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Abstract

The radio-spectrum has been untouched for centuries, but in recent years wireless devices have been
competing more and more for some scarce bandwidth. As bandwidth auctions are billion-dollar affaires,
wireless devices pop-up literally everywhere and forecasts state a 66x increase of data usage in just four
years, an efficient use of the radio-spectrum is of ever increasing importance.

To arrive at a more efficient usage of the radio-spectrum, the presented work analyzes spectral leakage
associated with Orthogonal Frequency Division Multiplexing (OFDM) and discusses solutions. Conven-
tional solutions target the consequences, reducing sidelobes, rather than targeting the problems, the
signals themselves. Instead, this thesis aims to arrive at a set of signals localized in time-frequency. The
localization in time and frequency is lower-bounded by the uncertainty principle. The Hermite functions
form a set of solutions to this lower-bound.

Although Hermite functions are optimally localized in time-frequency, that does not necessarily imply
that the signals are also suitable for communication. Based on the discussion of ten signal attributes,
criteria are formulated for a set of basis signals for communication. The Hermite functions are assessed
based on these criteria and subsequently modified in order to meet the criteria. The resulting set of
time-frequency localized signals, referred to as STFL, are in discrete-time, orthogonal, zero-mean, of
equal energy and are localized in time and frequency.

Both OFDM and STFL signals asymptotically approach the optimum of 2 degrees of modulation freedom
per time-bandwidth product. However, in case the spectrum becomes more and more utilized, mutual
interference caused by conventional OFDM sidelobes severely degrades the effective data-throughput.
Unlike OFDM, the signals STFL have a near-optimal localization and allow multiple users to communicate
efficiently over time and frequency. The performance of STFL in mobile radio channels, the transceiver
power efficiency and hardware complexity are discussed and compared to conventional OFDM, leading
to minor differences between the two.

After all, given the increasing competition for some scarce bandwidth, there is good evidence to believe
that the realization of transceivers employing Hermite functions, or their practical counterparts STFL,
could be a major improvement in communication.
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Preface

The world is changing: explosive demographic growth, merging cultures, urbanization, drastic environ-
mental changes, increasing income inequalities, individualism, scarcity of numerous natural resources,
loss of bio-diversity and the rise of global institutions are just a few of the many changes we recently
experienced. The world has always been spinning around, but due to technological advances of last
century, the momentum of changes seems to take new proportions. Despite the progress enabled by
technology in fields like healthcare, production, logistics and telecommunications, many problems still
exist along so many dimensions. It may be formulated as the ultimate goal of academia, and society as
a whole, to find the solutions to the very problems today’s world faces.

I have always been fascinated by problems. Whether it were mathematical, economical, business, engi-
neering or the major challenges we are all confronted with. The university campus has facilitated me to
work on a wide variety of topics related to mathematics and economics and their respective practices
engineering and business. I came here to learn more about engineering and business in order to prepare to
work in one of the fastest, most competitive sectors the business world knows: the consumer electronics
market. During the years I have been hosted at the university, I am glad that I have been able to develop
my engineering, business and entrepreneurial skills.

Some well-known scarce resources are water, food, energy and numerous raw materials. There is an-
other, invisible scarce resource: the electromagnetic spectrum. It is used for conventional radio, cellular
communication, satellite television, wireless internet and numerous other wireless communication ap-
plications. For each of these applications some bandwidth, part of the electromagnetic spectrum, is
necessary for communication. As the number of wireless devices as well as their data usage is explosively
growing, an efficient use of the electromagnetic spectrum is of increasing importance.

It may be familiar to you; you are tuning your FM radio to hear your favorite music station and you
end up hearing noise and the cracky sound of other music stations. This is characteristic for wireless
communication devices. Instead of using their own, isolated frequencies, wireless devices emit power
over large parts of the spectrum causing interference to other devices. This issue, called spectral leakage,
forms the primary topic of this thesis. A set of time-frequency localized signals for communication is
proposed.

It was by my supervisors Mark Oude Alink, André Kokkeler and Gerard Smit that I got the classical and
challenging problem of reducing spectral leakage. I am grateful for our fruitful discussions which I hope
to continue in the near future. Above all, I would like to thank my parents, Hein & Reina Korevaar, for
their support and the way they motivated me to do all the things I have done, so far...
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CHAPTER 1

Introduction

1.1 Wireless communications: an overview

The extensive use of the electromagnetic spectrum as a means to communicate started at the late
19th century. Wired communication already celebrated major milestones like the birth of the telegraph
in the 1840s and the first transatlantic telegraph connection in 1858. Although it took an hour to
transmit a few words [1], it has laid the basis for modern telecommunications. During the years that
wired communication technology got started, Maxwell published his work "A Dynamical Theory of the
Electromagnetic Field" in which he set out four well-known equations based on the work of Gauss,
Ampère and Faraday [2]. Studying the electromagnetic field theory of Maxwell, Hertz and Tesla showed
the principle of radio communication in a laboratory environment. It was M.G. Marconi who showed
the world the use of radio waves by transmitting radio signals over the Atlantic Ocean around 1900.
Although it would take decades for wireless communication to become mainstream, the first experiments
of these early founders would pave the way for communication as we know it today.

In the 19th century wired communication was primarily used for the application of telegraphy. Com-
munication was achieved by making and breaking an electric contact resulting in audible short pulses.
When multiple users used the same line, users were scheduled after each other, which is nowadays
known as Time Division Multiple Access (TDMA). One of the challenges of telegraph communication
was to increase the user capacity of the lines. Bell examined the use of multiple frequencies to allow
different telegraph users to communicate simultaneously. In 1876 he patented the idea of Frequency
Division Multiplexing (FDM) [3]. In his patent, partly shown in figure 1.1, he describes a transmitter
sending a sinusoidal wave giving a response by a telegraph machine tuned for that single frequency.
By simultaneously sending several sinusoidal waves, each characterized by its own frequency, different
telegraph connections are possible over a single line at the same time. Thanks to the invention of FDM
the capacity of communication lines increased dramatically.

Figure 1.1 | Figures from U.S. patent no. 174.465, filed by A.G. Bell, explaining the ideas of Frequency Division
Multiplexing [3]. Waves A and B of different frequency are summed to A + B (left), sent over one sin-
gle line, and excite a response in receiver A and receiver B tuned for waves of frequency A and B respectively
(right).
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2 1 | Introduction

In traditional FDM transmission systems, subchannels are placed apart in frequency with spectral guard
space in between. Guard spaces are used to guarantee frequency isolation between different spectrum
users. Although these guard bands prevent Inter-Carrier Interference (ICI), i.e. cross-talk between
different carriers, the spectral efficiency is lowered as a result of non-information carrying guard spaces.
A solution has been found by means of Orthogonal Frequency Division Multiplexing (OFDM). The
orthogonality of the signals allow for a smaller subcarrier spacing. Thanks to the closer subcarrier
spacing, communication using OFDM is possible at higher symbol rates than with traditional FDM.
Important exploratory work has been performed by Chang & Gibby [4] and Saltzberg [5] in the 1960s
who explored transmission systems using orthogonal waveforms. Full-cosine roll-off pulses, as shown in
figure 1.2, were proposed by both authors. Note that the carrier spacing is now reduced from b for FDM
to b/2 for OFDM. Saltzberg was the first who presented an OFDM-Offset Quadrature Amplitude
Modulation (OQAM) transmission system, whereby both a sine and a cosine, which are orthogonal
waveforms over [0, 2π], are amplitude modulated. Despite their conceptual beauty, OFDM and the
discussed OQAM variant had one important drawback: the computational complexity.
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Figure 1.2 | Illustration of overlapping orthogonal (full cosine roll-off) pulses as proposed by Saltzberg in exploratory work
on Orthogonal Frequency Division Multiplexing [5].

Cooley and Tuckey presented their fast implementation of the Discrete Fourier Transform (DFT) in
1965 [6]. It marked a major turning point in discrete signal processing, although it turned out that the
algorithm itself was already found in a slightly different form by Gauss 150 years before [7]. However,
the rediscovery of the Fast Fourier Transform (FFT) found its importance in various applications. For
OFDM in particular the finding proved useful. The inverse and forward DFT were already suggested as
a modulator and demodulator for OFDM to easily generate modulated sinusoidal waves of increasing
frequency. A drawback was the computational complexity increasing quadratically with the number of
carrier waves. This issue was addressed by Hirosaki who suggested the use of the inverse and forward
FFT as modulator and demodulator for OFDM [8]. The computational complexity was now proportional
to N log2(N) compared to N2 for the earlier DFT realizations.

The insight of using orthogonal signals together with the fast discrete Fourier implementations as
modulator and demodulator would give OFDM a serious chance. Thanks to relatively small carrier bands,
equalization reduces to a complex multiplication per subcarrier. The relatively long symbol times combat
echoes associated with multi-path effects. Its ability to cope with multi-path effects has made OFDM
especially popular for wireless applications. OFDM is used for Wireless Local Area Networks (WLANs),
Digital Video Broadcasting - Terrestrial (DVB-T), Digital Audio Broadcasting (DAB) and many other
wireless technologies.
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1.2 Spectrum, a scarce resource

The electromagnetic spectrum is one of nature’s scarce resources. Although large parts have been
untouched for centuries, nowadays wireless devices are competing to get some some spectral band-
width to enable communication. The frequencies useful for wireless communication range from about
30kHz to 300GHz, referred to as the radio-spectrum. European governmental institutions and the
U.S. Federal Communications Commission (FCC) organize bandwidth auctions to provide telecommu-
nications providers with bandwidth. An auction organized by the U.S. FCC in 2008 auctioned 52MHz
bandwidth in the 700MHz range for 19.6 billion dollar [9]. The average price per MHz was about 400
million dollar. A report by Cisco Systems, presented by Morgan Stanley, forecasts a 66 times increase in
mobile internet usage in four years [10]. This shall further intensify the battle for some scarce bandwidth.

Practically all wireless communication standards operate in fixed frequency bands and thereby occupy
a part of the available spectrum. The supply of available channel capacity, dependent on Signal to
Noise Ratios (SNRs) obtained in the channel as set out by the fundamental work of Shannon [11], is
available independent of actual demand. A research carried out by the International Telecommunication
Union (ITU) and the FCC shows that the use of radio spectrum, the part of the electromagnetic spec-
trum useful for radio communication, experiences large fluctuations [12]. For example, measurements
carried out during the period from January 2004 to August 2005 show that frequency bands below 3GHz,
on an average, have a utilization rate of 5.2% in the United States at any given location and time (for
details refer to [13]). Similar conclusions can be drawn by looking at figure 1.3. We arrive at a paradox:
on one hand spectrum is so scarce that telecommunication companies pay billions of dollars to obtain
some bandwidth, while on the other hand the available link capacity is often not efficiently used. This
paradox has been addressed by Mitola, who was the first to coin the concept of cognitive radio [14],
whereby he advocates the use of intelligent, reconfigurable radios aware of their environment. We adopt
the definition of cognitive radio as stated by the FCC [15]:

"A cognitive radio (CR) is a radio that can change its transmitter parameters based on interaction
with the environment in which it operates. This interaction may involve active negotiation or
communications with other spectrum users and/or passive sensing and decision making within
the radio...".

Cognitive radios can employ Dynamic Spectrum Access (DSA) to come to a more efficient usage of
the spectrum. DSA aims at real-time adjustment of spectrum utilization in response to changing cir-
cumstances and objectives [16]. Recently, much research has been devoted to the concept of cognitive
radio. A standard for cognitive radio for Wireless Regional Area Networks (WRANs), the IEEE 802.22,
is currently in development [17]. Also for Worldwide Interoperability for Microwave Access (WiMAX)
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FIGURE 6.1

A snapshot of PSD from 88 MHz to 2686 MHz measured on July 11, 2008, in Worcester,
Massachusetts (N42o16.36602, W 71o48.46548).

applications, the technique should be capable of handling high data rates. One
technique that meets both these requirements is a variant of orthogonal frequency
division multiplexing called noncontiguous OFDM (NC-OFDM) [181]. Compared
to other techniques, NC-OFDM is capable of deactivating subcarriers across its
transmission bandwidth that could potentially interfere with the transmission of
other users. Moreover, NC-OFDM can support a high aggregate data rate with the
remaining subcarriers and simultaneously maintain an acceptable level of error
robustness. Despite the advantages of NC-OFDM, two critical design issues are
associated with this technique. First, the detection of the white spaces in the
licensed bands for secondary-user transmissions. Radio parameter adaptation and
hardware reconfiguration are another crucial requirement.

As mentioned earlier in this chapter, we discuss the techniques that need to be
employed in a dynamic, spectrally agile, hardware-reconfigurable software-defined
radio (SDR) to alleviate some of the problems arising due to secondary transmis-
sions in an already licensed band. This chapter is organized as follows. Section 6.2
presents a classification of the spectrum sharing techniques in the existing litera-
ture. Next, in Section 6.3, we describe the transceiver system that employs these
spectrum sharing techniques. In Section 6.4, we discuss some of the issues result-
ing from the use of noncontiguous bands, such as interference to the primary users,
the need for fast Fourier transform (FFT) pruning, and the need for peak-to-average
power ratio (PAPR) reduction. We then conclude the chapter with several remarks
and comments in Section 6.5.

6.2 WIRELESS TRANSMISSION FOR DYNAMIC SPECTRUM
ACCESS

Figure 6.2 shows a dynamic spectral access (DSA) scenario that is viewed as a
solution to the problem of the artificial spectral scarcity. As shown in this figure,
at any time instant, several noncontiguous spectral regions are left unused. These

Figure 1.3 | Power Spectral Density from 88MHz to 2686MHz measured on July 11, 2008, in Worcester, MA [12].
Cognitive radios can sense the spectrum and dynamically set up connections to fill up the spectral whitespaces.
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Cognitive radio dimension Performance of OFDM/OFDMA as modulation technique

Spectral efficiency Due to narrow-band subchannels, OFDM can effectively fill up the spectrum ac-
cording to the channel conditions (the ’water-pouring principle’) and establish
communication close to the Shannon limit for the specified bandwidth. Never-
theless, a big challenge is the suppression of power leakage to adjacent channels
in cognitive radio OFDM systems. Without limiting power leakage to adjacent
channels, the overall spectral efficiency of an ensemble of unsynchronized OFDM-
cognitive radios is severely degraded.

Channel robustness Thanks to relatively large symbol times, OFDM is robust against multi-path ef-
fects. In addition, as a consequence of narrow-band subchannels, frequency se-
lective fading affects only a few channels leading to a small degradation in BER.
As OFDM depends on the orthogonality of signals in time and frequency, timing
(jitter) and frequency errors lead to ISI and ICI respectively.

Adaptivity & Allocation OFDM provides a number of flexible parameters like number of carriers, car-
rier power, frequency spacing and modulation which may vary over time, channel
characteristics and user activity. Thanks to the FDM characteristic of OFDM,
channels can easily be allocated to different active users [19].

Complexity In general OFDM uses the inverse and forward FFT to efficiently implement the
modulator and demodulator respectively. Thanks to narrow-band channels, equal-
ization reduces to one complex multiplication per subcarrier. Analog challenges
are caused by stringent phase noise requirements, a high Peak to Average Power
Ratio (PAPR) and timing synchronization.

Inter-operability With WLAN (IEEE 802.11), WMAN (IEEE 802.16), WPAN (IEEE 802.15.3a)
and WRAN (IEEE 802.22) all using OFDM as their modulation technique, inter-
operability between these standards is supported [19].

Table 1.1 | Cognitive radio dimensions and corresponding strengths and challenges concerning OFDM.

an amendment, IEEE 802.16h, is initiated as well as for WLANs, IEEE 802.11af, bringing cognitive
radio elements into the standards. OFDM and in particular Orthogonal Frequency Division Multiple
Access (OFDMA) are generally regarded as the primary candidates for cognitive radio [17], [18]. An
overview of the strengths and challenges concerning the application of OFDM in cognitive radios is given
in table 1.1.

1.3 Problem definition & Research outline

Due to an ever increasing number of wireless communication devices, one of nature’s resources, the
electromagnetic spectrum, is becoming increasingly scarce. The FCC chairman said in 2010: "Our data
shows there is a looming crisis. We may not run out of spectrum tomorrow or next month, but it is
coming and we need to do something now" [20]. In order to support this notice, regulatory bodies like
the FCC allow wireless communication in licensed frequency bands under stringent criteria. For unli-
censed operation in the U.S. television broadcast bands - among some other requirements - the following
is specified: "All unlicensed TV band devices will be required to limit their out-of-band emissions in the
first adjacent channel to a level 55 dB below the power level in the channel they occupy, as measured in
a 100 kHz bandwidth" [21].

Cognitive radios employing DSA address the spectrum scarcity by dynamically setting up communication
using spectrum whitespaces. In order to operate in the U.S. television bands, the cognitive radios should
fulfill the requirement of 55dBc suppression of their out-of-band power. In order to meet this goal, the
spectral leakage of cognitive radios should be drastically reduced. Two major sources of spectral leakage
can be identified. First, OFDM is characterized by a sinc-shaped Power Spectral Density (PSD) whereby
the OFDM sidelobes contain a significant amount of power. These sidelobes slowly decrease over fre-
quency and can cause significant interference to other spectrum users. Second, non-linear components
like filters and amplifiers cause intermodulation products. These may fall in-band, but also out-of-band,
leading to undesirable interference to other devices. While the importance of reducing intermodulation
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products is acknowledged, this thesis primarily focuses on spectral leakage reduction related to OFDM.

From a spectrum scarcity perspective, the goal is to efficiently use the available spectrum over space and
time. Efficient communication over space can be achieved by wireless devices using multiple antenna
systems in combination with beam-steering and -forming. This research does not elaborate on the space
dimension, but focuses on an efficient use of the radio spectrum over time and frequency. The aim is
to reduce spectral leakage, while maximizing the effective data transfer rate and staying within energy,
bandwidth and complexity budgets.

1.4 Thesis Outline

Chapter 2 addresses the problem of spectral leakage associated with OFDM. Solutions are discussed
and an elaborate analysis leads to a set of Hermite functions as time- and frequency optimal signals.
Chapter 3 starts with the formulation of criteria for a basis set of communication signals. The Hermite
functions are assessed based on these criteria and subsequently modified in order to arrive at a set
of time-frequency localized signals suitable for communication. Chapter 4 targets the performance of
the proposed signal set under different circumstances and compare it to conventional OFDM. Finally,
conclusions are drawn and recommendations are given for future work in chapter 5.





CHAPTER 2

Communication: A Time-Frequency Perspective

Communication:
A Time-Frequency Perspective

2.1 Time-frequency signal description

To get started, it may be useful to define some common signal properties. First a signal, as used in
communication systems, may be described by its temporal and spectral behavior. The temporal and
spectral behavior of the signals are linked by the Continuous Time Fourier Transform (CTFT) and its
inverse:

F (ω) =
∫ ∞
−∞

f (t) e−jωtdt f (t) =
1

2π

∫ ∞
−∞

F (ω) e jωtdω (2.1)

where the normalization by 1
2π refers to the non-unitary transform. In upcoming sections, unless other-

wise stated, these definitions are used as the forward and inverse Fourier transform. The unitary forward
and inverse transforms are equal to equation 2.1 except for a (further) normalization by 1√

2π
and
√
2π

respectively. The unitary Fourier transform is indicated by Fu. There are a couple of practical limitations
with the equations above. First, the transform assumes the signals to be defined on the whole time
domain [−∞,∞], while in practical communication systems signals often stretch over only one symbol
limited in time. Second, as the concept of instantaneous frequency is not feasible, the spectrum F (ω)
at time τ can only be found by localizing the function f (t) around τ , giving rise to the Short Time
Fourier Transform (STFT):

Fst(τ ,ω) =
∫ ∞
−∞

f (t)g(t − τ) e−jωtdt (2.2)

While the integral of equation 2.2 still stretches from −∞ till ∞ in time, a windowing function g(t)
has been introduced which is only nonzero for the region around t = τ . In addition, the signals are
in continuous time, while upcoming sections primarily deal with signals sampled in time. Assuming a
sampling interval T , the signal f (τ ,ω) is only defined at the sampling points n∆T whereby n,m ∈ Z:

Fst(m,ω) =
∞
∑

n=−∞
f (n∆T )g ((n−m) ∆T ) e−jωn∆T (2.3)

The equation above assumes the frequency description to be continuous, although in communication
systems frequencies are often modulated and/or evaluated at specific frequencies k∆F (k ∈ Z) only, i.e.:

Fst(m, k) =
∞
∑

n=−∞
f (n∆T )g ((n−m) ∆T ) e−j2πk∆Fn∆T (2.4)
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Figure 2.1 | Musical score as a metaphor to illustrate time-frequency interaction, i.e. signals varying over time (x-axis)
and over frequency (y-axis). Opening notes of bagatelle no. 25, also known as "Für Elise" by Ludwig von
Beethoven.
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which describes the STFT of a time- and frequency-discrete signal f (n∆T ). Such a time- and frequency
discrete signal representation can be illustrated with the metaphor of a musical score as shown in figure
2.1. The notes are played at distinct moments in time and represent tones of different frequencies.
Although the equations prove to be useful in subsequent sections, it is important to bear in mind that
true signals in analog transceivers are real continuous, time-varying signals.
As shown in figure 2.1, time and frequency are only two dimensions/extremes of the time-frequency
lattice. The corner between the time- and frequency axis is indicated by α (and equals to π/2 in
figure 2.1). Any intermediate time-frequency description can be obtained by means of the Fractional
Fourier Transform (FrFT), which is in fact a generalization of the Fourier transform. The transform was
proposed by Namias in relation to quantum mechanics [22] and later found application in optics. The
FrFT corresponding to an angle α ∈ [−π,π] in the time-frequency plane is defined as [23]:

Fu,a (w ) =

√
1− j cot (α)

2π
·
∞∫
−∞

f (t) e j
(
t2

2 +w2

2

)
cos(α)
sin(α) e

−j
(

wt
sin(α)

)
dt (2.5)

For the special cases where α is −π/2 and π/2 the transform reduces to the forward and inverse
unitary Fourier transform, respectively. The FrFT possesses many properties similar to the continuous
time Fourier transform. For an overview of the FrFT related to signal processing, refer to the work of
Almeida [23]. The FrFT proves to be useful for time-frequency analysis in upcoming sections.

2.2 On sinusoidal multi-carrier modulation

The main objective of communication may be described as transporting information from one person
or node to another. In order to send information, some unique properties are necessary, which are
understood by both transmitter and receiver. Radio-frequency communication is mostly based on har-
monic radio waves. The frequency, phase and/or amplitude of the transmitted signals can contain
information which are understood by the receiver. The corresponding domains stretch over [0,∞] for
frequency, [0, 2π] for phase and [0,∞] for amplitude. A sinusoidal signal varying over time as a function
of amplitude A, phase φ and (radial) frequency ω can be described by:

fst(A,ω,φ) = A · cos(ωt + φ) (2.6)

The subscript st indicates that the function f as imposed by its parameters A,φ and ω, for any practical
system, is limited in time and indicated as a short-time function. After some time a new signal, i.e. a
new symbol, with information again encapsulated in A, φ and ω, is transmitted. The symbol time Ts
represents the time-duration of a symbol. The transmitted signal may be described by the subsequent
transmission of several symbols, i.e. sinusoids, multiplied by a weighting function g(n) similar to the
previously discussed STFT:

f (t) =
∞
∑

n=−∞
fst (An,ωn,φn) · g (t − nTs ) (2.7)

whereby g(n) is assumed equal for each symbol. The equation describes the transmit signal for a
single carrier system as there is only one wave of frequency ωn generated per symbol time. A multi-
carrier transmission system deals with several carrier waves per symbol time, whereby each wave k is
characterized by its own subcarrier frequency ωk and may be modulated by a certain amplitude Ak
and phase φk . The subcarrier waves can be summed and transmitted simultaneously, provided that
the receiver is able to distinguish the different waves. A multi-carrier signal with K waves of different
frequency, modulated by Amplitude Modulation (AM) and Phase Modulation (PM) using a sinusoidal
base, can be described by:

f (t) =
∞
∑

n=−∞

K−1

∑
k=0

Ak,n · cos(ωk · t + φk,n) · g(t − nTs ) (2.8)
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The equation above does not specify what ωk is. Ideally we would like to have the subcarriers closely
spaced in frequency. The next exhibit discusses the minimum subcarrier spacing ∆F between ωk and
ωk+1 which is necessary to distinguish the different multi-carrier waves at the receiver.

� Maximum number of sinusoidal subcarriers per time-bandwidth product
In order to efficiently use the available bandwidth (given a certain time), the minimum frequency spacing
∆F needs to be calculated. Using a sinusoidal base, the frequency spacing is obtained by ensuring that
the signals are mutually orthogonal [24]. The orthogonality condition over some symbol interval [0,Ts ]
for two signals fk and fk+1 is characterized by their frequencies ωk and ωk+1:

Ts∫
t=0

fk (Ak ,ωk ,φk ) · fk+1 (Ak+1,ωk+1,φk+1) dt = 0 (2.9)

Substituting equation 2.6, describing modulated sinusoids, the equality can be rewritten as:

Ak ·Ak+1

Ts∫
t=0

cos (ωk t + φk ) · cos (ωk+1t + φk+1) dt = 0 (2.10)

Using trigonometric identities and the substitution ∆φ = φk+1 − φk gives:

1

2

Ts∫
t=0

cos ((ωk −ωk+1) t − ∆φ) + cos ((ωk + ωk+1) t + ∆φ) dt = 0 (2.11)

Calculation of the integral over the symbol duration [0,Ts ] and subsequent simplification results in:

1

2
sin (∆φ)

(
cos ((ωk −ωk+1) · Ts )− 1

ωk −ωk+1
− cos ((ωk + ωk+1) · Ts )− 1

ωk + ωk+1

)
+
1

2
cos (∆φ)

(
sin ((ωk −ωk+1) · Ts )

ωk −ωk+1
+
sin ((ωk + ωk+1) · Ts )

ωk + ωk+1

)
= 0

(2.12)

Using the assumption (ωk + ωk+1) � 1 [24], filtering the high frequency modulation-product, the
conditions for minimum frequency spacing become:

sin (∆φ)
(
cos ((ωk −ωk+1) · Ts )− 1

ωk −ωk+1

)
= 0 (2.13)

cos (∆φ)
(
sin ((ωk −ωk+1) · Ts )

ωk −ωk+1

)
= 0 (2.14)

For arbitrary values of ∆φ the term (ωk −ωk+1) should equal 2πm/Ts ,m ∈ Z in order to vanish to zero,
while the lower equality gives the constraint that (ωk −ωk+1) equals πm/Ts . When the phase difference
∆φ is zero, the upper term vanishes, giving for the minimum frequency spacing ∆F = m/ (2Ts ). For an
unknown phase difference, e.g. in case of phase-modulation, the frequency spacing ∆F should be m/Ts
in order to deal with orthogonal waveforms, i.e.:

∆F =
|ωk −ωk+1|

2π
=

{
m/ (2Ts ) ∆φ = 0

m/Ts ∆φ ∈ [0, 2π]
(2.15)

Concisely, the number of orthogonal sinusoidal waveforms K per time-bandwidth product is 2 ·BW · Ts
with BW the bandwidth and Ts the symbol duration. When both phase and amplitude modulation are
used (for example in OFDM-(O)QAM), the phase difference ∆φ for two sinusoidal waves can be any
value, giving a minimum frequency spacing of 1/Ts . These facts are graphically illustrated by figure
3.1. The left figure represents OFDM with amplitude and phase modulation while the right figure only
allows for amplitude modulation. The number of degrees of freedom useful for modulation equal 2 per
time-bandwidth product, which is the upper limit known from the fundamental work of Shannon [11].
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Figure 2.2 | Frequency presentation illustrating subcarrier spacing for five orthogonal sinusoids. Subcarrier spacing ∆F
equals m/Ts for combined amplitude & phase modulation (left) and m/2Ts , m ∈ Z for amplitude modulation
only (right).

2.3 Consequences of sinusoidal modulation

The previous section discussed the number of orthogonal sinusoidal waves fitting in a certain time-
bandwidth product. The sinusoidal signals, as used in for example OFDM, can be modulated by phase
and amplitude modulation. To recall the equation for an AM and PM multi-carrier signal with symbol
duration Ts and subcarrier spacing according to equation 2.15 is:

f (t) =
K−1

∑
k=0

∞
∑

n=−∞
Ak,n · cos

(
2πk

Ts
· t + φk,n

)
· g(t − nTs ) (2.16)

Conventional communication systems extensively use the forward and inverse Fast Fourier Transform
(FFT) to generate signals like equation 2.16. Due to the nature of the forward and inverse FFT
the signals are windowed by a rectangular windowing function g(t) = rect (t/Ts ) over symbol time Ts .
Using such a window the information, as represented by the sinusoidal phase and amplitude, can abruptly
change from symbol to symbol. This leads to abrupt changes in the transmit signal as visualized by figure
2.3.
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Figure 2.3 | Amplitude and phase modulated sinusoid for three consecutive symbol times (single carrier).

It may be apparent that the sharp, unnatural signal transitions shown in figure 2.3 give problems. The
analog transceiver stages cannot deal with these sharp transitions (high frequency components) and the
signals are likely to become distorted. Similarly, the time-limited signals cause spectral leakage which
forms the topic of the next exhibit.



2.3 | Consequences of sinusoidal modulation 11

� Wasting a scarce resource
True sinusoids, as generated by the Fourier transform, are defined on the interval [−∞,∞]. In practice,
the sinusoids as plotted in figure 2.3 only last for Ts seconds. The windowing function associated with
the forward and inverse FFT is given by g(t) = rect(t/Ts ). For a single carrier, complex modulated
signal at baseband the transmit signal can be described by:

fk (t) =
∞
∑

n=−∞
Ak,n · e(j(2πk∆F t+φk,n)) · rect((t − nTs )/Ts ) (2.17)

The equation describes the summation of an infinite number of time-limited complex exponentials with
a certain amplitude and phase. To get a spectrum estimate we use the standard continuous Fourier
Transform of equation 2.1, the superposition principle and the Fourier property of modulation giving the
frequency representation:

Fk (ω) =
∞
∑

n=−∞

Ak
2π
· F
(
e(j(2πk∆F t+φk,n))

)
∗ F (rect((t − nTs )/Ts )) (2.18)

where ∗ denotes a convolution. The expression can be evaluated knowing that F(e jω0t ) = 2πδ (ω−ω0),
F (x(t − t0)) = X(ω)e jωt0 , F (rect(t/τ)) = τ · sinc (ωτ/ (2π)) and the Fourier property that a con-
volution of signal with a (shifted) dirac-pulse gives the original (shifted) signal:

Fk (ω) =
∞
∑

n=−∞
AkTs · sinc ((ω/(2π)− k · ∆F )Ts ) e jφk,ne jωnTs (2.19)

For multi-carrier modulation, the frequency representation yields a summation of K frequency shifted
sinc-shaped functions, mathematically given by:

F (ω) =
∞
∑

n=−∞

K−1

∑
k=0

AkTs · sinc ((f − k · ∆F )Ts )e jφk,ne jωnTs (2.20)

Summarizing, phase and amplitude modulation with a rectangular windowing function causes a sinc-
shaped PSD affecting more frequencies than only the specified bandwidth. The PSD for 5 adjacent
subcarriers is plotted in figure 2.4. Even a guard space of 100 subcarriers (based on a single subcarrier
PSD) is not enough to limit interference to other devices by 55dBc as required by the FCC [21]. That
means that for multi-carrier systems based on conventional OFDM, spectral guard spaces of hundreds
of subcarriers should be used in order to reduce the interference to acceptable levels.

Normalized Frequency f Ts

P
S
D

[d
B

/
H
z

]

−6 −4 −2 0 2 4 6

−40

−30

−20

−10

0

Normalized Frequency f Ts

P
S
D

[d
B

/
H
z

]

−100 −80 −60 −40 −20 0 20

−50

−40

−30

−20

−10

0

Figure 2.4 | PSDs of five adjacent OFDM subcarriers. Notice the slow decay of the sinc-shaped power spectra (right).
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2.4 Overview of conventional solutions

The problem of OFDM sidelobes as encountered in the previous section has been faced by many scientists
and engineers. This section discusses six general solutions to deal with the problem: 1. Guard spaces, 2.
Active Interference Cancellation (AIC), 3. Cancellation Carrier (CC), 4. Carrier weighting, 5. Constel-
lation mapping and finally 6. Time-domain pulse-shaping.

First, the traditional solution to cope with the OFDM sidelobes is to use large spectral guard spaces.
A guard space is some unused spectrum which allows for the OFDM sidelobes to decay to acceptable
levels. Guard spaces are a simple method to ensure frequency isolation among spectral users. Second,
a more advanced method is offered by Active Interference Cancellation (AIC). Predistortion is added to
the OFDM signals such that the inserted signals cancel the OFDM sidelobes. Notches of about 40dB
are achieved in this research while notches of even 80dB AIC have been published by Wang e.a. [25].
A third method to suppress OFDM sidelobes is based on Cancellation Carriers (CCs). Some subcarriers
are not used to carry information, but are modulated such that the sidelobes of these subcarriers nullify
the sidelobes of the active subcarriers. Although suppression of about 10dB is feasible [26], drawbacks
are the computational complexity, a significant increase in transmit power (25% in case of [26]) and a
limited notch width. In case wider notches are desired more CCs are necessary. Fourth, sidelobes can
also be suppressed by weighting individual carriers [27]. The weights of the subcarriers are chosen such
that the sidelobes of one subcarrier cancel another. The weights are limited to a certain range to make
sure that the subcarrier power does not vary too much and the Bit Error Rate (BER) is not severely
degraded. The reported sidelobe suppression is about 10dB [27] & [28]. Fifth, as sidelobes in OFDM
are caused by abrupt constellation changes, smart mapping of data onto constellation points can give
smoother transitions than the ones shown in figure 2.3. Such constellation mappings are proposed by
[29] and [30] reporting suppressions of nearly 10dB.

Finally, most research has been dedicated to time-domain pulse-shaping. The abruptly changing sinu-
soids and corresponding sharp signal transitions as shown in figure 2.3 are smoothened by a pulse-shaping
filter. Among the large family of pulse-shaping filters a distinction can be made among Nyquist and non-
Nyquist filters. Nyquist filters are generally known to be optimal for Inter-Symbol Interference (ISI) free
transmission. On the other hand filters with a response equal to the time-reversed, conjugate signal
templates (matched filters) are optimal in Additive White Gaussian Noise (AWGN) channels. Filters can
be realized by an array of smaller band-pass filters, whereby the ensemble is referred to as a filter bank.
Oversampled filter banks have become more and more popular in recent years as they allow for more
advanced pulse-shapes than the rectangular pulse-shape associated with conventional OFDM. Oversam-
pled or more general multi-rate filter banks do not only require Finite Impulse Response (FIR) or Infinite
Impulse Response (IIR) filtering, but also operations like interpolation and decimation. For multi-rate
operations a P -path polyphase implementation proves useful: an L-tap filter can then be implemented
by P parallel filters of L/P taps operating at a sample rate of only 1/P of the original sample rate. A
good overview of filter banks and implementations is given by Vaidyanathan [31]. More recent publica-
tions discuss oversampled filter banks using raised-cosine prototype filters [32], orthogonalized Gaussian
prototype filters [33] and prototype filters derived by solving an optimization problem [34]. Sidelobe
suppression of way over 40dB are regularly reported, although they typically come at the expense of
large filter delays, excess bandwidths and a substantial increase in complexity.

Working with these six methods, one is likely to find himself ending up with the trade-offs like the
ones sketched in figure 2.5. Interdependencies exist among all dimensions to a smaller or larger extent.
The relation between datarate, power, noise and bandwidth are clarified by the Shannon limit [11]. Mea-
sures to increase the spectral efficiency, by reducing the OFDM sidelobes, are likely to have a negative
impact on either transmit power, datarate and/or noise (less robustness against AWGN, time- and/or
frequency dispersion).
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Figure 2.5 | Illustration of the trade-offs between power, datarate, noise, bandwidth and spectral efficiency. Measures to
limit sidelobes, i.e. increasing the spectral efficiency, generally affect one of the other design dimensions.

It is important to notice that all methods discussed above do not change the basis signals themselves,
but try to modify ’the-not-so-good’ signals resulting from the inverse FFT modulator. It may be argued
that the problems, i.e. the time-limited modulated Fourier signals, should be tackled at the root instead
of dealing with the consequences. The Fourier transform and corresponding fast implementations have
significantly advanced signal processing, although their convenience may have led to limited interest for
other signal bases. Hence this research does not elaborate on the conventional solutions, but targets
the basis signals used for communication. Upcoming sections deal with the quest for signals which are
optimal from a time-frequency perspective.

2.5 On the extremes of time-limited and band-limited

Before diving into signal analysis, consider two extreme cases which are visualized in figure 2.6. On
one hand, signals can be time-limited as is the case for conventional OFDM symbols. As discussed in
section 2.3, large parts of the spectrum are polluted by the corresponding sinc-shaped power spectra.
On the other hand signals can also be strictly band-limited, i.e. limited in frequency, while the signals
spread over infinite time. As the time-presentation extends over infinite time, the signal is said to be
non-causal. Both situations result in unnatural, unpractical signals with sharp transitions in time and
frequency, respectively.

A question rises: what kind of signal is optimally localized in time-frequency? One of the theories
underlying quantum mechanics is the uncertainty principle. The implications of the uncertainty principle
can be split among three common dividers: first, the uncertainty principle relates characteristic features
of quantum mechanical systems, second, it refers to ones inability to perform measurements on a system
without changing it, and third and most interesting for us, it deals with harmonic analysis, "A nonzero
function and its Fourier transform cannot both be sharply localized" [35]. The statement implies that
a signal cannot be both time-limited and band-limited as its time and frequency behavior are related
by the Fourier transform. This is in accordance with our observations in last section. The problem
of suppressing out-of-band radiation while still aiming at datarates close to the Shannon limit can be
reformulated to a new goal: finding signals that are optimally localized in time-frequency.
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Figure 2.6 | The upper row of figures illustrates a time-limited signal with corresponding sinc-shaped frequency represen-
tation occupying theoretically infinite bandwidth. The other extreme, a band-limited signal, is illustrated by
the lower row of figures. Note that the corresponding time-domain representation is non-causal.

� The uncertainty principle
Let us define a signal f (t) and its Fourier transform F (ω) spanning the time-frequency plane. An
expression for the localization of the energy of f (t) in time is found by modeling the signal f (t) as a
stochastic process varying over time whereby the localization is found by the second order moment, its
variance. In a similar way the localization of F (ω) in frequency can also be found. The variances in
time and frequency are respectively:

σ2
T =

∫∞
−∞ (t − t0)2|f (t)|2dt∫∞

−∞ |f (t)|
2 dt

σ2
F =

∫∞
−∞ (ω−ω0)2|F (ω)|2dω∫∞

−∞ |F (ω)|2 dω
(2.21)

whereby the terms t0 and ω0 can be omitted when the moments around the origin are calculated. The
general Heisenberg-Pauli-Weyl inequality, describing the uncertainty of a two-dimensional Hilbert space,
indicates that the second order moments (variances) in time and frequency are lower bounded by the
constraint: √

σ2
T · σ

2
F ≥

1

2
(2.22)

It is particularly interesting to find a function f (t) which satisfies this equality. It is generally known
that equality only occurs for the Gaussian function f (t) = A · e(−αt2) on the domain t = [−∞,∞] with

Fourier transform F (ω) also being a Gaussian function F (ω) = A
√
π/α · e

(
− t2

4α

)
. When α = 1/2, we

have two Gaussian with equal variances satisfying the equality of equation 2.22. The equality is also
met by other values of α ∈ R. Namely, scaling the function f (t) in time by f (

√
αt) gives a frequency

representation scaled by (1/
√
α) · F (ω/

√
α). The product of the variances, under different values of

α, still equals the lower bound of equation 2.22:

√
σ2
T · σ

2
F =

√(
1√
2

√
α

)2

·
(
1√
2

1√
α

)2

=
1

2
(2.23)



2.6 | Quest for a set of time-frequency optimal signals 15

We have arrived at a function: f (t) = A · e−αt2
with F (ω) = A

√
π
α · e

(
− t2

4α

)
optimally localized in

time-frequency. This in contrast with the sinc-shaped spectrum for conventional OFDM. Figure 2.7
shows a Gaussian pulse in a time-frequency plane.
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Figure 2.7 | Gaussian pulse in time-frequency lattice with minimal (but not necessarily equal) spread in time and frequency.

2.6 Quest for a set of time-frequency optimal signals

In section 2.6 the time-frequency optimization led to the Gaussian signal. But similar to the arguments
leading to multi-carrier communication, we aim at a whole set of time-frequency localized signals, rather
than a single signal. As equality in equation 2.22 is only achieved for the Gaussian signal, the constraint
of an absolute minimum needs to be relaxed in order to find more solutions. The exhibit treats the quest
for a set of time-frequency optimal solutions.

� Solution set for time-frequency uncertainty
Writing again the time-frequency uncertainty measure, as specified by equation 2.22, gives:

√
σ2
T · σ

2
F =

√√√√ ∫∞−∞ (t)2|f (t)|2dt∫∞
−∞ |f (t)|

2 dt
·
∫∞
−∞ (ω)2|F (ω)|2dω∫∞
−∞ |F (ω)|2 dω

(2.24)

The energy normalization performed by the denominators are linked by Parseval’s identity, i.e.∫∞
∞ |f (t)|

2 dt should equal 1/(2π)
∫∞
∞ |F (ω)|2 dω. Using Parseval’s identity as well as the Fourier

property tnf (t)↔ (j)n dn

dωn F (ω), gives for the squared time-frequency uncertainty product:

σ2
T · σ

2
F =

1
2π

∫∞
−∞

∣∣∣ ddω (F (ω))
∣∣∣2dω

1
2π

∫∞
−∞ |F (ω)|2dω

·
∫∞
−∞ (ω)2|F (ω)|2dω∫∞
−∞ |F (ω)|2dω

(2.25)

Using the Cauchy-Schwarz inequality, a simplified expression can be found which is lower bounded by
the uncertainty principle and upper bounded by equation 2.25, i.e.:

1
2π

∫∞
−∞

∣∣∣ ddω (F (ω))
∣∣∣2dω

1
2π

∫∞
−∞ |F (ω)|2dω

·
∫∞
−∞ (ω)2|F (ω)|2dω∫∞
−∞ |F (ω)|2dω

≥

(∫∞
−∞ ω · |F (ω)| ·

∣∣∣ dF (ω)
dω

∣∣∣ dω)2

(∫∞
−∞ |F (ω)|2dω

)2
≥ 1
2

(2.26)

The equality holds for Gaussian pulses as found in the previous exhibit. Now, relaxing the constraint of
absolute equality, which is only valid for the Gaussian pulse, and restraining the signals to be normalized
such that the denominators in equation 2.26 equal 1, the goal is to find a set of solutions minimizing the

term
(∫∞
−∞ ω · |F (ω)| ·

∣∣∣ dF (ω)
dω

∣∣∣ dω)2
. Note that we try to find F (ω); the corresponding time-domain

representation is of course related by the Fourier transform. A comprehensive proof treated by Hilberg
and Rothe [36] leads to the Weber equation:

d2

dω2
F (ω)− (

1

4
ω2 + α)F (ω) = 0 (2.27)
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Although [36] does not elaborate on the solutions of this equation, these are of particular interest for
our quest of time-frequency optimality. When a solution F (α,ω) exists for equation 2.27, then other
solutions may also include F (α,−ω), F (−α, jω) and F (−α,−jω) [37]. The differential equation has
been the primary topic of a classical work by Whittaker [38]. He derived a set of standard solutions:

Dn(ω) =
j Γ(n+ 1)
2π

e−
1
4
ω2

ωn
∮
e−λ−

1
2
(λ2/ω2) · (−λ)−n−1dλ with n = −

(
1

2
+ α

)
∈N0 (2.28)

whereby Γ is the gamma-function and path of integration is used as defined in [38]. This equation, in
slightly modified form, has become generally known as the Whittaker function. Using Cauchy’s nth-order
integration formula, the integral can (for n ∈N0) be rewritten to [38]:

Dn(ω) = (−i)ne
1
4
ω2 dn

dωn

(
e−

1
2
ω2
)
with n = −

(
1

2
+ α

)
∈N0 (2.29)

These are exponentially weighted, probabilistic Hermite polynomials of degree n. As we dealt with four
possible solutions, i.e. F (α,ω), F (α,−ω), F (−α, jω) and F (−α,−jω), substitutions in 2.29 give two
sets of solutions:

Dn(ω) =


e−

1
4
(±ω)2

Hen(±ω) = e−
1
4
ω2
(

(−1)ne
1
2
ω2 dn

dωn

(
e−

1
2
ω2
))

for n = −
(
1

2
+ α

)
≥ 0

e
1
4
(±jω)2

Hen(±jω) = e
1
4
ω2

(
e−

1
2
ω2 d−n−1

dω−n−1

(
e

1
2
ω2
))

for n = −
(
1

2
+ α

)
< 0

(2.30)

where Hen(ω) = (−1)ne
1
2
ω2 dn

dωn

(
e−

1
2
ω2
)
and n ∈ Z. The second set of solutions corresponding to

F (−α,±jω) gives solutions of unbounded energy as
∫∞
∞ Dn(ω)dω →∞ where n > 0. So we continue

with the upper solution which is valid for n ∈N0 and corresponding α = {− 1
2 ,−

3
2 ,−

5
2 , ...}.

We may ask ourselves what the corresponding uncertainty product is. Therefore, we need to express
the set of solutions corresponding to 2.27 in terms of their variances. We multiply equation 2.27 with
F ∗(ω), integrate over frequency [−∞,∞] as suggested by [39] and finally apply integration by parts on
the term d2

dω2 F (ω), resulting in:

d

dω
F (ω) F ∗ (ω)

]∞
∞
−
∫ ∞
−∞

dF (ω)
dω

dF ∗(ω)
dω

dω− 1
4

∫ ∞
∞

ω2F (ω)F ∗(ω)dω−
∫ ∞
∞

αF (ω)F ∗(ω)dω = 0

(2.31)

As we pursue frequency-localized, signals we may pose the condition that F (ω) = 0 for |ω| → ∞.
Thanks to this condition the first term cancels. The second term is exactly the description we found for
σ2
T , while the third term equals 1

4σ
2
F (using normalized 2.25). The fourth term equals α as the signal

energy was normalized to 1. Altogether this results in:

σ2
T +

1

4
σ2
F = −α withα ∈ {−1

2
,−3
2
,−5
2
, ...} (2.32)

Equation 2.29 is known to be shape-invariant under the Fourier Transform. As the function is scaled
in frequency by ω√

2
the time-domain representation is scaled by

√
2t. Consequently, the frequency and

time variances are scaled by 2 and 1
2 respectively. This leads to σ2

F = 4σ2
T → σ2

T = −α2 and thereby
σ2
T = ( 1

4 + 1
2n). Substituting σ2

T = ( 1
4 + 1

2n) and σ2
F = 4σ2

T into 2.24 gives us the uncertainties for
the time-frequency optimal solutions of equation 2.30 for n ≥ 0:√

σ2
T · σ

2
F = n+

1

2
for n ∈N0 (2.33)

The exhibit leads us to a set of time-frequency localized signals. These signals are time-frequency
optimal in the sense of the Heisenberg-Pauli-Weyl uncertainty definition given by equation 2.22. The
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solutions found are known as Hermite functions and are weighted Hermite polynomials of degree n:

F (ω) = e−
1
4 (±ω)2

Hen(±ω) = e−
1
4ω

2

(
(−1)ne

1
2ω

2 dn

dωn

(
e−

1
2ω

2
))

(2.34)

The Hermite functions constitute the eigenfunctions of the Fourier transform and are equally shaped in
time and frequency (discussed in chapter 3). Therefore the time-representations f (t) are equal except
for some normalization and a time/frequency scaling. Uncertainty products for the Hermite functions
of degree n are: √

σ2
T · σ

2
F = n+

1

2
for n ∈N0 (2.35)

The first Hermite function corresponds to the Gaussian pulse, which was already found in section 2.6.
The Gaussian pulse has the minimum uncertainty product of an 1

2 . Every function of higher degree has a
larger time-frequency uncertainty product in correspondence with equation 2.35. Treatments of uncer-
tainty principles have been presented along other ways and are generally quite elaborate. A well-known
treatment, along another way, is given by Hardy [40]. A more recent contribution discussing Hermite
functions in relation to uncertainty can be found in [41].

This chapter led to a set of time-frequency localized signals, Hermite functions. Their properties as well
as their suitability as a basis set of signals for communication form the primary topics of next chapter.





CHAPTER 3

A Time-Frequency Localized

Signal Basis for Communication

3.1 Introduction

The time-frequency optimization in chapter 2 led to the Hermite functions as a set of optimal time-
frequency localized communication signals. Although the Hermite functions are ideal from a time-
frequency perspective this does not necessarily imply that the Hermite functions are also optimal for
communication in the broader sense. This chapter first deals with a general overview of Hermite functions
and their basic properties. Afterwards, a set of signal properties and criteria are formulated and the
Hermite functions are assessed based on these criteria. Finally, the functions are adapted into a new set
of signals such that all criteria are met to the best extent while preserving the time-frequency localization
characteristic of Hermite functions. As stated in the problem definition, the ultimate goal is to find a
signal set which has minimal spectral leakage, while maximizing the effective data transfer rate and
staying within energy, bandwidth and complexity budgets.

3.2 Hermite functions

The Hermite functions appeared in chapter 2 to be a set of solutions to the Heissenberg-Pauli-Weyl
uncertainty principle. This section dives into the definitions and properties of these Hermite functions.

The major building block of the Hermite function is the Hermite polynomial called after the French
mathematician C. Hermite who investigated these polynomials. Despite the name, the first traces lead
back to the work of Laplace [42]. The Hermite polynomials have two widespread definitions referred
to as the probabilists’ and physicists’ definition. The probabilists’ Hermite polynomials are sometimes
confusingly referred to as the modified Hermite polynomials. The definition of the probabilists’ and
physicists’ polynomials are respectively:

Hen(x) = (−1)n e
x2

2
dn

dxn

(
e
−x2

2

)
Hn(x) = (−1)n ex2 dn

dxn

(
e−x

2
)

(3.1)

with the notation adopted from Abramowitz and Stegun [37]. The relation between the probabilists’
and physicists’ variant is found by a substitution x ′ = x/

√
2 giving Hen = 2−n/2Hn(x/

√
2). The six

probabilists’ and physicists’ Hermite polynomials of lowest degree are respectively:

He0(x) = 1 H0(x) = 1

He1(x) = x H1(x) = 2x

He2(x) = x2 − 1 H2(x) = 4x2 − 2
He3(x) = x3 − 3x H3(x) = 8x3 − 12x
He4(x) = x4 − 6x2 + 3 H4(x) = 16x4 − 48x2 + 12

He5(x) = x5 − 10x3 + 15x H5(x) = 32x5 − 160x3 + 120x

(3.2)

We recognize the solution for time-frequency optimal signals, as given by equation 2.34, as a weighted
version of the probabilists’ Hermite polynomials. Therefore, unless otherwise stated, we restrict ourselves
to the probabilists’ version Hen(x). The nth-order differentiation of equation 3.1 involves for any poly-
nomial degree n a term Pn(x) · e−x

2/2. Differentiation of this term gives according to the product-rule
a term Pn(x) · −xe−x

2/2 and d
dx (Pn(x)) · e−x

2/2. Applying this to equation 3.1 gives a description for

19
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Figure 3.1 | The six probabilistic Hermite polynomials of lowest degree.

the polynomial sequence:

Hen+1(x) = xHen(x)−
d

dx
Hen(x) (3.3)

The polynomial sequence satisfies d
dxHen+1(x) = n · Hen(x) (see 3.2) and forms thereby an Appell

sequence [42]. Substituting the equality, a recurrence relation can be deduced which is convenient for
numerical calculation and digital implementation:

Hen+1(x) = x ·Hen(x)− n ·Hen−1(x) (3.4)

The Hermite polynomials are part of the family of orthogonal polynomials. Other orthogonal polynomial
sets include Chebyshev, Legendre and Jacobi polynomials. The Hermite polynomials of different degree
are mutually orthogonal over the integration interval [−∞,∞] with an exponential weighting function
g(x) [37]:

∫ ∞
−∞

Hen(x)Hem(x)g(x)dx =

{
0 for n 6= m
√
2πn! for n = m

for g(x) = e−x
2/2 (3.5)

If we split the weighting function into two parts and use
√√
2πn! as a normalization (resulting from

equation 3.5), we get two weighted orthonormal polynomials:

∫ ∞
−∞

(
1√√
2πn!

e−x
2/4Hen(x)

)
·

(
1√√
2πm!

e−x
2/4Hem(x)

)
dx =

{
0 for n 6= m

1 for n = m
(3.6)

We may refer to the first and second term as Hermite functions of degree n and m respectively. Hermite
functions are usually associated with physicists’ Hermite polynomials. To avoid further confusion, we
refer to the functions based on probabilistic Hermite polynomials as probabilistic Hermite functions hen.
The functions hen(x) are built up by the Hermite polynomial Hen, the exponential weighting factor
e−x

2/4 and the normalization 1/
√√
2πn!:

hen(x) =
1√√
2πn!

e−x
2/4Hen =

1√√
2πn!

e−x
2/4 (−1)n e

x2

2
dn

dxn

(
e
−x2

2

)
n ∈N0 (3.7)

The probabilistic (and physicist) Hermite functions possess an interesting property regarding their be-
havior in time and frequency. This property forms the topic of the exhibit. In subsequent sections the
variable x is replaced by t when dealing with signals varying over time and by ω to represent radial
frequencies.
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� Hermite functions: eigenfunctions of the (Fractional) Fourier Transform
The Fourier transform is a powerful method for decomposing signals into a set of complex exponen-
tials. As these exponentials are regarded as complex harmonic signals, the Fourier transform is said
to transform signals to their frequency representation. Similar to other mathematical operators, there
may exist signals which are invariant, not ’changing’, under the Fourier transform. Such signals are the
eigenfunctions of the operator and have corresponding eigenvalues.

It is generally known that the physicist Hermite functions constitute the eigenfunctions of the unitary
CTFT. The physicist Hermite functions hn(t) = e−t

2/2Hn(t) are shape-invariant under the transform,
i.e.:

Fu (hn(t)) = λhn(t) withλ = (−j)n (3.8)

This implies that the Fourier operator has an infinite number of eigenfunctions with four eigenvalues.
The eigenvalues give a phase change of nπ/2 and repeat over 4n, which implies periodicity. The
periodicity becomes more clear using the generalized FrFT. The fractional transform operation Fu,α of
the physicist Hermite functions is given in Namias fundamental work [22] and is given by:

Fu,α (hn(t)) = λhn(t) withλ = e−jnα (3.9)

So any rotation in the time-frequency plane by an angle α leads to a shift in phase. As the degree of the
polynomials increases, the phase changes faster. Instead of having real results only for n = 4 as for the
CTFT, the FrFT yields a positive real eigenvalue of 1 for any nα = 2π. This may be a useful property,
although we do not further elaborate on this point. Note that for the case α = π/2 the eigenvalues
reduce to equation 3.8.

As the probabilistic Hermite functions are related to the physicists’ Hermite functions by a scaling in
time, t ′ = t/

√
2, and a normalization, the probabilists’ Hermite functions are also equally shaped in

time- and frequency, except for a scaling in time and frequency. We conclude with the unitary CTFT
pair for the probabilistic Hermite functions:

hen(t)↔ (−j)n2hen(2ω) (3.10)

Summarizing, the Hermite functions are a special kind of signals which are not only optimally localized
in time and frequency, but also have equally shaped time and frequency representations. The time and
frequency representations of some probabilistic Hermite functions are given in figure 3.2. Notice that
(for limited time-durations), the probabilistic Hermite functions of even degree have a non-zero mean,
i.e. a DC component.
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Figure 3.2 | The six probabilistic Hermite functions of lowest degree: time (left) and frequency (right) representations.
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3.3 The Dirac delta function investigated

One of the most curious functions used in Fourier analysis is the Dirac delta function named after P.A.M.
Dirac. Dirac himself called the function in 1926 an improper function [43]. This section discusses the
Dirac delta function to learn more about its behavior, especially because it - according to Fourier theory
- is closely related to the concept of frequency.

In order to analyze the delta function, we start using the property of the Hermite function as the eigen-
function of the Fourier operator. We split the physicist Hermite function of degree n into a normalization
part 1/

√
n!2n
√
π, a polynomial and an exponential weighting factor. Although the physicist Hermite

function hn is used, the results are also applicable to the probabilistic Hermite functions hen by an ap-
propriate scaling in time and frequency. The physicist Hermite function is indicated by hn(t) and is given
by:

hn(t) =
1√

n!2n
√
π
e−t

2/2Hn(t) =
1√

n!2n
√
π
e−t

2/2

(
(−1)n et2 dn

dtn

(
e−t

2
))

=
1√

n!2n
√
π

(
αnt

n + αn−1t
n−1 +Rn−2..0

)
e−t

2/2

(3.11)

whereby the center term corresponds to the polynomial and Rn−2..0 comprises all lower order degree
terms. We can rewrite the functions hn(t) in matrix form by using the coefficients as given by equation
3.2, which gives for the five physicist Hermite functions of lowest degree:



h0(t)
h1(t)
h2(t)
h3(t)
h4(t)
...


=



θ0 0 0 0 0 · · ·
0 θ1 0 0 0 · · ·
0 0 θ2 0 0 · · ·
0 0 0 θ3 0 · · ·
0 0 0 0 θ4 · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

Θ

·



1 0 0 0 0 · · ·
0 2 0 0 0 · · ·
−2 0 4 0 0 · · ·
0 −12 0 8 0 · · ·

12 0 −48 0 16 · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

A

·



t0

t1

t2

t3

t4

...


· e−t2/2

with θn =
1√

n!2n
√
π

(3.12)

As we are interested in the delta Dirac pulse, we apply the Fourier transform on the left and right sides
of equation 3.11. We use hereby the Fourier property of modulation:

F (hn(t)) = θn ·
1

2π

(
F
(
αnt

n + αn−1t
n−1 +Rn−2..0

)
∗ F

(
e−t

2/2
))

(3.13)

In order to deal with the polynomial part, the Fourier property tnf (t) ↔ (j)n dn

dωn F (ω) can be used
whereby f (t) = 1. We need to be careful with the transform of f (t) = 1. As the transform
pair 1 ↔ 2πδ(ω) includes the function δ(ω) of interest, we use a similar, but more complete state-
ment lim

β→∞
f (t/β) = 1. The corresponding Fourier transform becomes in the limit β → ∞ equal to

2π |β| δ(βω). Using this transform and working out the polynomial term of the convolution gives:

F
(
αnt

n + αn−1t
n−1 +Rn−2..0

)
= lim

β→∞
β · 2π

[
αn(j)n

dn

dwn
δ(w ) + αn−1(j)n−1 dn−1

dwn−1
δ(w ) +

F (Rn−2..0)
2π

]
w=βω

(3.14)

Substituting this equality as well as the Fourier transform for the Gaussian F(e−αt2) =
√

(π/α)e−ω2/4α

gives for the Fourier transform of the Hermite function:

F (hn(t)) = lim
β→∞

β · θn
[
αn(j)n

dn

dwn
δ (w ) + αn−1(j)n−1 dn−1

dwn−1
δ (w ) +

F (Rn−2..0)
2π

]
w=βω

∗
(√

2πe−ω
2/2
)

(3.15)

Using the discussed property that the physicist Hermite function is the eigenfunction of the unitary
Fourier operator Fu with eigenvalues (−j)n results in (compensating by 1/

√
2π for the non-unitary

transform):

√
2π(−j)nhn(ω) = lim

β→∞
β ·
√

2πθn

[
αn(j)n

dn

dwn
δ (w ) + αn−1(j)n−1 dn−1

dwn−1
δ (w ) +F (Rn−2..0)

]
w=βω

∗
(
e−ω

2/2
)

with θn =
1√

n!2n
√
π

(3.16)
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Calculation of the the first five Fourier transformed signals hn(ω) by substitution of the coefficients of
equation 3.12 gives:


(−j)0

h0(ω)
(−j)1

h1(ω)
(−j)2

h2(ω)
(−j)3

h3(ω)
(−j)4

h4(ω)
...

 = lim
β→∞

β ·Θ ·A ·


(j)0

0 0 0 0 · · ·
0 (j)1

0 0 0 · · ·
0 0 (j)2

0 0 · · ·
0 0 0 (j)3

0 · · ·
0 0 0 0 (j)4 · · ·
...

...
...

...
...

. . .

 ·


d0

dw0 δ(w )
d1

dw1 δ(w )
d2

dw2 δ(w )
d3

dw3 δ(w )
d4

dw4 δ(w )
...


w=βω

∗ e−ω
2/2 (3.17)

with Θ and A as given by equation 3.12. Now we can find our description for the function δ(ω). The
equality corresponding to the first row is given by:

(−j)0h0(ω) = lim
β→∞

β(j)0 · (θ0 · δ(βω)) ∗ e−ω2/2

1√√
π
e−ω

2/2 = lim
β→∞

β ·

(
1√√
π
· δ(βω)

)
∗ e−ω2/2

(3.18)

It is generally known that the convolution of two Gaussian functions yields another Gaussian. Similarly
the deconvolution of a Gaussian with another Gaussian again should give a Gaussian function. Two
Gaussians with variances σ2

1 and σ2
2 result - by the operation of convolution - in a new Gaussian with

variance σ2
1 + σ2

2. In order for equation 3.18 to hold, the function δ(ω) could be a Gaussian function
with a variance σ2 → 0 (which is in fact true thanks to the limit with β). The limit nonetheless seems
to allow also other functions for δ(ω) like sin(ω)/ω. As a sin(ω)/ω convolved with a Gaussian does
not lead to a new Gaussian function, the shape is not preserved unless the limit is applied. We elaborate
on δ(ω) = e−Cω

2/2, whereby it is easily verified that C ∈ R can take any value (assuring that C � β).
Nevertheless, we’ll restrict to unit energy, as characteristic for the Dirac delta pulse, giving C = 2π.

� Verification of higher order Hermite functions
Now we have a description for δ(ω), we should verify the validity of this notice for higher degree Hermite
functions hn(ω), n > 0. Therefore we first calculate the higher order derivatives of the delta function
using the equality δ(ω) = 1

θ0
h0(ω). We make use of the following general recurrence relation for Hermite

functions [44]:

d

dω
hn(ω) =

√
n

2
hn−1(ω)−

√
n+ 1
2

hn+1(ω) with h−1(ω) = 0, h0(ω) =
1√√
π
e−ω

2/2 , n ∈N0

(3.19)

Using this recurrence relation, the higher order derivatives of the delta function δ(ω) are:



d0

dω0 δ(ω)
d1

dω1 δ(ω)
d2

dω2 δ(ω)
d3

dω3 δ(ω)
d4

dω4 δ(ω)
...


=
1

θ0
·



1 0 0 0 0 · · ·
0 −

√
1
2 0 0 0 · · ·

− 1
2 0

√
1
2 0 0 · · ·

0
√

9
8 0 −

√
3
4 0 · · ·√

9
16 0 −

√
9
2 0

√
3
2 · · ·

...
...

...
...

...
. . .


·



h0(ω)
h1(ω)
h2(ω)
h3(ω)
h4(ω)

...


(3.20)
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Substituting these descriptions of the higher order derivatives of δ(ω) into equation 3.17 gives:



(−j)0
h0(ω)

(−j)1
h1(ω)

(−j)2
h2(ω)

(−j)3
h3(ω)

(−j)4
h4(ω)
...


= lim

β→∞
β



1 0 0 0 0 · · ·
0 θ1/θ0 0 0 0 · · ·
0 0 θ2/θ0 0 0 · · ·
0 0 0 θ3/θ0 0 · · ·
0 0 0 0 θ4/θ0 · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

Θ/θ0

·



1 0 0 0 0 · · ·
0 2 0 0 0 · · ·
−2 0 4 0 0 · · ·
0 −12 0 8 0 · · ·

12 0 −48 0 16 · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

A

·



(j)0
0 0 0 0 · · ·

0 (j)1
0 0 0 · · ·

0 0 (j)2
0 0 · · ·

0 0 0 (j)3
0 · · ·

0 0 0 0 (j)4 · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

J

·



1 0 0 0 0 · · ·
0 −

√
1
2

0 0 0 · · ·

− 1
2

0
√

1
2

0 0 · · ·

0
√

9
8

0 −
√

3
4

0 · · ·√
9

16
0 −

√
9
2

0
√

3
2
· · ·

...
...

...
...

...
. . .


︸ ︷︷ ︸

D

·



h0(w )
h1(w )
h2(w )
h3(w )
h4(w )

...


w=βω

∗ e−ω2/2

(3.21)

Multiplication of the three matrices 1
θ0

ΘAJD involves quite a lot of multiplications, but gives a fairly
simple result: 

(−j)0h0(ω)
(−j)1h1(ω)
(−j)2h2(ω)
(−j)3h3(ω)
(−j)4h4(ω)

...


= lim
β→∞

β



+(j)0h0(βω) ∗ e−ω
2/2

−(j)1h1(βω) ∗ e−ω
2/2

+(j)2h2(βω) ∗ e−ω
2/2

−(j)3h3(βω) ∗ e−ω
2/2

+(j)4h4(βω) ∗ e−ω
2/2

...


(3.22)

The left and right sides are equal in the limit where β → ∞. So we have verified that δ(ω) = e−ω
2/π

not only holds for n = 0, but also for degrees up to 4. Similarly one should be able to proof validity for
any n.

Summarizing, the Fourier transform of Hermite functions implies that the Dirac delta function involved
equals a Gaussian function in order for the eigenfunction property of the Hermite functions to hold. The
delta function suggested is described by:

δ(ω) = lim
β→∞

βe−(βω)2/π
(3.23)

Delta/impulse functions got primary interest of several mathematicians like Cauchy, Poisson and Hermite.
We find good support in the delta function as proposed by Kirchhoff, who used it for the formulation of
Huygens’ principle in wave theory [45]. The delta function he describes is given by:

δ(ω) = lim
λ→∞

λ√
π
e−λ

2ω2
(3.24)

which reduces for β = λ/
√
π to our definition of the delta function given by equation 3.23.

It is interesting to compare these results for other functions, which are often related to the Dirac delta
function, e.g. lim

β→∞
β sin(βω)/(βω). To draw more conclusions about the delta function additional

Fourier properties should be investigated and tested for the Gaussian shaped delta function. As the
delta function is regarded as a Gaussian function, a hypothesis can be formulated that the oscillatory
behavior associated with frequency shifted delta functions, i.e. δ(ω − ω0), could be related to higher
order derivatives of the delta function, i.e. Hermite type of functions.
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3.4 Criteria on the basis set of signals

One of the most important parts of a communication system are the actual messages sent. In verbal
communication these messages are referred to as a language. This section focuses on the design of a
language for communication systems. The underlying hardware, which should create, transmit, receive
and interpret the messages/words, is taken into account while designing the language.

Signal properties like linear independence, orthogonality and zero cross-correlation are regularly men-
tioned as necessities to establish communication, but arguments are often lacking. In case one of these
conditions can be relaxed or omitted, new degrees of freedom are obtained which can result in a better
or simplified communication system. Accordingly, this section discusses a comprehensive list of signal
properties in relation to communication. The objective is to arrive at a set of criteria for a signal set for
communication.

The following signal (set) properties are subsequently discussed:

� Continuity � Entropy
� Linear dependence � Crest factor
� Orthogonality � Localization
� Correlation � Timing sensitivity
� Energy � Frequency sensitivity

The basis set of signals is indicated by S which contains N real signals si . The signal attributes and
their importance in relation to communication are discussed below. To clarify signal properties like linear
independence, orthogonality, orthonormality and uncorrelated signals, refer to figure 3.3. These signal
attributes are discussed

Continuity | Signal s1 is discrete if the signal is described by s̄1 with dim(s̄1) <∞
Although the signals in physical transceivers are analog, continuous time-varying signals, the signals are
often generated, modulated and interpreted in the digital domain. The digital domain deals with signals
sampled in time, called discrete time. Sampling may be performed uniformly or non-uniformly, although
the latter poses significant difficulties for implementation. If the sampling rate and signal time-duration
are limited, then the signals are described by vectors of limited dimension, i.e. dim(s̄i ) < ∞. Although
a higher sampling rate offers a better approximation of continuous-time signals, the sampling rate is
generally limited by the sampling rates of the Analog-to-Digital Converter (ADC) and Digital-to-Analog
Converter (DAC). In addition lower sampling rates reliefs hardware requirements and lowers the power
usage. To support the criterium of discrete time, signals s are presented from now on as vectors s̄.
Next to discrete time, the signals can also be discretized in amplitude by the process of quantization.
Quantization introduces quantization noise as a result of rounding errors. As the effect of quantization
can be limited by using small step sizes (small rounding errors), we do not take quantization into account

Linear independent                      

Orthogonal

Orthonormal

Uncorrelated

Figure 3.3 | Relations between linear independent, orthogonal, orthonormal and uncorrelated signals (based on [46]).
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s3

s2

s1

x
m3

m3

m2

Figure 3.4 | A vector x̄ finds itself in the Euclidean space spanned by signals s̄1, s̄2 and s̄3.

as a primary requirement for the design of target signal set S.
� Criterium: Signals s̄ ∈ S should be in discrete time and are preferably uniformly sampled.

Linear dependence | s̄1 and s̄2 are linearly independent if there exists no α ∈ R such that s̄1 = α · s̄2
When two signals s̄1 and s̄2 are transmitted simultaneously, their sum is described by ȳ = s̄1 + s̄2. If
s̄1 is based on s̄2 by a linear relation like s̄2 = αs̄1 then the receiver is uncertain about the information
content contained in ȳ . The signal ȳ can both be interpreted as (1+ α) · s̄1 and as (1/α+ 1) · s̄2.
The receiver is not able to indisputably distinguish the signals s̄1 and s̄2. For that reason we impose the
constraint of linear independence for all signals s̄ in the set of signals S.
� Criterium: Signals s̄ ∈ S should be linearly independent and span an N-dimensional signal space.

Orthogonality | s̄1 and s̄2 are orthogonal if their inner-product 〈s̄1, s̄2〉 = 0
Assuming that the signals s̄ ∈ S are linearly independent, the question arises whether the signals should
be orthogonal. Let us assume the Euclidean space in R3 as visualized in figure 3.4 spanned by three
signal vectors s̄1, s̄2 and s̄3. Any signal vector x̄ can be constructed based on the signals s̄1, s̄2 and s̄3
by modulation with constants m1, m2 and m3 respectively. The modulation and demodulation processes
using signals S and information vector m̄ can be seen as:

x̄ =

 s11 s21 s31

s12 s22 s32

s13 s23 s33


︸ ︷︷ ︸

S

·

 m1

m2

m3

 ˆ̄m =

 s11 s21 s31

s12 s22 s32

s13 s23 s33

−1

︸ ︷︷ ︸
S−1

·

 x1 + n1

x2 + n2

x3 + n3

 (3.25)

whereby element s1i denotes the ith element of signal s̄1. ˆ̄m is an estimate of m̄ which is affected by
additive noise n̄. Now regard the following two example matrices describing the three signals s̄ ∈ S and
the corresponding inverses of these (non-singular) matrices:

S1 =

 1 0 0

0 1 0

0 0 1

 S1
−1 =

 1 0 0

0 1 0

0 0 1


S2 =

 1 0.995 0

0 0.1 0

0 0 1

 S2
−1 =

 1 −9.95 0

0 10 0

0 0 1


(3.26)

The signal sets S1 and S2 give two different estimates ˆ̄m:

ˆ̄m(S1) =

 m1

m2

m3

+

 n1

n2

n3

 ˆ̄m(S2) =

 m1

m2

m3

+

 n1√
9.952 + 102 · n2

n3

 (3.27)

It is apparent that signals S2 are performing worse than signals S1, because the noise is considerably
amplified. The explanation lies in the fact that the signals s1 = [1 0 0] and s2 = [0.995 0.1 0] of set
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S2 are nearly equal. The matrix is said to be ill-conditioned. Singular matrices have an infinite condition
number while the best-conditioned matrices have a condition number of 1. A condition of 1 does not
lead to a degradation of the SNR as is the case for signals S2. The condition number of 1 is only
achieved by a perfectly orthogonal set [47].

In brief, a signal set is optimal for noise when the signals in the set are orthogonal. Note that orthog-
onality is not strictly necessary, but desired to achieve energy-efficient communication in additive noise
channels. The fact that orthogonality is not a strict necessity is also mentioned by Kozek and Molish
[48]. They state that wireless systems are rarely limited by their AWGN performance. Thus, eliminating
ISI and ICI is often more important. It can be advantageous to drop the orthogonality constraint in order
to obtain extra freedom to design signals which are more robust against time- and frequency dispersion.
Despite the notice that orthogonality is not strictly necessary, orthogonality is still an attractive prop-
erty for the signals s̄ ∈ S because of its mathematical convenience and for its performance in AWGN
channels.
� Criterium: Signals s̄ ∈ S are preferably orthogonal.

Correlation | s̄1 and s̄2 are uncorrelated if 〈 s̄1 −E(s̄1), s̄2 −E(s̄2) 〉 = 0
As a measure for correlation between two signals the correlation definition as defined in [46] is used
stating: 〈 s̄1 −E(s̄1), s̄2 −E(s̄2) 〉 = 0 whereby 〈.. , ..〉 refers to the inner-product and E (..) resembles
the expectation value. The property of correlation becomes the criterium of orthogonality in case we
deal with signals of zero-mean, i.e. E(s̄i ) = 0. A zero-mean signal is desired to prevent DC (read: very
low frequency) components in the analog building blocks. Assume for example a DC component which is
mixed to fosc in the transmitter. The signals received by the receiver are in the order of microvolts and
a small (capacitive or substrate) coupling with the Local Oscillator (LO) results in substantial energy
centered at f = fosc [49]. The DC component of the signal set is situated at the same frequency
bins and is likely to be indistinguishable from the LO-coupled signal. In addition, because of the energy
concentration around fosc , we even risk that the DC component is filtered out to prevent saturation of
the subsequent amplifying stages.
A solution may be found by making sure that modulation is a zero-mean process with constellations
around the origin. However, there are still low frequency components if similar symbols are consecutively
transmitted. Therefore, we pose the requirement that the signals s̄ ∈ S are zero-mean, i.e. E(si ) = 0.
The correlation property now simplifies to the orthogonality condition, which was already discussed.
� Criterium: Signals s̄ ∈ S should be zero-mean

Energy | s̄1 and s̄2 have equal energy if ‖s̄1‖2 = ‖s̄2‖2

If the transmitter, channel and receiver affect signals s̄1 and s̄2 in the same way the signal impairments
are equal and the expected SNRs at receiver side are likely to be equal in case the signals s̄1 and s̄2
contain the same amount of energy. Consequently, the probabilities of correct interpretation of the
received signals P (s̄1| ˆ̄s1) and P (s̄2| ˆ̄s2) are the same. In general equal probabilities are desired. If either
the influence of transmitter, channel and receiver is signal dependent or if one signal is more important
than another, the requirement of equal energy signals can be omitted and changed accordingly. In case
we deal with both orthogonal and equal energy signals, the term orthonormality applies to the set of
signals, see figure 3.3.
� Criterium: Signals s̄ ∈ S have preferably equal energy.

Entropy | Let s̄ ′1 be an amplitude modulated version of s̄1 ∈ S. If x̄ is constructed by modulating
several basis signals ∑N

n=1 s̄
′
n then an element xi ∈ x̄ is assumed to have a random amplitude and the

differential Shannon entropy is given by H = −
∫
p(z) log2(p(z))dz with p(z) the PDF of xi .

We aim at a set of signals which comprise a lot information. This means that the signals should have the
possibility to behave in an unexpected way. Namely, the expected is already expected and does not need
to be transmitted. For the information-richness of a signal or a set of signals S we use the Shannon-type
of entropy for random variables with continuous Probability Density Functions (PDFs) [11].
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� What’s in a name?
There are not many terms which have as many definitions as entropy. Although we limit ourselves to
the Shannon entropy, even this entropy knows several versions. In addition, Shannon interchanges terms
like information, uncertainty and entropy in his classical work [11]. A former MIT director, Tribus, asked
Shannon what he thought of when he coined the term entropy. Shannon’s response was:
"My greatest concern was what to call it. I thought of calling it ’information’, but the word was overly
used, so I decided to call it ’uncertainty’. When I discussed it with John von Neumann, he had a
better idea. Von Neumann told me, ’You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that name, so it already has a name.
In the second place, and more important, no one knows what entropy really is, so in a debate you will
always have the advantage" [50].

Modulation of signal s̄1 with some constant m1 gives a modulated version s̄ ′1. Next to s̄1, all other
signals s̄2..N can be modulated by constants m2..N . This gives a set of modulated signals s̄ ′ which add
up to x̄ , i.e. x̄ = ∑N

k=1 s̄
′
k . An individual element of x̄ at a distinct time i has an amplitude described

by the sum of all i th elements of the modulated signals s̄ ′. As the amplitude xi is the sum of many
modulated signals s̄ ′ at time instant i the PDF of xi can be approximated by a continuous distribution.
Therefore we use the continuous (differential) entropy definition.

� Power limited versus Energy limited
The question arises what kind of signal contains the highest entropy. We propose to distinguish power-
limited and energy-limited signals. First, in case we deal with a power-limited signal, the power of
the random signal xi under the assumption of a unit time, given by |xi |2, is limited in its power to a
certain power level P . In that case the integration interval for the entropy H is limited to the interval
−
√
P ≤ z ≤

√
P . The maximum entropy yields now a uniform distribution [11]. The PDF for p(z) is

then given by 1/(2
√
|P |) and gives a maximum (differential) signal entropy of log2(2

√
|P |).

Second, when the power of the signal is unbounded and we restrict only the energy of the signal, then
we (theoretically) allow for the power P to be infinite. The integration interval for the entropy H is
now [−∞,∞] and according to [11] the maximum entropy is then given for a Gaussian distributed PDF
p(z) = 1/(

√
2πσ)e−z

2/(2σ2). The entropy for a Gaussian shaped PDF with a standard deviation σ is
H = log2(

√
2πeσ). When the set of signals SN is large (like generally in multi-carrier systems) then

under the central limit theorem (and fulfilling corresponding criteria), the PDF of the random amplitude
tends to a Gaussian distribution. So, when the signal x̄ is constructed by the modulated signals s̄, then
the PDF of an element xi is expected to approach a Gaussian distribution when N →∞.

Setting a limit on the signal power P gives a maximum signal (differential) Shannon entropy of log2(2
√
P ).

Without a power constraint, the maximum entropy achievable is given by log2(
√
2πeσ) with σ the stan-

dard deviation of the PDF of the amplitude. In that case a higher entropy is achieved than for the
power-limited case, but at the cost of high power peaks. For example, for a Gaussian-shaped PDF of
the random variable xi there is 0.3% chance on a signal power of (3σ)2.
� Criterium: The PDF of the random amplitude of signal x̄ based on s̄ ∈ S should be Gaussian shaped.

Crest factor | PAPR of signal x̄ , based on signals s̄ ∈ S, is
∣∣xpeak ∣∣2/|xrms |2

Energy and power are related, but they form different criteria on the set of signals s̄ ∈ S. Where the en-
ergy of the signals is spread over time and frequency, the power is specified for a certain moment in time
(or a specific frequency). A high crest factor, or similarly a high Peak to Average Power Ratio (PAPR),
requires a high dynamic range of the transceiver building blocks. But a high PAPR may also indicate -
under the assumption that the signal set is well-constructed - high-entropy signals. Therefore we stick
to the entropy-condition and do not incorporate PAPR restrictions. At runtime, clever constellation
mappings may lower the PAPR and as discussed also lower the entropy of the transmitted signals.
� Criterium: Signals s̄ ∈ S are not restricted in peak power.

Time & frequency localization | min(
√
σ2
T · σ

2
F ) with σ2

T and σ2
F defined as in chapter 2.

Efficient communication in a spectrum-scarce environment is achieved when spectral users limit their
mutual interference while achieving high datarates. This can be realized by signals which are localized in
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time and frequency. The aspect of time-frequency localization has been the primary topic of chapter 2.
As our goal is to find a solution to spectral leakage in multi-carrier systems, it may be clear that time &
frequency localization is an important criterium for the signals s̄ ∈ S.
� Criterium: Signals s̄ ∈ S should be localized in time & in frequency.

Time & Frequency sensitivity
If the signals s̄ ∈ S are transmitted, the signals propagate as electromagnetic radiowaves through some
medium. Mobile radio channels are characterized by time- and frequency dispersion caused by multi-path
effects and Doppler spreads (discussed in chapter 4), which are likely to cause ISI and ICI. Robustness
against multi-path effects, timing jitter, Doppler spreads, frequency offsets and phase noise is desired.
� Criterium: The signals s̄ ∈ S should possess some robustness against time- & frequency deviations.

3.5 Assessment of the Hermite functions

The previous section discussed signal properties in order to arrive at a set of criteria for a basis set of
signals S for communication. A short summary of the discussed criteria is given below. Signals s̄ ∈ S:
� should be in discrete time and preferably uniformly sampled
� should be linear independent
� are preferably orthogonal
� should be zero-mean
� have preferably equal energy
� have a Gaussian shaped PDF for their modulated sum x̄

� are not restricted in their peak power
� should be localized in time & frequency
� should possess some robustness against time & frequency deviations

Table 3.5 discusses the performance of the probabilistic Hermite functions with regard to the stated
requirements. Note that a number of criteria are not or not fully met. Based on their excellent localization
property, we still propose to elaborate on the Hermite functions. Modifications are necessary in order to
have a suitable set of signals for communication, which are discussed in upcoming sections.

3.6 Modification of the Hermite based signals

The previous section assessed the suitability of Hermite functions for communication. Challenges are
the sampling of the continuous-time Hermite functions, truncation of the symbol-duration and symbol-
bandwidth, and obtaining uncorrelated zero-mean signals.

3.6.1 Discretization

The signals hen(t), as discussed so far, are continuously varying over time. We aim for a signal set S
with time-discrete signals. That corresponds to finding the optimal sampling points such that the signal
characteristics are not severely degraded. The issue of sampling functions has been addressed by Nyquist
and Shannon by their sampling theorem, but their theory is based on band-limited signals. They state
that the (Nyquist) sampling rate should be larger than two times the bandwidth, i.e. fs > 2BW . In
chapter 2 we already left the assumption of strict band-limited signals. Namely, the Hermite functions
stretch over the bandwidth [−∞,∞] and treating the signals as band-limited would be disputable.

For sampling the Hermite functions we explore the field of numerical integration. Note that orthog-
onality and correlation of signals involve the integral over two, possibly shifted, signals. While the
continuous time deals with integrals, discrete time only evaluates the signal values at distinct moments
in time. In order for the orthogonality of the Hermite functions to hold, the correct sampling instants
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Requirement Performance Comments

Discrete time - The Hermite functions are in continuous time. The waveforms need to be
discretized, preferably by uniform sampling, such that the elementary signal
properties are not severely degraded.

Linear independent +++ The Hermite functions satisfy the requirement of linear independence. Each
function hen contains a polynomial of degree n which cannot be written as
a linear sum of the other polynomials.

Orthogonality + As discussed in the previous section, the Hermite functions are orthogonal
over the interval [−∞,∞]. This gives a paradox as the signals are non-
causal & orthogonal or causal & non-orthogonal. Thanks to the rapid decay
of the functions (by the term e−t

2/4) the values rapidly become negligibly
small such that the loss of orthogonality becomes insignificant. In relation
to orthogonality in time and frequency, attention should be paid to the
truncation of symbol time Ts and symbol bandwidth BWs .

Zero-mean - - Although the Hermite functions are an orthogonal set of signals that does
not automatically mean that the functions are uncorrelated (according to
the Pearson’s correlation product). When the signals are zero-mean the
correlation condition simplifies to the orthogonality condition, but not all
Hermite functions possess the property of zero-mean. All even Hermite
functions, i.e. hen with 2n ∈ N0, have a non-zero mean over the interval
of interest [−Ts ,Ts ] with Ts limited in time. To achieve the requirement
of non-correlated signals the signals should be transformed such that the
signals become zero-mean while still satisfying the orthogonality restraint.

Equal energy + The Hermite functions need to be normalized correctly in order to deal with
equal energy signals. The constraint is relatively easy satisfied.

High entropy ++ Based on simulations, we known that the sum of N modulated Hermite
functions is Gaussian distributed when N is relative large. This implies that
we deal with a high entropy transmit signal. The high entropy is achieved
at the cost of an unconstrained PAPR.

Localization +++ The Hermite functions are the solutions for optimal time-frequency local-
ization as discussed in chapter 2. Accordingly, the functions satisfy the
requirement of time and frequency localization. Attention should be paid
to the sphere-packing problem: how to efficiently assign time-slots and
frequency bands to multiple users.

Timing sensitivity To be investigated*
Frequency sensitivity To be investigated*

Table 3.5 | Assessment of the Hermite functions based on the set requirements for communication signals. The perfor-
mance indicators +++, ++, +, +/-, - and - - are relative measures to indicate the easiness versus difficulties
for Hermite functions to meet the listed requirements. * The importance of these criteria are acknowledged,
but has not been taken into account in the design of the signals s̄ ∈ S.

need to be found. Gauss formulated an approximation over finite elements K in order to approximate a
continuous function s(t):

K

∑
k=1

wks(tk ) ≈
∫ te

t0
s(t)dt wk ∈ R tk ∈ {t0, ... , te} (3.28)

which is referred to as the general Gaussian quadrature rule. The Gaussian-Hermite quadrature rule is
a specific quadrature rule addressing the integration points tk , called abscissae, and weight factors wk
for Gaussian weighted polynomials s(t) [51]:

K

∑
k=1

wks(tk ) ≈
∫ ∞
−∞

e−t
2
s(t)dt (3.29)

The domain of integration for the Hermite function stretches over [−∞,∞] and the integration yields
good results for polynomials up to degree 2K − 1 (keeping their mutual orthogonality). Nevertheless,
to distinguish N different hermite functions at least K sampling points are necessary, so K ≥ N. The
abscissae tk are given by the zero-crossings of the polynomial of Hen(t). The abscissae are the same
for the probabilistic and physicist Hermite functions. As we are primarily interested in sampling the func-
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Figure 3.5 | Normalized sampling instants according to Gaussian-Hermite quadrature rule for N = 64. The linear line
(gray) indicates uniform sampling while the optimal sampling points according to the quadrature rule (o)
slightly deviate from this line indicating the need for non-uniform sampling.

tions, the abscissae tk are used to determine the sampling points of the continuous time function hen(t)
(not weights are aplied). Note that applying the correct weights may yield a better result. Leibon e.a.
advocate the Newton-Cotes quadrature formula giving other points for the abscissae [52]. Nevertheless
we use the abscissae from the Gaussian quadrature rule. The abscissae values for K = 64 are shown
in figure 3.5. Note that the abscissae for other values of K are different. In case one would only use
N = 32 still the abscissae for K = 64, but now two times more samples are used than strictly necessary.

As uniform sampling significantly eases implementation, we propose to scale the signals si in time
according to the abscissae distribution ti . The signals are now slightly distorted, a bit less ideal, but also
more convenient for engineers. The Hermite functions hen are from now on, unless otherwise stated,
vectors hen of dimensionality N sampled at the distinct times ti .

3.6.2 Orthogonality & Uncorrelated

The cornerstone of the Hermite functions are the Hermite polynomials Hen. Let us consider a contra-
diction related to the orthogonality and zero-mean requirement. On one hand, the probabilists’ Hermite
polynomials become orthogonal by applying the weighting function e−t

2/4, but then the product is not
zero-mean. On the other hand it was found that by applying a weighting function e−t

2/2 the product
becomes zero-mean, but is not orthogonal anymore.

In literature authors deal differently with the problem. Haas and Belfiore, who designed a pulse-shaping
prototype filter, select only the odd Hermite functions which have zero-mean [53]. Chongburee did
design an antipodal Hermite transmission system, did not meet the requirement of zero-mean, and no-
ticed that the non-zero cross-correlation of Hermite functions caused failure of the designed Maximum
A Posteriori (MAP) receiver [54]. For Ultra-Wideband (UWB) pulse-shaping some authors did take the
zero-mean condition into account and proposed shape-modification methods for the Hermite functions
[55], [56] and [57]. Ghavami e.a. [55] change the basis by introducing a sinusoidal signal such that
we cannot speak of true Hermite functions. In fact, they get signals similar to Gabor frames which are
exponentially weighted complex exponentials. [57] and [56] were using quite extensive methods leading
to modified Hermite functions of low degree with a high number of zero crossings (effectively changing
their degree). Especially the approach of da Silva and Campos [56] as they optimize to get more wide-
band pulses (possibly more robust against frequency dispersion), but their approach is quite elaborate
and effectively changes the degree of the Hermite functions.

We propose a relatively simple method which keeps the degree n of the Hermite functions hen the same
(so minimally changing the shape and complexity of the signals) and aims at achieving zero-mean, or-
thogonal signals. The zero-mean property also leads to satisfying the criterium of uncorrelated signals.



32 3 | A Time-Frequency Localized Signal Basis for Communication

Finally, applying a normalization satisfies the criterium of equal energy.

Using the Hermite functions hen(x) with a (second) weighting function e−x
2/4, it is found and easily

verified that the product has a zero mean. Obvious exception is the Hermite function of degree 0 as it
does not have a zero crossing and always has a non-zero mean. Assume a set of N Hermite functions
hen(x) of degree n > 0 with zero mean:

hezm =


e−x

2/4 · he1(x)
e−x

2/4 · he2(x)
...

e−x
2/4 · heN(x)

 (3.30)

The vector hezm contains zero-mean, but non-orthogonal signals. We apply the Gram-Schmidt Orthog-
onalization method on the vector hezm. The first signal s̄1 is simply equal to hezm,1. The second signal
s̄2 is now the second signal hezm,1 minus its projection on the first orthogonal signal s̄1. The projection
is calculated by the inner-product. This process can be mathematically described by:


s̄1
s̄2
s̄3
...
s̄N

 =



e−x
2/4 · he1

e−x
2/4 · he2

e−x
2/4 · he3

...
e−x

2/4 · heN


−



0 0 0 · · · 0

〈s̄1,e−x
2/4he2〉

‖s̄1‖2 0 0 · · · 0

〈s̄1,e−x
2/4he3〉

‖s̄1‖2
〈s̄2,e−x

2/4he3〉
‖s̄2‖2 0 · · · 0

...
...

. . . · · · 0

〈s̄1,e−x
2/4heN〉
‖s̄1‖2

〈s̄2,e−x
2/4heN〉
‖s̄2‖2 · · · 〈s̄N−1,e−x

2/4heN〉
‖s̄N−1‖2 0


·


s̄1
s̄2
s̄3
...
s̄N


(3.31)

Equation 3.31 is suitable for numeric evaluation in an iterative way. To get an orthonormal vector the
values s̄n (after calculation of equation 3.31) can be divided by their norms ‖s̄n‖. Hereby we also meet
the requirement of orthonormality and thus equal energy signals.

We constructed a set of orthogonal signals S which are a sum of weighted Hermite functions. As every
function hezm is zero-mean their sums are also zero-mean. In addition each signal s̄n is of degree n
or lower in contrast with the approach used by [56]. Signals s̄ ∈ S constructed by low order Hermite
functions are preferred as they occupy less time and bandwidth than the higher order Hermite functions.
The Hermite functions of degree 1 to 5 are reprinted in figure 3.6 while the modified signals are shown
in figure 3.7. Notice the lack of a DC component in figure 3.7.

Summarizing, this chapter started with a short treatment of Hermite polynomials and functions. Af-
terwards, ten signal properties were discussed leading to the formulation of criteria for a basis set of
communication signals. Based on these criteria the Hermite functions were assessed and subsequently
modified to comply with all criteria. The resulting signals s̄ ∈ S are in discrete time, linearly indepen-
dent, orthogonal, uncorrelated, have equal energy, can be used for maximum entropy transmit signals
and are localized in time- and frequency. In upcoming sections these time-frequency localized signals are
referred to as STFL. No power constraint has been taken into account as it trades off with entropy. It
is recommended for future work to analyze the sensitivity of a set of Hermite functions for timing and
frequency deviations. The next chapter assesses the performance of the signals STFL.
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Figure 3.6 | Five probabilistic Hermite functions of degree 1..5: time (left) and frequency (right) representations
(plot generated using a slightly higher sampling rate).
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CHAPTER 4

Performance Assessment

The previous chapter led to a set of time-frequency localized signals STFL, which has been designed based on
formulated signal criteria for communication. One may pose the proposition that the signal set STFL, as designed
in chapter 3, is a suitable signal basis for communication. Such a proposition asks for verification, ideally by
a real-world system, or at least by simulations of relevant performance measures. This chapter first discusses
performance measures to be evaluated. Afterwards, a short overview of the transmitter, channel and receiver
setups is given. A number of standard simulations are carried out to get insight in achievable datarates, in multi-
user communication and the performance in mobile radio channels. Next to the effectiveness also the efficiency
of the communication system, in terms of power and complexity, is discussed.

4.1 Performance measures

In contrast with chapter 3, this chapter analyzes system performance rather than signal properties. The aim of
this research is to reduce spectral leakage while maximizing the effective data transfer rate and staying within
energy, bandwidth and complexity budgets. The achievable datarates in single-user and multi-user cases are
discussed. Simulation of the Bit Error Rates (BERs) for different mobile radio channels gives an impression of
the robustness of the signal set STFL for noise and fading.
Next to the effectiveness of the transceiver, i.e. achieving high datarates with low BERs, also the efficiency is
regarded. From a signal perspective the crest factor / PAPR has not been included as a requirement, because it
trades off with entropy. Nevertheless, from a system perspective, it is relevant to know the likelihood of certain
power peaks to determine the dynamic range requirements. In addition, a pragmatic overview of the hardware
requirements for transmitter and receiver building blocks is given. Rather than an exhaustive treatment, a short
overview of hardware implications is presented based on a comparison between STFL and conventional OFDM
signals.

Summarizing, this chapter focuses on system performance criteria targeting both the effectiveness and efficiency
of a communication system employing signals STFL:

� Datarates � Peak to Average Power Ratio
� Multi-user communication � Transmitter complexity
� Bit Error Rates � Receiver complexity

4.2 Transceiver & Simulation setup

In order to judge the performance of STFL, a reference is needed. The 802.11 standard, better known as Wi-Fi
for WLAN, is a well-known OFDM standard. We loosely base the simulations on IEEE 802.11 amendment a/g.
Documentation can be found in the corresponding IEEE 802.11 standards [58], [59] and [60]. The simulation
parameters for a standard sinusoidal OFDM transmission system and a transmission system based on the signals
STFL are given in table 4.1. Because numerical evaluation of Hermite functions suffers from significant inaccuries
for degree 48 and higher, we choose to limit the set of active carriers to 42. Working with higher precision arith-
metic and/or cleverer algorithm implementations may solve the problem. As we do not regard this as a major
problem, it is outside the scope of this research and we simply limit the number of active carriers.

The simulation is performed using MathWorks Matlab and consists of a number of blocks in order to resemble
actual transceivers dealing with signals STFL. The transceiver blocks are shortly described.

The transmitter
The transmitter building blocks and simulations steps are as follows:
1. A serial datastream of ≥ 105 random bits is generated.
2. Depending on the chosen modulation (BPSK, 4PAM or 8PAM) the stream is split into blocks of respectively
1, 2 or 3 bits which are fed in parallel to the modulator.
3. The modulator uses the signals STFL, as described in chapter 3: discretized, scaled, zero-mean, orthogonal
signals based on Hermite functions. As the total number of carriers is 54, we have also 54 discrete time (uniform)

35
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Specification 802.11 OFDM* STFL Units

Number of carriers (1) 64 54 54
Modulated carriers (2) 52 42 42

Pilot symbols (3) 4 4 4
Bandwidth (4) 20 16.875 16.875 MHz

Carrier spacing (5) 0.3125 0.3125 N/A MHz
Active symbol duration (6) 3.2 3.2 3.2 us
Guard / Cyclic prefix (7) 0.8 0.8 0 us

Symbol duration (8) 4.0 4.0 3.2 us
Coding rate (9) 1

2
· · · 3

4
1 1

Modulation (10) 64QAM BPSK / 4PAM / 8PAM
QPSK / 16QAM / 64QAM (I&Q)

Bitrate (11) 54 9.5 · · · 28.5 11.875 · · · 35.625 Mbit/s
19 · · · 57 23.75 · · · 71.25 Mbit/s

Table 4.1 | Simulation parameters based on 802.11a/g parameters for comparison between OFDM* signals and signal
set STFL. When quadrature modulation is applied, the number of carriers per bandwidth and bitrates are
doubled. The bitrates are calculated by 11 = (2− 3)/6 · 9 · log2(10) with 10 equals 2 for BPSK, 4 for 4PAM
etcetera.

samples over time. As 802.11a/g does not use all carriers for sending data, we exclude the 12 signals STFL of
highest degree.
4. The 42 data carriers are modulated dependent on the used modulation: BPSK, 4PAM or 8PAM. The con-
stellation points are placed such that the average ’energy’ of the constellations is unity.
5. The modulated signals s̄ ∈ SSTFL are added together (over time) to form the transmit signal tx(t).
6. The transmit signal subsequently leaves the DAC as a zero-order hold signal and is mixed to the carrier
frequency. As AM is known to be spectrally inefficient, quadrature modulation is applied. Modulation of an
in-phase (I) and out-of-phase (Q) set of Hermite signals and subsequent I&Q mixing to the carrier frequency
fc effectively reduces the bandwidth per carrier by a factor 2. The principle of quadrature modulation relies
on the multiplication of an in-phase set of (real) signals by cos(2πfc t) and a quadrature set of (real) signals
by − sin(2πωc t). These sets are separable at the receiver thanks to the orthogonality of the cos(2πfc t) and
sin(2πfc t) terms. Refer for more information to [49] or [61].
7. Finally the signal is amplified and transmitted. Stages 6 and 7 are assumed ideal in the simulation.

The channel
Leaving the transmitter, we deal with propagating electromagnetic waves, which are degraded by noise and dis-
torted due to time-dispersion (e.g. multi-path effects) and frequency-dispersion (e.g. Doppler-shift). The first
set of simulations degrade the signal waveforms with AWGN. The second set of simulations also takes slow &
frequency selective fading into account. AWGN and fading form the primary topics of sections 4.5.1 and 4.5.2.
The transmit signal tx(t) is convolved with the fading channel response and the signal is subsequently degraded
by AWGN. The received signal is referred to as rx(t).

The receiver
The receiver is assumed to know the channel response, which can be realized by pilot symbols, channel estimation
and by the assumption of a slowly varying channel.
1. The received signal rx(t) is amplified by a Low Noise Amplifier (LNA), mixed to baseband to an in-phase and
quadrature part by an I&Q mixer and discretized and quantized by an ADC. We obtain two sets of real signals
representing the in-phase and quadrature set.
2. The in-phase (and quadrature) signals are equalized. The simulation assumes a perfect equalization (in time
or frequency) based on the known channel response.
3. The digitized signal is evaluated by matched filters such that the ’correlation’ between transmit signal and
basis functions STFL becomes known. A correlation receiver would calculate cross-correlations and evaluate the
output at distinct moments in time Ts . It can be deduced that the correlator-output at Ts is equal to the
output of a matched filter, which calculates only one inner-product per symbol time [61]. Synchronization is a
prerequisite in order to prevent ISI and is assumed to be perfect.
4. Subsequent demodulation of these ’correlations’ recovers sent information. Demodulation is based on the
modulation applied in the receiver: BPSK, 4PAM or 8PAM.
5. The blocks of bits are converted into a serial stream representing the original bit-stream, typically with some
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bit-errors due to the signal degradation caused by the channel.

Although the introduction of more non-idealities seemingly results in a better approximation of the real-world
performance, it makes it harder to carry out comparisons with literature. Assumptions of perfect channel estima-
tion, equalization and synchronization are regularly encountered. Nevertheless, it is recommended to carry out
more extensive simulations whereby more non-idealities are taken into account. In the end the best performance
assessment is achieved by evaluating the performance of a real wireless transceiver system employing signals
STFL.

4.3 Datarates

In previous sections no strict bandwidth definition has been given. Chapters 2 and 3 dealt with time- and
frequency variances instead of absolute time durations and bandwidth definitions. In order to analyze datarates
as function of time and bandwidth, definitions are required. The exhibit addresses this point.

� On the application of the Shannon limit
The Shannon limit has been a driving force for the telecommunications industry during last decades.
The Shannon theorem relates the achievable datarate in a channel to the signal power, noise level and
bandwidth and has challenged researchers and engineers to achieve datarates close to the Shannon limit.

The fundamental work of Shannon [11] discusses the achievable datarates for band-limited signals. The
Shannon limit in its simple form is heavily based upon the Nyquist and Shannon sampling theorem stating
that the sampling rate for a bandlimited signal of bandwidth BW should be fs > 2BW . We already
noticed that for signals of infinite bandwidth, as for our signals STFL, the Shannon and Nyquist sampling
theorem does not suffice as it implies an infinite sampling rate. As the sampling theorem does not apply
for our case, we may question the applicability of the Shannon limit.

The Shannon limit is useful for describing the channel capacity, but not adequate for describing datarates
for our signals STFL, for two reasons. First, the signals STFL are unlimited in time and bandwidth. Any
treatment as limited in time or frequency would be disputable. It can be argued that a solution is formed
by an approximation of the signals by a large number of band-limited signals. Although it is a practical
solution, an analytical expression valid for non-strictly band-limited signals is preferred. Second, when
the non-band limited signals are approximated by a band-limited signal (like by the common usage of
the pass-band bandwidth), it does not provide any information regarding the amount of energy outside
the bandwidth. This is relevant in a multi-user case. For example if several users are using time-limited,
unfiltered, Fourier basis signals in a fairly limited bandwidth the users are likely to cause large amounts of
mutual interference due to OFDM sidelobes, leading to bit errors, retransmissions, and finally dropping
all datarates far below the Shannon limit.

In chapters 2 and 3 we expressed the signals in terms of spread/variance in time and frequency according
to the uncertainty principle definitions. Similarly, we proposed to write the number of bits as a function
of spread of energy (e.g. higher order moments, uncertainty) in time and frequency, power and noise
merely than as a function of time, (passband) bandwidth, power and noise. This would give a meaningful
tool to analyze signals which are not strictly band-limited and provides insight in achievable datarates in
multi-user cases.

As a practical solution, a bandwidth (and similar time duration) definition for no band- nor time-limited
signals is necessary. In order to facilitate comparisons with literature and FCC guidelines, dBc bandwidth
definitions can be used. A -60 dBc definition indicates the point where the power in an adjacent channel
divided by the power in the channel carying the information signal is -60 dB, measured over a certain
bandwidth, e.g. 100kHz. Independent of the chosen dBc definition, the bandwidth definitions are some-
what arbitrary as infinite number of BWdBc points can be identified. Despite this observation, in order
to conform to the FCC guidelines and to obtain time-bandwidth comparisons of the signals STFL with
the conventional Fourier basis, we choose 3 points to define the symbol bandwidth and symbol time
durations. First, the point where the STFL or OFDM siganls are maximum and start to decay (exponen-
tially), referred to as a 0dBc point. Second, the -60dBc point is chosen to serve the FCC requirements
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Figure 4.1 | Five signals STFL of lowest degree: logarithmic time (left) and frequency (right) representations. Notice
the fast decay both in time and frequency of the signals. The 0dBc, -60dBc and -100dBc bandwidths are
indicated, the time-durations are specified similarly (plots are generated using oversampling).

for unlicensed operations in the U.S. television broadcast bands. Finally, as a kind of theoretical lower
limit on spectral leakage we use the -100dBc point.

Fives signals STFL of degree 1..5 are shown in figure 4.1 on a logarithmic scale whereby the 0dBc, -60dBc
and -100dBc bandwidths are indicated. The figures illustrate the fast exponential decay of the signals
over time and frequency. Note that different dBc definitions for bandwidth- and time-durations may be
used, e.g. -60dBc definition for the symbol bandwidth and -40dBc for the symbol time-duration. Despite
this comment, this thesis applies equal dBc definitions for specifying the bandwidth and time-durations
of symbols.
The occupied time durations and bandwidths for signals S up to degree 42 are plotted in figure 4.2 for
0dBc, -60 dBc and -100dBc. Although the absolute symbol durations and symbol bandwidths increase
per added carrier, the increase per carrier becomes smaller and smaller.

The time-bandwidth products are calculated by multiplying the symbol time-duration and symbol band-
width (for the different dBc definitions). This results in almost straight lines, indicating a linear depen-
dence of the time-bandwidth product on the number of carriers in the signal set STFL. It is known that
the maximum number of degrees of freedom per time-bandwidth is (asymptotically) given by 2TsBWs
with Ts the symbol time and BWs the symbol bandwidth [11]. These degrees of freedom are relevant
as they indicate the number of degrees which can be modulated. It can be seen in figure 4.3 that
the signals STFL with their 0dB points quite closely approximate this line. The -60dBc and -100dBc
time-duration and bandwidth definitions are associated with larger time-bandwidth products, because
part of the exponential tail is now taken into account. For comparison, time-bandwidth products are
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Figure 4.2 | The time duration and bandwidth for signals STFL with duration and bandwidth specified for the last local
maxima before the exponential tail 0dBc (o), the -60dBc (�) and -100dBc (x) points in time and frequency.
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plotted for raised cosine filters with different roll-off factors. Raised cosine filters are characterized by
the roll-off factor which is a measure for the smooth roll-off of the signals as well as extension of the
symbol period (for time-domain pulse-shaping) [62]. High sidelobe suppression is achieved using large
roll-off factors at the cost of larger symbol times/bandwidths of up to 100% of the original symbol
time/bandwidth. [63] states that roll-offs as large as 1 may be necessary for good sidelobe suppression.
Figure 4.3 shows the time-bandwidth product for the 0dBc definitions for multiple carriers. In addition,
the sidelobe suppression using raised cosine filters for different roll-off factors are given.
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Fig. 5. Interference power in different LU subbands as a function ofβ

adjacently to allocated LS subbands. This provides flxible
guardbands as pointed out in Fig. 6. The number of subcarriers
that is covered by one LS subband is denoted byawhile the
number of deactivated adjacent subcarriers is described byb.
The advantage of this deactivation procedure compared to the
raised cosine method is that both types of interference can be
mitigated at once. Again, this sacrifice bandwidth and system
throughput in the RS. A tradeoff needs to be found between
tolerable disturbance to the LS and the remaining bandwidth
of the RS.

In this paper we focus on the reduction of interference with
the LS as this is the dominant interference effect (see table
I). In order to obtain the mean interference power to one LS
subbandPR L→ , all interference contributions of every single
RS subcarrier need to be cumulated. Of course, wider LS
subbands face more interference power as the integration width
is larger. Hence,PR L→ is normalized to the corresponding
bandwidtha of one LS subband counted in integer multiples
of Δf :

P R L→ =
1

a
PR L→ (7)

Hence,P R L→ can be interpreted as a mean relative inter-
ference power “density” that is caused by the RS. Another

Figure 4.3 | Time-bandwidth products for multi-carrier communication using the signal set STFL. The time-bandwidth
product is specified for the last local maxima before the exponential tail 0dBc (o) in time (power) and
frequency (PSD). The solid black line represents the theoretical minimum time-bandwidth product per
carrier of 1/2. The dashed black line represents the time-bandwidth product corresponding to a raised
cosine roll-off β of 1. Similarly the time-bandwidth products for other roll-off factors are plotted (left)
together with achievable sidelobe suppressions (right, source: [62]). Note that the solid black line represents
unfiltered / conventional OFDM.
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Figure 4.4 | Time-bandwidth products for multi-carrier communication using the signal set STFL. The time-bandwidth
product is specified for the -60dB (�) points in time (power) and frequency (PSD). The solid gray line
represents the time-bandwidth products for the raised cosine filter with roll-off 1. The dashed gray line
shows the time-bandwidth products corresponding to a roll-off factor of 0.5. Lower roll-off factors are not
plotted, but have a considerable higher time-bandwidth product for a small number of carriers. Based on
figures from [62].

In recent years Hermite functions have also been mentioned in connection with pulse-shaping filters. Haas
and Belfiore were in 1994, to the knowledge of the author, the first to use the Hermite functions as a
pulse-shaping prototype filter for multi-carrier communication [53]. In 2005 Kurt e.a. claimed that the
Hermite pulse-shaping filter is better localized than the often mentioned Gaussian Isotropic Orthogonal
Transform Algorithm (IOTA) prototype pulse-shaping filter [64]. This is in accordance with our findings
in chapter 2. A recent overview article of Farhang-Boroujeny and Yuen regarding filterbank multi-carrier
systems also mentions the superior localization properties of the Hermite pulseshaping filter [65]. In gen-
eral sidelobe suppression, achieved by pulseshaping filters, comes at the price of excess time-durations
and/or excess bandwidths. Using OFDM-OQAM, it is claimed that these excess time-durations and/or
excess bandwidths can be limited by separating the I & Q components and transmit filtering each path
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separately [65] and [66], although Beaulieu points out some problems regarding equalization with this
approach [34].

Figure 4.3 shows that the signals STFL have a time-frequency product per degree of freedom close to
the theoretical maximum of 2TsBWs . It is close but not exact. The correspondence theory, a theory
underlying quantum mechanics posed by Niels Bohr, states that the new quantum harmonic oscillator
model should be in support of the (old) classical harmonic oscillator model [67]. The classical model is
built upon (damped) harmonic/sinusoidal signals while the quantum harmonic oscillator is modeled using
Hermite functions. In accordance with the correspondence theory, we observe that the behavior of high
degree Hermite functions converges more and more to classical harmonic signals. Hence, we pose the
expectation that the Hermite signals similar to the sinusoidal signals approach the theoretical limit of 2
degrees of freedom per TsBWs when the signals sets increase and are well-designed. Next section gives
the explanation for the difference between this expectation and figure 4.3.

The offset in time-frequency product for -60dBc and -100dBc is explained by the time- and frequency
space necessary for the exponential tails to decay. As the 0dBc definition does not account for the
exponential tail, the time-frequency product for one carrier is (theoretically) 0. We observe that the
signals STFL are not only localized (defined by variances), but also have a small time-bandwidth product
indicating high data-throughput. For small carrier sets the -60dBc time-bandwidth product is similar to
the product for a raised cosine filter with roll-off 1. For larger carrier sets, the time-bandwidth product
becomes smaller and more similar to the 0.5 roll-off. Although smaller roll-offs more closely approximate
the lower bound of 2TsBWs , the time-bandwidth product for -60dBc is quite large. This is caused by
the slow decay of the shaped spectrum. For a roll-off of 0 we have the sinc-pattern associated with
conventional OFDM, which leads to a very large -60dBc time-bandwidth product.

4.4 Multi-user application

Achievable datarates are directly related to the bandwidth, power and noise as set out by the Shannon
limit. We make the distinction between datarates achievable in a single-user case, i.e. with no notice
of other spectral users, and in a real-world multi-user case. In the multi-user case, the spectral leakage
of one user is likely to limit the achievable datarates for another user. The network throughput Cn (in
bits/s), the sum of all the link capacities of individual users, can be defined as:

Cn =
U

∑
u=1

Cu (4.1)

whereby U is the number of total users and each user achieves an individual user datarate of Cu (bit/s).
In a multi-user, spectrum-scarce environment, the goal is no longer to optimize Cu, but to optimize the
network throughput Cn. A special variant of OFDM, OFDMA allocates certain subcarrier sets (out of
a larger set) to different (synchronized) users in order to come to a better network utilization, i.e. to
increase Cn. Instead, wireless devices employing OFDM are usually not synchronized and their spectral
leakage leads to mutual interference and significantly lower the network throughput.

The signals STFL are localized in time and frequency. Despite their good localization properties the func-
tions actually extend over the domains [−∞,∞] both in time and frequency. Using the time-duration and
bandwidth definitions, of -60dBc or -100dBc multi-user communication without noticeable interference
can be established. As the signal set STFL is based on Hermite functions, which are the eigenfunctions
of the FrFT, the functions STFL have their power isotropically spread over time and frequency. For
the isotropic case, the time-frequency lattice supporting 16 spectral users is sketched in figure 4.5 I.
Time- and frequency dispersion as a consequence of multi-path effects and Doppler shifts lead to ISI
and ICI respectively. The effects of ISI and ICI may be limited by scaling the signals STFL in time and
frequency according to the time- and frequency dispersion ∆t/∆f . This suggestion has also been made
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Figure 4.5 | I. Regular grid of isotropic time-frequency distributed signals STFL. II. Regular grid of time-frequency scaled
signals STFL according to time- and frequency dispersion. III. Grid with time-frequency scaled signals STFL

with time shift of 1/2Ts for odd rows.

and discussed by Strohmer and Beaver [68]. Such a scaling is schematically shown in figure 4.5 II.

It may be understood from figure 4.5 I&II that the allocated time-frequency spaces are not optimally
packed. A better allocation is obtained when the time-frequency spaces are spaced by 1/2Ts for adjacent
frequency bands such that the sphere-packing of figure 4.5III is obtained.

We arrive at the explanation for the fact that the signals STFL did deviate from the Shannon maximum
of 2TsBWs in figure 4.3. Namely, the time-bandwidth products for different dBc definitions were calcu-
lated by a simple multiplication of Ts with BWs . But, both the discussion of the Hermite functions as
eigenfunctions of the Fourier Transform / FrFT as well as the Gaussian pulse of figure 2.7 lead us to
the conclusion that the energy is distributed isotropically over the time-frequency lattice. Accordingly
the time-frequency lattice surrounded by the dBc definition is not a square, but a circle. The area,
assuming Ts = BWs , is a circle with time-frequency area πT 2

s rather than 4Ts . This gives a differ-
ence of 4/π ≈ 1.27 and explains the deviation of the Shannon limit encountered in the last section.
Compensating the results of figure 4.3 leads to the conclusion that the signals STFL contain a num-
ber of modulation degrees of freedom, equal to 2TsBWs . Accounting for the exponential tail, e.g. by
the -60dBc definition, leads to a slightly larger time-bandwidth product compared to the 0dBc definition.

Two important conclusions can be drawn:
� 1. For the 0dBc (≈ pass-band) time and bandwidth definition the signals STFL lead to approximately
2 degrees of modulation freedom per unit time-frequency area, which is the theoretical optimum.
� 2. For any other dBc definition of time and bandwidth, the occupied time-frequency area per degree
of freedom for signals STFL is approximately the optimum achievable for that dBc definition.

The first statement has been discussed above. The second statement is motivated by the first statement
and the fact that the tail is exponential and there is no function decreasing faster both in time and in
frequency (chapter 2). So if statement 1 is true then, accounting for the exponential tail, also statement
2 holds. The first statement is especially relevant in the single-user case. Note that there is no difference
with conventional OFDM and both have the same dimensionality per unit time-frequency area. The
exception is formed by the cyclic prefix, which increases the time-bandwidth product of conventional
OFDM. The second statement is particularly relevant for multi-user settings as the signals STFL do not
only achieve high single-user datarates, but thanks to their good localization, enable also a high network
throughput.
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4.5 Performance in mobile radio channels

The elementary part of radio communication is the physical propagation of electromagnetic radiowaves
through some medium. Instead of dealing with the physics involved with propagating electromagnetic
waves, we stick to common models for the mobile radio channel. This section discusses and tests the
signals STFL in comparison with OFDM signals for two general channel models, the AWGN and Rayleigh
fading channel.

4.5.1 Additive White Gaussian Noise channels

In an AWGN channel, signals are degraded by added noise. The AWGN model assumes that the noise has
a Gaussian amplitude distribution, its autocorrelation is a delta-function and the PSD is constant/white,
whereby the noise variance is related to the PSD noise level. BER expressions for antipodal/BPSK
schemes can be found in standard textbooks, although they are more elaborate for larger constellations.
An approximate expression for the BER in AWGN for Amplitude Shift Keying (ASK)/PAM modulation
schemes with M constellation points is given by [69]:

Pb ≈
2(M − 1)
kM

·Q

(√
6k

M2 − 1
Eb
N0

)
with k = log2(M) (4.2)

The constellation points are located at −(M − 1), · · · , −3, −1, 1, 3, · · · , (M − 1) with every constel-
lation point normalized by 1/

√
E with E representing the average ’energy’ of the M constellation points.

The transmission and reception of the signals STFL and conventional OFDM signals has been simulated
according to the setup described in section 4.2. The signal rx(t) equals tx(t) + n(t), whereby n(t)
is AWGN. The simulated and theoretical BERs for different Effective energy per bit to noise PSD
ratios (EbN0s), are shown in figure 4.6. The theoretical lines correspond to equation 4.2. The simulations
of OFDM signals and signals STFL show similar BERs. As discussed in chapter 3, the signals should
be orthogonal and interpreted by correlators/matched filters in order to be optimal in AWGN. As both
OFDM and the signals STFL, and the simulation setup, fulfill these requirements, it makes sense that
both signal sets match the theoretical BERs given by equation 4.2.

4.5.2 Fading channels

Although AWGN may be an adequate model when receiver and transmitter find themselves at a station-
ary position in the open field, in practice obstacles and movements of objects cause significant signal
impairments. A more comprehensive radio channel model also accounts for fading. Among the types
of fading a distinction can be made between large scale fading and small scale fading [70]. Large scale
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Figure 4.6 | Theoretical and simulated Bit Error Rates for OFDM (left) and proposed signal set STFL (right). Signals are
degraded by AWGN and signals are modulated according to BPSK (o), 4PAM (∗) and 8PAM (�) modulation
schemes. Note, the EbN0 for OFDM does not take the energy spent for the cyclic prefix into account.
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Figure 4.7 | Overview of different forms of small-scale fading (left) and the different types of signal fading as a function
of signal duration and signal bandwidth (right).

fading is caused by signal variations due to the position of transmitter, receiver and obstacles and is a
slowly varying process. The received signal power equals the transmit power minus the mean path-loss,
whereby variations around the mean are usually modeled by a lognormal distribution [70].

In contrast with large-scale fading, small-scale fading is not associated with variations of the mean of the
received signal, but rather with instantaneous changes in signal amplitude. Small-scale fading manifests
itself by two mechanisms, time-spreading of the signal and time-variant behavior of the channel [70].
For time-spread of the signal, a distinction can be made between frequency-selective and flat fading.
For the time-variant behavior of the channel we have on one hand channel variations which are relatively
constant over a single symbol time, slow fading, and on the other hand channel variations which manifest
itself during a symbol time, fast fading. Figure 4.7 gives an overview of the different types of small-scale
fading. Two important characteristics for fading are the coherence time and the coherence bandwidth.
Multi-path reflections can cause considerable differences in ray propagation times. These time delays
give for different frequencies different phase shifts. The coherence bandwidth Bc is an indicator for the
bandwidth for which the phase shifts can be assumed equal. If the signal bandwidth Bs is smaller than
the coherence bandwidth Bc , we speak of flat fading while in the case Bs > Bc the fades are frequency
dependent, i.e. frequency selective. The coherence time Tc indicates the time for which the channel
response is relatively constant. If the symbol time Ts is larger than the coherence time Tc , then the
fading is referred to as fast. On the other hand when Ts < Tc , one speaks of slow fading. A schematic
overview of these four conditions is given in figure 4.7.

The simulations are based upon a common assumption of slow, frequency selective fading. The exhibit
discusses this type of fading.

� Rayleigh fading
In real-world communication, it is likely that several rays propagate through the air along different paths.
The rays add up to the received signal rx(t). Under the assumption that there is no Line-of-Sight (LOS)
component, the received signal can be modeled as:

rx(t) =
R

∑
i=1

γi cos(ωs t + φi ) (4.3)

whereby R is the number of reflective rays from transmitter to receiver and ωs the center frequency of
the transmitted signal. φi represents the phase change caused by a differences in relative path lengths
and is assumed to have a uniform distribution over [0, 2π] while the amplitude of the ray γi is generally
assumed to vary according to a normal distribution. When there is motion of transmitter, receiver or
reflective objects, Doppler shifts need to be taken into account. We follow the approach as given by
[71].
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The Doppler shift, the relative change in frequency, is given by:

ωdi =
ωs · v
c
cos(ψi ) (4.4)

whereby ψi represents the angle of motion of the ray relative to the receiver and is assumed to be
uniformly distributed over [0, 2π]. The variable v resembles the speed of the moving object and c
represents the speed of light.
Accounting for the Doppler shift, the received signal rx(t) becomes:

rx(t) =
R

∑
i=1

γi cos(ωs t + ωdi t + φi ) (4.5)

The signal can be rewritten as a sum of an in-phase (I) and a quadrature (Q) component [71]:

rx(t) = I(t) cos(ωs t)−Q(t) sin(ωs t) with
I(t) = ∑R−1

i=0
γi cos(ωdi t + φi )

Q(t) = ∑R−1

i=0
γi sin(ωdi t + φi )

(4.6)

For large values of R, i.e. a large number of independent identically distributed rays, the in-phase
and quadrature components are Gaussian shaped [71]. The sum of zero-mean squared independent
Gaussian random variables has a Chi-square distribution. For the squared Gaussian I and Q components
of equation 4.6, under assumption of equal variance, we speak of a chi-square probability distribution
with two degrees of freedom. The PDF corresponding to the envelope

√
I(t)2 +Q(t)2 is then said to

Rayleigh distributed. The PDF of a Rayleigh distribution is [61]:

p(z) =
1

2σ2
e−

z

2σ2 for z ≥ 0 (4.7)

whereby σ2 is the variance of the Gaussian shaped I and Q components, being equal. Note that the
summed amplitude of the received signals/rays is distributed normally. This implies that there is no
dominant LOS component. If there is a dominant contribution of one component (typically LOS) then
the envelope is better described by the Rice distribution, but this is outside the scope of this research.

Two models have been used to simulate Rayleigh fading. First, a large set of independent rays (un-
dergoing a Doppler shift) has been modeled to simulate fading. Second, normally distributed I and Q
components (as explained in the exhibit) are used as an approximate model of fading. Both models lead
to the same results as long as the number of rays is large enough, path delays are shorter than the cyclic
prefix (in case of OFDM), path delays are large enough to have uniformly distributed phase shifts over
[0, 2π] and under the assumption that channel estimation and equalization is perfect in both models.
The signals STFL do not need a cyclic prefix as the signals are smooth over time and a shift in time
leads to a fraction of the ISI compared to OFDM signals.

The BERs for the signals STFL and OFDM signals in a Rayleigh fading channel are shown in figure 4.8.
The theoretical BERs are obtained by MathWorks Matlab Communication toolbox using the command
berfading for PAM. As the expressions are quite elaborate, they are not listed here. Refer for more
information to the Matlab documentation or to the mathematical background [72].

We encounter differences for the signals STFL versus the OFDM signals in robustness against fading.
The OFDM signals perform better for low Eb/N0 while the signals STFL seem to perform better for
high Eb/N0. The underlying reason may be that the signals STFL occupy larger bandwidth (on average)
than OFDM signals. If there is a relative strong frequency selective fade, all signals STFL are affected
while only a couple OFDM subcarriers are impacted. When the disturbance is smaller, the ’wide-band’
signals STFL are robust against the fades, while the fades still affect the small-band OFDM signals. The
number of bits used in simulation were limited to 105, so no real conclusions can be drawn for low BERs.
In case the channel impulse response is larger than the cyclic prefix for OFDM signals, then the BERs
related to OFDM are severely degraded and the signals STFL perform significantly better thanks to their
time-frequency localization property. In addition, the EbN0 for OFDM does not account for the energy
spent in the cyclic prefix, so the effective energy per bit is in practice larger.
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Figure 4.8 | Simulated Bit Error Rates for OFDM (left) and proposed signal set STFL (right). Signals undergo Rayleigh
fading in an AWGN channel. Theoretical lines according to [72]. Applied modulation schemes are BPSK
(o), 4PAM (∗) and 8PAM (�). Plots were generated using > 105 bits. No conclusions can be drawn based
on BERs lower than 10−4. Note, the EbN0 for OFDM does not take the energy spent for the cyclic prefix
into account.

4.6 Peak to Average Power Ratio

Chapter 3 discussed the crest factor/PAPR as a criterium for the basis set of communication signals.
As the PAPR is competing with entropy of the transmit signals, the PAPR was excluded from the signal
criteria. Nevertheless, from a system perspective, the PAPR is quite important. It directly imposes
requirements on the dynamic range of both transmitter and receiver building blocks. Section 3.4 stated
that a Gaussian distribution of the random amplitude of the transmit signal at a distinct moment in
time, without limit on the peak power, is optimal to achieve maximum entropy. Independent, identical
uniformly distributed random variables tend, for large sets, to a Gaussian distribution according to the
central limit theorem. When dealing with both in-phase and quadrature components, we have two times
a Gaussian distributed random variable. Therefore, the probability distribution of the summed random
power of the in-phase and quadrature components is a chi-square distribution with two degrees of free-
dom (as explained in section 4.5.2). The envelope of the transmit signal is then given by the square root
of the summed powers, leading to the Rayleigh distribution. Concluding, in case of maximum entropy
for both an I & Q component, the instantaneous power at a certain sampling time is expected to be a
Rayleigh distributed random variable.

Simulations have been carried out for BPSK using 108000 bits simulating the PAPR both for OFDM
signals and signals STFL. The PAPR is not a meaningfull measure as the probability for the absolute
peak to occur, for multi-carrier communication with a large numbers of carriers, tends to zero. The
PDF and complementary Cumulative Density Function (CDF) of the PAPR are more meaningful and
are plotted in figure 4.9. The histogram reveals a PDF similar to the Rayleigh distribution. Evaluation
of the complementary CDF gives a chance of 0.1% for a PAPRs of 6.2 (or in decibels 7.9dB).
To assist a fair comparison of the results it is recommended to carry out comparisons with known
expressions of the PAPR for OFDM signals. A good overview of PAPRs for OFDM is presented by
Ochiai [73]. Based on the simulation results, the PAPR for the signal set STFL seems to be equal to
the PAPR for OFDM. As stated before, the Rayleigh distributed PAPRs may imply that the transmit
signals approach the theoretical maximum of entropy at the price of a high PAPR. If no measures are
taken, the power peaks may lead to clipping and/or saturation of analog transceiver blocks. This leads
to signal distortion, which in turn causes spectral leakage. Measures need to be taken - at the cost of
achievable datarate - to prevent or reduce these power peaks. These steps are preferably taken while
designing a set of signals (when it is known to be a limitation beforehand). In case the PAPR needs to
be reduced at run-time, PAPR reduction techniques used for OFDM can be applied to STFL as well. A
good overview of PAPR reduction techniques is presented by [74] and [75].



46 4 | Performance Assessment

Peak to Average Power Ratio

N
um

be
r
of

oc
cu
re
nc
es

44 4| Performance Assessment

10 8 6 4 2 0

104

103

102

101

100

0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

Figure 4.9

evaluation of the amplitude or phase is therefore not simplied by transforming the signal to the Fourier-

domain. Similar conclusions are applicable to the signalsSdesigned in chapter 3.

For the generation of the signalsSwe propose to save the waveforms in a small memory. For a signal

setSwith signals modulated up to degree 64, under the assumption of 16bit quantization and 8, 16,

64 constellation points requires memories of 64, 128 and 512 kilobytes respectively. The transmit signal

can be obtained by adding the waveforms with a total ofNlog 2( )N additions together. WhenN= 64

this gives a number of 512 additions.

The new signal setSintents to lower the spectral leakage. But there are two additional causes of spectral

leakage. First, non-linearities in the analog transceiver part, may cause intermodulation products which

are likely to fall out-of-band and posses signicant power. Non-linearity measurements, which may be

enhanced in cognitive radios by the availability of a spectrum analyzer, and pre-distortion based on the

non-linearity and known transmit signals are recommended to combat the intermodulation products.

Second, the transmit signals based on the modulated signalss̄2 Shave a high PAPR. Saturation of

amplifying elements and/or clipping of the signals leads to distortion, causing signicant out-of-band

power. To prevent clipping, measures should be taken to increase the dynamic range of the whole

transceiver system. Another option is to lower the PAPR by preventing certain constellations. As

discussed, such measures usually lower not only the PAPR but also the entropy of the transmit signal,

i.e. the achievable datarates.

4.7.2 Receiver

Correlationlters are regarded as optimum receivers for AWGN

For the interpretation of the signalsS, the most straightforward receiver is one based on matchedlters.

Instead of a correlation

100*16*8

Instead we use the matchedlter operation in the time-domain.

There is no fast implementation for Hermite functions or the derived signalsS.
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Figure 4.9 | Histogram of Peak to Average Power Ratio occurences both for OFDM (solid/gray) and signals STFL (black
line) at the left side. The PAPR seems to be Rayleigh distributed. Right figure gives the cumulative
Probability Density Functions for OFDM (solid/gray) and signals STFL (black, dashed line).

4.7 Consequences for hardware

4.7.1 Transmitter

OFDM got a serious chance after the notice of using the inverse and forward Discrete Fourier Transform
for the generation and interpretation of OFDM waveforms. The computational complexity was propor-
tional to N2 for the DFT realizations while the fast Fourier transforms reduced this to N log2(N). The
generation and evaluation of Hermite functions is not enhanced by the Fourier transform as the func-
tions occupy several frequency bins. Some attention has been paid to the implementation of a Hermite
transform, i.e. an operator mapping a signal in a space RN to N basis Hermite functions (or signals like
STFL). Leibon e.a. have investigated fast algorithms for the approximation of Hermite functions (to
analyze protein structures) and made a first start in the development of fast Hermite transforms with
complexity proportional to N log2(N) [52]. Evaluation and elaborating on such a transform may enhance
generation and evaluation of the signals STFL.

Without a fast Hermite transform, we propose to store the basis signals STFL in a local memory. Signal
sets STFL with signals modulated up to degree 64, under the assumption of 16bit quantization and 8, 16,
64 constellation points require memories sizes of 64, 128 and 512 kilobytes respectively. The transmit
signal can be obtained by adding the waveforms with a total of N(N − 1) additions. When N = 64 this
gives about 4000 additions. Evidently, one can also carry out the modulations by N2 multiplications and
using a memory of 8kilobytes.

The new signal set STFL is designed to limit spectral leakage. There are two additional causes of
spectral leakage. First, non-linearities in analog transceiver blocks can cause intermodulation products
which are likely to fall out-of-band and contain significant power. Knowing the transmit signal as well
as the non-linearity of the transmitter, the signal can be pre-distorted to compensate the intermodula-
tion products. Second, the transmit signals based on the modulated signals STFL have a high PAPR.
Saturation of amplifying elements and/or clipping of the signals leads to distortion, causing significant
out-of-band power. To prevent clipping, measures should be taken to increase the dynamic range of the
whole transceiver system. This comes at the price of a high inefficiency of the power amplifier. Another
option is to combat the peak powers by PAPR reduction techniques [74] and [75].

To overcome spectral leakage associated with conventional OFDM signals the transmit signal is usually
shaped by time-domain pulse-shaping. Such transmit filters tend to become quite long and complex in
order to achieve good sidelobe suppression. Instead, the signals STFL immediately fulfill the criterium
of time-frequency localization and do not require filtering. The abrupt phase and amplitude changes
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associated with conventional OFDM also cause problems, as these signals are not realizable and the high
frequency components are likely to be filtered out after they leave the DAC. This leads to distortion in
the transmitter and degrades the achieved BERs. STFL as well as OFDM signals which are pulse-shaped,
are more localized in frequency and do not have this problem.
Revisiting chapter 3, two major problems with Hermite functions were identified. The non-uniform
sampling of Hermite functions as well as the DC components in the even order Hermite functions. The
signals STFL overcome these problems. They are uniformly sampled and all signals are zero-mean, which
enhances actual implementation.

4.7.2 Receiver

Correlation demodulators are known to be optimal receivers for AWGN [61]. Instead of performing
cross-correlations and evaluating the output once per symbol period, an identical operation can be per-
formed by matched filters with lower computational complexity. Matched filters are similar to the DFT
and involve N2 multiplications and N(N − 1) additions. The ’correlation’ between received signal rx(t)
and the signals STFL is calculated using real operations. This in contrast with OFDM where the FFT
involves N log2(N) complex additions and N/2 log2(N) complex multiplications. Instead of generating
the signals STFL it is proposed to save the basis waveforms in a small memory (similar to the trans-
mitter, one memory can be used for both transmitter and receiver). For a correct correlation of the
received signal timing synchronization is very important. The zero-mean property of the signals STFL

may facilitate synchronization, although more research is recommended.

To be robust in fading channels, channel estimation and equalization are necessary. In case of conven-
tional OFDM, the subcarrier spacing is such that each carrier bandwidth is smaller than the coherence
bandwidth (as discussed in section 4.5.2). As a result, equalization reduces to one complex multiplication
per subcarrier. Because the signals STFL use a wider bandwidth, equalization becomes more complex.
Equalization is applied in numerous transmission systems and is well treated by standard textbooks like
[61] and [24]. Channel estimation, using pilot symbols, can be done independent from the type of sig-
nals transmitted or received and no differences in complexity are expected for OFDM signals versus the
signals STFL.

One of the drawbacks of OFDM is its sensitivity to frequency offsets and phase noise leading to ICI. Al-
though not taken into account as a signal design criterium, the sensitivity of signals STFL for frequency
offsets and phase noise may have a large impact on the oscillator requirements. Namely the power
necessary for the oscillator is directly related to the amount phase noise introduced. It is recommended
to explore ICI for transceivers employing signals STFL for different situations and mainly in comparison
to OFDM.

It is recommended to adopt quadrature modulation. This leads to the modulation of both an in-phase
(I) and a quadrature (Q) set of Hermite signals. Exploration of efficient ways to implement quadrature
modulation is recommended.

4.8 Discussion of the results

Concluding, six performance measures have been formulated targeting the effectiveness and efficiency of
a transmission system employing signals STFL. The measures target the datarates, multi-user communi-
cation, BERs in different channels, the PAPR and the hardware complexity of transmitter and receiver.
The datarates in the single-user case are similar to OFDM while differences are encountered multi-user
cases. Where the bandwidth products for OFDM using the -60dBc definition would require guard bands
of hundreds of carriers, the bandwidth only slightly increases for the signals STFL, thanks to their ex-
ponential decrease over time- and frequency. In order to come to an optimum number of carriers per
time-bandwidth product, attention should be paid to the effective assignment of time- and frequency



48 4 | Performance Assessment

space to several users.

The BERs have been simulated for AWGN and fading channels. The results for AWGN channels are
the same for OFDM and signals STFL, except for the energy spent for a cyclic prefix in case of OFDM.
For fading environments, in case we deal with low EbN0, the BERs are relatively high for signals STFL

compared to OFDM signals. For lower BERs the performance of signals STFL is approaching or even
better than OFDM. For the point of interest (around a BER of 10−3) there is no difference in BER
performance between OFDM and signals STFL. It was expected that the signals STFL would be more
immune against frequency selective fading than OFDM due to the fact that the signals on average
occupy a wider bandwidth than OFDM signals. It is recommended to perform further analysis on the
BERs for signals STFL in fading channels. In contrast with OFDM signals, no cyclic prefix is necessary
for the signals STFL, saving some energy per bit.

The PAPR for OFDM and quadrature modulated signals STFL, using BPSK, has been simulated. Based
on the simulations, the PAPR for STFL and OFDM signals turns out to be the same. It is recommended
to carry out comparisons with literature to verify the simulation results. As discussed in chapter 3 the
high PAPR is the price we need to pay for the entropy of the transmit signals constructed by signals
STFL. To deal with the problem of PAPR, similar techniques can be used as in OFDM. Finally, the com-
plexity of transceivers employing signals STFL has been discussed. The digital complexity for generating
OFDM signals is proportional to N log2 N complex additions and multiplications. For the signals STFL

the generation involves N(N − 1) real additions and a memory for saving the basis waveforms. The
receiver can use the same memory while using N2 real multiplications for the matched filter operations.
As stated in the previous section, for quadrature modulation we deal with both I and Q components,
leading to an increase in computational complexity by a factor 2.



CHAPTER 5

Conclusions

5.1 Research aim & findings

The ever increasing usage of the radio-spectrum raises questions regarding the usage of Orthogonal
Frequency Division Multiplexing. OFDM is generally regarded as the primary multi-carrier modulation
technique, but devices employing OFDM suffer from spectral leakage. Spectral leakage may cause inter-
ference to other wireless devices, leading to higher Bit Error Rates (BERs), retransmissions and ultimately
congestion of the wireless channel. Conventional solutions to deal with the problem of spectral leakage
include guard spaces, active interference cancellation, cancellation carriers, carrier weighting, constel-
lation mappings and pulse-shaping. Although successful to smaller or larger extent, these measures
generally demand a trade-off between spectral efficiency, achievable datarates, bandwidth, used power
and noise performance. The extensive usage of these methods can be debated. The methods deal with
the consequences, the OFDM sidelobes, rather than targeting the problems, the basis signals themselves.

This thesis addresses the basis signals for communication. An elaborate treatment in chapter 2 led
to Hermite functions as a set of solutions to time-frequency uncertainty. Despite the optimal time-
frequency localization property of Hermite functions, that does not necessarily imply that the signals are
suitable for communication. Therefore, ten attributes of a basis set of signals have been discussed: con-
tinuity, linear dependence, orthogonality, correlation, energy, entropy, crest factor, localization, timing
and frequency sensitivity. These attributes led to the formulation of criteria which have been used to
design a set of basis signals STFL for communication. In contrast with Hermite functions, the signals
STFL are discrete, limited in time and frequency, zero-mean and uncorrelated.

In order to assess the suitability of the signals STFL for communication, a number of performance
measures have been defined targeting the effectiveness and efficiency of communication. While the
effectiveness addresses the achievable datarates under different circumstances, the efficiency covers the
power efficiency and hardware complexity of transceivers employing signals STFL. The datarates in
single-user case are similar to OFDM while differences are encountered for practical multi-user environ-
ments. Where the bandwidth definition of -60dBc (to conform to U.S. FCC regulations) would require
guard bands of hundreds of carriers for conventional OFDM and still significant for raised cosine filtered
OFDM signals, the -60dBc bandwidth for signals STFL is only slightly higher than the pass-band band-
width. It is shown that the signals STFL are near-optimal performing in single-user case, and thanks to
their exponential decay in time- and frequency, also perform near-optimal in multi-user environments.
The Effective energy per bit to noise PSD ratio (EbN0) for Additive White Gaussian Noise (AWGN) and
fading channels is approximately equal for signals STFL and OFDM signals (evaluated at BER ≈ 0.1%).
The EbN0 is slightly higher for conventional OFDM signals compared to signals STFL due to the neces-
sity of a cyclic prefix.

As the Peak to Average Power Ratio (PAPR) trades off with entropy, no PAPR restraint has been set
for the design of signals STFL. The PAPR is equal for the signals STFL and the OFDM signals. As long
as there is no ’fast Hermite transform’ the digital complexity of generation and interpretation of signals
STFL is proportional to N2 rather than N log2(N) for OFDM, with N the number of carriers and sampling
points. It is proposed to store the basis signals STFL in a memory (in kilobyte range). To construct
a transmit signal employing the signals STFL, N(N − 1) real additions are required. The receiver can
be built up by N matched filters involving approximately N2 real multiplications and additions in total.
Compared to Hermite functions, the signals STFL are better suited for implementation, as the signals
are uniformly sampled and lack a DC component.
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To recapitulate, the aim of this research has been formulated as reducing spectral leakage while max-
imizing the effective data transfer rate and staying within energy, bandwidth and complexity budgets.
We have been able to reduce spectral leakage by using signals optimally localized in time- and frequency
such that the communication of one user leads to minimum interference to other users. Regarding the
achievable data-rates it was discussed that for any dBc definition used to define the symbol time and
duration, the datarates employing signals STFL are (theoretically) equal or higher than for OFDM given
a certain bandwidth. While energy per bit is expected to be equal or a bit lower, thanks to the fact that
no cyclic prefix is necessary, the hardware complexity increases slightly.

A short list of the main topics brought up in this thesis are:
� Overview and critical discussion of conventional methods to combat spectral leakage
� Analysis of time-frequency uncertainty in relation to communication signals
� Investigation of the delta Dirac function in relation to Hermite functions
� Discussion of power limited versus energy limited signals in relation to entropy and PAPR
� Formulation of criteria for a basis set of signals for communication
� Design of a set of signals STFL based on Hermite functions and adapted to meet design criteria
� Discussion on the usage of the Shannon limit for datarate analysis
� Performance evaluation of a communication system employing signals STFL.

5.2 Limitations & Discussion

As this thesis addresses a wide variety of topics concerning communication, some discussions are of
limited length. Subjects like sampling, entropy and sphere-packing were briefly discussed while mat-
ters like I & Q mixing, synchronization, channel estimation and equalization have only been mentioned.
Similarly the treatments of fundamental topics like the uncertainty principle, entropy versus PAPR, the
application of the Shannon limit and the delta Dirac function are quite compact. The aim has been
to cover all considerations relevant for the design and implementation of the signals STFL rather than
giving an elaborate treatment on just a few topics. A limitation of this research is that the sensitivity
for time- and frequency deviations was not taken into account while designing the signals STFL. It is
acknowledged that the susceptibility of the signals STFL for timing and frequency deviations should be
limited. This is crucial to combat Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI).

The signals STFL have been compared with conventional OFDM signals. Two remarks can be placed
regarding this approach. First, OFDM signals are time-limited while signals STFL are unbounded over
time and frequency, which poses difficulties for comparing the two signal bases. Second, conventional
OFDM may not be the best comparison in terms of performance. Filter bank multi-carrier commu-
nication achieves a better localization and omits the necessity of a cyclic prefix. Although this thesis
addresses spectral leakage related to OFDM, also single carrier modulation techniques suffer from spec-
tral leakage. So, part of the results may be generalized to the larger class of wireless transceiver systems
employing sinusoidal signals.

In order to make the Hermite functions feasible for transceivers, the Hermite functions have been modified
to the signals STFL. Regarding the presented performance results, it is important to note that the results
have been obtained by conventional methods. No coding, no staggered I & Q paths, oversampling or
other implementation tricks have been applied. Such refinements can be applied in future work and may
boost the results. Taking into account the spectrum scarcity in these days, as well as a predicted 66x
increase in data usage in just four years, there is good evidence to believe that the Hermite functions
and their counterparts STFL can play a major role in communication. The quantum harmonic oscillator
model is built upon Hermite functions and is regarded as the improved model of the classical harmonic
oscillator model [67]. We like to start the discussion whether Hermite functions constitute an improved
model for communication over the conventional sinusoidal base.
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5.3 Recommendations for future research

Although numerous questions have been addressed, some questions regarding the signals STFL are still
open. Are larger sets of signals STFL preferred over smaller sets of STFL and what are the trade-offs?
What is the optimum sampling scheme for the continuous signals STFL? May the application of the
Fractional Fourier Transform (FrFT) increase the robustness against time- and frequency dispersion of
the channel (similar to the suggestion in [76])? All of these questions are recommended for future
research.

To obtain efficient multi-user communication, the allocation of time-frequency space to different users,
i.e. sphere-packing, should be done efficiently. This research has been limited to the time-frequency
space and neglected the space dimension. Questions arise about the optimal signals in space-time-
frequency.

The set of signals STFL has been designed for maximum entropy. This led to dropping a restriction on
the PAPR. As the PAPR plays an important role in the power efficiency of transceivers, it is recom-
mended to perform the steps in chapter 3 also for the case where a power restriction is applied. Some
hints are already given in section 3.4. It is recommended to revisit the basis signals (in this case STFL)
rather than using the signals STFL in combination with PAPR reduction techniques.

A number of recommendations are mentioned in previous chapters. The investigation of the delta Dirac
function led to a Gaussian function. Investigation of the consistency of this finding with conventional
Fourier analysis as well as implications of this finding are recommended. In addition, it has been sug-
gested to write expressions for the data throughput in terms of time- and frequency spreads rather than
absolute time durations and (pass-band) bandwidths. This would give a meaningful tool to analyze
signals which are not strictly band-limited and may provide insight in achievable datarates in multi-user
settings. Finally, the lack of a ’fast Hermite transform’ increases the digital complexity necessary for
generation and correlation of Hermite functions. It is recommended to work on ’fast’ implementations
of a Hermite transform. A first proposal to such a fast transform can be found in [52].

To verify the performance of Hermite functions and derived signals STFL, simulations have been carried
out. The simulations assumed a number of (analog) building blocks to be ideal. In order to get better in-
sight in the performance of transceivers employing signals STFL it is recommended to use more elaborate
models introducing more non-idealities. Ultimately, it is recommended to build actual transceivers em-
ploying signals STFL to assess the performance of signals STFL under various circumstances.
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ADC Analog-to-Digital Converter

AIC Active Interference Cancellation

AM Amplitude Modulation

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BPSK Binary Phase Shift Keying

BER Bit Error Rate

CC Cancellation Carrier

CDF Cumulative Density Function

CTFT Continuous Time Fourier Transform
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DFT Discrete Fourier Transform
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FFT Fast Fourier Transform

FrFT Fractional Fourier Transform

ICI Inter-Carrier Interference
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Algorithm
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ITU International Telecommunication Union
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LO Local Oscillator
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PDF Probability Density Function

PM Phase Modulation

PSD Power Spectral Density

QAM Quadrature Amplitude Modulation
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STFT Short Time Fourier Transform

TDMA Time Division Multiple Access
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WiMAX Worldwide Interoperability for Microwave
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WLAN Wireless Local Area Network
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