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Abstract

CλaSH is a functional hardware description language in which structural descriptions
of combinational and synchronous sequential hardware can be expressed. ¿e language
is based on Haskell, from which it inherits abstraction mechanisms such as, the sup-
port of polymorphism and higher-order functions. Recursion is another fundamental
and commonly used abstraction mechanism in Haskell. In contrast with Haskell, the
support of recursion in CλaSH is currently limited. ¿is is considered a shortcoming
by many CλaSH users.

Data-dependent recursive functions pose a problem for the current implementation of
CλaSH. Currently, these recursive function de�nitions are unrolled by the compiler, in
an attempt to produce �nite circuits. In the case of data-dependent recursive functions,
such �nite circuit descriptions o en cannot be found using unrolling, as it would
require infeasibly large circuits, capable of handling all possible arguments.

¿is thesis focuses on extending the CλaSH compiler with support of data-dependent
recursion. ¿is is established by describing a formal rewrite method, based on the
continuation passing style transformation. ¿is method transforms recursive function
descriptions to a corresponding circuitry, capable of executing the recursive function.
A detailed description of the generated stack architecture is provided in the form of
CλaSH descriptions. ¿e resulting circuits, produced by applying the methodology,
are elaborated and synthesis results of those circuitries are discussed.
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1

Introduction

Computing devices are used to accomplish an ever increasing number of tasks. In the digital
age we currently live in, these computer devices not only are omnipresent, the tasks they
perform also evolve rapidly. ¿e hardware that is used to accomplish these tasks, grows
alongside with this trend. Due to innovations in fabrication techniques of transistors, used
in for example Central Processing Units (CPUs), Graphics Processing Units (GPUs), and Field
Programmable Gate Arrays (FPGAs), a larger number of these transistors can be packed into
such chips.

To illustrate the trend that currently takes place in the evolution of computing devices, the
number of transistors used in CPUs, GPUs, and FPGAs are shown in Figure 1.1. A period
of 50 years show a rapid increase in transistor count. ¿e largest transistor count displayed
in Figure 1.1 contains more than twenty-billion transistors; an FPGA produced in 2014 by
Xilinx [30]. To put that number in context, this is about 2.8 times the world population in
2014.

Figure 1.2 illustrates the wide variety of applications in which FPGAs are currently used.
¿ese applications vary from low demanding consumer applications to high demanding
aerospace applications. In the early 90s the application domains of FPGAs were mainly net-
working and telecommunication technologies. ¿is indicates that: not only the capabilities
of the FPGAs grow, but they are also deployed in a wider variety of application domains.

¿e Hardware Description Languages (HDLs), that are used to implement digital circuits
on FPGAs, are subject to both of these trends: digital circuits described by these languages
become larger as resources on FPGAs increase, and the HDLs used to implement digital
circuits are used in more and more domains. ¿is requires the HDLs to be both scalable and
�exible.
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1.1. PROBLEM STATEMENT AND APPROACH

Currently the most common HDLs that are used in the industry are VHSIC Hardware De-
scription Language (VHDL) [1] and Verilog [2]. ¿ese languages have proven their power
in the industry. It is however important to keep improving these languages, and exploring
alternative languages compared to the existing ones.

In this thesis, the focus will lie on such an alternative: CλaSH [7]. CλaSH is a FunctionalHDL
(FHDL) based on the semantics of the Haskell language in which structural descriptions
of combinational and synchronous sequential hardware can be expressed. ¿e language
supports polymorphism and higher-order functions, properties inherited from the Haskell
language.

1.1 Problem statement and approach

¿e ability to express recursive function de�nitions is fundamental in the Haskell language,
and commonly used by developers using this language. In the CλaSH language, however, the
ability to express recursive function de�nitions is limited. ¿is is considered as a shortcoming
by many CλaSH users [20, 26, 36, 37].

Research is conducted in this thesis to extend the support of recursion. As will be elaborated
in this thesis, the ability to express recursion present in so-called data-dependent recursive
functions, is currently unsupported in CλaSH. ¿e research question central to this thesis
will therefore be:

» How can data-dependent recursive function de�nitions be supported by the CλaSH com-
piler?

Several aspects related to this question need to be clari�ed, before this research question can
be addressed. For instance, the exact limitations of CλaSHneed to be identi�ed. Furthermore,
a type of hardware architecture need to be identi�ed, capable of handling the recursive
algorithms described in the CλaSH language. ¿ese structuresmust be derived automatically
in order to be part of the CλaSH compiler.

1.2 Outline of this thesis

¿is thesis is structured as follows. In Chapter 2, background and related work are discussed.
¿is gives the reader the required background knowledge to read the rest of this thesis and
it provides the current status of related work. In Chapter 3, a methodology is developed to
generate hardware from recursive equations. An guiding example is used in this chapter to
illustrate the presented methodology. ¿e presented methodology is implemented by means
of a proof of concept, which is presented in Chapter 4. ¿is chapter contains implementation
details of the generated hardware. Experimental results are evaluated in Chapter 5. It con-
tains both results of applying the methodology presented in Chapter 3 to translate recursive

3



CHAPTER 1. INTRODUCTION

descriptions, and synthesis results of the generated hardware structures. Finally, in Chapter 6,
the work presented thesis is discussed and conclusions are drawn.
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2

Background and RelatedWork

In this chapter, relevant background information and related work is elaborated. A basic
understanding of the relevant topics discussed in this thesis, is established. Furthermore,
relevant work is elaborated in form of a discussion. ¿is provides the required knowledge
which is needed to read the rest of this thesis.

Because CλaSH is central to this thesis, both the language and the compiler are elaborated.
¿e reader should be able to understand how hardware is developed using the CλaSH lan-
guage and the CλaSH compiler. ¿e inner workings of the CλaSH compiler pipeline are also
roughly discussed, without going into to much detail. Additionally, the current status of the
support of recursion in CλaSH is elaborated.

Several di�erent properties of recursive functions are distinguished in this research, which
are also elaborated within this chapter. ¿e properties of these recursive functions are ex-
plained with the use of examples of such functions. ¿roughout the rest of this thesis, these
properties are used to identify speci�c forms of recursion, for which these properties hold.
Furthermore, the provided examples are used throughout this thesis to show the e�ects of
the implementation of such recursive forms in recon�gurable hardware.

Relevant literature in the �eld of recon�gurable hardware andHDLs is covered. ¿is provides
the reader with the knowledge and the status of the research already conducted in these �elds.
Initially the focus will be on the broad �eld of recursion in recon�gurable hardware. Later
on in this chapter, the scope will be narrowed down to a particular kind of HDLs, which is
more relevant to this thesis: FHDL compilers. Within this relevant work, a speci�c concept
is used, called Continuation Passing Style (CPS). ¿is concept is explained in further detail
in this chapter, as it is used in the rest of this thesis.

5



CHAPTER 2. BACKGROUND AND RELATEDWORK

An overview of the CλaSH language and the CλaSH compiler, is provided in section §2.1.
Background on recursion is elaborated in section §2.2: to enable the reader to distinguishes
between various kinds of recursion. ¿en, in section §2.3, related work is evaluated. In
this evaluation it will become clear that particular work is especially relevant to this thesis.
¿erefore a speci�c concept, used in the rest of this thesis, is further elaborated in section
§2.4 to provide the necessary background to understand the rest of this thesis.

2.1 CλaSH

CAES language for asynchronous hardware (CλaSH) [6, 7, 14] is a FHDL which borrows syn-
tax and semantics from Haskell. ¿e language allows a circuit designer to describe hardware
using advanced Haskell language constructs like polymorphism and higher-order functions.
Netlist of the circuits designed in CλaSH are produced by the compiler in commonly used
HDLs like VHDL and Verilog. A circuit designer can use commonly available synthesis
tooling, like Altera Quartus or Xilinx Vivado, to further synthesize the VHDL (or Verilog)
produced by CλaSH, to a digital circuit. ¿e CλaSH compiler also includes an interactive
environment allowing a hardware developer to simulate the circuits developed in CλaSH,
without the need of specifying a seperate test bench.

¿roughout the past several years, CλaSH is used to describe circuits for applications in
varying domains. ¿is includes, domain speci�c processors: a Data-�ow processor [27] and
a Very Long Instruction Word (VLIW) processor [10]; the domain of computer algorithms:
the n-queens algorithm [22] and the MUltiple SIgnal Classi�cation (MUSIC) algorithm [21];
the domain of state space estimation using a particle �lter [38], the domain of astronomy
poly-phase �lter bank [39], and an application in the domain of biology by means of an
auditory model of a cochlea [11].

2.1.1 Hardware Design using CλaSH

In CλaSH, functions are used to describe hardware. A basic set of functions is provided
in the CλaSH prelude library. ¿is enables a circuit designer to design both combinational
and synchronous sequential hardware. Types are used in CλaSH, to specify what kind of
hardware needs to be compiled. One can for example use an Unsigned 32 type to specify
wires that can handle a 32 bit unsigned integer.

A special type, called a Signal, is used when a sequential synchronized circuits is described
in CλaSH. A Signal can be seen as an in�nite list of samples, where each sample corresponds
to a value at a speci�cmoment in time. ¿esemoments are synchronized by a clock. Registers
are used to capture the values of the samples. In other words, the state of the Signal is
captured via registers. Combinational circuits are described, without the use of the Signal
data-type.

6



2.1. CλASH

¿e CλaSH prelude library contains a classic machine model: the Mealy machine. Figure 2.1
shows this Mealy machine. Both the input i and state s are input for the function f . ¿e
function f is the combinational function used to determine the output o and the next state
s′. All the inputs and the output of f are of type Signal. ¿e next state s′ is captured in a
register.

fi o

s′s

Figure 2.1 – Generic form of a Mealy machine as can be described by
CλaSH

CλaSH hardware description example

To illustrate howCλaSH can be used to design circuits, an example is worked out in Listing 2.1
and Figure 2.2. Listing 2.1 shows a Mealy description of a Multiply ACcumulate (MAC)
operation. ¿e input of the Mealy description is a tuple (x , y) which contains the values
that need to be multiplied. ¿e state s of the Mealy machine consist of an accumulator. ¿e
output of the MAC function is equal to the next state s′.

Mathematically, one could express the result of the mac operation as: s′ = s + x ⋅ y. Note the
similarities between the mathematical description and the hardware description in CλaSH.
Figure 2.2 contains the resulting circuit corresponding to Listing 2.1.

mac s (x,y) = (s’,o)
where
s’ = s + x * y
o = s’

mac’ = mealy mac 0

Listing 2.1 – MAC hardware description
de�ned in the CλaSH language.

+×x
y o

s′s

Figure 2.2 – MAC circuit corresponding
to the CλaSH description in Listing 2.1.

2.1.2 Compiler pipeline

¿e CλaSH compiler produce a netlist in the form of other, more low-level, HDLs. ¿is may
be for example VHDL. ¿ree subsequent steps are used to derive these netlists. ¿ese steps
are depicted in Figure 2.3.

7
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Haskell Source

Front-end Normalization Netlist generation

Netlist
Core

Normalized Core

Figure 2.3 – CλaSH compiler pipeline

Front-end ¿e CλaSH source code is presented to the front-end. ¿is front-end processes
the CλaSH source to an Intermediate Representation (IR) named Core. CλaSH uses the
Glasgow Haskell Compiler (GHC) [35] for this step, which is an open source Haskell
compiler. ¿is Core IR is passed to the following step.

Normalization ¿e Core produced by the front-end is fed to the normalization step. ¿is
normalization step produces Normalised Core. In essence, the CλaSH compiler uses
the normalisation step to make last step, the netlist generation, trivial.

Netlist Generation In the last step netlists are generated in the form of other, more low-
level, HDLs. Currently the compiler supports the generation of VHDL, Verilog, and
SystemVerilog netlists.

Intermediate representation

An IR namedCore is used in the GHC andCλaSH compiler to ease the rewriting and analysis
of the Haskell source. It is an abstract representation of the source in the form of a data
structure. In GHC, a so-called ‘desugaring’ step produces the Core IR from the Haskell
source. ¿is abstract representation is based on SystemFC [34]: a polymorphic typed λ-
calculus. Details of SystemFC are not described in this thesis as these details fall outside
the scope of this thesis. In the CλaSH compiler, GHCs Core IR is rewritten to a subset of
SystemFC in the Normalisation step.

λ-calculus

λ-calculus is a formalism in the area of mathematical logic where computations can be
expressed in function abstractions and function applications. Besides the �eld of computer
science, λ-calculus has found applications in for example linguistics [13] and chemistry [8].
In the domain of computer science, it is the root of functional programming languages. ¿is
is also true for Haskell, and hence CλaSH.

8



2.1. CλASH

e ∶∶= x Variable reference
∣ λx → e Abstraction
∣ e1 e2 Application

Figure 2.4 – Lambda calculus.

An untyped λ-calculus expression grammar is shown in Figure 2.4, as a basic example. It
shows the construction of the three di�erent basic syntax structures in λ-calculus; variables,
abstractions and applications. Using this grammar, a computational step is described by a
so-called β-reduction. ¿is is a formal step where a substitution is performed:

(λx → e1) e2 Ô⇒ e1[e2/x]. (2.1)

In this computational step all occurrences of x in e1, are substituted by e2. ¿is β-reduction
can by applied to an example where a computational step is displayed:

(λx → x ∗ 2) 5 Ô⇒ 5 ∗ 2. (2.2)

Here x is substituted by 5 resulting in 5 ∗ 2.

In this thesis, a simply typed λ-calculus [23], is used as an basis for the abstract syntax. In
such calculi, primitive data types such as characters, integers, or booleans are de�ned. In
section §3.1, a detailed description of this λ-calculus is provided.

2.1.3 Support for recursion in CλaSH

Currently recursion is supported by the CλaSH compiler to a certain degree. To determine
to which extend support is currently available within the CλaSH compiler, two di�erent
kinds of supported recursion are distinguished; value recursion and recursion via function
de�nitions. ¿e two are elaborated separately in the following subsections.

Value recursion

Currently CλaSH does supports value recursion in the form of feedback [5]. An example of
such feedback is shown in Listing 2.2. In this example a counter circuit is described which
uses a register to capture the state of a Signal s. ¿is Signal contains the value of the counter
and is increased on each clock cycle.

counter = s
where
s = register 0 (s + 1)

Listing 2.2 – Feedback in CλaSH using recursion on variabels.
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Recursion via function de�nitions

¿e support of recursion via function de�nitions is however limited: currently the CλaSH
compiler uses unrolling in an attempt to synthesize recursive functions [6, pp. 127], which
cannot always produce a result. ¿e procedure creates a specialised function of the original
recursive function that can be used for this unrolling. A �xed number of successive unroll
actions is tried before the compiler quits the process. ¿is limits the compiler in compile
time and possibly the size of the generated netlists. If the base case is not found within the
attempt of unrolling, an error is produced by the compiler.

Generally, if a function is data-dependent (see recursion properties de�ned in section §2.2.5)
and the argument of the function is unknown at compile time, inlining of the function o en
does not produce a desired result. ¿e function must be able to handle all possible inputs
of the function, which leads to an unfeasibly large hardware design, for even the simplest
recursive functions. ¿us, the support of generic data-dependent recursive descriptions is
currently unsupported by the CλaSH compiler.

2.2 Recursion properties

Recursion is a central concept within this thesis. ¿is section explains basic properties of
recursion used in this thesis. ¿is allows us to distinguish between several kinds of recursion.
We focus on recursion via function de�nitions in the remaining parts of this thesis. From a
mathematical point of view, a function is recursive if values in the function are calculated
by using the same function: the function is de�ned in terms of itself. One may also speak of
self referencing functions.

2.2.1 Linear, binary, and multiple recursion

Let n be the number of recursive calls present in a function. If n = 1 then one may speak of a
linear recursive function. ¿e factorial function, as de�ned in equation (2.3), is an example
of such a linear recursive function. If n = 2 then the recursion function is called: a binary
recursive function. Finally, when n > 1, the function is called: a multiple recursive function.
¿e function that calculates the nth-Fibonacci’s number, as expressed in equation (2.4), is
called a multiple — but more o en called — binary recursive function.

f (n) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 1
n ⋅ f (n − 1) if n > 1

, n ∈ Z (2.3)

f (n) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 1, 2
f (n − 1) + f (n − 2) n > 2

, n ∈ Z (2.4)
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2.2.2 Nested recursion

A recursive call can be nested, which occurs when the value of an argument of a recursive
call is also calculated recursively. An example of such a nested recursive function is the
Ackermann function acker as de�ned in equation (2.5). If m, n > 0 then a nested recursive
call is made.

acker(m, n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n + 1 if m = 0
acker(m − 1, 1) if m > 0 and n = 0
acker(m − 1, acker(m, n − 1)) if m, n > 0

n,m ∈ Z (2.5)

2.2.3 Tail recursion

A recursive function is tail recursive if a result of the function is directly determined by a
recursive call. ¿e factorial function described in (2.3) is not tail-recursive. However this
function can be altered to become a tail recursive function. ¿is is accomplished by means
of an added argument that accumulates m ∗ n trough each iteration, as is shown in equation
(2.6).

f (m, n) =
⎧⎪⎪
⎨
⎪⎪⎩

n if m = 1
f (m − 1,m ∗ n) if m > 1

, n,m ∈ Z (2.6)

Developers o en use this form of recursion, as compilers o en can optimize this form of
recursion. By means of a process called tail call elimination, tail recursive algorithms can
sometimes be computed using only a �xed number of register’s, without the use of a growing
call stack.

2.2.4 Indirect or mutual recursion

Recursive behaviour can also occur indirectly: if a recursive call is made via another function
which is called by the function being de�ned, indirect recursion occurs. Indirect recursion
via functions calling each other is o en called mutual recursion. An example is when two
functions f and g are speci�ed and f uses g to calculate a value and vice versa.

2.2.5 Data-dependent recursion

¿enumber of recursive function calls can either be dependent or independent upon the data
in the arguments. If the number of recursive function calls are dependent on the data of
the argument, the recursion is called data-dependent recursion. If the number of recursive
function calls are independent on the data, the recursion is called data-independent.

11
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2.3 Recursion in Reconfigurable Hardware

In this section, relevant research is covered to gather knowledge of how recursion is used
in recon�gurable hardware. Relevant literature is consulted to accomplish this. First, the
implementation approaches of recursive algorithms in recon�gurable hardware are covered.
Secondly, other FHDLs similar to CλaSH will covered, while paying special attention to the
support of recursion in these compilers.

¿e implementation approaches describing how to implement recursive algorithms in hard-
ware descriptions are researched in §2.3.1. Although these approaches make use of existing
low-level HDLs, they are of interest because of the produced hardware architectures. ¿eir
approaches to create hardware descriptions in these languages may reveal how recursive
algorithms can be implemented in CλaSH.

Besides CλaSH, other compilers exists for FHDLs. ¿ese compilers are investigated, while
paying extra attention to the support of recursion. In these compilers, the handling of re-
cursion may be interesting. If the compiler strategies from other compilers are applicable to
CλaSH, it is highly relevant for this thesis.

2.3.1 Approachesof implementingrecursivealgorithms inreconfigurable
hardware

Several approaches for implementing recursion in recon�gurable hardware are compared
in [31]. According to the author, all covered implementation approaches fall into two broad
categories: either recursive calls are unrolled into a pipeline circuit, or, a stack architecture is
used to implement the recursion.

In the survey [31] several characteristics are compared, such as: applicability, ease of use,
occupied hardware resources, and stack usage. Regarding these characteristics, the most
promising approach seems the one of Sklyarov et al. [24, 32, 33]. ¿is approach is the only
approach which can be applied to any recursive function, is easy to use, occupies a medium
number of hardware resources, and requires a stack [31]. ¿is approach is covered in the next
section.

Sklyarov et al.

Sklyarov et al. propose amethod for implementing recursive algorithms in hardware usingHi-
erarchical Finite-State Machines (HFSMs)[24, 32, 33]. Recursive functions are implemented
using a call stack, similarly as used in so ware, but parallelization occurs between recursive
calls. Each function, recursive or not, is referred to as a single module. ¿e combination of
multiple modules represent the full circuit.

Two stacks are used: one to preserve the order of function calls between modules, and the
other to save the state of the computation described in the separatemodules. ¿e hierarchical
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aspect of this approach comes from the invocation order of di�erent modules, which is
maintained by the use of a stack.

Figure 2.5 shows a general outline of the hardware architecture used by Sklyarov et al. ¿e
two stacks are controlled by the combinational circuit that updates the stacks depending on
the current module and current state. ¿e stacks can also be controlled externally via reset,
push, and pop control signals.

combinational circuitmodule stack FSM stack

input

output

control control

next module next state

current module current state

Figure 2.5 – Method of Sklyarov et al.

¿emethod described by Sklyarov is useful for implementing recursive algorithms in VHDL.
However, the methods are based on manually transforming Handel-C templates into VHDL,
hence a language is used as reference which di�ers much compared to the functional ap-
proach as used in CλaSH. Furthermore, the method requires manual implementation steps.
Because the focus in this research is to extend the CλaSH compiler with the support of date-
dependent recursive functions, we are more interested in automatic transformations instead
of manual ones. ¿e featured HFSM architectures however are of interest for this research,
as these architecture can be used as templates for transformed algorithms.

2.3.2 Recursion in Functional Hardware Description Languages

Several research projects similar to CλaSH also generate circuits from functional hardware
descriptions. However, the support of recursion varies in each project. A comparison of this
related work is made in this section.

Edwards et al.

Edwards et al. [40] produce Verilog descriptions out of Haskell sources in a very similar way
as CλaSH does. ¿ey too use the GHC compiler in their front-end to produce GHC-Core,
and from this IR they too use an custom IR to produce Verilog. ¿is IR is similar to the IR
used in CλaSH. However, their approach is more behavioral, rather than the structural way
CλaSH is set up.

13
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In their work, a series of rewrite steps is used to force the IR in a speci�c form called Continu-
ation Passing Style (CPS) (explained in further detail in §2.4). ¿is form of the IR allows the
recursive algorithms to be handled in a stack architecture that is produced by the compiler.

Although the intention is clear in the papers, no formal rewrite rules are provided. ¿e
presented work provides sketches of the algorithms used to derive the stack architectures.
Furthermore no details of the actual hardware architecture are provided. ¿is makes it
di�cult to asses to which extend the research is conducted.

SAFL —Mycro et al.

Statically Allocated parallel Functional Language (SAFL) [25] is aHDL inwhich each function
is instantiated as a circuit at most once. ¿e term statically allocated refers to this property.
As a result of this property, the size of circuits solely depends on the size of the text. Only
primitive functions and operations are allowed to be duplicated. All other functions are
instantiated once and calls to these functions will occur via multiplexers and arbiters.

Feedback is modeled as recursion in SAFL. Only tail-recursive function calls are possible in
this model, because only those are statically allocatable, i.e., they require no stack. Listing 2.3
contains an example, copied from [25], which shows such feedback. A shi -add multiplier
is implemented using tail recursion.

fun mult(x, y, acc) =
if (x=0 | y=0) then acc
else mult(x<<1, y>>1, if y.bit 0 then acc+x else acc)

Listing 2.3 – shi add multiplier

If a circuit designer wants to compose the same circuit in parallel, the designer must dupli-
cate the functions that describe the circuit. An example of this is shown in Listing 2.4 and
Listing 2.5. In Listing 2.4, the function f is called twice in sequential order. ¿e calls to
this function are serialised and are handled mutually exclusively. ¿is means that only one
instance of the hardware is instantiated per function. One can use functions in parallel by du-
plicating the function de�nitions of the same function. In Listing 2.5 multiple instantiations
of the same function f are created to obtain such parallelism.

fun f x = ...
fun main(x,y) = g(f(x),f(y))

Listing 2.4 – f serial execution

fun f x = ...
fun f’ x = ...
fun main(x,y) = g(f(x),f’(y))

Listing 2.5 – f parallel execution
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Because SAFL allows only for tail recursive linear recursion, its handling of recursion does
not advance the current situation of CλaSH. Furthermore, the single assignment form of
SAFL poses an alternative view of the relation between code and hardware. It di�ers with
the view CλaSH has with respect to the formation of hardware.

Verity — Ghica et al.

Ghica et al. describes the synthesis scheme behind Verity in a series of papers called Geom-
etry of Synthesis [15–18]. It is a language which supports higher-order functions, mutable
references, and uses an a�ne type system. In a�ne type systems, values may not be dupli-
cated. In Verity this only holds for parallel and nested contexts, whereas duplication may
occur in sequential context.

Recursion in Verity is supported only with the use of a �xed-point combinator. A �xed
point combinator fix is a higher-order function that satis�es: �x f = f (�x f ). ¿e name
is derived from the �xed-point equation: x = f x because, when x = �x f , the �x point
combinator satis�es the �x point equation. An example of the usage of this fix operator is
depicted in Listing 2.6. It illustrates how the (recursive) factorial function is implemented
in Verity. Currently, the �x point operator is only unrolled in time by the Verity compiler.
However, unrolling in space is theoretically explained in [18].

let fact = fix \f.\n. if n == 0$32 then 1$32 else n * f (n-1)

Listing 2.6 – Factorial in Verity, in this example 0$32 and 1$32 means a
static 0 and 1 in a 32 bits integer.

Explicit constructs are used in Verity in order to indicate parallel or sequential operating
hardware. A particular set of primitive types, called commands, are only allowed to be
composed in parallel. For example, logical operations are not allowed to be composed in
parallel, whereas for example memory assignment can be composed in parallel. Parallel
constructs may not be used in �x-point combinators in Verity.

Recursion is treated as a special case in Verity. It requires the circuit designer to use spe-
ci�c construct to use recursion. Furthermore the explicit constructs for creating parallel
and sequential circuits di�ers much from CλaSH, as CλaSH handles every description com-
binational by default and allow for sequential circuits trough the use of speci�c data-type
constructions.

Lava — Bjesse et al.

Bjesse et al. describes an embedded language called Lava [9]. ¿e language is called an
embedded language because the language is not stand alone, but a library within another lan-
guage, in this case Haskell. HDL circuit descriptions are produced by executing the program
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in a standard Haskell environment. ¿e program produces circuits by means of standard
execution of the program.

Internally all circuits in Lava eventually are described by a tree-like data-structure. ¿ese
data-structures can however describe an in�nite tree, for example in the case of loops. ¿ere-
fore, the synthesis function converts these in�nite data-structures to a graph representation.
In�nite cycles can be detected with the use of observable sharing [19] to obtain these graph
representations.

Since �nite recursion can be executed by the Haskell compiler, recursive circuits are also
produced in Lava. However, the Lava compiler does not support recursion forms that depend
on values that are unknown at compile time.

An example of a counter implemented in Lava is listed in Listing 2.7. ¿e function has two
signals as argument one for incrementing the counter and the other for resetting it. A register
acts as memory element in the circuit and is initially set to 0. Two multiplexer elements,
created with a mux function, handle the input signals. If the restart signal is high a 0 is chosen,
otherwise the register output is chosen. ¿e other multiplexer handles the incrementation
of the counter. If the increase signal is high, the value of the register is increased, otherwise
not. ¿e resulting value is fed back in the register completing the circuit.

¿e example contains value recursion for the loop and reg values. Like CλaSH it can handle
such recursion, which is handled by the GHC compiler.

counter restart inc = loop
where reg = register 0 loop

reg’ = mux2 restart (0, reg)
loop = mux2 inc (reg’ + 1, reg’)

Listing 2.7 – Counter in Lava

Lava is an embedded language and produces circuits by the execution of Haskell programs.
¿is is di�erent from the approach CλaSH uses, as it uses a custom compiler to produce
circuits. Recursive descriptions are supported at the level of execution of theHaskell program.
¿is also means true data-dependent recursion cannot be expressed in Lava as it would
require to inline all possible outcomes of the circuits. Furthermore, branching must be
explicitly constructed in Lava. Branching in CλaSH leads to branching in the circuits, and
no explicit constructions are needed.

2.3.3 Conclusion

Although there are many variations in the related �eld of FHDL compilers, the support of
recursion is limited in most of the languages and does not advance CλaSH in the support
of recursion. Only the work of Ghica et al. and Edwards et al. do surpass CλaSH current
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abilities in terms of support of recursion, as they do support the use of true data-dependent
recursion. However, Verity is very di�erent compared to the CλaSH language.

¿e work of Edwards et al. is very similar compared to the work of the CλaSH compiler.
¿ey also use an intermediate representation which is very similar to the one used in CλaSH.
¿eir work enables data-dependent recursive descriptions to be used in recon�gurable hard-
ware. Furthermore Edwards et al. also use Haskell as a source language as CλaSH also does.
¿erefore the method that is described by Edwards et al. is further researched as a basis for
this thesis.

2.4 Continuation Passing Style

As previously mentioned in section §2.3.2, in the work of Edwards et al., a series of rewrite
steps is performed on a IR to derive a special form, enabling them with the support of recur-
sion. ¿is special form is called Continuation Passing Style (CPS). ¿e use of continuations
was �rst described by A. van Wijngaarden in 1964. Later, van Wijngaarden would formulate
what now is known as the continuation passing style [28].

CPS is a style of programming where each function call is accompanied with a continuation.
A continuation is a description of what to dowhen a result of a function is ready— sometimes
referred as the control. Instead of returning the result of the function, the function returns
by calling this continuation with the result as argument. When a program is in CPS, the
control is made explicit. As will become clear in the proceeding chapters, this explicit control
property of the CPS, is used to derive a stack architecture for recursively de�ned functions.

Example: Factorial function in CPS

InHaskell, one canwrite a function in continuation passing style by adding an extra argument,
for example k. ¿is argument contains a continuation in the form of a lambda expression.
¿is can be illustrated by the following example in Listing 2.8. In this example the factorial
function fact, also shown in (2.3), is CPS transformed to fact_cps.

-- regular factorial
fact 0 = 1
fact n = n * (fact (n-1))

-- cps factorial
fact’ n = fact_cps n id

fact_cps 0 k = k 1
fact_cps n k = fact_cps (n-1) (\r->k (n*r))

Listing 2.8 – Haskell CPS example. ¿e function id is an identity func-
tion, which just passes a value.
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In the case of n = 0 the function returns by applying the continuation k to the result 1. When
n > 0 a recursive call is made to fact_cps applied to n − 1 and the continuation in the form
of the lambda expression λ r → k (n ∗ r). ¿e continuation describes what to do when
the result of the recursive call is available. In the case of the factorial function one should
multiply the result with n. ¿is is exactly what the lambda expression does: the lambda
expression is applied to an argument r which contains the result of the recursive call. ¿is
result r is multiplied with n just as in the original fact description. A wrapper function,
fact’, applies the CPS transformed function to n variable and to the identity function.

Listing 2.9 evaluates the example with n = 3. Continuations are nesting until the recursion
ends when n = 0. ¿e continuation is then applied to 1. A er successively applying the
continuation to the intermediate results a �nal result of 6 is obtained.

-- cps factorial
fact’ 3 = fact_cps 3 id

= fact_cps 2 (\r1->id (3*r1))
= fact_cps 1 (\r2->(\r1->id (3*r1)) (2*r2))
= fact_cps 0 (\r3->(\r2->(\r1->id (3*r1)) (2*r2)) ((1*r3)))
= (\r3->(\r2->(\r1->id (3*r1)) (2*r2)) ((1*r3))) 1
= (\r2->(\r1->id (3*r1)) (2*r2)) (1*1)
= (\r1->id (3*r1)) (2*1*1)
= id (3*2*1*1)
= (3*2*1*1) = 6

Listing 2.9 – Haskell CPS example.

As can be seen in the listings, the original factorial function is transformed to a tail recursive
function. However, while evolving this function, the added continuation argument increase
and decrease in a stacked likemanner. ¿is CPS forms is not easily implemented in hardware.
However, in the proceeding chapter, a formal methodology is presented derive a stack like
architecture from a simply typed lambda calculus.

2.5 Conclusions

¿is chapter showed several topics of background information that is needed for the rest of
this thesis. Two important conclusions can be distilled from the information provided in
this chapter:

» A stack architecture can be used to implement data-dependent recursion in recon�g-
urable hardware. Stack architectures are used in both manually derived implementa-
tions of a data-dependent recursive algorithm (as described in §2.3.1), and automati-
cally derived implementations of such algorithms (described in §2.3.2).

» CPS can be used to derive stack architectures from an IR, which is similar to the one
used in CλaSH (section §2.3.2).
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¿ese conclusions are used in the rest of this thesis to develop a methodology that derives
stack architectures from dependent-recursive functions.
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3

Methodology

In the previous chapter, both relevant literature and relevant topics as: CλaSH, terminology,
and CPS are covered. In this chapter a methodology is developed that will elaborate on how
to derive a stack architecture from data-dependent recursive functions.

To derive stack architectures from data-dependent function, a methodology is developed
which splits the problem in several steps. First a basic abstract syntax is presented in order to
represent recursive functions. ¿is syntax is then used in rewrite rules to force the syntax into
a speci�c form. ¿ese rewrite rules are based on the CPS transform, introduced in section
§2.4. When the syntax is rewritten to this speci�c form, one can derive a stack architecture
by a procedure also covered in this methodology.

¿e general outline of this chapter is as follows. In section §3.1, an abstract syntax is presented.
¿is syntax is a basis for the rewrite rules introduced in section §3.2. ¿ese rewrite rules force
a speci�c form of the syntax which makes it possible to generate a stack architecture as the
one described in section §3.3. ¿e generated stack architecture can then be fed to the CλaSH
compiler, which can be used to produce netlist.

3.1 Abstract Syntax

¿is section introduces a basic grammar for expressions, chosen as a basis for the rewrite
rules discussed in this chapter. ¿e syntax is chosen in such a way that recursive algorithms
can be expressed and can be used as input for the rewrite rules described later in this chapter.
¿e syntax is related to the abstract syntax used in the CλaSH and GHC (section §2.1.2).
¿is makes it possible to write extensions for these compilers that perform the rewrite steps
covered in this chapter.
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3.1.1 Expression

Figure 3.1 shows the expressions included in the abstract syntax. ¿e expression grammar
e describes a basic typed lambda-calculus language extended with let expressions, case-
statements, and a speci�c kind of application. Some expressions are not part of the allowed
input syntax because these expressions play a speci�c role in the rewrite rules described in
§3.2.

e ∶∶= x variable
∣ i literal
∣ @ e1 e2∗ serious application
∣ e1 e2 trivial application
∣ let (x ∶ τ) = e1 in e2∗ let-expression
∣ λ(x ∶ τ) → e lambda abstraction
∣ case es of ρ → e case-statement

ρ ∶∶= (x ∶ τ) default pattern
∣ i literal pattern
∣ K (x ∶ τ) data pattern

Figure 3.1 – Expression grammar e. Expressions marked with ∗ exists
only during the rewrite steps. ¿ey are not allowed as input grammar.

In the presented expression grammar, a distinction between di�erent types of applications
is made: applications can be either trivial or serious. ¿is terminology is adopted from
Reynolds [29]. Serious applications are marked with an extra @ sign before the application.
¿is di�erence plays an important role in the rewrite steps discussed further in this chapter.
Section §3.2.1 describes a rewrite step that marks the serious applications. In that section it
will become clear how and why this notation is used. Serious applications are only present
during the rewrite rules and are not allowed as input grammar.

In the case-expression, the scrutinee of the case-expression: es, is matched to the patterns
de�ned as ρ. ¿ree patterns are chosen to be included in the syntax. In the default pattern
the scrutinee of the case-expression is simply bound to a variable. Another pattern is the
comparison with a literal. If the scrutinee matches the literal i, then the expression e is
matched. Finally, es can also be matched to data constructors of algebraic data types. In this
case K contains the constructor identi�er of the data type, and a list of binders (x ∶ τ) that
bind the variables of the data constructor. ¿e notation (x ∶ τ) expands to (x1 ∶ τ1), (x2 ∶
τ2),⋯, (xn ∶ τn).

22



3.2. REWRITE RULES

3.1.2 Type system

¿e CλaSH compiler uses types to determine what kind of hardware should be generated. It
is therefore important to incorporate types in the aforementioned abstract syntax. A basic
type-system is used in the chosen abstract syntax. Figure 3.2 shows the de�nition of type τ. A
type atomw is used to identify di�erent base types. For example Integers, Booleans, etcetera.
A function operation on types: w → τ, is used to make function types. It is not possible to
describe higher-order function using this typing system. ¿is simpli�es the handling of the
abstract syntax used in this thesis.

τ ∶∶= w atom
∣ w → τ function type

Figure 3.2 – De�nition of types τ used in the abstract syntax.

3.1.3 Function definitions

Function de�nitions are included in the syntax as shown in Figure 3.3. Each function def-
inition consist of an unique variable function name x. ¿is function is bound to a type
warg → wret. ¿e argument type warg can be used to declare multiple argument types and is
expanded with a function type as: warg → wret ≡ w1 → .. → wn → wret. ¿e return type wret
contains the type of the return value.

FunDef ∶∶= x ∶ warg → wret = e Function de�nition

Figure 3.3 – Function de�nition FunDef added to the abstract syntax.

¿is notation can be used to describe recursive functions. When the function name variable
x is used in the function expression e then recursion occurs. ¿is completes the abstract
syntax used in the following sections for the rewrite rules.

3.2 Rewrite rules

It is now possible to describe rewrite rules using the abstract syntax constructed in the
previous section. Sketches of the rewrite rules are provided in the paper of Edwards et al.
[40]. However in order to formalize these steps, another paper from Danvy et al. [12] is used,
that covers CPS transformation in great detail.

As mentioned in the background section §2.4, when CPS is applied to the syntax, continua-
tions are passed along with each function call. ¿e continuations describe what to do when
the result of a function call is available. However, in the described method of this thesis, the
transformation will only be applied to recursive function calls. ¿is results in continuations
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that describe what to do when a result of a recursive call is available. Rewrite rules covered
in this section allow to obtain these continuations.

Fibonacci example

¿roughout this section, a recursive function calculating the n-th Fibonacci number, as
formulated in equation (2.4), has been chosen as example for the rewrite rules. Using the
syntax de�ned in section §3.1 this function can be described as follows in (3.1). ¿e U32 type
de�nes an unsigned 32-bits integer.

�b ∶ U32 → U32 = λn → case n of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1→ 1,
2→ 1,
n → ((+) (�b (n − 1))) (�b (n − 2))

(3.1)

3.2.1 Marking serious applications

In the subsequent sections it will become clear that applications that are serious, e�ectively
mark the places where the CPS transform should occur. In the �rst step we mark serious
applications with the notation as de�ned in section §3.1. ¿e transformation is only applied
to the recursive calls, and therefore these are the places that needs to be marked.

Only those applications of which the recursive function that needs to be transformed and are
fully saturated are marked. A function is saturated if the function is applied to all arguments
of the function, or in other words the arity of the function is equal to the number of applied
arguments. Using this terminology, only fully saturated recursive function applications are
marked as serious applications. ¿is procedure is illustrated by means of the Fibonacci
example.

Fibonacci example

We now continue with the Fibonacci example initially described in section §3.2. In this
function, x = �b; meaning the function name is �b. Fibonacci has only one argument,
therefore application is saturated when �b is applied to that argument. Following this rule,
equation (3.2) shows the result of marking all saturated recursive function applications. ¿e
serious markings @ are placed at each recursive call at the right place.

�b ∶ U32 → U32 = λn → case n of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1→ 1,
2→ 1,
n → ((+) (@ �b (n − 1))) (@ �b (n − 2))

(3.2)
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3.2.2 Naming serious applications

Serious applications, introduced in the previous rewrite step, are provided with a name using
the naming-step introduced in this section. ¿is step is executed to provide references to
these expressions, which are used in the rewrite steps described later in this chapter.

¿e now following rewrite steps, follow a notation in the form of multiple rename rules
X JeK ↪ e′. In this notation, X is the name of the rewrite step. Inside the double lined
brackets J K, an input expression e is placed. ¿is expression e is rewritten to the term e′,
if the expression e matches a described pattern. Note that expression e′ can also contain
rewrite term X JeK which need to be rewritten. ¿e rewrite rules are applied recursively until
no further rewrite rules can be applied.

Figure 3.4 shows the rewrite rules N J K that form the naming-step. ¿is rewrite step is based
on the rewrite step described in the paper of Danvy et al. [12, p. 4].

N JxK ↪ x
N JiK ↪ i

N Jλ(x ∶ τ) → eK ↪ λ(x ∶ τ) → N JeK
N J@ e1 e2K ↪ let x ∶ τ = N Je1K N Je2K in x

N Je1 e2K ↪ N Je1K N Je2K
N Jcase es of ρ → eK ↪ case N JesK of ρ → N JeK

Figure 3.4 – Naming rewrite rules N JiK

Serious applications @ e1 e2, that where introduced in §3.2.1, will be named in this rewrite
step. As can be seen, names are only introduced for these serious applications. ¿e names
are introduced in the form of a let-expression with an unique variable x bound to a type
τ. ¿e type of the introduced variable is equal to the return type of the transformed func-
tion, because only the recursive function calls are transformed. Again, notice that these
let-expressions are only used in the rewrite steps and are not part of the allowed input syntax.

Fibonacci example

Workings of the naming-step are illustrated by applying these rules to the Fibonacci example.
¿e rewrite rules N J K are recursively applied to the result of the previous transformation
(where all serious applications are marked (3.2)). When this rewrite step is completed, all
recursive function calls will be named in the form of let-expressions.

Equation (3.4) shows the result of applying this rewrite rule to the example. Notice that in
this example changes in the expression only occur in the case-statement where the default
pattern is matched. In other words: where n is not matched to 1 or 2. ¿erefore, only this
pattern is depicted, and the rest is abbreviated with dots.
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N Je�bK↪ N J⋯n → ((+) (@�b (n − 1))) (@�b (n − 2))K (3.3)
↪ ⋯n → ((+)(let (x1 ∶ U32) = �b (n − 1) in x1))

(let (x2 ∶ U32) = �b (n − 2) in x2) (3.4)

As can be seen in the example, a er applying the rewrite rule to the expression, each serious
application is converted to a let-expression. In this case the unique names are x1 and x2.
¿e binders (x1 ∶ U32), and (x2 ∶ U32) bind these unique variables to the return type of the
function wret, which is in this case equal to an integer U32.

3.2.3 Sequencing

In the rewrite step de�ned next, the previously de�ned let-expressions are sequenced. ¿e
presented rewrite rules are based on the ‘sequentialize’ rewrite rules de�ned in [12, p. 4].
¿ese rewrite rules force the let-expressions to take a speci�c form. In this speci�c form, the
following set of conditions is hold for all (sub-) expressions:

i let expressions do not occur in the bound expression e1 of a let expression,

ii let expressions do not occur in applications,

iii the case scrutinee es does not contain let expressions.

Applying these conditions to the expressions yields a sequence of let-expressions, hence the
name sequencing-step. A generic form of such a sequence is shown in (3.5).

⋯let (x1 ∶ τ1) = e1 in let (x2 ∶ τ2) = e2 in⋯let (xn−1 ∶ τn−1) = en−1 in en (3.5)

¿is sequence of let-expressions can be interpreted in terms of continuations in the CPS.
Assume that the sequence of the let-expressions represent the execution order (from le to
right) of each expression. If the �rst expression e1 is executed and a result is returned returns,
expression e2 can be executed, therefore e2 is the continuation of e1. If e2 then returns, e3
should be executed. ¿is procedure repeats itself until en is executed. By requiring previously
de�ned conditions to hold, the expressions take the form as shown in (3.5), hence a CPS is
found.

Figure 3.5 contains the rewrite rules for the sequencing-step S J K. ¿e let-bindings of let-
expressions are collected recursively, in a bottom up traversal, in a list ν until a lambda or
case-expression is pattern matched. At these places, the collected list is converted into a
sequence of let-expressions. ¿e lambda and case-expressions act as a barrier for the let-
expressions.
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S JxK ↪ (x , ∅)

S JiK ↪ (i , ∅)

S Jλ(x ∶ τ) → eK ↪ (λ(x ∶ τ) → let ν in e′, ∅)

where (e′, ν) = S JeK
S Jlet (x ∶ τ) = e1 in e2K ↪ (e′2, ν1 ++ {(x ∶ τ) = e′1} ++ ν2)

where (e′1 , ν1) = S Je1K
(e′2, ν2) = S Je2K

S Je1 e2K ↪ (e′1 e
′
2, ν1 ++ ν2)

where (e′1 , ν1) = S Je1K
(e′2, ν2) = S Je2K

S Jcase es of ρ → eK ↪ (case e′s of ρ → let ν in e′, νs)
where (e′s , νs) = S JesK

(e′, ν) = S JeK
S ′JeK ↪ e′

where (e′, ∅) = S JesK

Figure 3.5 – Sequentialize rewrite rules S JeK.

A speci�c notation is used to indicate the introduction of these sequences: let ν in e′. Each
collected binding out of the list {(x1 ∶ τ1) = e1},⋯, {(xn ∶ τn) = en} ∈ ν, is surrounded with
a let-expression, producing the desired let-sequence as in equation (3.5). Another notation
is used to append two lists: ++, which is common in Haskell.

In the case-statements, each pattern in ρ → e introduces its own let-sequence. Let expressions
are collected separately in a list ν per pattern. ¿e notation ρ → let ν in e′ denotes that a
let-sequence is introduced for each pattern.

All conditions i⋯iii de�ned earlier in this section are satis�ed when applying the rewrite
rules in the sequence-step S J K. By construction, let-expressions only exist in the form of
let-sequences a er applying the rewrite rule, which satis�es condition i. Condition ii is
satis�ed because all let-expressions are li ed outside the applications by construction. Any
let-expression inside the scrutinee of the case-statement is li ed out of the scrutinee. ¿is
satis�es the last condition iii.
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Fibonacci example

¿e sequencing step S J K can now be applied to the output of the naming step calculated in
(3.4) in section §3.2.2. ¿e results of applying these rules are shown in (3.6).

S ′
○N Je�bK↪ S J⋯n → ((+)(let (x1 ∶ U32) = �b (n − 1) in x1))

(let (x2 ∶ U32) = �b (n − 2) in x2)K (3.6a)
↪ ⋯n → let (x1 ∶ U32) = f ib (n − 1) in

let (x2 ∶ U32) = f ib (n − 2) in ((+) x1) x2 (3.6b)

¿e result of the sequencing step applied to the example can be interpreted as follows: �rst
�b (n − 1) is bound to (x1 ∶ U32) in the �rst let expression. ¿e result of the function can
be accessed in the let expression via x1. Next �b (n − 2) is then bound to (x2 ∶ U32) and the
result can be accessed via variable x2. Lastly, we sum both x1 and x2 and this is the result of
the function.

In terms of continuations, �rst �b (n− 1) is executed. When the result of �b (n− 1) is known,
�b (n − 2) can be executed. So the continuation of executing �b (n − 1) is �b (n − 2). When
the result of �b (n−2) is known, one can sum both results and this is exactly the continuation
of �b (n − 2): namely ((+) x1) x2.

3.3 Hardware Generation

Using the rewrite rules of previous section each recursive call is transformed into a sequence
of let-expressions as shown in equation (3.5) in §3.2.3. In the same section, this sequence of
let-expressions was interpreted in terms of CPS. In this section these let-sequences and this
interpretation of these sequences are used to generate hardware.

Recall that in CPS each function call is accompanied with a continuation. ¿is will also be
the case in the generated hardware later described in this section. ¿e continuations will
consist of hardware descriptions which describe what to do when the result of the called
function is available. However, when executing a function, another function call can occur
accompanied with another continuation. In order to keep track of the continuations, a stack
is introduced. ¿is stack stores a continuation until the function returns the result.

Recall the sequence of let-expressions as de�ned in equation (3.5). Such a sequence is copied
in equation (3.7), and annotated with Roman numerals.

let (x1 ∶ τ1) = e1 in
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(i)

let (x2 ∶ τ2) = e2 in
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(ii)

⋯ let (xn−1 ∶ τn−1) = en−1 in
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(iii)

en
°
(iv)

(3.7)
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Expression e1 is �rst executed, e2 needs to be executed a er e1 is �nished, thus (ii) is a
continuation of e1. ¿is continuation (ii) belonging to e2, is pushed on the stack, waiting
for e1 to return. If the function returns, the continuation is removed from the stack and the
continuation e2 is executed. However, the continuation e2 can itself have a continuation, so
when executing e2, the continuation belonging to e3 is pushed on the stack. ¿is process
repeats itself until the last continuation en is executed.

In the next subsection a stack architecture is introduced �rst. ¿en the results of previous
sections are used in order to generate this stack architecture.

3.3.1 Stack Architecture

Figure 3.6 shows a generic version of the stack architecture used in this method. ¿e stack ar-
chitecture contains two registers which stores a call c and a continuation κ. ¿e continuation
register contains the top of the stack. ¿e next function contains the logic to decide, given
a call and a continuation, what to do next. ¿is results in a stack instruction γ for updating
the continuation stack and a follow up call c′

next

stack

c c′

γ

κ

Figure 3.6 – Stack architecture

Continuations

Figure 3.7 contains the abstract representation of the continuations. A continuation describes
what to do when the result of a (recursive) computation is completed. O en context depen-
dent variables are needed when evaluating these continuations. ¿e types of these variables
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τ are also present in each continuation κ. Each continuation is present in the form of a data
type constructor. Each continuation κ is uniquely named.

Cont ∶∶= κ τ Continuations, context τ

Figure 3.7 – Abstract representation of the Cont

Call

As mentioned in the intro of this section, a function can either be called or the function
returns a result, when interpreted in CPS. A de�nition of these calls is introduced in Fig-
ure 3.8. Types of the function call contains all the argument data types fetched from τarg in
the function de�nition of the recursive function (see §3.1.3) de�nition. Return calls contain
the return type of the original function de�nition wret.

Call ∶∶= F warg Function call arguments τ
∣ R wret Return call with return τ

Figure 3.8 – De�nition of Call

Stack Instructions

Another output of the next function is a stack instruction γ ∈ Γ. ¿is instruction is used to
update the continuation stack. Figure 3.9 describes Γ: the stack instructions.

Γ ∶∶= Push κ Push κ ∈ Cont
∣ Repl κ Replace κ ∈ Cont
∣ Pop Pop top from stack
∣ Nop Do nothing
∣ Done Finish and handle result

Figure 3.9 – Stack instruction Γ de�nition

¿e Push instruction pushes a continuation κ on the stack while the Pop instruction re-
moves the top instruction from the stack. Repl combines these two operations, resulting
in a replacement of the top stack element. If nothing is to be done with the stack, the Nop
instruction is used. Finally the Done instruction indicate the completion of a calculation.

3.3.2 Generating the Stack

With the generic description of the stack architecture presented in section §3.3.1, a more
detailed description of the stack and how it is automatically generated can be provided.
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Reconsider the general result of the sequencing step, as formulated in equation (3.5). A er
this step, the recursive function calls are in the form of a sequence of let-bindings. ¿is
sequence can be related to stack operations and data in the architecture.

Depending on the number of successive let-bindings in one sequence, di�erent stack oper-
ations are executed. Equation (3.8) shows the relation between the stack instructions and
the let-sequences. ¿e continuations κ ∈ Cont are denoted above the let-expressions. Notice
these continuations exactly relate to single let-expressions in a sequence. A tuple below the
sequence denote what is to be fed to the next function. ¿e tuple consists of a call c ∈ Call
and a stack operation γ ∈ Γ.

let (x1 ∶ τ1) = e1 in
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(c1 ,Push κ1)

κ1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
let (x2 ∶ τ2) = e2 in
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(c2 ,Repl (κ2))

⋯

κn−2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
let (xn−1 ∶ τn−1) = en−1 in
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(cn−1 ,Repl (κn−1))

κn−1
«
en

±
(cn ,Pop)

(3.8)

If the result of e1 is known, e2 needs to be executed. ¿is behaviour is produced by pushing
continuation κ1 on the stack. If e2 returns, the top of the stack is replaced with e3. ¿e
replacements are repeated for each continuation in the sequence until the last one. If the last
continuation is executed, a Nop instruction is sent to the stack ending the continuations.

¿ere are some cases where continuations can be omitted, which lead to a more e�cient way
of executing the transformed algorithm. If en = xn−1 then κn−2 is the last continuation of this
sequence, so a direct Nop instruction can used and κn−1 can be discarded as a continuation.
If a sequence contains only one let-expression, then no continuation need to be pushed on
the stack so a Nop stack instruction will su�ce.

Deriving next function

Previous results now can be combined in deriving the next function (as depicted in §3.3.1).
Equation (3.9) contains a general outline of the next function. ¿e purpose of the �nal rewrite
step introduced in this section, is to �ll in the unknowns and generate this next function.

next (c, κ) = case c of
⎧⎪⎪
⎨
⎪⎪⎩

F args→ e′

R r → case κ of α
(3.9)

¿e call c can be either a function call F or return call R. ¿e results of the next function is in
the form of a tuple containing a next call c′ and a stack instruction γ. Continuations are han-
dled when a return call R is invoked, in the form of a case-expression. ¿is case-expression
will use data patterns (see §3.1.1) for each continuation. ¿e result of each continuation will
also be a tuple with a next call and stack instruction. So elements of α will be in the form of
κ (x ∶ τ) → eκ .
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Figure 3.10 contains the derive next rewrite rule DN R ϕ J K which collects e′ and α from an
input expression e. ¿is rewrite rule perform two tasks:

i All results of next the function must be in the form of a tuple containing a call and stack
instruction.

ii Continuations are collected in the form of a data pattern for a case-expression which
handles the continuations.

¿is rewrite rule is called with a parameter ϕ to indicate if the continuation is the �rst in
a sequence. ¿is parameter is used in the helper functions DN R ϕ J K and DN K ϕ J K in
order to determine which stack operation belongs to the current expression. ¿e parameter
is initially true ⊺. ¿e result of the rewrite rule is a tuple (e′, α) which are used in the next
function (3.9).

DN ϕ JxK ↪ (DN R ϕ JxK, ∅)

DN ϕ JiK ↪ (DN R ϕ JxK, ∅)

DN ϕ Je1 e2K ↪ (DN R ϕ Je1 e2K, ∅)

DN ϕ Jlet (x1, τ) = e1 in x2K ↪ (DN R ϕ Je1K, ∅)

if x1 = x2
DN ϕ Jlet (x ∶ τ) = e1 in e2K ↪ (DN K ϕ Je1K κ, κ → e′[x/r]; α)

where (e′, α) = DN � Je2K
κ = κnew FV(let (x ∶ τ) = e1 in e2)

DN ϕ Jλb → eK ↪ (λb → e′, α)
where (e′, α) = DN ϕ JeK

DN ϕ Jcase es of ρ → eK ↪ (case es of ρ → e′, α)
where (e′, α) = DN ϕ JeK

DN R ⊺ JeK ↪ (DN C JeK,Nop)
DN R � JeK ↪ (DN C JeK, Pop)

DN K ⊺ JeK κ ↪ (DN C JeK, Push κ)
DN K � JeK κ ↪ (DN C JeK,Repl κ)

DN C JeK ↪

⎧⎪⎪
⎨
⎪⎪⎩

e[ f /F] if f ∈ FV(e)
R e otherwise

Figure 3.10 – Derive next rewrite rules DN ϕ J K for deriving next func-
tion in the stack architecture together with subroutines DN R ϕ J K and
DN K ϕ J K, and DN C J K.
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¿e subroutines DN R ϕ J K and DN K ϕ J Kκ add stack instructions to the expressions.
¿ese subroutines both use another subroutine DN C J K which makes a call instruction
of the currently handled expression. ¿is is accomplished by checking if the original func-
tion name f is in the free variables of the currently handled expression e. If this is true, the
function name is simply substituted by the constructor name F. Otherwise the expression
must be a return statement, so a return constructor name R is applied to the expression e.

Another task in deriving the next function is the collection of continuations. As can be seen in
the de�nition of the rewrite rules, continuations are only introduced for each let-expression
where (x1 ≠ x2). As already stated, the continuations are in the form of κ (x ∶ τ) → eκ . ¿e
data constructor κ is named uniquely and will be of the form as presented in Figure 3.11.
¿e �rst continuation will only contain the free variables used in the rest of sequence of
continuations. Because the intermediate results of each successive continuation also can
be used in the rest of the continuations, this value is added to the data constructor of the
continuation when the result of the continuation is known.

Cont ∶∶= κ1 τ f v κ1 with free variables τ f v
∣ κ2 τ f v τx1
∣ κ3 τ f v τx1 τx2

Figure 3.11 – Details of the Cont datatype

¿is completes the derive-next rewrite step as both task i and ii formulated earlier in this sec-
tion are handled by this rewrite step. ¿e remainder of this chapter will cover the application
of the derive-next rewrite step to the Fibonacci example.

Fibonacci example

Returning to the Fibonacci example, the next description can be generated by applying the
DN ⊺ J K rewrite rule to the results found in equation (3.6). ¿e derive-next rewrite rule
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collects the rewritten function description e′, and the continuations α.

DN ⊺ ○ S ′
○N Je�bK↪ DN ⊺ J⋯n → let (x1 ∶ U32)) = f ib (n − 1)

in let (x2 ∶ U32) = f ib (n − 2) in ((+) x1) x2K (3.10a)
↪ (e′, α) (3.10b)
,where

e′ = case n of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1→ (R 1, Nop)
2→ (R 1, Nop)
n → (F (n − 1), Push (κ1 n))

(3.10c)

α =
⎧⎪⎪
⎨
⎪⎪⎩

κ1 n → (F (n − 2),Repl (κ2 n r))
κ2 n x1 → (R (x1 + r), Pop)

(3.10d)

¿ese results can now be plugged into the next description from (3.9). Equation (3.11) shows
the resulting next function for the Fibonacci example.

next (c, κ) = case c of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F n→ case n of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1→ (R 1, Nop)
2→ (R 1, Nop)
n → (F (n − 1), Push (κ1 n))

R r → case κ of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

κ1 n → (F (n − 2), Repl (κ2 n r))
κ2 n x1 → (R (x1 + r), Pop)
κ0 → (R r,Done)

(3.11)

¿is provides a next description for the for the stack architecture described in §3.3.1. ¿is
next description, together with a basic description for the stack architecture, can be fed to
the CλaSH compiler to generate hardware.

Table 3.1 contains an evaluation of the next function, as de�ned in equation (3.11), with an
input of F 3. Each successive application of the next function is numbered in this table. Each
row consist of a next function applied applied to a call c and continuation κ. ¿e resulting
tuple (c′, γ) is listed together with the stack a er applying the stack instruction.

¿e result of the calculation of Fibonacci 3 is known a er 6 successive applications of the next
function. ¿is concludes the example of transforming the original Fibonacci description to
an implemented in a stack architecture.
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next(c, κ) = (c′, γ) Stack

[κ0]
1 next (F 3, κ0) = (F 2, Push (κ1 3)) [κ1 3, κ0]
2 next (F 2, κ1 3) = (R 1,Nop) [κ1 3, κ0]
3 next (R 1, κ1 3) = (F 1,Repl (κ2 3 1)) [κ2 3 1, κ0]
4 next (F 1, κ2 3 1) = (R 1,Nop) [κ2 3 1, κ0]
5 next (R 1, κ2 3 1) = (R 2, Pop) [κ0]
6 next (R 2, κ0) = (R 2,Done) [κ0]

Table 3.1 – Evaluation of next function in the case of Fibonacci
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4

Implementation

In the previous chapter, a methodology is presented where rewrite rules are used to trans-
form recursive descriptions into a stack architecture. An experimental rewrite program is
developed as a proof of concept, implementing the presented rewrite rules. Furthermore, a
speci�c hardware design is chosen as a template for the generated hardware. In this chapter,
both the implementation details of the rewrite rules, and generated stack architecture will be
elaborated.

4.1 Abstract syntax and rewrite rules

In the methodology covered in Chapter 3, an abstract syntax and rewrite rules are formally
described. In the experimental rewrite program these formal descriptions are implemented
in the Haskell language. Due to the similarities between the formal descriptions and the
implementation of the rewrite program, no further implementation details have to be elabo-
rated. ¿erefore, only the relations between the methodology and source code are covered
in this section.

Table 4.1 shows an overview of the source code in the appendix linked to themethod sections.

37



CHAPTER 4. IMPLEMENTATION

Subject Section Appendix
abstract syntax e §3.1 Appendix A.1

naming rewrite rule S J K §3.2.2 Appendix A.2.1
sequentialize rewrite rule N J K §3.2.3 Appendix A.2.2
deriving-next rewrite rule DN σ J K §5.1.1 Appendix A.2.3

full transform DN ⊺ ○ S ′ ○N J K — Appendix A.2.4

Table 4.1 – Appendix source code references

4.2 Stack Architecture

As is elaborated in section §3.3.1, the stack architecture consists of more than only the next
function. Only detailed descriptions of deriving the next function are presented until now.
In this section a concrete hardware design of the stack architecture is elaborated. ¿is stack
architecture is written in the CλaSH language and is included in the appendix. However,
before referring to the source code, an introduction to the hardware is made �rst.

A hardware implementation is proposed in this section and is described as a Mealy machine
description, as discussed in section §2.1.1. ¿is description contains the combinational logic
and state necessary to: store and retrieve the continuations for the next descriptions, the
next function itself, and a return value if a result is ready. ¿e continuation stack is stored
in a Random Access Memory (RAM) type of memory. In FPGAs it is common to use a
Block RAM (BRAM) for medium sized memory which needs to be accessed fast. ¿is
Block RAM (BRAM) is used in the FPGA to store the continuation in a stack like manner.

¿e CλaSH prelude supports the use of this commonly used BRAM. However, a pitfalls
is accompanied when using this BRAM. ¿e BRAM instantiated by CλaSH is not of the
type pass-trough, meaning that when writing and reading from the same address, the BRAM
returns the old value instead of the newest value. ¿e Mealy circuit must be handle cooping
with this pitfall.

4.2.1 Abstract implementation of the stack architecture

Figure 4.1 depicts the stack architecture consisting of the Mealy description wired to the
BRAM. An internal state of the Mealy machine stores a call c ∈ Call, a continuation κ ∈ Cont,
and a stack pointer p. Output signals of the Mealy machine steer the BRAM, and present the
result when ready. Read results of the BRAM are available as input signal of the stack update
Mealy machine.

¿e stackUpdate function contains the generated next description, which determines the
next call c and the stack instruction γ ∈ Γ and the logic to control the BRAM. ¿e next call is
stored directly as internal state. ¿e instruction γ determines all other states and the output.
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Figure 4.1 – Implementation of stack architecture using aMealy machine
with internal state s = (c, κ , p) which controls a BRAM.

¿e BRAM pitfall is circumvented by storing the top of the stack internally in the Mealy
machine. ¿e BRAM contains the tail of the stack.

4.2.2 Implementation details of the stack architecture

Figure 4.2 contains a detailed view of the stack architecture. It contains the full circuit of the
stack architecture. ¿e pointer is updated according to the stack instruction, and is used in
the BRAM to select both the read and write address. If the instruction is a push, the current
continuation in the top register must be stored in the BRAM, thus the write bit is enabled.
¿e new top is chosen according to the instruction; a push or replace instruction contains a
continuation which is the new top. If a pop occurs, the new top is the continuation read from
the BRAM. In case of a nop or done, the new continuation is simply the current continuation.
Appendix B contains the CλaSH code of the stack architecture.
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5

Results

Using the combined results of the methodology described in Chapter 3 and the implemen-
tation of this methodology as elaborated in Chapter 4, hardware descriptions of stack archi-
tectures can be generated. In this chapter, more examples will be subjected to the developed
rewrite rules. Furthermore, the results of the generated stack architectures will be synthesized
and these results will also be evaluated.

Several recursive algorithms are used to test the presented rewrite rules and stack architecture.
Figure 5.1 shows the path from recursive algorithm to FPGA. Several recursive algorithms
are written in the abstract syntax (as de�ned in section §3.1 ), for testing purposes. Using
the rewrite rules presented in section §3.2, a stack architecture is derived when combining
the derived function with the CλaSH template de�ned in section §4.2.2. Using the CλaSH
compiler, VHDL descriptions then be obtained. ¿ese VHDL descriptions are synthesized
using the Altera Quartus tooling for a speci�c FPGA.

Abstract Syntax rewrite rules
ÐÐÐÐÐ→ StackArch CλaSH

ÐÐÐ→ VHDL
Quartus
ÐÐÐÐ→ FPGA

Figure 5.1 – From recursive descriptions in abstract syntax to FPGA

¿ere are several points where the translation is tested. Using manual evaluation of the next
function, descriptions produced by the rewrite rules are veri�ed for their correctness. ¿is
validation is also performed with the Fibonacci example in Chapter 3. ¿e produced stack
architectures in CλaSH are veri�ed in the interactive environment of the CλaSH compiler.
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QuestaSim allows simulation of the VHDL descriptions produced by CλaSH. Visual inspec-
tion can also be used to verify synthesis of Quartus, which can be performed in the Register
Transfer Level (RTL)-Viewer chip planner.

In the next section, other generated hardware descriptions, derived from recursive algo-
rithms, are elaborated. Instead of the Fibonacci example in previous chapter, other algo-
rithms will be subjected to the rewrite rules de�ned in section §3.2. ¿e generated hardware
descriptions will be synthesised for a speci�c FPGA as will be shown in section §5.2. In this
section the results of the syntheses will be elaborated.

5.1 Rewriting other recursive algorithms

In Chapter 3, the Fibonacci example is used to support the explanation of the rewrite steps.
¿e mathematical de�nition of this function is already elaborated a chapter earlier in sec-
tion §2.2. In the same section two other mathematical de�nitions are presented: the factorial
function and theAckermann function. In this section, the results of previous chapters chapter
will be used to generate stack architecture descriptions for these examples.

5.1.1 Factorial

¿e factorial function, as mathematically de�ned in equation (2.3) in section §2.2, can be
expressed using the abstract syntax (see §3.1) which is introduced in the methodology. Using
this abstract syntax, the factorial function is de�ned ass follows in (5.1).

fact ∶ U32 → U32 = λn → case n of
⎧⎪⎪
⎨
⎪⎪⎩

0→ 1
n → ((∗) n) (fact (n − 1))

(5.1)

Using the description de�ned in the abstract syntax, one can apply the rewrite rules as de�ned
in Chapter 3 with the goal of deriving the next function (see section §5.1.1). First the naming
step N J K is applied, then the sequence step S J K, and �nally the derive next DN ϕ J K step.

¿e results of applying these subsequent steps to the factorial function is shown in equation
(5.2). Notice the occurrence of a serious application in the input of the naming step. ¿is is
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still a non automated step but is trivial to automate.

N JfactK = N J⋯n → ((∗) n) (@fact (n − 1))K
= ⋯n → ((∗) n) (let x1 = fact (n − 1) in x1) (5.2a)

S ′
○N JfactK = ⋯n → let x1 = fact (n − 1) in ((∗) n) x1 (5.2b)

DN ⊺ ○ S ′
○N JfactK = (e′, α) (5.2c)

where

e′ = case n of
⎧⎪⎪
⎨
⎪⎪⎩

0→ (R 1, Nop)
n → (F (n − 1), Push (κ1 n))

α = {κ1 n → (R ((∗) n) r, Pop)

A er applying all three steps, a description of e′ and α is known. ¿is is then used in the
next description as shown in equation (3.9) in section §5.1.1. ¿is results in the following
next description as shown in equation (5.3).

next (c, κ) = case c of

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F n → case n of
⎧⎪⎪
⎨
⎪⎪⎩

0→ (R 1, Nop)
n → (F (n − 1), Push (κ1 n))

R r → case κ of
⎧⎪⎪
⎨
⎪⎪⎩

κ1 n → (R ((∗) n) r, Pop)
κ0 → (R r, Done)

(5.3)

Only one continuation is introduced: κ1. ¿is continuation multiplies the result of the recur-
sive call F (n − 1) with the n stored in the continuation data type on the stack.

Evaluation of the factorial next function

In order to asses the behaviour of the next function, an evaluation of this function is per-
formed while bookkeeping the results of applying the next function, and the stack manually.
Just as is performed in the end of section of Chapter 3.

Table 5.1 shows the evaluation of the next generated from the factorial function applied to
an input of (F 3, κ0). Each of the intermediate results is listed in a separate row. ¿e state of
the stack a er applying the next function is displayed in a separate column.

A er applying the next function 8 times successively, the result of the computation is known.
In this case the result is 6 which is indeed true as 3! = 3 ∗ 2 ∗ 1 = 6.
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next(c, κ) = (c′, γ) Stack
[κ0]

1 next (F 3, κ0) = (F 2, Push (κ1 3)) [κ1 3, κ0]
2 next (F 2, κ1 3) = (F 1, Push (κ1 2)) [κ1 2, κ1 3, κ0]
3 next (F 1, κ1 2) = (F 0, Push (κ1 1)) [κ1 1, κ1 2, κ1 3, κ0]
4 next (F 0, κ1 1) = (R 1,Nop) [κ1 1, κ1 2, κ1 3, κ0]
5 next (R 1, κ1 1) = (R 1, Pop) [κ1 2, κ1 3, κ0]
6 next (R 1, κ1 2) = (R 2, Pop) [κ1 3, κ0]
7 next (R 2, κ1 3) = (R 6, Pop) [κ0]
8 next (R 6, κ0) = (R 6,Done) [κ0]

Table 5.1 – Evaluation of next function in the case of Factorial

5.1.2 Ackermann

Another algorithm which is subjected to the rewrite rules is the Ackermann function. ¿e
same procedure as used in previous example is used for this algorithm. A mathematical
description of the Ackermann function is provided in equation (2.5) in section §2.2. ¿is
function is an example of a nested recursive function. When expressed in the abstract syntax,
the following recursive de�nition (5.4) is obtained.

acker ∶ U32 → U32 → U32 = λm → λn → case m of
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0→ n + 1

m → case n of
⎧⎪⎪
⎨
⎪⎪⎩

0→ (acker (m − 1)) 1
n → (acker (m − 1)) ((acker m) (n − 1))

(5.4)

Notice that the Ackermann function has an arity of two, instead of previous algorithms.
¿erefore, two lambda abstractions are used for the function expression.

Using the de�ned abstract syntax de�nition of the Ackermann function, the rewrite rules
of can be applied to again obtain a next function. Rewriting these expressions leads to the
following results depicted in equations (5.5). Notice that, again, the serious applications are
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marked at the input of for the naming step.

N JackerK =N J⋯case n of
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0→ @ (acker (m − 1)) 1
n → @ (acker (m − 1))

(@ (acker m) (n − 1))
K (5.5a)

=⋯case n of
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0→ let x1 = (acker (m − 1)) 1 in x1
n → let x2 = (acker (m − 1))

(let x1 = acker m (n − 1) in x1) in x2

(5.5b)

S ′
○N JackerK =⋯case n of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0→ let x1 = acker (m − 1) 1 in x1
n → let x1 = acker m (n − 1) in
let x2 = acker (m − 1) x1 in x2

(5.5c)

DN ⊺ ○ S ′
○N JackerK =(e′, α) (5.5d)

where

e′ =⋯case n of
⎧⎪⎪
⎨
⎪⎪⎩

0→ (F (m − 1) 1, Nop)
n → (F m (n − 1), Push (κ1 m n))

α ={κ1 m n → (F (m − 1) r, Pop)

Using the obtained descriptions of themodi�ed function expression e′ and the continuations
α, the next function template can be �lled in. ¿e result of this is displayed in equation (5.6).

next (c, κ) = case c of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F m n → case m of
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0→ (R n + 1, Nop)
m → case n of

⎧⎪⎪
⎨
⎪⎪⎩

0→ (F (m − 1) 1, Nop)
n → (F m (n − 1), Push (κ1 m n))

R r → case κ of
⎧⎪⎪
⎨
⎪⎪⎩

κ1 m n → (F (m − 1) r, Pop)
κ0 → (R r, Done)

(5.6)
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next(c, κ) = (c′, γ) Stack
[κ0]

1 next (F 1 2, κ0) = (F 1 1, Push (κ1 1 2)) [κ1 1 2, κ0]
2 next (F 1 1, κ1 1 2) = (F 1 0, Push (κ1 1 1)) [κ1 1 1, κ1 1 2, κ0]
3 next (F 1 0, κ1 1 1) = (F 0 1,Nop) [κ1 1 1, κ1 1 2, κ0]
4 next (F 0 1, κ1 1 1) = (R 2,Nop) [κ1 1 1, κ1 1 2, κ0]
5 next (R 2, κ1 1 2) = (F 0 2, Pop) [κ1 1 2, κ0]
6 next (F 0 2, κ1 1 2) = (R 3,Nop) [κ1 1 2, κ0]
7 next (R 3, κ1 1 2) = (F 0 3,Nop) [κ1 1 2, κ0]
8 next (F 0 3, κ1 1 2) = (R 4, Pop) [κ0]
9 next (R 4, κ0) = (R 4,Done) [κ0]

Table 5.2 – Evaluation of next function in the case of Ackermann

As can be seen in the next description, only one continuation is introduced. ¿is continua-
tion is pushed onto the stack when m, n > 0. ¿is is the e�ect of omitting the introduction
of continuations when a tail call occurs as discussed in §3.3.2.

Evaluation of the Ackermann next function

Table 5.2 shows the evaluation of the next generated from the Ackermann function applied
to an input of (F 1 2, κ0). Each of the intermediate results is listed in a separate row. ¿e state
of the stack a er applying the next function is displayed in a separate column.

¿e result of acker 1 2 is 4 as listed in the �nal row of the table. As can be seen: many
recursive calls are made when calculating the Ackermann function. ¿is is a property of the
Ackermann algorithm.

5.2 Synthesis Results

In this section results of the synthesis of previously obtained hardware architectures will
be elaborated. ¿e stack architectures of the Fibonacci algorithm, the Factorial algorithm,
and the Ackermann algorithm; together with other non-elaborated algorithms, will be used
to obtain these synthesis results. Hardware descriptions as elaborated in section §4.2 from
Chapter 4 are used to generate VHDL from the CλaSH compiler.

¿e hardware descriptions are synthesised using the Altera Quartus 15 tooling. A speci�c
FPGA is chosen: the Cyclone IV EP4CE22F17C6N FPGA. ¿is FPGA is used in a developer
board called the DE0-nano board. It is relatively cheap and the FPGA is in the low-end range
in terms of resources.
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Algorithm fmax in MHz LEs Registers BRAM width
Fibonacci 32 bit 215.05 406 107 66
Factorial 32 bit 125.16 268 74 33
FactorialTail 32 bit 110.86 169 65 0
Ackermann 32 bit 184.98 424 117 65
GCD 32 bit 9.37 1,157 65 0

Table 5.3 – Results of the synthesis using Altera Quartus 15 tooling, tar-
geting a Cyclone IV EP4CE22F17C6N FPGA.

Several post-synthesis attributes of the synthesis are used in this thesis to indicate the perfor-
mance of the translated functions. ¿ese include:

maximum frequency fmax Amaximum operational frequency fmax , while operating in 85○

Celsius, is listed.

Logic Elements (LEs) ¿e number of LEs (logic containing a Look Up Table (LUT)) are
compared to indicate chip area consumption. ¿ese elements also contain registers;
the number of LEs includes register counts.

Registers Separate counting of the registers usage used in the design. Registers are part of
the LE blocks, but are counted here separately.

BRAM-width ¿e width of the BRAM indicates memory consumption of the stack. Al-
though the number of bits in the design may vary depending on the choice of the
stack depth, the width of memory is static for each transformed algorithm. It is a
measurement of the memory consumption.

In the Table 5.3 the synthesis results are compared. ¿e frequency of the factorial is signi�-
cantly slower than the other algorithms. ¿is can be explained due to the multiplier, which
generates a much larger propagation delay compared to the other algorithms which only uses
equality tests and additions. ¿e number of LEs are however greater in the Fibonacci and the
Ackermann function. In the Fibonacci function, more continuations are introduced which
leads to more control and logic and thus LEs. In the Ackermann however, the same number
of continuations are present compared to the factorial function. However the Ackermann
function has two input arguments of type Unsigned32 and has more case data patterns then
the factorial which leads to more LEs.

¿e FactorialTail and the GCD do not make use of the stack architecture, because these
functions are both tail recursive. ¿e GCD has a very slow frequency compared to the other
transformed algorithms. ¿is is the result of the use of the mod primitive. It causes a large
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Algorithm fmax in MHz ALMs
CλaSH [40] CλaSH [40]

Fibonacci 347.83 318 289 131
Ackermann 354.74 325 208 162

Table 5.4 – Comparison of the synthesis results between results produced
by the CλaSH compiler and [40]

propagation delay. ¿e implementation of the GCD also uses much LEs, which again can be
linked to the use of this mod primitive.

5.2.1 Comparison with Edwards et al.

Another set of synthesis results is used to compare the work described in this thesis with the
work of [40]. In this case, the transformed algorithms are synthesized for a di�erent FPGA:
the Stratix V 5SGXEA7H3F35C3 which is a more high-end FPGA.

In Table 5.4 a comparison ismade between the synthesis results of bothmethods. ¿e derived
stack architectures of the Fibonacci and the Ackermann function are used in this comparison.
In [40] the results are di�erent for speci�c arguments; for example Fib (25) and Fib (30) di�er
in maximum frequency and Adaptive Logic Modules (ALMs), which are the modules that
contain the LUTs and registers in the Stratix V FPGA. ¿e stack architectures in this thesis
are only synthesized for 32-bits unsigned integers, and produce the same circuitry for each
argument. ¿e results in [40], which produce the best results in terms ofmaximum frequency
and ALMs, are compared with the results of the synthesis of the work presented in this thesis.

¿e synthesis of the stack architectures produced by the methods described in this thesis
create obtain a higher frequency than [40]. However, more ALMS are introduced. ¿e cause
of this di�erence is hard to determine; di�erent tooling (Altera Quartus 14.0.0 in [40] versus
Altera Quartus 15.0.0 used in this thesis), di�erent design choices, and CλaSH synthesis
choices may all contribute in this di�erence.

¿e number of clock cycles it takes, for a computation to �nish, is also compared with results
in [40] and listed in Table 5.5. A simulation in the interactive CλaSH environment is used
to obtain these results. As can be seen in the table, the number of clock-cycles, obtained by
applying the methods described in this thesis, is structurally less then the results present in
[40]. ¿e precise cause of di�erence is again hard to determine as the procedure described in
[40] skips implementation details. A probable cause of this di�erence may be the choice of
architecture. ¿e architecture presented in this thesis supports theRepl andNop instructions.
¿ese instructions can sometimes be used in stead of successively executing a Push and Pop.
If this replacement can occur, it saves an extra clock cycle.
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Algorithm Clock-cycles (×103)
CλaSH [40]

Fib(20) 27 43
Fib(25) 300 486
Fib(30) 3328 5385
Ack(3,6) 258 344
Ack(3,7) 1040 1387
Ack(3,8) 4118 5571

Table 5.5 – Comparison of the number of clock cycles before a algorithm
�nishes. ¿e methodology described in this thesis is compared to the
results described in [40]
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6

Conclusions and
Recommendations

¿is chapter elaborates the �ndings of this thesis. First the �ndings of each of the chapter is
discussed shortly. ¿en, an answer of the research question of this thesis is provided. Finally,
recommendations are presented in the form of future work.

In Chapter 2, background and related work is elaborated. First CλaSH is introduced: an
introduction to the CλaSH language is given, the global workings of the CλaSH compiler
is elaborated, and the limitation of the current support of recursion in the CλaSH compiler
is identi�ed. Several properties of recursive functions are also highlighted in that chapter,
which enabled us to identify the characteristics of these functions in the rest of the thesis.
Relevant literature of the usage of recursion in recon�gurable hardware is discussed. Addi-
tionally, related work describing FHDL compilers is investigated. Finally, the CPS concept is
elaborated, as it is an important concept in this thesis.

In Chapter 3, a methodology is developed, based on the literature and �ndings in the back-
ground chapter. First an abstract syntax is developed. Based on this syntax, formal rewrite
rules are presented that implement the sketched rewrite rules of Edwards et al. [40]. ¿ese
formal rewrite rules are inspired by the rewrite rules de�ned byDanvy et al. [12] that describe
a generic CPS transform. ¿is leads, eventually, to the derivation of a stack architecture.

In Chapter 4, implementation details of the rewrite rules, and the stack architecture are
presented. ¿e stack architecture is described in the CλaSH language, which enables the
implementation of derived stack architectures in an FPGA. Several design aspects of imple-
menting this stack architecture are covered, such as the usage of the BRAM.
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In Chapter 5 results of the use of the developed methodology combined with the implemen-
tation techniques is assessed. ¿is assessment is performed by deriving stack architecture
descriptions of more example algorithms. ¿e derived stack architectures descriptions are
then synthesised for speci�ed FPGAs. ¿e results of the syntheses are elaborated and some
results are compared to [40].

¿e presented work can be summarized in the form of answering the research question. As
�rst posed in Chapter 1 section §1.1, this research question is:

» How can data-dependent recursive function de�nitions be supported by the CλaSH com-
piler?

In this thesis, the research question is answered by a presented methodology that derives
hardware capable of handling data-dependent recursive functions. Research of Edwards et
al. combined with other work, is used to develop formal rewrite rules for a simply typed
lambda calculus. ¿ese rewrite rules transform the recursive function de�nition in a CPS
form that can be executed on a stack architecture. ¿e implementation details of creating
such architectures is also elaborated in this thesis. Finally, several data-dependent recursive
functions are transformed using the presented methodology and results are compared.

6.1 Recommendations and Future Work

Although the presented methodology is implemented in a proof of concept, which produces
CλaSH circuit descriptions, there are certain aspects of this research that still need to be re-
searched further. ¿ese aspects are presented in this section in the form of recommendations
and future work. Before an actual implementation of the method should take place, one has
to consider the following aspects.

6.1.1 Transforming more involved recursive functions

A set of simple theoretical recursive functions is transformed in this thesis in order to asses
the correctness of the transformations. Future research may use the methodology presented
in this thesis to transform other, more, involved recursive functions, such as: Divide and
conquer algorithms, graph algorithms, etcetera. ¿is will provide more insight into usability
and practicality of this work.

6.1.2 Mutual recursive functions

In section §2.2.4 the concept of mutual recursion is elaborated. ¿e presented rewrite rules
in this thesis, do, however, not allow this form of indirect recursion — only direct recursive
calls are allowed. As to future work, one may investigate the possibilities to enable this form
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of recursion. Edwards et al. [40] propose a solution for this which merges the dependent
functions into one function, before transforming it.

Another possible solution may be to simply allow more than one function call F n. If each
function involved in the mutual recursive function corresponds to an unique function call,
and each continuation is unique over all transformed function, mutual recursion can occur
between the di�erent functions. ¿is should also enable mutual recursion, however this has
to be researched.

6.1.3 Higher order functions

As mentioned §3.1.2, the abstract syntax used in this thesis, does not allow higher-order
functions. ¿e main reason for this limitation is because it simpli�ed the analysis of the
syntax. ¿is restriction is however not desired when implementing the support of data-
dependent recursion in CλaSH. It does support (some cases of) higher-order functions.

It should be possible to enable the support the use of higher-order functions ‘between’ the
recursive function calls, for example, an operation mapped onto a vector may be de�ned
as operation ‘between’ the recursive calls. Further research may provide answers to which
extend higher-order functions can be combined in recursive function de�nitions.

6.1.4 Stack architecture

Although a stack architecture is proposed in chapter Chapter 4, a lot of variations can be
made in the chosen stack architecture.

Asmentioned in section §2.3.1, Sklyarov et al. [24, 32, 33] propose amethodology formanually
implementing recursive algorithms in a HFSM. It would be interesting to determine if the
rewrite rules can be altered to enable the derivation of such aHFSM. Future workmay extend
the rewrite rules and stack architecture to automatically generate such architectures.

¿e suggested stack architecture in this thesis may also be improved. For example: the
stack frame currently holds all free variables. However, this can be reduced to only the free
variables that are needed in the rest of the continuations. ¿is will reduce the stack frame size
in some cases. One may also detect if the stack is used at all. If the function is tail-recursive
— as is the case in equation (2.6) — the continuation stack and control mechanisms can be
removed, as it is not needed.

6.1.5 Space-time trade-offs

¿e generated hardware from our method, currently adds delays between each recursive call.
All functions called between the recursive calls, are required to be combinational circuits. It
may be interesting to investigate the e�ects of inlining the recursive calls, and create separate
calls for these inlined functions. ¿is may also work in the opposite direction, one can split
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up the function in multiple stages. ¿is may involve marking more serious applications and
handling the types correctly, but further research can investigate such trade-o�s.

6.1.6 Interfacing surrounding hardware

¿e interfacewith the stack architecture is not yet investigated. One can choose for example to
integrate the stack architecture within the data-�ow support fromCλaSH. Data-�ow support
in CλaSH has bidirectional synchronisation channels. One for asserting the validity of the
data and the other for asserting circuit readiness. Because in data-dependent recursion, it
is generally unknown how long the computations will take. One can synchronise using the
validity channel when the computation is �nished.
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A

Abstract Syntax and Rewrite
Rules

A.1 Abstract Syntax

1 {-
2 Module : Expr
3 Description : Abstract Syntax
4 Copyright : (c) University of Twente 2015
5 License : BSD2
6 Maintainer : i.teraa@student.utwente.nl
7 Stability : experimental
8 -}
9 module Expr where
10
11 import Data.List (nub,intersperse,nubBy, intercalate)
12 import Control.Arrow (second)
13 import Text.PrettyPrint.HughesPJClass
14
15 data Expr r = Var String
16 | App r (Expr r) (Expr r)
17 | Lam Binder (Expr r)
18 | Let Binder (Expr r) (Expr r)
19 | Case (Expr r) [(AltCon, Expr r)]
20 | Lit Int
21 deriving (Show)
22
23 data AltCon = DefaultAlt Binder
24 | LitAlt Int
25 | DataAlt String [Binder]
26 deriving (Show)
27

55



APPENDIX A. ABSTRACT SYNTAX AND REWRITE RULES

28 data Reynold = Trivial
29 | Serious
30 deriving (Show)
31
32 type ReynoldExpr = Expr Reynold
33 type CExpr = Expr ()
34
35 data Type = TyCon TyConId
36 | TyVar TyVarId
37 | TyApp Type Type
38 deriving (Show)
39
40 type TyConId = String
41 type TyVarId = String
42 type Var = String
43 type Binder = (Var, Type)
44
45 data DataDef = DataDef String [(String,[Type])] deriving (Show)
46 data FunDef e = FunDef String [Type] Type e deriving (Show)
47
48 data Program = Program [DataDef] [FunDef CExpr] deriving (Show)
49
50 -------------------------------------------------------------------------------
51 -- pPrint instances
52 -------------------------------------------------------------------------------
53 instance (Pretty a) => Pretty (Expr a) where
54 pPrint (Var x) = text x
55 pPrint (Lit i) = int i
56 pPrint (App r e1 e2) = (parens $ pPrint e1) <+> (parens $ pPrint e2)
57 pPrint (Lam (v,_) e) = text "\\" <> text v ->> pPrint e
58 pPrint (Let (s,_) e1 e2) = text "let" <+> text s <=> pPrint e1
59 <+> text "in" <+> pPrint e2
60 pPrint (Case e alt) = text "case" <+> pPrint e <+> text "of"
61 <+> nest 2 (vcat $ map f alt) where
62 f (ac, e) = pPrint ac ->> pPrint e
63
64 instance Pretty AltCon where
65 pPrint (DefaultAlt (s,t)) = text s
66 pPrint (LitAlt i) = int i
67 pPrint (DataAlt s bs) = text s <+> (hsep $ map (text.fst) bs)
68
69 instance Pretty DataDef where
70 pPrint (DataDef s cs) = text "data" <+> text s <+> cs’ where
71 cs’ = hsep (punctuate (text " |") $ map f cs)
72 f (s, dts) = text s <+> hsep (map pPrint dts)
73
74 instance (Pretty a) => Pretty (FunDef a) where
75 pPrint (FunDef s tyArgs tRet e) = text s <+> text "::" <+> ty
76 $$ text s <=> pPrint e where
77 ty = hsep $ punctuate (text "->")
78 $ map pPrint (tyArgs ++ [tRet])
79
80 instance Pretty Program where
81 pPrint (Program ddef vdef) = vcat $ (map pPrint ddef) ++ (map pPrint vdef)
82
83 instance Pretty Type where
84 pPrint (TyCon id) = text id
85 pPrint (TyVar var) = text var
86 pPrint (TyApp t1 t2) = pPrint t1 <+> pPrint t2
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87
88 -------------------------------------------------------------------------------
89 -- Helpers
90 -------------------------------------------------------------------------------
91 -- pPrint helpers
92 (<=>) :: Doc -> Doc -> Doc
93 a <=> b = a <+> text "=" <+> b
94
95 (->>) :: Doc -> Doc -> Doc
96 a ->> b = a <+> text "->" <+> b
97
98 -- make tuple
99 mkTuple e1 = App () (App () (Var "(,)") e1)
100
101 -- Create unique supply of binders
102 uniqueSupply :: String -> Type -> [Binder]
103 uniqueSupply s ty = zip (map ((s++).show) [0..]) (repeat ty)
104
105 -- Fetch free variables given a context
106 freeVars :: [Binder] -> CExpr -> [Binder]
107 freeVars bndrs expr = case expr of
108 (Var v) -> lookupBinder v bndrs
109 (Lit _) -> []
110 (Lam b e) -> freeVars bndrs e
111 (App () e1 e2) -> freeVars bndrs e1 ++ freeVars bndrs e2
112 (Let b e1 e2) -> nubBy (\(a,_) (b,_)->a==b ) $(freeVars bndrs e1) ++ freeVars bndrs e2
113 (Case e alts) -> concatMap (\(_,e’)->freeVars bndrs e’) alts
114
115 lookupBinder :: String -> [Binder] -> [Binder]
116 lookupBinder v bndrs = let fs = filter (\(id,ty)->id==v) bndrs in
117 if null fs then [] else [head fs]
118
119 -- Replace Variable in Expression
120 replaceVar :: Var -> Var -> CExpr -> CExpr
121 replaceVar v v’ (Var s) | v == s = Var v’
122 | otherwise = Var s
123 replaceVar _ _ e@(Lit _) = e
124 replaceVar v v’ (Lam v1 e) = Lam v1 (replaceVar v v’ e)
125 replaceVar v v’ (App () e1 e2) = App () e1’ e2’
126 where
127 e1’ = replaceVar v v’ e1
128 e2’ = replaceVar v v’ e2
129 replaceVar v v’ (Case e alts) = Case (replaceVar v v’ e) alts’
130 where
131 alts’ = map (second (replaceVar v v’)) alts

Listing A.1 – Expr.hs

A.2 Rewrite Rules

A.2.1 Naming

1 {-
2 Module : Naming
3 Description : Naming rewrite rule
4 Copyright : (c) University of Twente 2015
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5 License : BSD2
6 Maintainer : i.teraa@student.utwente.nl
7 Stability : experimental
8 -}
9 module Naming (naming) where
10
11 import Expr
12 import Data.Traversable (mapAccumL)
13
14 -- | Renaming step of the CPS (continuation passing style) transform
15 -- for more information see [1]
16 naming :: FunDef ReynoldExpr -- ^ Original function definition
17 -> FunDef CExpr -- ^ Rewritten function definition
18 naming (FunDef f argTy retTy e) = FunDef f argTy retTy e’
19 where (e’,_) = naming’ (uniqueSupply "v" $ retTy) e
20
21 -- | Acutal naming rewrite rule, introduce let expression at Serious
22 -- applications.
23 naming’ :: [Binder] -- ^ Unique supply for naming
24 -> ReynoldExpr -- ^ Expressions with annotated
25 -> (CExpr, [Binder]) -- ^ Tuple with transformed expression and rest of
26 -- unique names
27 naming’ bs expr = case expr of
28 Var x -> (Var x, bs)
29 Lit i -> (Lit i, bs)
30 Lam x e -> (Lam x e’, bs’)
31 where (e’,bs’) = naming’ bs e
32 App Serious e1 e2 -> (Let b (App () e1’ e2’) (Var x), bs’’)
33 where
34 (b@(x,_):bss) = bs
35 (e1’, bs’) = naming’ bss e1
36 (e2’, bs’’) = naming’ bs’ e2
37 App Trivial e1 e2 -> (App () e1’ e2’, bs’’)
38 where
39 (e1’, bs’) = naming’ bs e1
40 (e2’, bs’’) = naming’ bs’ e2
41 Case e alts -> (Case e’ alts’, bs’’)
42 where
43 (e’,bs’) = naming’ bs e
44 (bs’’, alts’) = mapAccumL f bs’ alts
45 f acc (dc, e) = let (e’’,acc’ ) = naming’ acc e in (acc, (dc, e’’))

Listing A.2 – Naming.hs

A.2.2 Sequentialize

1 {-
2 Module : Sequentialize
3 Description : Sequentialize rewrite step.
4 Copyright : (c) University of Twente 2015
5 License : BSD2
6 Maintainer : i.teraa@student.utwente.nl
7 Stability : experimental
8 -}
9 module Sequentialize (sequentialize) where
10
11 import Expr

58



A.2. REWRITE RULES

12 import Data.Traversable (mapAccumL)
13
14 -- | Sequentialize step of the CPS transform
15 sequentialize :: FunDef CExpr -> FunDef CExpr
16 sequentialize (FunDef f argTy retTy e) =
17 let (e’,_) = sequentialize’ e in FunDef f argTy retTy e’
18
19 -- | Actual rewrite rule
20 sequentialize’ :: CExpr -- ^ Input Expression
21 -> (CExpr, [(Binder, CExpr)]) -- ^ Tuple of output Expression
22 sequentialize’ (Var x) = (Var x, [])
23 sequentialize’ (Lit x) = (Lit x, [])
24 sequentialize’ (Lam b e) = (Lam b (lets $ sequentialize’ e), [])
25 sequentialize’ (Let b e1 e2) = (e2’, nu1 ++ [(b,e1’)] ++ nu2)
26 where
27 (e1’, nu1) = sequentialize’ e1
28 (e2’, nu2) = sequentialize’ e2
29 sequentialize’ (App () e1 e2) = (App () e1’ e2’, nu1 ++ nu2)
30 where
31 (e1’, nu1) = sequentialize’ e1
32 (e2’, nu2) = sequentialize’ e2
33 sequentialize’ (Case es alts) = (Case es’ alts’, nus)
34 where
35 (es’, nus) = sequentialize’ es
36 alts’ = map (fmap (lets . sequentialize’)) alts
37
38 -- | Helper function for sequentialize’ rewerite step
39 lets :: (CExpr, [(Binder, CExpr)]) -> CExpr
40 lets (e, nus) = foldr (\(b,e1) e2 -> Let b e1 e2) e nus

Listing A.3 – Sequentialize.hs

A.2.3 Generate stack architecture

1 {-
2 Module : GenStackArch
3 Description : Generate Stack Arch module
4 Copyright : (c) University of Twente 2015
5 License : BSD2
6 Maintainer : i.teraa@student.utwente.nl
7 Stability : experimental
8 -}
9 module GenStackArch (stackArchGen) where
10
11 import Expr
12
13 import Data.List (nub, intersperse, deleteBy)
14 import Data.Traversable (mapAccumL)
15 import Data.Maybe (isNothing)
16
17 -------------------------------------------------------------------------------
18 -- Stack Arch Introduction
19 -------------------------------------------------------------------------------
20
21 -- | Generate stack architecture given a FunDef.
22 stackArchGen :: FunDef CExpr -- ^ A function that needs to be transformed
23 -> Program -- ^ Resulting program
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24 stackArchGen (FunDef f argTy retTy e) = Program [cont, call] [next]
25 where
26 cont = DataDef "Cont" (map (conDa2Ty.fst) (a:as))
27 call = DataDef "Call" [("F",argTy),("R", [retTy])]
28 next = FunDef "next" [(TyCon "(Call,Cont)")] (TyCon "(Cont,STDCmd)")
29 (Case (Var "(c,k)") [
30 (DataAlt "F" bs, e’’),
31 (DataAlt "R" [("r", retTy)], Case (Var "k") (a:as))])
32 (bs, e’) = firstLams [] e
33 (e’’, as) = deriveNext f (ks) bs True e’
34 a = (DataAlt k [],
35 mkTuple (App () (Var "R") (Var "r")) (Var "Done"))
36 (k:ks) = map fst $ uniqueSupply "K" retTy
37
38 -- | Derive Next Function is used to collect an expression and continuations
39 -- for a description of the next function. The rewrite rule perform two tasks:
40 -- * All results of next the function must be in the form of a tuple containing
41 -- a call and stack instruction.
42 -- * Continuations are collected in the form of a data pattern for a case
43 -- expression which handles the continuations.
44 deriveNext :: Var -- ^ Function name
45 -> [Var] -- ^ Unique supply
46 -> [Binder] -- ^ Binders in context
47 -> Bool -- ^ First continuation indicator
48 -> CExpr -- ^ Rewrite expression
49 -> (CExpr, [(AltCon,CExpr)]) -- ^ alternated expression and
50 -- continuation case patterns.
51 deriveNext f (k:ks) bs phi expr = case expr of
52 Var x -> (deriveNextR phi (Var x), [])
53 Lit i -> (deriveNextR phi (Lit i), [])
54 App _ e1 e2 -> (deriveNextR phi (App () e1 e2), [])
55 (Let v e1 (Var v’)) | v*=*v’ -> (deriveNextR phi e1, [])
56 Let b@(x,t) e1 e2 -> (deriveNextK phi e1 k’, as’)
57 where
58 (ce, as) = deriveNext f ks bs’ False e2
59 as’ = ((DataAlt k fvs, replaceVar x "r" ce):as)
60 fvs = freeVars bs expr
61 k’ = applyVars (Var k) fvs
62 bs’ = addBinder b bs
63 Lam b e -> (Lam b e’, as)
64 where
65 (e’, as) = deriveNext f (k:ks) bs’ phi e
66 bs’ = addBinder b bs
67 Case es alts -> (Case es alts’, as)
68 where
69 alts’ = zip (map fst alts) (map fst xss)
70 as = concatMap snd xss
71 (_,xss) = mapAccumL fun (k:ks) (map snd alts)
72 fun is e = (drop (length xs) is, (e’,xs) )
73 where
74 (e’, xs) = deriveNext f is bs phi e
75
76 -- | derive next helper for pushing and replacing continuations
77 deriveNextK :: Bool -- ^ First continuation indicator.
78 -> CExpr -- ^ Original expression.
79 -> CExpr -- ^ Continuation
80 -> CExpr -- ^ result expression
81 deriveNextK True e k = mkTuple e (App () (Var "Push") k)
82 deriveNextK False e k = mkTuple e (App () (Var "Repl") k)
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83
84 -- | Derive Next helper function for results
85 deriveNextR :: Bool -- ^ First continuation indicator
86 -> CExpr -- ^ Original expression
87 -> CExpr -- ^ Resulting expression
88 deriveNextR True e = mkTuple e (Var "Nop")
89 deriveNextR False e = mkTuple e (Var "Pop")
90
91 -- | Derive next helper for changing the result expression to Function
92 -- construct or Result construct
93 -- TODO: Add Return R case
94 deriveNextC :: Var -- ^ Function Name
95 -> CExpr -- ^ Origninal expression
96 -> CExpr -- ^ Alternated expression
97 deriveNextC f e = replaceVar f "F" e
98
99 -------------------------------------------------------------------------------
100 -- helpers
101 -------------------------------------------------------------------------------
102
103 conDa2Ty :: AltCon -> (String, [Type])
104 conDa2Ty (DataAlt id bs) = (id, map snd bs) where
105
106 firstLams :: [Binder] -> CExpr -> ([Binder], CExpr)
107 firstLams xs (Lam x e) = firstLams (x:xs) e
108 firstLams xs e = (reverse xs, e)
109
110 (*=*) :: Binder -> Var -> Bool
111 (*=*) b v = fst b == v
112
113 applyVars :: CExpr -> [Binder] -> CExpr
114 applyVars = foldl (\e b -> App () e (Var (fst b)))
115
116 addBinder :: Binder -> [Binder] -> [Binder]
117 addBinder b bs = b:bs’ where
118 bs’ = deleteBy f b bs
119 f (id,_) (id’,_) = id==id’

Listing A.4 – GenStackArch.hs

A.2.4 Transform

1 {-
2 Module : Transform
3 Copyright : (c) University of Twente 2015
4 License : BSD2
5 Maintainer : i.teraa@student.utwente.nl
6 Stability : experimental
7
8 -}
9 module Transform (transform) where
10
11 import Expr
12 import Naming
13 import Sequentialize
14 import GenStackArch
15
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16 transform :: FunDef ReynoldExpr -> Program
17 transform = (stackArchGen . sequentialize . naming)

Listing A.5 – Transform.hs
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B

CλaSH Stack Architecture

1 {-
2 Module : StackArch
3 Description : Stack Arch Description.
4 Copyright : (c) University of Twente 2015
5 License : BSD2
6 Maintainer : i.teraa@student.utwente.nl
7 Stability : experimental
8 -}
9 module StackArch where
10
11 import CLaSH.Prelude
12 import qualified Data.List as L
13 import Data.Maybe (catMaybes)
14 import Debug.Trace
15 import qualified Control.Exception.Base as E
16
17 -- Select description here
18 import Fibonacci
19 -- import Factorial
20 -- import Ackermann
21
22 type MemAddr = Unsigned 8
23 type StackArchState = (Call, MemAddr, Cont)
24 -- | the stack arch function ties the mealy description of stackUpdate together
25 -- with an instantiation of a block ram
26 stackArch :: Signal (Maybe ResultType) -- ^ currently unused.
27 -> Signal (Maybe ResultType) -- ^ Resulting unsigned, when done.
28 stackArch _ = r
29 where
30 initialState = (start, 0, K0)
31 (kappa, p, w, r) = unbundle $ mealy stackUpdate initialState ramKappa
32 p_safe = assert "stack overflow" (p .<=. 1000) (pure True) p
33 ramKappa = blockRam (replicate d1000 K0) p_safe p_safe w kappa
34
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35 -- | Mealy description of stack update mechanism.
36 stackUpdate :: StackArchState -- ^ State of stack architecture
37 -> Cont -- ^ blockRam read continuation
38 -> (StackArchState, (Cont, MemAddr, Bool, Maybe ResultType))
39 stackUpdate (c,p,kappa) ramKappa = ((c’,p’,kappa’), (kappa,p’,w,r))
40 where
41 (c’, gamma) = next (c,kappa) -- next descriptions are externally defined.
42 (kappa’, p’, w, r) = case gamma of
43 Push newKappa -> (newKappa, p+1, True , Nothing)
44 Pop -> (ramKappa, p-1, False, Nothing)
45 Repl newKappa -> (newKappa, p , False, Nothing)
46 Nop -> (kappa, p , False, Nothing)
47 Done r -> (kappa, p , False, Just r )
48
49 topEntity = stackArch
50
51 sim = (L.head . catMaybes . sample . stackArch ) $ signal (Nothing)

Listing B.1 – StackArch.hs
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Acronyms

CλaSH CAES language for asynchronous hardware

CPS Continuation Passing Style

IR Intermediate Representation

HDL Hardware Description Language

HFSM Hierarchical Finite-State Machine

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

GHC Glasgow Haskell Compiler

LUT Look Up Table

VLIW Very Long Instruction Word

MUSIC MUltiple SIgnal Classi�cation

SAFL Statically Allocated parallel Functional Language

DSL Domain Speci�c Language

FPGA Field Programmable Gate Array

MAC Multiply ACcumulate

FSM Finite-State Machine

RAM Random Access Memory

BRAM Block RAM

CPU Central Processing Unit
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ACRONYMS

GPU Graphics Processing Unit

FHDL Functional HDL

RTL Register Transfer Level

ALM Adaptive Logic Module

LE Logic Element
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