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Introduction 
The company ‘Kidaptive’ is a commercial business which develops apps and websites for 

children, to give them a learning experience while they are having fun. One of their most popular 

products is Leo’s Pad, an adaptive-learning series for preschoolers which they can experience on 

a smart electronic device like a tablet or smartphone (Kidaptive, n.d.). In this application, 

children are joining young Leonardo da Vinci on adventures through which they will learn 

concepts like problem solving, creative thinking, social emotional awareness and other. The 

purpose of the application is to learn children about the world through games. This concept is 

part of another concept called serious gaming: gaming for a primary purpose other than pure 

entertainment. 

 Giving feedback has an important role in serious gaming. Burgers, Eden, van 

Engelenburg and Buningh (2015) point out that this is important when it comes to staying 

motivated to play a game. Players that receive negative feedback feel less competent and are 

more willing to play the serious game to improve their performance. Players that receive positive 

feedback felt more competent and autonomous which made them desire to play a higher level in 

the game which may lead to long-term play. An important question that comes to mind is how to 

integrate this feedback in serious games like Leo’s Pad and how to detect whether or not players 

need feedback and in what form.  

 The children that are playing Leo’s Pad are getting feedback about whether they are 

giving the right or wrong answer. And there lies an opportunity to get some insight in their 

learning process for parents and teachers. However, it is not yet possible to give direct feedback 

about their learning process while they are playing the game. One way to do this is to personalize 

the game as much as possible (Kickmeier-Rust, Augustin & Albert, 2011). Gamers who get 

immediate feedback by intelligent and adaptive tutoring, get more involved and motivated to 

play the game. For example, when a child completes a level far more quickly than he/she 

normally does or than his/her peers do, a different type of feedback should be given than when a 

child is much slower.  

 Firstly, it was necessary to have a look at the game itself. This thesis will focus on the 

first part of the game, which is available for free in the appstore for Apple users (iPhone and 

iPad).  In this part, gamers have to click on the right shapes in a room with different objects as 

shown in Figure 1 (Kidaptive, n.d.). 

Figure 1 Adapted from kidaptive.com 
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How long it takes to find the object (response time) is the most important data observation that 

will be used in this thesis. Höhle (2010) points out how change point detection can help to obtain 

information about the time sensitivity of the model describing the data. It can be useful to see if 

parameters of the different items/assignments of an underlying statistical model are invariant 

over time. Parameters of game levels are often assumed to be time invariant. Scores, according to 

the statistical model of a gamer (furthermore referred to as items), can be used to give reliable 

feedback such as information about the performance. When scores are used from a model with 

time-variant parameters, the time-specific model parameters are needed each time when 

feedback is given.   

Therefore, it is important to test the invariance assumption of the parameters of the 

statistical model describing the data. This is done to find out if the mean parameter representing 

the item’s difficulty and the variance parameter representing the variability in response time 

given the item’s difficulty are consistent over time and are not sensitive to time-correlated 

variables like knowledge or impact of technology. This leads to the research question: how can 

variations over time in item characteristics of a statistical model describing the data be 

identified? The developed tests will be applied to data of the learning game Leo’s Pad to test the 

time-invariant properties of the model describing the game’s items with respect to the response 

times. The idea is that a user can be flagged for performing significantly different on an item 

with respect to time, followed by a consequence yet to be devised. The gamer (in this case, the 

child) will then have to perform more seriously and will give the parents insight in how their 

child performs compared to a certain average (for example the average performance of other 

children of the same age). The game Leo’s Pad, and games in general, usually need to process a 

lot of data at once. To find a model fitting to this type of data selection it should be taken into 

account that it is not desirable to come up with a model that has to make a lot of calculations 

before it can be stated whether or not the model is fitting to the new data. It should therefore be 

kept in mind that this thesis will focus on finding a model for which it is only necessary to put in 

new data, which will result in a fitting or non-fitting model as the outcome (thus, without having 

to make a lot of calculations in advance). 

Data description  
The statistical model describing the data which is used to answer the research question is a data 

sample of the game ‘Leo’s Pad’. It is collected from 2013-03-20 to 2014-01-23 and contains 

several variables. Important variables for this thesis are ‘timestamp’, ‘item’ and ‘response time’.  

Those variables will now be explained individually. 

Timestamp 

Timestamp is the date and time of the registration of the data. It is given in seconds. This data is 

important for the research question of this thesis; to know if the parameters of response times are 

invariant over time, it is necessary to know at what time the data has been measured. To work 

with the variable timestamp, it is transformed to a new variable where the first registered 

response observation (2013-03-20) is regarded as the zero time point. The function POSIXlt in 

the statistical software R is used to construct the new variable. Subsequently, for each 

observation the difference in time is computed with the first observation. This new variable will 

be used to identify change of parameters of the model for response times.  

Item 

The variable ‘item’ contains the different assignments that are given in the first game of the app 

Leo’s Pad. An example of an assignment could be: find a pink object shaped like a square. ‘Item’ 
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is a factor variable which contains 127 different levels. So, the game contains a total of 127 

items.  

Response time 

The response time is the time gamers need to finish an item. It is the time a child uses from the 

moment it is given the item until the moment the child clicks or taps on an object (regardless of 

whether the item is done correctly). The response time is registered in thousandths of a second 

accuracy. The response time data is distorted because of some extreme outliers. The maximum 

measured time is 28,392.570 seconds while the median is 4.660. The cause of those extremes 

could be an error in the game’s system or a gamer who lost its concentration and stopped playing 

the game without closing it. Because the cause is unknown, it is important to be careful with 

correcting the data. The maximum could be cut off at a time that is long enough to do the 

assignment (like 50 seconds should be long enough). However, this decision will maybe exclude 

non-concentrated gamers, which are part of the target group of this study. Therefore, the 

maximum response time is cut off at 200 seconds, 

which allows some extreme scores to be flagged, 

but also brings the mean of the response times 

closer to its median, as shown in Figure 2. It also 

doesn’t exclude much of the observations. At first 

there were 228,576 observations, after correction 

there were 228,050 left (an exclusion of less than 

0,3% of all observations). The response time is 

considered to be an outcome variable of the 

statistical model. Extreme outliers will seriously 

influence the estimates of the model parameters. To 

avoid the influence of such unlikely observations, 

they have been discarded in the analysis.          

The response times are transformed to a lognormal distribution to get the most complete and 

relevant information. By doing this, there is no limitation at 0 anymore because negative values 

are also a possibility (Figure 3). Another positive effect is that the logarithm of the response 

times are correcting outliers of the data which makes it more normally distributed and less 

positive skew (Figure 4). Figure 5 supports this by showing the results in Q-Qplots. The x-axes 

Figure 2 Responsetime parameters comparison before 
and after assigning a maximum of 200 seconds 

Figure 3 Distribution of the original responsetimes (left) and logresponsetimes (right) over time (in days) of item 1 
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show the quantiles that are theoretically expected for the data when a normal distribution is 

assumed. The y-axes show what the quantiles of the sample group are. As shown, the ordered 

logarithm of response times show a better resemblance with the theoretical quantiles of the 

normal distribution, and, therefore, the normal distribution better applies to the log response 

times than the response times. 

A statistical model is used to describe the logarithm of the response times (RTip, the indices 

refer to (i)tem and (p)erson). The response time is distributed with an average time that is needed 

Figure 4 Comparison of normal distribution of original responsetime (left) and logresponsetime (right) of item 1 

Figure 5 Q-plot of responsetime (left) and logresponsetime (right) of item 1 
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to complete an item. This parameter is referred to as time intensity (λi). The parameter speed is 

the work speed of a person when he/she makes an assignment (speedp). In addition, there is a 

certain scattering (error: eip) around λ. When time intensity is reduced by work speed and the 

error is added it will give the response times as formulated in this formula: 

𝑅𝑇𝑖𝑝 =  𝜆𝑖 − 𝑠𝑝𝑒𝑒𝑑𝑝 + 𝑒𝑖𝑝 

In this model, eip is normally distributed with mean = 0 and σ1 is the variation in the working 

speed of a person and σ2 can be explained as random error variance (noise) that occurs because 

of interfering external factors. Because the focus of this research is on the parameters of a 

statistical model describing the items, all parameters that say something about individuals (a 

person) should be left out of the model distribution. This results in the following model in which 

eip is distributed with N(0, σ1+σ2): 

𝑅𝑇𝑖𝑝 =  𝜆𝑖 + 𝑒𝑖𝑝 

The parameters of this model that can be used for testing are time intensity (λ) and the variance 

of e (σ= σ1+σ2).  

Statistical process control 
Sometimes a certain process has to be monitored and controlled to give feedback to a user. When 

statistical analyses are involved, this phenomenon is called statistical process control. A lot of 

processes can be expressed in quantitative measurements like time, distance, height and so forth. 

When it is desired to control a process variable, it is a common practice to control both the mean 

and the variance of the variable. When a data sample is taken from a population, the mean and 

the variance of the variable of the population (µ and σ) can be estimated by using the sample 

mean and the sample variance of the sample group. With the sample data, the range of the mean 

of the population can be estimated with an upper boundary and a lower boundary (the same goes 

for the variance). For example, for a sample of 100 observations, the mean response time of the 

population of all gamers will be estimated between 1 and 8 seconds (the lower and upper 

boundary of a confidence interval of time intensity). This statement can be made with different 

reliability percentages. This goes with the rule that when you want to be less sure (like 90%), the 

range will be smaller than when you want to be more sure (like 99%) that the range contains the 

mean of the population. 

 To use this information for controlling a certain variable in a process, it can be useful to 

make charts for the mean and the variability of this variable. When the upper boundary and the 

lower boundary are estimated, it is easy to see when observed measurements are not what is 

expected in the process. When this is the case, feedback can be given to the user. For the data 

used, this is shown in Figure 6. The time intensity (λ) of item 1 is calculated and the upper and 

lower boundaries are given by correcting the mean with the calculated error of this mean. The 

data of the test period is shown in timeframes of 50 days. The timeframes are mainly relevant for 

the different tests that will be done. Process control in the way that will be described in this 

research, is designed to get information periodically instead of getting all the information spread 

out over time. As shown, between these timeframes, there is a wide variation in item difficulty. 

Especially the first 50 days differ from the rest of the data. The chart shows that the mean of the 

second 50 days (timeframe 2) does not fit between the upper and lower boundaries of timeframe 

1. This means the incoming data is out of control. What follows is a new calculation of the lower 

and upper boundaries of timeframe 2 in which the incoming data in the other timeframes are in 

control. The chart for the variance of the log response time shows some more fluctuations (see 

Figure 7).  
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Figure 6 Controlchart for the mean of the logresponsetime of item 1 in timeframes of 50 days 

Figure 7 Controlchart for the variance of the logresponsetime of item 1 in timeframes of 50 days 
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With all this information, three types of models can be described. The first type of model 

that can be used, is a model that tests the two parameters separately. This results in a model 

whereby new data of new timeframes will be tested to be in or out of control with the parameters 

of the first timeframe. λ2, λ3, λ4 (the indices refer to the timeframes) and so on will be tested to be 

in control with λ1. And σ2, σ3, σ4 and so on will be tested to be in control with σ1. The second 

model can combine these two parameters and see if (λ2, σ2), (λ3, σ3), (λ4, σ4) is in control with the 

model’s parameters (λ1, σ1). The last model option consists of λ1 and σ1 and the upper and lower 

boundary these parameters. When new data comes in, it is only important to see if the new data 

is in control between these boundaries. The next paragraph will describe ways to design and test 

the different types of models. 

Testing the parameters of the log response time using different timeframes 
To test whether the parameters of the log response time are invariant over time, it is necessary to 

test the parameters with the proper statistical test. Here, time intensity (λ) will be tested on time 

invariance. Then, the variance will be tested on time invariance. Subsequently, time intensity and 

variance will be tested in one comprehensive test together. In all tests 3 items will be tested: item 

1, 3 and 7. The items are mainly picked randomly, the only condition is that the item has enough 

observations.  

Testing Lambda with an independent 2-group t-test 

A fitting statistical test should be found to test the parameter time intensity (λ) on time 

invariance. One of the statistical tests that can be used is the "independent samples" t-test. It’s 

formula is written as follows: 

t =
𝜆1 − λ2 

√
s1

2

n1
 +  

s2
2

n2

 

This test will compare the time intensity of two timeframes with each other to see how much 

they are correlated. The outcome will consist a p-value that will indicate whether or not the 

samples significantly differ (p<0.05 refers to a significant difference). 

 To see how much of a difference the width of a timeframe makes, there are test results 

shown for three different timeframe sizes: 10 days, 50 days and 80 days shown in Table 1, 2 and 

3, respectively. 

 
Table 1 – Testing Lambda over timeframes of 10 days 

Item Test 1 

(First 10 

days 

compared 

to day 10-

20) 

Test 2 

(First 20 

days 

compared 

to day 20-

30) 

Test 3 

(First 30 

days 

compared 

to day 30-

40) 

Test 4 

(First 40 

days 

compared 

to day 40-

50) 

Test 5 

(First 50 

days 

compared 

to day 50-

60) 

Test 6 

(First 60 

days 

compared 

to day 60-

70) 

Test 7 

(First 70 

days 

compared 

to day 70-

80) 

1 t = -1.6287 

p = 0.1096 

t = -0.5327 

p = 0.5955 

t = 0.9924 

p = 0.327 

t = -0.1027 

p = 0.9188 

t = -1.0522 

p = 0.2993 

t = -0.1225 

p = 0.9028 

t = -0.6698 

p = 0.5044 

3 t = -1.0958 

p = 0.3001 

t = 0.9014 

p = 0.373 

t = -0.4103 

p = 0.6832 

t = 1.6507 

p = 0.1028 

t = 1.0907 

p = 0.2771 

t = -0.2116 

p = 0.8326 

t = 1.687 

p = 0.0944 

7 t = 0.4741 

p = 0.6362 

t = -0.1278 

p = 0.8985 

t = 0.2998 

p = 0.765 

t = -0.7512 

p = 0.4553 

t = -0.0242 

p = 0.9808 

t = 1.1696 

p = 0.2721 

t = 1.0259 

p = 0.3473 
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Table 2 - Testing Lambda over timeframes of 50 days 

Item Test 1 (First 50 

days compared 

to day 50-100) 

Test 2 (First 100 

days compared 

to day 100-150) 

Test 3 (First 150 

days compared 

to day 150-200) 

Test 4 (First 200 

days compared 

to day 200-250) 

Test 5 (First 250 

days compared 

to day 250 and 

later) 

1 t = -1.8132 

p = 0.0706 

t = -2.3271 

p = 0.02021 

t = -1.0321 

p = 0.3022 

t = -1.2874 

p = 0.1981 

t = 1.0298 

p = 0.3031 

3 t = -0.2069 

p = 0.8364 

t = -1.7678 

p = 0.07724 

t = -0.0447 

p = 0.9644 

t = 1.6251 

p = 0.1042 

t = 0.7154 

p = 0.4744 

7 t = 0.7294 

p = 0.4663 

t = 0.7739 

p = 0.4436 

t = 1.3293 

p = 0.1976 

t = -0.8256 

p = 0.4464 

t = 0.1447 

p = 0.8939 

 

 

Table 3 - Testing Lambda over timeframes of 80 days 

Item Test 1 (First 80 days 

compared to day 80-160) 

Test 2 (First 160 days 

compared to day 160-240) 

Test 5 (First 240 days 

compared to day 240 and 

later) 

1 t = -2.7944 

p = 0.005361 

t = -1.0063 

p = 0.3144 

t = 0.6878 

p = 0.4916 

3 t = -3.151 

p = 0.001755 

t = 0.7715 

p = 0.4405 

t = 1.168 

p = 0.2428 

7 t = 1.0078 

p = 0.3143 

t = 0.934 

p = 0.3623 

t = -0.9059 

p = 0.4063 

  

Testing variance with the chi-square test 

 For the variance of the log response time another test should be used. A chi-square test is 

a good choice to see if the variances of the log response times are significantly different from 

each other in the several timeframes,. The formula for the chi-square test is: 

2 =  
(n − 1)s1

2

s2
2  

The outcomes given in Table 4 for item 1, 3 and 5 are p-values following from the chi-square 

test. This outcome indicates how much the variance of a timeframe deviates from the variance of 

the first timeframe. When 2is close to 1, then s2 (estimated sample variance following from data 

of a new timeframe) is smaller than s1 (sample variance computed in first timeframe). And when 

it is close to 0, s2 is greater than s1. When this difference is significant (more than 0.95 or less 

than 0.05) the next test with the next timeframe will be carried out with the data of the last 

timeframe (s2 as new s1). 

 
Table 4 - Variance comparison in timeframes of 50 days with p-value of chi-square test 

Item Day 50-100 Day 100-150 Day 150-200 Day 200-250 Day 250-300 

1 0.0083 0.0243 > 0.9999 0.0048 > 0.9999 

3 0.9988 0.0008 0.9996 0.9995 < 0.0001 

7 > 0.9999 0.0638 > 0.9999 < 0.0001 > 0.9999 
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Testing Lambda and the variance with the likelihood-ratio test 

Now it is known how the different Lambda’s compare to one another and how the different 

variances compare to one another. But this is actually not completely what is needed to know. It 

would be more convenient to test Lambda and the variance with the same test. The likelihood-

ratio test can be used for this purpose. With a likelihood ratio test, the goodness of fit of two 

models can be compared. The formula of this test is: 

𝐿𝑅 =  
𝐿(𝛺0)

𝐿(𝛺1)
 

In this formula, the largest value of the likelihood of H0 is called the likelihood function L(Ωo). 

The largest value of the likelihood of H1 is called the likelihood function L(Ω1). When L(Ω1) is 

much larger than L(Ω0), hypothesis H0 should be rejected. 

 To test if the variance of different timeframes of a specific item do significantly differ 

from each other, the likelihood ratio of the variance of timeframe 1 and the data of timeframe 2 

are compared. In order to do this, this test compares the old parameters of timeframe 1 (Ωo) with 

the best fitting parameters to timeframe 2 (Ω1). This will always give a negative test outcome, 

steering to the parameters of Ω1. When Ω1 is close to Ωo, the test outcome will be close to 0, 

because the data has a lognormal distribution. This is in favor of Ωo when the p-value of the 

likelihood-ratio test is 0.05 or higher. When this is the case, the parameters of the new data are 

considered fitting to the parameters of the model and are not rejected. When the test value 

significantly deflects from 0 (the p-value of the likelihood-ratio test is less than 0,05), the new 

data is considered out of control. In this case the new data of timeframe 2 will be used to 

calculate the parameters for the next null hypothesis, to which the data of the next timeframe (3) 

shall be tested. Table 5 shows the results of this testing method for item 1, 3 and 5. 

 

Table 5 – Likelihood ratio test of the variance comparing old timeframe parameters with 

best fitting parameters of the data of a later timeframe  
Item Test 1 (input: 

data day 50-100) 

Test 2 (input: 

data day 100-

150) 

Test 3 (input: 

data day 150-

200) 

Test 4 (input: 

data day 200-

250) 

Test 5 (input: 

data day 250 and 

later) 

1 LR = -6.8514 

p = 0.0002 

LR = -2.7722 

p = 0.0185 

LR = -22.9186 

p < 0.0001 

LR = -4.7849 

p = 0.0020 

LR = -179.9553 

p < 0.0001 

3 LR = -32.3156 

p < 0.0001 

LR = -8.5748 

p < 0.0001 

LR = -8.0784 

p < 0.0001 

LR = -7.0790 

p < 0.0001 

LR = -65.7770 

p < 0.0001 

7 LR = -3.5514 

p = 0.0077 

LR = -0.3400 

p = 0.4096 

LR = -4.8792 

p = 0.0018 

LR = -42.8224 

p < 0.0001 

LR = -2.132492 

p = 0.0389 

 

Another way of using the likelihood-ratio test is by using the boundaries of a confidence interval 

of a parameter. In this case, in examining the variance of the response time, Ωo is still the 

variance of the first timeframe.  Ω1 however is now the upper or lower boundary of the 95% 

confidence interval of the estimated variance of the first timeframe. When the data of a new 

timeframe is tested and the LR value is positive, the process is in control since there is no change 

detected in the sample variance. When the LR value is significantly negative, the process is out 

of control and a significant change in the variance parameter is detected. This gives information 

about the direction the new data is going and how steep this shift is. When the outcome of LR 

has no significant p-value, the model’s parameters can still be used for testing the other 

timeframes. However, then the direction the data is going is already known and this can already 
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be taken into account (depending on the purpose of testing). Table 6 shows the test results of this 

way of testing. This time, item 106 is tested. 

 

Table 6 – Likelihood-ratio test comparing timeframes with the variance of the first 

timeframe and its boundaries 

All data is 

compared to the 

parameters of the 

first timeframe 

(day 0-50) 

Test 1 (Data 

day 50-100) 
Test 2 (Data 

day 100-150) 
Test 3 (Data 

day 150-200) 
Test 4 (Data day 

200-250) 
Test 5 (Data day 

250-300) 

𝐿(𝛺𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

𝐿(𝛺𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦)
 

LR = 19.3864 

p < 0.0001 

LR = 29.8663 

p < 0.0001 

LR = 46.9374 

p < 0.0001 

LR = 94.5212 

p < 0.0001 

LR = 199.2003 

p < 0.0001 

𝐿(𝛺𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

𝐿(𝛺𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦)
 

LR = 6.1800 

p = 0.0004 

LR = 7.43444 

p = 0.0001 

LR = 10.0074 

p < 0.0001 

LR = -12.8328 

p < 0.0001 

LR = 5.9049 

p = 0.0006 

 

With this outcome it can be said whether or not the process is in or out of control, in this case it 

is clearly in control. For a comparison, Figure 8 shows a graph with the variances of all 

timeframes and the boundaries of the variance of the first timeframe. The likelihood ratio-test 

gives this information already without having to calculate all the parameters of the different 

timeframes.  

Conclusion 
This research started with the question: how can variations over time in item characteristics of a 

statistical model describing the data be identified? A few conclusions can be drawn based on the 

results of the three tests for the response time models for the application game Leo’s Pad.   

The two parameters that are used to describe the response times are time intensity (λ) and 

the variance of the response times (σ). Time intensity has been tested on time invariance using an 

Figure 8 Controlchart for variance of the resonstime of item 6 
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independent sample t-test. For this purpose, the response time is divided into different 

timeframes of 10, 50 and 80 days. The results of these tests show only a few significant results, 

even in the table with timeframes of 80 days. Dependent on these results it can be stated that the 

mean of the variable response times is fairly consistent over time. In this case and only with this 

dataset, λ of the response times of the items is invariant over time. This means that this test is 

useful for testing the time invariance of the response times of this application game. 

The error variance parameter of the model for the response times is tested with the chi-

square test. This test gives information about which variance of two different timeframes is 

bigger and whether this difference is significant. The test results show almost exclusively 

significant results, which means that the error variance of the analyzed response time changed 

over time data. The chi-square test is therefore also useful to test the time invariance of the 

response times of the application game. 

The parameters are tested with two different likelihood-ratio tests. The first test used the 

best fitting parameters of the new data as the alternative hypothesis. The null hypothesis is 

calculated with the parameters of the response time model of the first timeframe. The likelihood-

ratio test had, because of testing the same items, the same outcome as the chi-square test but also 

includes the parameter time intensity. The second likelihood-ratio test, provided even more 

information. This test shows the results of a different item. Even though the results show almost 

exclusively significant results in favor of the null hypothesis, the outcome still tells something 

about the direction of evidence of the new data. The results are a quantitative visualization of 

how much the data deviates from the variance of the first timeframe and if it stays and is 

expected to stay within the boundaries of the 95% confidence interval of this variance. This 

second likelihood-ratio test does this without having to calculate all the parameters for every new 

timeframe. The second likelihood-ratio model therefore seems the most efficient way to identify 

variations in item characteristics over time. 

Discussion 
The likelihood-ratio test using the lower and upper boundaries of the variance as alternative 

hypothesis is a very efficient test to use in process control. The test only requires the parameters 

of the first timeframe. After that, new data is used see if the model fits to the new data. It is just a 

matter of sampling new data and see if the model still fits to it. When there is a shifting to one of 

the boundaries it can be noted in an early stadium and dealt with. The greatest benefit of this 

method is that is doesn’t require a calculation of the parameters for every new timeframe. 

 Another benefit of this test is that it can be used for any quantitative parameter of any 

variable of any process control data. This research could have been more generalized when it 

include a likelihood-ratio examination of λ instead of only examining σ. And this test could have 

been used for far more other purposes. Setting up a similar test situation for λ with the 

likelihood-ratio test is the minimum recommendation that can be done for further research.  

 The fact that the likelihood-ratio test can be used for very broad purposes also has a 

positive effect for the outcomes of this research. The test can be generalized to a lot of processes 

that are required to be under control and almost any variable that needs to be tested on time 

consistency, especially when this involves big data sets. 
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Appendix 

R-code used designing this research 
 

data <- #data input from Leo’s Pad 

 

N <- nrow(data) 

nll <- tapply(rep(1,N),data$item,sum) 

 

data1 <- data[data$item == 106,] 

  

N <- nrow(data1) 

out <- lm(responsetime ~ 1+outcome, data=data1) 

summary(out) 

 

set1 <- which(data1$responsetime > 200) 

set <- which(data1$responsetime < 200 & data1$responsetime > 0) 

data11 <- data1[set,] 

N <- nrow(data11) 

 

out <- lm(responsetime ~ 1 + outcome, data=data11) 

 

data11$timediff <- difftime(data11$time,min(as.POSIXlt(data11$timestamp)),unit="days") 

data11$logresponsetime <- log(data11$responsetime) 

 

oo <- order(data11$timediff) 

data11o <- data11[oo,] #new data frame ordered by timediff 

 

N=10000 

testdata <- rnorm(N, (mean(data11o$responsetime)), (var(data11o$responsetime))) 

 

set1 <- which(data11o$timediff <= 50) 

set2 <- which(data11o$timediff > 50 & data11o$timediff <= 100) 

set3 <- which(data11o$timediff > 100 & data11o$timediff <= 150) 

set4 <- which(data11o$timediff > 150 & data11o$timediff <= 200) 

set5 <- which(data11o$timediff > 200 & data11o$timediff <= 250) 

set6 <- which(data11o$timediff > 250) 

 

RT1 <- data11o$logresponsetime[set1] 

RT2 <- data11o$logresponsetime[set2] 

RT3 <- data11o$logresponsetime[set3] 

RT4 <- data11o$logresponsetime[set4] 

RT5 <- data11o$logresponsetime[set5] 

RT6 <- data11o$logresponsetime[set6] 

 

t.test(RT1,RT2) 

t.test(RT2,RT3) 



16 
 

t.test(RT3,RT4) 

t.test(RT4,RT5) 

t.test(RT5,RT6) 

 

N=sum(complete.cases(data11o$logresponsetime[set2])) 

sigma20 <- var(RT4) 

varstat <- (N-1)*var(RT2)/sigma20 

pchisq(varstat,df=N-1) 

 

TestSigma <- function(RT,sigma,N){ 

  

RT <- matrix(RT,nrow=N) 

if(ncol(RT) > 1){ 

                sigmahat <- apply(RT,2,var) 

                varstat <- (N-1)*apply(RT,2,var)/sigma 

                LRatio <- (N/2)*(1 + log(sigmahat/sigma) - (sigmahat/sigma)) 

}else{ 

                sigmahat <- var(RT) 

                varstat <- (N-1)*var(RT)/sigma 

                LRatio <- (N/2)*(1 + log(sigmahat/sigma) - (sigmahat/sigma)) 

} 

  

pvaluec <- pchisq(varstat,df=N-1)                            # H1 versus H0  

pvalueLR <- 1-pchisq(-2*LRatio,df=1)     # H1 versus H0  

LowUpp <- c(qchisq(.025,df=N-1),qchisq(.975,df=N-1)) 

                

return(list(varstat=varstat,pvaluec=pvaluec,pvalueLR=pvalueLR,LowUpp=LowUpp,LRatio=LR

atio)) 

} 

 

TestSigma(RT=RT6,sigma=var(RT5),N=sum(complete.cases(data11o$logresponsetime[set6]))) 

 

par3 <- '0.95' 

par2 <- var(RT1) 

par1 <- sum(complete.cases(data11o$logresponsetime[set1])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

  

TestSigmaLR <- function(RT,sigma,sigmahat,N){ 

RT <- matrix(RT,nrow=N) 
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LRatio <- sum(dnorm(RT,mean=mean(RT),sd=sqrt(sigma),log=T))  -  

sum(dnorm(RT,mean=mean(RT),sd=sqrt(sigmahat),log=T)) 

pvalueLR <- 1-pchisq(abs(-2*LRatio),df=1)     # H1 versus H0 

                

return(list(pvalueLR=pvalueLR,LRatio=LRatio)) 

} 

 

TestSigmaLR(RT=RT6,sigma=var(RT1),sigmahat=right,N=sum(complete.cases(data11o$logres

ponsetime[set6]))) 

TestSigmaLR(RT=RT6,sigma=var(RT1),sigmahat=left,N=sum(complete.cases(data11o$logresp

onsetime[set6]))) 

 

x <- data11o$timediffgraph 

y <- data11o$logresponsetimegraph 

plot(x, y, xlim = c(0,300), ylim = c(0.21, 0.32), type="b", xlab="Time in days", ylab="Variance 

of logresponsetimes", main="Controlchart for variance of the logresponsetime of item 6")  

 

segments(x=0, y=(var(RT1)), x1=300, y1=(var(RT1)),col=4,lty=1) 

par3 <- '0.95' 

par2 <- var(RT1) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set1])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=0,y=left,x1=300,y1=left,col=4,lty=3) 
 

x <- data11o$responsetime  

h<-hist(x, breaks=15, col="cadetblue", xlab="Responsetime in seconds", main="Histogram of original 

responsetime with Normal Curve")  

xfit<-seq(min(x),max(x),length=100)  

yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))  

yfit <- yfit*diff(h$mids[1:2])*length(x)  

lines(xfit, yfit, col="darkred", lwd=2) 

 

x <- data11o$logresponsetime  

h<-hist(x, breaks=15, col="cadetblue", xlab="Logresponsetime", main="Histogram of logresponsetime 

with Normal Curve")  

xfit<-seq(min(x),max(x),length=100)  

yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))  

yfit <- yfit*diff(h$mids[1:2])*length(x)  

lines(xfit, yfit, col="darkred", lwd=2) 

 

x <- data11o$timediff 

y <- data11o$responsetime  
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plot(x,y,type="l", xlab="Time in days (day 0 = first day of data sampling)", ylab="Responsetime in 

seconds") 

y <- data11o$logresponsetime 

plot(x,y,type="l", xlab="Time in days (day 0 = first day of data sampling)", ylab="Logresponsetime") 

 

#qplots 

qqnorm(data11o$responsetime, ylab="Quantiles original responsetime") 

qqnorm(data11o$logresponsetime, ylab="Quantiles logresponsetime") 

 

data11o$timediffgraph <- data11o$timediff 

data11o$timediffgraph[data11o$timediffgraph <= 50] <- 25 

data11o$timediffgraph[data11o$timediffgraph > 50 & data11o$timediffgraph <= 100] <- 75 

data11o$timediffgraph[data11o$timediffgraph > 100 & data11o$timediffgraph <= 150] <- 125 

data11o$timediffgraph[data11o$timediffgraph > 150 & data11o$timediffgraph <= 200] <- 175 

data11o$timediffgraph[data11o$timediffgraph > 200 & data11o$timediffgraph <= 250] <- 225 

data11o$timediffgraph[data11o$timediffgraph > 250] <- 275 

 

data11o$logresponsetimegraph <- data11o$logresponsetime 

data11o$logresponsetimegraph[set1] <- mean(RT1) 

data11o$logresponsetimegraph[set2] <- mean(RT2) 

data11o$logresponsetimegraph[set3] <- mean(RT3) 

data11o$logresponsetimegraph[set4] <- mean(RT4) 

data11o$logresponsetimegraph[set5] <- mean(RT5) 

data11o$logresponsetimegraph[set6] <- mean(RT6) 

 

#Graph mean: 

x <- data11o$timediffgraph 

y <- data11o$logresponsetimegraph 

plot(x, y, type="b", xlab="Time in days", ylab="Mean of logresponsetimes", main="Controlchart for 

mean of the logresponsetime of item 1") 

segments(x=0, y=(mean(data11o$logresponsetime[set1])), x1=50, 

y1=(mean(data11o$logresponsetime[set1])),col=4,lty=1) 

error <- qt(0.975,df=length(data11o$logresponsetime[set1])-

1)*sd(data11o$logresponsetime[set1])/sqrt(length(data11o$logresponsetime[set1])) 

left <- mean(data11o$logresponsetime[set1])-error 

right <- mean(data11o$logresponsetime[set1])+error 

segments(x=0,y=left,x1=50,y1=left,col=4,lty=3) 

segments(x=0,y=right,x1=50,y1=right,col=4,lty=3) 

 

segments(x=50, y=(mean(data11o$logresponsetime[set2])), x1=300, 

y1=(mean(data11o$logresponsetime[set2])),col=4,lty=1) 

error <- qt(0.975,df=length(data11o$logresponsetime[set2])-

1)*sd(data11o$logresponsetime[set2])/sqrt(length(data11o$logresponsetime[set2])) 

left <- mean(data11o$logresponsetime[set2])-error 

right <- mean(data11o$logresponsetime[set2])+error 

segments(x=50,y=left,x1=300,y1=left,col=4,lty=3) 

segments(x=50,y=right,x1=300,y1=right,col=4,lty=3) 

 

legend("bottomright",col=4,lty=c(1,3), lwd=1,legend=c("Mean", "Boundaries"), bty="n") 

 

data11o$logresponsetimegraph <- data11o$logresponsetime 



19 
 

data11o$logresponsetimegraph[set1] <- var(RT1) 

data11o$logresponsetimegraph[set2] <- var(RT2) 

data11o$logresponsetimegraph[set3] <- var(RT3) 

data11o$logresponsetimegraph[set4] <- var(RT4) 

data11o$logresponsetimegraph[set5] <- var(RT5) 

data11o$logresponsetimegraph[set6] <- var(RT6) 

 

#Graph variance: 

x <- data11o$timediffgraph 

y <- data11o$logresponsetimegraph 

plot(x, y, type="b", xlab="Time in days", ylab="Variance of logresponsetimes", main="Controlchart for 

variance of the logresponsetime of item 1")  

 

segments(x=0, y=(var(RT1)), x1=50, y1=(var(RT1)),col=4,lty=1) 

par3 <- '0.95' 

par2 <- var(RT1) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set1])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=0,y=left,x1=50,y1=left,col=4,lty=3) 

segments(x=0,y=right,x1=50,y1=right,col=4,lty=3) 

 

segments(x=50, y=(var(RT2)), x1=100, y1=(var(RT2)),col=4,lty=1) 

par3 <- '0.95' 

par2 <- var(RT2) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set2])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=50,y=left,x1=100,y1=left,col=4,lty=3) 

segments(x=50,y=right,x1=100,y1=right,col=4,lty=3) 

 

segments(x=100, y=(var(RT3)), x1=150, y1=(var(RT3)),col=4,lty=1) 

rrpar3 <- '0.95' 

par2 <- var(RT3) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set3])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 
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left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=100,y=left,x1=150,y1=left,col=4,lty=3) 

segments(x=100,y=right,x1=150,y1=right,col=4,lty=3) 

 

segments(x=150, y=(var(RT4)), x1=200, y1=(var(RT4)),col=4,lty=1) 

par3 <- '0.95' 

par2 <- var(RT4) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set4])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=150,y=left,x1=200,y1=left,col=4,lty=3) 

segments(x=150,y=right,x1=200,y1=right,col=4,lty=3) 

 

segments(x=200, y=(var(RT5)), x1=250, y1=(var(RT5)),col=4,lty=1) 

par3 <- '0.95' 

par2 <- var(RT5) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set5])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=200,y=left,x1=250,y1=left,col=4,lty=3) 

segments(x=200,y=right,x1=250,y1=right,col=4,lty=3) 

 

segments(x=250, y=(var(RT6)), x1=300, y1=(var(RT6)),col=4,lty=1) 

par3 <- '0.95' 

par2 <- var(RT6) 

par1 <- sum(complete.cases(data11o$logresponsetimegraph[set6])) 

par1<-as.numeric(par1) 

par2<-as.numeric(par2) 

par3<-as.numeric(par3) 

df <- par1 - 1 

halfalpha <- (1 - par3) / 2 

right <- par2 * df / qchisq(halfalpha,df) 

left <- par2 * df / qchisq(1-halfalpha,df) 

segments(x=250,y=left,x1=300,y1=left,col=4,lty=3) 

segments(x=250,y=right,x1=300,y1=right,col=4,lty=3) 

 

legend("topright",col=4,lty=c(1,3), lwd=1,legend=c("Mean", "Boundaries"), bty="n") 


