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Abstract 

Strong empirical evidence suggests that respondents are more likely to respond truthfully to 

a sensitive question if they feel that the anonymity and confidentiality of their response is 

granted. The Randomized Response Technique provides an approach to increase the 

response accuracy on sensitive questions while allowing a valid estimation of  the 

prevalence of illegal or socially undesirable behavior and attitudes in the population. It was 

assumed that existing goodness-of-fit tests are suited for Randomized Response designs 

with binary data if the link function is adjusted. The assumption was evaluated in a 

simulation study for categorical and continuous data. Across a total amount of  210000 

randomly generated samples, no significant difference in type-1 errors was found between 

randomized data and non-randomized data. The statistical power declined as the degree of 

randomization of the data was increased. No difference between categorical and continuous 

data was found. The obtained results strongly indicate that existing goodness-of-fit tests can 

be utilized for Randomized Response designs with binary data.   
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1. Introduction 

1.1 Surveys  

During the past decades surveys have served a major role in collecting empirical data for the 

purpose of social observational studies. In general, a survey consists out of a set of questions 

or statements that, when answered, judged or commented by a representative sample of 

respondents, give insight into the prevalence of one or more predefined constructs within 

the population the study is aimed at. For example, a study aiming to explore the construct of 

intrinsic motivation among students of Dutch universities could utilize a survey that 

contains a set of questions that cover all aspects of the construct intrinsic motivation. As it is 

often impracticable to collect data from the whole population, in this case the data of all 

students of Dutch universities, a representative sample is being studied. In other words, a 

sample of the population takes the survey which yields data that aims to be representative 

for the whole population. 

 

1.2 Error and bias 

Even though there exists a great variety of methods when it comes to selecting a sample 

(Hibberts et al., 2012), it is virtually impossible to draw a sample that perfectly represents 

the population that it is drawn from. The difference between the data obtained through 

applying a sampling method and the true values, as present in the population, is called the 

sampling error. If the difference randomly varies with each sample taken, this error is also 

referred to as random error. Random error must be distinguished from systematic error, or 

bias, which describes a systematic difference in one direction.  

 

According to the Total Survey Error approach, error within survey studies can be 

discriminated into three categories (Weisberg, 2005). The first category leads to what is also 

called the sampling error, while the second and third category is often unified as the 

nonsampling error (Krumpal, 2011). First of all, error can occur at the selection of 

respondents, for example in the form of nonresponse bias or sampling bias. Nonresponse 

bias means that members of a sample do not become respondents due to a common 

characteristic, e.g. if the survey is offered solely in Dutch, international students that do not 

speak Dutch systematically will not participate. If the respondents are not selected 

randomly but for example by asking for volunteers through a notice at the bulletin board 

then this results in an availability sample which can lead to sample bias, e.g. students with 
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high intrinsic motivation are more likely to voluntarily take part in a study that does not 

lead to an extrinsic reward such as extra study points or money. 

 

Second, error can be introduced when processing and analyzing the data as well as when 

reporting the results. Potential causes of postsurvey error are mistakes that might occur 

when entering the data from a pen-and-paper survey into a computer and applying the 

wrong statistical method which leads to a false estimation of the prevalence of the studied 

construct in the population. 

 

And finally, a variety of factors influence the accuracy of the responses. In surveys, the 

accuracy of a response can be defined as the extent to which the respondent answers in 

accordance with the intentions of the researcher (Weisberg, 2005). Weisberg (2005) 

furthermore separates response accuracy as measurement error and nonresponse error. 

Measurement error can be caused either by the interviewer or the respondent. Interviewer-

related measurement error occurs if the observed responses differ because of the 

interviewer. Respondent-related measurement error reflects the discrepancy between the 

expected and the observed value. This can range from simple factual checks, e.g. “Did you 

ever drink and drive?” in which the researcher expects an answer that matches reality, to 

questions about attitude, e.g. “Do you think driving under the influence of alcohol should be 

punished more severely?” on which the respondent should provide an answer that is in 

accordance with the theoretical model. In other words, if the theoretical model expects that 

a respondent who scores high or low on a certain construct provides certain answers, then 

any discrepancy between the expected and the observed value increases the measurement 

error, lowers the response accuracy, and hence contributes to the total error of the survey. 

In some cases a respondent is unable or not willing to answer a question, which causes 

nonresponse error at the item level. Nonresponse error at the item level often leads to 

biased results as the likelihood to respond to a particular question can be governed by 

certain characteristics of the respondent, such as his attitudes and his current or past 

behavior.  

 

1.3 Sensitive questions and response accuracy 

Questions about topics that are perceived as private or taboo by the respondent, such as 

sexual behavior, as well as questions about attitudes and activities that are in contradiction 

with social norms lead to a lower response accuracy (Tourangeau & Yan, 2007). 
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Tourangeau, Rips, and Rasinski (2000) identified three aspects of these so-called sensitive 

questions which affect the response accuracy. 

 

The first aspect of sensitivity is the intrusiveness of a question. A question is intrusive to a 

respondent if he feels like it invades his privacy by touching a topic that he considers too 

private or taboo. Examples of topics that are commonly regarded as intrusive refer to the 

income (Moore et al., 2000) and the sexual behavior of the respondent (Fenton et al., 2001). 

Another aspect that affects the sensitivity of a question is the perceived risk of disclosure 

and possible negative consequences of providing a truthful answer. A student might for 

example hesitate to truthfully respond to a question about committing fraud during exams 

as he fears that his response might be disclosed, leading to a severe punishment by his 

university. Lastly, the sensitivity of a question is influenced by social desirability. Randall 

and Fernandes (1991) describe social desirability in terms of two dimensions: a personal 

dimension and an item-related dimension. The personal dimension refers to the 

respondent’s need of approval as a stable trait. According to the item-related dimension, 

respondents judge possible answers of questions based on how far these answers conform 

with social norms. From that follows that the degree of perceived sensitivity of a question 

depends on the respondent’s need of approval and how the respondent judges the social 

desirability of the answer that he is supposed to present under the condition of answering 

truthfully.  

 

To sum up, the perceived sensitivity of a question depends as well on the question as on the 

answer. A question can touch topics that are too private for the respondent to talk about, 

regardless of possible answers. On the other hand, whether or not social desirability 

influences the perceived sensitivity of a question depends on if the respondent’s truthful 

answer is in conformance with social norms. To illustrate this with an example, the question 

“How many sexual partners have you had in the past year?” is likely to be perceived as 

touching on a private topic and thus as sensitive while the question “Have you ever 

committed rape?” is perceived as sensitive only by those respondents that would answer 

with a “yes”. Finally, the perceived risk of disclosure contributes to the perceived sensitivity 

of a question.  

 

1.4 Increasing the response accuracy on sensitive questions 

First described by Warner (1965), the random response technique (RRT) offers a solution to 

questions being perceived as sensitive and thus lowering the response accuracy. Contrary to 
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traditional direct questioning (DQ) methods, the RRT does not require the respondent to 

reveal his answer to the researcher. Instead, using a randomizing device, e.g. rolling a dice, 

the respondent decides whether he presents his truthful answer or a prescribed response. 

The researcher has no insight into the randomizing device and thus the anonymity and 

confidentiality of the respondent is granted. In other words, it is not possible for the 

researcher to identify the information that belongs to a certain respondent and it is also not 

possible to identify the respondent by the information he provided. This successfully 

addresses the sensitivity of questions, the sensitivity of answers and the fear of disclosure. 

While the researcher cannot draw conclusions about a single respondent, there is strong 

evidence that applying the RRT can lead to a valid estimation of the prevalence of illegal or 

socially undesirable behavior and attitudes in the population (Lensvelt-Mulders et al., 2005; 

Silva & Vieira, 2009; Simon et al., 2006).  

 

2. Representing Randomized Response Models in Generalized Linear Models 

2.1 Predicting responses using linear regression 

Imagine a researcher theorizing that the performance on a particular task of university 

students depends on the students’ intrinsic motivation towards their study and their 

intelligence. Here, we have three variables: the response variable ��, which is the measured 

task performance in a controlled laboratory environment of the i-th student, and a set of two 

explanatory variables ��� and ���, representing the intrinsic motivation of the i-th student, 

respectively his intelligence. By applying linear regression to the data gained through a 

drawing a sample, the researcher can create a function �(��), with �� being a vector of 

explanatory variables to predict the response variable ��. More concrete, applying linear 

regression leads the a linear function �(��), that consists out of the explanatory variables ���  

... ���, a constant ��  and the regression coefficients �� ... ��  that determine the weight of the j-

th explanatory variable xij in predicting ��. From that follows the equation 

��� = �(��) = �� + �� ∙ ��� + ⋯ + �� ∙ ��� 

with ��� being the predicted response for the i-th respondent. The constant �� and the 

regression coefficients �� ... ��   are calculated in a way that the sum of the squared 

differences between the observed response variable �� and predicted response variable ��� is 

minimized. Hence, unless all observed responses lay on a straight line, each observed 

response can differ from its predicted response. The difference between �� and ��� is named 

the residual, or fitting error,��̂: 
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��̂ = �� − ��� 

The fitting error  is an estimation based on sample data of the of the unknown statistical 

error � in the population, which captures the influence of any variables other than the 

explanatory variables on �. The equation for the observed response variable according to 

the linear model is thus:  

�� = �(��) + ��  

 

2.2 Generalized Linear Models  

Williams et al. (2013) distinguish three categories of assumptions underlying the 

application of the linear regression to sample data in order to yield valid results. First of all a 

linear relationship between the response variable �� and the regression coefficients �� ... ��  

is assumed. Second, the errors � are required to be independent and normally distributed 

with a mean of zero and a constant, finite variance across all levels of the explanatory 

variables. Finally, it is assumed that the explanatory variables are measured without error.   

 

First described in by Nelder and Wedderburn (1972), the Generalized Linear Model (GLM) 

not only allows non-linear relationships between the response variable and the explanatory 

variables, but also removes the requirement of having a constant, normally distributed error 

for all levels of the explanatory variables (Fox, 2008). The GLM consists out of three parts 

(Agresti, 2015): the random component, the linear predictor and the link function. The 

random component represents the response variable and its probability distribution. The 

observed responses are assumed to be independent. The second component is the linear 

predictor which, similar to a linear model equation, may contain explanatory variables, 

regression coefficients and constants:  

�� = �� + �� ∙ ��� + ⋯ + �� ∙ ��� 

Finally, the link function defines how the linear predictor is connected to the mean of the 

predicted response variable ��� thus ��  It can be specified as:  

�(��) = �� = �� + �� ∙ ��� + ⋯ + �� ∙ ��� 

Instead of assuming that the variance of the errors ɛ is constant across all levels of the 

explanatory variables, the GLM features a function ���(��) to calculate the variance. The 
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variance function can either depend on the mean, on the predicted value of the response 

variable or be a constant.  

 

2.3 Generalized Linear Models with a linear link function 

A linear model is the most simple implementation of a GLM as the link function equals the 

mean predicted response variable ��: 

�(��) = �� = �� + �� ∙ ��� + ⋯ + �� ∙ ��� 

As noted above, this can also be written as 

�� = �� + �� ∙ ��� + ⋯ + �� ∙ ��� + ��  

with the error ��  having an estimated mean of ��̂ = 0 and a variance of ���(��) = ���(��) =

σ� . 

 

2.4 Generalized Linear Models with a logit link function 

While linear models can be utilized to predict a continuous, normally distributed response 

variable, research in social science often calls for the prediction of a dichotomous outcome 

(Peng et al., 2002). Predicting a dichotomous outcome follows from asking questions such as 

whether a student will pass a course or whether a teenager will engage in risky behavior. In 

other words, a dichotomous outcome is either a success or a failure and the researcher is 

interested in predicting the probability of the observed outcome being a success. 

Furthermore predicting dichotomous outcomes can help the researcher or stakeholders to 

take decisions, such as classifying a child as learning disabled.  

 

Logistic regression offers a solution to predict dichotomous outcomes by utilizing the 

natural exponential function: 

�� = �(� = 1|�) =
������∙����⋯���∙���

1 + ������∙����⋯���∙���
 

Here, �(� = 1|�) is the probability that the outcome is a success for a given vector of �, ��� 

... ��� are explanatory variables, �� is a constant and �� ... �� are regression coefficients. The 

response variable, hence the probability, follows a Bernoulli distribution with a variance of 

�� ∙ (1 − ��), thus �~���������(�� ∙ (1 − ��)). Translated into a GLM the logistic regression 

can be specified by the following functions:  
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�� = �� + �� ∙ ��� + ⋯ + �� ∙ ��� 

�(��) = �����(��) =  �� = log�

��

1 − ��

 

���(��) = �� =
���

1 + ���
 

���(��) = �� ∙ (1 − ��)   

The link function �(��) can be any function that maps continuous values from [−∞, ∞] to 

[0,1]. However, as a result of its intuitive interpretation as the log of the odds of the 

successes, thus on average for every failure there will be ��/(1 − ��) successes, the logit 

function is commonly used for this purpose. By applying regression to the linear predictor, 

the predicted logit can be computed for each level of the explanatory variables. 

Furthermore, the predicted logit can be converted to a predicted probability value by 

utilizing the inverse link function ���(��). Finally, the variance is calculated based on the 

predicted probability using the function ���(��). 

 

2.5 Randomized response in Logistic regression models  

Under the presumption that the respondent follows the instructions provided by the 

researcher, van den Hout, van der Heijden and Gilchrist (2007) demonstrated that the 

Randomized Response (RR) models described by Warner (1965), Boruch (1972) and Kuk 

(1990) can be represented models by a single equation:  

�(��
∗ = 1) = � + � ∙ �(�� = 1) 

�(��
∗ = 1) is the probability that the first answer, e.g. “yes”, is being observed from the i-th 

respondent, �(�� = 1) is the probability that the i-th respondent gives the first answer and 

the parameters c and d model the noise that is introduced if utilizing the randomized 

response technique (RRT) during data collection. Veen (2014) and Fox, Klotzke and Veen 

(2015) further extended the set of RR models represented by the single equation.  

 

Rearranging the equation to solve for �(�� = 1) enables the specification of the according 

link function in the GLM: 

��
∗ = �(��

∗ = 1) 

�� = �(�� = 1) =
��

∗ − �

�
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�(�� = 0) = 1 − �� =
� + � − ��

∗

�
  

=> �(��
∗) = �� = �����(��) = log�

��

1 − ��

= log�

��
∗ − �

c + d − ��
∗ 

The specification of the inverse link function follows the same approach. Given 

���(��) = ��
∗ 

�� =
��

∗ − �

�
=

���

1 + ���
 

the inverse link function is defined as: 

���(��) = ��
∗ = � + � ∙

���

1 + ��� 
 

Likewise, the equation for the variance function can be set up by simply replacing ��  of the 

original equation as defined in the GLM with the according term consisting out of the 

parameters ��
∗, c and d: 

���(��) = �� ∙ (1 − ��)  

�� =
��

∗ − �

�
 

=> var(��
∗) =

(��
∗ − �) ∙ (� + � + ��

∗)

��
 

As �∗ follows from Y, it is also Bernoulli distributed based on the predicted value ��
∗ thus 

�∗~���������(��
∗ ∙ (1 − ��

∗)) with ��
∗ = � + � ∙ �(�� = 1). 
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3. Randomized Response Models 

3.1 Warner 

Aiming to protect the privacy of the respondents and by that, increasing the response 

accuracy on sensitive questions, in 1965 Warner proposes the historically first random 

response (RR) model. In Warner’s model each sensitive question comes along with a 

negotiation of the same. For example, the question “Have you consumed drugs in the past 

four weeks?” would be presented along with its negotiation “Have you not consumed drugs 

in the past four weeks?”. Using a randomizing device, e.g. rolling a dice, the respondent 

selects a question to which he provides a truthful answer. The researcher has no insight into 

the randomizing device and hence does not know to which of the two questions the 

respondent provided an answer. He however is aware of the probability distribution of the 

randomizing device and therefore of the probability of the respondent selecting the real 

question. For example, if the respondent is instructed to select the real question, as opposed 

to the negotiation, if the dice shows a 2, 3, 4, 5 or 6 then the probability for the respondent 

to answer the real question is 5/6 and vice versa the probability to choose the negotiated 

question is 1/6. This can be expressed with equation given in chapter 2.5 of this paper. First 

of all, if the first answer, e.g. “yes”, is observed, it is either possible that it matches the 

respondent’s true answer and he is prompted to respond to the real question or that the 

respondent’s true answer is actually the opposite but he is prompted to answer the 

negotiated question:  

�(�∗ = 1) = �(�∗ = 1|� = 1) + �(�∗ = 1|� = 0) 

With p being the probability that the randomizing device leads to instructing the respondent 

to answer the real question and π being the true probability of giving the first answer to the 

real question, thus �(Y = 1) the equation for �(�∗ = 1) is as follows: 

�(�∗ = 1) = p ∙ π + (1 − p) ∙ (1 − π) 

<=>  �(�∗ = 1) =  π ∙ (2p − 1) + (1 − p) 

Finally, the parameters c and d are defined as (1 − p) respectively (2p − 1), which leads to 

the following equation: 

�(�∗ = 1) = π ∙ d + c 

<=>  �(�∗ = 1) =  c + d ∙  �(Y = 1)  
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In the aforementioned example of rolling a dice to select either the real question or its 

negotiation, c would hence equal 1 − 5/6 = 1/6  and d equals 2 ∗ 5/6 − 1 = 2/3.  

 

3.2 Forced-Response 

Contrary to Warner’s model, the forced-response (FR) model, as described by Boruch 

(1972), relies on prompting a single, sensitive question to the respondent. Using the 

randomizing device, in which the researcher has no insight, the respondent is instructed to 

reply with either “yes”, “no” or either “yes” or “no” based on his truthful answer. If a dice is 

utilized as randomizing device, the respondent could for example be instructed to reply with 

“yes” if the outcome of the dice is a 1, to reply with “no” if the outcome is 6 and to reply 

truthfully with either “yes” or “no” if the dice shows a 2, 3, 4 or 5.  

 

With the known probability of an instructed “yes” or “no” reply being �� respectively ��, the 

probability of a truthful answer is 1 − �� − ��. From that follows that the probability for an 

observed “yes” is the sum of the probability for the respondent to answer truthfully with 

“yes” and the probability of a forced “yes” reply, thus �� . Defining c as equaling �� and d as 

equaling 1 − �� − ��  shows that the FR model can be represented by the following equation: 

�(�∗ = 1) = π ∙ �1 − �� − ��� + �� 

<=>  �(�∗ = 1) = π ∙ d + c 

<=>  �(�∗ = 1) =  c + d ∙ �(Y = 1)  

3.3 Two Bernoulli distributions 

Kuk (1990) offers an RR model in which two separate Bernoulli distributions are used to 

add noise to the true answer of the respondent. First, the respondent faces a question that 

can be answered with either “yes” or “no”. Next, the respondent is provided with two binary 

outcomes that differ in their probability distribution. A concrete example are two packs of 

cards. Each pack is shuffled and consists out of blue and yellow cards with the ratio of blue 

versus yellow cards differing between the packs. In other words, drawing a card from each 

pack leads to two binary outcomes, namely blue or yellow, and the probability for the drawn 

card to be blue is higher in one pack. If the respondent’s true answer to the question is “yes”, 

then he is asked to show the card drawn from the first pack to the researcher and likewise, if 

the respondent’s true answer is “no”, he shows the card drawn from the second pack. The 

researcher has no knowledge about from which pack the card shown to him was drawn. 
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However, as he is aware of the proportion of blue versus yellow cards in each of the two 

packs, he possesses insight into the probability distributions of the outcomes.   

 

Let �1 and �2 be the known proportion of blue cards in the first respectively second pack, p1 

and p2 are therefore the probabilities to draw a blue card from the first respectively second 

pack and � being the probability that the respondent would answer with “yes” to the 

question. With defining c as equaling p2 and d as equaling (p1 - p2), Kuk’s model can be 

represented by the following equation: 

�(�∗ = 1) = �(�∗ = 1|� = 1) + �(�∗ = 1|� = 0) 

<=>   �(�∗ = 1) = �� ∙ π + �� ∙ (1 − π) 

<=>   �(�∗ = 1) =  π ∙ (�� − ��) + �� 

<=>   �(�∗ = 1) =  π ∙ d + c 

<=>   �(�∗ = 1) =  c + d ∙ �(Y = 1)  
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4. Problem description 

4.1 Hypothesis testing and model choice 

Goodness-of-fit tests indicate how well a statistical model fits the observed data. In this 

simulation the observed data is generated based on the inverse link function which maps 

the linear term of explanatory variables and their coefficients thus �� = �� + ����� + ⋯ +

����� to a probability, hence to values between 0 and 1. For the logit link function the 

formula looks as follows:  

���(��) = � + � ∙
���

1 + ��� 
 

Writing the formula in a more general way shows that the mapping can be done with any 

link function that maps continuous values from [−∞, ∞] to [0,1]: 

�(�∗ = 1) =  c + d ∙ �(Y = 1)  

Two types of statistical models are used in this paper: First of all, the true model which fully 

matches reality and therefore can predict the observed data accurately. In other words, it 

contains the complete term of explanatory variables and accurate regression coefficients. 

For the purpose of this simulation the true model will therefore use the complete set of 

explanatory variables ��� ... ��� and the restricted model contains an incomplete set of 

explanatory variables. To illustrate this with a practical example in which the observed data 

is generated with two explanatory variables, ��� and ���:  the true model contains the linear 

prediction term �� = 0.2 +  0.4 ∗ ��� − 0.17 ∙ ���  while in the restricted model the effect of 

the second predictor ��� is fixed to zero, leading to a linear term based on only the first 

predictor ���, e.g. �� = −0.1 +  0.6 ∙ ���. 

 

Two tests for statistical significance can be described. Considering that the true model 

matches the model used for simulating the data, a goodness-of-fit test should not indicate a 

statistical significant difference between the observed data and predictions from the true 

model. In terms of the null hypothesis H0 and an alternative hypothesis Ha, this can be 

formulated as follows: H0: there is no significant difference between the observed data and 

the predictions of the true model. Ha: there is a significant difference between the observed 

data and the predictions of the true model and therefore an alternative model fits the data 

better than the specified true model.  
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If this test leads to the incorrect conclusion that H0 must be rejected when the true model is 

equal to the model used for generating the data, a so-called type-1 error is made. 

 

The second test concerns the restricted model, which by definition differs from the model 

used for generating the data. The corresponding hypotheses are as follows: H0: there is no 

significant difference between the observed data and the predictions of the restricted model. 

Ha: there is a significant difference between the observed data and the predictions of the  

restricted model.  

 

Considering that by definition the restricted model does not fit the data as accurately as the 

model used for generating the data, a goodness-of-fit test should lead to the conclusion that 

Ha is true and thus that H0 should be rejected. If the conclusion is however that the restricted 

model fits the data well enough, then a so-called type-2 error is made. Furthermore, the 

statistical power of a test is defined as 1 - the fraction of type-2 errors and hence the 

statistical power of a test declines as more type-2 errors occur.  

 

4.2 Measures of goodness-of-fit 

For categorical data the Pearson and Deviance goodness-of-fit tests are utilized. While the 

exact procedure to compute the goodness-of-fit differs between those two measures, the 

general approach is very similar. In short, based on the observed group mean probability ���
∗ 

and the predicted group mean probability ���
∗ the difference between the observed data and 

the predictions is computed. As discussed in more detail in the next paragraph, here, each 

group consists out of respondents that share the same combinations of explanatory 

variables. In simplified terms, the respondents who share the same set of characteristics are 

grouped together. For each group, the difference between ���
∗ and ���

∗ is furthermore scaled 

by the estimated standard deviation within that group. The Pearson statistic ��
� is computed 

as follows, with �� being the number of respondents in the i-th group: 

��
� = � �� ∙

(���
∗ − ���

∗)²

���
∗ ∙ (1 − ���

∗)

�

���

 

For more information on the Pearson and Deviance goodness-of-fit tests see Tutz (2011, pp. 

87-91). 
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Each of the explanatory variables ��� ... ��� represents a certain characteristic of the i-th 

respondent. For example the first explanatory variable ��� could contain the age of the 

respondent and the second variable ���  could represent his or her gender. If ��� takes the 

value 0 for a male and 1 for a female gender, a 30 year old woman would be represented by 

��� = 30 and ��� = 1. Furthermore this woman would have either a positive observed 

outcome, i.e. ��  =  1 or a negative outcome, i.e. �� =  0. Repeating the same procedure for n 

– 1 more respondents would result in a total of n individual combinations of ���, ��� and ��. 

However, for the Pearson and Deviance statistics the degrees of freedom increase along with 

the sample size n. As the Pearson test statistic ��
� is not guaranteed to be asymptotical chi-

squared distributed for a large degree of freedom, its value cannot be safely evaluated. The 

same accounts for the Deviant test statistic ��
� (Tutz, 2011, pp. 89-90). The solution is to 

group the respondents based on their characteristics. In the former example with two 

explanatory variables, the respondents who share the same value of ��� and ���, would be 

placed in the same group, or cluster. For example one cluster contains all 40 year old males, 

the next cluster contains all 35 year old females and so on. 

 

Under the assumption that each cluster contains more than one respondent, for each 

characteristic, thus combination of explanatory variables, multiple observations are 

available. Each cluster with i respondents contains �� trials for a given combination of 

explanatory variables and the outcome of a trial is either a 1 or 0, thus a success respectively 

a failure. In other words, the Bernoulli distribution with a single trial for each respondent 

has been transformed to a Binominal distribution for each cluster with �� trails and an 

estimated group mean probability ���, resulting in ��~�(��, ���). As the number of clusters is 

fixed, the test statistic values ��
� and ��

� can be evaluated with a chi-squared distribution 

with N - P degrees of freedom, N being the number of non-empty clusters and P being the 

number of estimated parameters.      

 

While the Pearson and Deviance statistics are designed for categorical data, they can also, to 

some degree, be applied to continuous variables. In the former example the variable age is 

continuous but is treated as categorical due to its discrete character and its fixed number of 

possible values, or levels. A continuous variable with a great number of levels would 

however strongly increase the number of clusters and as a result the degrees of freedom of 

the chi-squared distribution would no longer be fixed. The Hosmer-Lemeshow (H-L) test 

approaches this difficulty by offering an alternative way to group the respondents into 

clusters. The Hosmer-Lemeshow test is a modified Pearson goodness-of-fit test but in place 
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of grouping respondents based on their shared explanatory variables, the researcher can 

choose the number of clusters. The procedure is as follows: first of all, the respondents are 

ordered based on their predicted probability of success. As discussed earlier, the predictions 

are made for each respondent based on his characteristics, hence his combination of 

explanatory variables. Next, the respondents are grouped into N clusters of equal size, with 

the n / N respondents with the lowest predicted probability of success entering the first 

cluster, the following n / N respondents based on the same criteria enter the next cluster 

and so on. Finally, the Pearson statistic can be computed for the chosen set of clusters: 

���
� = � �� ∙

(���
∗ − ���

∗)²

���
∗ ∙ (1 − ���

∗)

�

���

 

The resulting test statistics ���
� is chi-squared distributed with N - 2 degrees of freedom.  For 

more information about the Hosmer-Lemeshow test see Tutz (2011, pp. 92-93). 

 

Goodness-of-fit test statistics offer an indication about how well a statistical model fits the 

observed data on a global level. However, often it is of interest to examine where exactly the 

model does or does not fit the observed data. For this purpose, residuals are calculated. 

Residuals show the discrepancy between the observed and the predicted values, either for 

each individual respondent or per cluster. Furthermore, residuals are usually scaled by the 

estimated standard deviation for the particular respondent or cluster. In this paper, the 

scaled Pearson residual is utilized, which takes the same parameters ���
∗, ���

∗ and �� as the 

earlier described Pearson statistic to compute the discrepancy between the predicted and 

observed mean cluster probabilities (Tutz , 2011, pp. 93-94): 

��(���
∗, ���

∗) =
���

∗ − ���
∗

����
∗ ∙ (1 − ���

∗)/��

 

4.3 Goodness-of-fit tests for RR models for binary data 

By the time of writing this paper, there was no description of goodness-of-fit tests for RR 

models for binary data available in the literature. The following section provides an 

explanation on how existing goodness-of-fit tests for binary data, i.e. the Pearson statistic 

and the Deviant statistic, can be utilized to evaluate the goodness-of-fit of RR models. 
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With binary data, the parameter ���
∗ contains the observed mean probability of success for a 

given cluster. Where the observed data ���
∗ is influenced by the RR design, the RR model with 

parameters c and d is given by:   

�(�∗ = 1) =  c + d ∙ �(Y = 1)  

and it follows that with ��� being the true group mean probability: 

��
�
∗ = � + � ∙ ���  

However, the specified glm link function is adjusted to include the influence of the RRT, also 

by including the parameters c and d: 

���(��) = � + � ∙
���

1 + ��� 
 

Therefore, with ���  being the predicted mean probability of success for a given cluster, 

without RR influence: 

���
∗ = � + � ∙ ���  

It follows that the observed data can be compared to the predictions without requiring a 

modification of the Pearson or Deviance goodness-of-fit measures. 

 

4.4 Evaluating the goodness-of-fit of one model against a single alternative 

Goodness-of-fit tests evaluate the model against an unspecified alternative model, and 

therefore these tests will have poor statistical power. Reliably detecting a discrepancy 

between the inaccurate model and the observed data is referred to as strong statistical 

power. However, in practice there is often more than one proposed statistical model to 

describe the observations. It is then of interest to evaluate which of the models describes the 

observed data best. The Pearson, Deviance and Hosmer-Lemeshow test statistics, which are 

chi-squared distributed, can be used to indicate how well a model fits the observed data. It 

seems straightforward to compare the value of a test statistic of two competing models to 

examine which of the models fits the data better. And indeed, after scaling two independent 

chi-squared variables for the degrees of freedom of their corresponding distribution, a F-

distributed ratio variable can be computed (Devore & Berk, 2012, pp. 323-325). Let ��
� � and 

��
� �  be the Pearson test statistics for the true model and a restricted model and ��� and ���  

be the respectively degrees of freedom of their distribution. From that follows: 
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����,���
=

��
� �/���

��
� �/���

 

The ratio variable is thus F-distributed with the degrees of freedom ���  and ���. If the p-

value stemming from the F-distribution for the ratio variable is smaller than the specified 

level of significance α, then the true model fits the data significantly better in comparison 

with the restricted model. In terms of statistical hypotheses the null hypothesis states thus 

that no significant difference exists between the goodness-of-fit of the true model and the 

restricted model. Accordingly, the alternative hypothesis is accepted if the true model fits 

the data better than the restricted model.   

 

If both models share one or more explanatory variables, independence of the chi-squared 

variables in the nominator and denominator can be questioned. The reason for this is that 

the predictions of a model are strongly based on the explanatory variables. However, as the 

test statistics are based on the scaled residuals, the test statistics of two models are 

independent if for both models the residuals are independent of the predicted values. In 

more general terms, for each individual respondent a predicted probability of success is 

calculated by the model based on his combination of explanatory variables. Next, the 

discrepancy between the observed outcome for this respondent and his predicted 

probability of success is calculated in the form of a residual. Finally, based on the residuals 

of all respondents or clusters the test statistic is computed. Therefore, if the distribution of 

the residuals is independent of the predictions made by the model, then any variable that is 

based on the residuals is also independently distributed. Put simply, if the residuals of the 

first model do not convey information over the residuals of the second model then the test 

statistics that are computed based on said residuals are independent.  

          

4.5 Research question 

The main research question for this paper is if the Pearson, Deviance and Hosmer-

Lemeshow tests are suited to evaluate the goodness-of-fit of RR models for binary data. This 

can furthermore be split into following sub-questions: 

- Do the type-1 and type-2 error rates change in an RR design with categorical data, 

and in what way?  

- Do the type-1 and type-2 error rates change in an RR design with continuous data, 

and in what way?  
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5. Method 

5.1 Procedure and technical implementation in R 

As shown in Figure A, the simulation consists of five modules. Each of the modules is 

implemented in the statistical programming language R. The central module generates the 

data based on a link function, an RR design and various user settings. Next, through 

interaction with the goodness-of-fit testing module it computes the type1-error rate and the 

statistical power for the given data. Finally the results are printed and saved. 

 

The link function can be any glm link function that maps continuous values from [−∞, ∞] to 

[0,1]. Examples are the logit and the probit link function. Any RR design modeled by the 

parameters c and d can be used in the simulation, e.g. Warner’s design and the Forced 

Response design. Three goodness-of-fit tests are implemented for the purpose of the 

simulation, namely the Pearson statistic, the Deviance statistic and the Hosmer-Lemeshow 

statistic. User settings include a set of predictors and coefficients defining the true model, 

the number of samples, the sample size, the level of significance and the RR parameters c 

and d.  
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Figure A 

Simulation modules design diagram  
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5.2 Randomized Response designs 

The collection of data is based on Warner’s RR design. The central parameter in Warner’s 

design is the probability p of presenting the true question to the respondent. When 

modeling the probability p by the parameters c and d, � =  1 −  � and � =  2 ∗  � −  1. In 

the simulation a non-RR design is compared to two Warner’s RR designs, see Table A.  

 

Table A 

Data collection designs with parameters c and d 

Design p c d 

No RR 1 0 1 

Warner .9 .1 .8 

Warner .8 .2 .6 

 

5.3 Components of the simulation   

The simulation consists of two parts, aimed at different components of the research 

question: logistic regression with categorical predictors and logistic regression with a 

continuous predictor and controlled cluster size. Each part is carried out with a separate 

function, implemented in the statistical programming language R. If not stated otherwise, 

the term goodness-of-fit tests comprehends the Pearson, the Deviance and the Hosmer-

Lemeshow tests. By default the Hosmer-Lemeshow test groups the respondents into 10 

clusters. A significance level of  α = .05 is applied.     

5.3.1 Logistic regression with categorical predictors 

In the first part of the simulation it is examined in what way an RR design affects the type-1 

error rate and the statistical power of goodness-of-fit tests when using solely categorical 

predictors to generate the data.  

 

The true model is based on two categorical predictors, ��, and �� with respectively 5 and 2 

levels: 

x1 = sample(0:4,nRespondents,replace=T) 

x2 = sample(1:2,nRespondents,replace=T) 

The data is generated as follows: 
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eta = 3.5 * x1 – 6.0 * x2 

prob = c + d * exp(eta)/(1 + exp(eta)) 

y = rbinom(nRespondents,size=1,prob=prob) 

Alternatively, for Warner’s RR design the inverse link function can be written as:  

prob = (1 – p) + (2*p – 1) * exp(eta)/(1 + exp(eta)) 

The restricted model is based solely on ��, thus restricting the effect of �� to zero when 

predicting the data. For each of the three data collection designs (see Table A), three times 

10000 samples are simulated, with respectively � = 500, � = 1000 and � = 1500 

respondents. The Pearson and Deviance goodness-of-fit tests are utilized.   

 

Additionally, following the procedure described in chapter 4.4 of this paper, the goodness-

of-fit of the true model is evaluated against a single specified alternative, namely the 

restricted model. Ideally the true model should be preferred over the alternative in all 

circumstance, i.e. across all analyzed data collection designs and sample sizes. Again, for 

each of the three data collection designs three times 10000 samples are simulated, with 

respectively � =  500, � =  1000 and � =  1500 respondents. The procedure is executed 

based on the Deviance test statistic. 

 

5.3.2 Logistic regression with a continuous predictor and controlled cluster size 

The aim of the second part is to assess in what way an RR design affects the type-1 error 

rate and the statistical power when using a categorical predictor and a continuous predictor 

to generate the data. To control the cluster size, the Hosmer-Lemeshow goodness-of-fit test 

is applied with respectively 4, 5, 8, 10, 20, 25, 40, 50, 100, 200 and 250 groups. 

 

The true model is based on a categorical predictors �� with 5 levels, and a continuous 

predictor ��: 

x1 = sample(-2:2,nRespondents,replace=T)     

x2 = runif(nRespondents,-1.5,1.5) 

x2 = x2[order(x2)] 

The linear predictor function to generate the data looks as follows: 

eta = 1.2 * x1 - 0.5 * x2 
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The restricted model is based solely on ��, thus restricting the effect of �� to zero when 

predicting the data. For each of the three data collection designs 10000 samples with 

� =  1000 respondents are simulated. 
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6. Data analysis  

6.1 Logistic regression with categorical predictors 

Applying the Pearson and Deviance goodness-of-fit tests to a model with two categorical 

predictors revealed a distinct patter in the statistical power of the test across the three data 

collection designs. While the power is the highest in a non-RR data collection design, 

lowering Warner’s probability p of presenting the real question to the respondent results in 

a lower power among RR designs. In other words, goodness-of-fit tests applied to data 

gained from an RR design with � = .8 show a lower statistical power than tests applied to 

data with � = .9.  As the amount of variance that an RR design adds to the data is directly 

linked to its degree of randomization, in the case of Warner’s design thus modeled by p, 

these results were expected. More variance, or noise in the data leads to a reduction in 

information about the underlying statistical model and therefore results in less power to 

reject the incorrect model. However, at a sample size of � = 1500, the RR design with � = .9 

reaches a statistical power of .99 which equals the baseline that was set by the non-

randomized data. The results do not significantly differ between the Pearson and the 

Deviance test.  

 

The examination of type-1 errors yielded surprising results, with the error rate decreasing 

for the Pearson test as the degree of randomization increases. The Deviance test showed the 

same pattern between the two RR designs with � = .8 and � = .9, however the error rate is 

significantly lower for the data obtained without randomization. The results are in 

contradiction with the opposite pattern of statistical power for the same data. Thus, a 

possible explanation is that the additional variance leads to a slight underestimation of the 

type-1 error rate for this data at the chosen sample sizes. Despite the difference, neither the 

Pearson nor the Deviance statistic provided results that indicated a significant lack of fit of 

the true model with either the non-RR design or the RR designs.  

 

Figure B and Figure C illustrate the results. Each point on the plots represents the average 

percentage of type-1 error respectively the average statistical power across 10000 

bootstrap samples for a combination of sample size (� = 500, � = 1000, � = 1500) and data 

collection design (� = 1, � = .9, � =.8). A significance level of  α = .05 was applied.     

 

Setting the Pearson residuals against the fitted values for 20 random samples of size � = 50  

for each of the three data collection designs (� = 1, � = .9, � =.8) showed a possible 
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correlation between the residuals of the true model and the residuals of the restricted model 

at fitted values nearby 0 and 1. Taken into account that a Pearson residual for an 

observation that is close to 0 cannot take large positive values and likewise residuals for 

observations nearby 1 cannot take large negative values, the distinct pattern at the tails can 

possibly be explained. However, independence is not proven. When evaluating the 

goodness-of-fit of the true model against the restricted model in a non-RR design with a 

significance level of  α = .05, for a sample size of � = 1000 the true model is detected to fit 

the observed data significantly better than the restricted model in approximately 91% of the 

cases. The detection rate became significantly worse in an RR design as the degree of 

randomization was increased (for � = 1000; � = .9: 49%; � = .8: 21%). Using a larger 

sample size of � = 1500 respondents raised the detection rate significantly for the 

randomized data (for � = 1500; � = .9: 72%; � = .8: 38%). The results indicate that the 

noise added by randomizing the data reduces the reliability with which the goodness-of-fit 

of one model can be evaluated against a specified alternative model and thus confirm the 

findings that were made through evaluating the statistical power with similar data. See 

Figure E for an illustration of the results. The estimations are based on 10000 bootstrap 

samples for each combination of sample size (� = 500, � = 1000, � = 1500) and data 

collection design (� = 1, � = .9, � =.8). 

 

6.2 Logistic regression with a continuous predictor and controlled cluster size 

When replacing the second categorical predictor with an ordered continuous predictor, the 

Hosmer-Lemeshow goodness-of-fit test shows a significant discrepancy in the estimated 

statistical power for a sample size of � = 1000 respondents between the three data 

collection designs (� = 1, � = .9, � =.8). Across most cluster sizes, the statistical power 

noticeably declines as the randomization becomes stronger, thus confirming that the noise 

added by the RRT leads to a reduction in power to reject the incorrect model (see Figure F). 

As shown in Figure G, no noticeable difference between the estimated percentage of type-1 

errors was found between the three data collection designs. Each line in Figure F and G is an 

estimation based on mean data from 10000 bootstrap samples and thus each point of the 

plots represents the average percentage of type-1 error respectively the average statistical 

power across 10000 samples for a defined number of clusters. 

 

See Table B and Table C for an overview of the type-1 error rate respectively the statistical 

power across both parts of the simulation.  
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Table B 

Type-1 error rate for RR data collection designs compared to a non-RR design 

Predictors 

(Test statistic) 

Sample size Type-1 error rate 

  No RR p = .9 p = .8 

Two categorical 

predictors 

(Pearson/Deviance) 

500 

1000 

1500 

6.2 (0.5) 

6.6 (0.8) 

8.1 (1.0) 

4.8 (6.1) 

5.0 (5.1) 

4.8 (5.2) 

4.3 (4.8) 

4.2 (4.6) 

4.8 (4.9) 

     

One categorical,  

one continuous 

predictor 

(H-L, N = 10) 

1000 4.1 4.6 4.3 

 
 
Table C 

Statistical power for RR data collection designs compared to a non-RR design 

Predictors 

(Test statistic) 

Sample size Power 

  No RR p = .9 p = .8 

Two categorical 

predictors 

(Pearson/Deviance) 

500 

1000 

1500 

.98 (.99) 

.91 (.96) 

.99 (.99) 

.39 (.41) 

.60 (.62) 

.99 (.99) 

 

.25 (.26) 

.42 (.44) 

.75 (.75) 

     

One categorical,  

one continuous 

predictor 

(H-L, N = 10) 

1000 .88 .55 .29 
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Figure B 

Type-1 errors for categorical predictors and different RR designs 
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Figure C 

Statistical power for categorical predictors and different RR designs 
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Figure D 

Residuals for different RR designs against fitted values 
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Figure E 

Goodness-of-fit of the true model against a single incorrect alternative
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Figure F 

Statistical power for different RR designs across different cluster sizes
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Figure G 

Type-1 errors for different RR designs across different cluster sizes 
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7. Discussion  

The main research question for this paper was if the Pearson, Deviance and Hosmer-

Lemeshow tests are suited to evaluate the goodness-of-fit of RR models for binary data. For 

this purpose, it was examined if and in what way an RR design affects the type-1 error rate 

and the statistical power when working with categorical respectively continuous data.  

 

7.1 Do the type-1 and type-2 error rates change in an RR design with categorical data, 

and in what way? 

There was no evidence found indicating that the type-1 error rate is significantly higher or 

lower in RR data collection designs compared to non-randomized data collection designs. 

However, while the type-1 error rate computed with the Pearson statistic was slightly 

higher for the non-RR design compared to the RR designs, it was noticeably lower when 

utilizing the Deviance statistic. Despite the difference, neither the Pearson nor the Deviance 

statistic provided results that indicated a significant lack of fit of the true model with either 

the non-RR design or the RR designs.  

 

For both test statistics the statistical power to reject an incorrect model declined as the 

degree of randomization of the data was increased. When evaluating the true model against 

a single, incorrect alternative model the results followed the pattern found in the statistical 

power.  

 

7.2 Do the type-1 and type-2 error rates change in an RR design with continuous data, 

and in what way? 

Simulations made with continuous data did not reveal a significant difference in the type-1 

error rate between RR designs and non-RR designs. The statistical power declined with the 

degree of randomization of the data being increased. The results for both the type-1 error 

rate and the type-2 error rate have been confirmed across various cluster sizes.  

 

7.3 Conclusion 

Based on the results of this simulation study, the Pearson, Deviance and Hosmer-Lemeshow 

tests are suited to evaluated the goodness-of-fit of RR models for binary data when using an 

adjusted logit link function. No significant difference was found for the type-1 error rate for 

RR models and the discrepancy in statistical power was expected as the RRT by design 
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introduces noise to the data. More variance, or noise in the data leads to a reduction in 

information about the underlying statistical model and therefore results in less power to 

reject the incorrect model. While the variance in the data increased in RR designs, no 

indication of systematic bias was observed. Additional testing is required to confirm the 

assumption that the results can be reproduced for different link functions. 

 

It must be noted that in the aforementioned approaches to evaluate in what way an RR 

design affects the working of goodness-of-fit tests a worst case scenario for the RRT was 

assumed: while it did add noise to the collected data, it did not affect the response behavior 

of the respondents. However, strong evidence exists supporting that assumption that 

respondents answer more truthfully to sensitive questions in an RR design. For example, if 

70% of the respondents provide a truthful answer to a particular question, this percentage 

might raise to 90% in an RR design. In other words, at that point in the procedure of 

collecting data, the observations made in an RR design are less prone to variance. Obviously 

the RRT by design introduces noise to the data, and thereby increases the variance at a later 

point. However, while it is often difficult for the researcher to estimate the rate of truthful 

responses, the variance added by an RR design is known and can be modeled. The known 

variance of an RR design is therefore to be preferred over the unknown variance that stems 

from whether or not a respondent is willed to answer truthfully. To sum up, the results 

obtained in this paper indicate that the randomization of the data can be modelled well, 

however in a real-world scenario the utility of the RRT will greatly depend on the 

researcher’s ability to choose an RR design that significantly promotes response accuracy. 
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