
University of Twente

Master Thesis

Domain-Specific Language
Testing Framework

Author:
Robin A. ten Buuren

Examination Committee:
dr. Luís Ferreira Pires

dr. ir. Rom Langerak
Niek Hulsman

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Software Engineering Research Group
Department of Computer Science

October 2015

UNIVERSITY OF TWENTE

Abstract
Faculty of Electrical Engineering, Mathematics and Computer Science

Department of Computer Science

Master of Science

Domain-Specific Language
Testing Framework

by Robin A. ten Buuren

Domain-specific languages (DSLs) are languages developed to solve problems in a specific domain, which
distinguishes them from general purpose languages (GPLs). One characteristic of DSLs is that they
support a restricted set of concepts, limited to the domain. The benefits of using a DSL include improved
readability, maintainability, flexibility and portability of software.

After a DSL is deployed, the user-developed artifacts (e.g., models and generated code) have to be tested
to ensure correctness. Organizations spend up to 50% of their resources on testing. Testing is therefore
important, expensive and time critical. The problem is that testing can also be error-prone, commonly
experienced as unpopular or tedious work. Moreover, when using the conventional ways of testing (e.g.,
writing unit tests) the tester is required to have a thorough understanding of the system under test
(SUT).

There are several testing techniques available that can be applied to domain-specific languages, each
focused on a specific artifact or aspect of the DSL. However, to the best of our knowledge, no generic
framework available allows the generation of tests for domain-specific artifacts or systems that use these
artifacts using the domain-specific models.

In this report we present a framework for the generation of tests using domain-specific models. These
tests can be used to verify the correctness of the artifacts generated using the domain-specific model
and systems that use these artifacts. By generating the tests instead of manually developing them,
development time is reduced while usability is improved.

The test generation process consists of three phases: generalization, generation and specification. In the
generation phase the domain-specific model is transformed to an instance of a newly developed generic
metamodel, to abstract away from language-specific features. In the generation phase, generic test cases
are generated that achieve branch/condition coverage. In the specification phase the generic test cases
are transformed to executable test code. By keeping the test cases generic, several types of tests can be
generated using the same generic test case.

We show that the developed framework supports a multitude of languages and resulting test types. We
also discuss several areas where the framework can be extended with addition features. An important
lesson learned during the research and development is that a DSL (testing) framework should be setup
modular, extensible and small.

Acknowledgements

This thesis presents the results of the final assignment in order to obtain the degree
Master of Science. Now that I have completed my thesis, I would like to thank a couple
of people:

First, I would like to thank Luís Ferreira Pires and Rom Langerak for being my super-
visors on behalf of the university. Thank you for the meetings we had and the provided
support. Your feedback significantly helped me to improve this research.

Second, I want to thank Niek Hulsman and Ramon Ankersmit for supervising on behalf
of Topicus Finance. Thank you and the team for the (stand-up) meetings we had during
the last eight months. Our discussions helped me to obtain the result I was aiming for.

Third, I would like to thank Topicus Finance for letting me perform my final assignment
at their office in Zwolle. I want to thank all the colleagues and fellow students in the
company for their support and the great time we had.

Last but not least, I want to thank my family and friends for their continuous support
over the last couple of months. I could not have achieved my goals without all the
support I received.

Robin Alexander ten Buuren

Enschede, October 2015

v

Contents

Abstract ii

Acknowledgements v

Contents viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Approach . 4
1.4 Report structure . 4

2 Testing techniques 6
2.1 Black-box testing . 6
2.2 White-box testing . 8
2.3 Model-based testing . 10

2.3.1 Domain-specific modeling . 11
2.3.2 FSM testing . 12
2.3.3 UML testing . 12

2.4 Behavior-driven development . 14
2.5 Domain-specific testing language . 16
2.6 Automated web testing . 18
2.7 Testing levels . 19
2.8 Application to domain-specific languages 20

3 Approach 22
3.1 General development goals . 22
3.2 Transformation chain . 24
3.3 Common programming elements . 25

3.3.1 Common language specification . 26
3.3.2 Common operands . 26
3.3.3 Common operators . 27
3.3.4 Common conditionals . 29

3.4 Domain-specific elements . 29
3.5 Solution overview . 30

viii

Contents ix

4 Common elements metamodel 33
4.1 Model definition . 33
4.2 Mapping . 42

4.2.1 The mapping DSL . 43
4.2.2 Mapping domain-specific elements 46
4.2.3 Example artifacts . 47

4.3 Framework options . 47

5 Case generation 50
5.1 Expression evaluation . 50

5.1.1 Expression trees . 51
5.1.2 String transformation . 53
5.1.3 String evaluation . 56

5.2 Value generation . 56
5.3 Variable assignment . 62
5.4 Example . 63

6 Test generation 67
6.1 Test case generation . 67
6.2 JBehave . 69

6.2.1 Generation . 69
6.2.2 Execution . 71

6.3 Selenium . 72
6.3.1 Generation . 72
6.3.2 Execution . 73

7 Case study 74
7.1 Finan Financial Language . 74
7.2 Generalization . 76
7.3 Generation . 81
7.4 Specification . 81

7.4.1 JBehave . 82
7.4.2 Selenium . 85

7.5 Conclusion . 89

8 Final remarks 90
8.1 Conclusions . 90
8.2 Research answers . 92
8.3 Future work . 93

A Expression mapping grammar 95

B Precedence grammar 99

C Precedence transformer 103

D Generated JBehave story 111

Contents x

E Generated Selenium test 113

F Selenium functions 117

Bibliography 119

Chapter 1

Introduction

This chapter is structured as follows: Section 1.1 presents the motivation for this work.
Section 1.2 defines the research objectives. Section 1.3 describes the approach taken to
achieve the objectives. Section 1.4 presents the structure of this report.

1.1 Motivation

For this research we use the definition of domain-specific language given in van Deursen
et al. [1]:

“A domain-specific language (DSL) is a programming language or executable specifi-
cation language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain.”

Domain-specific languages (DSLs) are languages developed to solve problems in a spe-
cific domain, which distinguishes them from general purpose languages (GPLs). One
characteristic of DSLs is that they support a restricted set of concepts, limited to the
domain. DSL can be developed from scratch, but also by extending a general purpose
language. Domain-specific languages are diverse because they are developed for a spe-
cific domain and can be developed using several methods. Another key characteristic
is that DSLs are often declarative, meaning that the code describes what should be
computed instead of how it should be computed. The benefits of using a DSL include
improved readability, maintainability, flexibility and portability of software [2].

According to Kurtev et al. [3], a DSL is “a set of coordinated models”. The domain
knowledge (e.g., concepts of the domain and their relations) can be represented as a
model to which the DSL models must validate, therefore being a metamodel. This

1

Chapter 1. Introduction 2

metamodel is called the domain definition metamodel (DDMM), and is used as the
abstract syntax of the DSL. Next to an abstract syntax, DSLs can have multiple concrete
syntaxes. A concrete syntax can be acquired by developing a transformation from the
abstract syntax to a specific language, e.g., UML notation, or by developing a concrete
syntax independent of any other language. The concrete syntax defines the notation used
to express models [4]. The execution semantics of DSLs can be achieved by developing
a transformation model that converts the DDMM to a (executable) language, called the
target language, like, for example, Java or some formalism, e.g., in case of mathematical
models. The semantics describe the function of the model in the target language.

DSLs can be developed using Model-Driven Engineering (MDE), which is based on
the Object Management Group (OMG) Model-Driven Architecture (MDA) approach of
using (meta)models as cornerstones for the construction of systems. MDE has a broader
scope than MDA as it combines process and analysis with architecture [5]. The benefits
of using MDE are that the models can be made platform-independent, reusable and
easily adaptable. The drawbacks of using MDE are that the development of the models
used to generate code results in extra upfront costs and companies have to change their
development methods to adhere to MDE [6].

After a DSL is deployed, the user-developed artifacts (e.g., models and generated code)
have to be tested to ensure correctness. Organizations spend up to 50% of their resources
on testing [7]. Testing is therefore important, expensive and time critical. The problem
is that testing can also be error-prone, commonly experienced as unpopular or tedious
work and when using the conventional ways of testing (e.g., writing unit tests) the
tester is required to have a thorough understanding of the system under test (SUT) [8].
There are several testing techniques available, e.g., model-based testing, that can be
applied to domain-specific languages, each focused on a specific artifact or aspect of the
DSL. However, to the best of our knowledge, no generic framework available allows the
generation of tests for domain-specific artifacts or systems that use these artifacts using
the domain-specific models.

Chapter 1. Introduction 3

1.2 Objectives

In this research we work towards a framework, in which different types of tests can
be generated using the domain-specific models. These tests can be used to test the
generated model artifacts and systems that use the model artifacts.

The main research objective of this thesis is:

To improve the quality of testing of generated artifacts from domain-specific language
models and systems that use these artifacts

To achieve this objective, we developed a framework in which the generated artifacts can
be tested using generated tests, e.g., validating the generated code using the developed
models. This testing can be done on different levels, e.g., testing the generated artifacts
using unit tests, testing an engine or application that uses the artifacts or testing the
output of a model provided with input. Since the system under test using the artifacts
can be diverse, several testing approaches like, for example, behavior-driven development
and automated web testing could be applied.

We consider three quality aspects of the framework:

1. Effectiveness: by applying the framework, test development should take less time
compared to manual test development. Instead of manually developing tests, tests
are generated using the model.

2. Usability: by applying the framework, test development should be more user-
friendly compared to manual test development. By supporting several generators,
different types of test can be generated using the same model. All these tests
would otherwise be developed manually.

3. Correctness: by applying the framework, the system under test should contain
fewer bugs compared to non-tested systems.

During the development of the framework, the following research questions were consid-
ered:

RQ1. Which testing techniques are available and what is their coverage?

RQ2. How can these testing techniques be applied to domain-specific languages?

RQ3. How to deal with different language constructs and syntax?

RQ4. How to assess the reusability and verify the quality of the testing framework?

Chapter 1. Introduction 4

1.3 Approach

In order to achieve the main objective of this research and answer the research questions,
we took the following steps:

1. Perform a literature study on testing techniques, their coverage and their applica-
bility to DSLs

2. Define and implement a framework for the generation of tests using domain-specific
models

3. Test the framework by performing a case study

4. Validate the uses of the testing framework for two domain-specific languages and
identify its limitations

5. Validate that the framework improves the quality of testing by detecting intro-
duced bugs in the system under test and questioning stakeholders about their
experience with the framework.

1.4 Report structure

This report is further structured as follows:

Chapter 2 discusses some available testing techniques and their coverage. The testing
levels of software systems are analyzed and the testing techniques are examined with
regards to their applicability to domain-specific languages.

Chapter 3 discusses our approach and structure of the testing framework. The chapter
describes the general goals of the framework and gives an overview of the transformation
chain. Common elements as well as domain-specific elements are discussed. An overview
of the developed framework is also given.

Chapter 4 discusses the generic metamodel used by the framework as well as the
mapping from domain-specific metamodels to the generic metamodel. It also gives an
overview of the options the framework provides.

Chapter 5 discusses how the framework generates test values using the generic models.

Chapter 6 discusses how these test values can be used to create generic test cases. It
also shows how these test cases can be transformed to JBehave stories and Selenium
tests.

Chapter 1. Introduction 5

Chapter 7 discusses how the testing framework can be used in a work environment by
analyzing its application on a case study.

Chapter 8 gives our conclusions, answers the research questions, analyzes the reusabil-
ity and quality of the framework and discusses future work.

Chapter 2

Testing techniques

This chapter discusses a number of testing techniques, often used to check the func-
tionality of a software system and improve its quality. Section 2.1 explains black-box
techniques, while Section 2.2 discusses white-box techniques. Section 2.3 identifies dif-
ferent model-based testing techniques (e.g., FSM and UML testing) and Section 2.4
discusses behavioral-driven development. Section 2.5 describes testing using a domain-
specific testing language. Section 2.6 discusses automated web testing and the Selenium
tool. Section 2.7 describes the different testing levels of software systems. Section 2.8 an-
alyzes the application of the discussed testing techniques to models and code developed
using domain-specific languages and concludes this chapter.

2.1 Black-box testing

Black-box testing, also called function testing, is based on the idea that the tester does
not know how the system under test works internally, i.e., the source code is unknown.
To apply black-box testing the user provides inputs and checks the outputs based on
the requirements specification of the system under test (SUT).

A benefit of black-box testing is that non-programmers can perform it since no internal
program knowledge is required. A downside of black-box testing is that exhaustive input
testing, testing all the possible inputs, is impossible since the source code is unknown.
The tester usually cannot deduct all the possible inputs based on the requirements alone.

There are several techniques for black-box testing, like equivalence partitioning, bound-
ary value testing, cause-effect graphing and random testing [9].

6

Chapter 2. Testing techniques 7

• Equivalence partitioning testing

In equivalence partitioning testing, the input is divided into partitions under the
assumption that testing one element of that partition is equivalent to testing the
whole partition. An example would be choosing the number 34 if the input range
is an integer from 0 to 100.

• Boundary value testing

In boundary value testing, the boundaries of inputs and outputs are tested because
these are prone to errors. Since a program can have a large number of inputs and
outputs, boundary value testing can result in a large number of tests. For example:
the test cases for an integer input range from 0 to 10 are:

– -1 (below lower boundary)

– 0 (start lower boundary)

– 10 (end upper boundary)

– 11 (above upper boundary)

• Cause-effect graphing

Cause-effect graphing can be applied to testing by converting the requirements
specification of the SUT into causes and effects. For example, the functional
requirement specifying that to save a file ‘the file name length must consist of six
characters otherwise an error is displayed’, can be converted into one cause and
two effects: the cause is The length of the file name consists of six characters, while
the effects are 1. The file is saved and 2. Error message “invalid file name length”
is displayed. After the conversion, each cause and effect receives a unique number.

The requirements specification also needs to be converted into a Boolean graph
thereby linking causes and effects. A decision table should be created using this
graph, which is then used to construct test cases.

The benefit of using this technique is a clear representation between causes and
effects in terms of a Boolean graph and a decision table. This technique also
reduces the time necessary to search for the cause of an error since the error can
be related to an effect, which is directly linked to its possible causes in the cause-
effect graph.

Chapter 2. Testing techniques 8

• Random testing

Random testing is a technique in which the tester tries a random subset of inputs.
Although the chance of actually finding an error is low, by randomly choosing
input some unlikely error might be detected. This technique should therefore be
seen as an add-on technique, only to be used in combination with other testing
techniques [9].

2.2 White-box testing

White-box testing, also called structural testing, is based on the internal structure of
the SUT. Instead of focusing on the software requirements specification, the source code
itself is analyzed using logic.

A benefit of white-box testing is that the source code is checked, thereby increasing the
probability of finding bugs introduced by the programmer. Since the specification is not
consulted during white-box testing, this approach does not consider the conformance to
the requirements.

Examples of white-box techniques are: statement coverage, branch coverage, condition
coverage and branch/condition coverage [9].

• Statement coverage

The goal of statement coverage testing is to make sure every statement (line of
code) is executed at least once. Although the whole program can be tested,
branches can still be missed. Statement coverage is therefore a weak code cov-
erage approach [9].

• Branch coverage testing

In branch coverage testing, also called decision coverage testing, all the program
branches are tested. A branch is a choice point of the program, like an if-then(-else)
construction, so the if-clause as well as the else-clause must be executed during
the test run [9]. This technique does however have some flaws as illustrated by the
example below:

if(A && (B || FooBar()))
Foo();
else

Bar();

Chapter 2. Testing techniques 9

Test cases:

1. A = True, B = True

2. A = False

The test cases make sure full branch coverage is achieved since both the if-clause
as well as the else-clause is executed. However, function FooBar() is never called
due to lazy evaluation resulting in an untested possible cause of errors.

• Condition coverage testing

Condition coverage is similar to branch coverage, since it is also based on branches.
Instead of each branch having to evaluate to true and false, each condition within
a branch must now be covered [9]. However, branches may still be missed by the
test, as illustrated in the following case:

if (A && B)
Foo();
else

Bar();

Test cases:

1. A = True, B = False

2. A = False, B = True

The test cases make sure full condition coverage is achieved since both conditions
A and B are tested with the values True and False. However, Bar() is never
executed, resulting in an untested possible cause of errors.

• Branch/condition coverage testing

To completely test all branches, a combination of branch and condition coverage,
called branch/condition coverage testing should be performed. The goal is to test
not only every branch but also every condition in every branch. This is a strong
method of coverage testing since it combines several techniques and makes up for
the missed coverage of each individual technique [9].

Gray-box testing

Where black-box testing focuses on the requirement specifications and functionality of
the SUT, and white-box testing on the source code and logic, gray-box testing combines
these two testing techniques. Using the knowledge of the internal program structure
(white-box style), can influence the development of requirements specification-based
test cases (black-box style).

Chapter 2. Testing techniques 10

For example, parameters that should be tested for each combination using black-box
techniques, can be tested separately if the tester knows these parameters are only used
separately. This knowledge can be gained by inspecting the source code [9].

2.3 Model-based testing

Model-based testing (MBT) is a testing technique that uses a model of the system under
test thereby testing at a higher abstraction level. Based on this model, test cases can be
generated. Although models can also be seen as black boxes, since the source code could
be unknown and only input and output are observed, thereby making MBT a kind of
black-box testing, this specific field of testing is discussed separately due to its relation
to Model-Driven Engineering (MDE). Both MBT and MDE use models as basis, and
generate artifacts using these models.

The MDA abstraction levels (e.g., platform-independent and platform-specific) can also
be applied to testing, which is graphically displayed in Figure 2.1. It shows that the
developers can take several paths to develop test code. Two examples are:

1. Starting from a platform-independent system model→ transforming to a platform-
independent test model → transforming to test code

2. Starting from a platform-independent system model→ transforming to a platform-
specific system model → transforming to a platform-specific test model → trans-
forming to test code.

Figure 2.1: The relation between system design models and test design models [10]

Chapter 2. Testing techniques 11

2.3.1 Domain-specific modeling

In Puolitaival and Kanstrén [11] an experiment is explained in which domain-specific
modeling (DSM) has been used as a basis for MBT. The authors use DSM to denote
DSL development using the MDE approach. First a metamodel and modeling language
are defined that capture the domain concepts. The metamodel and language are then
used to create models, which are transformed to other forms (e.g., application code) in
a later phase.

The test approach described in Puolitaival and Kanstrén [11] starts by defining a mod-
eling language used to create models of the SUT. Based on these models, test models
can be generated using transformations. These test models can then be used as input
for the test generators of different MBT tools. By executing these test generators, test
cases are generated, which can be run by the test environment to test the SUT. This
process is displayed in Figure 2.2.

Figure 2.2: Model-based testing with domain-specific modeling [11]

The benefits of using testing models are the reusability of these models (different map-
pings results in different tests), lower maintenance since only the domain-specific models
have to be maintained, and independence of testing environment. A possible drawback
is that the development of the DSM language and test generators result in extra costs.

Chapter 2. Testing techniques 12

2.3.2 FSM testing

In Lee and Yannakakis [12] the principles and methods of Finite State Machine (FSM)
testing are discussed. There are several ways in which FSMs can be used for testing,
but only conformance testing is discussed here. Conformance testing, also called fault
detection or machine verification, uses two FSMs. The first FSM is specification machine
A of which we have complete information on the behavior of the SUT, such as state
transitions and output functions. The second FSM is implementation machine B, which
acts as a black-box of the system, so only input and output can be observed. The goal
of the test is to determine whether machine B is a correct implementation of machine
A by providing machine B with inputs and observing the returned outputs.

For this to be possible, four assumptions concerning machine A and B are necessary:

1. Specification machine A is strongly connected, i.e., every state is reachable from
every other state.

2. Machine A is reduced, i.e., A is modeled using a minimal number of states.

3. Implementation machine B does not change during the experiment and has the
same input alphabet as A.

4. Machine B has no more states than A.

For the test to be decisive, the test sequence must be a checking sequence. Let A be a
specification FSM with n states and initial state s0. A checking sequence for A is an
input sequence x that distinguishes A from all other FSM with n states. If the sequence
is not a checking sequence, the difference between the FSMs could be missed. This
difference could contain an error. However, the checking sequence could take a large
amount of time thereby rendering this approach unfeasible. By limiting the execution
time, this approach could become applicable, yet this also decreases the reliability of the
testing procedure.

2.3.3 UML testing

In Dai [10] the UML 2.0 Testing Profile (U2TP) is discussed, which provides a number
of concepts that can be used to develop test specifications and test models for black-
box testing. The U2TP concepts are divided into four groups: test architecture, test
behavior, test data and time. An overview of the concepts per group is given in Table
2.1.

Chapter 2. Testing techniques 13

Table 2.1: Overview of the UML 2.0 Testing Profile concepts, divided into four groups
[10]

Test architecture concepts:
System under test The system to be tested using the models
Test components Objects that interact with the SUT or required for the test
Test context Used to categorize test cases
Test configuration Defines the relation between test components and the SUT
Test control The order in which the test cases should be executed
Arbiter Used to define how the overall verdict should be interpreted
Scheduler Schedules the test cases by creating objects and starting/stop-

ping the cases
Test behavior concepts:
Test objectives Goals of a test
Test case The specifications of expected test behavior (i.e., how the test

components should interact with the SUT to achieve the test
objective)

Defaults The specifications of unexpected behavior
Validation action Action performed by a test component to be interpreted by the

arbiter
Verdict Result of a finished test
Test data concepts:
Wildcards Used to deal with unexpected events
Data pools Contain concrete test data used in test context
Data selectors Interact with data pools
Coding rules Used to define encoding and decoding of test data
Time concepts:
Timers Used to change and manage test behavior and to make sure

tests terminate
Time zones Used to group test components, allowing the comparison of

time events within the same time zone

The test design model is developed by extending the system design model defined in
UML 2.0 using U2TP concepts. The whole process is described in Dai [10], but only a
summary is given here.

After importing the classes and interfaces, the test architecture and test behavior specifi-
cations should be defined. For both the test architecture and test behavior there are two
sorts of requirements (called issues), namely mandatory and optional. The mandatory
issues (test components) have to be resolved for a correct test design model, while the
optional issues are not always required (e.g., timers).

After the specifications are defined, the metamodel-based transformations can be devel-
oped using, for example, QVT. An overview of the transformation process is given in
Figure 2.3. The transformation transforms the UML model to the U2TP model.

Chapter 2. Testing techniques 14

Figure 2.3: Overview of the transformation process using three metamodels [10]

As the transformation does not allow the tester to group and remove UML elements,
for example classes, objects, instances, etc., required for creating test components and
SUT, the authors introduced mechanisms called ‘test directives’, which are defined in
the Test Directives metamodel. All three metamodels used during the transformation
process are described using the MOF.

2.4 Behavior-driven development

In Solis and Wang [13], behavior-driven development (BDD) and its characteristics are
discussed. BDD is often seen as the future of Test-Driven Development and Acceptance
Test-Driven Development. Using specifications, the behavior of the system is modeled,
which can, for example, be used to automatically generate test cases. Since the specifi-
cations can be written down in a natural language, a non-programming language, BDD
enables domain experts and developers to understand each other and the test specifica-
tions.

The following six characteristics of BDD are discussed in Solis and Wang [13]:

1. Ubiquitous language

The language used to define the testing procedures should be specifically designed
for a specific domain, to among others increase productivity and simplify the

Chapter 2. Testing techniques 15

learning process. It is crucial to incorporate the knowledge of the domain experts
and developers into the language, since both stakeholders will use the language to
communicate.

2. Iterative decomposition process

The process of using BDD should be iterative. In the early stages, expected system
behavior should be collected, which can then be converted to a set of features
(similar to requirements). Based on the features, user stories are created that
describe the interaction between the user and system as well as the benefit the
user gains if the system provides the feature. These user stories can then be
divided into scenarios that describe different contexts and outcomes of the stories.

3. Plain text description with user story and scenario templates

These features, user stories and scenarios must be written down in a specific format
using a ubiquitous language to facilitate inspection and transformation to test
cases.

4. Automated acceptance testing with mapping rules

Mapping the scenarios to test cases creates an appropriate test set for the func-
tionality of the system under test. A key requirement here is that the scenarios
should be run automatically, thereby reducing time waste.

5. Readable behavior-oriented specification code

Since the scenarios are written in plain text and mapped to test cases, the code
is readable and can act as documentation together with the specifications. This
means that the mappings improve readability.

6. Behavior driven at different phases

BDD should not only be used during the implementation phase (e.g., testing),
but also during the planning and analysis phase (e.g., setup feature list). This
improves the common understanding of the system for the domain experts and
the developers.

The researchers also investigated several BDD toolkits and checked which characteristics
were supported by each toolkit. The results are shown in Table 2.2.

Table 2.2 shows that, although none of the toolkits provide all the six described charac-
teristics, the xBehave Family and SpecFlow toolkit provide the most functionality. The
authors state that, for future work purposes, a toolkit could be developed or extended
to enable the application of BDD techniques during the planning and analysis phase.

Chapter 2. Testing techniques 16

Table 2.2: BDD toolkits and the supported characteristics [13]

Another limitation of the researched toolkits is that they only provide mapping rules for
transforming user stories and scenarios to code. The toolkits could be extended with
support to map to namespaces and packages resulting in the option to group stories
based on their test feature.

2.5 Domain-specific testing language

In Santiago et al. [14] an approach is described that leverages MDE, by describing several
domain and platform models, to improve the specification, execution, and debugging of
functional tests for cloud applications with several domain-specific elements. As a result,
a test case specification language is defined that can be used to develop automated tests
for a particular application domain. An overview of the domain-specific testing language
proposed in Santiago et al. [14] is given in Figure 2.4.

Figure 2.4: Structure of the domain-specific testing language [14]

The key elements of the language are the action commands (used to apply inputs to the
system under test) and the assertion commands (used to check outputs of the system
under test).

The authors created models (abstractions) of the elements of the system under test,
such as the user interface. By abstracting away from the domain, the tests can reference
the models and are independent of domain changes, thereby improving maintenance.

Chapter 2. Testing techniques 17

The authors also provide users with the option to define macros, which are patterns
that specify how a sequence of inputs is mapped to a replacement input sequence. This
means the users can reduce repetitive tasks and error-prone activities, thereby improving
productivity and usability.

An example of a test case developed using the domain-specific testing language is given
in Figure 2.5. The test case consists of four parts: summary, declarations, setup and
tests. The summary specifies the purpose, authors and configuration. The used appli-
cations and data are specified in the declarations part. The setup part enumerates the
preconditions using behavioral-driven development, while the tests part defines the tests
to be executed.

Figure 2.5: Example of a test case [14]

According to the authors, their main factor for success was to have a robust, highly
extensible and configurable underlying testing framework. This is in line with Kent
[5], who states that highly extensible and configurable tools are preferred. Since the
framework has a high usability, even non-technical users can develop test cases using
the domain-specific testing language of Santiago et al. [14].

Using this domain-specific testing language, the authors of King et al. [15] developed
a DSL-based testing toolset called Legend. It provides the user with story linking, so

Chapter 2. Testing techniques 18

that the business requirements and user stories are linked to a specific test suite. It
also generates a test template for a new test, thereby improving the usability of testing.
The toolset supports high-level test steps so the user can define commands, thereby
reducing errors and code duplication. The test suites can be stored using several kinds
of third-party software, resulting in a central inventory of tests. Lastly, Legend provides
a centralized test tagging system, so that tests can be filtered efficiently.

2.6 Automated web testing

Web application usage has increased in the last decades, with the Internet user numbers
growing over 700% over the last 15 years [16]. Web applications have a number of
benefits, for example, continuous and ubiquitous availability. As users rely upon the
idea that web applications should be online all the time, downtime should be minimized
to improve user experience and loyalty. To achieve a high quality and reliable web
application, the application should be tested thoroughly to ensure correct functionality.
By testing whether the code is consistent with the requirements specification of the web
application for acceptance, the user experience should be improved.

Testing web applications is however more complicated than testing traditional appli-
cations since these applications are heterogeneous, distributed and concurrent. Web
applications can be tested using black-box (functional) testing tools, yet this would not
ensure the reliability of the application. White-box (structural) testing should also be
applied [17]. To save time and money, web applications should be tested automatically
e.g., by using an automated test tool or framework.

Selenium

One tool for automated testing of web applications is Selenium, which is open source
and supports several programming languages. Selenium is “a suite of tools specifically
for automating web browsers”1, but we only discuss it in regards to automating web
applications for testing purposes. It was originally developed by ThoughtWorks and now
has an active community of developers and users. Selenium runs in several browsers and
operating systems, while being compatible with a number of programming languages
and testing frameworks. By using Selenium, browser incompatibility can be determined
easily by running the same tests on different browsers [18].

In Bruns et al. [19] Selenium version 1.0 is discussed by first examining Selenium
Core. The Core tool allows the user to interact with the web application by running a
JavaScript application in a host browser used to manipulate the web application under

1http://www.seleniumhq.org/about/

Chapter 2. Testing techniques 19

test. This is done by sending commands in Selenese (Selenium’s DSL) to change and
evaluate elements. There is also the Selenium RC tool which allows programmers to
use the supported programming languages (Java, C#, Ruby, etc.) instead of Selenese
to interact with the web application.

The Selenium Project [20] also describes Selenium IDE and Selenium Grid. Selenium
IDE is a prototyping tool used for building test scripts by allowing users to record their
actions and export recorded actions as scripts. Selenium Grid allows the user to group
Selenium RC tests into suites and run them in multiple environments. It also speeds
up the process by allowing the tests to run in parallel. In the latest update, Selenium
WebDriver (previously Core) and Selenium RC are combined into Selenium 2.

In Holmes and Kellogg [21] advice is given on how to use Selenium. The first advice is to
keep the test self-contained, thereby improving flexibility and maintainability. Although
Selenium supports the definition of test suites and grouping of tests, the authors tried
to keep the tests as independent and self-contained as possible, so that changes and
refactoring could be applied rapidly. The second advice is to exploit the open source
property of Selenium by writing extensions when required. As Selenium tests are easy
to write, users can apply the Test Driven Development approach of writing the tests
before developing the application. The last advice is to use IDs for the identification of
website elements instead of XPath expressions since this improves the speed of locating
these elements.

2.7 Testing levels

Software systems and artifacts can be tested on different levels. In Bourque and Fairley
[22] three testing levels are defined:

• Unit testing: test the functionality of software components that are testable in
isolation.

Depending on the DSL and artifact generator, there can be one or more generated
model artifacts (e.g., Java classes). Each artifact could be seen as a unit and tested
individually using unit testing. If an artifact depends on another artifact, a mock
object can be used to emulate the other artifact thereby ensuring that artifacts
are tested individually in their intended working environment.

Chapter 2. Testing techniques 20

• Integration testing: test the interaction of the individual elements. The per-
spective switches from low-level to integration level.

The different generated artifacts might have to work together and this integration
could be tested using integration testing. One way of testing the integration is by
testing a software system that uses multiply artifacts in combination, for example,
a website displaying several model elements. To exclude errors from the individ-
ual artifacts while performing integration testing, the individual artifacts should
already be unit tested.

• System testing: test the behavior of the entire system. Usually used for testing
non-functional requirement, e.g., performance and reliability.

Using the tested integrated software components, the whole system can be tested
using system testing. This does not only test the components but also the hardware
that the software runs on.

2.8 Application to domain-specific languages

In this section we discuss some available testing techniques based on their application
to test models and code developed using domain-specific languages.

Black-box testing is based on the idea that the code is unknown, while focusing on
the specifications. An application to domain-specific languages is to use the models
developed using the DSL as specifications to test the correctness of the code generated
from these models. This technique can be combined with the UML 2.0 Testing Profile
discussed in Dai [10], which specifies concepts for the development of test specifications.
White-box testing techniques on the other hand use logic to analyze the source code and
can, for example, be applied to test code generated from the model.

When the DSL is developed using metamodeling, a metamodel of the domain and its
concepts is already available. The domain-specific modeling testing technique of Puoli-
taival and Kanstrén [11] can therefore be applied to this metamodel to develop a testing
language used to model the system under test. Based on the system models, test models
can be generated using transformations, which are used as input for test generators of
different MBT tools. By applying this technique, the models developed using the DSL
can be tested.

One application of the FSM testing technique to DSLs is the development of a speci-
fication FSM of the model (using the DSL) and an implementation FSM of the code
generated from this model. The specification FSM can then be used for correctness

Chapter 2. Testing techniques 21

testing of the implementation FSM, thereby testing if the code is correctly generated
from the model and is consistent with the specifications of the model.

For techniques using the MDE approach, models have to be created (e.g., FSMs), which
results in upfront effort but also better maintainability and reusability.

Behavior-driven development gives the domain expert the option to write test for their
programs, which means the domain knowledge can be directly applied in the testing pro-
cess. Several toolkits are already available that support this testing technique. One way
DSLs can apply BDD techniques is by allowing the domain expert to develop scenarios
(tests) that can be executed to test the domain models.

Web acceptance testing provides the end user with the option to automatically test
web applications, which saves time and money while also improving the maintainability
of tests. A number of tools are already available that support this technique. This
technique can, for example, be applied to DSLs by testing a website that uses DSL
artifacts.

By developing a domain-specific testing language using the concepts of the DSL, this
language can be used to produce, for example, behavior-driven or automated web test
cases. These test cases can then be used to test the code generated from the models
developed using the DSL.

The testing techniques can be applied in different ways to test a domain-specific lan-
guage. A reoccurring application is to test the code generated using the models devel-
oped with the DSL for correctness according to these models. This can be done either in
isolation (unit testing) or by testing the system that uses the generated code (integration
testing). By applying several testing techniques, higher test coverage can be achieved.

Chapter 3

Approach

This chapter introduces the approach taken in this research project and gives an overview
of the developed framework. Section 3.1 discusses the general goals of our testing frame-
work. Section 3.2 explains the transformation chain used to generate the tests from
domain-specific models. Section 3.3 analyses common programming language elements
used by the framework’s generic metamodel in order to support multiple languages.
Section 3.4 explains how domain-specific elements can be incorporated in the generic
metamodel. Section 3.5 gives an overview of the developed framework.

3.1 General development goals

Currently artifacts generated using domain models are often tested using manually de-
veloped tests. These tests are developed by a tester that analyzes the use cases and
the artifacts or the software specification. Manually developing these tests is a time-
consuming activity that requires the tester to have domain and test knowledge. These
tests could be, for example, unit tests. If the tester wants to develop tests of a differ-
ent type, for instance, automated web tests, these new tests again have to be written
manually.

To the best of our knowledge, there is currently no testing framework available that
automatically generates tests for generated artifacts using domain-specific models. Our
goal is to develop this framework, while supporting several languages and different types
of tests. An example: based on the domain-specific model, several Java classes (the
artifacts) are generated. Our framework then generates tests using the same domain-
specific model to verify the correctness of these Java classes. Several types of tests can
be generated using the same domain-specific model such as behavior-driven development
tests or automated web tests.

22

Chapter 3. Framework overview 23

To reach acceptable test coverage, the framework applies several techniques described
in Chapter 2. Since the internal structure and source code of the models is known,
white-box testing techniques are applied. The tests generated by the framework achieve
branch/condition coverage, because this is the strongest technique as described in Sec-
tion 2.2. To successfully achieve branch/condition coverage, test values are generated
based on the model data. The framework also applies model-based testing techniques
by using a developed generic metamodel, the common elements metamodel, to increase
maintainability and flexibility. Next to that, using the metamodel separates the test
generation functionality from the DSL-specific properties. This metamodel elements are
described in more detail in Section 4.1.

The common elements metamodel was developed as an Ecore metamodel, as well as an
implementation consisting of a set of Java classes. Java was used since it is platform-
independent and prior experience was available for this language. One drawback of
using the common elements metamodel in the framework is that the supported types of
domain-specific models and languages is limited. Since the framework uses the branch/-
condition theory to generate tests, it depends on expressions thereby requiring the
domain-specific language to be expression based. Next to that, the majority of the
domain elements have to be transformable to the generic metamodel elements so their
data (e.g., values) can be used for the generation of test values and test cases. Another
requirement is that the domain-specific language should generate some artifacts that
can be tested using the information extracted from the model.

We have aimed to support several language types such as data structure and process
definition languages by focusing on common programming language elements, for in-
stance variables, expressions, arrays and basic primitive types. The properties of these
common elements can however differ depending on the domain, and we focused on data
storage models for the common elements metamodel, since this best matched the models
of the case study.

For the framework to be applied to domain-specific models, domain-specific models
should be mapped to instances of the common elements metamodel. Based on the
assumption that the domain-specific language contains both common language elements
and domain-specific elements, the mapping should support the transformation of both
types of elements. Using this mapping, the domain-specific models can be transformed to
common elements models to be used by the framework to generate test cases. By keeping
the test cases generic, several types of tests, for example, behavior-driven development
tests, can be generated from the same test case.

Chapter 3. Framework overview 24

3.2 Transformation chain

Using the common elements metamodel for the test case generation has one main benefit
and one main drawback:

Benefit: the domain knowledge in the domain models is defined using a domain-specific
language. By transforming this domain model into a common elements model, the frame-
work components can focus solely on test case generation independent of the language,
e.g., its constructs and syntax. This also ensures the test case generator components are
reusable and easily modifiable.

Drawback: the drawback of using a generic representation is that every domain model
has to be transformed to a common elements model and the result of the generated
generic test cases have to be transformed to executable tests for the domain model arti-
facts. Although this allows the generation of different types of tests, it also requires the
user to develop the transformer and test generator. An example of this transformation
is the generation of JBehave tests using the generic test cases, so these tests can be
executed to test the system under test.

Since we rely on a generic metamodel, the usage of the test framework consists of three
phases: generalization, generation and specification. An overview of these three phases
is given in Figure 3.1. The framework components are combined and abstracted into six
components to provide a better overview of the transformation chain.

Figure 3.1: Overview of the transformation chain

Chapter 3. Framework overview 25

Generalization

In the generalization phase, the domain-specific model is transformed to an instance
of the generic metamodel. This is done by recursively traversing the model tree and
transforming each element in the tree. The main requirement of this process is to ensure
all information, like operator precedence, is transformed correctly.

Generation

In the generation phase the framework uses the generic model to generate a set of generic
test cases. Since the test case generator components are based on information in the
generic model, these are independent of the DSL metamodel and therefore reusable.

Specification

In the specification phase, the generic test cases are transformed to executable tests
depending on the choice of test generator. For example, if a JBehave test framework
is used, the generic test cases are transformed to JBehave tests. An important element
here is that, the transformation from generic test cases to tests should result in tests
that refer to the same elements as the domain model.

To summarize, the transformation from domain-specific model to generic model and from
generic test cases to executable tests should not alter or lose any model information.

3.3 Common programming elements

As the testing framework should be usable for a multitude of domain-specific languages,
our framework focuses on supporting elements that are common in programming lan-
guages such as expressions and variables. Domain-specific elements, such as specialized
functions, are also supported, which is achieved using mock functions. Mapping domain-
specific elements is explained in more detail in Section 4.2.2.

Abelson and Sussman [23] define a number of common programming elements:

• Expressions: expressions are used in a large number of programming languages
and consist of operands, for instance numbers, and operators, such as + and *.

• Variables: variables are used to save values and improve readability, which is
useful in many languages.

• Evaluating combinations: most languages can combine different expressions to
build complex structures, thereby improving expressiveness.

Chapter 3. Framework overview 26

• Compound procedures: a common technique for languages to improve modu-
larity and reusability is the ability to define procedures (methods).

• Conditional expressions and predicates: to branch during execution, most
languages support conditional expressions and predicates (if-else, switch, etc.).

Even though variables and compound procedures are not essential for a language as
they can be replaced with duplicate code, they do improve attributes like reusability
and maintainability. Variables, expression combinations and compound procedures are
abstract concepts, but for (conditional) expressions, consisting of operands and opera-
tors, we had to determine a set of common constructs to support.

3.3.1 Common language specification

The set of common (conditional) expressions must be rich enough to support several
domain-specific languages. According to ECMA International [24], the Common Type
System “establishes a framework that enables cross-language integration, type safety,
and high performance code execution”. There is also the Common Language Specifica-
tion (CLS) which is defined as “a set of rules intended to promote language interoper-
ability”. It specifies a subset of the CTS type system and a number of usage conventions.
According to ECMA International [24], “frameworks will be most widely used if their
publicly exposed aspects (classes, interfaces, methods, fields, etc.) use only types that
are part of the CLS and adhere to the CLS conventions”. The testing framework sup-
ports a subset of the CLS since the framework focuses on domain-specific languages used
for data storage.

3.3.2 Common operands

The defined CLS data types are given in Table 3.1. An additional column is added that
specifies whether the test framework supports the data type.

In the generic metamodel, numeric values are represented using a Java double (double-
precision 64-bit IEEE 754 floating point1). When a domain-specific language defines
several numeric types, e.g., float, integer or double, these types are mapped to a Java
double. An double was used since it is a primitive Java type meaning it is a predefined
Java type with a specific keyword. Primitive types are not dependent on third-party
software, e.g., libraries and they are often supported in other software (for example

1https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Chapter 3. Framework overview 27

model transformation languages like ATL2), thereby increasing the reusability of the
metamodel elements. Characters are represented as Strings in the framework for the
same reason. Since the supported data types are setup in a modular way, new types can
be added without much effort or affecting existing types.

Table 3.1: Common Language Specification data types

Data Type Description Support
bool True/false value Supported
char Unicode 16-bit char. As String
object Object or boxed value type Unsupported
string Unicode string Supported
float32 IEC 60559:1989 32-bit float As double
float64 IEC 60559:1989 64-bit float As double
int16 Signed 16-bit integer As double
int32 Signed 32-bit integer As double
int64 Signed 64-bit integer As double
native int Signed integer, native size As double
unsigned int8 Unsigned 8-bit integer Unsupported

3.3.3 Common operators

The CLS unary operators are given in Table 3.2, while the CLS binary operators are
given in Table 3.3. Again an additional column is added that specifies whether the test
framework supports the operator. When an operator has the ‘Supported indirectly’ tag,
its function can be achieved by a workaround. The framework focuses on higher level
operations due to the scope of supported languages, thereby excluding byte operations.
However, these elements can also be added without much effort due to the modular
setup of the framework.

Table 3.2: Common Language Specification unary operators

Name ISO C++ operator symbol Support
op_Decrement Similar to - - Supported indirectly
op_Increment Similar to++ Supported indirectly
op_UnaryNegation - (unary) Supported
op_UnaryPlus + (unary) Supported
op_LogicalNot ! Supported
op_True Not defined Unsupported
op_False Not defined Unsupported
op_AddressOf & (unary) Unsupported
op_OnesComplement ∼ Unsupported
op_PointerDereference * (unary) Unsupported

2https://eclipse.org/atl/

Chapter 3. Framework overview 28

Table 3.3: Common Language Specification binary operators

Name ISO C++ operator
symbol

Support

op_Addition + (binary) Supported
op_Subtraction - (binary) Supported
op_Multiply * (binary) Supported
op_Division / Supported
op_Modulus % Supported
op_ExclusiveOr ^ Unsupported
op_BitwiseAnd & (binary) Unsupported
op_BitwiseOr | Unsupported
op_LogicalAnd && Supported
op_LogicalOr | | Supported
op_Assign = Supported
op_LeftShift « Unsupported
op_RightShift » Unsupported
op_SignedRightShift Not defined Unsupported
op_UnsignedRightShift Not defined Unsupported
op_Equality == Supported
op_GreaterThan > Supported
op_LessThan < Supported
op_Inequality != Supported
op_GreaterThanOrEqual >= Supported
op_LessThanOrEqual <= Supported
op_UnsignedRightShiftAssignment Not defined Unsupported
op_MemberSelection -> Unsupported
op_RightShiftAssignment »= Unsupported
op_MultiplicationAssignment *= Supported indirectly
op_PointerToMemberSelection ->* Unsupported
op_SubtractionAssignment -= Supported indirectly
op_ExclusiveOrAssignment ^= Unsupported
op_LeftShiftAssignment «= Unsupported
op_ModulusAssignment %= Unsupported
op_AdditionAssignment += Supported indirectly
op_BitwiseAndAssignment &= Unsupported
op_BitwiseOrAssignment |= Unsupported
op_Comma , Unsupported
op_DivisionAssignment /= Supported indirectly

Chapter 3. Framework overview 29

3.3.4 Common conditionals

There are several conditional expressions and predicates available. Some common con-
structs:

• If–then(–else)

• Else-if

• Case statements

• Switch statements

The framework currently only supports the if–then(–else) construct, since it achieves the
branching functionality. Although the other constructs do not provide new functionality,
these can be added to the framework without major efforts if the user requires them.

3.4 Domain-specific elements

Since DSLs can have domain-specific elements and users would want to test these ele-
ments, the testing framework should support some way of mapping the domain-specific
elements to generic metamodel elements. The problem is however that since the elements
are domain-specific, their nature and properties can be diverse making the mapping to
the supported generic metamodel element (discussed in Section 4.1) problematic and
complex. To provide the user with the option of testing domain-specific elements, while
keeping the framework generic, the GenericFunction element was defined.

This element is a collection with entries consisting of inputs and their corresponding
outputs, thereby mocking/simulating a common function/method structure supporting
multiple inputs and one output. This structure was chosen since it provides a frequently
used functionality that can serve a broad range of purposes. The inputs act as keys for
the outputs and are defined as lists of the generic metamodel base type, called Gener-
icAbstractElement. Outputs are defined as singular elements, also of type GenericAb-
stractElement. The user can define their GenericFunction element in the transformer
component of the framework, which maps the domain-specific elements to the generic
elements. If, for example, the domain model contains a complex and CPU intensive
formula that takes two numbers and returns one number, this formula can be mocked
using a GenericFunction element with a list entry of two inputs and one output. Using
the GenericFunction element also simplifies the testing process since the formula is seen
as a black-box.

Chapter 3. Framework overview 30

When the domain-specific elements cannot be mapped to any of the supported generic
elements, the user can extend the generic metamodel by defining and implementing their
own elements, as long as they inherit from GenericAbstractElement. This does however
require the user to also extend the other framework components to cope with the new
type of element.

3.5 Solution overview

A graphical overview of the developed framework and its components is given in Figure
3.2. External (user or third-party) components are filled gray, while the internal frame-
work components are not filled. Components with a gray border are input and output
components, while components with black border are framework functionality compo-
nents. Next, each component of the framework is discussed shortly. The framework
components are explained in more detail in the remainder of this report.

Figure 3.2: Overview of the testing framework

• Domain-specific language

The domain-specific language used to develop the models.

• Model

The model is an instance of the language. It describes the domain-specific elements
used to generate the domain artifacts and tests. These elements are mapped to
the generic model elements.

Chapter 3. Framework overview 31

• Artifact generator

The artifact generator is a user-defined component that transforms the model ele-
ments to artifacts. One possible function of an artifact generator is the generation
of Java classes based on the model elements.

• Artifacts

The artifacts generated by the artifact generator can be text files (e.g., Java
classes), images, etc., depending on the chosen generator.

• System

The system component describes a system under test. This system uses the gen-
erated artifacts, thereby indirectly testing the model. This system can be, for
example, an engine or website. Based on the system, the testing level can be cho-
sen. An engine could test the domain artifacts on a unit level, while a website
could test the artifacts on an integration level.

• Transformer

The transformer component transforms the domain model to a common elements
model. This is done by transforming the domain model elements to generic model
elements.

Our framework focuses on supporting the common language elements, described
in Section 3.3. Domain-specific elements similar to these elements can easily be
mapped and transformed to the generic elements. A transformation language was
developed for defining a mapping from domain elements to generic elements for a
subset of the supported common elements. The result of this mapping is a simple
transformer class, which can then be extended for the remaining elements.

For domain-specific elements that are not captured by the generic metamodel, the
user can extend the generated transformer class by defining their own mapping to
the GenericFunction element. Another option is to add elements to the generic
metamodel and update the transformer class to use this new element.

• Generic model

The generic common elements model is used as the basis for the generation of test
cases. By using this generic model, the value generator and case generator could
be developed independent of the used language. This improves the flexibility and
maintainability of the framework.

• Value generator

The value generator is used to generate test values for the unassigned variables
(variables without a value) in the generic model, thereby creating the different

Chapter 3. Framework overview 32

test cases. This component traverses the generic model elements and calculates
the possible values for the unassigned variables to create test cases that accomplish
branch/condition coverage.

• Test values

Based on the elements in the model, the value generator outputs the test values
for the unassigned variables in the model. These values are then provided as input
for the case generator.

• Case generator

The case generator takes the generic model and map of possible values for the
unassigned variables and combines these two items into a list of generic test cases.
A generic test case represents a unique combination of values for the unassigned
variables.

• Test cases

A test case consists of two list describing the preconditions and postconditions.
By using a generic representation for the conditions, different kinds of test can
be generated using the same test case. A precondition consists of a variable and
a value, thereby describing the assignment of the test value to the variable. A
postcondition describes a variable or function and a value, thereby describing the
assertion of a variable/function and its value/result.

• Test generator

The test generator uses the generic test cases to develop tests. Different test
generators can be used to generate different kinds of tests. Examples of tests
that can be generated are: unit tests, behavior-driven development tests and web
acceptance tests.

• Tests

The output of the test generator is the set of tests that can be executed by the
testing framework.

• Test framework

The testing framework executes the generated tests to test the system under test,
which uses the artifacts generated by the artifact generator. The choice of testing
framework depends on the chosen test generator. Examples of frameworks are
JBehave and Selenium.

Chapter 4

Common elements metamodel

This chapter discusses the common elements metamodel, the mapping process and the
framework options. Section 4.1 discusses the generic metamodel developed as language-
independent component used for test case generation. Section 4.2 explains the mapping
from domain-specific model to generic model. Section 4.3 identifies the options provided
by the framework, for example, to generate test cases and JBehave stories.

4.1 Model definition

Figure 4.1 shows an overview of the elements and the relations in the common elements
metamodel.

To represent domain-specific model elements independent of properties like syntax or
operator precedence, these elements are transformed to common element instances so
they can be further processed. Each common element is shortly discussed below, using
the developed Java class that serves as the implementation of the metamodel. Every
class has a toString() method to print its value, a clone() method to duplicate itself, a
hashCode() method and an equals() method that are self-explanatory and will therefore
not be discussed here.

• GenericAbstractElement: an interface used as a generalization for the types
of elements.

• GenericNumber: used to represent numeric values. This class contains a private
double that is set at initialization. This value can be retrieved and altered.

• GenericString: used to represent text values. This class contains a private String
that is set at initialization. This value can be retrieved and altered.

33

Chapter 4. Common elements metamodel 34

Figure 4.1: Overview of the common element metamodel

Chapter 4. Common elements metamodel 35

Figure 4.2: GenericAbstractElement interface

Figure 4.3: GenericNumber class

Figure 4.4: GenericString class

• GenericBoolean: used to represent Boolean values. This class contains a private
Boolean that is set at initialization. This value can be retrieved and altered.

Figure 4.5: GenericBoolean class

• GenericNull: used to represent null values. This class contains only a String
attribute to define the textual representation of the GenericNull.

• GenericParenthesizedElement: used to represent parenthesized elements. The
class contains a private GenericAbstractElement that is set at initialization and
can only be retrieved.

Chapter 4. Common elements metamodel 36

Figure 4.6: GenericNull class

Figure 4.7: GenericParenthesizedElement class

• GenericAbstractVariable: abstraction used to represent different types of vari-
ables. The class contains a private String to represent the name of the variable.
Next to that, several abstract methods are defined to get and set the variable
value, to be implemented using the specific requirements of the different types of
variables.

Figure 4.8: GenericAbstractVariable class

• GenericVariable: subtype of GenericAbstractVariable used to represent vari-
ables with a single value. The class contains a private GenericAbstractElement to
represent its value. This value is set at initialization and can be retrieved. When
no value is given, the variable is initialized using a GenericNull.

• GenericArrayVariable: subtype of GenericAbstractVariable used to represent a
variable consisting of an array of values. This class contains a private GenericAb-
stractElement array to hold the values of the array and a GenericAbstractElement
to represent the default value. The array, the default value and the length of the
array are set at initialization and can be retrieved. Elements can also be retrieved

Chapter 4. Common elements metamodel 37

Figure 4.9: GenericVariable class

and set by index. A new default value can be set, which only alters the values
in the array that equal the current default value. If no default value is given at
initialization, a GenericNull is used.

Figure 4.10: GenericArrayVariable class

• GenericListVariable: subtype of GenericAbstractVariable used to represent
variable consisting of a list of values. This class contains a private GenericAb-
stractElement list to hold the values of the list and a GenericAbstractElement to
represent the default value. The list, the default value and the initial length of the
list are set at initialization and can be retrieved. Elements can also be retrieved
and set by index. A new default value can be set, which only alters the values in
the list that equal the current default value. If no default value is given at ini-
tialization, a GenericNull is used. The GenericListVariable has a variable length
and provides methods to add and remove an element to/from the list of values,
thereby providing additional functionality relative to the GenericArrayVariable.

• GenericAbstractVariableReference: used to represent variable references. This
class contains a private GenericAbstractVariable that is set at initialization and
can be retrieved.

Chapter 4. Common elements metamodel 38

Figure 4.11: GenericListVariable class

Figure 4.12: GenericAbstractVariableReference class

• GenericAbstractVariableIndexReference: used to represent a reference to a
specific element of an abstract variable that contains multiple values. The specific
value is selected using an index. This class contains a private GenericAbstract-
Variable and GenericAbstractElement index that is set at initialization and can
be retrieved.

Figure 4.13: GenericAbstractVariableIndexReference class

• GenericContainer: used to represent containers. This class contains a private
list with elements of type GenericAbstractElement. This list is set at initialization
and can be retrieved. When no list is given in the constructor, an empty list is
initialized. Next to that, there are methods to add an element to the list, remove
an element using an index and retrieve an element using an index.

Chapter 4. Common elements metamodel 39

Figure 4.14: GenericContainer class

• GenericUnaryExpression: used to represent unary expressions. This class con-
tains a private GenericAbstractElement to represent the expression and a Generi-
cUnaryOperator to represent the unary operation to be applied to the expression.
These values are set at initialization and can be retrieved.

Figure 4.15: GenericUnaryExpression class

• GenericUnaryOperator: enumeration used to define the supported unary op-
erators used by the GenericUnaryExpression elements. Each enumeration literal
consists of a name, description and representation symbol. Supported unary op-
erators are: negation (!), positive (+), negative(−).

Figure 4.16: GenericUnaryOperator enumeration

Chapter 4. Common elements metamodel 40

• GenericBinaryExpression: used to represent binary expressions. This class
contains two private GenericAbstractElements to represent the child expressions
and a GenericBinaryOperator to represent the binary operation to be applied to
the expressions. These values are set at initialization and can be retrieved.

Figure 4.17: GenericBinaryExpression class

• GenericBinaryOperator: enumeration used to define the supported binary op-
erators used by the GenericBinaryExpression elements. Each enumeration literal
consists of a name, description and representation symbol. Supported binary oper-
ators are: multiplication (∗, /, %), addition (+, −), comparison (<=, <, >, >=),
equality (==, ! =), logical AND (&&), logical OR (||) and the modulo operator
(%).

Figure 4.18: GenericBinaryOperator enumeration

Chapter 4. Common elements metamodel 41

• GenericConditional: an interface used as a generalization for the types of con-
ditionals. It extends the GenericAbstractElement interface.

Figure 4.19: GenericConditional class

• GenericIfConditional: used to represent if–then(–else) constructs. This class
contains a String to represent the name of the construct, and three GenericAb-
stractElements to represent the condition, if-clause and else-clause. These values
are set at initialization and can be retrieved. When no else-clause is given, a
GenericNull is used for this element. The class also contains a method to check
whether the construct has an else-clause.

Figure 4.20: GenericIfConditional class

• GenericFunction: used to represent functions and mock domain-specific ele-
ments. This class contains a private String to represents the name of the function
and a map where the keys consists of lists with type GenericAbstractElement to
allow multiple inputs. The values are of type GenericAbstractElement, so only
singular return values are allowed. These values are set at initialization and can
be retrieved. A new map can be set, the current map can be updated with entries
and values can be retrieved and removed given a key.

Additional functions can be implemented by extending this base class and over-
riding the getValue(List) method.

• GenericFunctionReference: used to represent a reference to a specific input
choice of a function. This class contains a private GenericFunction and a list of
GenericAbstractElements acting as key for the GenericFunction. Both elements
are set at initialization and can be retrieved.

Chapter 4. Common elements metamodel 42

Figure 4.21: GenericFunction class

Figure 4.22: GenericFunctionReference class

4.2 Mapping

Since test case generation is based on a generic model, the domain-specific elements
have to the transformed to the discussed supported elements. Since this framework was
developed using the Xtext framework1, a Xtext conformable method of transforming the
domain elements is described. This is done using a transformer Xtend2 class. Xtend is
a dialect of Java, which compiles into readable Java 5 compatible source code. A Java
class could also be generated, but this class would contain more boilerplate code. The
user can also choose for another way of using a transformer class to obtain the generic
elements given the domain elements, or exclude the transformer component and obtain
the generic elements using model transformations.

When a domain-specific model file developed using the Xtext framework is saved the
doGenerate(Resource, IFileSystemAccess) method of a generated Xtend class is called
using an Eclipse Modeling Framework (EMF) Resource object3 containing the domain-
specific elements. The generated Xtend class can be extended with the functionality to
forward the elements of the EMF Resource object to the developed transformer, which

1https://eclipse.org/Xtext/
2https://eclipse.org/xtend/
3org.eclipse.emf.ecore.resource.Resource

Chapter 4. Common elements metamodel 43

then transforms the elements to generic elements and return them. The generated Xtend
class can then use these generic elements to generate different types of tests by calling
the desired testing framework method.

To reduce the workload of developing a transformer class, a DSL was developed that
allows the user to define a mapping from the domain-specific elements to a subset of
the generic elements, resulting in a generated transformer Xtend class. If the mapping
DSL does not support specific elements or structures of the domain model, the users
have the option to define their own transformation methods for these elements by ex-
tending the generated transformer class or write a transformer class from scratch. Since
the elements of domain-specific languages can be diverse, the mapping DSL focuses on
supporting unary and binary expressions and common literals as these elements are
consistent among languages.

4.2.1 The mapping DSL

Mapping
The documented mapping DSL grammar is given in Appendix A. To illustrate the func-
tion of the mapping DSL, a short snippet of a demo mapping is discussed here. The
result of each mapping model is a generated transformer Xtend class that transforms
domain-specific elements to generic elements. The package declaration of the resulting
transformer class and the required imports, such as domain-specific elements, can be
defined in the mapping model and are copied to the resulting transformer class (Demo-
Transformer).

Listing 4.1 gives an example mapping that maps multiplicative expressions and numbers
to their generic counterpart, GenericBinaryExpression and GenericNumber respectively.

1 Grammar Demo

3 MainType DemoExpression

5 Type BinaryExpression

7 Type IntConstant

9 MAP Binary Expression BinaryExpression with leftChildMethod = left

operatorMethod op returns BinaryOperator . MULTIPLY

11 rightChildMethod = right

to type Multiplication ;

13

MAP Literal IntConstant to type NUMBER using operation value ;

Listing 4.1: DemoMapping defining the mapping that generates the
DemoTransformer Xtend class

Chapter 4. Common elements metamodel 44

The first line of the mapping defines the name of the grammar (Demo), which is used
to name the resulting Xtend class.

In line 3 the MainType of the elements is defined, based on the assumption that a
generalization is used to define the elements. This MainType is mapped to the Generi-
cAbstractElement type.

After defining the main type, the different subtypes are defined in lines 5 and 7, using
‘Type’ plus the name of the subtype. These subtypes are used as the target subtypes
provided during the definition of subsequent element mappings.

Line 9 till 12 describes an example binary mapping. After the keyword ‘MAP Binary
Expression’ the name of the subtype should be given and, as stated, only defined sub-
types are accepted. Since binary expressions have two child expressions and an operator,
these elements have to be defined. The child expressions are defined by specifying the
methods to get the children from the binary expression, while the operator is defined by
specifying the method to get the operator and the resulting binary operation. In this
case, op() is the method to retrieve the operator from the binary expression and Bina-
ryOperator.MULTIPLY is the binary operation. The binary operations of the example
DSL are defined in the DSL using an enumeration. Finally the user specifies one of the
supported GenericBinaryOperators to be used as the operator in the GenericBinaryEx-
pression. The supported GenericBinaryOperators are defined as an enumeration in the
grammar.

Line 14 describes an example literal mapping. The name of the target type is again one
of the subtypes defined in the mapping. The target type is a LiteralTarget, which is
again defined in the grammar as an enumeration, and the operation should specify the
method to extract the value from the DSL literal object.

This mapping is then used to generate a transformer Xtend class file, which transforms
the domain-specific elements to the generic elements. To illustrate this functionality a
DemoTransformer is discussed next.

Transformer
Listing 4.2 describes the DemoTransformer Xtend class, which transforms Demo ele-
ments (DemoExpression objects) to generic elements (GenericAbstractElement objects),
so these elements can be used in the framework to generate test cases.

Chapter 4. Common elements metamodel 45

1 public class DemoTransformer {

3 def GenericAbstractElement transform (DemoExpression element){

if(element instanceof BinaryExpression){

5 transform (element as BinaryExpression)

}

7 else if(element instanceof IntConstant){

transform (element as IntConstant)

9 }

else {

11 throw new Exception (" Transformer encountered unsupported Expression

type: " + expression);

}

13 }

15 def GenericBinaryExpression transform (BinaryExpression expression){

if(expression .op. equals (BinaryOperator . MULTIPLY)){

17 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . MULTIPLICATION)

}

19 else {

throw new Exception (" Transformer encountered unsupported

BinaryOperator type: " + expression . operator)

21 }

}

23

def GenericNumber transform (IntConstant expression){

25 return new GenericNumber (expression . value);

}

27

}

Listing 4.2: Generated DemoTransformer Xtend class which transforms
DemoExpression objects to GenericAbstractElement objects

The class starts with a method (line 3 till 13) to transform the different types of demo
expressions (e.g., binary expressions) by exploiting polymorphism, based on the types
defined in the mapping file. When an unsupported type is encountered, an exception is
thrown.

Since the demo mapping specifies one binary expression operation (multiplication), the
method to transform binary expressions (line 15 till 22) only has one if-clause and no
else-if clauses. The method’s function is to transform the BinaryExpression to a Gener-
icBinaryExpression while also transforming the child expressions. When an unsupported
binary operator is encountered, an exception is thrown.

IntConstants are transformed (line 24 till 27) by creating a GenericNumber with the
value of the expression.

Chapter 4. Common elements metamodel 46

4.2.2 Mapping domain-specific elements

As previously addressed, domain-specific elements can either be mapped to the generic
elements, simulated using the GenericFunction element or mapped to a newly developed
element. If the generic metamodel is extended with a new element, the transformer
can also use this new element as mapping target type. To illustrate the latter two
options, the following code snippet is given in Listing 4.3. This snippet is defined in the
transformer Xtend class.

def void instantiateFunctions (){

2

// Define new function

4 var GenericFunction demoFunction = new GenericFunction (" demoFunction ");

6 // Define input sequence one

var List < GenericAbstractElement > input1 = new ArrayList <

GenericAbstractElement >();

8 input1 .add(new GenericString ("Foo"));

input1 .add(new GenericNumber (20));

10

// Define input sequence two

12 var List < GenericAbstractElement > input2 = new ArrayList <

GenericAbstractElement >();

input2 .add(new GenericString ("Bar"));

14 input2 .add(new GenericNumber (30));

16 // Add input sequences and their result to the function

demoFunction . insertEntry (input1 , new GenericBoolean (true));

18 demoFunction . insertEntry (input2 , new GenericBoolean (false));

20 // Add the function to the list of supported functions

functions .put(" demoFunction ", demoFunction);

22 // Add an externally define function type to the list of supported functions

functions .put("Abs", AbsFunction ());

24 }

Listing 4.3: Example of defining functions in the transformer Xtend class

The GenericFunction element with name demoFunction, instantiated in line 3 and filled
with entries in line 14 and 15, simulates a domain element that returns true when the
inputs Foo and 20 are given, and returns false when the inputs Bar and 30 are given.

This functionality is achieved by creating two input lists and filling these list with the
parameters of type GenericAbstractElements (or subtype). These input lists are then
used in the insertEntry(List, GenericAbstractElement) method that adds a key-value
pair to the GenericFunction element, where the value represents the output for the
specific input.

Chapter 4. Common elements metamodel 47

The user can also define their own functions by extending the GenericFunction class. In
the snippet the function AbsFunction was developed, which returns the absolute value
of a number. This new function can then be added to the map of functions in the
transformer using an String key that acts as the identifier.

4.2.3 Example artifacts

In Appendix B, a grammar is given of a developed DSL called Precedence. This language
was originally developed to show that models and languages with different operator
precedence could be transformed, but was later extended to act as a testing language
for the framework. Models of this language can be successfully transformed to com-
mon element models using the transformer given in Appendix C. The grammar and
transformer can be used as examples for the development of future transformers.

4.3 Framework options

Having achieved a generic representation for the language elements, these generic ele-
ments can be used in the framework to create test cases and executable tests. To provide
the user with a clear overview of all the options available in the framework, the Gener-
icOptions Java class was developed. A visual representation of this class is shown in
Figure 4.23.

Figure 4.23: GenericOptions Java class

Chapter 4. Common elements metamodel 48

It provides the following methods:

• transformObject(Object) transforms a Java Object to a GenericBoolean, Generic-
Number, GenericString, GenericAbstractElement array or GenericNull

For the evaluation of expressions, the JavaScript engine eval(String) method is
used, which is explained in more detail in Chapter 5. The result of this eval(String)
method is a Java Object. The transformObject(Object) method tries to parse
the Object to a GenericBoolean, GenericNumber, GenericString or GenericAb-
stractElement array so it can again be used by the framework components. If this
fails, the method returns a GenericNull. Additional result types can be added
without major efforts.

• generateString(GenericAbstractElement) generates a String representation for a
GenericAbstractElement

Transforms a GenericAbstractElement to a String so it can be evaluated by the
eval(String) method of the JavaScript engine.

• evaluateString(String) evaluates a String using the eval(String) method of the
JavaScript engine and return the Java Object

Before the expressions in the generic model can be evaluated by the eval(String)
method of the JavaScript engine, these expressions first need to be translated to
String format. The JavaScript method returns a Java Object with the evaluated
value.

• evaluateElement(GenericAbstractElement) evaluates a GenericAbstractElement and
return the Java Object

This method transforms the GenericAbstractElement to a String using the method
generateString(GenericAbstractElement) and then calls the method evaluateString(String).

• evaluate(GenericAbstractElement) evaluates a GenericAbstractElement and return
a GenericAbstractElement

This method does the same as the method described before but also parses the
resulting Java Object using the transformObject(Object) method.

• generateValues(List) generates a map of variables and values for a list of Generi-
cAbstractElements

This map defines the values of the variables that are used to generate test cases.
The values are determined so that branch/condition coverage is achieved with the
resulting set of test cases.

Chapter 4. Common elements metamodel 49

• generateCases(List) generates test cases for a list of GenericAbstractElements

Using the generic model and the map of values, this options generates a list of
GenericCase elements that define the pre- and postconditions of the tests. These
are setup generically so they can easily be converted to different kinds of tests.

• generateStory(List, String) generates a JBehave story in String format for a list of
test cases and the DSL name

Transforms a list of generic test cases to a JBehave story. The DSL name is used
to choose the correct test case to executable test transformer.

• generateSelenium(List, String, String) generates a Selenium test in String format
for a list of test cases, the DSL name and the file name

Transforms a list of generic test cases to a Selenium test. The DSL name is used
to choose the correct test case to executable test transformer.

Chapter 5

Case generation

This chapter discusses the evaluation of expressions, and how this is used in test case
generation. Section 5.1 discusses how expressions are evaluated in the framework. Sec-
tion 5.2 discusses how expression evaluation is used to generate values for test cases.
Section 5.3 discusses how these values are used to develop cases. Section 5.4 describes
an example to illustrate the process from domain model to value and case generation.

5.1 Expression evaluation

After the expressions and elements defined in the domain-specific models are transformed
to generic elements, these elements can be used by the framework to generate test cases.
To achieve branch/condition coverage, test values need to be generated to construct all
test cases. For the generation of test values, the generic elements, such as expressions,
need to be evaluated. Since the values used in the expressions and the evaluated expres-
sion values are determined during run-time, the framework requires dynamic evaluation
of expressions. There are several ways to dynamically evaluate expressions in Java, of
which three are discussed here.

1. Dynamic compilation, instantiation and execution of Java classes

A flexible, yet complicated approach is to wait with the compilation of the expres-
sion classes until the required values are determined. After assigning the values,
compile and load the class to evaluate the expression.

50

Chapter 5. Case generation 51

2. Evaluate expressions using Java libraries

There are numerous libraries available that evaluate expressions in Java. Examples
are: JEXL1 and exp4j2. Each library has its own approach to evaluate expressions
and supports different operators.

3. Evaluate expressions using scripting engines

Instead of using a library, expressions can also be evaluated using a scripting
engine. The JavaScript engine is by default included in the Java Virtual Machine,
but other scripting engines are also supported. For the JavaScript engine approach,
the expressions are transformed to a String representation and used as input in
the JavaScript eval(String) method. This method evaluates the String and returns
a Java Object with the evaluated value.

We have chosen to transform the expressions into Strings and evaluating these Strings
using the eval(String) method of the JavaScript engine, since this method does not re-
quire third-party libraries and is straightforward to implement. One important aspect
of this approach is that the String representation must correctly represent the Generi-
cAbstractElement object and the original (domain-specific) element.

5.1.1 Expression trees

Algebraic expressions have an inherent tree-like structure, and can be represented as
trees, called expression trees. The operators of the expression form the non-terminal
nodes of the tree, while the variables and constants form the terminal nodes, also called
leafs. Parentheses presented in the expression can be omitted in the tree, since the
operator precedence can be derived from the structure of the tree. The child nodes are
executed first and therefore have a higher precedence than the parents.

As domain-specific models are often converted to an Abstract Syntax Tree (AST),
thereby representing the expressions as trees, one way of transforming the expressions
to a String is by traversing the tree while transforming each node. An important ele-
ment to note here is that the (implicit) parenthesis can be omitted in the AST since the
tree structure already defines the order. This can cause incorrect operator precedence
after conversion, resulting in incorrect outputs for the tests. To cope with this problem,
parentheses are added to each expression in the tree during the transformation pro-
cess, thereby separating operator precedence from the evaluation process. This makes

1http://commons.apache.org/proper/commons-jexl/
2http://www.objecthunter.net/exp4j/

Chapter 5. Case generation 52

sure the expressions are evaluated in the right order, thereby maintaining the correct
precedence. An example is given next.

Given the expression
2 ∗ 3 + 4

and two languages, language A and language B, with A prioritizing multiplication over
addition while B prioritizes addition over multiplication.

In this example the tree of language A is structured as shown in Figure 5.1.

+

4∗

2 3

Figure 5.1: Binary tree of the expression 2 ∗ 3 + 4 with priority on multiplication

In contrast, the tree of language B is structured as shown in Figure 5.2.

∗

2 +

3 4

Figure 5.2: Binary tree of the expression 2 ∗ 3 + 4 with priority on addition

Since we omitted the parenthesis in these expression trees, these have to be added
when transforming the tree to the String representation to correctly preserve operator
precedence. To retrieve a String representation of the expression trees we use an inorder
traversal of the expression described in Preiss [25] as:

Chapter 5. Case generation 53

• When encountering a terminal node (leaf), return the String representation.

• When encountering a non-terminal node, do the following:

1. Return a left parenthesis; and then

2. traverse the left subtree; and then

3. return the root String representation; and then

4. traverse the right subtree; and then

5. return a right parenthesis.

Using this method, the expression of language A is represented in String format as:

((2.0 ∗ 3.0) + 4.0)

which results in 10 when evaluated.

And the expression of language B is represented in String format as:

(2.0 ∗ (3.0 + 4.0))

which results in 14 when evaluated.

The example shows that this method can evaluate expressions correctly taking into con-
sideration the operator precedence of the language. The method is used to setup a
generic expression representation that can support different language operator prece-
dences.

5.1.2 String transformation

To transform the GenericAbstractElements to a String, the class GenericStringGenerator
was developed. The objective of the class is to transform a GenericAbstractElement to
a String representation, ready to be evaluated by the eval(String) method of JavaScript.
The result is achieved by using polymorphism and transforming each element recursively
to its String representation. The goal of the transformation is that the result String can
be correctly evaluated using the JavaScript eval(String) method, while still representing
the same information as the original expression. The class GenericStringGenerator is
shown in Figure 5.3.

The string generator algorithm is given as pseudo code in Algorithm 1, and a snippet of
the GenericStringGenerator code is shown in Listing 5.1.

Chapter 5. Case generation 54

Figure 5.3: GenericStringGenerator class

Algorithm 1 String generator algorithm
1: procedure Transform(GenericAbstractElement element)
2: Use polymorphism to forward element
3: if element instanceof literal then . literal = Number, String, Boolean, etc.
4: return element.toString()
5: else
6: return syntax + Transform(element.children()) . syntax = (,), -, !, etc.
7: end if
8: end procedure

public class GenericStringGenerator {

2

public String transform (GenericAbstractElement element) {

4 String value = " String generator encountered unsupported type: " +

element ;

if (element instanceof GenericBinaryExpression) {

6 return transform ((GenericBinaryExpression) element);

}

8 else if (element instanceof GenericNumber) {

return "" + ((GenericNumber) element). getValue ();

10 }

return value ;

12 }

14 public String transform (GenericBinaryExpression bE) {

return "(" + transform (bE. getLeft ()) + bE. getOperator (). getSymbol () +

transform (bE. getRight ()) + ")";

16 }

}

Listing 5.1: GenericStringGenerator used to transform the GenericAbstractElements
to Strings

Chapter 5. Case generation 55

The class uses polymorphism to differentiate between the subtypes of GenericAbstractEle-
ment. GenericBinaryExpressions are transformed to Strings using the method trans-
form(GenericBinaryExpression bE) starting at line 14. The String representation is
obtained using the same method described earlier.

1. Start with a left parenthesis; and then

2. parse the left child expression; and then

3. add the binary operator; and then

4. parse the right child expression; and then

5. add a right parenthesis.

As previously mentioned, parenthesis are added to maintain the correct operator prece-
dence. An example that shows that precedence is correctly maintained.

Given again the two languages A and B, with A prioritizing multiplication over addition
while B prioritizes addition over multiplication and the expression:

if(30 > (4 + 4 ∗ 5), 2, 3)

.

The generator produces the following String for language A:

if(30 > ((4 + (4 ∗ 5))))2 else 3

which results in 3 when evaluated.

And for language B:
if(30 > (((4 + 4) ∗ 5)))2 else 3

which results in 2 when evaluated.

With this example, we show that the original expression and operator precedences are
maintained.

Chapter 5. Case generation 56

5.1.3 String evaluation

As explained in Section 5.1, we have chosen to evaluate the expressions as Strings using
the eval(String) method of the JavaScript engine. The GenericOptions class provides the
user with several options/methods to evaluate a GenericAbstractElement. Listing 5.2
shows the default method, which accepts String parameters and returns a Java Object.

1 public Object evaluateString (String element){

// Setup engine manager

3 ScriptEngineManager manager = new ScriptEngineManager ();

// Setup JavaScript engine

5 ScriptEngine engine = manager . getEngineByName ("js");

// Try to evaluate the String object

7 try {

return engine .eval(element);

9 } catch (ScriptException e) {

System .err. println (" Exception while evaluating expression ");

11 e. printStackTrace ();

}

13 return " Evaluation Exception ";

}

Listing 5.2: evaluateString(String) method used to evaluate transformed
GenericAbstractElements using the JavaScript engine

There are also methods that have a GenericAbstractElement as parameter and return
a Java Object or a GenericAbstractElement. In the latter case, instead of returning
a Java Object, we parse the Java Object using the transformObject(Object) method to
a GenericAbstractElement (currently supported types are: GenericBoolean, Generic-
Number, GenericString, GenericAbstractElement array or GenericNull) and return this
element.

5.2 Value generation

Having the option to evaluate expressions, the value generator could be developed. Its
purpose is to generate values for the variables in an expression that do not have a value
assigned yet, so that when the expression is tested with all generated values, branch/-
condition coverage is achieved. The class GenericValueGenerator was developed for
this functionality. To generate the values, the user should call the generateValues(List)
method of the GenericOptions class, which takes a list of generic elements (the trans-
formed model elements) as parameter. This method returns a map consisting of variables
and their possible values. Its only function is to call the GenericValueGenerator for each
element in the list of generic elements and add that result to the result list. The class
GenericValueGenerator is shown in Figure 5.4.

Chapter 5. Case generation 57

Figure 5.4: GenericValueGenerator class

To reach branch/condition coverage, each branch and condition needs to be evaluated.
Applying this theory to the supported elements means the if and else clause of each
if-then(-else) construct has to be evaluated and each conditional expression has to be
evaluated to true and false. Since the if and else clause are evaluated when the condition
of the if-then(-else) construct is evaluated to true and false, the framework can focus
on conditional expressions. The variable conditional expressions, expressions being able
to evaluate in true and false, supported by the framework are binary expressions with
a comparison or equality operator. When the binary expression contains a comparison
operator the data type of both sub-expressions must be number or unary expression
for it to be a valid expression (evaluable by the JavaScript engine), while the equality
operator can be applied regardless of sub-expression data type.

The check(GenericAbstractElement) method of the generator checks each element for
its data type and uses polymorphism to forward the element until a binary expression
is encountered. If this happens, the operator of the binary expression is compared
to the supported comparison and equality operators. If there is a match, the child
expressions of the binary expressions are checked for unassigned variables, i.e. variables
with value GenericNull. For these variables, the possible values are generated. If a

Chapter 5. Case generation 58

different element is found, the generator continues checking the right and left child of
the binary expression. This process is shown as pseudo code in Algorithm 2.

Algorithm 2 Value generator algorithm
1: procedure Check(GenericAbstractElement element)
2: Use polymorphism to forward element
3: if element instanceof GenericBinaryExpression then
4: if binaryOperator instanceof <=,<,>,>=,== or != then
5: if left child instanceof GenericAbstractVariable && value = Null then
6: possibleValues(right child value, binaryOperator, true)
7: else if right child instanceof GenericAbstractVariable && value = Null

then
8: possibleValues(left child value, binaryOperator, false)
9: else

10: Check(element.children())
11: end if
12: end if
13: else
14: Check(element.children())
15: end if
16: end procedure

For the generation of possible values, four cases have been identified, depending on the
data type of the other sub-expression (not the unassigned variable). Currently the fol-
lowing four data types are supported: GenericBoolean, GenericNumber, GenericString
and GenericUnaryExpression. If the data type is not supported, the generic element
is passed to the evaluate(GenericAbstractElement) method of the framework, thereby
evaluating the expression using the JavaScript engine and parsing the return value. The
return value is either a supported parser generic element or GenericNull. This procedure
could cause an exception thrown by the JavaScript engine since the expression might
contain unassigned variables. More support could be added in the future to facilitate
more user freedom when defining expressions. An overview of the valid supported com-
binations of binary operators and data types of sub-expressions is given in Figure 5.5.
For these combinations, values can be generated by the framework. The algorithm for
generating values is given in Algorithm 3.

To achieve both binary expression results, true or false, the unassigned variable must
at least get assigned two values. The first value is equal to the value of the other
sub-expression in the binary expression, resulting in either true or false depending on
the binary operator. The second value is determined per case. The generated values
are ordered so that the evaluated Boolean expression always first results in true and
then in false. When the data type of the other sub-expression is a GenericBoolean or
GenericString, the second value is a negated version of the other sub-expression (true

Chapter 5. Case generation 59

Binary
Expression

> < <= >= == ! =

String
or

Boolean

Number
or

Unary

Figure 5.5: Overview of the valid supported combinations of binary operators and
types of expressions for value generation

for false and vice versa for Booleans and a "Not " prefix for Strings). This is visually
represented in Figure 5.6 and 5.7. To illustrate these cases an example is given next.

The binary expressions (var A ! = "test") and (var B == true) result in the generation
of four values. For variable A the values "Not test" and "test" are generated, while for
variable B the values true and false are generated. These four values make sure both
binary expressions evaluate to true for the first generated value, and to false for the
second generated value.

String

== ! =

value
"Not "

+
value

"Not "
+

value
value

Figure 5.6: Overview of the generated Strings depending on the binary operator

Chapter 5. Case generation 60

Algorithm 3 Possible values generator algorithm
1: procedure possibleValues(GenericAbstractElement element, BinaryOperator

binaryOp, Boolean left)
2: if element instanceof GenericString then
3: Return possibleStrings(element, binaryOp) . Figure 5.6
4: else if element instanceof GenericBoolean then
5: Return possibleBooleans(element, binaryOp) . Figure 5.7
6: else if element instanceof GenericNumber then
7: Return possibleNumbers(element, binaryOp, left) . Figure 5.8
8: else if element instanceof GenericUnaryExpression then
9: if unaryOperator instanceof NegateOperator then

10: if unaryElement instanceof GenericBoolean then
11: Return new UnaryExpressions using possibleBooleans(element,

binaryOp)
12: end if
13: else if unaryOperator instanceof PositiveOperator then
14: if unaryElement instanceof GenericNumber then
15: Return new UnaryExpressions using possibleNumbers(element, bi-

naryOp, left)
16: end if
17: else unaryOperator instanceof NegativeOperator
18: if unaryElement instanceof GenericNumber then
19: Return new UnaryExpressions using possibleNumbers(element, bi-

naryOp, left.negate())
20: end if
21: end if
22: else
23: Return possibleValues(Evaluate(element), binaryOp, left)
24: end if
25: end procedure

Boolean

== ! =

value !value !value value

Figure 5.7: Overview of the generated Booleans depending on the binary operator

If an equality operator (==, !=) is applied to an unassigned variable and a Generic-
Number, the second value is determined by taking the value of the other sub-expression

Chapter 5. Case generation 61

and increment it with the value 1. When the comparison operator > or <= is applied,
the second value is again equal to the value of the other sub-expression incremented
with the value 1, while the comparison operators < and >= return the value of the
other sub-expression decremented with the value 1. All the value generation paths for
an unassigned variable and a GenericNumber are visually represented in Figure 5.8. The
nodes Left and Right represent whether the left or right sub-expression of the binary
expression is the unassigned variable. This information is used during the generation
process to make sure the binary expressions evaluate to true for the first generated value
and to false for the second generated value.

Number

== ! =

value
value

+
1

value
+
1 value

<

<= >

>=

Left Right

Left Right

Left Right
value

-
1

value

value
+
1

value

Left Right

value
value

+
1

value
value

-
1

value
+
1

value

value
-
1

value

value
value

-
1

value
value

+
1

Figure 5.8: Overview of the generated numbers depending on the binary operator
and binary sub-expressions position

If an equality operator is applied to an unassigned variable and a GenericUnaryExpres-
sion, the values are determined depending on the unary operator. If the unary operator
negate is detected, the unary sub-expression must be of type GenericBoolean since the
Boolean negate operator cannot be applied to numbers. The values for the unassigned
variable are therefore generated using the possibleBooleans(Boolean, BinaryOperator)
method and two new unary expressions are returned, representing the negated version
of the generated Boolean values. When the unary operator is positive or negative, the
unary sub-expression must be a of type GenericNumber since these unary operators can-
not be applied to Booleans. In case of the positive operator, the possibleNumbers(double,
BinaryOperator, Boolean) method can be reused since the method already assumes two

Chapter 5. Case generation 62

positive numbers. Two unary expressions are returned, containing the generated num-
bers and a positive unary operator. The same holds for the negative operator, however
the generation of values is changed. Where the generator would normally increment the
value, the value is decremented and vice versa to ensure the first value results in the
expression evaluating to true and the second value results in the expression evaluating
to false. This is achieved by calling the number value generation process using a negated
Boolean (used to determine the position of the unassigned variable). So given binary
expression A > −3, the number value generation process is called with binary expression
3 > A, so the numeric values 2 and 3 are generated. These number values are then used
to create unary expression values −2 and −3. Resulting in binary expressions −2 > −3
(true) and −3 > −3 (false).

5.3 Variable assignment

Having generated the variable values, these values can be used to generate the cases to
achieve branch/condition coverage by assigning the generated values to the unassigned
variables. For this the helper class GenericVariableAssigner was developed which is
called by the case generator (discussed in detail in Section 6.1), using a generic element,
unassigned variable name and the value to be assigned as parameters. The variable
assigner will then return the element where the value of the variable is set to the value
in the parameter. The GenericVariableAssigner class is graphically represented in Figure
5.9.

Figure 5.9: GenericVariableAssigner class

Chapter 5. Case generation 63

The assignment process traverses the original element until a variable with value Gener-
icNull is encountered. The variables are matched on name and context, thereby requiring
the model to have unique variable names. The context object is the expression that uses
the variable, which is taken into account to ensure multiple expression can use the same
variable. When a match is found, the value of the variable is set to the new value from
the variable values map which is passed as a parameter. If the element does not con-
tain the variable, its children are traversed. If the element does not have children, it is
returned in its original form. This process is shown as pseudo code in Algorithm 4.

Algorithm 4 Value assigner algorithm
1: procedure Replace(GenericAbstractElement element)
2: Use polymorphism to forward element
3: if element instanceof GenericAbstractVariable then
4: if replaceVariableName = element.name() then . Compare on name
5: element.setV alue(replaceValue) . Replace the value
6: else
7: Replace(element.children())
8: end if
9: else

10: Replace(element.children())
11: end if
12: end procedure

5.4 Example

An example of the model transformation and value generation process for the Precedence
test language is discussed next. The example Precedence model is given in Listing 5.3
and visually represented in figure 5.10. The model contains three unassigned variables
and a function that uses these three variables. We will first transform the domain-specific
model to a generic model and then show that branch/condition coverage is achieved by
generating values and cases for the generic model.

variable double A

variable bool B

variable String C

function String Foobar if ((var A > 3) && (var B != true) && (var C == "test ") , "

true clause ", " false clause ")

Listing 5.3: Precedence example model code

Chapter 5. Case generation 64

Figure 5.10: Precedence example model

For the generation of test values and generic test cases, this domain-specific model has to
be transformed to a generic model. This can be achieved in several ways, for example,
using the PrecedenceTransformer class in Appendix C. Another way of achieving the
generic model is by model transformations. In figure 5.11 a generic model is shown
obtained using an ATL model transformation, the Precedence metamodel, the common
elements metamodel and the domain-specific model. For the remainder of this example,
the result of the developed PrecedenceTransformer was used.

Now that the model is an instance of the common elements metamodel, the value gen-
eration process can start. The model contains three unassigned values used in a binary
expression with a supported operator:

1. Numeric variable A used in the binary expression: A is greater than 3

2. Boolean variable B used in the binary expression: B is not equal to true

3. String variable C used in the binary expression: C is equal to "test"

To achieve branch/condition coverage for the function Foobar that uses all three binary
expression, all the expressions must evaluate in true and false (condition coverage) and
both the if-clause and else-clause of the Foobar function have to be evaluated.

Chapter 5. Case generation 65

Figure 5.11: Generic example model

The value generator therefore generates the following map of values:

1. Variable A with values 4 and 3

2. Variable B with values false and true

3. Variable C with values "test" and "Not test"

Using these variable values, all three binary expressions evaluate in true for the first
value and false for the second value. Combining all these cases, 8 test cases can be
constructed using the variable assigner:

1. if((4>3) && (false!=true) && ("test"=="test"), "true clause", "false clause")

2. if((4>3) && (false!=true) && ("Not test"=="test"), "true clause", "false clause")

3. if((4>3) && (true!=true) && ("test"=="test"), "true clause", "false clause")

4. if((4>3) && (true!=true) && ("Not test"=="test"), "true clause", "false clause")

Chapter 5. Case generation 66

5. if((3>3) && (false!=true) && ("test"=="test"), "true clause", "false clause")

6. if((3>3) && (false!=true) && ("Not test"=="test"), "true clause", "false clause")

7. if((3>3) && (true!=true) && ("test"=="test"), "true clause", "false clause")

8. if((3>3) && (true!=true) && ("Not test"=="test"), "true clause", "false clause")

These cases makes sure that every binary expression in function Foobar is condition
covered. It also ensures that the function is branch covered, although this example only
has two branches. Using these two properties, branch/condition coverage is achieved for
the function. In Chapter 6, test generation for this example is discussed.

Chapter 6

Test generation

Using the variable values generator and variable assigner, branch/condition coverage
cases can be generated, which form the basis for test case generation. This chapter
discusses case generation, JBehave and Selenium test generation and execution. Section
6.1 discusses the generation of generic test cases. Section 6.2 discusses the JBehave
story generation and execution. Section 6.3 discusses the Selenium test generation and
execution.

6.1 Test case generation

For the generation of generic test cases, the case generator and generic case classes were
developed. The case generator class provides the user with the option to generate a list
of generic test cases given a list of generic elements and map of variable values. Each case
contains two list of generic elements representing the preconditions and postconditions.
These cases can then be used to generate different types of tests, e.g., JBehave stories
and Selenium tests. The classes GenericCaseGenerator and GenericCase are shown in
Figure 6.1 and 6.2.

Figure 6.1: GenericCaseGenerator class

67

Chapter 6. Test generation 68

Figure 6.2: GenericCase class

The list of generic case objects is generated by traversing the list of variables and their
values and generating a case for each value using the first element of the list until the
variable list is empty. The case generator is given a clone of the generic elements, the
map of variable values without the first element, the unassigned variable, its new value
and the current case. This is the base case which is filled with the precondition stating
that the unassigned variable gets the new value. The variable assigner is applied to the
generic elements parameter, thereby assigning the new value to every instance of the
unassigned value resulting in a list of generic elements were the variable is set to the
new value. After that, two options remain.

If there are not more variables in the list of variable values, the postconditions are added
to the case, the case is finished and added to the result. The postconditions consist of
each variable or conditional (e.g., if-then(-else) constructs) and their current value. If
the list of variables values is however not empty, the current case is used as base case for
the new call to the generator with the replaced elements (elements where the variable
is assigned the value) and the current map of variable values. This algorithm ensures
every case is generated recursively and added to the result list. This process is shown
as pseudo code in Algorithm 5 and 6.

Algorithm 5 Case generator main algorithm
1: procedure generateCases(List elements, Map values, GenericCase case)
2: if values not empty() then
3: variable ← values.firstKey()
4: for all value : values.get(variable) do GenerateCase(elements.clone(),

values.remove(variable), variable, value, case)
5: end for
6: end if
7: end procedure

Chapter 6. Test generation 69

Algorithm 6 Case generator sub algorithm
1: procedure GenerateCase(List elements, Map values, GenericAbstractVariable

variable, GenericAbstractElement value, GenericCase case)
2: currentCase ← new GenericCase
3: replacedElements ← assignV alue(elements, variable, value) . ValueAssigner
4: for all precondition : case.preconditions() do

currentCase.addPrecondition(precondition)
5: end for
6: currentCase.addPrecondition(variable)
7: if values is empty() then
8: for all element : replacedElements do
9: if element instanceof GenericAbstractVariable || GenericConditional

then
10: currentCase.addPostcondition(element)
11: result.add(currentCase.clone())
12: end if
13: end for
14: else
15: newGenerator ← new GenericCaseGenerator
16: newGenerator.generateCases(replacedElements, values, currentCase)
17: end if
18: end procedure

6.2 JBehave

JBehave is “a Java-based framework supporting Behavior-Driven Development (BDD),
an evolution of Test-Driven Development (TDD) and Acceptance-Test Driven Develop-
ment (ATDD).”1 As mentioned in Section 2.4, by generating tests for this framework
the tests can be read and edited by the domain experts. Although the BDD frameworks
are not perfect according to Solis and Wang [13], we chose to generate JBehave stories,
since this framework provides the most functionality as described in Section 2.4, is Java
based and is being used in the organization of the case study.

6.2.1 Generation

For the generation of Precedence JBehave stories, the PrecedenceStoryGenerator class
was developed. This class provides the user with the option to generate the String
representation for a JBehave story to test Precedence artifacts given a list of generic
test cases. The list of cases is traversed and each case is transformed to a scenario for
the resulting story. The PrecedenceStoryGenerator class is shown in Figure 6.3.

1http://jbehave.org/introduction.html

Chapter 6. Test generation 70

Figure 6.3: PrecedenceStoryGenerator class

For each precondition of type variable, a When case is added to the scenario stating
which value is set for the variable. This value is computed using the evaluateEle-
ment(GenericAbstractElement) method of the GenericOptions class. For each post-
condition of type variable or conditional, a Then case is added to the scenario stating
that the variable or conditional must return the value specified in the postcondition.
This value is again computed using the JavaScript eval(String) method by calling the
evaluateElement(GenericAbstractElement) method of the GenericOptions class. This
completes the run for the case. The generic test case to test transformation is shown as
pseudo code in Algorithm 7.

Algorithm 7 Generic test generator algorithm
1: procedure generateTest(List cases)
2: String result ← empty String
3: Integer caseCounter ← 1
4: for all case : cases do
5: String caseResult ← "case" + caseCounter
6: for all precondition : case.preconditions() do
7: caseResult.add(precondition.toTestString()) . Convert preconditions
8: end for
9: for all postcondition : case.postconditions() do

10: caseResult.add(postcondition.toTestString()) . Convert postconditions
11: end for
12: caseCounter.increment()
13: result.add(caseResult)
14: end for
15: return result
16: end procedure

Using the Precedence language example model from Chapter 5 as shown in Listing 6.1.
variable double A

variable bool B

variable String C

function String Foobar if ((var A > 3) \&\& (var B != true) \&\& (var C == "test ")

, "true clause ", " false clause ")

Listing 6.1: Precedence example model code

Chapter 6. Test generation 71

This model is transformed to the JBehave story shown in Appendix D and one case is
shown in Listing 6.2.

1 Scenario : case 1

When variable A gets value 4

3 When variable C gets value ’test ’

When variable B gets value false

5

Then variable A should return value 4.0

7 Then variable B should return value false

Then variable C should return value test

9 Then function Foobar should return value true clause

Listing 6.2: Case 1 of the JBehave story generated from the Precedence example
model

6.2.2 Execution

To execute the generated JBehave stories, JBehave steps have to be created that map
the story code to executable code. For example, the steps can map the story code to
engine calls, so JUnit can be used to test the engine and the generated artifacts. Some
example steps and mappings for the model described in Listing 6.1 are given in Listing
6.3.

1 @When (" variable $variable gets value $value ")

public void setVariableValue (String variable , String value){

3 switch (parseObject (value)){

case 0 : mt. setStringValue (variable , value);

5 break ;

case 1 : mt. setDoubleValue (variable , Double . parseDouble (value));

7 break ;

case 2 : mt. setBoolValue (variable , Boolean . parseBoolean (value));

9 break ;

}

11 }

13 @Then (" variable $variable should return value $value ")

public void assertVariableValue (String variable , String value){

15 switch (parseObject (value)){

case 0 : mt. assertStringValue (variable , value);

17 break ;

case 1 : mt. assertDoubleValue (variable , Double . parseDouble (value));

19 break ;

case 2 : mt. assertBoolValue (variable , Boolean . parseBoolean (value));

21 break ;

}

23 }

Listing 6.3: Example steps defining the mapping from the story elements to Java
code

Chapter 6. Test generation 72

The first step translates the When statements of setting the variable value to an engine
call that parses the value and sets the value of the variable. The variable identification
is again done using its name, thereby requiring unique variable names. The second steps
maps the Then statements to assert calls of the engine, thereby checking whether the
value defined in the story matches the value of the actual object. When there is an error
in the engine, for example, the value of C is set when the value of B should be set, this
error is detected by executing the test.

6.3 Selenium

As mentioned in Section 2.6, Selenium is a tool suite used for automated web testing
and supports Java. Again we chose this framework since it supports Java and it is being
used in the organization of the case study.

6.3.1 Generation

For the generation of Selenium tests, the PrecedenceSeleniumGenerator class was devel-
oped. This class provides the user with the option to generate the String representation
of a Selenium test to test Precedence artifacts given a list of generic test cases, similar
to the PrecedenceStoryGenerator class. The class also traverses the cases and generates
a test method for each case. The class PrecedenceSeleniumGenerator is shown in Figure
6.4.

Figure 6.4: PrecedenceSeleniumGenerator class

Selenium tests are Java classes and must therefore validate to the Java syntax. The
generator provides each test class with a method that initializes the drivers (Firefox or
Chrome) and a setUp() method that sets up a test environment by, for example, loading
the desired website.

For each test case, a testCase() method is added to the file. After that, each precondition
is transformed in a valid Selenium command that sends a String, the calculated value,
to a specific WebElement, the variable, which is located using an XPath expression.

Chapter 6. Test generation 73

Each postcondition is transformed into an AssertEquals statement that checks whether
the postcondition value is equal to the value in the WebElement. The postcondition value
is again calculated using the JavaScript eval(String) function by calling the evaluateEle-
ment(GenericAbstractElement) method of the GenericOptions class. This completes the
run for the case.

Using the same example model as used in the JBehave example (Listing 6.1), the gen-
erated Selenium test is shown in Appendix E and one case is shown in Listing 6.4.

1 @Test

public void testCase1 () throws Exception {

3 driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("4.0");

driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("test");

5 driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys (" false ");

7 Assert . assertEquals ("4.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

Assert . assertEquals (" false ", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

9 Assert . assertEquals ("test", driver . findElement (By. xpath ("//*[@example -id[=’C

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("true clause ", driver . findElement (By. xpath ("//*[@example -

id[=’ Foobar ’]//*[@example -id=’ value ’]")));

11 }

Listing 6.4: Case 1 of the Selenium test generated from the Precedence example
model

6.3.2 Execution

These Selenium tests can be run as JUnit tests, if the required libraries are added to
the project. By running these tests, inconsistencies between the online model and offline
model can be detected. Since the example language is not extended with an online
feature due to time constraints, the shown test case could not be executed, although it
has correct Java and Selenium syntax. In Chapter 7 an executable generated test case
is described.

Chapter 7

Case study

In this chapter we asses our test generation framework with a case study to show it
supports multiple domain-specific languages (not only the Precedence language) and
improves the quality of testing domain-specific artifacts or systems that use these arti-
facts. For the case study we use models developed using the Finan Financial Language
(FFL). Section 7.1 introduces the Finan Financial Language. Section 7.2 discusses the
generalization phase of the transformation chain. Section 7.3 discusses the generation
phase of the transformation chain and Section 7.4 discusses the specification phase.
Section 7.5 concludes the chapter.

7.1 Finan Financial Language

The organization in which the framework was tested is Topicus Finance1. Topicus has
developed a domain-specific language, the Finan Financial Language (FFL), to construct
Finan models. These models contain the business rules and logic for (online) applications
used in the bank and accountant sector. The models consist of several variables and
formulas with specific properties used, among others, for financial forecast calculations.
When customers, for example, want to get a forecast of their future financial status,
they enter their historic and/or current financial data into an Finan model. This data
is then used for several calculations with a prediction of their future financial status as
result.

FFL was developed based on a legacy language called FIN. The new language was de-
veloped using Xtext and Xtend. A Finan model consists of two types of files, namely
the model files and the context files both instances of the FFL metamodel [26]. “The

1http://www.topicus.nl/finance/

74

Chapter 7. Case study 75

model files define the economic model consistent of modules, variables, tuples, include
statements, expressions and properties. The context files define the properties, anno-
tations, functions, property blocks and property types. These context definitions are
used to provide validation and documentation during model development.” To initialize,
manage and execute the model, Topicus developed the Finan Execution Service (FES)
which can be interacted with by the front-end developers through an API developed by
Topicus.

The Finan Financial Language architecture consists of two modular Xtext projects,
namely the expression and financial project, both developed using an Xtext grammar.
The expression project was developed for the processing of expressions, and has been
kept modular for possible reuse. The financial project extends the expression project
and defines the grammar for the development of Finan models. The financial grammar
is used to generate the FFL metamodel. Topicus also developed a generator using Xtext
and Xtend that generates Java artifacts of the model elements. These Java artifacts can
be used by the FES and, therefore, by the customer applications.

Applying the theory of the DSL development phases described in Mernik et al. [27],
the Finan Financial Language is formally designed using a grammar. Since the model
is then transformed to Java code using an artifact generator written in Xtend and
complete static analysis can be performed, it uses the application generator pattern for
the implementation phase. The FFL language is developed using the legacy language
(FIN) as inspiration by adapting the FIN supported expressions used in the model
calculations one-to-one. Thereby a piggyback subpattern of the language exploitation
pattern was used, i.e., the DSL partially uses an existing GPL or DSL. The structure of
FFL is inspired by the hierarchical structure of XML so the same pattern is used here.
Finally the language is influenced by the syntax and constructions of the programming
languages Java and Pascal.

Using the models defined with the FFL language, the Java artifacts are generated. These
are currently tested with manually developed TestNG, JBehave and Selenium tests. The
goal is to show that Selenium tests as well as JBehave tests can be generated using Finan
model information. These tests can then be executed to test the generated artifacts. Due
to confidentiality reasons, the FFL grammar and Finan models cannot be completely
shown in this research. To cope with this, only some syntactically correct examples of
Finan models are discussed to give an impression of what the language allows and how
the framework generates tests for this language. Next we will describe the three phases
(generalization, generation and specification) of the framework for one example Finan
model.

Chapter 7. Case study 76

7.2 Generalization

The first phase of the framework’s transformation chain is the generalization phase,
where the Finan model is transformed to a generic common elements model so the test
case generation algorithm can be applied to it. In Listing 7.1 we show a snippet of an
Finan model to illustrate its syntax.

1 import FinanMath .*;

import BaseModel .*;

3 model TEST uses BaseModel

{

5 variable A{

datatype : number ;

7 frequency : document ;

}

9 variable B{

datatype : number ;

11 frequency : document ;

}

13 variable V1 {

formula : 10;

15 datatype : number ;

frequency : column ;

17 }

variable V2 {

19 formula : V1 [(A -1)];

datatype : number ;

21 frequency : column ;

}

23 variable V3 {

formula : 15;

25 datatype : number ;

frequency : column ;

27 }

variable V4 {

29 formula : V3[B];

datatype : number ;

31 frequency : column ;

}

33 variable V5 {

formula : if ((4=A) AND (B < >7) , 0, 1);

35 datatype : number ;

frequency : document ;

37 }

}

Listing 7.1: Finan example model

In Listing 7.1, the variables A and B do not have a value assigned yet, since the formula
property is not defined. Variable V1 is an array variable with default value 10. Users can
then enter different values depending on an index using a web interface, but for testing

Chapter 7. Case study 77

purposes we simulated this effect by hard-coding it in the FFL transformer component
using Xtend code. The value of V1[3] is set to 30, V1[4] to 40 and V1[5] to 50. V2 is an
array variable with a formula consisting of the value of V1 using index A-1, so its value
depends on the value of A and the value array of V1. Variable V3 has default value 15,
and the simulated values V3[7], V3[8] and V3[9] result in 40, 20 and 15, respectively.
Variable V4 is the value of V3[B] and the formula of V5 is an expression, that checks
whether the (unassigned) variable A equals 4 and (unassigned) variable B not equals
(<>) 7, returning 1 when true and 0 when false.

The high-level elements in this Finan model are either single value variables or variables
containing an array of values. The Finan model file only specifies model elements, for
example, the variables and expressions, while the imported Finan context files (line 1
and 2 of Listing 7.1) define elements like functions, enumerations and constants. The
variables in Listing 7.1 only have a limited number of properties (formula, data type
and frequency), although there may be many more dependent on the requirements of
the Finan model. The FFL variables are transformed to the generic elements Gener-
icVariable or GenericArrayVariable depending on the value of the frequency property.
A document frequency results in a GenericVariable element while a column frequency
results in an GenericArrayVariable element. The column frequency is used when the
variable can have multiple values depending on an index and can be used, for example,
to define a variable that represents values in multiple years.

The FFLTransformer Xtend class transforms the Finan models to generic common ele-
ments models, while preserving all the important information used by the framework.
This class was partly generated using the mapping DSL discusses in Section 4.2 and
extended manually, so all domain-specific elements could be properly transformed. In
Listing 7.2, 7.3, 7.4 and 7.5 snippets of the FFLTransformer class are shown, to illustrate
the transformation from FFL elements to generic elements.

def GenericAbstractElement transform (String prefix , AssignmentStatement

assignment){

2 var valueItem = assignment . value . valueItems .head;

if(valueItem . value instanceof Expression){

4 var Expression expression = valueItem . value as Expression ;

switch (variableType .get(prefix)){

6 case " column " : variables .put(prefix + "." + assignment . element .

name , new GenericArrayVariable (prefix + "." + assignment . element .name ,

transform (expression), ARRAYLENGTH))

case " document " : variables .put(prefix + "." + assignment . element

.name , new GenericVariable (prefix + "." + assignment . element .name , transform (

expression)))

8 }

return variables .get(prefix + "." + assignment . element .name);

10 }

Listing 7.2: FFL AssignmentStatement transformation

Chapter 7. Case study 78

The code in Listing 7.2 transforms an AssignmentStatement element (used in the Finan
model to define the assignment of a value to a variable) to a GenericVariable or Generi-
cArrayVariable element, depending on the value of the frequency property. This property
value was already extracted before transforming the domain elements by traversing all
the AssignmentStatement elements. A prefix parameter of type String is used to define
the context in which the assignment is done, thereby creating elements like A.formula
where A defines the context that, in this case, refers to variable A. This prefix together
with the name of the assignment element make up the identifier for the variable. The
variable is saved in the variables list and returned to the generated Xtend file as explained
in Section 4.2, so it can use the transformed elements to initiate the test generation by
calling the methods of the GenericOptions class.

def GenericAbstractElement transform (Variable variable , CellSpecifier cell){

2 var GenericAbstractVariable referenceVariable = transform (variable) as

GenericAbstractVariable ;

var GenericAbstractElement referenceIndex = transform (cell. column);

4 return new GenericAbstractVariableIndexReference (referenceVariable ,

referenceIndex);

}

Listing 7.3: FFL variable index reference transformation

The code in Listing 7.3 transforms an FFL Variable element with a CellSpecifier element,
used as an index specifier, to a GenericAbstractVariableReference element. This is done
by transforming the two elements and creating a new GenericAbstractVariableReference
with the results. A GenericAbstractVariable element is used to keep the implementation
independent of the variable type, thereby improving the modularity of the transformer
class.

1 def GenericAbstractElement transform (FunctionDeclaration function ,

ArgumentList arguments){

// Transform the arguments

3 var resultArguments = new ArrayList < GenericAbstractElement >();

for(argument : arguments . arguments){

5 if(argument != null && argument . expression != null){

resultArguments .add(transform (argument . expression));

7 }

else {

9 throw new Exception ("Null argument encountered in FFL transformer

: " + function + " and arguments : " + arguments);

}

11 }

// Check for predefined supported function

13 if(functions .get(function .name) != null){

return new GenericFunctionReference (functions .get(function .name),

resultArguments);

15 }

else {

17 switch (function .name){

Chapter 7. Case study 79

// Check for If function , by checking name

19 case "If" : return transform (function , resultArguments)

default : throw new Exception (" Unsupported parameterized Function

Type: " + function)

21 }

}

23 }

Listing 7.4: FFL function transformation

The code in Listing 7.4 transforms a FunctionDeclaration and ArgumentList element into
a new GenericFunctionReferenceElement or GenericIfConditional. In the FFL language,
if-then(-else) constructs are defined as Function elements, resulting in an extra check to
correctly transform both elements. First the arguments of the ArgumentList element are
transformed and inserted in a new ArrayList as shown in line 3 till 11 of Listing 7.4. The
list of supported functions should be defined and filled with function elements before
running the transformation process, using the function name as identification. If the
list of functions contains the name of the FunctionDeclaration, a new reference to this
function is returned with the transformed arguments (line 12 till 15 of Listing 7.4). If the
function list does not contain the name of the FunctionDeclaration, the transformation
tests if the function is an if-then(-else) construct by comparing the name of the function
to ‘If’ as shown in line 17 and 18 of Listing 7.4. If this is true, the original FFL elements
are forwarded to the GenericIfConditional transformation method. If both cases are
false, an exception is thrown stating that an unsupported function is encountered.

1 def GenericIfConditional transformIf (FunctionDeclaration function ,

ArgumentList arguments){

var resultArguments = new ArrayList < GenericAbstractElement >();

3 for(argument : arguments . arguments){

if(argument != null && argument . expression != null){

5 resultArguments .add(transform (argument . expression));

}

7 else {

throw new Exception ("Null argument encountered in FFL transformer

: " + function + " and arguments : " + arguments);

9 }

}

11 switch (resultArguments .size){

case 2 : return new GenericIfConditional (function .name ,

resultArguments .get (0) , resultArguments .get (1))

13 case 3 : return new GenericIfConditional (function .name ,

resultArguments .get (0) , resultArguments .get (1) , resultArguments .get (2))

default : throw new Exception (" Unsupported number of parameters in

IfConditional " + function)

15 }

}

Listing 7.5: FFL conditional transformation

Chapter 7. Case study 80

The code in Listing 7.5 transforms a FunctionDeclaration and ArgumentList element
to a GenericIfConditional. We chose to not use the transformed arguments, since this
would make the method dependent on the code in Listing 7.4. Another method was
implemented with a list of transformed arguments as parameter, which is not shown
here. So again, the arguments are transformed and inserted in a new ArrayList. After
that, the size of this list is checked. If the size equals 2, a GenericIfConditional is returned
with a GenericNull for the else-clause, and if the size equals 3 a GenericIfConditional
is returned with all assigned elements. If another value is found for the size, a Java
exception is thrown stating that the number of arguments is not supported.

By applying the FFLTransformer to the elements described in Listing 7.1, the following
generic elements were generated, where the numeric values are GenericNumber elements
with a double object representing the value, but depicted here as numbers to improve
readability:

• Variable A.formula with default value GenericNull

• Variable B.formula with default value GenericNull

• ArrayVariable V1.formula with default value 10, V1[3] = 30, V1[4] = 40 and V1[5]
= 50.

• ArrayVariable V2.formula with default value VariableReference referencing Array-
Variable V1.formula with index BinaryExpression(Variable A.formula - 1).

• ArrayVariable V3.formula with default value 15, V3[7] = 40, V3[8] = 20 and V3[9]
= 15.

• ArrayVariable V4.formula with default value VariableReference referencing Array-
Variable V3.formula with index Variable B.formula

• Variable V5.formula with default value IfConditional with condition = (BinaryEx-
pression (BinaryExpression 4 == ArrayVariable A.formula) && (BinaryExpres-
sion ArrayVariable B.formula != 7)) returning 1 when true, and 0 when false.

Chapter 7. Case study 81

7.3 Generation

Now that the domain-specific elements are transformed to generic elements, the genera-
tion phase of the transformation chain begins. In this phase the values for the unassigned
variables are generated.

Two elements in the example of Section 7.2 do not have a value assigned to them (value
equals GenericNull), which are variable A.formula and B.formula (hereafter called A
and B). For these two elements, values have to be generated. As explained in Section
5.2, values are generated when unassigned variables are used in binary expressions.
These binary expressions are found in variable V5.formula, namely 4 == A and B !=
7, resulting in the generation of four numeric values. For A, the values 4 and 5 (4
incremented with 1) are generated, so both the true clause (4=4) and false clause (5=4)
are evaluated. For B, the values 8 and 7 are generated so again the true clause (8!=7)
and false clause (7!=7) are evaluated. These values are saved in the context of variable
V5.formula, so that other elements can also use A or B without interfering with the
values A and B of variable V5.formula.

Using the generated values, test cases can be generated to reach branch/condition cov-
erage. Both variables are assigned two values, so a total of four generic test cases are
generated by the case generator described in Section 6.1.

1. Case 1: A = 4, B = 8

2. Case 2: A = 4, B = 7

3. Case 3: A = 5, B = 8

4. Case 4: A = 5, B = 7

7.4 Specification

During the specification phase of the transformation chain, the generated generic test
cases are transformed to executable tests for the Java artifacts generated using the Finan
model and the artifact generator developed by Topicus. Executable JBehave stories and
Selenium tests are generated for the four cases described in Section 7.3. For both types
of tests (JBehave stories and Selenium tests) a generator was developed that transforms
the generic test cases to an executable test.

Chapter 7. Case study 82

7.4.1 JBehave

Since users define their own JBehave steps that convert the story code to executable
code, the FFL JBehave story generator is similar to the generic JBehave story generator.
However, the stories result in FES methods being executing by using the steps made
available by Topicus.

Listing 7.6 shows the FFL JBehave generator code used to transform generic test case
preconditions to JBehave When clauses.
public String variable2Precondition (GenericAbstractVariable variable){

2 String [] variableNameElements = variable . getName (). split ("\\.");

String variableName = variableNameElements [0];

4 String propertyName = variableNameElements [1];

6 Object value = options . evaluateElement (variable . getValue ());

if(propertyName . equals (" formula ")){

8 return "When variable " + variableName + " gets value " + value ;

}

10 else {

System .err. println (" Encountered unsupported property name in

FFLVariable2Precondition ");

12 return null ;

}

14 }

Listing 7.6: FFL JBehave precondition transformation

Since the FES uses model variable names as identification (so A and B), the model
variable names have to be extracted from the saved variable names (A.formula and
B.formula). To achieve this, the variables names are parsed using the Java split(String)
function with “.” as the delimiter. The value of the variable is again determined using
the JavaScript engine. As a proof of concept only the value of the formula property can
be set, yet more property support can be added by Topicus in the future due to the
modular setup. Combining the name and the value, a JBehave When case is added to
the result.

For the conversion of postconditions, the code in Listing 7.7 is used.
public String variable2Postcondition (GenericAbstractVariable variable){

2 String [] variableNameElements = variable . getName (). split ("\\.");

String variableName = variableNameElements [0];

4 String propertyName = variableNameElements [1];

// Base value is N/A

6 Object value = "N/A";

8 // GenericNull should be N/A

if(variable . getValue () instanceof GenericNull){

10 value = "N/A";

}

Chapter 7. Case study 83

12

// Check if the value is a variable index reference

14 else if(variable . getValue () instanceof GenericAbstractVariableIndexReference)

{

GenericAbstractVariableIndexReference reference = (

GenericAbstractVariableIndexReference) variable . getValue ();

16 // If the index is a variable

if(reference . getIndex () instanceof GenericAbstractVariable){

18 GenericAbstractVariable indexVar = (GenericAbstractVariable)

reference . getIndex ();

// If the index variable is null

20 if(indexVar . getValue () instanceof GenericNull){

return "Then variable " + variableName + " should return value N/

A";

22 }

}

24 // Calculate the index

double index = (Double) options . evaluateElement (reference . getIndex ());

26 // Calculate the value using the index

value = options . evaluateElement (reference . getVariable (). getValue ((int)

index));

28 // Check if the return value is null

if(value == null){

30 return "Then variable " + variableName + " should return value N/A";

}

32 // Return the result

else {

34 return "Then column variable " + variableName + " should return value

" + value + " for column " + (int) index ;

}

36 }

// Check if the value is a variable reference

38 else if(variable . getValue () instanceof GenericAbstractVariableReference){

GenericAbstractVariableReference reference = (

GenericAbstractVariableReference) variable . getValue ();

40 // If the reference variable is null

if(reference . getVariable (). getValue () instanceof GenericNull){

42 value = "N/A";

}

44 // If the reference is a generic variable , get the value

else if(reference . getVariable () instanceof GenericVariable){

46 value = options . evaluateElement (reference . getVariable (). getValue ());

}

48 // Else return N/A, since no index is defined

else {

50 value = "N/A";

}

52 }

// Else calculate the value by evaluating the variable

54 else {

// If the reference is an array variable and no index is defined

56 if(variable instanceof GenericArrayVariable){

value = "N/A";

58 }

else {

Chapter 7. Case study 84

60 value = options . evaluateElement (variable . getValue ());

}

62 }

64 // Base result String on property

if(propertyName . equals (" formula ")){

66 return "Then variable " + variableName + " should return value " + value ;

}

68 else if(propertyName . equals (" title ")){

return "Then variable " + variableName + " has title " + value ;

70 }

else if(propertyName . equals (" inputRequired ")){

72 if(" false ". equals (value . toString ())){

return "Then variable " + variableName + " is not required ";

74 }

else return "Then variable " + variableName + " is required ";

76 }

else if(propertyName . equals (" locked ")){

78 if(" false ". equals (value . toString ())){

return "Then variable " + variableName + " is unlocked ";

80 }

else return "Then variable " + variableName + " is locked ";

82 }

else if(propertyName . equals (" visible ")){

84 if(" false ". equals (value . toString ())){

return "Then variable " + variableName + " is invisible ";

86 }

else return "Then variable " + variableName + " is visible ";

88 }

else {

90 System .err. println (" Encountered unsupported property name in

FFLVariable2Postcondition ");

return null ;

92 }

}

Listing 7.7: FFL JBehave postcondition transformation

The same method is used to obtain the test data. Since the variables in FFL can have
different properties, different cases are implemented to switch on the property resulting
in different JBehave Then cases as shown in line 64 till 88 of Listing 7.7. When a variable
does not have a value, the FES expects the string “N/A”.

The transformation of Case 1, described earlier, results in the JBehave case shown in
Listing 7.8.

1 Scenario : case 1

When variable A gets value 4.0

3 When variable B gets value 8.0

5 Then variable A should return value 4.0

Then variable B should return value 8.0

7 Then variable V1 should return value 10.0

Chapter 7. Case study 85

Then column variable V2 should return value 30.0 for column 3

9 Then variable V3 should return value 15.0

Then column variable V4 should return value 20.0 for column 8

11 Then variable V5 should return value 1.0

Listing 7.8: FFL JBehave case 1 result

7.4.2 Selenium

As Selenium tests depend on the structure and elements of the website that is tested,
the FFL Selenium generator contains two hard-coded functions to achieve an executable
test. These functions, used to setup and tear down the Topicus website, are given in
Appendix F. The FFL transformation code is however similar to the generic Selenium
test generator code.

Listing 7.9 shows the FFL Selenium generator code used to transform generic test case
preconditions to Selenium code for setting a variable value.

1 public String Variable2Precondition (GenericAbstractVariable variable){

String [] variableNameElements = variable . getName (). split ("\\.");

3 String variableName = variableNameElements [0];

String propertyName = variableNameElements [1];

5

Object value = options . evaluateElement (variable . getValue ());

7 if(propertyName . equals (" formula ")){

return "\ tdriver . findElement (By. xpath (\"//*[@selenium -id=’" + variableName +

" ’]//*[@selenium -id=’ container ’]/ input [@selenium -id=’ input ’]\")). sendKeys (\""

+ value + "\");" + "\n"

9 + "\ tdriver . findElement (By. xpath (\"//*[@selenium -id=’" + variableName

+ " ’]//*[@selenium -id=’ container ’]/ input [@selenium -id=’ input ’]\")). sendKeys (

Keys. ENTER);" + "\n"

+ "\ tThread . sleep (3000) ;\n"

11 + "\ tdriver . findElement (By. xpath (\"//*[@selenium -id=’ Q_Map05 ’]\")).

click () ;\n"

+ "\ tThread . sleep (3000) ;\n";

13 }

else {

15 System .err. println (" Encountered unsupported property name in

FFLVariable2Precondition ");

return null ;

17 }

}

Listing 7.9: FFL Selenium precondition transformation

The required data is obtained in the same way as in the JBehave generator (line 1
till 6 of Listing 7.9), yet the generated String representation of the precondition differs
to comply to the Topicus website and Selenium requirements. Topicus has developed a
Selenium plugin that lets the front-end developers index web elements using the name of

Chapter 7. Case study 86

the model variable. Using this plugin, the web element representing the model variable
can be located with an XPath expression that checks whether the selenium-id of the
web element is equal to the name of the model variable. Having located the correct web
element, a value can be assigned to it by traversing the tree nodes of this element until
an input element is reached. Using this input web element, the method sendKeys(String)
can be used to assign a value to it, thereby assigning a value to the model variable web
element. This is followed by sending a Keys.ENTER action to the same element to
confirm the value entry. The code of assigning a value to a variable input element is
shown in line 8 and 9 of Listing 7.9.

Since the structure of the web elements is website specific, part of the String representa-
tion of setting the value of a variable web element is hard-coded. The variable names and
generated values are variable as can be seen in Listing 7.9. After the value is entered, the
model should recalculate its expressions and formulas using the newly entered values.
This is done by clicking a Topicus website navigation web element (called ‘Q_Map05’),
thereby initiating a page refresh, as shown in line 11 of Listing 7.9. Before and after this
action a sleep method is added to the test to avoid delay errors.

For the conversion of postconditions, the code snippet in Listing 7.10 is used.

public String variable2Postcondition (GenericAbstractVariable variable){

2 String [] variableNameElements = variable . getName (). split ("\\.");

String variableName = variableNameElements [0];

4 String propertyName = variableNameElements [1];

// Base value is null

6 Object value = null ;

8 // GenericNull should be null

if(variable . getValue () instanceof GenericNull){

10 value = null ;

}

12

// Check if the value is a variable index reference

14 else if(variable . getValue () instanceof GenericAbstractVariableIndexReference)

{

GenericAbstractVariableIndexReference reference = (

GenericAbstractVariableIndexReference) variable . getValue ();

16 // If the index is a variable

if(reference . getIndex () instanceof GenericAbstractVariable){

18 GenericAbstractVariable indexVar = (GenericAbstractVariable)

reference . getIndex ();

// If the index variable is null

20 if(indexVar . getValue () instanceof GenericNull){

return " Encountered index with value Null";

22 }

}

24 // Calculate the index

double index = (Double) options . evaluateElement (reference . getIndex ());

26 // Calculate the value using the index

Chapter 7. Case study 87

value = options . evaluateElement (reference . getVariable (). getValue ((int)

index));

28 // Check if the return value is null

if(value == null){

30 return null ;

}

32 }

// Check if value is a variable reference

34 else if(variable . getValue () instanceof GenericAbstractVariableReference){

GenericAbstractVariableReference reference = (

GenericAbstractVariableReference) variable . getValue ();

36 // If the reference variable is null

if(reference . getVariable (). getValue () instanceof GenericNull){

38 value = null ;

}

40 // If the reference is a generic variable get the value

else if(reference . getVariable () instanceof GenericVariable){

42 value = options . evaluateElement (reference . getVariable (). getValue ());

}

44 // Else return null , since no index is defined

else {

46 value = null ;

}

48 }

// Else calculate the value by evaluating the variable

50 else {

// If the reference is an array variable and no index is defined

52 if(variable instanceof GenericArrayVariable){

value = null ;

54 }

else {

56 value = options . evaluateElement (variable . getValue ());

}

58 }

// Clean output file for now , Proof of Concept check

60 if(value == null || ! variableName . equals (" OnroerendGoed_tpVerschil ")){

return "";

62 }

64 // Base result String on property

if(propertyName . equals (" formula ")){

66 double doubleValue = (Double) value ;

return "\ tAssert . assertEquals (\"" + (int) doubleValue + "\", driver .

findElement (By. xpath (\"//*[@selenium -id=’" + variableName + " ’]//*[@selenium -

id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id=’ input ’]\")).

getText ());" + "\n";

68 }

else {

70 System .err. println (" Encountered unsupported property name in

FFLVariable2Postcondition ");

return null ;

72 }

}

Listing 7.10: FFL Selenium postcondition transformation

Chapter 7. Case study 88

Again the same method as in the JBehave generator is used to obtain the variable
name and value. For this generator only the formula property is transformed, since this
element should be checked on the Topicus website. The checking of the value is done
using the Assert.assertEquals(String, String) method of Selenium as shown in line 67 of
Listing 7.10.

The transformation of Case 1, described earlier, results in the Selenium test case shown
in Listing 7.11.

1 @Test

public void testCase1 () throws Exception {

3 driver . findElement (By. xpath ("//*[@selenium -id=’A ’]//*[@selenium -id=’ container

’]/ input [@selenium -id=’ input ’]")). sendKeys ("4.0");

driver . findElement (By. xpath ("//*[@selenium -id=’A ’]//*[@selenium -id=’ container

’]/ input [@selenium -id=’ input ’]")). sendKeys (Keys. ENTER);

5 Thread . sleep (3000) ;

driver . findElement (By. xpath ("//*[@selenium -id=’ Q_Map05 ’]")). click ();

7 Thread . sleep (3000) ;

driver . findElement (By. xpath ("//*[@selenium -id=’B ’]//*[@selenium -id=’ container

’]/ input [@selenium -id=’ input ’]")). sendKeys ("8.0");

9 driver . findElement (By. xpath ("//*[@selenium -id=’B ’]//*[@selenium -id=’ container

’]/ input [@selenium -id=’ input ’]")). sendKeys (Keys. ENTER);

Thread . sleep (3000) ;

11 driver . findElement (By. xpath ("//*[@selenium -id=’ Q_Map05 ’]")). click ();

Thread . sleep (3000) ;

13

Assert . assertEquals ("4", driver . findElement (By. xpath ("//*[@selenium -id=’A

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

15 Assert . assertEquals ("8", driver . findElement (By. xpath ("//*[@selenium -id=’B

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

Assert . assertEquals ("10", driver . findElement (By. xpath ("//*[@selenium -id=’V1

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

17 Assert . assertEquals ("30", driver . findElement (By. xpath ("//*[@selenium -id=’V2

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

Assert . assertEquals ("15", driver . findElement (By. xpath ("//*[@selenium -id=’V3

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

19 Assert . assertEquals ("20", driver . findElement (By. xpath ("//*[@selenium -id=’V4

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

Assert . assertEquals ("1", driver . findElement (By. xpath ("//*[@selenium -id=’V5

’]//*[@selenium -id=’0 tsyFirst ’]//*[@selenium -id=’ container ’]//*[@selenium -id

=’ input ’]")). getText ());

21 }

Listing 7.11: FFL Selenium case 1 result

Chapter 7. Case study 89

7.5 Conclusion

This case demonstrates that the framework is applicable to a DSL already in use by an
organization. Framework users have to design and implement a transformer that maps
the metamodel to the common elements metamodel and a number of test generators,
dependent on the number of types of tests to be supported. We developed the Finan Fi-
nancial Language transformers in collaboration with company stakeholders and (future)
framework users, and these can be modified and extended by Topicus when necessary.
Using the developed transformers, tests could be generated for a multitude of models
without modifying the framework elements.

Chapter 8

Final remarks

8.1 Conclusions

In this thesis, we described the design and implementation of a domain-specific testing
framework for the generation of tests using domain-specific models. These tests can be
used to verify correctness of the artifacts generated using the models, or systems that use
these artifacts. As a result, artifact generation errors and bugs in the systems that use
these artifacts could be detected. By generating the test instead of manually developing
them, development time is reduce while usability is improved.

We investigated and explained several testing techniques and their application to domain-
specific languages. We chose to implement branch/condition coverage, since the source/-
model code is available and it is a strong white-box testing technique. We also applied
model-based testing techniques by using a metamodel to improve maintainability and
flexibility.

To generate tests for a multitude of domain-specific languages, a generic metamodel
called the common elements metamodel was developed. This metamodel was set-up
so that it supports a large number of common programming language features. By
making use of this generic metamodel, the generation of tests consists of three phases:
generalization, generation and specification. The test case generation algorithm is based
on the elements of the generic metamodel, resulting in a generation approach that is
independent of the domain-specific language.

90

Chapter 8. Final remarks 91

Using this approach does however require the user to define and implement a transfor-
mation from the domain metamodel to the generic metamodel and from the generated
generic test cases to domain-specific tests, the generalization and specification phase, re-
spectively. For the transformation of common elements, a mapping DSL was developed,
thereby reducing the workload of the framework user.

We analyzed which common elements should be supported, by using the Common Lan-
guage Specification. A selected subset of this specification was determined for the devel-
opment of the generic metamodel. The generic metamodel was developed in Ecore and
implemented using Java. The other framework components were also implemented using
Java. Their functions can however be called from domain-specific classes, for example,
the Xtend classes generated by the Xtext framework.

In this thesis, we used the Topicus Finance case study, to show that the framework can
be applied to actively used domain-specific languages and models. We also showed that
the framework supports a multitude of languages and resulting test types.

In future work, reusability can be further tested by applying the framework to other
domain-specific languages. The correctness of the transformation and generation could
be proved using formal verification. To make the framework applicable to other (more
diverse) languages, it has several areas that should be extended as discussed in Sec-
tion 8.3. Taken into account the information gained during the literature study and
framework development, we advise that the framework should be kept modular, ex-
tensible and small. Since domain-specific languages are diverse, the framework cannot
pose a large number of restrictions on the domain-specific languages without restrict-
ing the amount of supported languages. The generic framework code is published at
https://github.com/ratenbuuren/DSLTestingFramework.

https://github.com/ratenbuuren/DSLTestingFramework

Chapter 8. Final remarks 92

8.2 Research answers

The research questions defined for this thesis have been answered:

RQ1. Which testing techniques are available and what is their coverage?

In Chapter 2 we analyzed several testing techniques and described as well as compared
their coverage. There are several testing techniques, for example, black-box testing,
white-box testing, model-based testing and automated web testing, each with their own
coverage, benefits and drawbacks.

RQ2. How can these testing techniques be applied to domain-specific lan-
guages?

After identifying the available testing techniques, research was performed on how these
techniques could be applied to DSLs. The focus of this analysis was on generating tests
for the artifacts developed using the domain-specific models. Since the generation was
based on the source code, white-box testing techniques could be applied. Model-based
testing techniques are also used to create a generic metamodel and generation algorithm
thereby improving maintainability and flexibility.

RQ3. How to deal with different language constructs and syntax?

In Chapter 3 we established a selection of common language elements to support. The
common elements were implemented into a generic metamodel described in Section
4.1. Using the metamodel for the generation algorithms, the generation of test cases is
independent of the language, its constructs and syntax. By also keeping the generated
test cases generic, different types of tests can be generated using the same model.

RQ4. How to assess the reusability and verify the quality of the testing
framework?

We assessed the reusability of the framework by generating two types of tests, JBehave
stories and Selenium tests, for two different languages, a newly designed expression
language called Precedence and the Finan Financial Language. This shows that the test
framework is usable for different languages and testing at multiple testing levels.

We verified the quality informally by introducing several errors in the artifact generator
and systems that use these artifacts, and all were detected by the generated tests.
The usability and effectiveness were verified by questioning the stakeholders in the case
study company. The stakeholders stated that the framework would be helpful in their
organization, since it significantly reduced testing efforts. However, since only a limited
number of elements is supported, the framework should be extended for future purposes.

Chapter 8. Final remarks 93

8.3 Future work

During the development of our framework, we identified several research opportunities
for future work:

• Extend common elements metamodel

The generic metamodel used during the development of the framework is a subset
of the Common Language Specification and could be extended to support addi-
tional (common) elements. The common elements metamodel also contains mock
functions. A library containing frequently used functions, for example, min(),
max() and abs(), could be developed so that framework users can reuse these
functions.

• Extend mapping DSL

The DSL used for the generation of the domain model to generic model trans-
former currently support a subset of the common elements. This language can be
extended to support more elements, thereby reducing the effort and time it takes
to develop the transformer. Support for frequent domain-specific elements could
also be added.

• Extend value generation functionality

The developed value generator supports generation of GenericBooleans, Generic-
Strings, GenericNumbers and GenericUnaryExpressions. If the subexpression of
the binary expression is of an unsupported type, the value is calculated by eval-
uating the element using the JavaScript engine. This could cause exceptions, for
example, when the expression contains an unassigned value. The value generator
support should therefore be extended to support more types.

One possible way is to rewrite the generation algorithm so that it works recursively,
thereby being independent of the depth of the unassigned variables. This could
however significantly increase computation time, which could be solved by letting
the user specify a maximum depth.

• Extend test generators

The generic test cases have currently only been transformed to JBehave stories
and Selenium tests. Additional test types could be supported by the development
of new transformers. These might however be dependent on the domain.

Chapter 8. Final remarks 94

• Extend test functionality

The test functionality could be extended to support range/code coverage. Next to
that, the test feedback could be converted back to feedback on the model. This
would enable the domain experts to evaluate the test feedback and modify the
model without the need of a programmer or tester.

• Versioning

When a model is modified and saved, the current algorithm starts the generation
process from scratch. Versioning could be added so that only the modified elements
are reevaluated, thereby improving computation time, efficiency and giving the
user a clear overview of the modification effects.

Appendix A

Expression mapping grammar

1 grammar xx. ExpressionMapping with org. eclipse . xtext . common . Terminals

3 generate expressionMapping "http :// www. ExpressionMapping .xx"

5 /**

* A grammar that describes the mapping from a domain - specific model to the

generic model and generates a Xtend transformer class that performs the

mapping

7 * Consists of:

* Package statements (the package of the generated Transformer)

9 * Import statements (imports used by the generated Transformer)

* Grammar (the name of the grammar , can be self defined)

11 * MainType (Generalizes type that is first parsed , like Expression interface)

* Types (Supported types by the grammar that should be converted)

13 * Mappings (Defines the mappings from Types to Generic Types)

*/

15

Model :

17 package = PackageStatement

imports += ImportStatement *

19 grammardef = Grammar

maintype = MainType

21 types += Type*

mappings += Mapping *;

23

// Defines the grammar name

25

Grammar :

27 ’Grammar ’ name=ID

;

29

// Defines the package

31

PackageStatement :

33 ’Package ’ name=Fqn ’;’

;

35

// Defines an import statement

95

Appendix A. Expression mapping grammar 96

37

ImportStatement :

39 ’import ’ importedNamespace = FqnWithWildCard

;

41

// Defines the general expression type

43

MainType :

45 ’MainType ’ name=Fqn

;

47

// Defines the subclasses of the MainType

49

Type:

51 ’Type ’ name=Fqn

;

53

// Mapping can map binary , unary , parenthesized expressions and literals

55

Mapping :

57 ’MAP Variable Declaration ’ varDeclMapping = VarDeclMapping ’;’

| ’MAP Binary Expression ’ binaryMapping = BinaryMapping ’;’

59 | ’MAP Unary Expression ’ unaryMapping = UnaryMapping ’;’

| ’MAP Parenthesized Expression ’ ParenthesizedMapping ’;’

61 | ’MAP Literal ’ literalMapping = LiteralMapping ’;’

;

63

// Maps a variable declaration , expects a name , and method to get the right hand

assignment

65

VarDeclMapping :

67 ’of ’ ’type ’ varDeclType =[Type] ’and ’ ’nameMethod ’ nameMethod =Fqn ’and ’ ’

valueMethod ’ valueMethod =Fqn

;

69

// Maps a binary expression , expects a Type , left child , right child , operator

Method and operator representation .

71 // Converts it to the supported BinaryTargets

BinaryMapping :

73 parameterType =[Type] ’with ’ binaryLeft = BinaryLeft binaryOperator = OperatorDef

binaryRight = BinaryRight ’to ’ ’type ’ binaryTarget = BinaryTarget

;

75

// Maps a unary expression , expects a Type , left child , right child , operator

Method and operator representation .

77 // Converts it to the supported UnaryTargets

UnaryMapping :

79 parameterType =[Type] ’with ’ unaryExp = UnaryExpression unaryOperator =

OperatorDef ’to ’ ’type ’ unaryTarget = UnaryTarget

;

81

// Maps a parenthesized expression , expects a inner expression method

83 // Converts it to the supported ParenthesizedTargets

85 ParenthesizedMapping :

Appendix A. Expression mapping grammar 97

parameterType =[Type] ’with ’ innerExp = InnerExpression ’to ’ ’type ’

parenthesizedTarget = ParenthesizedTarget

87 ;

89 // Maps a literal expression , expects a Type and operator Name. Converts it to the

supported LiteralTargets

LiteralMapping :

91 parameterType =[Type] ’to ’ ’type ’ literalTarget = LiteralTarget ’using ’ ’

operation ’ operationName = Operator

;

93

// Defines the left child of a binary expression

95

BinaryLeft :

97 ’leftChildMethod ’ ’=’ value =ID

;

99

// Defines the right child of a binary expression

101

BinaryRight :

103 ’rightChildMethod ’ ’=’ value =ID

;

105

// Defines a binary or unary operator

107

OperatorDef :

109 ’operatorMethod ’ operatorMethod =Fqn ’returns ’ operator = Operator

;

111

// Defines a expression child of a unary expression

113

UnaryExpression :

115 ’unaryExpressionMethod ’ ’=’ value =ID

;

117

// Defines a expression child of a parenthesized expression

119

InnerExpression :

121 ’innerExpressionMethod ’ ’=’ value =ID

;

123

// Supported Binary targets

125

enum BinaryTarget returns BinaryTarget :

127 MULTIPLICATION = ’Multiplication ’

| DIVISION = ’Division ’

129 | ADDITION = ’Addition ’

| SUBTRACTION = ’Subtraction ’

131 | EQUALS = ’Equals ’

| NOTEQUALS = ’Not Equals ’

133 | GT = ’Greater Than ’

| GTE = ’Greater Than Equals ’

135 | LT = ’Less Than ’

| LTE = ’Less Than Equals ’

137 | MOD = ’Modulo ’

Appendix A. Expression mapping grammar 98

| OR = ’Logic OR ’

139 | AND = ’Logic AND ’

;

141

// Supported Unary targets

143

enum UnaryTarget returns UnaryTarget :

145 NEGATE = ’Negate ’

| POSITIVE = ’Positive ’

147 | NEGATIVE = ’Negative ’

;

149

// Supported Parenthesized targets

151

enum ParenthesizedTarget returns ParenthesizedTarget :

153 GenericParenthesizedExpression = ’Parenthesized ’

;

155

// Supported Literal targets

157

enum LiteralTarget :

159 GenericNumber =’NUMBER ’

| GenericString =’STRING ’

161 | GenericBoolean = ’BOOLEAN ’

;

163

FqnWithWildCard :

165 Fqn (’.* ’)?

;

167

Fqn:

169 ID (’.’ ID)*

;

171

Operator :

173 Fqn

| STRING

175 ;

Listing A.1: Expression mapping DSL grammar

Appendix B

Precedence grammar

1 grammar org. xtext . operator . Precedence with org. eclipse . xtext . common . Terminals

hidden (WS , ML_COMMENT , SL_COMMENT)

3

generate precedence "http :// www. xtext .org/ operator / Precedence "

5

import "http :// www. eclipse .org/emf /2002/ Ecore " as ecore

7

ExpressionsModel :

9 elements += AbstractElement *

;

11

AbstractElement :

13 Variable | ListVariable | Expression | Function | MockDef | MockEntry |

Container

;

15

Variable :

17 ’variable ’ type= ReturnType name=ID (’=’ expression = AbstractElement)?

;

19

ListVariable :

21 ’listvariable ’ type= ReturnType name = ID (’=’ expression = AbstractElement)?

;

23

Function :

25 ’function ’ type= ReturnType name=ID functionType = FunctionType ’(’ (parameters

+= AbstractElement (’,’ parameters += AbstractElement)*)? ’)’

;

27

Container :

29 ’container ’ name=ID ’{’ (elements += AbstractElement (’,’ elements +=

AbstractElement)*)? ’}’

;

31

MockDef :

33 ’mocking ’ ’function ’ type= ReturnType name=ID

;

35

99

Appendix B. Precedence grammar 100

MockEntry :

37 ’mock ’ type =[MockDef] ’for ’ ’input ’ ’(’ (parameters += AbstractElement (’,’

parameters += AbstractElement)*)? ’)’ ’returns ’ result = AbstractElement

;

39

enum ReturnType :

41 DOUBLE = " double "

| BOOL = "bool"

43 | STRING = " String "

;

45

enum FunctionType :

47 ABS=’abs ’

| ROUND =’round ’

49 | CEIL=’ceil ’

| FLOOR =’floor ’

51 | MAX=’max ’

| MIN=’min ’

53 | POW="pow"

| SQRT="sqrt"

55 | IF=’if ’

;

57

Expression :

59 Or

;

61

enum OrOperator returns BinaryOperator :

63 OR=’|| ’

;

65

Or returns Expression :

67 And ({ BinaryExpression .left= current } op= OrOperator right =And)*

;

69

enum AndOperator returns BinaryOperator :

71 AND=’&& ’

;

73

And returns Expression :

75 Equality ({ BinaryExpression .left= current } op= AndOperator right = Equality)*

;

77

enum EqualityOperator returns BinaryOperator :

79 EQUAL =’== ’ | NOTEQUAL =’<>’

;

81

Equality returns Expression :

83 Comparison (

{ BinaryExpression .left= current } op= EqualityOperator

85 right = Comparison

)*

87 ;

89 enum ComparisonOperator returns BinaryOperator :

Appendix B. Precedence grammar 101

GREATER =’>’ | SMALLER =’<’ | GREATEREQUAL =’ >=’ | SMALLEREQUAL =’ <=’

91 ;

93 Comparison returns Expression :

MulOrDiv (

95 { BinaryExpression .left= current } op= ComparisonOperator

right = MulOrDiv

97)*

;

99

enum MulOrDivOperator returns BinaryOperator :

101 MULTIPLY =’*’ | DIVIDE =’/’

;

103

MulOrDiv returns Expression :

105 PlusOrMinus (

{ BinaryExpression .left= current } op= MulOrDivOperator

107 right = PlusOrMinus

)*

109 ;

111 enum PlusOrMinusOperator returns BinaryOperator :

PLUS=’+’ | MINUS =’-’

113 ;

115 PlusOrMinus returns Expression :

UnaryExpression (

117 { BinaryExpression .left= current } op= PlusOrMinusOperator

right = UnaryExpression

119)*

;

121

enum UnaryOperator :

123 NEGATE =’!’ | POSITIVE =’@’ | NEGATIVE =’#’

;

125

UnaryExpression returns Expression :

127 ({ UnaryExpression }

op= UnaryOperator expression = PrimaryExpression

129)

| PrimaryExpression

131 ;

133 PrimaryExpression returns Expression :

ParenthesizedExpression

135 | Atomic

;

137

ParenthesizedExpression returns Expression :

139 { ParenthesizedExpression }

’(’ innerExpression = AbstractElement ’)’

141 ;

143 Atomic returns Expression :

{ DoubleConstant } value = Double

Appendix B. Precedence grammar 102

145 | { BoolConstant } value = Boolean

| { StringConstant } value = STRING

147 | { MockRef } ’func ’ mockFunction =[MockDef] ’using ’ ’(’ parameters +=

AbstractElement (’,’ parameters += AbstractElement)* ’)’

| { VariableRef } ’var ’ variable =[Variable]

149 | { ListVariableRef } ’listvar ’ listvariable =[ListVariable] (’[’cell=

AbstractElement ’]’)?

| { ContainerRef } ’cont ’ container =[Container] (’[’cell= AbstractElement ’]’)?

151 ;

153 Double returns ecore :: EDouble :

INT(’.’INT)?

155 ;

157 Boolean returns ecore :: EBoolean :

’true ’

159 | ’false ’

;

Listing B.1: Precedence language grammar

Appendix C

Precedence transformer

/**

2 * Class that transforms Precedence elements to generic framework elements

*/

4

public class PrecedenceTransformer {

6

Map <String , GenericAbstractVariable > variables = new HashMap <String ,

GenericAbstractVariable >();

8 Map <String , GenericContainer > containers = new HashMap <String ,

GenericContainer >();

Map <String , GenericFunction > functions = new HashMap <String , GenericFunction

>();

10

/**

12 * Transforms the different types of elements by using polymorphism

* @param element the element to be transformed

14 * @return the transformed element

*/

16

def GenericAbstractElement transform (AbstractElement element){

18 // System .out. println (" Transforming : " + element)

if(element instanceof VariableRef){

20 transform (element as VariableRef)

}

22 else if(element instanceof BinaryExpression){

transform (element as BinaryExpression)

24 }

else if(element instanceof UnaryExpression){

26 transform (element as UnaryExpression)

}

28 else if(element instanceof ParenthesizedExpression){

transform (element as ParenthesizedExpression)

30 }

else if(element instanceof DoubleConstant){

32 transform (element as DoubleConstant)

}

34 else if(element instanceof BoolConstant){

transform (element as BoolConstant)

103

Appendix C. Precedence transformer 104

36 }

else if(element instanceof StringConstant){

38 transform (element as StringConstant)

}

40 else if(element instanceof Container){

transform (element as Container)

42 }

else if(element instanceof ContainerRef){

44 transform (element as ContainerRef)

}

46 else if(element instanceof Function){

transform (element as Function);

48 }

else if(element instanceof Variable){

50 transform (element as Variable);

}

52 else if(element instanceof MockDef){

transform (element as MockDef);

54 }

else if(element instanceof MockEntry){

56 transform (element as MockEntry);

}

58 else if(element instanceof MockRef){

transform (element as MockRef);

60 }

else if(element instanceof ListVariable){

62 transform (element as ListVariable);

}

64 else if(element instanceof ListVariableRef){

transform (element as ListVariableRef);

66 }

else {

68 throw new Exception (" Transformer encountered unsupported

AbstractElement type: " + element);

}

70 }

72 /**

* Transforms MockDef elements

74 * @param mockDef the MockDef to be transformed

* @return the transformed MockDef

76 */

78 def GenericFunction transform (MockDef mockDef){

if (! functions . containsKey (mockDef .name)){

80 functions .put(mockDef .name , new GenericFunction (mockDef .name));

}

82 return functions .get(mockDef .name);

}

84

/**

86 * Transforms MockEntry elements

* @param entry the MockEntry to be transformed

88 * @return the transformed MockEntry

*/

Appendix C. Precedence transformer 105

90

def GenericFunction transform (MockEntry entry){

92 var List < GenericAbstractElement > parameters = new ArrayList <

GenericAbstractElement >();

for(AbstractElement element : entry . parameters){

94 parameters .add(transform (element));

}

96 functions .get(entry .type.name). insertEntry (parameters , transform (entry .

result));

return functions .get(entry .type.name);

98 }

100 /**

* Transforms MockRef elements

102 * @param reference the MockRef to be transformed

* @return the transformed MockRef

104 */

106 def GenericFunctionReference transform (MockRef reference){

var List < GenericAbstractElement > parameters = new ArrayList <

GenericAbstractElement >();

108 for(AbstractElement element : reference . parameters){

parameters .add(transform (element));

110 }

return new GenericFunctionReference (functions .get(reference . mockFunction .

name), parameters);

112 }

114 /**

* Transforms Variable elements

116 * @param variable the Variable to be transformed

* @return the transformed Variable

118 */

120 def GenericAbstractVariable transform (Variable variable){

// New variable

122 if(variable . expression == null){

variables .put(variable .name , new GenericVariable (variable .name));

124 return variables .get(variable .name);

}

126 // Existing variable

else {

128 variables .put(variable .name , new GenericVariable (variable .name ,

transform (variable . expression)));

return variables .get(variable .name);

130 }

}

132

/**

134 * Transforms VariableRef elements

* @param reference the VariableRef to be transformed

136 * @return the referenced Variable

*/

138

def GenericAbstractVariable transform (VariableRef reference){

Appendix C. Precedence transformer 106

140 return variables .get(reference . variable .name);

}

142

/**

144 * Transforms ListVariable elements

* @param listVariable the ListVariable to be transformed

146 * @return the transformed ListVariable

*/

148

def GenericAbstractVariable transform (ListVariable listVariable){

150 // New variable

if(listVariable . expression == null){

152 variables .put(listVariable .name , new GenericListVariable (listVariable

.name));

return variables .get(listVariable .name);

154 }

// Existing variable

156 else {

variables .put(listVariable .name , new GenericListVariable (listVariable

.name , transform (listVariable . expression), 10));

158 return variables .get(listVariable .name);

}

160 }

162 /**

* Transforms ListVariableRef elements

164 * @param reference the ListVariableRef to be transformed

* @return the referenced ListVariable

166 */

168 def GenericAbstractVariable transform (ListVariableRef reference){

return variables .get(reference . listvariable .name);

170 }

172 /**

* Transforms Container elements and their contents

174 * @param container the Container to be transformed

* @return the transformed Container

176 */

178 def GenericContainer transform (Container container){

var genericContainer = new GenericContainer ();

180 for(element : container . elements){

genericContainer . addElement (transform (element));

182 }

containers .put(container .name , genericContainer);

184 return genericContainer ;

}

186

/**

188 * Transforms ContainerRef elements

* @param reference the ContainerRef to be transformed

190 * @return the referenced Container

*/

192

Appendix C. Precedence transformer 107

def GenericAbstractElement transform (ContainerRef reference){

194 // Reference has a index

if(reference .cell != null){

196 var cell = transform (reference .cell) as GenericNumber ;

var container = containers .get(reference . container .name);

198 return container .get(cell. value . intValue);

}

200 // No index present

else return containers .get(reference . container .name);

202 }

204 /**

* Transforms Function elements and their parameters

206 * @param function the Function to be transformed

* @return the transformed Function

208 */

210

def GenericAbstractElement transform (Function function){

212 var parameters = new ArrayList < GenericAbstractElement >();

for(parameter : function . parameters){

214 parameters .add(transform (parameter));

}

216 if(function . functionType == FunctionType .^ IF){

return transformIf (function);

218 }

else if(functions .get(function .name) != null){

220 return new GenericFunctionReference (functions .get(function .name),

parameters);

}

222 else {

throw new Exception (" Unsupported Function : " + function)

224 }

}

226

/**

228 * Transforms IF Function elements and their parameters

* @param function the IF Function to be transformed

230 * @return the transformed IF Function

*/

232

def GenericIfConditional transformIf (Function function){

234 var parameters = new ArrayList < GenericAbstractElement >();

for(parameter : function . parameters){

236 parameters .add(transform (parameter));

}

238 switch (parameters .size){

case 2 : return new GenericIfConditional (function .name , parameters .

get (0) , parameters .get (1))

240 case 3 : return new GenericIfConditional (function .name , parameters .

get (0) , parameters .get (1) , parameters .get (2))

default : throw new Exception (" Unsupported number of parameters in

IfConditional " + function)

242 }

}

Appendix C. Precedence transformer 108

244

/**

246 * Transforms BinaryExpression elements

* @param expression the BinaryExpression to be transformed

248 * @return the transformed BinaryExpression

*/

250

def GenericBinaryExpression transform (BinaryExpression expression){

252 if(expression .op. equals (BinaryOperator . GREATER)){

return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator .GT)

254 }

if(expression .op. equals (BinaryOperator . SMALLER)){

256 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator .LT)

}

258 if(expression .op. equals (BinaryOperator . GREATEREQUAL)){

return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator .GTE)

260 }

if(expression .op. equals (BinaryOperator . SMALLEREQUAL)){

262 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator .LTE)

}

264 if(expression .op. equals (BinaryOperator . EQUAL)){

return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . EQUALS)

266 }

if(expression .op. equals (BinaryOperator . NOTEQUAL)){

268 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . NOTEQUALS)

}

270 if(expression .op. equals (BinaryOperator .OR)){

return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator .OR)

272 }

if(expression .op. equals (BinaryOperator .AND)){

274 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator .AND)

}

276 if(expression .op. equals (BinaryOperator . MULTIPLY)){

return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . MULTIPLICATION)

278 }

if(expression .op. equals (BinaryOperator . DIVIDE)){

280 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . DIVISION)

}

282 if(expression .op. equals (BinaryOperator .PLUS)){

return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . ADDITION)

284 }

if(expression .op. equals (BinaryOperator . MINUS)){

286 return new GenericBinaryExpression (transform (expression .left),

transform (expression . right), GenericBinaryOperator . SUBTRACTION)

Appendix C. Precedence transformer 109

}

288 else {

throw new Exception (" Unsupported BinaryOperator Type: " + expression .

op)

290 }

}

292

/**

294 * Transforms UnaryExpression elements

* @param expression the UnaryExpression to be transformed

296 * @return the transformed UnaryExpression

*/

298

def GenericUnaryExpression transform (UnaryExpression expression){

300 if(expression .op. equals (UnaryOperator . NEGATE)){

return new GenericUnaryExpression (transform (expression . expression),

GenericUnaryOperator . NEGATE)

302 }

if(expression .op. equals (UnaryOperator . POSITIVE)){

304 return new GenericUnaryExpression (transform (expression . expression),

GenericUnaryOperator . POSITIVE)

}

306 if(expression .op. equals (UnaryOperator . NEGATIVE)){

return new GenericUnaryExpression (transform (expression . expression),

GenericUnaryOperator . NEGATIVE)

308 }

}

310

/**

312 * Transforms ParenthesizedExpression elements

* @param expression the ParenthesizedExpression to be transformed

314 * @return the transformed ParenthesizedExpression

*/

316

def GenericParenthesizedElement transform (ParenthesizedExpression expression)

{

318 return new GenericParenthesizedElement (transform (expression .

innerExpression));

}

320

/**

322 * Transforms DoubleConstant elements

* @param expression the DoubleConstant to be transformed

324 * @return the transformed DoubleConstant

*/

326

def GenericNumber transform (DoubleConstant expression){

328 return new GenericNumber (expression . value);

}

330

/**

332 * Transforms BoolConstant elements

* @param expression the BoolConstant to be transformed

334 * @return the transformed BoolConstant

*/

Appendix C. Precedence transformer 110

336

def GenericBoolean transform (BoolConstant expression){

338 return new GenericBoolean (expression . value);

}

340

/**

342 * Transforms StringConstant elements

* @param expression the StringConstant to be transformed

344 * @return the transformed StringConstant

*/

346

def GenericString transform (StringConstant expression){

348 return new GenericString (expression . value);

}

350

/**

352 * Method to define predefined and mock functions

*/

354

def void instantiateDefaultFunctions (){

356 functions .put("Abs", new AbsoluteValueFunction ());

functions .put(" Round ", new RoundFunction ());

358 functions .put("Sum", new SumFunction ());

}

360

}

Listing C.1: PrecedenceTransformer class used to transform Precedence elements to
generic elements

Appendix D

Generated JBehave story

1 Scenario : case 1

When variable A gets value 4

3 When variable C gets value ’test ’

When variable B gets value false

5

Then variable A should return value 4.0

7 Then variable B should return value false

Then variable C should return value test

9 Then function Foobar should return value true clause

11 Scenario : case 2

When variable A gets value 4

13 When variable C gets value ’test ’

When variable B gets value true

15

Then variable A should return value 4.0

17 Then variable B should return value true

Then variable C should return value test

19 Then function Foobar should return value false clause

21 Scenario : case 3

When variable A gets value 4

23 When variable C gets value ’Not test ’

When variable B gets value false

25

Then variable A should return value 4.0

27 Then variable B should return value false

Then variable C should return value Not test

29 Then function Foobar should return value false clause

31 Scenario : case 4

When variable A gets value 4

33 When variable C gets value ’Not test ’

When variable B gets value true

35

Then variable A should return value 4.0

37 Then variable B should return value true

Then variable C should return value Not test

111

Appendix D. JBehave story 112

39 Then function Foobar should return value false clause

41 Scenario : case 5

When variable A gets value 3

43 When variable C gets value ’test ’

When variable B gets value false

45

Then variable A should return value 3.0

47 Then variable B should return value false

Then variable C should return value test

49 Then function Foobar should return value false clause

51 Scenario : case 6

When variable A gets value 3

53 When variable C gets value ’test ’

When variable B gets value true

55

Then variable A should return value 3.0

57 Then variable B should return value true

Then variable C should return value test

59 Then function Foobar should return value false clause

61 Scenario : case 7

When variable A gets value 3

63 When variable C gets value ’Not test ’

When variable B gets value false

65

Then variable A should return value 3.0

67 Then variable B should return value false

Then variable C should return value Not test

69 Then function Foobar should return value false clause

71 Scenario : case 8

When variable A gets value 3

73 When variable C gets value ’Not test ’

When variable B gets value true

75

Then variable A should return value 3.0

77 Then variable B should return value true

Then variable C should return value Not test

79 Then function Foobar should return value false clause

Listing D.1: JBehave story generated from the example model in Chapter 6

Appendix E

Generated Selenium test

1 package test;

3 import org. junit .*;

import org. openqa . selenium .*;

5 import org. openqa . selenium . firefox . FirefoxDriver ;

7 public class SeleniumTest {

9 private WebDriver driver ;

11 @Before

public void setUp () throws Exception {

13 driver = new FirefoxDriver ();

driver .get("http :// example .com/");

15 driver . findElement (By.id(" inputUsername ")). sendKeys (" username ");

driver . findElement (By.id(" inputPassword ")). sendKeys (" password ");

17 driver . findElement (By.id(" loginButton ")). click ();

}

19

@Test

21 public void testCase1 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("4.0");

23 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys (" false ");

25

Assert . assertEquals ("4.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

27 Assert . assertEquals (" false ", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("test", driver . findElement (By. xpath ("//*[@example -id[=’C

’]//*[@example -id=’ value ’]")));

29 Assert . assertEquals ("true clause ", driver . findElement (By. xpath ("//*[@example -

id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

31

113

Appendix E. Selenium test 114

@Test

33 public void testCase2 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("4.0");

35 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys ("true");

37

Assert . assertEquals ("4.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

39 Assert . assertEquals ("true", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("test", driver . findElement (By. xpath ("//*[@example -id[=’C

’]//*[@example -id=’ value ’]")));

41 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

43

@Test

45 public void testCase3 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("4.0");

47 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("Not test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys (" false ");

49

Assert . assertEquals ("4.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

51 Assert . assertEquals (" false ", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("Not test", driver . findElement (By. xpath ("//*[@example -id

[=’C ’]//*[@example -id=’ value ’]")));

53 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

55

@Test

57 public void testCase4 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("4.0");

59 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("Not test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys ("true");

61

Assert . assertEquals ("4.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

63 Assert . assertEquals ("true", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("Not test", driver . findElement (By. xpath ("//*[@example -id

[=’C ’]//*[@example -id=’ value ’]")));

65 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

Appendix E. Selenium test 115

}

67

@Test

69 public void testCase5 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("3.0");

71 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys (" false ");

73

Assert . assertEquals ("3.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

75 Assert . assertEquals (" false ", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("test", driver . findElement (By. xpath ("//*[@example -id[=’C

’]//*[@example -id=’ value ’]")));

77 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

79

@Test

81 public void testCase6 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("3.0");

83 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys ("true");

85

Assert . assertEquals ("3.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

87 Assert . assertEquals ("true", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("test", driver . findElement (By. xpath ("//*[@example -id[=’C

’]//*[@example -id=’ value ’]")));

89 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

91

@Test

93 public void testCase7 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("3.0");

95 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("Not test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys (" false ");

97

Assert . assertEquals ("3.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

99 Assert . assertEquals (" false ", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("Not test", driver . findElement (By. xpath ("//*[@example -id

[=’C ’]//*[@example -id=’ value ’]")));

Appendix E. Selenium test 116

101 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

103

@Test

105 public void testCase8 () throws Exception {

driver . findElement (By. xpath ("//*[@example -id[=’A ’]/ input [@example -id=’ value ’]

")). sendKeys ("3.0");

107 driver . findElement (By. xpath ("//*[@example -id[=’C ’]/ input [@example -id=’ value ’]

")). sendKeys ("Not test");

driver . findElement (By. xpath ("//*[@example -id[=’B ’]/ input [@example -id=’ value ’]

")). sendKeys ("true");

109

Assert . assertEquals ("3.0", driver . findElement (By. xpath ("//*[@example -id[=’A

’]//*[@example -id=’ value ’]")));

111 Assert . assertEquals ("true", driver . findElement (By. xpath ("//*[@example -id[=’B

’]//*[@example -id=’ value ’]")));

Assert . assertEquals ("Not test", driver . findElement (By. xpath ("//*[@example -id

[=’C ’]//*[@example -id=’ value ’]")));

113 Assert . assertEquals (" false clause ", driver . findElement (By. xpath ("//*[@example

-id[=’ Foobar ’]//*[@example -id=’ value ’]")));

}

115

}

Listing E.1: Selenium test generated from the example model in Chapter 6

Appendix F

Selenium functions

2 /**

* Returns the prefix for a valid Selenium class

4 * @param modelName the name of the model under test

* @return the prefix for a valid Selenium class

6 */

8 public String generateSCORECARDTESTMODELPrefix (String modelName){

return " package test;" +

10 "\n" +

"\n" +

12 " import java.util. concurrent . TimeUnit ;" + "\n" +

"\n" +

14 " import org. junit .*;" + "\n" +

" import org. openqa . selenium .*;" + "\n" +

16 " import org. openqa . selenium . firefox . FirefoxDriver ;" + "\n" +

"\n" +

18 " public class " + modelName + " Selenium {" + "\n" +

"\n" +

20 " private static WebDriver driver ;" + "\n" +

"\n" +

22 " @BeforeClass " + "\n" +

" public static void setUp () throws Exception {" + "\n" +

24 "\ tdriver = new FirefoxDriver ();" + "\n" +

"\ tdriver . manage (). timeouts (). implicitlyWait (10 , TimeUnit . SECONDS);"

+ "\n" +

26 "\ tdriver .get (\" http :// squirtle :8080/ f4c -web /\");" + "\n" +

"\ tdriver . findElement (By.id (\" inputUsername \")). sendKeys (\" username

\");" + "\n" +

28 "\ tdriver . findElement (By.id (\" inputPassword \")). sendKeys (\" password

\");" + "\n" +

"\ tdriver . findElement (By.id (\" loginButton \")). click ();" + "\n" +

30 "\ tdriver . findElement (By. xpath (\"//*[@selenium -id=\’ customerName \’

and @title =\’ Test \ ’]\")). click ();" + "\n" +

"\ tdriver . findElement (By. xpath (\"//*[@selenium -id=\’

SCORECARDTESTMODEL \ ’]\")). click ();" + "\n" +

32 "\ tdriver . findElement (By. xpath (\"//*[@selenium -id=\’ description \ ’]\")

). click ();" + "\n" +

117

Appendix F. Additional Selenium functions 118

"\ tdriver . findElement (By. xpath (\"//*[@selenium -id=\’ Q_Map05 \ ’]\")).

click ();" + "\n" +

34 "}\n" +

"\n" +

36 " @Before " + "\n" +

" public void setupCase () throws Exception {" + "\n" +

38 "\ tdriver . findElement (By. xpath (\"//*[@selenium -id =\ ’26\ ’]\")). click ()

;" + "\n" +

"\ tdriver . findElement (By. xpath (\"//*[@selenium -id=’ OnroerendGoed ’ and

@lvl = ’4 ’]//*[@selenium -id=’ junctionLink ’]\")). click ();" + "\n" +

40 "}" + "\n" +

"\n";

42 }

44 /**

* Returns the postfix for a valid Selenium class

46 * @return the postfix for a valid Selenium class

*/

48

public String generateSCORECARDTESTMODELPostfix (){

50 return " @After " + "\n" +

" public void tearDownCase () throws Exception {" + "\n" +

52 "\ tdriver . findElement (By. xpath (\"//*[@selenium -id=’ OnroerendGoed ’ and

@lvl = ’4 ’]//*[@selenium -id=’ submit ’]\")). click ();" + "\n" +

"\ tdriver . findElement (By. xpath (\"//*[@class =’ button icon ok ’]\")).

click ();" + "\n" +

54 "}" + "\n" +

"\n" +

56 " @AfterClass " + "\n"+

" public static void tearDown () throws Exception {" + "\n" +

58 "\ tdriver . findElement (By.id (\" user \")). click ();" + "\n" +

"\ tdriver . findElement (By. xpath (\"//*[@selenium -id=’ logout ’]\")). click

();" + "\n" +

60 "\ tThread . sleep (2000) ;" + "\n" +

"\ tdriver .quit ();" + "\n" +

62 "}" + "\n" +

"\n" +

64 "}";

}

Listing F.1: Java functions used to generate a executable Selenium test

Bibliography

[1] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An an-
notated bibliography. SIGPLAN Not., 35(6):26–36, June 2000. ISSN 0362-1340. doi:
10.1145/352029.352035. URL http://doi.acm.org/10.1145/352029.352035.

[2] Arie van Deursen. Domain-specific languages versus object-oriented frameworks:
A financial engineering case study. Smalltalk and Java in Industry and Academia,
STJA’97, pages 35–39, 1997.

[3] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. Model-based
dsl frameworks. In Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’06, pages
602–616, New York, NY, USA, 2006. ACM. ISBN 1-59593-491-X. doi: 10.1145/
1176617.1176632. URL http://doi.acm.org/10.1145/1176617.1176632.

[4] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart C. L. Kats, Eelco Visser, and GuidoWachsmuth. DSL Engineering -
Designing, Implementing and Using Domain-Specific Languages. dslbook.org, 2013.
ISBN 978-1-4812-1858-0. URL http://www.dslbook.org.

[5] Stuart Kent. Model driven engineering. In Proceedings of the Third Interna-
tional Conference on Integrated Formal Methods, IFM ’02, pages 286–298, London,
UK, UK, 2002. Springer-Verlag. ISBN 3-540-43703-7. URL http://dl.acm.org/

citation.cfm?id=647983.743552.

[6] Object Management Group. Mda guide rev. 2.0. page 15, 2014. URL http:

//www.omg.org/cgi-bin/doc?ormsc/14-06-01.

[7] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.
Wiley Publishing, 3rd edition, 2011. ISBN 1118031962, 9781118031964.

[8] Emin Gün Sirer and Brian N. Bershad. Using production grammars in software
testing. In Proceedings of the 2Nd Conference on Conference on Domain-Specific
Languages - Volume 2, DSL’99, pages 1–1, Berkeley, CA, USA, 1999. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1267936.1267937.

119

http://doi.acm.org/10.1145/352029.352035
http://doi.acm.org/10.1145/1176617.1176632
http://www.dslbook.org
http://dl.acm.org/citation.cfm?id=647983.743552
http://dl.acm.org/citation.cfm?id=647983.743552
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://dl.acm.org/citation.cfm?id=1267936.1267937

Bibliography 120

[9] William E. Lewis and W. H. C. Bassetti. Software Testing and Continuous Quality
Improvement, Second Edition. Auerbach Publications, Boston, MA, USA, 2004.
ISBN 0849325242.

[10] Zhen Ru Dai. Model-Driven Testing with UML 2.0. Technical report, Computing
Laboratory, University of Kent, 2004.

[11] Olli-Pekka Puolitaival and Teemu Kanstrén. Towards flexible and efficient model-
based testing, utilizing domain-specific modelling. In Proceedings of the 10th
Workshop on Domain-Specific Modeling, DSM ’10, pages 8:1–8:6, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0549-5. doi: 10.1145/2060329.2060349. URL
http://doi.acm.org/10.1145/2060329.2060349.

[12] D. Lee and Mihalis Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, Aug 1996. ISSN
0018-9219. doi: 10.1109/5.533956.

[13] Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour driven
development. In Proceedings of the 2011 37th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, SEAA ’11, pages 383–387, Wash-
ington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4488-5. doi:
10.1109/SEAA.2011.76. URL http://dx.doi.org/10.1109/SEAA.2011.76.

[14] Dionny Santiago, Adam Cando, Cody Mack, Gabriel Nunez, Troy Thomas, and
Tariq M King. Towards domain-specific testing languages for software-as-a-service.
In MDHPCL@ MoDELS, pages 43–52, 2013.

[15] Tariq M. King, Gabriel Nunez, Dionny Santiago, Adam Cando, and Cody Mack.
Legend: An agile dsl toolset for web acceptance testing. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, pages
409–412, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2645-2. doi: 10.1145/
2610384.2628048. URL http://doi.acm.org/10.1145/2610384.2628048.

[16] World Internet Stats. World Internet Users and 2014 Population Stats. http://

www.internetworldstats.com/stats.htm, 2014. [Online; accessed 12-May-2015].

[17] Chien-Hung Liu, David C. Kung, Pei Hsia, and Chih-Tung Hsu. Structural testing
of web applications. In Proceedings of the 11th International Symposium on Software
Reliability Engineering, ISSRE ’00, pages 84–, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7695-0807-3. URL http://dl.acm.org/citation.cfm?

id=851024.856240.

[18] Xinchun Wang and Peijie Xu. Build an auto testing framework based on selenium
and fitnesse. In Proceedings of the 2009 International Conference on Information

http://doi.acm.org/10.1145/2060329.2060349
http://dx.doi.org/10.1109/SEAA.2011.76
http://doi.acm.org/10.1145/2610384.2628048
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://dl.acm.org/citation.cfm?id=851024.856240
http://dl.acm.org/citation.cfm?id=851024.856240

Bibliography 121

Technology and Computer Science - Volume 02, ITCS ’09, pages 436–439, Wash-
ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3688-0. doi:
10.1109/ITCS.2009.228. URL http://dx.doi.org/10.1109/ITCS.2009.228.

[19] Andreas Bruns, Andreas Kornstadt, and Dennis Wichmann. Web application tests
with selenium. IEEE Software, 26(5):88–91, 2009. ISSN 0740-7459. doi: http:
//doi.ieeecomputersociety.org/10.1109/MS.2009.144.

[20] Selenium Project. Brief History of The Selenium Project.
http://www.seleniumhq.org/docs/01_introducing_selenium.jsp#

brief-history-of-the-selenium-project, 2015. [Online; accessed 12-May-
2015].

[21] A. Holmes and M. Kellogg. Automating functional tests using selenium. In Agile
Conference, 2006, pages 6 pp.–275, July 2006. doi: 10.1109/AGILE.2006.19.

[22] Pierre Bourque and Richard E. Fairley. Guide to the Software Engineering Body of
Knowledge - SWEBOK. IEEE Computer Society, Version 3.0 edition, 2014. ISBN
0-7695-5166-1.

[23] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, 2nd edition, 1996. ISBN 0262011530.

[24] ECMA International. Standard ECMA-335 - Common Language Infrastruc-
ture (CLI). Geneva, Switzerland, 6 edition, June 2012. URL http://www.

ecma-international.org/publications/standards/Ecma-335.htm.

[25] Bruno Richard Preiss. Data Structures and Algorithms with Object-Oriented Design
Patterns in Java. John Wiley & Sons, 2000. URL http://www.brpreiss.com/

books/opus5. 635 pp. ISBN 0-471-34613-6.

[26] Niek Hulsman. Technische documentatie - Finan ModeltaalOntwikkelomgeving.
June 2013.

[27] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, December 2005.
ISSN 0360-0300. doi: 10.1145/1118890.1118892. URL http://doi.acm.org/10.

1145/1118890.1118892.

http://dx.doi.org/10.1109/ITCS.2009.228
http://www.seleniumhq.org/docs/01_introducing_selenium.jsp#brief-history-of-the-selenium-project
http://www.seleniumhq.org/docs/01_introducing_selenium.jsp#brief-history-of-the-selenium-project
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.brpreiss.com/books/opus5
http://www.brpreiss.com/books/opus5
http://doi.acm.org/10.1145/1118890.1118892
http://doi.acm.org/10.1145/1118890.1118892

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Approach
	1.4 Report structure

	2 Testing techniques
	2.1 Black-box testing
	2.2 White-box testing
	2.3 Model-based testing
	2.3.1 Domain-specific modeling
	2.3.2 FSM testing
	2.3.3 UML testing

	2.4 Behavior-driven development
	2.5 Domain-specific testing language
	2.6 Automated web testing
	2.7 Testing levels
	2.8 Application to domain-specific languages

	3 Approach
	3.1 General development goals
	3.2 Transformation chain
	3.3 Common programming elements
	3.3.1 Common language specification
	3.3.2 Common operands
	3.3.3 Common operators
	3.3.4 Common conditionals

	3.4 Domain-specific elements
	3.5 Solution overview

	4 Common elements metamodel
	4.1 Model definition
	4.2 Mapping
	4.2.1 The mapping DSL
	4.2.2 Mapping domain-specific elements
	4.2.3 Example artifacts

	4.3 Framework options

	5 Case generation
	5.1 Expression evaluation
	5.1.1 Expression trees
	5.1.2 String transformation
	5.1.3 String evaluation

	5.2 Value generation
	5.3 Variable assignment
	5.4 Example

	6 Test generation
	6.1 Test case generation
	6.2 JBehave
	6.2.1 Generation
	6.2.2 Execution

	6.3 Selenium
	6.3.1 Generation
	6.3.2 Execution

	7 Case study
	7.1 Finan Financial Language
	7.2 Generalization
	7.3 Generation
	7.4 Specification
	7.4.1 JBehave
	7.4.2 Selenium

	7.5 Conclusion

	8 Final remarks
	8.1 Conclusions
	8.2 Research answers
	8.3 Future work

	A Expression mapping grammar
	B Precedence grammar
	C Precedence transformer
	D Generated JBehave story
	E Generated Selenium test
	F Selenium functions
	Bibliography

