
Docking a UAV using a Robotic Arm
and Computer Vision

 J.H. (Jort) Baarsma

MSc Report

Committee:
Prof.dr.ir. S. Stramigioli
Dr.ir. F. van der Heijden

Dr.ir. M. Fumagalli
Dr.ir. R.G.K.M. Aarts

March 2015

008RAM2015
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii Docking a UAV using a robotic arm and computer vision

Jort Baarsma University of Twente

iii

Summary

The aim of this Thesis is to research the possibility of docking an airborne UAV using a robotic
arm and computer vision. In the scope of the SHERPA project on robot collaboration in Alpine
rescue scenario‘s a robust and autonomous way of retrieving small scale UAV‘s is required. In a
scenario where landing the UAV on a mobile ground station is not possible and landing on the
ground could be harmful to the drone, docking the UAV while it is airborne using a robotic arm
would be the best solution.

In this work a system is presented to accurately follow and dock an UAV near a ground vehicle
using an external monocular camera mounted on a robotic arm and internal UAV sensors. The
system combines the strengths of visual pose estimation and IMU motion tracking while min-
imizing the effect of their weaknesses. The result is a system with an accurate pose estimate
and which is also robust through temporary occlusion or motion blur. A functional proof of
principle system was implemented using Robotic Operating System and a KUKA LWR4+ robot
arm to show the advantages provided by the system.

Robotics and Mechatronics Jort Baarsma

iv Docking a UAV using a robotic arm and computer vision

Jort Baarsma University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.1.1 Alpine search and rescue . 1

1.2 Problem statement . 3

1.3 Prior work . 3

2 Analysis & Design 5

2.1 System introduction . 5

2.1.1 Subsystem allocation . 5

2.1.2 Definitions and notation . 5

2.2 Setpoint generator-subsystem . 7

2.2.1 Strategies . 7

2.2.2 Follow distance . 8

2.2.3 Path generator . 8

2.3 Robotic arm-subsystem . 10

2.3.1 Kinematic chain . 10

2.4 UAV-subsystem . 12

2.4.1 Quadcopter . 12

2.4.2 IMU . 13

2.5 Computer vision-subsystem . 14

2.5.1 Feature extraction . 14

2.5.2 Marker design . 14

2.5.3 Pose estimation . 17

2.6 State estimator-subsystem . 22

2.6.1 Transformations . 22

2.6.2 Kalman filter . 23

2.6.3 Extended Kalman filter . 24

2.6.4 Extended Kalman filter design . 25

3 Implementation and Realisation 27

3.1 Software Implementation : ROS . 27

3.1.1 Brain node . 29

3.1.2 Robot controller : FRI node . 31

3.1.3 Data acquisition : DUAVRACV Logger . 33

3.2 Hardware realisation . 34

3.2.1 Robotic arm . 34

Robotics and Mechatronics Jort Baarsma

vi Docking a UAV using a robotic arm and computer vision

3.2.2 UAV . 37

3.2.3 Drone substitute : Xsens IMU . 38

3.2.4 Camera . 39

4 Results 41

4.1 Measurements . 41

4.1.1 Validation . 41

4.1.2 Reproducibility . 41

4.2 Experiments with Xsense IMU drone substitute . 42

4.2.1 General behavior impressions . 42

4.2.2 Movement in Y with occlusion . 42

4.3 Experiments with Parrot AR.Drone . 45

4.3.1 Computational load . 45

4.3.2 Qualitative results . 45

5 Conclusions & recommendations 47

5.1 Conclusions . 47

5.2 Recommendations . 47

Bibliography 48

Jort Baarsma University of Twente

1

1 Introduction

1.1 Context

1.1.1 Alpine search and rescue

Introducing robotic platforms in a rescue system is envisioned as a promising solution for sav-
ing human lives after an avalanche accident in alpine environments. With the popularity of
winter tourism, the winter recreation activities has been increased rapidly. As a consequence,
the number of avalanche accidents is significantly raised. According to the statistics provided
by the Club Alpino Italiano, in 2010 about 6,000 persons were rescued in alpine accidents in
Italy with more than 450 fatalities and about thirty thousand rescuers involved, and with a wor-
rying increasing trend of those numbers. In 2010 the Swiss Air Rescue alone conducted more
than ten thousand missions by helicopters in Switzerland with more than 2,200 people that
were recovered in the mountains [1].

To this aim, a European project named “Smart collaboration between Humans and ground-
aErial Robots for imProving rescuing activities in Alpine environments (SHERPA)” has been
launched.

SHERPA

The activities of SHERPA are focused on a combined aerial and ground robotic platform suit-
able to support human operators in accomplishing surveillance and rescuing tasks in un-
friendly and often hostile environments, like the alpine rescuing scenario specifically targeted
by the project.

What makes the project potentially very rich from a scientific viewpoint is the heterogeneity
and the capabilities to be owned by the different actors of the SHERPA system: the “human”
rescuer is the “busy genius”, working in team with the ground vehicle, as the “intelligent don-
key”, and with the aerial platforms, i.e. the “trained wasps” and “patrolling hawks”. Indeed,
the research activity focuses on how the “busy genius” and the “SHERPA animals” interact and
collaborate with each other, with their own features and capabilities, toward the achievement
of a common goal.

Trained wasps The “Trained wasps” are small rotary-wing unmanned aerial vehicles (UAVs),
equipped with small cameras and other sensors/receivers and used to support the rescuing
and surveillance activity by enlarging the patrolled area with respect to the area potentially
“covered” by the single rescuer, both in terms of visual information and monitoring of emer-
gency signals. Such vehicles are technically designed to operate with a high degree of autonomy
and to be supervised by the human in a natural and simple way, like they were “flying eyes” of
the rescuer, helping him to comb the neighbouring area. UAVs are specifically designed to be
safe and operable in the vicinity of human beings. As a consequence they have a limited oper-
ative radius.

Intelligent donkey The “intelligent donkey” is a ground rover serving as a transportation
module for the “SHERPA box” which serves as a hardware station with computational and com-
munications capabilities, a recharing station for small-scale UAV‘s and transport for rescuer
equipment. It is technically conceived to operate with a high-degree of autonomy and long
endurance, as well as to have a payload calibrated to carry relevant Hardware. It is wirelessly
connected to the rescuer, able to follow his movements, and to interact in a natural way. In or-
der to improve the autonomous capabilities of the robotic platform, a multi-functional robotic
arm is also installed on the rover, which will be useful especially in relation to the deployment
of the small scale UAVs (both in terms of take-off and landing). The key elements carried by the

Robotics and Mechatronics Jort Baarsma

2 Docking a UAV using a robotic arm and computer vision

rover, constituted by the computational and communication Hardware, by the recharge station
of the small scale UAVs and the equipment storage element, are mechanically conceived to be
confined in the so called “SHERPA box”.

Patrolling hawks The “patrolling hawks” are Long endurance, high-altitude and high-
payload aerial vehicles, with complementary features with respect to the small-scale UAVs
introduced before, complete the SHERPA team. Within the team, they are used for construct-
ing a 3D map of the rescuing area, as communication hub between the platforms in presence
of critical terrain morphologies, for patrolling large areas not necessarily confined in the neigh-
borhood of the rescuer, and, if needed, to carry the “SHERPA box” in places non accessible to
the rover. They fly at a height of around 50-100 m above ground (or trees).

More information on the SHERPA project can be found at [2].

Jort Baarsma University of Twente

CHAPTER 1. INTRODUCTION 3

1.2 Problem statement

In a system where robots collaborate to assist rescue operations small scales multi-rotor UAV‘s
need to be able to autonomously return to a ground rover where they can be recharged and
stores. A multifunctional robotic arm on the ground rover can be used to dock the UAV and re-
turn it to the recharge station inside of the “SHERPA box”. The Conceived scenario‘s for docking
the UAV were:

• The multirotor lands on a helipad on top of the rover and is then docked by the robotic
arm.

• The multirotor lands or falls on the ground near the rover and is then docked by the
robotic arm.

• The multirotor is docked while flying in close proximity to the rover.

The first scenario would be the ideal scenario whenever possible but this is not possible in all
weather conditions or when the rover is angled at a slope. In the second scenario the type of
surface which is chosen is important, if a flat surface without any foliage or rocks can be found
this is a good alternative. However this scenario is also not robust when the surrounding area
is rocky or covered with foliage where the drone could be damaged or lost when attempting to
land. The last scenario would be the most challenging to realize but would best for the longevity
of the drone when executed reliably, and will be the focus of this research.

In this scenario the drone can theoretically be docked in any situation where the drone can
approach the rover. The key piece of information in this problem is relative position and move-
ment of the drone with respect to the rover. The GPS signals of the rover and UAV are only
up to a few meters and can only get the vehicles in close proximity of each other. From this
distance the drone can be found using a camera mounted on the robotic arm and followed by
estimating the pose of the drone. The sensors inside the drone can assist the estimate when the
pose cannot be estimated. Following the drone is a virtual servo-ing “Camera in hand” prob-
lem and docking the drone is an extension to that problem by decreasing the follow distance
until docking can be performed.

To summarize the problem statement in one sentence: Is it possible to follow and dock a multi-
rotor UAV using a robotic arm and computer vision?

1.3 Prior work

Prior work on visual tracking of a quadcopter using an external stereo camera and inertial
sensors but without the use of a robotic arm was performed by the University of Munich [3].
And Prior work on robot collaboration by having a “Camera in hand” system look at an UAV
to find the relative pose has been done by the Robotics and Perception group of the University
of Zurich [4]. However no prior work was found on the task of docking a multi-rotor type UAV
using a robotic arm and computer vision.

Robotics and Mechatronics Jort Baarsma

4 Docking a UAV using a robotic arm and computer vision

Jort Baarsma University of Twente

5

2 Analysis & Design

In this chapter the system to follow and dock the drone is explained.

2.1 System introduction

The system used to follow and dock the UAV is using visual pose estimation system in combin-
ation with IMU measurements from the UAV.

To be able to dock the UAV using a robotic arm the pose estimate of the UAV needs to be pre-
cise. The best way to achieve this is to measure the pose itself by means of some sort of pose
estimation. In this system the method of pose estimation is done by means of computer vision.
To improve the pose estimation additional sensors can collaborate to support the weak features
of the vision sensor. In this system it was chosen to use the IMU data, of the target UAV that is
to be docked, as an additional sensor and fuse the measurements with a state estimator.

2.1.1 Subsystem allocation

For clarity the system has been divided into subsystem which will be discussed in detail in their
respective sections. The subsystems that are envisioned are:

• Robotic Arm subsystem

• Setpoint generator subsystem

• State estimator subsystem

• Computer vision subsystem

• UAV subsystem

The connection between the system is shown in figure 2.1. The computer visions pose estim-
ation H c

m is combined with the acceleration ~ai
i , orientation~q w

i and angular velocity~!w
i of the

UAV into the state estimator which produces an optimal state estimate of the UAV position
§
~pg

i
based on the known information. From this optimal estimate of the drone location a setpoint
is derived which followed by the controller of the robotic arm.

2.1.2 Definitions and notation

This section define some variables and notations which hold throughout all the subsystem of
the system.

In this report Vectors ~v will be indicated be by small letters with a harpoon and matrices A will
be a capitol boldface letters. The notation for a estimate is a tilde above the symbol ã and an
optimal estimate is denoted with a asterisk above the symbol

§
a.

Relative poses are described by homogeneous matrices H b
a 2R4£4 where the a defines the des-

tination frame and b describes the reference frame. A alphabetic characters in superscript
notation for a variable for will indicate the reference frame in which that variable is viewed.
A homogeneous matrix is composed of a rotation matrix Rb

a and translation vector~t b
a and is a

powerful method of describing kinematic chains.

H b
a =

"

Rb
a ~t b

a
~0T 1

#

Robotics and Mechatronics Jort Baarsma

6 Docking a UAV using a robotic arm and computer vision

Setpoint

generator

Computer

vision

State

estimation

Robot

Controller

UAV

Controller

p
g
m H

g
s

+

H
m
c

R
w
iai

image

Robotic arm UAV

+ω
w
i

Figure 2.1: Schematic representation of the setup.

H

 worldH base

H

 hand

H

 camera

H

 marker H

 imu

= H

global

Figure 2.2: Frames in the method

The system and its subsystems have several frames which are referred to throughout the report
by only their letter, these are listed in table 2.1 and illustrated in figure 2.2. The global reference
frame is not alligned with the world coordinate frame due to the unknown orientation with
respect to magnetic north.

Letter Frame description
g The base of the robotic arm
b The base of the robotic arm
i The IMU of the UAV.
w Defined by magnetic north and gravitational vector
h End-effector of the robotic arm
c Camera frame mounted on end-effector.
m Marker frame that is mounted on the UAV
s Setpoint frame

Table 2.1: Table of frames

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 7

Setpoint

generator

Computer

vision

State

estimation

Robot

Controller

UAV

Controller

p
g

m H
g
s

Robotic arm UAV

Figure 2.3: Control schema - Set-point generator.

2.2 Setpoint generator-subsystem

The set-point generator sub-system is responsible of generating set-points for end-effector of
the robotic arm to follow. The generated setpoint is based on the optimal estimate of the UAV
position and a strategy the generator is set to. These strategies are determined beforehand
based on likely scenarios and what strategy is used is determined by the system with input
from the user. There is also a safety layer in this subsystem which limits the (angular) velocity
of the moving set-point and keeps the robot inside of its work envelop.

The subsystem is located in the system as shown in figure 2.3.

The input of the system is:

• The optimal estimate of the position of the marker with respect to the robotic arm base
§

H g
m .

The output of the system is:

• The a desired pose set-point for the robotic arm controller H g
h .

2.2.1 Strategies

The strategies that are used are based on the distance of the drone to the work envelop of the
robot and the desired behavior specified by the user. The selection of strategy and transition
between strategies is done by the system itself but the user has control over what strategies are
allowed. The user can force idle mode or (dis)allow any state to get the desired behavior. The
strategies names are influenced by hunting behavior and most strategies focus on following the
marker at a distance~d . The set-point generator strategies are:

• Idle : This is the resting position in which the system does not do anything. The set-point
is an exact copy of the current pose and the strategy only changes when the user requires
it.

• Spot : In this strategy the set-point is set to a fixed point from where the camera can see
the scene. When the marker is found the strategy transitions into the “Watch” strategy.

• Watch : If the marker is found but too far away to follow at a fixed distance ~dst akl it is
followed with the smallest follow distance which is within the work envelop. If the marker
is close enough the strategy transitions into the “Stalk” strategy.

Robotics and Mechatronics Jort Baarsma

8 Docking a UAV using a robotic arm and computer vision

Follow z camera

Follow x global

Follow -z marker

Figure 2.4: Follow distance illustration

• Stalk : In this strategy the marker pose is followed at a fixed distance ~dst alk . If the set-
point goes outside of the work envelop the the strategy transitions back into the “Watch”
strategy. If the marker can also be followed at a close distance ~dpr e y the strategy trans-
itions into the “Prey” strategy.

• Prey : In this strategy the marker is followed at a close distance of ~dpr e y . The distance
~dpr e y is the closest distance to which the vision system can reliably estimate the pose of
the marker and is used as a buildup to docking the drone. Keeping the marker in view of
the camera when the drone is moving at this distance can be challanging. If the setpoint
goes outside of the work envelop the the strategy transitions back into the “Stalk” strategy.
If the marker is so close that it can be docked the strategy transitions into the “Catch”
strategy.

• Catch : In this strategy the last known marker pose is saved and the controller quickly ap-
proaches this marker disregarding new measurement. This is because the vision meas-
urement is assumed to be not reliable at distances closes than 20cm.

When the pose is lost for long enough the strategy transitions back into the “Spot” strategy for
any of the strategies in which the pose estimate is used.

2.2.2 Follow distance

The reference frame of the follow distance ~d was deliberately kept ambiguous in reference
frame in the discussing on generator strategy. The system can either follow the marker a fixed
distance in the frame of the marker ~d m , in the camera frame ~d c or in the global frame ~d g as
illustrated in figure 2.4. All three methods center the marker on the image plane but have dif-
ferent results as end-effector pose. Following of the drone with respect to the minus Z axis of
the marker is the most logical method of following but has the disadvantage of amplifying any
rotational errors due to the fact they are multiplied by the follow distance ~d . Following with
respect to the marker will be implemented for docking because this allows for the best align-
ment but assuming that the drone is more or less parallel to the ground during the following
and docking the method of following in the global frame was preferred for all other scenarios.

2.2.3 Path generator

If the set-point and current robot end-effector are far away from each other the robot cannot
follow and dangerous scenarios can occur. For this reason a path planner is used that calculates
intermediate set-points between the current pose and the desired pose with a limited velocity
for every step. This velocity limiting is achieved by means of a logarithmic map and applying a
limit on the resulting twist. The path and twist is updated every time there is a new set-point.
The desired pose for the end-effector H g

s can be written as a combination of the current end-
effector pose and the set-point pose in the end-effector frame.

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 9

H g
s = H g

h H h
s

The exponential map is used which describes the resulting pose when a constant twist is ap-
plied for t time. The set-point is used as the end-point and the end-effector is subject to a
constant twist in body fixed frame.

H g
s = H g

h (t) = H g
h (0)e T̃ h,g

h t

In this equation the time dependance H g
h (t) is shown for clarity, all other mentions of H g

h will
be at time instance 0. This reworked to find the twist of the end-effector with respect to the
base in its body fixed frame.

T̃ h,g
h = 1

t
log

≥

H h
g H g

s

¥

= Kp log
≥

H h
s

¥

In which T̃ is a skew symmetric matrix of the Twist vector ~T and the logarithm is a matrix
logarithm. What eqation 2.2.3 represents is the required constant twist to get to pose H g

s in t
time. Because the requirement is to get to the setpoint as fast as possible with a limited twist a
the factor 1

t is replaced by a gain factor Kp and a limiter is put on the Twist.

if ||~T || > Tmax then : ~T =
(

~T ·Tmax

||~T ||

)

The limiter used scales down the twist when the norm of the twist vector ~T becomes higher
than a set value. Because the twist is only scaled the traveled path will be identical to the path
that was not limited.

To calculate the intermediate pose on the path H g
p the matrix exponential is used.

H g
p = H g

h e T̃

The robot controller is sent this intermediate pose to protect the robot from large jumps in
set-point due to errors.

Robotics and Mechatronics Jort Baarsma

10 Docking a UAV using a robotic arm and computer vision

Setpoint

generator

Computer

vision

State

estimation

Robot

Controller

UAV

Controller

H
g
s

Robotic arm UAV

Figure 2.5: Control schema - Robotic arm.

2.3 Robotic arm-subsystem

The Robotic arm-subsystem is responsible for controlling the robot towards the desired pose
setpoint. This subsystem is required for the communication to the hardware of the robot arm,
the robot itself will have the low-level motor controllers.

The subsystem is located in the system as shown in figure 2.5.

The input of the system is:

• The a desired pose set-point for the robotic arm controller H g
h .

The output of the system is:

• A connection to the robotic arm.

2.3.1 Kinematic chain

The robot arm can be modeled as a serial kinematic chain. A kinematic chain refers to an as-
sembly of rigid bodies connected by joints that is the mathematical model for a mechanical
system. As in the familiar use of the word chain, the rigid bodies, or links, are constrained by
their connections to other links. An example is the simple open chain formed by links connec-
ted in series, like the usual chain, which is the kinematic model for a typical robot manipulator.

As illustrated in figure 2.6 a human arm can also be modeled as a kinematic chain in a sim-
ilar way a robotic arm can. The Robotic arm needs a minimum of 6 joints to be have the full
6degree’s of freedom (DOF) to move in space. Mathematically such a robot could reach every
position and orientation near the robot however due to joint limitations and collision a 6DOF
can not reach a lot of positions certain orientations especially near its base. With more then 6
joints a robot can reach more positions and orientations which would otherwise be limited by
joint limitations and collisions. The same applies for humans which has 7 Degrees of freedom
in total to reach almost any position and orientation near the human body with a few excep-
tions such as between the shoulder blades. The extra degrees of freedom however do give a
non-unique solution for one end-effector pose which results in a degree of freedom in the con-
figuration of the arm. This can again be explained using the human body by fixing all 7DOF in
the hand and still being able to move your elbow.

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 11

Figure 2.6: Kinematic chain

Behavior

The robot follows a set-point H g
s which is near the current robot pose H g

h . The robot is as-
sumed as a commercial of the shelf product and there will be no analysis on the behavior of
the arm will. In the hardware implementation the specifications of the robotic arm are further
discussed

Robotics and Mechatronics Jort Baarsma

12 Docking a UAV using a robotic arm and computer vision

Setpoint

generator

Computer

vision

State

estimation

Robot

Controller

UAV

Controller

+R
w

i
a i

Robotic arm UAV

+ω
w

i

Figure 2.7: Control schema - UAV.

2.4 UAV-subsystem

The UAV subsystem is responsible making the drone fly and sending IMU measurements to the
system. The drone is manually controlled by an operator

• Feature extraction

• Pose estimation

The subsystem is located in the system as shown in figure 2.7.

The input of the system is a network connection coming from the drone.

The output of the system is:

• The acceleration measurement from the UAV ~ai mu , in body fixed coordinates.

• The orientation measurement from the UAV R wor l d
i mu

2.4.1 Quadcopter

A quadcopter drone is a type of unmanned aerial vehicle using four rotors for its actuation. A
simplified quadcopter is shown in Figure 2.8.The four rotors can be seen as inputs and are used
to move the quadcopter in six degrees of freedom (three translations and three rotations). The
degrees of freedom that can be controlled in a quadcopter are the euler angles roll, pitch, yaw
and the movement in body fixed z direction. Because the body of the drone can be rotated with
respect to the fixed world the movement in body fixed z direction the drone can also translate
in global x and y direction.

The control is done using rotor pairs on opposing sides of the quadcopter that spin in opposite
direction. The propellers are made much that all rotors generate a lift upwards but the clock-
wise rotating rotors generate a negative moment °Mz and the counter-clockwise rotors a pos-
itive moment Mz . These moments counteract when both pairs of rotors are controlled to gen-
erate the equal lift but the Yaw orientation can be controlled by changing the ratio of thrust
contribution by each rotor pair. The pitch and roll orientation are controlled by having one
rotor in a pair generate more thrust and the other less, this way the resulting thrust is off-center
and will result in a moment with which pitch and roll can be controlled. The movement in body
fixed z direction is controlled by the total thrust of all rotors. Using these methods four degrees
of freedom of the drone can be independently controlled, the other two degrees of freedom

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 13

Figure 2.8: Quadcopter basics

(body fixed x and y) have almost no stiffness or damping due to being airborne and are thus
susceptible to disturbance.

Because the drone is chosen to be an off-the-shelf product and not being controlled by the
system no additional analysis information on the drone is required.

2.4.2 IMU

An Inertial Measurement Unit is a an electronic device that measurement an aircrafts velo-
city, orientation and accelerations and typically used to maneuver UAVs and other aircrafts. It
works using a combinations of a three axis accelerometer, gyroscope and magnetometer and
combines these signals to make an estimation for the orientation. Body fixed accelerations are
generally modeled as noise to these systems and these systems work best in an inertial frame
with constant or zero velocity.

Robotics and Mechatronics Jort Baarsma

14 Docking a UAV using a robotic arm and computer vision

Setpoint

generator

Computer

vision

State

estimation

Robot

Controller

UAV

Controller

H
m
c

Feature

extraction

Pose

estimation

image

Robotic arm UAV

Figure 2.9: Control schema - Computer vision.

2.5 Computer vision-subsystem

The computer vision subsystem is responsible interpreting coming from the end-effector
mounted camera. Specific features are extracted from the images based on color and used
as points for pose estimation. The computer vision subsystem itself comprises of these two
parts: the feature extraction and pose estimation.

The subsystem is located in the system as shown in figure 2.9.

The input of the system is:

• a digital video stream of image coming from the camera.

The out of the system is:

• A relative pose between the camera and the marker H mar ker
camer a .

2.5.1 Feature extraction

2.5.2 Marker design

The marker has been designed with two clear goals in mind: A clear vibrant color that is distin-
guishable in most scenes and non-planar constellation of image points to avoid pose ambigu-
ity. The first requirement is met by using Magenta, a color that is not very common but vibrant
when printed on a sticker due to the use of CMYK ink in printers. The second is accomplished
by folding the sticker over a bend plate that has an inside angle of 155 degrees. The marker can
be seen in figure 2.12.

Color representation

To extract the dot features the images will be processed on the basis of color, this process is
also known as chroma keying. In computer graphics the red, green and blue (RGB) additive
primary colors are commonly used to represent graphics however this format does not define
a clear relationship between perceived color and the channel values R G and B. An example of
the unclear relation can be seen by comparing a saturated orange color with an unsaturated

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 15

orange color which show an a seemly arbitrary change in R G and B values as shown in figure
2.10.

-31 R
+24 G
+59 B

R 217
G 118
B 33

R 186
G 132
B 92

Figure 2.10: Unintuitive color representation in RGB.

The hue saturation value (HSV) representation was chosen as representation for the image
which is more suitable for filtering out a desired color from the image. The HSV representa-
tion remaps the RGB colorspace by tilting the cube representation of RGB on its side with the
white value [255,255,255] point to the top and black [0,0,0] to the bottom. The colors red, green,
blue, cyan, magenta and yellow are now projected onto a plane and expanded into a cylindrical
space. The angle of this cylindrical representation is the hue which represents the color, the ra-
dial component is the saturation and the height is the value. The process of going from RGB to
HSV is illustrated in figure 2.11.

Figure 2.11: RGB to HSV

Filters

The marker that was designed has a distinct magenta color that is vibrant due to the printing
process using CMYK ink. In figure 2.13a an example image from the camera can be seen. Using
a threshold operation in the HSV color-space all the magenta regions are selected. As can be
seen in figure 2.13b the image contains a large number of small magenta regions due to noise.
The image is improved by using a morphological erode operation followed by a morphological
dilate operation, this combination of morphological operations is called “opening”. The result-
ing image shown in figure 2.13c only shows large magenta regions.

Every magenta region remaining in the image is cut out of the original image into a new image
that will be individually processed. For every magenta cutout region a HSV threshold filter is is
applied now selecting a yellow color. The resulting image is again enhanced by a morphological
“opening” operation and every resulting region is evaluated for it‘s : roundness, height/width
ratio and area. Every region that passes the evaluation is labeled as a “dot feature” and if ex-
actly eight dot features are found the feature extraction is considered successful and the image
processing is stopped. The other magenta regions of interest are not processed if a eight “dot
feature” object has been found. If multiple markers are present in the scene, only one will be
found.

The centerpoints of the dot features are sorted and saved as image points~p I
i to be used in the

pose estimation.

Robotics and Mechatronics Jort Baarsma

16 Docking a UAV using a robotic arm and computer vision

Figure 2.12: Original image.

(a) HSV filtered image (b) After morphological operations

(c) Cut out magenta region of interest (d) HSV filtering and morphological operations

Figure 2.13: Stages of feature extraction

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 17

2.5.3 Pose estimation

If the feature extraction was successful n points are found. To calculate the relative pose of the
marker with respect to the camera the n point 2D to 3D point correspondence is calculated
,which projects the three dimensional points onto the image plane. The pose estimation start
with modeling the 2D to 3D projection which is done using a pinhole camera model.

Pinhole camera

The pinhole camera model was chosen because we are only interested in the centers or the
ellipses for pose estimation which are unaffected by the point spread function of the lens. With
this basic model three dimensional points can be mapped to a two dimensional image plane
by means of matrix multiplication. In the pinhole camera model the pinhole is the origin of
the frame ,the image plane is located focal distance f behind the origin and the Z axis is the
axis perpendicular to the image plane through the origin. In the pinhole camera model the
points on the image plane and in the three dimensional space are described in homogeneous
coordinates, making them scale invariant by having one extra dimension. The notation for
the image plane points ~√= {u, v,1}T and three dimensional Cartesian points ~p = {x, y, z,1}T is
different to avoid confusion.

The point ~p will be mapped to location ~√ on the image plane which is the intersection point
between the line, coming from point ~p through the origin, and the image plane. The image on
the image plane is inverted due to the fact that the projection lines cross at the pinhole. The
model is shown in figure 2.14.

Figure 2.14: Pinhole camera model

From this model the following two projective equations can be derived:

u§ = f x

z
v§ = f y

z
(2.1)

The asterisk in equation 2.1 is to indicate that the value for u and v is in meters and not pixels.
The image sensor has a sensitivity of mx and my (pixels/meter) on the sensor surface in X and
Y respectively. The origin of the image is also shifted by cu and cv (in pixels) to be at the edge of
the sensor, which ensure that the range of image indexes is positive.

u = mx
f x

z
+ cu v = my

f y

z
+ cv (2.2)

These equations for the projection can be rewritten into matrix representation using homo-
genous coordinates:

Robotics and Mechatronics Jort Baarsma

18 Docking a UAV using a robotic arm and computer vision

s~√= s

0

B

@

u
v
1

1

C

A

=

0

B

@

mu f 0 mx cu 0
0 mv f my cv 0
0 0 1 0

1

C

A

0

B

B

B

B

@

X
Y
Z
1

1

C

C

C

C

A

=
h

K |~0
i

~p (2.3)

The K 2 R3£3 matrix is called the intrinsic camera matrix and described how 3D points are
mapped to a 2D plane when the camera is located at the origin and aligned with the reference
frame. This matrix is also sometimes called the “Camera Calibration Matrix” because it is a
which is constant when not changing the capture resolution or focus distance. The intrinsic
camera matrix is assumed to be known for the camera used.

Camera movement

In the pinhole camera equation 2.3 it is presumed that the coordinates of the marker points
~p are known in camera coordinates. In the problem of pose estimation this is no longer the
case because the camera is transformed by an unknown rotation R M

C and translation~tC
M with

respect to the marker frame. The individual marker points are now defined as {~pM
1 · · ·~pM

n } in
the marker reference frame, and the resulting image points as {~√1 · · ·~√n}. The projection model
now becomes :

s~√i = K
h

R M
C
~t M

C

i

~pM
i = K T M

C ~pM
i = P~pM

i (2.4)

In this equation P 2 R3£4 is defined as the projection matrix which can be decomposed into
the intrinsic camera matrix K which (explained in 2.5.3) and the extrinsic camera matrix T M

C 2
R3£4. The notation for the extrinsic camera matrix is equal to the homogeneous transform
matrix T M

C without the last row, making the matrix scale dependent.

In case of pose estimation the image points ~√i , the marker points in the marker frame ~pM
i and

the intrinsic camera matrix K are known and equation 2.4 needs to be solved for the relative
pose T M

C .

DLT : Pose estimation

In the Direct Linear Transform method the 12 parameters of the projection matrix P are estim-
ated up to a scalar value.

s~√i = P~pi =

2

6

4

P11 P12 P13 P34

P21 P22 P23 P34

P31 P32 P33 P34

3

7

5

~pi

Writing out this matrix into three equations:

P11xi +P12 yi +P13zi +P14 = s(ui)
P21xi +P22 yi +P23zi +P24 = s(vi)
P31xi +P32 yi +P33zi +P34 = s(1)

The third equation can be eliminated to solve the homogeneous scaling factor s, yielding the
following equations per marker point.

P11xi +P12 yi +P13zi +P14 ° (P31xi +P32 yi +P33zi +P34)ui = 0
P21xi +P22 yi +P23zi +P24 ° (P31xi +P32 yi +P33zi +P34)vi = 0

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 19

Combining the equations for all n points and placing them into a matrix where the columns
represent projection matrix parameters results in [5]:

2

6

6

6

6

6

6

6

4

x1 y1 z1 1 0 0 0 0 °u1x1 °u1 y1 °u1z1 °u1

0 0 0 0 x1 y1 z1 1 °v1x1 °v1 y1 °v1z1 °v1
...

...
...

...
...

...
...

...
...

...
...

...
xn yn zn 1 0 0 0 0 °un xn °un yn °un zn °un

0 0 0 0 xn yn zn 1 °vn xn °vn yn °vn zn °vn

3

7

7

7

7

7

7

7

5

§

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P11

P12

P13

P14

P21

P22

P23

P24

P31

P32

P33

P34

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=~0

With at least six points correspondence a estimate for the projection matrix P̃ can be found
with singular value decomposition as the Eigen vector corresponding to the lowest singular
value. The inverse of the known intrinsic camera matrix K is used to find the extrinsic camera
matrix H̃ M

C up to a scalar value.

sT̃ M
C = K °1P̃

Because it is known that the determinant of the rotation matrix should equal one the scaling
factor s can be found by:

s = 1
det(R)

The DLT method gives a good initial estimate of the pose but is susceptible to noise [5] which is
likely to be present in the signal. The DLT method is used to get a rough estimation of the pose
but it was chosen to use an iterative parameters optimizer to improve the results.

Iterative parameter optimization

Parameter optimization is achieved by minimizing a non-linear least squares error. The error
that is to be optimized is the re-projection error which is the difference between the image
point and the projected object point in the image plane. For the method that is used the para-
meters ~µ to be optimized are : the components of the translational vector~t M

C and the angles
derived from the rotation matrix R M

C .

~µ =
h

tx ty tz rx ry rz

iT

The re-projection error~≤(~µ) 2R2n and cost function g (~µ) 2R to be optimized are defined as:

~≤(~µ) =
n
X

i=1

≥

~√i °K T̃ M
C (~µ)~pi

¥

g (~µ) = 1
2

∞

∞

∞

~≤(~µ)
∞

∞

∞

2
= 1

2
~≤(~µ)

T
~≤(~µ)

Robotics and Mechatronics Jort Baarsma

20 Docking a UAV using a robotic arm and computer vision

s~Pi = K

2

6

4

1 0 0 0
0 1 0 0
0 0 1 0

3

7

5

~pi

Because the first estimate of the parameters are close to the minimum the cost function can be
expanded into a second order Taylor series to get:

g (~µ0 +~¢µ) = g (~µ0)+rg (~µ0)~¢µ+
1
2
~¢T
µ Hg (~µ0)

~¢µ

In which the gradient rg (~µ0) 2 R2n denotes the first derivative of g (~µ0) and the Hessian mat-
rix Hg (~µ0) 2 R

2n£2n the second derivative. The cost function can be minimized by finding the
derivative with respect to ¢µ and setting it to zero, which will leave the following expression:

Hg (~µ0)
~¢µ =°rg (~µ0) (2.5)

By evaluating the gradient with respect to the re-projection error~≤(~µ) it is found that:

rg (~µ0) = @~≤(~µ0)

@~µ
~≤(~µ0) = J (~µ0)T~≤(~µ0)

In which the Jacobian J (~µ0) 2 R6£2n is a combination of all the image Jacobians of the marker
points for the parameters ~µ0. The parameter change ~¢µ as function of the Hessian, Jacobian
and error function can now be formulated as:

~¢µ =°H °1
g (~µ0)

J (~µ0)T~≤(~µ0) (2.6)

This expression is the basis of four non-linear optimizers which differ in the way they handle
the Hessian:

• Netwon method : The hessian is calculated with the second derivative of the error.

Hg (~µ0) =
@J (~µ0)T

@~µ
~≤(~µ0)+ J (~µ0)T J (~µ0)

The Newton optimizer gives a good approximation particularly near the minimum but is
slow to converge when not starting near the minimum, due to the fact that calculating
the Hessian with a second derivative every iterative step is computationally heavy it is
not suitable for real-time applications.

• Guass-Netwon method : The Hessian is approximated by assuming the error locally lin-
ear thus eliminating the second derivative.

Hg (~µ0) = J (~µ0)T J (~µ0)

A Gauss-Newton optimizer is very similar to the Newton optimizer in its performance
but does not have the computational load by approximating the Hessian.

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 21

• Gradient descent method : The Hessian is quote “approximated (somewhat arbitrarily)
by the scalar matrix ∏I .”[6]

Hg (~µ0) =∏I

The Gradient Descent optimizer updates towards the most rapid local decrease in error
with a factor ∏, it is characterized by a rapid movement towards the minimum but a slow
convergence near the minimum due to overshoot. By itself it is not a good minimization
technique but can be used to approach the minimum or get out of false local minimum.

• Levenberg-Marquardt : This method combines the Gauss-Netwon and gradient descent
method to approximate the Hessian.

Hg (~µ0) =
≥

J (~µ0)T J (~µ0)+∏I
¥

This extension to the Gauss-Newton method interpolates between Gauss-Newton and
gradient descend. This addition makes Gauss-Newton more robust meaning it can start
far off the correct minimum and still find it. But if the initial guess is good than it can
actually be a slower way to find the correct pose.

The optimization method that was chosen for this system was the Levenberg-Marquardt
method which changes the parameters~¢µ every iteration by:

~¢µ =
≥

J (~µ0)T J (~µ0)+∏I
¥°1

J (~µ0)T~≤(~µ0)

The covariance of the pose estimate can also be calculated using the Jacobian and the pixel
noise which is assumed Gaussian with equal variance for all image points æ2

pose . [[6]]

ßpose =æ2
pose

≥

J T J
¥+

Where + denotes the pseudo inverse operation.

The solver uses a local approximation for the error function and Jacobian which has the dis-
advantage that it can only find the local minimum. This is especially relevant when using a
coplanar marker which can leads to pose ambiguity and multiple local minima close to each
other [7]. Whether the correct pose is returned by the optimizer depends on the initial rough
estimate of the pose.

Robotics and Mechatronics Jort Baarsma

22 Docking a UAV using a robotic arm and computer vision

Setpoint

generator

Computer

vision

State

estimation

Robot

Controller

UAV

Controller

p
g
m

+

H
m
c

R
w
iai

Robotic arm UAV

+ω
w
i

Figure 2.15: Control schema - State estimator.

2.6 State estimator-subsystem

The State estimator subsystem is responsible for combining the information from the differ-
ent sensors and producing a optimal state estimate based on the system dynamics, the sensor
signals and the uncertainty information provided. The different sensors all act in their own re-
spective frame of reference so before the signals can be compared they have to transformed to
the global frame of reference which is defined to be the frame of the robotic arm base.

The input of the system is:

• The estimated relative pose of the camera with respect to the marker
§

H m
c .

• The current position of the end-effector of the robotic arm H g
h . (not in diagram)

• The acceleration measurement from the UAV ~ai , in body fixed coordinates.

• The orientation measurement from the UAV R w
i

The output of the system is:

• The optimal estimate of the position of the marker with respect to the robotic arm base
§

H g
m .

2.6.1 Transformations

The pose estimation estimates the relative pose between the camera and the marker H m
c , this

pose should be be expressed with respect to the global frame. The relative pose between the
end-effector and camera aperature H h

c is assumed a known and the end-effector pose with
respect to the robot base H g

h is measured by the robotic arm itself, making the equation:

H g
m = H g

h H h
c H c

m

The UAV is assumed to be a rigid body with the IMU located at the center of mass and center of
rotation. The marker is assumed rigidly connected to the body and located a distance ~pi

m from
the center. Because of the rigid body assumption it can be stated that ~ai g =~amg

The IMU measurements consists of a orientation R w
i and a linear acceleration vector ~ai , in

body fixed coordinates. The measured acceleration needs to be in the same reference frame as
the vision measurement however world frame is not clearly defined in the global frame of the

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 23

robotic arm base. The world frame is defined as the magnetic north as X-axis and the gravita-
tional direction as minus Z-axis. With the robotic arm mounted in upright position the Z-axis of
the global frame corresponds to the Z-axis of the world frame but global frame has no reference
with respect to magnetic north. For this reason the yaw rotation of the UAV is removed and the
remaining rotation is applied to the accelerometer data. The relative yaw between the global
frame and marker is available from the vision measurements. The gravity rejection for the IMU
still works because the gravity is not dependent on the magnetic north yaw information.

2.6.2 Kalman filter

Notation

In this analysis of the mathematics behind Kalman filters the notation will slightly change. The
subscript xk or xk°1 will denote the discrete time instance k and k °1 respectively. Stochastic
Gaussian noise variables will be described with~¥xk which indicates that is is the noise acting
on x at time instance k. The covariance matrices of this noise process will be written as ß¥x

k ,
not to be confused with the uncertainty of the stateßX

k . With this notation the stochastic noise
processes and covariance matrices are not in the same alphabet as the system matrices and
system vectors for convenience. The notation for a estimate is a tilde above the symbol and the
optimal estimate is denoted with a asterisk above the symbol. Lastly ~̃xk|k°1 is the notation used
for the estimate of~x at discrete timestep k given the estimate ~̃xk°1 at discrete time k °1.

Kalman filter

To fuse the sensor information a state estimator is used to estimate the most likely position
of the drone using information from the pose estimation and drone IMU. Defining A as the
system matrix and B as the input matrix; ~x as the state variable;~¥xk as the system noise and
~¥uk 2R9£1 as the input noise. This will give us the following state equations:

~xk = A~xk°1 +B (~uk +~¥uk)+~¥xk

Where ~xk is the true state at sampling instant k. ~¥uk and~¥xk are assumed to be multivariate
normal distributed processes with zero mean and covariance ß¥u

k and ß¥x

k respectively.

Defining C 2R3£9 as the observed matrix;~y 2R3£1 as the observed output and~¥yk 2R3£1 as the
measurement noise the following measurement equations is found:

~yk =C~xk°1 +~¥yk

Where ~yk is the true system output at sampling instant k. ~¥yk is assumed to be a multivariate
normal distribution with zero mean and covariance ß¥u

k and ß¥x

k respectively

The algorithm used is the Kalman Algorithm uses a prediction and correction or update step.

Prediction phase In the prediction phase the previous state estimate is used to estimate the
value of the state at the current timestep. Later in the correction phase measurements from a
sensor are used refine the prediction and find a more accurate state estimate.

The prediction step is represented by the following equation:

~̃xk|k°1 = A~̃xk°1 +~B~uk

For the predicted state estimate, the uncertainty and thus covariance of the prediction ßx
k|k°1

also evolves :

ßX
k|k°1 = AßX

k°1 AT +Bß¥x

k B T

Robotics and Mechatronics Jort Baarsma

24 Docking a UAV using a robotic arm and computer vision

Prediction step
(1) Predict state

~̃xk|k°1 = A~̃xk°1 +B ~̃uk°1

(2) Predict error
ßX

k = AßX
k°1 AT +Bß¥u

k°1B T +ß¥x

k°1

Correction step
(1) Predict system output

~̃yk|k°1 =C~̃xk°1

(2) Compute the Kalman gain [8]

Kk =ßX
k C T

≥

CßX
k C T +ß¥y

xk

¥°1

(3) Update state (Optimal state estimate)
§
~xk = ~̃xk +Kk

≥

~yk ° ~̃yk|k°1

¥

(4) Update error
§
ßX

k =
°

I °KkC
¢

ßX
k

Table 2.2: Kalman filter overview

Correction As soon as a new measurement comes in from the sensor the measurement resid-
uals are calculated using latest prediction and new measurement:

~sk =~yk °C~xk|k°1

ßS
k =CßX

k|k°1C T +ß¥y

k

The optimal kalman gain now calculated by [8]

Kk =ßX
k|k°1C T

k

≥

ßS
k

¥°1

The optimal updated state estimate now is calculated using the Kalman gain Kk and the meas-
urement residuals~sk .

§
~xk = ~̃xk|k°1 +Kk~sk

And uncertainty of the optimal state estimate is update accordingly.

§
ßX

k =ßX
k|k°1 °Kkß

S
k K T

k

An overview of the Kalman filter is given in figure 2.2.

2.6.3 Extended Kalman filter

Because rotations are involved the system cannot be directly written as regular kalman filter
because the system behavior is time variant and nonlinear. The different sensors signals are
defined in different frames and the there is uncertainty in the relation between these frames.
A good solution would be to use an extended kalman filter that linearizes the system every
timestep to be able to use the normal equation for a kalman filter.

The state equation is now governed by the non-linear stochastic difference equation:

~xk = f
°

xk°1,uk°1,¥xk°1

¢

Just as with the regular kalman filter new state can be estimated using the posteriori state es-
timate~kk°1 and the assumption that the mean of the noise is zero.

~̃xk = f
°

˜xk°1,uk°1,0
¢

Jort Baarsma University of Twente

CHAPTER 2. ANALYSIS & DESIGN 25

Prediction step
(1) Predict state
~̃xk|k°1 = Ak~̃xk°1

(2) Predict error
ßX

k = Akß
X
k°1 AT

k +Wkß
¥x

k°1W T
k

Correction step
(1) Predict system output

~̃yk|k°1 =Ck~̃xk°1

(2) Compute the Kalman gain [8]

Kk =ßX
k C T

k

≥

Ckß
X
k C T

k +Vkß
¥y
xk

V T
k

¥°1

(3) Update state (Optimal state estimate)
§
~xk = ~̃xk +Kk

≥

~yk ° ~̃yk|k°1

¥

(4) Update error
§
ßX

k =
°

I °KkCk
¢

ßX
k

Table 2.3: Extended Kalman filter overview

This equation now needs to be linearized

Ak°1 =
@ f

≥

~̃xk°1,~uk°1,0
¥

@~x

Wk°1 =
@ f

≥

~̃xk°1,~uk°1,0
¥

@~¥xk°1

These same steps can be done for the output equation of the system.

~yk = h
°

xk°1,uk°1,¥xk°1

¢

~̃yk = h
°

˜xk°1,uk°1,0
¢

Ck°1 =
@h

≥

~̃xk°1,~uk°1,0
¥

@~x

Vk°1 =
@h

≥

~̃xk°1,~uk°1,0
¥

@~¥xk°1

Combining these equations with the normal deviration of the Kalman filter reasults in the fol-
lowing predict and update steps.

It is important to note that a fundamental flaw of the EKF is that the distributions (or densities
in the continuous case) of the various random variables are no longer normal after undergoing
their respective nonlinear transformations. The EKF is simply an ad hoc state estimator that
only approximates the optimality of Bayes rule by linearization [8].

2.6.4 Extended Kalman filter design

For the designed Extended Kalman filter the choice was made not to estimate the rotation in
the filter. This was done under the assumption that either the UAV is only making very small
rotations which is the case when trying to hoover in place while waiting to be docked.

As first six state variables~x the position of the drone IMU ~p and its velocity ~̇p in the reference
frame of the robot base are used. The last three state variables the biases of the accelerometer
~ba in its own reference frame are used, which are also estimated by the state estimator. The
inputs of the system are the body fixed accelerations ~ai mu and the gravity ~g .

Care should be taken into reading the following formulas because the subscript notation has
a different meaning for the position, velocity and rotations. The first subscript denotes the
frames and the outer subscript is the discrete time instance.

Robotics and Mechatronics Jort Baarsma

26 Docking a UAV using a robotic arm and computer vision

~x =
n

~pT ~̇pT ,~bT
i ,

o

~u =
n

ai mu
x °bi mu

x , ai mu
y °bi mu

y , ai mu
z °bi mu

z ,0,0, g
o

The Kalman matrices Ak , Bk , C matrices are filled in the following way. The Ak and Bk matrices
are time dependent due to the rotations and In denotes an Rn£n identity matrix and 0n a zero
matrix with dimensions n £n.

Ak =

2

6

6

4

I3 T I3 03

03 I3 T
h

R g
i

i°1

k
03 03 I3

3

7

7

5

Bk =

2

6

6

4

03 03

T
h

R g
i

i

k
I3

03 03

3

7

7

5

C =
h

I3 03 03

i

Jort Baarsma University of Twente

27

3 Implementation and Realisation

3.1 Software Implementation : ROS

For implementation of the software the Robotic Operating System framework has been chosen.
This is a software framework developed by the Open Source Robotics Foundation [9] and helps
developer create complex and robust robotic systems with the help of tools, libraries and an
underlying communications framework. The version of the framework used for this Project is
the 7th distribution: Hydro Medusa and the operating system that the system is running on
is Ubuntu 12.04 LTS.Although the framework runs quite low level the system has no guaran-
tees for hard-realtime application because the underlying Linux distribution is not a real-time
operating system. The system runs under the highest priority in Linux and can be considered
soft-realtime. The system is a Intel I7 2600K with 16 Gb of DDR3 ram.

DUAVRACV
brain

DUAVRACV
brain

KUKA LWR4+
Logitech

C920

Xsense
MTi

OptiTrack

AR Parrot
drone

DUAVRACV
Vision

Usb_cam
(Camera)

Xsense
(IMU)

Ardrone_
Autonomy(imu)

DUAVRACV
Brain

DUAVRACV
FRI

DUAVRACV
Logger

Motion capture
Node

Switch

I/O port

Computer Vision

UAV sensors

Robot controller

Brain

Validation

Figure 3.1: ROS node diagram

The software implementation diagram is shown in figure 3.1. The abbreviation DUAVRACV is
used as an affix for the nodes created for this project and stands for “Docking a Unmanned Arial
Vehicle using a Robotic Arm and Computer Vision”. The nodes correspond to the subsystem as
discussed in the analysis and their relation can be seen in the colored legend. The subsystems
for the state estimator and set-point generator are merged into the node called “‘Brain”. The
reason for this is that the State Estimator and Set-point generator both needs many signals
from the other nodes which would introduce involve a large number of additional topics and
extra delays which can be avoided by merging. As can be seen from the diagram there are
two possible choices of IMU in the implementation of the system but only one will be used
simultaneously. More information about these IMUs and the reasoning behind using a drone
substitute is discussed in the hardware realization.

All “DUAVRACV” nodes created for this project will be discussed in their respective paragraphs
and the other nodes will be in short explained here.

• USB cam : This node takes camera parameters from a launch file and then starts stream-
ing the images to a topic. This is a library from the ROS Wiki and more information can
be found at http://wiki.ros.org/usb_cam

• Xsense : This node is used to connect to a Xsense IMU which which sends out IMU
messages on a topic. This is a library from the ROS Wiki and more information can be
found at http://wiki.ros.org/xsens_driver

Robotics and Mechatronics Jort Baarsma

http://wiki.ros.org/usb_cam
http://wiki.ros.org/xsens_driver

28 Docking a UAV using a robotic arm and computer vision

• Xsense : This node is used to connect to a Xsense IMU which which sends out IMU
messages on a topic. This is a library from the ROS Wiki and more information can be
found at http://wiki.ros.org/xsens_driver

• Ardone autonomy : This node is used to connect a Parrot AR.Drone over wifi and it
posts IMU messages to a topic. The nodes also sends a lot more information and the
drone can even be controlled using this node, however these features are not used for
this system. This is a library from the ROS Wiki and more information can be found at
http://wiki.ros.org/ardrone_autonomy

• Motion capture node : This node is used to connect to the OptiTrack motion capture
system that is used for validating the measurements and experiments, it posts pose mes-
sages for every “’Trackable’ registered in the OptiTrack system. This is a library from the
ROS Wiki and more information can be found at http://wiki.ros.org/mocap_
optitrack

Information transfer and threading Nodes in the ROS framework run on separate threads
which is useful for code that can block a thread by either requiring input/output (IO) connec-
tions or have calculations with high computational requirement or delays. The threading in
ROS can still starve a node of CPU time if the total computational load is too high. Threading is
the reason is why IO connections are done in separate nodes in ROS system. The “DUAVRACV
Vision” program has a high computational load and runs at a low frequency and can therefor
not be included into the main “Brain” node, while the State estimator and set-point generator
are computational light and run at much higher frequencies. The Topic/ subscriber message
system implemented by ROS handles the data transfer between nodes(threads) while ensuring
thread safety [10]. The ensured thread safety and multi-threading framework one of the key
features of ROS for inexperienced C++ developers.

Jort Baarsma University of Twente

http://wiki.ros.org/xsens_driver
http://wiki.ros.org/ardrone_autonomy
http://wiki.ros.org/mocap_optitrack
http://wiki.ros.org/mocap_optitrack

CHAPTER 3. IMPLEMENTATION AND REALISATION 29

3.1.1 Brain node

The Brain node is the center of the software system where all the information from the different
come together.

The node is build up by a class “Brain” with four member classes that handle different signals.
A simplified diagram of the communication in this node is shown in figure 3.2.

Perception

StateEstimator

Setpoint
Generator

Trajectory
Controller

Pose
Estimation

IMU data

FRI
controller

HACK HACKBrain node

Brain
State

User

Input

Figure 3.2: Brain node diagram

The main brain class connects all the classes together and handles the communication with
ROS with the subscriptions and publishers. The arrows in the diagram are pointing the class
objects because the messages coming from the other nodes are immediately send to the re-
spective class object and not processed in the main class. The user can influence the beha-
vior of the controller by means of the “RQT reconfigure GUI” which is a graphical window that
allows for parameters of a node to be changed during run time. With this tool the user can
(dis)allow behavioral states and change the controller gain or follow distances without restart
the node.

Brain State The brain state corresponds to the chosen setpoint generating strategy as dis-
cused 2.2.1. Eventhough it is only one variable it is a very important variable in the behavior of
the node. To determine the next brain state the brain class takes advise from the other classes
which have a better view on current robot pose, distances to the bounds and the and pose es-
timation quality. This is done by polling the State Estimator and Setpoint generator every cycle
to see what state they would advise for the next iteration cycle. If both advise to go to the next
state this is done unless the user input disallows that state from being used.

Perception This object interprets the relative poses messages H m
c of the pose estimator,

transforms them to the global frame H g
m and determines if there are no improbable shifts in

position. The object also keeps track on the success-rate of the last hundred pose estimations
which is available for the State Estimator. Because the camera has a delay between the image
on the sensor and the time it is processed and in the “Brain” node, not the latest end-effector
H m

c pose is used but a older pose that is saved.

State Estimator As described in the Analysis this object estimates the state of the UAV posi-
tion, velocity and the accelerometer biases. The IMU data is interpreted by the State estimator

Robotics and Mechatronics Jort Baarsma

30 Docking a UAV using a robotic arm and computer vision

Figure 3.3: Dynamic reconfigure GUI

−800

−600

−400

−200

−600 −400 −200 0 200 400

0

100

200

300

400

500

600

700

800

900

Figure 3.4: Reachable subspace approximation

itself, and tranformed into the correct reference frame. The state estimator keeps track of the
success-rate of the perception class to determine if the state estimation is still reliable because
it is assumed unreliable if there more than 90% estimations where unsuccessful. In this case
the pose has been lost for at least 60 frames which corresponds to 3 seconds with a frame rate
of 20 hz, the moment that the influence of the acceleration bias becomes significant. When this
occurs the state machine is disables and re-initialized when at least 20% of the pose estimates
were successful.

Setpoint generator Like described in the analysis the set-point generator tries generate a set-
point according to the know UAV position and behavioral state. The reachable space is defined
as a sum of spherical volumes with a center point ~pi and a radius ri . The process of checking
bounds is done by checking the comparing the distance to all center-points and comparing
them to the radii provided. This three dimensional approach does not cover the end-effector
orientation but is adequate in preventing the robot to go out of bounds in a dangerous way. In
figure 3.4 the subspace is illustrated by the red dots, the green stars are known robot limits.

Path controller The trajectory controller generates a twist that is limited to a maximum value
like discussed in the analysis for path generation.

Jort Baarsma University of Twente

CHAPTER 3. IMPLEMENTATION AND REALISATION 31

3.1.2 Robot controller : FRI node

The FRI node controls the robot using the Fast Research Interface (FRI) to communicate with
the Kuka Robot Controller (KRC). The FRI node is created around the C++ FRI Library adapted
in such a way that it is able to run in the ROS environment and its role is to be a bridge between
the KRC and other nodes in the ROS framework. For safety reasons there are rules and proced-
ures in the KRC to go through before being allowed to be controlled using FRI and if this is not
done correctly the robot is drives are disengaged, stopping the program running on the KRC.
The FRI nodes aims be a smooth interface in which the end user only gives the desired (joint)
pose, stiffness, etc and the nodes handle the procedure acquiring control over the KRC.

The FRI node can handle all three controller strategies provided by KUKA but the report only
handles the Cartesian Impedance control mode. The overall FRI connection and setup proced-
ures are identical only the contents of the packages is different.

The FRI libraries handles the UDP connection and packages and is used within the FRI node.
It should be noted that the FRI library is thread locking and should therefor always run on a
separate thread.

FRI Statemachines

The FRI node uses a state-machine in the ROS node and also a state machine running on the
KRC to handle the interface connection. The state machine on the KRC always copies the state
of the ROS state machine which sends its state as an integer inside the return package to the
KRC. The states of the ROS node are: IDLE, INIT, MON, PRECMD, ENDCMN, CMD, KILL. Trans-
itions between states are shown in the diagram in figure 3.5.

INITIDLE MON

ENDCMD PRECMD

CMDKILL

Figure 3.5: FRI statemachine diagram

The IDLE state is used when no connection is desired.

The INIT initialize the ROS node according to a set of booleans provides which tell it what topics
to subscribe and publish to and what commandflags to set in return FRI packages. The node is
starts listening to UDP packages coming to the desired ip adress and port. After the connection
is established it immidiatly transistions into MON state.

The MON state monitors all the variables coming from the KRC and publishes them on topics.
When the different type of control is required the state transitions into INIT mode and when
the robot needs to be controlled the state transitions into PRECMD mode.

The PRECMD state is to signal the KRC the node wants to go into commandmode to control the
robot. The KRC statemachine starts the command mode when getting the integer value of this
state. The return message is prepared for the mode transition by making the commanded pose

Robotics and Mechatronics Jort Baarsma

32 Docking a UAV using a robotic arm and computer vision

exactly match the measured pose. If all the KRC checks are good, the KRC changes to command
mode and when this information has reached the ROS statemachine it follows to CMD mode.
Monitoring and publishing the KRC variables is done in this mode.

The CMD state controls the robot with the values coming from the topic. Monitoring and pub-
lishing the KRC variables is done in this mode. When the different type of control is required
the state transitions into ENDCCMD mode.

The ENDCMD state is used when monitor mode is required or a change in type of control. The
KRC statemachine stops the command mode when getting the integer value of this state and
the ROS statemachine transitions into INIT state when the KRC mode information is received.

The KILL state is to get back into IDLE state. The KRC statemachine stops the command mode
and consequently closes the FRI connection when getting the integer value of this state.

Jort Baarsma University of Twente

CHAPTER 3. IMPLEMENTATION AND REALISATION 33

3.1.3 Data acquisition : DUAVRACV Logger

The logger node is responsible from capturing the desired signals for experiments. It can cap-
ture both information from topics or from tranforms that have been broadcasted over the ROS
network. The loggers runs at a frequency of 500H z and saves the data to a raw coma sepperated
file (.csv). The latest version of the logger logs the following measurements:

• Current pose of the end-effector of the robotic arm.

• The optimal state estimate for the marker pose.

• The pose estimation according to the computer vision.

• The setpoint generated by the setpoint generator (not the intermediate point).

• The OptiTrack validation measurement of the IMU.

Robotics and Mechatronics Jort Baarsma

34 Docking a UAV using a robotic arm and computer vision

3.2 Hardware realisation

3.2.1 Robotic arm

Figure 3.6: (left) KUKA LWR4+, (right) KRC controller

The robotic arm used for this project is a KUKA LWR4+ robot. This robot is a collaboration
between DLR and KUKA to make a lightweight robot that has the capability of reacting compli-
antly to outside influences. Merging the best of both DLR and KUKA worlds to obtain the DLR
Light Weight Robot (LWR) with the look and feel of an industrial robot.

The novel designs of this robot include the introduction of position sensors on both motor and
output side of the joints, torque sensors on the output side of the joints and motor current
measurement. Because of this amount of feedback data a compliant controller can be imple-
mented which detect external torque which are not coming from the motors or gravity and
react to them in a compliant way. The following text is from a KUKA LWR brochure.

“The aluminium housing of the LWR4+ accommodates the motors, gear units, brakes and
sensors, as well as the necessary control and power electronics for 7 axes. The result is a
powerful, streamlined robot with a payload capacity of 7kg, a compact footprint and minim-
ized disruptive contours. Thanks to its integrated sensors, the LWR4+ is extremely sensitive.
This makes it ideally suited to handle and assembly tasks. Its low weight of only 16kg makes the
robot energy efficient and above all portable. The LWR4+ can thus be easily integrated into ex-
sisting systems- either as a fixed installation, or mounted on a moving platform to enable it to
perform different tasks at various locations. The LWR4+ is a pilot product for use in reasearch
and industrial advance development.”

KRC

The Kuka Robot Controller (KRC) is the system by KUKA to control the LWR4+ robot. It uses
a simple programming language to make industrial applications which are mainly fixed pro-
grams with occasional input. But the KRC also has a research interface with which the LWR4+
can be directly controlled, this interface is called the “Fast Research Interface” or FRI for short.
This FRI interface will be the interface through which all the communication will be done to
the robot in this project.

Fast Research Interface

First some terms and variables within the KRC are defined that are required to to understand
the workings of the FRI connection.

The KRC knows two types of FRI modes.

Jort Baarsma University of Twente

CHAPTER 3. IMPLEMENTATION AND REALISATION 35

• FRI Monitor mode: Cyclical communication with transfer of robot data to a remote host,
the remote host exchanges data with the KRC but cannot directly the robot.

• FRI Command mode: Cyclical communication with transfer of robot data to a remote
host, the remote host can control the robot in this mode.

To control the mode four commands are available to the KRC.

• FRI Open : Opens up the FRI connection by sending out the first UDP package to the
remote host.

• FRI Start : Attempt to go into command mode but several checks need to be performed.

• FRI Stop : Stops the command mode and returns to monitor mode

• FRI Close : Closes the FRI connection from monitor mode.

The relation between these command events and the FRI modes can be written into a state
chart as can be seen in figure 3.7. The

Figure 3.7: FRI modes transitions chart

The KRC has three different types of strategies to be controlled in while FRI is active.

• Joint position control (code 10): In this mode the joints are controlled in joint space and
the robot is acting as stiff as possible.

• Cartesian impedance control (code 20): In this mode the KRC models a six dimensional
spring between the setpoint and the end-effector resulting in a force-torque which accel-
erates the robot. This is the only cartesian mode because no cartesian position mode is
available. With a high stiffness this mode approximates a position control but it has no
internal velocity of torque limiting meaning that it will get into torque limit if the desired
setpoint is too far away.

• Joint impedance control (code 30): In this mode the joints are controlled by means of a
1 dimensional virtual spring in every joint

The Fast Research Interface is an interface that uses a standard ethernet connection with UDP
packages for its communication. Because UDP is a connectionless protocol in which no guar-
antees are given to the if the packages are received or in what order they are received it is best
to have the network over which the FRI is run as small as possible. When FRI is opened the KRC
sends a UDP package is send to a “FRI-host” with a static IP address and port number which
needs to reply with a UDP handshake. The connection always has to be established by the KRC
and the frequency of the connection is determined when opening the FRI connection and can
only be changed by restarting the connection. The frequency of the connection is between
from 10 Hz to 1000Hz.

Robotics and Mechatronics Jort Baarsma

36 Docking a UAV using a robotic arm and computer vision

When the connection has been established UDP packages are periodically sent from the KRC
unit to the remote host which replies to as fast as possible with UDP message. When the reply
is not received before the next package is sent out it is considered lost and the quality of the
connection is determined by the succes rate of the UPD package transfer. These packages from
the KRC contain a complete set of robot control and status data. A reply message contains
input data for the applied controllers.

When a FRI connection has been established the connection is considered to be in the “Mon-
itor state” and the “FRI-hosts” exchanges information from the KRC but cannot control the
robot. A important set of variables to set are the “command flags” which determine the con-
tent of the package that is send back to the KRC. When the robot needs to be controlled directly
the KRC calls the command “FRI_START” which trigger safety checks which are followed by
“Command mode” or a fallback to monitor mode. These requirements of the safety checks
are: The connection quality needs to be at least “’good” quality, the commanded pose needs
to identical to the measured pose, the drives of the robot must be engaged and several more
requirements within the KRC that have to do with the estimation of position and the torques
due gravity compensation. While in command mode the command-flags must be constant, the
connection quality should stay at least good and no large discontinuities in commanded pose
should occur. When one of these do occur the robot drives are immediately disengaged and
the program on the KRC needs to be restarted. The command-flags are a set of booleans that
define which variables the FRI wants to control, these should be set before command-mode
is engaged and can only change by going back to monitor mode. For instance sending a stiff-
ness to the robot while you don‘t have the commandflag for stiffness set or not sending a valid
stiff while the commandflag isn‘t set will result in the robot given an error and disengaging the
drivers.

Jort Baarsma University of Twente

CHAPTER 3. IMPLEMENTATION AND REALISATION 37

3.2.2 UAV

Figure 3.8: Parrot AR.Drone 2.0

The UAV used for this project is a Parrot AR.Drone. The Parrot AR.Drone is a wifi controlled
flying quadcopter helicopter built by the French company Parrot. The drone is designed to be
controlled by mobile or tablet operating systems such as the supported iOS or Android but also
has open source API which can be used to interface the drone to other operating systems.

Robotics and Mechatronics Jort Baarsma

38 Docking a UAV using a robotic arm and computer vision

Figure 3.9: Xsense MTi IMU Figure 3.10: Marker plate with IMU backplate

3.2.3 Drone substitute : Xsens IMU

For experimentation a drone substitute was used. This drone substitute consisted of a marker
plate with an separate IMU mounted on the back of the marker. This system provides all the
required signals for the system and is much lighter and more manageable to maneuver by hand.
The IMU used is a Xsense MTi-28A53G35 connected by USB to the system. The Xsense IMU is
a sophisticated IMU which uses internal sensor fusion for the determination of its orientation
and the compensation of accelerometer bias and gyroscope drift.

The technical specifications of the IMU according to the datasheet are shown in figure 3.11.

Figure 3.11: MTi-28A53G35 Technical specification

Jort Baarsma University of Twente

CHAPTER 3. IMPLEMENTATION AND REALISATION 39

Figure 3.12: Logitech C920 Webcam Figure 3.13: ROS camera calibration using checker-
board

3.2.4 Camera

The camera used in the realization is a Logitech HD Pro C920 webcam. This is a commercial
computer product that is readily available and cheap compared to industrial cameras. The can
capture a wide range of resolutions up to 1080p at 15 f ps and lower resolutions on 30 f ps. The
camera has a auto-focus option but this is always disabled in this project because it requires a
camera calibration for every focus distance.

The camera is used to capture 720p at 30fps video and is calibrated using the built-in calibration
tool in ROS with a checkerboard pattern.

The downsides to such a camera is that it uses a rolling shutter which means that it does not
acquire all the image points at the same time but rather “scans” the image sensor top to bottom
for data acquisition.

Magnetic grabber

A magnetic grabber camera mount has modeled in Solidworks and made using a 3D printer.
The result can be seen in figure 3.14.

Figure 3.14: Camera mount and magnetic grabber

Robotics and Mechatronics Jort Baarsma

40 Docking a UAV using a robotic arm and computer vision

Jort Baarsma University of Twente

41

4 Results

4.1 Measurements

Experiments were conducted using the system described in the realization and implementa-
tion part of this report. The acquired data files of the system are coma separated files (.csv)
which are processed in Matlab. Both the Parrot AR.Drone and Xsense drone substitute worked
with the system but the system was more consistent and reliable using the Xsense drone sub-
stitute. For this reason quantitative experiments were performed using the Xsense drone sub-
stitute but a qualitative evaluation of the performance of the Parrot AR.Drone will be discussed.

4.1.1 Validation

The validation of the experiments will be done using a OptiTrack motion capture setup as men-
tioned in the software implementation section. This setup has 11 infrared camera‘s which use
high power infrared LEDs to flood the room with infrared light. The system then detects in-
frared reflector markers that are attached to the rigid bodies which the user wants to track. A
set of a minimum of three markers can be used to make a “trackable” within the tracking tool
which is an object that has its relative pose with respect to the OptiTrack groundplane tracked
at 100H z. The data of the OptriTrack system is send over a standard TCP/IP connection to the
computer running the ROS system which translates it into a topic which can be captured by
the for the logger. The base of the robotic arm is also captured by the Optitrack system because
it is the reference frame for most of the frames in the system. The calibration of the OptiTrack
system has a uncertainty of 0.4mm per marker.

4.1.2 Reproducibility

The shown measurements are performed by hand on a platform parallel to the ground. The
patterns were made as consistent as possible but because of the lack of linear guides and fixed
actuation there will be some variance between the measurements. The measured OptiTrack
poses are used as reference to compare the performances of the system but also to compare
the similarity of the marker movement.

For project continuation it should be mentioned that measuring with two KUKA LWR4+ robots,
one holding the camera the other the Marker-IMU combination, was conducted but failed. The
vibrations caused by the harmonic driver inside of the LWR4+ were so severe that the accelera-
tions coming from the IMU were useless for measuring displacement.

Robotics and Mechatronics Jort Baarsma

42 Docking a UAV using a robotic arm and computer vision

OptiTrack trackable#1

OptiTrack trackable#2

Xsense MTi

Marker

Logitech C920 Webcam

KUKA LWR4+

Figure 4.1: Experimental setup

4.2 Experiments with Xsense IMU drone substitute

4.2.1 General behavior impressions

The system with and without IMU assistance is able to keep track of the marker in normal cir-
cumstances. However pose estimation failure for short periods can leak to jagged movement,
high acceleration and motion blur which itself also causes pose estimation failure.

With IMU assistance the system is also able able to follow the marker with temporary failure
of the pose estimations due to occlusion, motion blur and response better to rapid accelera-
tion. The estimation in case of (partial) occlusion is only good for short periods of time (1-2
seconds). After a few (3-5) seconds the exponential drift of the position due to error in acceler-
ation measurements becomes significant and the system becomes unreliable. The reason for
the drifting behavior is the drift in the bias and the error in orientation which is not included in
the state estimator. The system is be configured to stop state estimation after a fixed number
frames for which no correct pose estimation could be estimated to stop the robot drifting out
of bounds. The system can stably follow the marker up a distance of ?? meters and down to a
distance of 20cm.

The general impression is that the system works better with the assistance of IMU data by im-
proving the response to rapid acceleration, motion blur, lighting imperfections and (partial)
occlusion. The following experiments where conducted to examine the results of the system.

4.2.2 Movement in Y with occlusion

In this experiment the marker is moved in Y direction from point A to B and back is performed
with the marker being occluded in between the points as illustrated in figure 4.2. The distance
between the points is roughly 25cm and the velocity was kept as constant as possible. The
experiment has been repeated with and without the assistance of the IMU data and state es-
timation.

Still images from camera during the measurements without IMU assistance are shown in figure
4.3. In this set of figures a shows the marker in position A, b the marker occluded by the object,
c almost at point B and in d the image is blurred due to the movement of the camera to get to
the desired position as quickly as possible.

The results of the experiments are shown in figure 4.4 with the results of going from A to B on
the left and the results of going back on the right. The shown measurements from A to B and

Jort Baarsma University of Twente

CHAPTER 4. RESULTS 43

B A

Figure 4.2: Measurement in Y direction using only pose estimation

back are recorded in one session but have been split to align the graphs such that the movement
of the marker starts at the same time. The X and Y axis have also been aligned to make it easier
to compare the results.

From the graphs going from A to B it can be seen that the camera delay of 150ms means that
the pose estimation is slow to react to the movement of the marker while the state estimator
responds due to the significant acceleration given by the IMU. Due to the low covariance of
the camera the observed acceleration is damped but is still significant enough for the state
estimate to increase in Y direction. At roughly 0.9 seconds the marker is occluded by the object
which makes new pose estimation impossible and the system without IMU assistance stop at
the last known pose set point. The measurement with IMU assistance continues the increase of
Y because the IMU information is still updating. At roughly 1.7 seconds the pose estimation is
recovery in the measurement with IMU assistance and adjusts the set-point to better match the
pose estimate. The camera delay is still causing the set-point to lag behind the true position of
the marker but the marker is normally followed now from this point until the settled Y position
of the marker. The system without IMU assistance only finds the marker at 2 seconds and
quickly tries to move towards the new set point which is more than 20cm away at this point.
Immediately after the new set-point the pose estimation fails 6-8 times due to high velocity
between 2.1 and 2.3 after which normal visual serving is resumed. On the movement back
from B to A the same behavior is seen.

When not using IMU measurement it can be seen that when the pose estimate is not avail-
able the robot stops moving and rapidly accelerates when the pose estimation is restored if
the desired position is a distance from the position it lost it . The results that do use the IMU
measurements can follow the marker even when temporarily occluded. The performance of
the system is similar when going in positive or negative Y direction.

To further examen the results figure 4.5a and 4.5b show the velocity profiles of the robotic arm
and the relative position between the robotic arm and the marker. The velocity and acceler-
ation of the robotic arm are limited and the redetetection of the marker leads to a large joint
torques and should be avoided. The performance of the camera is also impaired by velocity
and acceleration which is commonly known as motion blur which is the change of the scene
during the exposure period. The absolute maximum speed, relative speed and accelerations
during several of these measurements are shown in table 4.1.Due to the settings the rise and
fall time differ insignificantly between the measumrents with and without IMU sensor fusion.

Robotics and Mechatronics Jort Baarsma

44 Docking a UAV using a robotic arm and computer vision

(a) Starting position (b) Occluded

(c) Pose recovered (d) Motion blur due to rapid movement

Figure 4.3: Experiment with only pose estimation

0 0.5 1 1.5 2 2.5 3
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Ti me [s]

Y
[m

]

Rising edge (Without IMU)

ground tr uth
y = ycye

0 0.5 1 1.5 2 2.5 3
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ti me [s]

Y
[m

]

Rising edge (With IMU)

ground tr uth
y
ycye

0 0.5 1 1.5 2 2.5 3 3.5 4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Ti me [s]

Y
[m

]

Falling edge (Without IMU)

ground tr uth
y = ycye

0 0.5 1 1.5 2 2.5 3 3.5 4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ti me [s]

Y
[m

]

Falling edge (With IMU)

ground tr uth
y
ycye

Figure 4.4: Measurement in Y direction

Jort Baarsma University of Twente

CHAPTER 4. RESULTS 45

Without IMU With IMU
Maximum velocity 0.4934 0.2068
Maximum relative velocity 0.4711 0.1175
Maximum acceleration 1.2334 0.5170

Table 4.1: Table

0 1 2 3 4 5 6 7 8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

Ẏ
[m

/s
]

ẏe
ẏr

(a) Without IMU assistance

0 1 2 3 4 5 6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]
Ẏ
[m

/s
]

ẏe
ẏr

(b) With IMU assistance

Figure 4.5: End-effector and relative camera-marker velocity

4.3 Experiments with Parrot AR.Drone

The measurement setup is shown in figure figure 4.1 using the Parrot AR.Drone as UAV.

4.3.1 Computational load

While running all the nodes required for the DUAVRACV system and communication to the
AR.Drone it was noticed that the load on the computer system was very high. The FRI-
connection frequently missed packages which caused the KRC to disengage the driver of the
robot and the need to restart the experiment. The problem vanished while running at a FRI fre-
quency of 200H z instead of the regular 500H z. The FRI node is always running at the highest
priority in Linux but the node seems to be CPU starved for long enough in this configuration to
not be able to respond to the FRI message within the required 2ms. This is an inherent problem
with non-realtime operating systems that cannot guarantee CPU time or connection to the IO
ports for crucial real-time programs.

A clear solution to this problem is to use a dedicated computer to run either the FRI-node or
AR.Drone node

4.3.2 Qualitative results

The performance of the AR.Drone while having a good vision estimate is subjectively identical
to the performance with the Xsense drone substitute. The performance while temporarily oc-
cluded seems not to be as good as with the Xsense drone substitute, the response to the ac-
celeration seems slow and the total displacement while occluded is lower than the distanced
traveled. This could be due to lag in the accelerometer or some fault in the calibration of the
AR.Drone accelerometers. The node that is connected to the AR.Drone also sends all camera
signals over the same WiFi connections as the IMU measurements which could be the cause of
delay.

Robotics and Mechatronics Jort Baarsma

46 Docking a UAV using a robotic arm and computer vision

OptiTrack trackable#1

Logitech C920 Webcam

KUKA LWR4+

OptiTrack trackable#2

Figure 4.6: Experimental setup

Jort Baarsma University of Twente

47

5 Conclusions & recommendations

5.1 Conclusions

The proposed system works and can follow a drone-substitute within the reach of the robotic
arm. The system works with and without the assistance of the IMU sensor but the robustness
to rapid movement or occlusion is improved with the assistance of the IMU sensor. In experi-
ments with occlusion the system with IMU assistance the robotic arm had a significantly lower
peak velocity and acceleration due to the fact that the robot did not make a large jump in set-
point. Uncertainty in the orientation and acceleration bias of the IMU cause the estimated
pose of the system to drift without visual pose estimation which makes the estimate unreliable
after approximately 3 seconds.

Docking a marker was only achieved if the marker was stationary because the procedure is
susceptible to motion due to the small margin for error in the magnetic docking mechanism.

The system was successfully implemented in ROS, which provided a solid framework for devel-
opment and multi-threaded programming. Concerns regarding real-time performance were
raised with the FRI interface failing to respond within 2ms in combination with the AR.Drone
controller node.

5.2 Recommendations

For continuation of this project the following recommendations are given.

• Redesigning the extended kalman filter to include the orientation and angular velocity
might increase the stability of the system.

• Use different drone to test the system, which might work better than the AR.Drone.

• Increase the size of the area that can be docked using a magnetic grabber to allow for
more fault tolerance then 1 centimeter.

• Use a horizontal or ceiling mounted robot arm setup to be able to grab te top of the drone.

Robotics and Mechatronics Jort Baarsma

48 Docking a UAV using a robotic arm and computer vision

Bibliography

[1] M. A. Rahman, “Sherpa: An air-ground wireless network for communicating human and
robots to improve the rescuing activities in alpine environments,” in Ad-hoc Networks and
Wireless, pp. 290–302, Springer, 2014.

[2] SHERPA, “Sherpa project website,” 2015.

[3] M. Achtelik, T. Zhang, K. Kuhnlenz, and M. Buss, “Visual tracking and control of a quad-
copter using a stereo camera system and inertial sensors,” in Mechatronics and Automa-
tion, 2009. ICMA 2009. International Conference on, pp. 2863–2869, IEEE, 2009.

[4] K. Schwabe, “A monocular pose estimation system based on infrared leds,” Master’s thesis,
Zurich, 2013.

[5] T. Petersen, “A comparison of 2d-3d pose estimation methods,” Master’s thesis, Aalborg
University-Institute for Media Technology Computer Vision and Graphics, Lautrupvang,
vol. 15, p. 2750, 9999.

[6] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second ed., 2004.

[7] G. Schweighofer and A. Pinz, “Robust pose estimation from a planar target,” Pattern Ana-
lysis and Machine Intelligence, IEEE Transactions on, vol. 28, pp. 2024–2030, Dec 2006.

[8] G. Welch and G. Bishop, “An introduction to the kalman filter,” 2006.

[9] O. S. R. Foundation, “Robotic operating system website,” 2015.

[10] Boost, “Thread safety guarantees,” 2015.

Jort Baarsma University of Twente

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.1.1 Alpine search and rescue

	1.2 Problem statement
	1.3 Prior work

	2 Analysis & Design
	2.1 System introduction
	2.1.1 Subsystem allocation
	2.1.2 Definitions and notation

	2.2 Setpoint generator-subsystem
	2.2.1 Strategies
	2.2.2 Follow distance
	2.2.3 Path generator

	2.3 Robotic arm-subsystem
	2.3.1 Kinematic chain

	2.4 UAV-subsystem
	2.4.1 Quadcopter
	2.4.2 IMU

	2.5 Computer vision-subsystem
	2.5.1 Feature extraction
	2.5.2 Marker design
	2.5.3 Pose estimation

	2.6 State estimator-subsystem
	2.6.1 Transformations
	2.6.2 Kalman filter
	2.6.3 Extended Kalman filter
	2.6.4 Extended Kalman filter design

	3 Implementation and Realisation
	3.1 Software Implementation : ROS
	3.1.1 Brain node
	3.1.2 Robot controller : FRI node
	3.1.3 Data acquisition : DUAVRACV Logger

	3.2 Hardware realisation
	3.2.1 Robotic arm
	3.2.2 UAV
	3.2.3 Drone substitute : Xsens IMU
	3.2.4 Camera

	4 Results
	4.1 Measurements
	4.1.1 Validation
	4.1.2 Reproducibility

	4.2 Experiments with Xsense IMU drone substitute
	4.2.1 General behavior impressions
	4.2.2 Movement in Y with occlusion

	4.3 Experiments with Parrot AR.Drone
	4.3.1 Computational load
	4.3.2 Qualitative results

	5 Conclusions & recommendations
	5.1 Conclusions
	5.2 Recommendations

	Bibliography

