, i.e. data integrity.

2.2 DNSSEC

Domain Name System Security Extensions (DNSSEC) provides the much needed authentication
and data integrity that the traditional DNS lacks, by attaching digital signatures to each DNS
response. The digital signatures are created using a hash function and public-key cryptography
(described in more detail in Section 2.3). The protocol was standardized in RFC 2535 [11] and
updated in RFCs 4033-4035 [12, 13, 14]. DNSSEC introduces a set of new resource record types
to DNS:

� RRSIG - is used to store the digital signatures in DNSSEC. If a zone is DNSSEC signed, a
cryptographic signature is generated for each resource record set (RR set) in the zone and
stored in the corresponding RRSIG record.

� DNSKEY - contains the public key of a cryptographic key set. Where the private key is kept
hidden from the outside, the public key is available to anyone who requests it. In DNSSEC,
most zones use two types of keys, the Zone Signing Key (ZSK) and the Key Signing Key
(KSK). The ZSK signs all RR sets in the zone, where the KSK signs both keys. More details
of this design choice are given in Section 2.2.1.

� DS - or delegation signer contains the hashed value of a KSK DNSKEY record. The DS record
is stored in the parent zone only and is used to verify the authenticity of the KSK DNSKEY

record of the particular zone. Essentially, it establishes a chain of trust between parent and
child zones (Section 2.2.1).

� NSEC(3) - stands for Next SECure and these records are used to prove authenticated
denial of existence. The records that have been specified so far only provide authentication
and integrity for existing domain names. However, an attacker can still send valid empty
responses, since there exist no signatures for empty answers. DNSSEC solves this issue
by introducing the NSEC record. The NSEC record contains all existing record types for a
particular domain name in the zone, thus each domain name in a zone has its own NSEC

record. Each NSEC record also contains the name of the next record (in lexicographical

CHAPTER 2. BACKGROUND 17

order), so the NSEC records form a linked list. However, this allows attackers to zone walk
and extract all domain names from a zone. To prevent this, the NSEC3 record stores the
digest of the domain name instead of the domain name itself [15].

DNS is distributed over thousands of systems worldwide. An overnight change towards
DNSSEC would not be possible, so the protocol is designed backwards compatible with DNS and
is being deployed gradually. The domain name space is currently in a hybrid situation where part
of the DNS zones are signed. As of today, 43.8% of the nl zone is signed while only 0.44% of the
com zone is signed. DNSSEC records are only included in DNS messages when both the sender
and the receiver (e.g. an authoritative NS and a DNS resolver) of the message are security-aware
(i.e. have DNSSEC implemented). Resolvers that verify the authenticity of name servers are
referred to as validating DNS resolvers.

Besides providing cryptographic signatures to DNS, DNSSEC is also an enabling technology
for other secure applications. For example, the IETF currently promotes the use of DNS-based
Authentication of Named Entities (DANE). In TLS, a set of ±160 Certificate Authorities (CAs) is
inherently trusted by clients (e.g. provided by browsers at installation of the software), similarly
to the root servers in DNS. Recent attacks [16] show that when successful, an attacker can issue
fraudulent certificates and as such can cause severe damage. To reduce the attack surface (i.e. all
entry points for an attacker to launch an attack), DANE uses the DNSSEC infrastructure next
to or instead of CAs to provide authenticity, by introducing a new resource record type, TLSA.
DANE provides a second certificate validation channel next to the TLS certificate chain of trust.
In order to issue a fraudulent certificate, an attacker should compromise a CA and the DNS root.

2.2.1 Chain of trust

As mentioned before, RR sets are signed in DNSSEC using cryptographic algorithms to prove
their authenticity. Usually, security-aware authoritative name servers use a so called Zone Signing
Key (ZSK) to create these signatures. When a validating resolver receives a DNSSEC response
with an RR set and a signature, it can request the authoritative name server for the public key
and check if the signature corresponds with the RR set. However, to provide full authentication,
the validating resolver should also be able to verify the authenticity of the received ZSK public
key. Therefore the ZSK has been signed with another key, the Key Signing Key (KSK). Again,
the authenticity of the KSK should also be verified and thus the digest of the public KSK is
placed in the parent zone as a DS record. The DS record in turn is signed by another key set and
this chain of trust can be traced all the way up to the root zone.

As an example Figure 2.3 displays the chain of trust for www.surfnet.nl. The RR set of www
is signed with the ZSK of the domain surfnet.nl (1). The authenticity of the key is proven
by a signature that is generated using the KSK of the same domain (2). The digest of the
KSK is stored as DS record the parent’s zone (i.e. nl zone) (3). In turn, the authenticity of
the DS record is proven by a signature created with the nl ZSK (4). The subsequent links in
the chain of trust proof the authenticity of their previous link (5 - 8) in a similar fashion as
the aforementioned steps. After step 8, the authenticity of the domain name can be traced back
to the KSK of the root zone. Since the root has no parent zone, the authenticity of this key
cannot be guaranteed using a DS record. Each validating DNS resolver should configure a ‘trust
anchor’, i.e. a copy of the digest of the root server’s KSK. The trust anchor is used to verify the
authenticity of the top of the chain of trust (9).

18 2.2. DNSSEC

ZSKKSK RRs
signssigns

www

surfnet.nl zone

DSKSK
signs .nl zone

root zone

is digest of

ZSK
signs

DSKSK
signs

is digest of

ZSK
signs

Trust anchor

12

45

78

3

6

9

Figure 2.3: The chain of trust for www.surfnet.nl.

Re-signing and key rollover A regular practice in DNSSEC zone maintenance is zone re-
signing and key rollovers. As mentioned before, each DNS RR set has a TTL, which specifies
how long it should be cached by intermediate parties. Whereas the original DNS record types
have a ‘relative’ TTL (i.e. the time that a record should be cached), the RRSIG type in DNSSEC
has an ‘absolute’ TTL (i.e. an expiration time). After the expiration time of an RRSIG is passed,
a signature should not be trusted anymore by a resolver and a new one should be retrieved. This
implies that an authoritative name server should provide a new valid signature with an updated
expiration time before the previous one expires, because otherwise the signed RR sets cannot be
validated by any DNS resolver. Creating these new signatures is referred to as ‘re-signing the zone’.

In case of a key compromise, an authoritative party should be able to generate a new key
set and resign the affected zone with the new key set. Additionally, to reduce the potential of
cryptographic attacks, it is recommended to retire old key sets once in a while and employ a new
one. Replacing an old key set with a new one is called a ‘key rollover’. During a key rollover, the
affected zone publishes multiple DNSKEY records simultaneously, such that cached RR sets can
still be validated and newly signed RR sets can be validated using the new key set [17].

ZSK and KSK The ‘chain of trust’ example shows that DNSSEC employs two different key
sets: the KSK and the ZSK. Introducing an extra set seems overly complicated and unnecessary.
A situation where the ZSK is removed and the KSK is used to create signatures of RR sets (i.e.
using a Combined Signing Key (CSK)) would function essentially the same [18]. Signatures and
keys are preferred to be small (because this reduces network traffic and speeds up validation), and
still provide a cryptographic strong system. Strong cryptography can be fulfilled by (i.) having a
large key and signature size or (ii.) regularly performing a key rollover. Since the first option
is infeasible with RSA, a key rollover should be performed often. In case of a CSK however,
during a key rollover the parent’s DS record should also change, and thus there is a parent-child

CHAPTER 2. BACKGROUND 19

interaction required. A DS record update is performed outside the DNS protocol, and generally
requires human intervention. It is undesirable to perform a DS update action often and therefore
a KSK/ZSK mechanism is used. The larger KSK provides security and is rolled irregularly, where
the smaller ZSK is used to sign RR sets and is rolled regularly.

2.3 Digital signatures

A digital signature is a method of demonstrating the authenticity and integrity of a message.
Historically, digital signatures have been used in cases where forgery and tampering detection is
important, such as financial transactions. All digital signatures schemes used in DNSSEC are
based on hash functions and public-key cryptography. Both concepts work with so called trapdoor
functions that are easy to perform in one direction, but extremely difficult to invert. Figure 2.4a
shows a global overview of how a digital signature of an arbitrary message is created. The message
(M) is first transformed using a one-way hash function. The output of that message (H(M))
is subsequently encrypted using an asymmetric cryptographic algorithm, with the signature as
result (S(H(M))). The required validation steps are shown in Figure 2.4b; the receiver decrypts
the signature (S(H(M))) and applies the hash function to the message. If both the received
and calculated digests are equal, the validation is successful. In signature schemes, the private
component of the key set is used to sign the message, where the public component is used to
validate the message. This guarantees that only the owner of the private key can generate
signatures, where everyone in possession of the public key is able to validate the message.

Hash functions are one-way functions that transform a message of arbitrary length into a
fixed-length bit string, which is referred to as the digest. In DNSSEC, SHA-1 and the SHA-2
family hash function (Secure Hash Algorithm) are standardized in the required and recommended
algorithms [19]. Hash functions are considered trapdoor functions because given input and the
algorithm, it is very easy to calculate the digest, while given the digest and the used algorithm, it
is very difficult to find the input. The details of SHA-1 and SHA-2 are beyond the scope of this
thesis, but for more information take a look at the SHA standards publication1.

In our research, we focus on three public-key algorithms: RSA, ECDSA and EdDSA. RSA is
currently the most used algorithm in DNSSEC, where Elliptic Curve Digital Signature Algorithm
(ECDSA) is standardized as the elliptic curve alternative and is rarely used. EdDSA - named after
the twisted Edwards curves - is not adopted as standard in DNSSEC, but has promising properties
and therefore we wish to include the algorithm. In the following sections a brief introduction of
the algorithms is given and the relevant differences between the three are presented.

2.3.1 RSA

One of the most well known public-key algorithms is RSA; the name is derived from its inventors
Ron Rivest, Adi Shamir and Leonard Adleman. RSA’s security lies in the difficulty of factoring
large numbers into primes. The public and private key are functions of large prime numbers [3,
Chapter 19].

Key generation To generate a key pair, one should first choose two random prime numbers p
and q. Compute the value of n:

n = pq

1http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

20 2.3. DIGITAL SIGNATURES

M

H(M)

S(H(M))

Apply hash
function

Sign with
private key} M

Attach signature
to message

and send

(a) Signing of a message
M.

}

S(H(M)) M

Decrypt with
public key

H(M)

Apply hash
function

H(M)=?

Receive
message

(b) Validation of a received
message.

Figure 2.4: General steps in the signing and validation phase.

Then (randomly) choose the public key e, such that e is relatively prime to (p-1)(q-1). Then the
private key d can be computed as follows:

ed ≡ 1 mod (p− 1)(q − 1)

At this point, primes p and q can be discarded. It is crucial that these primes are never
revealed, since the private key can be derived from these numbers. The public key now consists
of e and n, where d is the private key. To speed up RSA signing, the value of e is often chosen as
3, 17 or 65537 (216 + 1) [3, page 469].

Signing and validation Several signature schemes of RSA are described in PKCS#1 [20],
where the RSASSA-PKCS1-V1 5 and EMSA-PKCS1-v1 5 specifications are used in DNSSEC [19].
Before signing the message with RSA, the message is encoded as a particular prefix and the
digest of the original message. The prefix depends on the hash function used. After encoding the
message, the signing of encoded message m into a cipher text c goes as follows:

c = encoded(m)
d

mod n

Given the cipher text c and the public key (e, n) a receiver can recover the original message m as
follows:

encoded(m) = ce mod n

Removing the prefix from the encoded message m results in the digest of the original message.
The strength of RSA lies in the fact that given the value of n, finding the prime factorization into
p and q is extremely time consuming (at least assuming that both primes are very large).

2.3.2 ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) was recently standardized as an
asymmetric signing algorithm for DNSSEC in RFC 6605 [1]. ECDSA is not based on the prime

CHAPTER 2. BACKGROUND 21

P
R

P+P

x
-3 -2 -1 0 1 2 3

y

-3

-2

-1

0

1

2

3

Figure 2.5: Example of adding point P to point P.

factorization problem (such as RSA), but rather on the elliptic curve discrete logarithm problem
and belongs to the elliptic curve cryptography (ECC) family. In DNSSEC, calculations are
performed on a set of curves with fixed parameters, the NIST curves. There are two curves used,
P-256 and P-384, where the first curve provides shorter keys but the second one is cryptographically
stronger. The NIST curves define a set of domain parameters which are required to compute
with the elliptic curves. A curve E is defined by the equation:

E : y2 = x3 − 3x+ b (2.1)

The curve is defined over an algebraic group that consists of integers modulo p, where p is prime
and its value varies per NIST curve. All points that satisfy Equation 2.1 belong to the elliptic curve.
In addition, the point at infinity O is included as well. The coefficient b is pseudo-randomly defined
and its value depends on the NIST curve used. A point G, consisting of an x and an y value, on
curve E is used to generate the public keys. The order of G is denoted as n; in other words nG = 0.

In addition to the domain parameters, a scalar multiplication function needs to be defined in
order to compute with elliptic curves. The group self addition for an elliptic curve is shown in
Figure 2.5. When adding a point P to itself, the tangent line at P is used to find point R where
the curve and the tangent line intersect. P + P is defined as the reflection of R on the X axis.
Group multiplication, i.e. kP , is defined as adding P to itself for k times. For example, 3P can be
calculated by first adding P to itself (P + P), as shown in Figure 2.5, and subsequently adding P
to P + P resulting in P + P + P = 3P .

The private key is chosen as an integer d mod n, such that d is in the range [1, n− 1] (d = 1
is not allowed [21]). Using the domain parameters and the multiplication function defined above,
the public key is computed as Q = dG. ECDSA’s trapdoor mechanism is that given Q and G, it
is extremely difficult to identify d: the elliptic curve discrete logarithm problem.

Signing and validation In ECDSA a signature of message m is created using curve E, domain
parameters (G,n) and the private key d with the following steps [4]:

1. Select a random integer k, such that 1 ≤ k ≤ n− 1.

2. kG = (x1, y1) is computed, where x1 is converted to the integer x̄1.

3. r = x̄1 mod n is computed. If r = 0, the algorithm starts over from step 1.

22 2.4. COMPARISON

4. k−1 mod n is computed.

5. SHA(m) is computed and the resulting bit string is converted to the integer e. Depending
on the NIST curve, the hash function is SHA-256 or SHA-384.

6. s = k−1(e+ dr) mod n is computed. If s = 0, the algorithm start over from step 1.

7. The resulting signature for message m is (r, s), where r and s are concatenated [1].

Both r and s are of approximately equal length as the prime p used to define the elliptic curve.
This means that for P-256 and P-384 the signature size is 2 × 256 = 512 bits and 768 bits
respectively.

The validation of an ECDSA signature requires the same curve E, same domain parameters
(G,n) and the public key Q. With these parameters, the signature can be validated as follows:

1. The validating party should first check whether r and s are integers in the interval [1, n− 1]
and whether Q is a point on curve E.

2. SHA(m) is computed and the resulting bit string is converted to the integer e.

3. w = s−1 mod n is computed.

4. u1 = ew mod n and u2 = rw mod n are computed.

5. X = u1G+ u2Q is computed.

6. If X = O, then the signature should be rejected. Otherwise, the x coordinate of X is
converted to the integer x̄1 and v = x̄1 mod n is computed.

7. The signature is considered valid if v = r.

The dominant computation in ECDSA signature generation and verification is scalar multiplication
(i.e. multiplying a curve point with an integer) [22]. The aforementioned steps show that during
signature generation only one scalar multiplication is performed, while during the validation two
scalar multiplications are performed. This indicates that signature validation in ECDSA is slower
than signature generation.

2.3.3 EdDSA

The Edwards-curve Digital Signature Algorithm (EdDSA) is a relative young digital signature
scheme that shares similarities with ECDSA [2]. Where ECDSA is based on the NIST curves
P-256 and P-384, EdDSA is based on twisted Edwards curves, which are defined by the following
equation:

−x2 + y2 = 1 + dx2y2

where also the addition and multiplication group functions are different from ECDSA. A particular
twisted Edwards curve, Ed25519, was specifically selected for cryptographic uses, because it has
several attractive features, including fast signature verification, small keys, small signatures and
a high security level [2]. The curve’s name is derived from the used prime, namely 2255 − 19.
Bernstein et al. show in [2] that their implementation of EdDSA outperforms other existing ECC
signature algorithms.

2.4 Comparison

RSA, ECDSA and EdDSA each have their advantages and disadvantages. In this sections we
discuss the relevant differences considering their usage in DNSSEC and compare their properties.

CHAPTER 2. BACKGROUND 23

Table 2.1: Equivalent key strength (in bit length) [5].

Symmetric (in bits) ECC (in bits) RSA (in bits)

80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15,360

Table 2.2: Key size, signature size and verification speed of RSA, ECDSA and EdDSA.

Signature algorithm Key size Signature size Verification time
(in bits) (in bits) (in cycles) [23]

RSA-1024 1024 1024 51,840
RSA-2048 [3] 2048 2048 105,408
ECDSA P-256 [1] 512 512 1,152,412
ECDSA P-384 [1] 768 768 4,345,540
Ed25519 [2] 256 512 271,372

In our comparison we include RSA-1024, RSA-2048, ECDSA P-256, ECDSA P-384 and Ed25519.
RSA-2048 is the recommended version of RSA by NIST, where RSA-1024 is currently still in
widespread use in DNSSEC. ECDSA P-256 and P-384 are both standardized in DNSSEC and are
therefore included. We include Ed25519 as EdDSA implementation in the comparison because it
was specifically designed with performance in mind.

Cryptographic strength Table 2.1 shows the equivalent key strengths of symmetric (e.g.
AES), ECC and RSA algorithms. P-256 and Ed25519 (belonging to ECC) both have a group size
of 256 bits, P-384 has a group size of 384 bits and RSA-2048 has a key size of 2048 bits. The
table shows that both ECDSA schemes and EdDSA provide a better cryptographic strength than
RSA. In addition, cryptographic attacks can be expected to become stronger in the future, so
increasing the key size for future use should be a consideration. The table shows that elliptic
curve key sizes increase linearly with cryptographic strength, whereas the RSA key size increase
exponentially. Therefore, ECDSA and EdDSA are also more future-proof than RSA.

Key size The key size of the four schemes are displayed in Table 2.2. RSA-2048 keys are two
times larger than RSA-1204, four times larger than P-256 keys, 5.33 times larger than P-384 keys,
and eight times larger than Ed25519. The Ed25519 key is represented as its x-coordinate and a
single bit providing the sign (positive of negative) of the corresponding y-coordinate. In contrast,
the ECDSA keys consist of the full x- and y-coordinate, making the keys significantly larger than
Ed25519.

Signature size Table 2.2 also shows the signature size for the signature algorithms. The
signature size for RSA-2048 is twice the size of RSA-1024, four times larger than Ed25519 and
P-256, and 2.67 times larger than P-384. Note that the signature size for RSA algorithms is equal
to the cryptographic group size, where for the ECC schemes the signature size is twice the group
size.

24 2.4. COMPARISON

Validation speed In DNSSEC, signing zones occurs infrequently when compared to verification
of a signature. Namely, an authoritative name server only signs an RR set when it is signed for
the first time, when a signature expires or during a key rollover, whereas verification happens
when a validating resolver receives an RRset. Therefore, we are particularly interested in the
computation time of signature validation rather than signature generation.

In RSA, the public exponent e is often chosen as a small integer (1, 3 or 65537), where the
private exponent is in order of 2048 bits in size. The public exponents are all prime, and have a
small Hamming weight (i.e. the number of 1 bits) which significantly speeds up the exponentiation
process. Therefore, RSA’s signature verification is much less time consuming than signature
generation. ECDSA and EdDSA do not have this favourable property, because the cryptography
is not based on modular exponentiation.

According to RFC 6605, RSA supposedly signs messages “20 times slower than ECDSA”, but
verifies signatures “5 times faster in some implementations” [1]. The ECRYPT Benchmarking
of Asymmetric Systems (eBATS) project provides a set of measurements of public-key systems,
including the verification time of RSA, ECDSA and Ed255192. The verification time is expressed
in the number of CPU cycles, and is measured on different computer systems. Table 2.2 shows
the median of verification times for the different algorithms on the hydra2 system. The hydra2

system is one of the test systems used in the project and is the only one guaranteed to perform
the validations on one thread [2]. RSA-1024 is capable of performing a single validation in the
shortest amount of time and is roughly twice as fast as RSA-2048. P-256 and P-384 are a factor
22.2 and 83.8 slower than RSA-1024 respectively. EdDSA performs relatively better than ECDSA,
but still is 5.2 times slower than RSA-1024.

The computation cost of signature verification is particularly important for validating DNS
resolvers. These systems perform the verification action often and currently the whole DNS
infrastructure is constructed with the computation cost of RSA in mind (or even without DNSSEC
in mind). It is currently not known whether the existing DNS resolvers are able to cope with the
increased computation of ECC when it is deployed on a wide scale.

Besides the aforementioned differences between RSA, ECDSA and EdDSA, there are many
other differences. While we do not consider these difference important in our research in DNSSEC,
we present them anyway and indicate why they are outside the scope of our research.

Signature generation ECDSA and EdDSA are capable of generating signatures much
faster than RSA. However, this action is performed so sparsely compared to verification,
that this is currently not considered to be a bottleneck in DNSSEC.

Key generation time Similarly to signature generation, keys are generated very sparsely
to the verification of signatures. Again, ECDSA and EdDSA perform this action much
faster than RSA.

Side-channel attacks In a side-channel attack, an attacker obtains information of the
secret key by observing the physical implementation of an algorithm. For example, an
implementation of a cryptosystem could use a different code path for each ‘1’ bit in the
private key, which would take just a little bit more time than the path for a ‘0’ bit. An
attacker could measure the run time of the system and extract the number of ’1’ bits in
the private key. Previous research has shown that RSA [24] and ECC [25] without any
countermeasures are vulnerable to these attacks. These attacks are in particular dangerous

2http://bench.cr.yp.to/ebats.html

CHAPTER 2. BACKGROUND 25

for smart card applications [24]. In case of DNSSEC, all signing is performed on the
authoritative name server and is in general not observable by an attacker. Hence, resistance
against these attacks is not taken into consideration.

Random secret session key ECDSA generates a random k whenever a signature is
created. The private key can be obtained when two signatures are generated with the same
value of k, which occurs when k is static [26] or when a collision is generated [27]. Since
key signatures are generated so sparsely, k collisions are unlikely to occur, assuming that
the random number generation is implemented correctly [21].

2.5 Consequences

The comparison between the three cryptosystems shows that RSA is outperformed on almost all
relevant aspects by ECDSA and EdDSA, except for the speed of verification. If the verification
speed is tolerable, ECDSA could potentially be deployed in DNSSEC. This would have an effect
on some current issues in DNSSEC, of which the two most important ones are described below:
DDoS potential and fragmentation issues.

2.5.1 Distributed Denial of Service attacks

In a Denial of Service (DoS) attack, a victim is overwhelmed with traffic that floods its network
connection. In order to make the mitigation of such an attack difficult, a Distributed Denial of
Service (DDoS) attack is performed using an army of host nodes for generating network traffic.
Depending on the victim, a substantial amount of network traffic needs to be generated to prevent
the victim from serving its legitimate users. A DDoS attack can be used to shutdown a service
that is reachable via the Internet, such as Web servers, DNS servers or a simple desktop computer.
Recent attacks show that (the relatively easy to perform) DDoS attacks can have severe effects
[28, 29, 30]. Two types of attacks can be distinguished:

i. The server’s resources (such as sockets, CPU, HTTP connections, etc.) are exhausted; these
attacks are generally performed by exploiting weaknesses on the application layer and are
stealthier.

ii. The connectivity of a legitimate user is disrupted by targeting the network the user is
connected to. Generally, these attacks are performed at the network or transport layer and
are volumetric.

A particular devastating family of the second type attacks are amplification attacks. In an
amplification attack, the bandwidth generated by the attacker is increased in size before it impacts
the victim. An attacker does not directly send traffic to the victim, but rather sends the traffic to
a large number of systems that reflect the traffic to the victim. These intermediate, reflective
systems are referred to as amplifiers. An amplification attack allows an attacker who has limited
access to bandwidth to still perform a powerful DDoS attack, or a powerful attacker to perform
an extremely powerful attack. The ratio between the bandwidth generated by the amplifiers and
the bandwidth generated by the attacker is defined as the Amplification Attack Factor (AAF):

AAF =
Amplified Attack Traffic

Original Attack Traffic

A high AAF indicates a more devastating DDoS potential. Depending on the type of exploit
used, an amplification attack can have an AAF of over several hundreds [31].

26 2.5. CONSEQUENCES

Name servers can be used in a DNS amplification attack as amplifier. If the name server
hosts a DNSSEC signed zone, the amplification potential is even more severe. Consider a set of
signed zones and an attacker that sends spoofed DNS requests to each of their corresponding
name servers. Each NS will respond to the request with an answer and a set of large signatures
and public keys. All response messages are sent to the spoofed IP address, i.e. the victim of the
DDoS attack. The DNS requests are relatively small compared to the DNSSEC responses, so
the AAF can be very large. Previous research by Van Rijswijk et al. [32] observed amplification
factors of over 170.

While many countermeasures against DDoS attacks have been proposed, these attacks are
still being performed with success. The AAF of an attack is crucial for the attack’s success; if this
value would be reduced, amplification attacks would be far less disruptive. A possible solution for
DNSSEC-based amplification attacks would be to reduce the Amplified Attack Traffic, which
would be achieved if ECDSA (or EdDSA) is deployed instead of RSA. Namely, the signature and
key size of ECDSA is much smaller than RSA, and thus DNSSEC responses with ECDSA (or
EdDSA) signatures are smaller in size than responses with RSA.

2.5.2 Fragmentation issues

A significant issue with DNSSEC is that firewall configurations may interfere with the workings
of DNS. Firewalls may be configured to not forward fragmented UDP messages, which causes
DNS resolvers behind these firewalls to not receive a DNS response. Van den Broek et al. [33]
showed that around 36% of all DNS responses exceed the Maximum Transmission Unit (MTU)
size (mostly the Ethernet MTU of 1500 bytes) and are fragmented at the authoritative name
servers. In addition, up to 10% of the hosts are unable to handle fragmented packets. Since ECC
reduces the size of signatures, keys and therefore DNSSEC responses, the deployment of ECC
may reduce the experienced number of unresolved DNS queries due to firewall problems.

2.5.3 Combined Signing Key

The two issues described above are caused by large DNS messages. Another method of reducing
the DNS message size is to reduce the number of DNSKEY records that are attached to DNS
responses. This can be achieved by discarding the KSK and ZSK system and use a ‘Combined
Signing Key’ (CSK). We recall the original reasons for adapting the KSK and ZSK:

i. The signatures in DNS responses should not be too large (i.e. the RSA key size should be
small).

ii. The signatures should be sufficiently secure (i.e. the RSA key size should be large or a key
rollover should be performed regularly).

iii. There should be as little parent-child interaction, because this takes place outside the DNS
protocol (i.e. a key rollover should be performed irregularly).

The only way to fulfill these requirements is to adapt a large KSK that provides security and
not a lot of parent-child interaction, where the small ZSK provides small signatures. However,
Section 2.4 shows that ECDSA and EdDSA provide a more secure system than RSA (fulfilling
requirement ii. and iii,), with a smaller key and signature size (fulfilling requirement i.). This
indicates that a transition towards a CSK would not only simplify DNSSEC (which may be a
reason for its small deployment percentage), but also would reduce the amplification factor of
DNSSEC and reduce fragmentation issues.

Chapter 3

Problem statement & Goals

ECDSA and the cryptographically related algorithm EdDSA have significant advantages over
RSA with respect to DNSSEC. The most notable advantages are the smaller key sizes, smaller
signature sizes and better cryptographic security. One of the main arguments against deploying
ECC globally as replacement of RSA is that it is currently unknown if validating DNS resolvers are
able to cope with the higher computation effort caused by ECC. In addition, even if a transition
towards ECC is currently possible, it remains unknown whether the current DNS infrastructure
is able to cope with the computation load in future scenarios where much more domains are signed.

In order to solve the stated problem, the main question that is answered is as follows:

i. What is the effect of deploying ECC as a replacement of RSA in DNSSEC on the computation
load of validating DNS resolvers?

During the process of answering the main question, the following sub questions also need to be
answered:

i. What is the typical computation load of a DNS resolver?

ii. What is the typical behaviour of clients, resolvers and name servers?

iii. How can we model this behaviour and what are the relevant parameters?

iv. What scenarios can we evaluate to measure the impact of deploying ECC?

The first sub question requires the evaluation of a DNS resolver in the current state of
DNS(SEC). The second sub question elaborates on that by also observing the behaviour of not
only the resolver, but also the other relevant systems involved in DNSSEC: the clients and the
authoritative name servers. By answering the third sub question, a translation from reality
towards a DNS model is made by selecting the relevant parameters and translating them towards
a model. The last sub question focuses on how the model eventually is used to evaluate the
impact of deploying ECC as signature scheme.

3.1 Research goals

Our research is intended to provide a strong argument for or against the deployment of ECC
as the replacement of RSA. As described in Section 2.4, RSA and ECC both have positive- as
well as negative properties for cryptographic usage. One of the ‘weak’ properties of ECC is its
presumed high validation cost in terms of computation power. If our research shows that the

27

28 3.1. RESEARCH GOALS

validation cost of ECC poses no problem for the current DNS resolver infrastructure, choosing
ECC over RSA would be advisable. We expect that our finding will pave the way for a worldwide
deployment of ECC.

We create a model of the DNS infrastructure in order to answer our research questions.
This model can potentially be further used and extended by future research that take upon the
model-based approach. Currently, most research on DNS performance is measurement based,
as opposed to model based. While measurements are valuable source material, they are often
difficult and time consuming to obtain, so a model based approach could be valuable for future
research.

Chapter 4

Related work

Since its development, DNS (and DNSSEC) has been popular for measurement based research.
We discuss the most relevant research projects that are closely related to our own research for
the various aspects of the project.

Computation load of resolvers in DNSSEC Several measurement-based research projects
have focused on the performance of DNSSEC deployment. Migault et al. [34] performed several
performance tests on different implementations of DNS and DNSSEC (BIND, NSD and Unbound)
in terms of CPU cost and server response time. The current state of DNSSEC deployment (in
percentages) is not taken into account; only the relative performance difference between DNS and
DNSSEC is considered. Wijngaards et al. [35] performed a simulation where the performance
of validating DNS resolvers was measured (the CPU load and the network traffic) for various
percentages of DNSSEC deployment. Their research included the use RSA-SHA1 as signing
scheme but did not include ECC. In contrast to our research, neither of these projects included
ECC signature schemes.

The amplification factor of DNSSEC Anagnostopoulos et al. showed in [36] that an
amplification factor of 44 could be achieved using DNSSEC DDoS amplification attacks. Further
research by Van Rijswijk-Deij [32] gives a more in-depth view into DNSSEC and shows that an
amplification factor of over 170 can be achieved. Both papers give a set of possible countermeasures,
which include (among others) preventing IP spoofing using ingress filtering, reducing the response
size, using EDNS0 cookies, limiting the response rate, disabling open DNS resolvers and detecting
DNS amplification attacks. Rossow [37] proposes several countermeasures against UDP based
amplification attacks, which are similar to the prevention methods by Anagnostopoulos and
Van Rijwijk-Deij. Protocol hardening is proposed as an additional countermeasure, for example
by introducing session handling to UDP. EDNS0 and UDP session handling provide stateful
communication on the application layer and transport layer respectively. Most previous research
focuses on eliminating the DDoS attack itself, but few mention that the reduction of the
amplification factor is also a mitigation strategy. Rossow proposes a solution where the response
size is of similar size as the request, which decreases the amplification factor heavily. Its downside
is that the protocol efficiency drops and systems face higher loads in benign use. Van Rijswijk-Deij
in turn proposes the reduction of the amplification factor by using cryptographic signature schemes
with more favourable key and signature sizes.

29

30

Fragmentation related issues in DNSSEC Previous research on fragmentation [33] showed
the problem caused by DNS fragmentation; 10.5% of all DNS resolvers encounter fragmentation
problems. A possible proposed solution is limiting the response size, something that is provided
by ECC signatures. Herzberg et al. [38] show that cache poisoning attacks based on fragmentation
is possible. Ironically, DNSSEC is the main cause of fragmentation and this problem may be
decreased by reducing the response size of DNSSEC responses.

Deploying a CSK The currently widely deployed RSA signature scheme uses a ZSK and
KSK system to provide security, as well as the possibility to roll keys regularly without the
undesirable parent-child interaction. Yang et. al [18] describe the design considerations that
went into the separation of the two keys. Since ECC is cryptographically stronger than RSA
while using smaller keys and signatures, we could potentially switch to a single-key signature
scheme, using a Combined Signing Key (CSK). While there is some interest in supporting a CSK
scheme [39, 40], there currently has been no actual research performed on a potential widespread
deployment of such a scheme.

ECC deployment in DNSSEC ECDSA was standardized in DNSSEC in 2012 [1] and
currently NIST recommends ECDSA as the preferred signing scheme from 2015 [41]. Furthermore,
there are research efforts that explore the deployment of additional cryptographic schemes such
as ECDSA in DNSSEC. Herzberg et al. [42, 43, 44] recognize the need for ECDSA and propose
a negotiation protocol that enables DNS nodes to negotiate the used protocol, such that the
DNSSEC overhead is minimized. While they do mention the issues with DNSSEC (the overhead)
they do not address the performance considerations of deploying ECDSA.

Modeling of DNSSEC Jung et al. [45] performed a detailed analysis of DNS traces and
measured the distribution of TTL values and domain name popularity, because (according to
the authors) these determine the cache hit rate. Furthermore they performed a trace-driven
simulation to study the impact of a shared cache on the hit rate. The authors used three DNS
traces, which consisted of the queried domain names, the associated answers and the associated
TTL values, for the simulation where the clients where grouped into groups of varying size
sharing the same cache. The authors in [46] re-examine previous research (including [45]) and
give in-depth measurements of DNS traffic, with a focus on malware detection. The results, which
include a description of high level DNS characteristics, is interesting for our research since we
try to model DNS traffic behavior. Koç et al. [47] attempted to capture the entire DNS in a
model which according to the authors “is intended to be used for analyzing ‘what-if ’ scenarios”,
exactly the purpose of our research. The research does not focus on DNSSEC in particular but
is mostly a general model. Furthermore, Wessels et al. [48] performed laboratory simulations
using a mini-Internet setup, where one client accesses one caching DNS resolver which in turn
accesses three authoritative name servers (representing the root, TLD and SLD layers). Lastly,
Kolkman [49] performed a research project similar to us. Before the deployment of DNSSEC
(in 2005) they measured the effect of deploying DNSSEC on several metrics, e.g. CPU load. In
contrast to our approach, he focused on the authoritative name servers rather than validating
resolvers. He concluded that the name servers could easily cope with the increased CPU load,
bandwidth and memory usage. Krishnan and Monrose [50] performed an empirical study on the
performance effects of DNS ‘prefetching’ (performing DNS queries in advance, which is supposed
to decrease the response time when browsing) and included a trace driven simulation to see the
impact of prefetching in combination with DNSSEC. The used experimental setup included a
validating resolver that played back a prerecorded trace and an authoritative name server that
responded to the resolver’s request with a correct answer. DNSSEC, and especially DNSSEC

CHAPTER 4. RELATED WORK 31

combined with prefetching, resulted in a significantly higher response time and a lower throughput.

While these papers all use a (slightly) different approach in their research, there is not an
existing DNS model from the resolver’s perspective that is usable for us, because they either
focus on DNS instead of DNSSEC or created the model from the name server’s perspective.

Chapter 5

Methodology

As the main research question implies, the computational load of a validating resolver should be
evaluated. Firstly, the current situation where the majority of the domains is signed with RSA
could be compared with scenarios where ECC is deployed. In addition the long-term implications
of deploying ECC should also be evaluated. The computational load of a resolver is determined
by (1.) the computational load for a single signature validation and (2.) the number of signature
validations that a resolver needs to perform. Previous work1 has already extensively evaluated
the performance for a single validation. In order to validate these results, a similar performance
test has been performed as part of our research, which can be found in Section 8.1. The issue
of determining the number of signature validations is more complex, because this depends on
(among other) the live behaviour of the DNS, the configuration of the DNS resolver and the
decisions made by domain owners.

5.1 Modelling versus simulation

We identified the following two approaches that allow us to evaluate the number of signature
validations of a validating DNS resolver:

1. A simulation approach where in a controlled environment a simulated version of DNS is
created. The actors in the environment should behave as realistic as possible in order to
obtain valid results. The actors interact with each other using actual DNS messages. By
changing the behaviour of the actors, different scenarios can be evaluated. Three possible
actors could be a client, a resolver and an authoritative name server. This approach is
similar to the approach used by Wijngaards et al. [35], who measured the effect of deploying
DNSSEC.

2. A statistical model-based approach where a predictive model of DNS is created. Given
a set of inputs, the model computes the expected number of validations. By changing
parameters in the model, different scenarios can be evaluated. To the best of our knowledge,
such an approach has not yet been used before in DNSSEC research.

The advantages (+) and disadvantages (-) of a simulation approach are stated in Tab. 5.1
and the (dis)advantages of a modelling approach are stated in Tab. 5.2. Since we are particularly
interested in future scenarios (e.g. RSA is completely replaced by ECC or the DNSSEC deployment
approaches 100%), modelling DNSSEC is the preferred approach for the research.

1http://bench.cr.yp.to/ebats.html

32

CHAPTER 5. METHODOLOGY 33

Table 5.1: The advantages and disadvantages of a simulation approach.

+/- (Dis)advantage

+ A default simulation setup is relatively easily deployed. Client behaviour could
potentially be simulated by replaying a pre-measured trace (e.g. using tcpdump

and tcpreplay), where the authoritative name servers simply reply with a valid
or invalid response. The CPU load of the resolver can be measured in real time.

- Deviating from the current, default behaviour is not trivial. Many assumptions
need to be made which may result in unrepresentative situations. For instance,
when increasing the query traffic from clients to the resolver, what happens to the
distribution of domain names? For answering the research question, it is crucial
that non-standard situations can be evaluated, so a simulation approach may not
be sufficient.

- In order to obtain meaningful results from a simulation, it (presumably) needs to
run for a relatively long time compared to a modelling approach. In case of many
scenarios, it may be infeasible to run all these simulations within a reasonable time
span.

Table 5.2: The advantages and disadvantages of a modelling approach.

+/- (Dis)advantage

+ Once the model and its parameters are established, it is a powerful tool for
predicting scenarios. For example, an arbitrary resolver administrator can estimate
the number of signature validations without the need of setting up an extensive
simulation setup for himself.

- Compared to a simulation approach it requires intensive measurements to determine
the correct parameters and variables for the model.

- The model should be carefully developed. If too many details of DNS are included
(i.e. reality is modelled too closely), the model loses its predictive property since it
is purely trained for its test data, rather than non-test data. If too little details are
incorporated, the model may provide false results or may not reflect reality at all.

34 5.2. MODELLING APPROACH

Validate
model

Evaluate
scenarios

Estimate
parameters

Define model
and parameters

Describe
scenarios

Analyse the
current state

If insufficient

(1.) (2.) (3.) (4.) (5.) (6.)

Figure 5.1: Research steps

5.2 Modelling approach

In order to create a model that could be used for prediction, intermediate steps were required
that led to a complete model. Fig. 5.1 shows the research methodology steps that were being
followed. A more detailed description is as follows:

1. Analysis of current state Before any attempt at modelling was made, an in-depth
analysis in the current state of DNSSEC was performed. Based on measurements on three
resolvers of SURFnet this gave a basic understanding of DNS. Since data was gathered
at resolvers, all metrics are defined from the perspective of the resolver. For example,
incoming queries refers to the queries that are sent from clients towards a resolver, where
outgoing queries refers to the queries that the resolver sends to authoritative name servers.
Examples of measured variables are incoming queries per second, incoming signatures per
second, signature validations per second, distribution of domain name popularity, etc. These
measurements also gave an indication of what parameters should be included and excluded
from the model.

2. Scenario description Before developing a DNSSEC model, it is crucial to think of potential
scenarios that need to be validated. Namely, variables that change in these scenarios should
be incorporated in the model. These described scenarios reflect the worst case scenarios
and realistic scenarios that are (and will be) encountered.

3. Defining the scope of the model In this step, the input, the output and the parameters
of the model were determined. A major priority was defining the model in such a manner that
reality can be approximated sufficiently, without creating a very specific model rendering
it unusable for scenario evaluation. The parameters were chosen such that they are
independent of each other (i.e. any of the parameters can be changed without affecting the
other parameters). Additionally, the model includes a set of functions that describe how
the input and the output of the model relate to each other.

4. Parameter estimation Based on a set of measurements, the parameters were estimated
using regression techniques. This set of measurements is different from the measurements
from the current state analysis (e.g. the new data set measured more metrics). This and the
previous step were performed more than once to improve the model until it was sufficiently
effective in predicting the output based on the input. After this step, the model was usable
for scenario evaluation.

5. Model validation After the parameter estimation step, the quality of the model was
evaluated. We assessed how well the model predicts the number of validations required by
comparing the prediction to an actual measured number of validations. If the model does
not represent the current state of DNSSEC sufficiently, it cannot be used for predictions. In
case of an insufficient model, the model was redefined and its parameters were re-estimated.

CHAPTER 5. METHODOLOGY 35

This iteration step was performed several times during the project.

6. Scenario evaluation The scenarios described in step (2.) were evaluated using the
developed model. Based on these scenarios, the research question could be answered.

Chapter 6

Analysis of the current state

In this chapter, the findings of a first, exploratory measurement session are described. The reason
for performing this measurement was to get basic insight in the usual behaviour of DNS. This
default setting allowed us to determine what parameters could potentially be included in - or
excluded from - the eventual model.

6.1 Measurement setup

In order to get the necessary data, the network traffic of three validating DNS resolvers was
captured. These resolvers are operated by SURFnet and are used by the Dutch research and
education network. For the remainder of the report, we refer to these resolvers as AMS, TIL
and UTR, named after the cities ‘Amsterdam’, ‘Tilburg’ and ‘Utrecht’ where the resolvers are
deployed respectively.

Fig. 6.1 displays the key components in the used measurement setup. The regular DNS
infrastructure consists of the standard DNS systems: clients, a single resolver (AMS, UTR or
TIL) and the pool of authoritative name servers. All network traffic between clients and the
resolver, as well as the traffic between the resolver and authoritative name servers, is tapped
by sensors and collected by the multiplexer (MUX). The MUX retransmits the tapped data to
another system, which performs the actual data extraction from the network traffic.

6.1.1 Data extraction

For the data extraction, two tools were used: the ’Extensible Ethernet MOnitor’ (or Eemo) and
Unbound. Both tools ran simultaneously and were instructed to regularly output several metrics
of interest. Eemo1 is an open-source network measurement capable of monitoring network traffic
in real-time. As the name implies, the tool allows the development of additional plugins (in C)
that extend the capabilities of the tool. Eemo support the processing of different network layers
and protocols, including IP, UDP, TCP and DNS(SEC). For the exploratory measurement setup,
a new plugin has been written, which can be found on Github2 under the name dnsdistribution.
Among the gathered statistics are the following metrics:

� Distribution of requested domain names

1www.github.com/SURFnet/eemo
2www.github.com/kdhageman/eemo

36

CHAPTER 6. ANALYSIS OF THE CURRENT STATE 37

AMS, UTR and TILClients Name servers

Regular DNS
infrastructure

Taps traffic

Retransmits
traffic

Runs EemoMUX

Figure 6.1: Exploratory measurement setup

� Distribution of unique TTL values

� Cache hit ratio

� Signatures per signed response

� Number of received signatures per second

Besides these statistics measured by Eemo, we were interested in others as well. In particular,
the following metrics needed to be measured:

� The number of signatures validations (per second)

� The distribution of algorithms and key sizes for validations

Depending on the characteristics of an incoming signature and the implementation of the DNS
software, the signature may or may not be validated. Simply measuring the occurrence of a
signature in the DNS traffic does not guarantee an accurate measurement of the number of
signature validations. Measuring the actual number of signature validations requires access
to the internal workings of DNS resolver software. We chose to use Unbound3 as the resolver
software and slightly modified it to output our metrics of interest at regular intervals. The
customized code can be found in Appendix A. Unbound is an open source software tool developed
by NLnet Labs and is used by SURFnet on their resolvers. The main alternative to Unbound
would potentially be BIND4, which is the most widely deployed DNS server. Both Unbound
and BIND are open source, which allows for altering their source code for measurement pur-
poses. However, Unbound was chosen over BIND due to the experience of SURFnet with Unbound.

All statistics were measured over a period of seven days, where the data was written in ten
minute intervals. This means that all the data presented in this chapter as ‘average per second’ is
the average of a ten minute time window. The reason that the data was written every ten minutes
rather than more often is that the storage of the computer system was limited. A measurement of

3https://www.unbound.net/
4https://www.isc.org/downloads/bind/

38 6.2. RESULTS

 0

 20

 40

 60

 80

 100

M
onday

Thuesday

W
ednesday

Thursday

Friday

Saturday

Sunday

M
onday

C
a
ch

e
 h

it
 r

a
ti

o
 (

%
)

AMS
TIL

UTR

Figure 6.2: Cache hit ratio for three resolvers over time. The ticks on the x-axis represent 4 PM
for the different days.

a relative long period (i.e. seven days) was required for an accurate TTL measurement. Namely,
due to the caching mechanism of a resolver, a record with a TTL value of one week will at
maximum exist once in a measurement of a single week. By measuring only a single day, the
number of records with a high TTL value will be heavily misrepresented in the measurement. A
measurement of much longer than one week would not be feasible due to the total duration of
the project.

6.2 Results

From the resulting data, features were extracted and two major conclusions regarding the model
could be made. These conclusions involve the cache hit ratio of a validating resolver and the
current state of DNSSEC deployment.

6.2.1 Cache hit ratio

One of the key goals of the measurements was to get insight in the caching behaviour of a resolver.
The cache hit ratio (CHR) indicates how many incoming queries (from clients) result in outgoing
queries (towards authoritative name servers) and thus potentially in signature validations. We
identified three elements that affect the cache hit ratio of a DNS resolver:

� Incoming queries per second

� Distribution of domain names of these queries (i.e. domain name popularity)

� Associated TTL value of the domain names

To give an indication of realistic cache hit ratio values, Fig. 6.2 displays the CHR of the three
resolvers over time. Notably, the CHR of the different resolvers heavily differ on average, with
AMS having the highest average of 80.49, TIL having an average of 65.52 and UTR having the
lowest average of 49.29. Additionally the CHR of the UTR resolver seems to deviate much more

CHAPTER 6. ANALYSIS OF THE CURRENT STATE 39

from its average than the other two resolvers. For AMS and UTR, in the weekend (in particular
Sunday) a lower cache hit ratio can be observed. This may be caused by the lower amount of
incoming query traffic, which implies that the inter-arrival time of queries for a particular domain
name is longer. The likelihood that during the inter-arrival the TTL is expired is therefore
increased and thus the CHR increases.

Incoming queries per second Fig. 6.3a shows the average incoming messages per second for
the three resolvers. A day and night pattern can be observed, where the daily peak is at around
12:00h. In addition, on weekend days the query load is less than during week days. These results
correspond with the user base of SURFnet’s resolvers: employees and students of research- and
educational institutes are more likely to use DNS based software during the work- and study
hours. Fig. 6.3b shows the average outgoing query load for the same resolvers and the same
time window. Interestingly, all three resolvers (who see very different incoming query loads),
have a very similar amount of outgoing queries. This confirms the result from Fig. 6.2 that all
three resolvers have a different CHR, with AMS having the highest and UTR having the lowest.
Example 6.1 demonstrates how two resolvers with a different incoming query load may share a
similar amount of outgoing queries.

Example 6.1. Consider two resolvers, A and B. Both resolvers receive only queries re-
questing the A record for a single domain, namely www.example.com. For the sake of the
example, the A RR set for www.example.com has a TTL value of 240 seconds. Resolver A
receives queries at a rate of one query per 30 seconds, while resolver B receives them at a
rate of one query per 60 seconds.

The figure below shows the effect of the TTL and the caching behaviour of resolvers on
the number of outgoing queries. A timestamp t0, both resolvers have an empty cache. At
t1, the first query for www.example.org arrives, which is for both resolvers a cache miss. In
case of a cache miss, the resolvers attempt to resolve the query by recursively request an
answer from authoritative name servers. Then, accordingly to the received TTL value, both
resolvers set t10 as the expiration time of the cached entry. All queries that are received
between t1 and t10 are immediately answered from the cache. As the figure shows, resolver
A receives seven in the intermediary time period, while resolver B receives three queries in
the same amount of time. The queries received at t10 cannot be answered from the cache
(since its TTL expired) and thus the resolvers forward the query towards the authoritative
name servers.

40 6.2. RESULTS

 0

 500

 1000

 1500

 2000

 2500

M
onday

Thuesday

W
ednesday

Thursday

Friday

Saturday

Sunday

M
onday

In
co

m
in

g
 q

u
e
ri

e
s

(p
e
r

se
co

n
d
)

AMS
TIL

UTR

(a) Incoming queries

 0

 500

 1000

 1500

 2000

 2500

M
onday

Thuesday

W
ednesday

Thursday

Friday

Saturday

Sunday

M
onday

O
u
tg

o
in

g
 q

u
e
ri

e
s

(p
e
r

se
co

n
d
)

AMS
TIL

UTR

(b) Outgoing queries

Figure 6.3: Traffic of AMS, TIL and UTR over time.

CHAPTER 6. ANALYSIS OF THE CURRENT STATE 41

Resolver B

Query inter-arrival times (60 s)

t 0 t 1

Resolver A
t 0 t 1 t 2 t 3 t 10

t 12

t 4 t 5 t 6 t 7 t 8 t 11

TTL (240s)

Query inter-arrival times (30 s)

time

Cache miss

Cache hit

time

TTL (240s)

...

...

t 2 t 3 t 10t 4 t 5 t 6 t 7 t 8 t 11

t 12

If this pattern would repeat itself, it is clear that although both resolvers see different
amounts of incoming queries, the amount of outgoing queries is the same. In this case,
resolver A has a cache hit ratio of 87.5% and B’s cache hit ratio is only 75%.

TTL distribution As the above mentioned example indicates, the TTL value of a resource
record impacts the number of outgoing queries for that particular domain. For this reason, the
TTL distribution of all unique resource records in DNS responses was measured (shown in Fig.
6.4). Note that the x-axis is logarithmic rather than linear. Again, the data in the plot was
extracted from a seven-day measurement. The most common TTL values (ordered by frequency)
are one day, 5 minutes, one hour, two days and ten minutes. The received TTL values of AMS
are generally shorter than those of TIL and UTR. The default configuration of Unbound states
that cache entries are dropped from the cache automatically after one day. Resource records with
a TTL higher than one day therefore can be considered to have a TTL of one day.

Domain name popularity As our example showed before, the inter-arrival between two
queries requesting the same RR set in relation to the TTL value determines the cache hit ratio.
Maintaining a table of inter-arrival time for every domain name was considered infeasible. There-
fore, rather than the inter-arrival times, the total number of requests for a particular domain name
has been measured. Based on this number, an average inter-arrival time can be easily computed
and is assumed to be the inter-arrival time between queries. The total number of requests for
a domain name is for the rest of the report referred to as domain name popularity. Fig. 6.5
shows the domain name popularity obtained from the measurements at the three resolvers. Note
that both the x- and the y-axis are logarithmic. The domain names are ranked based on their
popularity, where the first ranked domain name is most popular and the last ranked domain
name is least popular (i.e. is only requested once). In these three data sets, the highest number
of domains was measured in the AMS data set, which contained 12.5 million domain names. The
domain name popularity distribution seems almost linear (in a loglog plot) as shown by the black
dashed line, which confirms earlier studies in domain name popularity. This type of distribution
(the Zipf-distribution) can be used to describe the distribution of unique words in an arbitrary

42 6.3. STATE OF DNSSEC USAGE

 0

 0.2

 0.4

 0.6

 0.8

 1

20 secs

1 m
in

5 m
ins

10 m
ins

30 m
ins

1 hour

1 day

2 days

1 week

C
D

F

TTL

AMS
TIL

UTR

Figure 6.4: CDF of unique TTL values for three resolvers.

textbook or resources on the Internet in general [45]. In our case, the top 0.5% popular domains
seem to follow a different popularity distribution than the remaining domains. Around this point,
many domain names share the same popularity.

In theory, by combining the popularity of all requested domain names and their TTL values,
the exact content and volume of the outgoing queries can be computed. Therefore, it could be
used as the input of our model of DNSSEC. However, measuring all this data is not only infeasible,
but possibly also very resolver specific. This indicates that the model (once parametrized) can
only be used for a single resolver. Since we wish to offer a simple method for an arbitrary resolver
administrator to predict its computation load, this is not an acceptable approach. It might be a
better approach to use the outgoing query traffic volume as an input for the model.

6.3 State of DNSSEC usage

Although the DNSSEC standard has existed for over 10 years now and the root has been signed
since 2010, the current usage of DNSSEC is still not widespread. In addition, most of the used
signatures nowadays are RSA rather than ECDSA. In the exploratory measurement, the exact
state of the DNSSEC usage was measured to quantify the possible growth of ECDSA usage. This
growth is possible in two ways: deploying ECC instead of RSA or increasing the overall DNSSEC
deployment.

CHAPTER 6. ANALYSIS OF THE CURRENT STATE 43

Table 6.1: Current usage of cryptographic algorithms and their key sizes

Algorithm Key size Occurrence (%)

RSA

1024 89.1793
2048 9.1468
1280 0.8018
1536 0.3908
4096 0.2180
1048 0.1407

ECDSA 512 0.0368

RSA

1032 0.0293
944 0.0234
512 0.0174

2560 0.0051
1152 0.0024
936 0.0024
768 0.0012

1304 0.0010
2304 0.0009
3072 0.0005
2024 0.0004

DSA 3240 0.0004

RSA
2096 0.0003
928 0.0001

DSA 1704 0.0001

RSA

2088 0.0001
1160 0.0001
2016 0.0001
1400 0.0001

ECDSA 768 0.0001
RSA 904 0.0000

44 6.3. STATE OF DNSSEC USAGE

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-05 0.0001 0.001 0.01 0.1 1 10 100

P
o
p
u
la

ri
ty

% Domains (ranked on populuarity)

AMS
TIL

UTR
Zipf-distribution (AMS)

Figure 6.5: Query name popularity distribution (resembling the Zipf-distribution)

6.3.1 Cryptographic algorithm usage

The current algorithm usage was measured using Unbound rather than Eemo. Using Eemo, only
the received signatures can be measured, but not which of these signatures is actually validated.
Only the signature validation is of interest (rather than receiving the signature). In Unbound,
the exact code block in which a validation takes place was extended with monitoring code to
measure the used cryptographic algorithm and its key size.

Tab. 6.1 shows the distribution of algorithms and their key sizes. The table shows the results
from measurements on a single resolver (AMS), but other resolvers show a similar distribution
of algorithms. There is no distinction made between the different RSA algorithm numbers,
which use different hash functions, since the computation effort of a hash function is negligible
compared to a signature validation and therefore these different algorithms are equivalent to each
other. Clearly, ECDSA is almost non-existent compared to RSA: only 0.037% of all signatures is
signed using ECDSA. Between ECDSA P-256 (with a key size of 512 bits) and ECDSA P-384
(with a key size of 768 bits), P-384 was rarely used. In fact, only seven signature validations
were performed by Unbound over the course of the measurement. An overwhelming majority
of all signatures is generated using RSA with key size 1024, an algorithm that is considered to
be unsafe and according to NIST should be replaced by keys of size 2048 in 2013 (which was
extended to the end of this year) [51]. Besides 1024 and 2048, there are some odd RSA key
sizes, such as 1152, 936 and 768. Since RSA is able to work with arbitrary key sizes, nothing
prevents zone administrators from signing their records with keys of exotic sizes. Lastly, the table
shows that the Digital Signature Algorithm (DSA), another alternative to RSA, is also rarely used.

CHAPTER 6. ANALYSIS OF THE CURRENT STATE 45

From the table can be concluded that ECC is currently barely being used in DNSSEC as
signature algorithm, which indicates that a major growth in the CPU load of validating resolvers
is still possible.

6.3.2 DNSSEC deployment

Besides replacing RSA with ECC, an increase in the total deployment of DNSSEC will also
contribute to an increased CPU load of a resolver. The DNSSEC deployment is the percentage
of domains that is signed. Currently there is no entity that keeps track of the global DNSSEC
deployment. By combining different sources, an estimation of the deployment can be made. The
DNSSEC Deployment Report5 maintains a table of all TLDs and their associated DNSSEC
deployment status. Additionally, the deployment percentage of many signed TLDs is stated
as well. Unfortunately, the deployment of several important TLDs is not stated, such as no.

(Norway), uk. (United Kingdom) and eu. (Europe). Currently, 84% of all 1,054 TLDs are signed.
DomainTools6 states the zones size (i.e. the number of domains per zone) for all TLDs. Using
Eq. 6.1 an estimation of the total DNSSEC deployment (D) can be made, where i refers to the
TLD, n(i) is the number of domains in TLD i, d(i) is the DNSSEC deployment percentage for
TLD i and t is the total number of domains worldwide.

D =
∑

i∈TLDs

n(i)× d(i)

t
(6.1)

Essentially, the equation computes the weighted average of the DNSSEC deployment per TLD,
where the weight is defined by the number of zones in the TLD. If the DNSSEC deployment of
TLDs such as no. is assumed to be 0%, a lower bound of the current DNSSEC deployment can
be estimated: D = 1.685%. Previous estimations of DNSSEC [52] provide a DNSSEC deployment
percentage of 3%. In the theoretical scenario where every single domain in the world is signed, a
validating resolver will encounter a larger CPU utilization than at the moment.

6.4 Conclusions

Based on the exploratory measurements, the following conclusion can be drawn:

� Although the cache hit ratio has a major impact on the number of outgoing queries and
signature validation, we feel that including the relationship between incoming queries, cache
ratio, domain name popularity and TTL values can be omitted from the DNSSEC model.
Instead the number of outgoing queries can be used as the input of the model. This omits
TTL values completely from the model, because once a query is sent from the resolver
towards the name servers, the TTL of the returned resource record has no short-term effect
on the number of signature validations.

� There is still a tremendous growth possible in the usage of ECC signatures in DNSSEC.
Firstly, since the current usage of ECC is so sparse, replacing RSA with ECC signatures
will already heavily increase the number of signature validations with ECC. Additionally,
the number of signed domains has the potential to grow from the current deployment of
1.685-3% of all domains to 100%. Therefore, a future scenario should be validated.

5http://rick.eng.br/dnssecstat/
6http://research.domaintools.com/statistics/tld-counts/

Chapter 7

Model

In order to answer our main research question, a model based approach was chosen because
it enables the scaling of our validation to future scenarios, without the need of an extensive
simulation setup. For instance, given a model of DNSSEC it is possible to evaluate the scenario
where every single domain in the DNS is signed. The developed model is statistical in nature, i.e.
given a set of inputs, the output is computed using a set of functions and probability distributions.
Since the computation load of a validating resolver is assumed to be dominated by its signature
validations, the output of the model was chosen to be the number of performed validations per
second. The output of the model is computed in several steps. The components and their mutual
interaction from Fig. 7.1 show the steps from the input of the model towards the output. A
detailed description about the model is as follows:

� The model assumes that a validating DNS resolver initiates DNS lookups on behalf of its
clients. As the exploratory phase indicated, translating the behaviour of clients to the
outgoing queries of a resolver is infeasible and is excluded from the model. The outgoing
queries per second, denoted as Q, is therefore considered the input variable of the model.

� The authoritative name servers respond to the queries with referrals and authoritative
answers. The total response traffic from the name servers to the resolver is denoted as R. A
single outgoing query does not necessarily result in a response, because UDP (the transport
layer protocol that DNS is generally used over) does not guarantee that packets between two
hosts are successfully transmitted. Queries from the resolver may not arrive at the name
servers, servers may not be available and responses may be lost over the network as well.
In addition, in case of a time out the DNS software may initiate retries, which increases the
number of outgoing queries while not necessarily increasing the number of responses. In
conclusion, the relation between Q and R needs to be established using measurements and
R is considered to be a mathematical function of Q (1).

� Only a fraction of R will contain signatures. The signed responses (i.e. responses containing
signatures) are referred to as Rs. The remaining responses contain no signatures and are
referred to as Rn. The fraction of responses having signatures is determined by the fraction
of domains being signed and the popularity distribution of these domains. Rs can also be
defined as a mathematical function, but in this case a function of R (2).

� By multiplying the number of signed responses (Rs) with the average signatures per signed
responses, the total number of incoming signatures can be obtained. We assume that in
a future scenario, the average signatures per signed response remains the same as it does
now. Namely, the signatures in a signed response can be classified in two groups: (1.) the

46

CHAPTER 7. MODEL 47

Validating DNS
Resolver Name servers

Signature validation
module

Q

R
R s

Rn

S
S

S v

Sn

time
Signature
validations

Generates
queries

1

2
3

4

Figure 7.1: Components of the DNSSEC model and their mutual interaction.

authoritative data and (2.) non-authoritative data. In the first group the signatures for the
requested RR set are given. The second group contains signatures for additional records,
such as NS records. Both groups are unlikely to change if the number of signed domains
increases or if the cryptographic algorithm changes. The average number of signatures per
signed response needs to be determined using measurements, and in the model is assumed
that S is a function of Rs (3).

� Not all incoming signatures will be validated by the resolver. Several reasons exist for not
validating an incoming signature, including the following:

1. The signature is part of a non-authoritative answer and is not validated by Unbound.
Whether other DNS resolver software tools also will not validate these signatures is
unknown.

2. A chain of trust for a particular signature cannot be established.

3. A signature is already cached. For example, a duplicate answer from two different
authoritative name servers arrive at the resolver.

Therefore, a fraction (between 0 and 1) of all incoming signatures (S) will be validated.
The number of performed validations is denoted by Sv, where the number of non-validated
signatures is denoted as Sn. Similarly to the other variables in the model, a mathematical
function can be defined that maps S to Sv (4). From the above stated list, item (1.)
and (3.) are unlikely to change in the near future. The second item however may change,
because due to the increasing deployment of DNSSEC, the number of domains for a chain
of trust that does not exists is getting smaller. Also, the domains that have signatures but

48 7.1. PARAMETER ESTIMATION

no valid chain of trust may mainly reside in a particular TLD. Resolvers that perform many
domain name lookups for that particular TLD may therefore validate relatively a small
percentage of incoming signatures compared to resolvers that do not query that TLD.

The model description above states that there exist four functions that are able to ‘predict’ a
value based on a single input. For example, given the number of incoming signatures per second,
there exists a function that predicts the number of signature validations. Due to the complexity
and many uncertainties of DNSSEC (e.g. packet loss, delays, etc.) it is infeasible to accurately
describe these function mathematically. Therefore, approximations of these functions have been
devised. Besides one or more inputs, the functions require a set of parameters. These parameters
have been estimated using regression, and with the right parameters, our model should be able to
predict the number of signature validations.

7.1 Parameter estimation

Before the model could be used for predicting the CPU load for future scenarios, the parameters
of four functions needed to be estimated through measurements. Before any measurements were
performed, the shape of these functions were unknown. Therefore, the following approach was
used to obtain the parametrized functions:

1. Measure the metrics of interest: Outgoing queries (Q), incoming responses (R), incoming
signed responses (Rs), incoming signatures (S) and signature validations (Sv), as they were
described in the previous chapter.

2. Plot the (presumably) correlated variables against each other in a two dimensional scatter
plot.

3. Determine what type of function could estimate the trend in the observed data. This also
introduces the parameters that need to be estimated.

4. Use regression techniques to fit the determined function as closely on the data as possible.

The result of this approach would be four functions that describe how two variables relate two
each other. By chaining these functions together, the number of signature validations per second
(i.e. the output) can be predicted based on the number of outgoing queries per second (i.e. the
input).

7.1.1 Measurement setup

The measurement setup for the parameter estimation was very similar to the exploratory measure-
ment setup from Section 6. Fig. 7.2 shows the involved systems. The regular systems in the DNS
interact with each other: clients, a resolver and the authoritative name servers. A multiplexer
(MUX) taps all traffic from the AMS, UTR or TIL resolver. Where the MUX was instrumented
to retransmit all network traffic towards an analysis system running Eemo, the MUX in this case
only retransmitted the incoming queries towards a system running Unbound. In other words, the
MUX acts as client population for the analysis system and the requested queries are identical to
the queries that AMS, UTR or TIL receive. The analysis machine running Unbound performed
DNS lookups on behalf of the MUX and thus interacted with the authoritative name servers.
Besides Unbound, the system also ran Eemo that measured four variables of interest: Q, R, Rs

and S. In addition, Unbound measured the missing variable: Sv. In total the measurement
contains 5040 data points, corresponding to seven days of measurement data. Each data point
contains the average of a 120 second time window.

CHAPTER 7. MODEL 49

AMS, UTR and TILClients Name servers

Regular DNS
infrastructure

Taps traffic

Retransmits
queries

Runs Unbound

MUX

Traffic analyzed using Eemo

Figure 7.2: Parameter estimation measurement setup.

7.1.2 Correlation between the variables

Fig. 7.3 shows four scatter plots where the correlation between pairs of variables is shown. The
measurements have been performed on three different resolvers, and the three colors in the plots
indicate data points from the different resolvers. The plots are drawn on top of each other, so the
data points of UTR partially obscure the data points of AMS and TIL. The left top plot shows the
correlation between Q and R, and by quickly glancing over the figure, it is clear that a strong
linear correlation exists between the number of outgoing queries and the number of responses
to those queries. One would expect that all queries result in a single response, but in reality
the unreliable UDP protocol does not guarantee delivery of packets and thus responses may not
arrive at the resolver. A linear function in the form of R = aQ would in theory describe the data
the best, where the parameter a represents the average number of responses per query. However,
using a linear function in the form of R = aQ+ b might be better, because a regression method
will find a better fit on the data.

In the right top plot, the correlation between the number of responses and the number of
signed responses is displayed. Again, a positive, linear relation seems to exist between the two
variables, although the relation is not as strong as in the previous figure. In particular, the data
of the UTR resolver has outliers. Still, a linear function in the form of Rs = aR+ b might be suf-
ficient for data fitting. The parameter a represents the fraction of responses containing signed data.

The relation between the number of signed responses and the number of signatures is displayed
in the left bottom plot. Similarly to the other figures, a positive linear trend can be observed.
The UTR resolvers has a few outliers lying above the linear trend line, in particular when the input
of the function is large. In the resulting linear function S = aRs + b, the parameter a represents
the average number of signatures per second.

The last figure (the right bottom plot) shows the correlation between the number of incoming
signatures and the number of signature validations. The slope of the fitted linear function
(Sv = aS +B) approximates the true fraction of signatures being validated.

50 7.1. PARAMETER ESTIMATION

Q
0 200 400 600 800 1000

R

0

200

400

600

800

1000

AMS
TIL
UTR

R
0 200 400 600 800 1000

R
s

0

50

100

150

200

AMS
TIL
UTR

R
s

0 50 100 150 200

S

0

100

200

300

400

AMS
TIL
UTR

S
0 100 200 300 400

S
v

0

20

40

60

80

100

AMS
TIL
UTR

Figure 7.3: Correlations between the variables

All four functions appear to be a linear function. A linear function that intersects the data
points (0,0) would describe reality the best, because for all those functions holds that if x = 0,
y = 0 also must hold. For instance, if no signatures are received per second, exactly no signature
validations take place. However, in order to get the best data fit, four linear functions in the
form of y = ax+ b are selected for the model. Another interesting aspect of the measured data is
that all three resolvers see very similar correlations between the variables, indicating that the
predictive capabilities of the model can be used for other, unobserved resolvers.

7.1.3 Regression

Regression analysis is the process of estimating the relationship between variables. Regression
allows estimation of the relationship between a dependant variable and one or more independent
variables. The dependent variable is a regression function of all the independent variables. The
estimated regression function can be used as a predictor for arbitrary inputs of the function. In
the parameter estimation process of this thesis, there are essentially four univariate regression
functions needed, one for each parameter. The measurements showed that for all four parameters,
a linear regression function is sufficient. We have considered two regression models: Simple linear
regression (or least square regression) and the Theil-Sen estimator.

CHAPTER 7. MODEL 51

Table 7.1: Parameters in the DNS model

Parameter Details

r̄ The average number of responses
per outgoing query

αs The fraction of responses contain-
ing signatures

s̄ The average number of signatures
per signed response

αv The fraction of signatures being
validated

Table 7.2: Variables in the DNS model

Variable Computed by

Responses R R = r̄Q+ β1
Signed
responses

Rs Rs = αsR+ β2

Signatures S S = s̄Rs + β3
Signature
validations

Sv Sv = αvS + β4

Simple linear regression In simple linear regression (SLR), a straight line is fitted on the
data, such that the sum of the squared residuals of the model is as small as possible. The residual
here is defined as the vertical distance between the fitted line and a data point. While this
method finds the smallest error, its major downside is that simple linear regression is susceptible
to outliers.

Theil-Sen estimator The Theil-Sen estimator is an alternative for simple linear regression.
Similarly to simple linear regression, the Theil-Sen estimator is a straight line that fits the data,
but it is computed differently. For every two data points a line through both point is calculated.
The median slope of all these lines is the slope of the Theil-Sen estimator. The intercept of the
Theil-Sen estimator (i.e. the point where the line crosses the point x = 0) is also the median of
all intercepts. The advantage of the Theil-Sen estimator over simple linear regression is that it is
robust (i.e. it is not sensitive to outliers) [53, 54].

Choosing either simple linear regression or the Theil-Sen estimator is a matter of in- or
excluding outliers. In our case, predicting the normal behaviour correctly is considered to be
more important than modelling the extreme outliers and therefore the Theil-Sen estimator was
used in the remainder as the preferred regression method.

7.1.4 Results

The results from the regression methods are four linear functions. The linear functions have a
slope and an intersect with the y-axis at x = 0. Rather than referring to these slopes by the
parameter name a, the parameters are referred to as is shown in Tab. 7.1. In addition, the five
variables and their relation are shown in Tab. 7.2. The actual values of the parameters are shown
in Tab. 7.3. A visual representation of the fitted lines is shown in Appendix B. As expected, the
slopes of the linear functions among the resolvers are fairly similar. Based on the results, the
following conclusions can be drawn:

� For every query, the resolvers receive roughly between 0.90 and 0.91 responses (r̄).

� On average, between 17.2% and 21.5% of the received responses contain signatures.

� Each signed response contains on average 2.19 signatures.

� On average, between 17.6% and 18.8% of the received signatures is validated.

52 7.2. MODEL VALIDATION

Table 7.3: The result of the parameter estimation.

Resolver r̄ β1 αs β2 s̄ β3 αv β4

AMS 0.912 3.714 0.215 -18.284 2.194 6.403 0.188 -1.992
TIL 0.905 2.794 0.187 -7.931 2.163 4.572 0.186 -2.059
UTR 0.904 4.905 0.172 -9.473 2.186 4.067 0.176 -1.318

By combining the four functions from Tab. 7.2, a single, linear function can be defined that has
Q as input, and Sv as output:

Sv = αvS + β4

= αv(s̄Rs + β3) + β4

= αv s̄Rs + αvβ3 + β4

= αv s̄(αsR+ β2) + αvβ3 + β4

= αv s̄αsR+ αv s̄β2 + αvβ3 + β4

= αv s̄αs(r̄Q+ β1) + αv s̄β2 + αvβ3 + β4

= αv s̄αsr̄Q+ αv s̄αsβ1 + αv s̄β2 + αvβ3 + β4

= αv s̄αsr̄Q+ αv(s̄(αsβ1 + β2) + β3) + β4

(7.1)

By replacing the two underlined (constant) terms by a and b respectively, the following equation
holds:

Sv = aQ+ b (7.2)

where a = αv s̄αsr̄ and b = αv(s̄(αsβ1 + β2) + β3) + β4. This indicates that the slope of the curve
is defined as the product of all curve slopes for the four individual linear functions. The intercept
of the resulting equation is not only a function of the underlying intercepts, but also αs, s̄ and αv.
In other words, if the fraction of responses being signed, the average number of signatures per
response or the fraction of signatures being validated changes, not only the slope of the predictor
changes, but also the intercept.

Given the measured parameters from Tab. 7.3 and Eq. 7.1, the resulting regression functions
that maps outgoing queries to signature validations are as follows:

AMS : Sv = 0.081×Q− 8.027

TIL : Sv = 0.068×Q− 4.190

UTR : Sv = 0.060×Q− 3.928

(7.3)

7.2 Model validation

Before the parametrized model was usable for any predictions, its predictive quality had to be
validated. The model was parametrized on a data set, but this does not necessarily guarantee
that other data would be similar and thus that the model would predict the number of signature
validations correctly. The parameters of the model have been determined using linear regression
on a one week data set. Our prediction model is not exactly perfect: there is always a residual

CHAPTER 7. MODEL 53

0

-20 -10 0 10 20 30 40 50

F
re

qu
en

cy

0

50

100

150

200

250

Figure 7.4: Histogram of ε for AMS (µ = 0.1885, σ = 3.2746)

between the predicted value and the actual number of validations, denoted as ε. This means that
the actual equation for Sv is as follows:

Sv = aQ+ b+ ε (7.4)

From our regression process, the value of ε is drawn from a random variable. The true probability
distribution of this variable is unknown, but given our sample from the regression process, we can
estimate the underlying probability distribution. We consider our model to be a good predictor
of the number of signature validations if (i.) the mean of the variable approximates 0, (ii.)
the variation of the variable is small and (iii.) the distribution of the variable is equal to the
distribution of a separate validation data set. The first two requirement can be met by simply
observing a histogram of ε, as displayed in Fig. 7.4. The mean is sufficiently close to zero (i.e.
0.19) and the standard deviation is sufficiently small (i.e. 3.27). The remaining issue is to prove
that the error in the prediction is equal among different data sets. This has been validated using
the Kolmogorov-Smirnov test.

7.2.1 Kolmogorov-Smirnov test

According to [55], the Kolmogorov-Smirnov test (or KS test) can be used to test whether a
particular distribution P is equal to a given specified distribution P0. For example, P could be
the distribution of height in men, where P0 is a normal distribution. In terms of hypotheses, the
KS test can decide between the following hypotheses:

H0 : P = P0

H1 : P 6= P0

(7.5)

If the Kolmogorov-Smirnov test accepts H0, both distribution are assumed to be equal. In our
case, P would be the distribution of the residual term ε, but P0 would not be a given specified
distribution. Namely, P would be the distribution of the residual term of the validation data set.
Therefore, a two-sample KS test had to be applied.

The two-sample KS test requires two samples with distributions F and G, which are of size
m and n respectively. The empirical cumulative distribution functions (ECDFs) are denoted as

54 7.2. MODEL VALIDATION

Fn(x) and Gm(x). The KS statistic for a two-sample test is defined as follows:

Dmn = sup |Fm(x)−Gn(x)| (7.6)

where sup is the supremum (or maximum) function. In other words, the KS statistic is the
maximum distance between the two ECDFs. The null hypothesis is rejected when Dmn >
c(α)

√
(n+m)/(nm), where α is the significance level and c(α) can be obtained from a critical

value table [56]. The critical value table from [56] states the critical value for a one-sample
Kolmogorov-Smirnov test and this value is adjusted for the two-sample test that we use. In other
words, if the KS statistic exceeds the critical value c(α)

√
(n+m)/(nm), the two samples are

from different distributions .

7.2.2 Results

In order to apply the two-sample Kolmogorov-Smirnov test, we needed two different sets of ε
samples. The first set was extracted using the regression session, and is denoted as R. In reality,
not the full one week data set was used during the regression phase. We separated the 5,040 data
points in the regression set (70%) and a validation set (30%), where only the first set was use for
regression. The data points were selected by randomly selecting 70% of the full week data set.
This ensured that different points in time would incorporated (e.g. weekend days, nightly hours,
etc.). The remaining data points were used for the validation set. All residual terms were obtained
by subtracting the predicted value from the actual number of validations. The distribution for
the validation set residual terms is denoted as V. The two-sample Kolmogorov-Smirnov test was
applied to determine whether the probability distribution of R and V are significantly different
or not. We decided that a significance level of 5% would be sufficient. Namely, this value is
common in scientific research as it provides a good balance between type I (i.e. rejecting the null
hypothesis while it is true) and type II errors (i.e. accepting the null hypothesis while it is false).
The hypotheses are as follows:

H0 : R = V

H1 : R 6= V
(7.7)

The left three plots in Fig. 7.5 shows the prediction (blue line) for the red validation data points.
The line seems to be a good fit, which is confirmed by the ECDF of the right three plots. The
red line is the ECDF of the regression data set and the blue line is the ECDF of the validation
data set. For all three resolvers, the ECDFs are very similar to each other indicating that the
Kolmogorov-Smirnov test may accept the null hypothesis. The critical value for a significance

level of 5% is 1.36
√

5040
1512∗3528 = 0.042. The KS statistic obtained from the ECDFs are 0.034,

0.020 and 0.016 for AMS, TIL and UTR respectively. Since all these value lie below the critical
value, the null hypothesis for the three resolvers is accepted (i.e. the regression and validation
data set come from the same distribution) and therefore our model is deemed to have sufficient
predictive capabilities.

CHAPTER 7. MODEL 55

Q
0 200 400 600 800

S
v

0

20

40

60
Validation dataset
Prediction

0

-20 0 20 40 60

F
(x

)

0

0.2

0.4

0.6

0.8

1

Validation
Regression

(a) AMS

Q
0 200 400 600 800 1000

S
v

0

20

40

60 Validation dataset
Prediction

0

-20 0 20 40 60

F
(x

)

0

0.2

0.4

0.6

0.8

1

Validation
Regression

(b) TIL

Q
0 200 400 600 800 1000

S
v

0

20

40

60

Validation dataset
Prediction

0

-20 0 20 40 60

F
(x

)

0

0.2

0.4

0.6

0.8

1

Validation
Regression

(c) UTR

Figure 7.5: Left: the predicted values for the validation data set, Right: ECDFs for the
two-sample KS test.

Chapter 8

Scenario evaluation

Now that the DNSSEC model is validated against a different data set, we can claim that our model
is suitable for predicting future scenarios. In the next sections we discuss two sets of relevant
scenarios: the current state of DNSSEC and future scenarios where the DNSSEC deployment
is more prevalent. In these scenarios, the predicted number of signature validations should be
lower than the maximum number of validations that a resolver can support (i.e. the validation
threshold). In the next sections, the approach to finding the validation threshold is described and
afterwards the scenarios are evaluated.

8.1 CPU benchmark

Assuming that the CPU load caused by validations is the most dominant factor in the total CPU
load of a resolver, the predicted number of validations should lie below a threshold. The value of
the threshold (i.e. maximum possible number of signature validations per second) depends on the
cryptographic algorithm, where we can already assume that the threshold of ECDSA P-384 lies
lower than any other investigated algorithm, in particular RSA -1024. The exact values of the
threshold were obtained in a benchmark experiment. The benchmark was used to measure the
CPU utilization for not only a single signature validation, but also to verify if incrementing the
number of signature validations will result in a linear increase of CPU load. The benchmark had
the following features:

� A computer system with similar specifications as the SURFnet resolvers performed signature
validations. This system contained a 2.27 GHz dual-core processor. The benchmark was
performed on a single core. In the benchmark, the validations were performed on a single
pre-generated signature.

� In order to verify whether the CPU scales linearly with the number of validations per
second, the benchmark was executed for different frequencies of signature validations (i.e.
iterations), ranging from almost none to a the number of validations resulting in 100% CPU
usage.

� Each iteration ran for five seconds, where the CPU load was measured as follows:

CPU load =
validation CPU usage

total system CPU usage

The CPU load was measured over a five second period because the CPU could be measured
with 10 ms accuracy, resulting in a maximum of 0.2% error which was deemed acceptable.

56

CHAPTER 8. SCENARIO EVALUATION 57

� The benchmark was performed for five cryptographic algorithms: RSA-1024, RSA-2048,
ECDSA P-256, ECDSA P-384 and Ed25519. The first two algorithms are currently used
widespread, while the two ECDSA algorithms are the two most likely replacement algorithms.
Ed25519 provides the same benefits as ECDSA and in addition is claimed to be much faster
than ECDSA. This means that in theory, the algorithm has all the advantages of both RSA
and ECC.

� For the RSA benchmarks, the used hash function is SHA-1. The performance difference
between SHA-1 and SHA-2 is considered to be negligible. For ECDSA there exists no choice
in hash function: ECDSA P-256 used SHA-256 and ECDSA P-384 used SHA-384.

� The validations were executed using the OpenSSL library for C. OpenSSL was selected
because Unbound uses the same library for its signature validations. The benchmark
program was written in such a manner that all possible variables were eliminated during the
test, such that the CPU load was measured as precisely as possible. In case of Ed25519, a
different implementation was selected, since the algorithm is not implemented in OpenSSL
(yet). The used Ed25519 library1 internally uses the original Ed25519 implementation
from its authors (named ’ref10’) and unfortunately the used implementation is somewhat
slower than ’ref10’. Since the benchmark was performed with different implementations,
the results are not directly compared with each other but merely provided as an indication.
The different implementations within OpenSSL are compared with each other.

� The benchmark was performed for three different versions of OpenSSL: version 1.0.0,
version 1.0.1f and version 1.0.2d. The first one is an early implementation, the second
implementation is the default version on Ubuntu 14.04 LTS and the latter is the newest
OpenSSL version. By performing the test on different versions we hoped to observe an
increase in performance over the different implementations, indicating that the algorithms
are being implemented more efficiently.

The implementation of the benchmark can be found in Appendix C. Since the benchmark test is
performed on a single core, the results are not representative for the complete system, because
systems generally have multiple cores and thus the total capacity might be two, four or more
times as large. We provide the measurements for a single core and potential extrapolation for
multiple cores is deemed outside the scope of our research.

8.1.1 Assumptions

When evaluating the performance limits of a validating DNS resolver, several assumptions have
been made. The most important are the following:

1. In the discussion of the performance of a resolver, we have only considered the CPU utilization
as a bottleneck. The validation of a signature essentially consists of the multiplication and
addition of large integers, which takes some computation time and just a little memory.
In addition, when performing more validations, the memory usage does not increase since
validations are generally performed sequential rather than in parallel. Therefore, increasing
the number of validations will mainly increase the CPU usage of the resolver rather than
its memory (or other resources).

2. The majority of the total usage of CPU will be dominated by signature validations. Fig. 8.1
shows the expected CPU usage of a resolver when the number of validations increases.
Initially, with no validations, the resolver consumes a small percentage of the available
computation power, the base CPU usage. This base CPU time is spent at default DNS

1https://github.com/orlp/ed25519

58 8.1. CPU BENCHMARK

Signature validations (per second)

C
P

U
 u

ti
liz

at
io

n
 (

%
)

Base CPU
usage

Validation
CPU usage

0

100

0 max

Figure 8.1: The expected development of CPU usage for different amounts of signature validations.

resolver behaviour (e.g. answering answers from the cache, writing to the cache, performing
recursive lookups) and other running processes. The fraction of the CPU usage consumed
due to signature validations is referred to as the ‘validation CPU usage’. At the maximum
possible validations, the base CPU usage is considered to be negligible compared to the
validation CPU usage. Whether this assumption holds in reality is unknown, but falls
outside the scope of this research. We believe that a sufficient accurate prediction of the
maximum amount of signature validations can be made regardless.

8.1.2 Results

Fig. 8.2 shows the results from the CPU benchmark. The sub figures each show one of the five
algorithms. Within each plot, the three versions of OpenSSL are displayed, with the exception of
the last plot (Ed25519) since the algorithm is not implemented in OpenSSL. Note that the x-axis
is logarithmic rather than linear. From the figures the (expected) linear trend cannot be seen,
but we have indeed confirmed that a linear relation exists between the number of validations and
the CPU load. As expected, RSA-1024 is capable of the most signature validations per second,
followed by RSA-2048, Ed25519, ECDSA P-256 and lastly ECDSA P-384. Even the supposedly
sub-optimal implementation of Ed25519 is faster than both ECDSA algorithms, which confirms
the previous claim that the algorithm is a suitable, faster alternative to ECDSA.

A significant difference can be observed between the different oldest version of OpenSSL (1.0.0)
and the two new versions (1.0.1f and 1.0.2d). For RSA-1024, RSA-2048 and ECDSA P-384,
the maximum signature validations increased with a factor of over 1.3, where ECDSA P-256
only showed a small increase in performance. Almost no difference can be observed between
version 1.01f and 1.0.2d which may indicate that the performance increase of the cryptographic
algorithms has not been a priority, or that a performance cap has already been reached.

The data (summarized in Tab. 8.1) shows that SURFnet’s DNS resolvers can perform 38,505
signature validations with RSA-1024, 12,145 with RSA-2048, 1,452 with Ed25519, 1,125 with
ECDSA P-256 and only 565 with ECDSA P-384 per second, assuming that OpenSSL version
1.0.1f is being used. For the remainder of the report, we assume that a system used this version,

CHAPTER 8. SCENARIO EVALUATION 59

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

C
P
U

 u
sa

g
e
 (

%
)

Signature validations

1.0.0
1.0.1f
1.0.2d

(a) RSA-1024

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06
C

P
U

 u
sa

g
e
 (

%
)

Signature validations

1.0.0
1.0.1f
1.0.2d

(b) RSA-2048

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

C
P
U

 u
sa

g
e
 (

%
)

Signature validations

1.0.0
1.0.1f
1.0.2d

(c) ECDSA-P256

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

C
P
U

 u
sa

g
e
 (

%
)

Signature validations

1.0.0
1.0.1f
1.0.2d

(d) ECDSA-P384

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

C
P
U

 u
sa

g
e
 (

%
)

Signature validations

(e) Ed25519

Figure 8.2: The results of the CPU benchmark

60 8.2. CURRENT SCENARIO

Table 8.1: Maximum achieved validations per second for different versions of OpenSSL.

Algorithm
Maximum validations

(per second)
v1.0.0 v1.0.1f v1.0.2d

RSA-1024 28,555 38,505 37,236
RSA-2048 8571 12,145 12,461
ECDSA P-256 1070 1125 1090
ECDSA P-384 358 527 565
EdDSA 1452

Table 8.2: Distribution of signature validations among categories.

DNS hierarchy Validation key Percentage of validations

Root
KSK 0.0002%
ZSK 1.05%

TLD
KSK 0.14%
ZSK 44.15%

SLD and KSK 6.81%
lower ZSK 47.84%

because it is the default version of OpenSSL. These numbers can now be used as a threshold in the
scenario evaluation process. If the predicted number of validations fall below the aforementioned
threshold, the DNS resolver is capable of serving all its clients. If the number of validations falls
above the threshold however, a hardware upgrade is required.

8.2 Current scenario

The first scenario that was analysed is a current state scenario, where all RSA signatures are
replaced by ECDSA P-256, ECDSA P-384 or EdDSA signatures. In particular, the worst case
scenario is of interest. Namely, if a validating DNS resolver is able to cope with the increased
CPU load caused by ECC, then an overnight shift towards ECC would cause no problems. The
worst case scenario is simply defined as the highest number of signature validations that has been
encountered by a resolver. This number was acquired by measuring the number of validations
over a period of one week. Since AMS, TIL and UTR have the same system specifications, the
worst case scenario is shared between them. During the one week measurement, the highest
number of signature validations was 132.5 validations per second. Note that this was an average
of 120 seconds and thus the actual number of validations may have peaked higher than this number.

According to Tab. 8.1, the most computation heavy algorithm, ECDSA P-384, is capable of
validating 527 signatures per second, given that all other factors on the computation load (e.g.
processing cache hits or running the operating system) are negligible. Clearly, the current worst
case scenario of 132.5 validations does not even come close to the maximum possible number of
signature validations for ECDSA P-384. ECDSA P-256 is even more favourable, because it is
capable of performing 1,125 validations per second.

CHAPTER 8. SCENARIO EVALUATION 61

8.2.1 Introducing the combined signing key

Earlier in the report, the advantages of ECC over RSA combined could potentially result in a
situation where the KSK and ZSK mechanism could be replaced by a single combined signing
key (CSK). According to Van Rijswijk et al. [52], it is unlikely that high level domains, such as
the root and the TLDs will drop their KSK and ZSK mechanism in favour of a single CSK, due
to security reasons. In contrast, lower level domains (i.e. SLDs and lower) may all employ a CSK.
This means that in the future, no more signature validations using the KSK at the second level
or below will be performed any more.

Tab. 8.2 shows the distribution of signature validation using either the KSK or ZSK, and
using either keys from the root/TLDs or lower tiers. All signature validations on the second
tier and below using the KSK will longer occur when ECC is used and thus (according to the
table) 6.81% less validations are performed. In our current worst case, this would mean that
approximately 9 out of the 132.5 validations per second would not need to be performed any
more. The already favourable current scenario becomes even more favourable by adopting the CSK.

In conclusion, the current state of DNSSEC poses no problem to a general validating DNS
resolver in terms of computation power, so an overnight shift towards any of the standardized
ECC algorithms or Ed25519 can be accomplished without any CPU related issues. The question
remains whether we can draw a similar conclusion for future scenarios.

8.3 Future scenarios

We identified two factors that will likely impact the number of signature validations in the future.
Firstly, the total number of domains on the Internet may increase, which causes an arbitrary
resolver to perform queries for more and different domains. This causes more signature validations
to take place. Secondly, the DNSSEC deployment is likely to increase. Since the root has been
signed in 2010, the number of signed TLDs has been increasing steadily and with it also the
number of domains. It is not unthinkable that in the near future, a majority of the domains are
signed. The growth in total number of domains in DNS is relatively slow compared to the growth
of DNSSEC deployment. Therefore, when considering a future scenario, a DNSSEC deployment
increase is important to consider.

The scenario of increased DNSSEC deployment can be evaluated with our model. The
DNSSEC deployment is not included as parameter in the model, but it directly influences one
of the parameters: the fraction of responses containing signatures. The fraction of responses
containing signatures (or αs) can be estimated using the DNSSEC deployment combined with the
popularity of the domain names. Namely, an unpopular domain is rarely requested by resolver
and by signing that domain, the number of responses with signatures will hardly increase. The
opposite is true for a popular domain: by signing it a significant amount of responses may
contain signature as a result of signing a single domain. As a result, an estimation of parameter
αs can be made based on the DNSSEC deployment and the popularity of the signed domain names.

Unfortunately we have no access to historical data regarding the growth of DNSSEC and the
fraction of responses containing signatures. The current situation states that between 1.685 and
3% (see Section 6.3.2) of domains is signed, while the value of αs lies between 17.54 and 18.75%.
We assume that the growth of αs at least lies between an upper and lower bound, defined by
the worst case scenario and a uniform scenario. In the worst case scenario, the most popular

62 8.3. FUTURE SCENARIOS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F
o
f

p
o
p
u
la

ri
ty

 (
o
r)

Fr
a
ct

io
n
 o

f
re

sp
o
n
se

s
co

n
ta

in
in

g
 s

ig
n
a
tu

re
s

Domains signed (%)

AMS
TIL

UTR
Current scenario

Uniform

Figure 8.3: The cumulative distribution function of domain name popularity in outgoing queries.

domain name is signed first, the second most popular domain name is signed secondly, etc. This
indicates that whenever 5% of all domains is signed, the 5% most popular domains are signed.
If the top 5% of the most popular domain names are signed, we can expect that the CDF of
domain name popularity up to 5% determines the fraction of responses containing signatures. In
other words, the CDF of the domain name popularity describes the worst case growth of αs. In a
uniform growth scenario, the domains are signed uniformly. This means that on average, αs is
equal to the DNSSEC deployment. Fig. 8.3 displays a visual representation of the upper and
lower bound. The gray area in the bottom left of the screen represents the current scenario. The
uniform scenario is the straight purple line. The worst case scenario is displayed for the three
different resolvers, because the domain name popularity differs slightly for the three resolvers.
The figure displays that the current scenario indeed lies between the upper and lower bound.

In the following sections, the growth for different DNSSEC deployment percentages is evaluated
for the worst and the best case scenario.

8.3.1 DNSSEC deployment growth

As already briefly discussed in the previous section, the red, blue and green lines in Fig. 8.3
represent the value of αs for different percentages of DNSSEC deployment for AMS, TIL and
UTR respectively. The domain name popularity distribution was obtained from the data in
our previously performed one week measurement. The datasets did not contain all global do-
main names, simply because the majority of these domain names was never requested by the
clients of any of the resolvers. The datasets (of the three resolvers) contained between 2.53 and
3.01 million domain names, which is estimated to be 0.86 to 1.02% of all domains worldwide
[57]. We have normalized the data such that our dataset represents 100% of the domains so
that we can still provide a 0-100% DNSSEC deployment scenario (rather than a 0-1.02% scenario).

Given a new parameter αs obtained from Fig. 8.3, the number of signature validations (Sv)
can be computed from the input (i.e. the outgoing queries or Q). Fig. 8.4a shows the number

CHAPTER 8. SCENARIO EVALUATION 63

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

S
ig

n
a
tu

re
 v

a
lid

a
ti

o
n
s

Domains signed (%)

AMS
TIL

UTR

(a) Worst case

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

S
ig

n
a
tu

re
 v

a
lid

a
ti

o
n
s

Domains signed (%)

AMS
TIL

UTR

(b) Uniform

Figure 8.4: Number of signature validations for Q = 1122.22 with different DNSSEC deployment
values.

of signature validations given the highest number of Q that was measured on any of the three
SURFnet resolvers, namely 1122.22 outgoing queries per second. The figure shows that even
in the absolute worst case, where every single domain in the world is signed, between 387.21
(UTR) and 414.46 (AMS) signature validations are performed, still less than the threshold of
527 for ECDSA P-384. Thus even in the worst situation (with 1122.22 outgoing queries and a
DNSSEC deployment percentage of 100%), the number of signature validations remains acceptable.

For full DNSSEC deployment our single-core test resolver should be able to cope with our
current worst case scenario. Therefore, it does not matter what curve the value of αs has since for
100% DNSSEC deployment the values of any curve would result in the same amount of validations.
For completeness purposes, the number of validations for the uniform case are shown in Fig. 8.4b.
Note that due to errors in the linear regression the three lines do not intersect the point (0, 0).

8.3.2 Increased outgoing queries

Increasing the DNSSEC deployment is not the only way that the number of signature validations
may increase in the future: the number of outgoing queries may also increase. It is likely that the
number of outgoing queries for an arbitrary resolver will only grow in the future, given that more
domain names are registered which is the main cause for an increase in outgoing queries. Due to
the caching mechanism in a resolver, incoming queries for already popular domain names will
(hardly) increase the computation load for a resolver, because the query is immediately answered
from the cache. The growth in the number of outgoing queries is expected to be fairly small
compared to the DNSSEC deployment, mostly because the DNSSEC deployment is very low and
has been growing largely since the zone was signed in 2010. Nevertheless, analysing how the
growth of the outgoing queries impacts the number of signature validations is still an interesting
scenario for the future of DNSSEC.

Our model can be used to calculate the value of Q that results in the threshold value of
527 ECDSA P-384 validations. In Fig. 8.5, the estimated number of signature validations using
the model is displayed by the red, green and blue surfaces. The gray plane shows the max-
imum possible amount of signature validations for ECDSA P-384. The intersection of these
two planes (in black) shows the maximum value of Q is supported by each validating resolver.
At 100% DNSSEC deployment, the maximum supported outgoing queries is the least, since

64 8.3. FUTURE SCENARIOS

DNSSEC deploym
ent (%

)100

50

08000
6000

Q

4000
2000

0

4000

0

2000S
v

Prediction
Threshold ECDSA P-384

(a) AMS

DNSSEC deploym
ent (%

)100

50

08000
6000

Q

4000
2000

0

4000

2000

0

S
v

Prediction
Threshold ECDSA P-384

(b) TIL

DNSSEC deploym
ent (%

)100

50

08000
6000

Q

4000
2000

0
0

2000

4000

S
v

Prediction
Threshold ECDSA P-384

(c) UTR

Figure 8.5: Number of signature validations for DNSSEC deployment

CHAPTER 8. SCENARIO EVALUATION 65

per outgoing query the most amount of validations need to be performed. This value of Q lies
between 1422.6 and 1525.6 for AMS and UTR respectively. This means that the volume of
outgoing queries needs to grow by a factor of 1.27 to become a problem, and that only happens
when every single domain name is signed with ECDSA P-384. In cases where the DNSSEC
deployment is less than 100%, even more outgoing queries are possible, reducing the problem
even more. The same approach has been used to compute the tipping point for ECDSA P-256
where a resolver is not able to cope with the signature validation load any more. Since validating
a single ECDSA P-256 signature is less computation intensive, a resolver is able to validate
more signatures per second compared to ECDSA P-384. According to Tab. 8.1 from the pre-
vious chapter, a total of 1,125 signatures can be validated per second with ECDSA P-256. In
case of 100% percent DNSSEC deployment, the outgoing query traffic needs to grow with a fac-
tor 2.69 (to a total of 3015.13 outgoing queries per second) to reach the maximum CPU utilization.

For lower DNSSEC deployment values, Q needs to grow even more before the CPU load
becomes a problem. The current estimates of the DNSSEC deployment range from 1.685% to
3%. Consider an example where the deployment increases to 6%: a doubling of the highest
current estimate but still far lower than full DNSSEC deployment. In Fig. 8.5, the intersection
(i.e. the black line) of the prediction plane and the threshold plane indicates the maximum
supported number of outgoing queries for that particular percentage of DNSSEC deployment. By
finding the point of the black line for the DNSSEC deployment percentage of 6%, we can see
that the maximum supported outgoing queries is 2,068. Thus, an increase of a factor 1.84 of
the current highest number of outgoing queries would result in a problematic situation when 6%
of all domains are signed. A situation where 6% of all domains is signed may be very well pos-
sible in the near future, but an increase of the outgoing queries by a factor 1.84 is far more unlikely.

In conclusion, given the current maximum number of outgoing queries there is still a little
growth left regarding the number of outgoing queries even when there is full, global DNSSEC
deployment. Our model can be used to evaluate intermediate situations, such as situations with
partial DNSSEC deployment.

Chapter 9

Discussion

While we have been able to demonstrate that our model performs well, several key issues and
observations still need to be discussed. These points of discussion relate to the modelling as well
as the measurement aspects of the research.

Data outliers The measurements have shown that resolvers are exposed to heavy varying
amounts of traffic and sometimes experience extreme peaks of traffic. These outliers in the data
seem to occur randomly. For example, consider Fig. 6.3, which displays the incoming and outgoing
queries for the three resolvers. The large peaks in the incoming queries are caused by changes in
the behaviour of clients. Causes may include attempts to DDoS attacks, a sudden increase of
client population or an increase in activity per person.

Several peaks can also be observed in the outgoing query traffic. For example, the AMS
resolvers in Fig. 6.3b on page 40 shows a peak on Thursday night in its outgoing queries. This
(and similar) peak(s) could be cause by several reasons:

� An outgoing query is generated when an incoming query is received and the query is not
cached. Therefore, a peak in the outgoing queries may be generated when the TTL of many
cache entries expire simultaneously. In our experimental measurements (Chapter 6) the
TTL of RR sets often have the same value (e.g. 5 minutes, one hour, one day, etc.). If these
RR sets were cached at the same time (for example right after a reboot of the resolver)
these RR sets may indeed expire at the same time. However, this is unlikely to happen at
such a large scale, since the RR sets are not immediately cached if the TTL expires (i.e.
the RR set should be requested first by the client.

� If the client population radically changes the domains they request (i.e domain names
that are not cached) or suddenly diversify the requested domain names, a sudden surge of
outgoing queries may be generated.

The latter explanation is more likely than the first one. However, this does not yet explain
why the clients suddenly diversified their query traffic. The exact reason can only be guessed and
may be dependant on many factors.

DNSSEC deployment In Chapter 8, two cases were evaluated: the worst case scenario and
the uniform scenario. These scenarios are far from likely to be realistic, but give an upper and
lower bound to the growth of the fraction of responses containing signatures (αs) given the
DNSSEC deployment. In reality, the DNSSEC deployment may proceed very differently. A few

66

CHAPTER 9. DISCUSSION 67

influences on the DNSSEC deployment are discussed below.

In contrast to the incoming domain popularity, the outgoing popularity does not reflect the
actual popularity from clients. Namely, popular domain names at the client side are generally
answered from the cache and the domain name will only appear in the outgoing query traffic
when its TTL expires. When Unbound is not able to resolve a domain name, it will aggressively
retry and try other name servers. In case of misconfigured zones, the domain name may not be
resolved at all while Unbound still generated lots of traffic for that domain. This means that a
majority of the most popular outgoing query names are from misconfigured zones. These misconfig-
ured zones are unlikely to introduce DNSSEC at all, let alone introduce it before all other domains.

Additionally, in the scenario evaluation the worst case specifies that domains are signed one
by one. In reality, it is more likely that large groups of domains (i.e. operated by a single service
provider) will be signed rather than a single domain within a zone. Some of the domains in the
zones may be very popular while others may not. For example, consider a zone with a popular
web server (www) and a rarely used mail server (mx) in the same zone. These domains lie on a very
different place on the domain popularity curve but are still (presumably) signed simultaneously.

Lastly, the DNSSEC deployment may be heavily stimulated on a TLD level which causes
domains within a particular TLD to be signed in quick succession. For example, within the .nl

TLD, 43.7% of all domains is already signed while within .com only 0.45% of all domain is signed1.
Thus, DNSSEC deployment is presumably not (heavily) dependant on domain name popularity,
but rather whether the parent TLD of a domain actively encourages deployment of DNSSEC.

CPU load In Sec. 8.1, the different versions of OpenSSL already showed that there was room for
improvement in the implementation of cryptographic algorithms. There was a major improvement
between version 1.0.0 (from March 2010) and version 1.0.1f (from January 2014) and compared
to RSA, ECDSA is a recently developed algorithm. Therefore, it is likely that more improvement
is possible. The case for Ed25519 is even more favourable. The main implementation of the
protocol is a proof-of-concept from its inventors, which indicates that the development of the
algorithm is in its infancy and has much room for improvement. Therefore, the performance of
ECC algorithms may become relatively better in the near future which makes the deployment of
ECC instead of RSA even more favourable.

1http://rick.eng.br/dnssecstat/

Chapter 10

Conclusions and Future Work

In our research we have proposed a DNSSEC model that is capable of predicting the number of
signature validations of a DNS resolver. Using the proposed model in combination with DNS
traffic measurements, we were able to answer all the research questions formulated towards our
research goal.

What is the typical computation load of a DNS resolver?
The traffic of three DNS resolvers (denoted as AMS, TIL and UTR) has been investigated during
the course of the project. Typically, the number of signature validations on these resolver lies
between almost none to 132.5 validations per second. Currently, the vast majority of all signature
validations are performed with RSA (99.96%). Our CPU benchmark tests have shown that
depending on the algorithm and the version of OpenSSL, a single-core CPU is able to verify
between 8,571 and 38,505 RSA signatures per second. Since the CPU load scales linearly with
the number of signature validations, the CPU load caused by signature validations is between
0.34% and 1.54%. In conclusion, currently the CPU utilization caused by signature validations
can be considered to be negligible.

What is the typical behaviour of clients, resolvers and name servers?
In the exploratory measurements, the results showed that resolvers are subjected to varying
amounts of traffic. Clients of the SURFnet resolvers generate queries in a day and night cycle
where the most queries are generated at midday. In addition, a weekday and weekend cycle was
observed. Clients requested a very small subset of domains with a very high frequency. The
popularity of incoming domain names can be described using a Zipf-distribution.

In terms of resolver behaviour, there is a difference between the three SURFnet resolvers.
AMS is exposed to significantly more queries than the other two, presumably because in a list of
resolvers, the AMS resolver is generally the first entry. Regarding outgoing queries, the three
resolvers are behaving similarly. The caching behaviour of DNS resolvers causes the difference
between incoming and outgoing queries. The complicated relationship between TTL values,
popularity of queried domain names and DNSSEC deployment was the reason for omitting the
incoming queries as part of the model. Unbound appears to have implemented an aggressive retry
mechanism, because a significant fraction of the most popular outgoing query domain names
are non-existing domains. This means that there is no (or a very weak) correlation between the
popularity of an incoming query and its associated outgoing popularity.

68

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 69

How can we model this behaviour and what are the relevant parameters?
In our research, a prediction model using regression was used, in particular the Theil-Sen estimator.
The experimental setup gave an indication of the relevant parameters. The four parameters
in the model (average responses per outgoing query or r̄, the fraction of responses containing
signatures or αs, the average number of signatures per signed response or s̄ and the fraction of
signatures being validated or αv) were chosen because of several reasons. Firstly, the parameters
were considered to be independent of each other, meaning that we could change one of them
without affecting the others. Secondly, the parameters appeared to be fairly constant over time,
meaning that the model is applicable to all moments in time, including day- and night hours and
week- and weekend days. Lastly, the parameters were similar among resolver, making the model
usable for an arbitrary DNS resolver, rather than just a single specific resolver. By changing only
the fraction of responses containing signatures (αs), future scenarios could be evaluated.

What scenarios can we evaluate to measure the impact of deploying ECC?
The following scenarios were evaluated in our research:

#1 : The current worst case scenario (i.e. the case were most signature validations were
performed)

#2 : Future worst case with maximum outgoing queries and varying DNSSEC deployment

#3 : Future worst case with varying outgoing queries and varying DNSSEC deployment

Main research question: What is the effect of deploying ECC as a replacement of
RSA in DNSSEC on the computation load of validating DNS resolvers?
If the transition towards ECC would be made with the current state of the DNSSEC infrastructure,
no issues regarding the computation load of validating DNS resolvers would be encountered.
Even in the worst possible situation (i.e. encountering the maximal realistic number of signature
validations per second) the transition to the worst algorithm (in terms of computation load),
namely ECDSA P-384, would be possible. According to our regression model, the number of
validations could quadruple before becoming a problem.

Whenever a CSK is used rather than a KSK and ZSK, the potential problem is reduced even
more. Namely, an estimated 6.81% of all validations (i.e. the validations with the KSK on a SLD
level or lower) does not need to take place any more.

In case DNSSEC becomes fully adopted globally, the predicted number of validations still
does not exceed the ECDSA P-384 threshold (i.e. the maximum number of signature validations
per second that a validating DNS resolver is capable of performing), let alone the ECDSA P-256
threshold. The prediction states that the number of validations does approach the ECDSA P-384
threshold, so resolvers with larger client populations or less powerful resolvers may suffer from
CPU starvation. The model also allows to evaluate intermediate scenarios, where the domains
are partially signed.

10.1 Future work

Despite having produced proof that the current (and future) state of DNSSEC can be supported
by a validating resolver, there still remain some unanswered questions. We discuss the most
important remaining issues that should be examined in future research.

70 10.1. FUTURE WORK

BIND resolver
The entire research was conducted using Unbound as resolver software. However, there are other
software suites available that implement a validating resolver. The most notable of these alterna-
tives is BIND, which is the most deployed DNS server worldwide. If the research would have been
conducted using BIND, the results could have been different. Small implementation differences
could have impacted the results. For example, the timeout strategy for both resolver tools
could be different. We already saw that the popularity distribution of outgoing query names is
dominated by unanswered query names. If BIND does not retransmit as much queries as Unbound
does, then the domain name popularity curve could look differently. For a 100% deployment
scenario the results would not differ, but the intermediate DNSSEC deployment percentages it
would. Additionally, BIND may have different (default) settings regarding caching. For example,
Unbound has a (default) maximum TTL value for any RR set, which may not be the case for BIND.

Model validation
The parameter estimation phase showed that among the three SURFnet resolvers there is little
difference in parameter values. It seems that the three resolvers share the parameters, but
the question remains whether the same holds for non-SURFnet resolvers. The clients of AMS,
TIL and UTR are generally educational or research oriented persons, and therefore the traffic
has a tendency for particular educational/research domains. Even though other resolvers may
see different domains, this does not necessarily imply that our model is inapplicable. More re-
search should show whether the predictive capabilities of the model still holds for different resolvers.

Extended data set
The data set used for the parameter estimation was limited to a one week measurement. The
data showed that among day and night hours the traffic already heavily fluctuates and the same
holds for week days and weekend days. A more large scale cycle could also be present, which
includes for example holidays.

In relation to the day-night cycle and the week-weekend cycle, our model is a single linear
regression model, where one outcome (Sv) is based on a single predictor (Q). In the future, the
model could extended to include a time related variable to establish a multiple regression model.

Bibliography

[1] P. Hoffman and W. Wijngaards, “Elliptic Curve Digital Signature Algorithm (DSA) for
DNSSEC,” RFC 6605 (Proposed Standard), Internet Engineering Task Force,

[2] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Y. Yang, “High-Speed High-Security
Signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89, 2012.

[3] B. Schneier, “Applied cryptography: protocols, algorithms, and source code in C,” 1996.

[4] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature Algorithm
(ECDSA),” International Journal of Information Security, vol. 1, no. 1, pp. 36–63, 2001.

[5] “The Case for Elliptic Curve Cryptography,” National Security Agency, Accessed via:
https://www.nsa.gov/business/programs/elliptic curve.shtml

[6] “How DNS works,” Accessed via: https://technet.microsoft.com/en-us/library/cc772774%
28v=ws.10%29.aspx#w2k3tr dns how mlkk

[7] P. Mockapetris, “Domain names - Implementation and specification,” RFC 1035 (Internet
Standard), Internet Engineering Task Force,

[8] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” RFC 2671 (Proposed Standard),
Internet Engineering Task Force,

[9] S. Friedl, “An Illustrated Guide to the Kaminsky DNS Vulnerability,” Accessed via:
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

[10] B. Hubert, “DNS Security in the Broadest Sense,” Accessed via: http://ds9a.nl/
har-presentation-bert-hubert-3.pdf

[11] D. Eastlake, “Domain Name System Security Extensions,” RFC 2535 (Proposed Standard),
Internet Engineering Task Force,

[12] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS Security Introduction and
Requirements,” RFC 4033 (Proposed Standard), Internet Engineering Task Force,

[13] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Resource Records for the DNS
Security Extensions,” RFC 4034 (Proposed Standard), Internet Engineering Task Force,

[14] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Protocol Modifications for
the DNS Security Extensions,” RFC 4035 (Proposed Standard), Internet Engineering Task
Force,

71

https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://technet.microsoft.com/en-us/library/cc772774%28v=ws.10%29.aspx#w2k3tr_dns_how_mlkk
https://technet.microsoft.com/en-us/library/cc772774%28v=ws.10%29.aspx#w2k3tr_dns_how_mlkk
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
http://ds9a.nl/har-presentation-bert-hubert-3.pdf
http://ds9a.nl/har-presentation-bert-hubert-3.pdf

72 BIBLIOGRAPHY

[15] B. Laurie, G. Sisson, R. Arends, and D. Blacka, “DNS Security (DNSSEC) Hashed Authen-
ticated Denial of Existence,” RFC 5155 (Proposed Standard), Internet Engineering Task
Force,

[16] “Diginotar reports security incident,” Accessed via: https://www.vasco.com/company/
about vasco/press room/news archive/2011/news diginotar reports security incident.aspx

[17] O. Kolkman, W. Mekking, and R. Gieben, “DNSSEC Operational Practices, Version 2,”
RFC 6781 (Informational), Internet Engineering Task Force,

[18] H. Yang, E. Osterweil, D. Massey, S. Lu, and L. Zhang, “Deploying Cryptography in Internet-
Scale Systems: A Case Study on DNSSEC,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 5, pp. 656–669, 2011.

[19] J. Jansen, “Use of SHA-2 Algorithms with RSA in DNSKEY and RRSIG Resource Records
for DNSSEC,” RFC 5702 (Proposed Standard), Internet Engineering Task Force,

[20] “PKCS #1 v2.2: RSA Cryptography Standard,” RSA Lab-
oratories, Accessed via: http://www.emc.com/collateral/white-papers/
h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf

[21] T. Pornin, “Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve
Digital Signature Algorithm (ECDSA),” RFC 6979 (Informational), Internet Engineering
Task Force,

[22] T. Izu, B. Möller, and T. Takagi, “Improved Elliptic Curve Multiplication Methods Resistant
against Side Channel Attacks,” Progress in CryptologyINDOCRYPT 2002, pp. 296–313,
2002. Accessed via: http://www.springerlink.com/index/uc5cvkt1gv9gl6up.pdf

[23] “Measurements of public-key signature systems, indexed by machine,” Accessed via:
http://bench.cr.yp.to/results-sign.html

[24] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems,” Advances in Cryptology, vol. 1109, pp. 104–113, 1996. Accessed via:
http://link.springer.com/chapter/10.1007/3-540-68697-5 9

[25] J. S. Coron, “Resistance Against Differential Power Analysis for Elliptic Curve
Cryptosystems,” Ches, pp. 292–302, 1999. Accessed via: http://link.springer.com/chapter/
10.1007/3-540-48059-5 25

[26] bushing, marcan, segher, and sven, “Console hacking 2010,” Accessed via: http:
//events.ccc.de/congress/2010/Fahrplan/attachments/1780 27c3 console hacking 2010.pdf

[27] R. Chirgwin, “Android bug batters bitcoin wallets,” Accessed via: www.theregister.co.uk/
2013/08/12/android bug batters bitcoin wallets/

[28] C. Burt, “Thousands of French Websites Face DDoS Attacks Since Char-
lie Hebdo Massacre,” Accessed via: http://www.thewhir.com/web-hosting-news/
thousands-french-websites-face-ddos-attacks-since-charlie-hebdo-massacre

[29] P. Amsel, “China online gambling bust; Korean site orders DDOS at-
tacks on competitor,” Accessed via: http://calvinayre.com/2015/03/03/business/
korean-gambling-site-ddos-attack-on-competitor/

https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
http://www.springerlink.com/index/uc5cvkt1gv9gl6up.pdf
http://bench.cr.yp.to/results-sign.html
http://link.springer.com/chapter/10.1007/3-540-68697-5_9
http://link.springer.com/chapter/10.1007/3-540-48059-5_25
http://link.springer.com/chapter/10.1007/3-540-48059-5_25
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_wallets/
www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_wallets/
http://www.thewhir.com/web-hosting-news/thousands-french-websites-face-ddos-attacks-since-charlie-hebdo-massacre
http://www.thewhir.com/web-hosting-news/thousands-french-websites-face-ddos-attacks-since-charlie-hebdo-massacre
http://calvinayre.com/2015/03/03/business/korean-gambling-site-ddos-attack-on-competitor/
http://calvinayre.com/2015/03/03/business/korean-gambling-site-ddos-attack-on-competitor/

BIBLIOGRAPHY 73

[30] T. Sterling and T. Escritt, “Dutch government says DDoS attack took down
websites for hours,” Accessed via: http://www.reuters.com/article/2015/02/11/
us-netherlands-government-websites-idUSKBN0LF0N320150211

[31] S. M. Specht and R. B. Lee, “Distributed Denial of Service: Taxonomies of Attacks, Tools,
and Countermeasures.” in ISCA PDCS, 2004, pp. 543–550.

[32] R. van Rijswijk-Deij, A. Sperotto, and A. Pras, “DNSSEC and its Potential for DDoS
Attacks - a Comprehensive Measurement Study,” in Proceedings of the Internet Measurement
Conference 2014. Vancouver, BC, Canada: ACM Press, 2014.

[33] G. van den Broek, R. M. van Rijswijk, A. Sperotto, and A. Pras, “DNSSEC
Meets Real World: Dealing with Unreachability Caused by Fragmentation,” IEEE
Communications Magazine, vol. 52, no. April, pp. 154–160, 2014. Accessed
via: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6828880&sortType%
3Ddesc p Publication Year%26queryText%3DDNSSEC

[34] D. Migault, C. Girard, and M. Laurent, “A Performance View on DNSSEC Migration,”
Proceedings of the 2010 International Conference on Network and Service Management,
CNSM 2010, pp. 469–474, 2010.

[35] W. C. Wijngaards and B. J. Overeinder, “Securing DNS,” IEEE Security & Privacy, vol. 7,
no. 5, pp. 0036–43, 2009.

[36] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis, and S. Gritzalis, “DNS
Amplification Attack Revisited,” Computers and Security, vol. 39, no. PART B, pp. 475–485,
2013. Accessed via: http://dx.doi.org/10.1016/j.cose.2013.10.001

[37] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS Abuse,” Proceedings
of the 2014 Network and Distributed System Security (NDSS) Symposium, no. February, pp.
23–26, 2014. Accessed via: http://www.internetsociety.org/sites/default/files/01 5.pdf

[38] A. Herzberg and H. Shulman, “Fragmentation Considered Poisonous, or: one-domain-to-
rule-them-all.org,” 2013 IEEE Conference on Communications and Network Security, CNS
2013, pp. 224–232, 2013.

[39] S. Dickinson, “OpenDNSSEC,” Accessed via: https://ripe66.ripe.net/presentations/
216-ripe66-dns-wg-opendnssec.pdf

[40] Y. Schaeffer, B. Overeinder, and M. Mekking, “Flexible and Robust Key Rollover in DNSSEC,”
Satin, 2012. Accessed via: http://conferences.npl.co.uk/satin/papers/satin2012-Schaeffer.pdf

[41] R. Chandramouli and S. Rose, “NIST Special Publication 800-81-2,”

[42] A. Herzberg, H. Shulman, and B. Crispo, “Less is More: Cipher-Suite Negotiation
for DNSSEC,” Proceedings of the 30th Annual Computer Security Applications
Conference on - ACSAC ’14, no. 3, pp. 346–355, 2014. Accessed via: http:
//dl.acm.org/citation.cfm?doid=2664243.2664283

[43] A. Herzberg and H. Shulman, “Negotiating DNSSEC Algorithms over Legacy Proxies,” pp.
111–126, 2014.

[44] A. Herzberg, “Cipher-Suite Negotiation for DNSSEC: Hop-by-Hop or End-to-End?” 2015.

http://www.reuters.com/article/2015/02/11/us-netherlands-government-websites-idUSKBN0LF0N320150211
http://www.reuters.com/article/2015/02/11/us-netherlands-government-websites-idUSKBN0LF0N320150211
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6828880&sortType%3Ddesc_p_Publication_Year%26queryText%3DDNSSEC
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6828880&sortType%3Ddesc_p_Publication_Year%26queryText%3DDNSSEC
http://dx.doi.org/10.1016/j.cose.2013.10.001
http://www.internetsociety.org/sites/default/files/01_5.pdf
https://ripe66.ripe.net/presentations/216-ripe66-dns-wg-opendnssec.pdf
https://ripe66.ripe.net/presentations/216-ripe66-dns-wg-opendnssec.pdf
http://conferences.npl.co.uk/satin/papers/satin2012-Schaeffer.pdf
http://dl.acm.org/citation.cfm?doid=2664243.2664283
http://dl.acm.org/citation.cfm?doid=2664243.2664283

74 BIBLIOGRAPHY

[45] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance and the Effectiveness of
Caching,” IEEE/ACM Transactions on Networking, vol. 10, no. 5, pp. 589–603, 2002.

[46] H. Gao, V. Yegneswaran, Y. Chen, P. Porras, S. Ghosh, J. Jiang, and H. Duan, “An
Empirical Reexamination of Global DNS Behavior,” SIGCOMM 2013 - Proceedings
of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pp. 267–278, 2013. Accessed via:
http://dl.acm.org/citation.cfm?doid=2486001.2486018

[47] Y. Koç, A. Jamakovic, and B. Gijsen, “A Global Reference Model of the Domain Name
System,” International Journal of Critical Infrastructure Protection, vol. 5, no. 3-4, pp.
108–117, 2012.

[48] D. Wessels, M. Fomenkov, N. Brownlee, and K. Claffy, “Measurements and Laboratory
Simulations of the Upper DNS Hierarchy,” Passive and Active Network Measurement, pp.
147–157, 2004.

[49] O. Kolkman, “Measuring the Resource Requirements of DNSSEC,” pp. 1–24, 2005.

[50] S. Krishnan and F. Monrose, “An Empirical Study of the Performance, Security and Privacy
Implications of Domain Name Prefetching,” Proceedings of the International Conference on
Dependable Systems and Networks, pp. 61–72, 2011.

[51] E. Barker and A. Roginsky, “Transitions: Recommendation for transitioning the use of
cryptographic algorithms and key lengths,” NIST Special Publication, vol. 800, p. 131A,
2011.

[52] R. van Rijswijk-Deij, A. Sperotto, and A. Pras, “Making the Case for Elliptic Curves in
DNSSEC,” ACM Computer Communication Review (CCR), vol. 45, no. 5, 2015.

[53] K. S. Srikanth, “Theil-Sen Estimator: An alternative to least squares regression,” Accessed
via: http://talegari.wdfiles.com/local--files/files%3A nothing/theil free.pdf

[54] R. O. Gilbert, Statistical methods for environmental pollution monitoring. John Wiley &
Sons, 1987.

[55] MIT OpenCourseWare, “Kolmogorov-Smirnov Test,” Accessed
via: http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/
lecture-notes/lecture14.pdf

[56] S. Schwaar, Accessed via: http://www.mathematik.uni-kl.de/∼schwaar/Exercises/Tabellen/
table kolmogorov.pdf

[57] “The Domain Name Industry Brief,” Verisign, Accessed via: https://www.verisign.com/
assets/domain-name-report-june2015.pdf

http://dl.acm.org/citation.cfm?doid=2486001.2486018
http://talegari.wdfiles.com/local--files/files%3A_nothing/theil_free.pdf
http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture14.pdf
http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture14.pdf
http://www.mathematik.uni-kl.de/~schwaar/Exercises/Tabellen/table_kolmogorov.pdf
http://www.mathematik.uni-kl.de/~schwaar/Exercises/Tabellen/table_kolmogorov.pdf
https://www.verisign.com/assets/domain-name-report-june2015.pdf
https://www.verisign.com/assets/domain-name-report-june2015.pdf

Appendices

75

Appendix A

Unbound code

A.1 Store statistics in hash maps

1 /* Increment total number of validations */

2 nr_validations ++;

3
4 uint16_t type = sldns_buffer_read_u16(buf); /* type */

5 sldns_buffer_read_u8(buf); /* algorithm */

6 sldns_buffer_read_u8(buf); /* number of labels */

7 sldns_buffer_read_u32(buf); /* original TTL */

8 sldns_buffer_read_u32(buf); /* expiration */

9 sldns_buffer_read_u32(buf); /* inception */

10 sldns_buffer_read_u16(buf); /* key tag */

11 uint8_t last_char = sldns_buffer_read_u8(buf);

12 uint8_t label_remaining = last_char;

13 char sn[255] = "\0";

14 int dlevel = 0;

15 int print_dot = 0;

16 while (last_char != 0){

17 if (label_remaining == 0)

18 {

19 dlevel ++;

20 sprintf(sn, "%s%c", sn, last_char);

21 last_char = sldns_buffer_read_u8(buf);

22 label_remaining = last_char;

23 print_dot = 1;

24 }

25 else

26 {

27 if (print_dot)

28 {

29 sprintf(sn, "%s%c", sn, 46);

30 print_dot = 0;

31 }

32 else

33 {

34 sprintf(sn, "%s%c", sn, last_char);

35 }

36 last_char = sldns_buffer_read_u8(buf);

37 label_remaining --;

38 }

39 }

76

APPENDIX A. UNBOUND CODE 77

40 /* Add a trailing ’.’ to create a FQDN */

41 sprintf(sn, "%s.", sn);

42
43 char *typestr;

44 if (type == 48){

45 typestr = "KSK";

46 }

47 else {

48 typestr = "ZSK";

49 }

50 sldns_buffer_read_u8(buf); /* */

51 last_char = sldns_buffer_read_u8(buf);

52 char name [255] = "\0";

53 int ctr = 1;

54 while (last_char != 0){

55 if (last_char < 32){

56 last_char = 46;

57 }

58 sprintf(name , "%s%c", name , (unsigned char) last_char);

59 last_char = sldns_buffer_read_u8(buf);

60 ctr ++;

61 }

62 /* Add a trailing ’.’ to create a FQDN */

63 sprintf(name , "%s.", name);

64
65 /* Store KSK/ZSK keys and their level in the DNS hierarchy */

66 struct ht_cryptoalgo *found_hash_entry = NULL;

67 lookup_key = (struct lookup_key_t *) malloc (sizeof(struct lookup_key_t));

68 /* KSK = 0, ZSK = 1 */

69 if (type == 48){

70 lookup_key ->algo = 0;

71 }

72 else{

73 lookup_key ->algo = 1;

74 }

75 lookup_key ->keylen = dlevel;

76
77 HASH_FIND(hh , kskzsk_ht , lookup_key , sizeof(lookup_key), found_hash_entry);

78 if (found_hash_entry){

79 found_hash_entry ->occ ++;

80 }

81 else {

82 struct ht_cryptoalgo *new_entry = NULL;

83 new_entry = (struct ht_cryptoalgo*) malloc (sizeof(struct

ht_cryptoalgo));

84 if (type == 48){

85 new_entry ->algo = 0;

86 }

87 else{

88 new_entry ->algo = 1;

89 }

90 new_entry ->keylen = dlevel;

91 new_entry ->occ = 1;

92 HASH_ADD(hh, kskzsk_ht , algo , sizeof(new_entry), new_entry);

93 }

94
95 /* Store signature algorithm and key length */

96 found_hash_entry = NULL;

97 unsigned int rsa_mod = keylen - (unsigned int) *key - 1;

98 lookup_key ->algo = algo;

99
100 /* RSA keys contain the public exponent and should be handled differently */

78 A.1. STORE STATISTICS IN HASH MAPS

101 if (algo == 1 || algo == 5 || algo == 7 || algo == 8 || algo == 10){

102 lookup_key ->keylen = rsa_mod;

103 }

104 /* ECDSA/DSA/GOST keys do not contain the public exponent */

105 else{

106 lookup_key ->keylen = keylen;

107 }

108 HASH_FIND(hh , ht , lookup_key , sizeof(lookup_key), found_hash_entry);

109 /* The combination of algorithm and keylengh exists; increment its occurrence

*/

110 if (found_hash_entry){

111 found_hash_entry ->occ ++;

112 }

113 /* The combination of algorithm and keylength does not exist; create new entry

*/

114 else{

115 struct ht_cryptoalgo *new_entry = NULL;

116 new_entry = (struct ht_cryptoalgo*) malloc (sizeof(struct

ht_cryptoalgo));

117 new_entry ->algo = algo;

118 if (algo == 1 || algo == 5 || algo == 7 || algo == 8 || algo == 10)

new_entry ->keylen = rsa_mod;

119 else

new_entry ->keylen = keylen;

120 new_entry ->occ = 1;

121 HASH_ADD(hh, ht, algo , sizeof(new_entry), new_entry);

122 }

123 free(lookup_key);

APPENDIX A. UNBOUND CODE 79

A.2 Write data to file

1 /* Deinitializes and prints the cryptographic algorithm and key length

statistics */

2 void deinit_val_secalgo_stat(char* filepath_cryptoalgo , char* filepath_kskzsk)

3 {

4 FILE* fp = fopen(filepath_cryptoalgo , "a");

5 if (fp != NULL)

6 {

7 struct ht_cryptoalgo *tmp = NULL;

8 struct ht_cryptoalgo *iter_entry = NULL;

9
10 /* Only print if the hash table is not empty */

11 if (ht != NULL)

12 {

13 HASH_SORT(ht, sort_on_occ_descending);

14 HASH_ITER(hh, ht, iter_entry , tmp)

15 {

16 fprintf(fp, "%d\t%d\t%d\n", iter_entry ->algo ,

iter_entry ->keylen , iter_entry ->occ);

17 HASH_DEL(ht , iter_entry);

18 free(iter_entry);

19 }

20 fprintf(fp, "total\t%d\n", nr_validations);

21 ht = NULL;

22 }

23 else

24 {

25 fprintf(fp, "total\t0\n");

26 }

27 fprintf(fp, "\n\n"); /* Empty lines for Gnuplot processing */

28 fflush(fp);

29 fclose(fp);

30 }

31 fp = fopen(filepath_kskzsk , "a");

32 if (fp != NULL)

33 {

34 struct ht_cryptoalgo *tmp = NULL;

35 struct ht_cryptoalgo *iter_entry = NULL;

36
37 /* Only print if the hash table is not empty */

38 if (kskzsk_ht != NULL)

39 {

40 HASH_SORT(kskzsk_ht , sort_on_occ_descending);

41 HASH_ITER(hh, kskzsk_ht , iter_entry , tmp)

42 {

43 fprintf(fp, "%d\t%d\t%d\n", iter_entry ->algo ,

iter_entry ->keylen , iter_entry ->occ);

44 HASH_DEL(kskzsk_ht , iter_entry);

45 free(iter_entry);

46 }

47 fprintf(fp, "total\t%d\n", nr_validations);

48 kskzsk_ht = NULL;

49 }

50 else {

51 fprintf(fp, "total\t0\n");

52 }

53 fprintf(fp, "\n\n"); /* Empty lines for Gnuplot processing */

54 fflush(fp); fclose(fp);

55 }

56 }

Appendix B

Results of regression

Q
0 200 400 600 800 1000

R

0

200

400

600

800

1000

Data points
Theil-Sen

R
0 200 400 600 800 1000

R
s

0

50

100

150

200

Data points
Theil-Sen

R
s

0 50 100 150 200

S

0

100

200

300

400

500

Data points
Theil-Sen

S
0 100 200 300 400 500

S
v

0

20

40

60

80

100

Data points
Theil-Sen

Figure B.1: AMS

80

APPENDIX B. RESULTS OF REGRESSION 81

Q
0 200 400 600 800 1000

R

0

200

400

600

800

1000

Data points
Theil-Sen

R
0 200 400 600 800 1000

R
s

0

50

100

150

200

Data points
Theil-Sen

R
s

0 50 100 150 200

S

0

100

200

300

400

500

Data points
Theil-Sen

S
0 100 200 300 400 500

S
v

0

20

40

60

80

100

Data points
Theil-Sen

Figure B.2: TIL

Q
0 200 400 600 800 1000

R

0

200

400

600

800

1000

Data points
Theil-Sen

R
0 200 400 600 800 1000

R
s

0

50

100

150

200

Data points
Theil-Sen

R
s

0 50 100 150 200

S

0

100

200

300

400

500

Data points
Theil-Sen

S
0 100 200 300 400 500

S
v

0

20

40

60

80

100

Data points
Theil-Sen

Figure B.3: UTR

Appendix C

CPU load code

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <unistd.h>

5 #include <limits.h>

6 #include "openssl/conf.h"

7 #include "openssl/engine.h"

8 #include "openssl/err.h"

9 #include "openssl/pem.h"

10 #include "openssl/evp.h"

11 #include <sys/time.h>

12 #include <sys/resource.h>

13
14 #include "ed25519/src/ed25519.h"

15 #include "ed25519/src/ge.h"

16 #include "ed25519/src/sc.h"

17
18 //#define ED25519_DLL

19 //#define DEBUG

20
21 typedef enum {

22 PROC ,

23 SYS

24 } usage_type;

25
26 static const int USEC_PER_SEC = 1000000;

27 static const int MAX_WARNINGS = 100;

28 static const int ITERATIONS = 50;

29 static const EVP_MD * type;

30 unsigned int hash_len , sig_len;

31
32 unsigned char* sha(char * input)

33 {

34 EVP_MD_CTX c;

35 unsigned char *hash;

36 unsigned int len;

37
38 hash = malloc(EVP_MAX_MD_SIZE);

39
40 EVP_MD_CTX_init (&c);

41 EVP_DigestInit_ex (&c, type , NULL);

42 EVP_DigestUpdate (&c, input , strlen(input));

82

APPENDIX C. CPU LOAD CODE 83

43 EVP_DigestFinal_ex (&c, hash , &len);

44 EVP_MD_CTX_cleanup (&c);

45
46 hash_len = len;

47 return hash;

48 }

49
50 unsigned char* sign(EVP_PKEY * key , unsigned char * hash)

51 {

52 EVP_MD_CTX c;

53 unsigned char *sig;

54 unsigned int len;

55
56 EVP_MD_CTX_init (&c);

57 sig = malloc(EVP_PKEY_size(key));

58
59 EVP_SignInit (&c, type);

60 EVP_SignUpdate (&c, hash , strlen ((char *)hash));

61 EVP_SignFinal (&c, sig , &len , key);

62
63 EVP_MD_CTX_cleanup (&c);

64
65 sig_len = len;

66 return sig;

67 }

68
69 int verify(EVP_PKEY *key , unsigned char *sig , unsigned int sig_len , unsigned

char *hash , unsigned int hash_len)

70 {

71 EVP_MD_CTX c;

72 int ret;

73
74 EVP_MD_CTX_init (&c);

75 EVP_VerifyInit (&c, type);

76 EVP_VerifyUpdate (&c, hash , hash_len);

77 ret = EVP_VerifyFinal (&c, sig , sig_len , key);

78
79 return ret;

80 }

81
82 int arguments_check(int argc , char *argv [])

83 {

84 if (argc != 4)

85 {

86 printf("Wrong arguments: <algorithm , duration , maximum validations per

second >\n");

87 return -1;

88 }

89 else if (strcmp(argv[1], "rsa1024") != 0 && strcmp(argv[1], "rsa2048") != 0

&& strcmp(argv[1], "ecdsap256") != 0 && strcmp(argv[1], "ecdsap384") !=

0 && strcmp(argv[1], "ed25519") != 0)

90 {

91 printf("Given algorithm ’%s’ is not supported\n", argv [1]);

92 return -1;

93 }

94 return 0;

95 }

96
97 /* Returns the secret key file for the given algorithm */

98 FILE* get_sfile(char* algo)

99 {

100 FILE* res;

84

101 char *filestr = (char*) malloc (256);

102 sprintf(filestr , "/home/kaspar/cpuspeed/keys/%ssec.pem", algo);

103 res = fopen(filestr , "r");

104 free(filestr);

105 return res;

106 }

107
108 /* Returns the public key file for the given algorithm */

109 FILE* get_pfile(char* algo)

110 {

111 FILE* res;

112 char *filestr = (char*) malloc (256);

113 sprintf(filestr , "/home/kaspar/cpuspeed/keys/%spub.pem", algo);

114 res = fopen(filestr , "r");

115 free(filestr);

116 return res;

117 }

118
119 char* get_plaintxt(void)

120 {

121 FILE *ptfd;

122 char *res;

123 long length;

124 ptfd = fopen("/home/kaspar/cpuspeed/plaintxt", "r");

125 if (ptfd)

126 {

127 fseek (ptfd , 0, SEEK_END);

128 length = ftell (ptfd);

129 fseek (ptfd , 0, SEEK_SET);

130 res = malloc (length);

131 if (res)

132 {

133 fread (res , 1, length , ptfd);

134 }

135 fclose (ptfd);

136 }

137 return res;

138 }

139
140 int get_timestamp(void)

141 {

142 int res;

143 struct timeval tv;

144 gettimeofday (&tv,NULL);

145 res = tv.tv_sec*USEC_PER_SEC+ tv.tv_usec;

146 return res;

147 }

148
149 /* Read the CPU usage for either the current process or for the system */

150 int get_usage(usage_type type)

151 {

152
153 FILE* fp;

154 if (type == SYS)

155 {

156 double long out1 ,out2 ,out3 ,out4;

157 fp = fopen("/proc/stat","r");

158 fscanf(fp,"%*s %Lf %Lf %Lf %Lf", &out1 , &out2 , &out3 , &out4);

159 fclose(fp);

160 return out1+out2+out3+out4;

161 }

162 else if (type == PROC)

APPENDIX C. CPU LOAD CODE 85

163 {

164 double long out1 , out2;

165 int pid = getpid ();

166 char *filestr = (char *) malloc (256);

167 sprintf(filestr , "/proc/%d/stat", pid);

168 fp = fopen(filestr ,"r");

169 fscanf(fp,"%*f %*s %*s %*f %*f %*f %*f %*f %*f %*f %*f %*f %*f %Lf %Lf ",

&out1 , &out2);

170 fclose(fp);

171 return out1+out2;

172 }

173 else

174 {

175 printf("Unsupported type");

176 exit(-1);

177 }

178 return 0;

179 }

180
181 int main(int argc , char *argv [])

182 {

183 /* Check arguments */

184 if (arguments_check(argc , argv) != 0)

185 {

186 exit(-1);

187 }

188
189 /* In case of ECDSA and RSA , use OpenSSL */

190 if (strcmp(argv[1], "rsa1024") == 0 || strcmp(argv[1], "rsa2048") == 0 ||

strcmp(argv[1], "ecdsap256") == 0 || strcmp(argv[1], "ecdsap384") == 0)

191 {

192 EVP_PKEY *sk , *pk;

193 FILE *sfd , *pfd;

194 unsigned char *hash , *sig;

195 unsigned int runtime , uval_before , uval_after , usys_before , usys_after , i

, err , success , fail , valctr;

196 int t_before , t_passed;

197 double target_vals_per_sec , multiplier;

198 char *pt;

199
200 /* Read the public - and secret key from file */

201 sfd = get_sfile(argv [1]);

202 pfd = get_pfile(argv [1]);

203 sk = PEM_read_PrivateKey(sfd , NULL , NULL , NULL);

204 pk = PEM_read_PUBKEY(pfd , NULL , NULL , NULL);

205 fclose(sfd);

206 fclose(pfd);

207
208 /* Read the plain text from file; */

209 pt = get_plaintxt ();

210
211 /* Obtain the correct EVP_MD structure for the hash function */

212 OpenSSL_add_all_digests ();

213 if (strcmp(argv[1], "rsa1024") == 0 || strcmp(argv[1], "rsa2048") == 0)

214 {

215 type = EVP_get_digestbyname("SHA1");

216 }

217 else if (strcmp(argv[1], "ecdsap256") == 0)

218 {

219 type = EVP_get_digestbyname("SHA1");

220 }

221 else if (strcmp(argv[1], "ecdsap384") == 0)

86

222 {

223 type = EVP_get_digestbyname("SHA384");

224 }

225 else

226 {

227 printf("Algorithm not supported\n");

228 exit(-1);

229 }

230
231 if (type == NULL)

232 {

233 printf("This version of OpenSSL (%lx) does not support the

requested algorithm", OPENSSL_VERSION_NUMBER);

234 exit (01);

235 }

236
237 runtime = atoi(argv [2])*USEC_PER_SEC;

238
239 /* Create the hash value and sign it */

240 hash = sha(pt);

241 sig = sign(sk, hash);

242
243
244 for(i = 1; i <= ITERATIONS; i++)

245 {

246 valctr = 0;

247 err = 0;

248 success = 0;

249 fail = 0;

250 multiplier = (double)i/(double)ITERATIONS;

251 target_vals_per_sec = (double)(atoi(argv [3])*multiplier);

252 t_before = get_timestamp ();

253 uval_before = get_usage(PROC);

254 usys_before = get_usage(SYS);

255 t_passed = 0;

256
257 while(valctr < target_vals_per_sec*atoi(argv [2]) && t_passed < runtime

)

258 {

259
260 /* Verify the signature */

261 switch(verify(pk, sig , sig_len , hash , hash_len))

262 {

263 case 0:

264 fail ++;

265 break;

266 case 1:

267 success ++;

268 break;

269 default:

270 err ++;

271 printf("An error occurred: %lu\n", ERR_get_error ());

272 break;

273 }

274 t_passed = get_timestamp ()-t_before;

275 valctr ++;

276 }

277
278 t_passed = get_timestamp ()-t_before;

279 if ((signed int) runtime -t_passed > 0)

280 {

281 usleep(runtime -t_passed);

APPENDIX C. CPU LOAD CODE 87

282 }

283
284 uval_after = get_usage(PROC);

285 usys_after = get_usage(SYS);

286 double cpuload = (double)(uval_after - uval_before)/(usys_after -

usys_before)*100;

287 printf("%.1f\t\t%.1f\t\t%.4f\n", target_vals_per_sec , (double)(

valctr /(double)atoi(argv [2])), cpuload);

288 }

289 EVP_cleanup ();

290 free(hash);

291 free(sig);

292 }

293 /* In case of ED25519 , use custom implementation */

294 else if (strcmp(argv[1], "ed25519") == 0)

295 {

296 unsigned char public_key [32], private_key [64], seed [32], signature [64];

297 unsigned int runtime , uval_before , uval_after , usys_before , usys_after ,

i, success , fail , valctr;

298 int t_before , t_passed;

299 double target_vals_per_sec , multiplier;

300
301 runtime = atoi(argv [2])*USEC_PER_SEC;

302
303 const unsigned char pt[] = "This is a DNS RRset!";

304 const int pt_len = strlen ((char *) pt);

305
306 ed25519_create_seed(seed);

307 ed25519_create_keypair(public_key , private_key , seed);

308
309 /* create signature on the message with the keypair */

310 ed25519_sign(signature , pt, pt_len , public_key , private_key);

311
312 for(i = 1; i <= ITERATIONS; i++)

313 {

314 valctr = 0;

315 success = 0;

316 fail = 0;

317 multiplier = (double)i/(double)ITERATIONS;

318 target_vals_per_sec = (double)(atoi(argv [3])*multiplier);

319 t_before = get_timestamp ();

320 uval_before = get_usage(PROC);

321 usys_before = get_usage(SYS);

322 t_passed = 0;

323
324 while(valctr < target_vals_per_sec*atoi(argv [2]) && t_passed < runtime

)

325 {

326 /* Verify the signature */

327 if (ed25519_verify(signature , pt , pt_len , public_key))

328 {

329 success ++;

330 }

331 else

332 {

333 fail ++;

334 }

335 t_passed = get_timestamp ()-t_before;

336 valctr ++;

337 }

338
339 t_passed = get_timestamp ()-t_before;

88

340 if ((signed int) runtime -t_passed > 0)

341 {

342 usleep(runtime -t_passed);

343 }

344
345 uval_after = get_usage(PROC);

346 usys_after = get_usage(SYS);

347 #ifdef DEBUG

348 printf("uval_diff: %d\n", uval_after - uval_before);

349 printf("usys_diff: %d\n", usys_after - usys_before);

350 #endif

351 double cpuload = (double)(uval_after - uval_before)/(usys_after -

usys_before)*100;

352 printf("%.1f\t\t%.1f\t\t%.4f\n", target_vals_per_sec , (double)(

valctr /(double)atoi(argv [2])), cpuload);

353 }

354 }

355 return 0;

356 }

	List of terms
	Introduction
	Research goal
	Thesis structure

	Background
	DNS
	DNSSEC
	Digital signatures
	Comparison
	Consequences

	Problem statement & Goals
	Research goals

	Related work
	Methodology
	Modelling versus simulation
	Modelling approach

	Analysis of the current state
	Measurement setup
	Results
	State of DNSSEC usage
	Conclusions

	Model
	Parameter estimation
	Model validation

	Scenario evaluation
	CPU benchmark
	Current scenario
	Future scenarios

	Discussion
	Conclusions and Future Work
	Future work

	Appendices
	Unbound code
	Store statistics in hash maps
	Write data to file

	Results of regression
	CPU load code

