
Phenomenological modeling of
the human tongue and lips

M.Sc. Thesis

B.K. Julsing

University of Twente
Department of Electrical Engineering,

Mathematics & Computer Science (EEMCS)
Signals & Systems Group (SAS)
P.O. Box 217
7500 AE Enschede
The Netherlands

Report Number: SAS 16-09
Report Date: December 4, 2009
Period of Work: 19/01/2009 – 10/12/2009
Thesis Committee: Dr. ir. F.van der. Heijden

drs. A. Kreeft
Prof. Dr. ir. C.H. Slump





Abstract

This report describes a M.Sc. thesis project in which an exploration study has
been performed to the development of a dynamic model of the human tongue
and lips. This thesis project was part of a larger project in which a team of
specialists in several fields works together to find a solution that enables pre-
surgical assessment of function losses after surgical treatment of oral cancers.
The ultimate goal is the development of a virtual environment in which a func-
tional three-dimensional model of the oral cavity and pharynx can be used to
predict patient specifically the consequences of surgical interventions on the
post-operative functioning of the involved organs. Because of the complicated
anatomical and muscular structure of organs like the tongue and lips, the project
is focused on the development of a so-called phenomenological black box-model,
instead of a complicated, physiological model of the underlying structures. The
principle working of a phenomenological model relies on the hypothesis that an
explicit causal relation can be established between groups of muscular activa-
tion signals and dynamic model variables describing the shape and motion of
the tongue and the lips.

In this thesis project two of the main aspects in the development of such a
phenomenological model are investigated. These aspects are methods for cap-
turing and describing tongue and lip movements, and mathematical/statistical
techniques for modeling dynamic systems. For the former an algorithm is de-
veloped that is able to automatically detect and track the tongue contour in
(sequences of) magnetic resonance images. For a description of the dynamic
behavior of the tongue and lips, linear state space models are investigated as
possible frameworks. Although the current research was hampered by a lack of
EMG data, in the near future this data does become available. The objective
here was to already develop a possible dynamic model, which can be coupled
to actual muscle activation signals in a later stage. Therefore, mathematical
algorithms are derived and implemented for the estimation of input signals and
system parameters from measured output variables. Performance of these mod-
els is evaluated by using data of lip movements. Although still a lot needs to
be done to make the models empirically adequate, they at least show a proof
of concept regarding the control of dynamic movements. Furthermore, a simple
graphical user interface has been designed for the visualization and simulation
of static and dynamic tongue and lip movements.
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Introduction

This M.Sc. thesis is concerned with the exploration of a dynamic functional
model of the human tongue and lips. The thesis project is part of a larger
project in which a team of specialists works together to find a solution that
enables pre-surgical assessment of function losses after surgical treatment of oral
cancers. The project team consists of specialist in the field of surgical oncology,
surface electromyography, imaging, image analysis, and signal processing. The
thesis project is executed at the research group Signals and Systems at the
University of Twente (Enschede, the Netherlands) and in collaboration with the
Netherlands Cancer Institute / Antoni van Leeuwenhoek Hospital (Amsterdam,
the Netherlands).

This introduction chapter start with a short introduction to oral cancer and
the problem with the current treatment possibilities. Next a description of the
ultimate project goal will be given, followed by a formulation of the scope of
this specific thesis project. The introduction concludes with an outline of the
content of the report.

1.1 Oral cancer and treatment

Oral or mouth cancer represents about 3% of all cancers [1]. It can occur
anywhere in the mouth (oral cavity) or pharynx (the part of the throat at the
back of the mouth) which work together to allow breathing, talking, eating,
chewing and swallowing. Oral cancer most commonly involves the tissue of
the tongue and lips. A tongue or lip tumor can be very painful and awkward
and can - in the worst case - even lead to death. Annual rates for oral cavity
cancer deaths in the Netherlands are about 1.5 men and 0.8 women per 100,000
population 1. Although the exact cause of oral cancer remains unknown, it most
often occurs to people who use tobacco products.

Treatments for oral cancer are based on the stage (extent of spread) of the
disease and may involve radiation therapy, chemotherapy and surgery. If the

1Source: http://www.wrongdiagnosis.com/o/oral_cancer/stats.htm
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2 Introduction 1

cancers are still small, they can quickly and successfully be treated by surgical
removal, leaving hardly no cosmetic or functional changes behind. However,
patients with a large tumor may suffer function losses after surgical removal,
resulting in serious difficulties with speech and swallowing. The anatomical com-
plexity of the tongue and the great variability of individual tumor extensions,
which significantly differ among patients, makes it very difficult to predict the
exact consequences of surgical interventions on the post-operative functioning
of the tongue. The decision, concerning an individual patient, to whether or
not remove such a tumor can therefore be very difficult.

1.2 Ultimate goal

Objective determination whether surgical treatment of oral cancer is a suitable
choice for an individual patient, requires pre-surgical assessment of expected
post-operative functioning. The ultimate goal of the project is therefore to
develop a virtual environment in which a functional three-dimensional model
of the patient’s mouth and tongue can be used to predict the post-operative
functioning which remains after resection of a part of the oral organs. Such a
model should be based on patient specific parameters (e.g. geometric tongue
and lip parameters), obtained by some kind of scan (e.g. MRI or ultrasone).
The model is then formed by using these parameters as input for mathematical
algorithms that describe the model. These algorithms will be the basis for an
interactive visualization tool that enables virtual surgery.

(MRI, ultrasone, …)

Patient

Landmarks
Bewegings-
simulaties

Parameters

Tong-contour 
detectie

Wiskundig 
algoritme

Interpolatie /
3D vorming

Activatie signalen Tongbeweging

Tongue / mouth 
scan

Mathematical 
models

Patient 
parameters

Virtual 
surgery

Visualization 
environment

Model 
parameters

Model 
parameters

Figure 1.1: Envisaged procedure for the creation of a patient specific tongue or lip
model which can be used for virtual surgery.

Because of the complicated anatomical and muscular structure of organs like
the tongue and lips, the project team aims to develop a so-called phenomenolog-
ical black box-model, rather than a complicated, detailed mechanical/biological
model of the underlying structures. The principle working of a phenomeno-
logical model relies on the hypothesis that an explicit causal relation can be
established between groups of muscular activation signals and dynamic model
variables describing the shape and motion of the tongue and the lips. The avail-
ability of a model that describes this relation enables to predict which modes of
motion and which shape deformations are still possible after resection of a part
of the tongue or lips (see figure 1.2). This opens the door to the development of
methods for the prediction of function loss. Initially the model will be confined
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to the tongue and lips, ultimately it will be extended to the total oral cavity
and the pharynx.

(MRI, ultrasone, …)

Patient met 
tong-tumor

Landmarks
Bewegings-
simulaties

Parameters

Tong-contour 
detectie

Wiskundig 
algoritme

Interpolatie /
3D vorming

Muscle signal 
generation

Distribution 
model

Visualization 
environment

Activation 
signals

Control 
signals

Speech 
generation

Dynamic 3D 
shape model

Dynamic
3D shape 

parameters

Input variables
(muscle activation)

Model:
- State variables
- Parameters

Output variables
(tongue/lip shape)

Figure 1.2: Virtual surgery based on a phenomenological black box-model: signals
can be generated, analog to muscle activation signals, and will be coupled to dynamic
model variables according to a distribution model (not necessary one-to-one mapping).

1.3 Scope of this thesis

The ultimate project goal is ambitious and it will take a lot of time and research
in several fields before this goal is reached. The main research issues include
the investigation of possible methods for obtaining patient specific tongue and
lip parameters, investigation of techniques for measuring muscular activation
signals (both for the lips and the tongue) and investigation and development of
mathematical algorithms for modeling dynamical shapes. A big challenge will
be the establishment of the distribution model (see figure 1.2), which should
describe the causal relation between the actual muscular activation signals (e.g.
measured with EMG) and the dynamic model variables.

This thesis can be seen as an initial exploration study regarding the devel-
opment of a dynamic tongue and lip model and the involved aspects. The thesis
includes the following topics:

• A literature survey to existing modeling techniques focused on the human
tongue and lips.

• The development of an algorithm for automatic detection of the tongue
contour in (sequences of) noisy magnetic resonance images.

• Derivation, implementation and evaluation of phenomenological dynamic
modeling algorithms. This also includes the estimation of system pa-
rameters and input signals, given measured output variables (for example
extracted tongue contours).

• The development of a simple graphical user interface to visualize and
simulate static and dynamic tongue and lip movements (see appendix B).
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A tongue contour detection algorithm is developed, since the initial idea was
to use magnetic resonance imaging (MRI) for the acquisition of tongue data.
However, the algorithm can, with some small adjustments, also be used for
shape (e.g. lip) detection in normal images. The extracted data, either in MR
or in optical images, is used for investigation and development of the modeling
algorithms. These algorithms will be a starting point for building more extensive
models that become feasible when the EMG data becomes available.

1.4 Report outline

In chapter 2 the different aspects that are part of the development of a tongue
or lip model are discussed and explained. A general model structure for a sys-
tem with input and output signals is presented and the involved variables and
parameters are defined. The chapter also includes a literature survey to ex-
isting modeling techniques focused on tongue and lip modeling. Chapter 3 is
about tongue contour detection in magnetic resonance images. This chapter
first discusses possible methods for contour detection and clarifies the choice
for the Active Shape Model. The rest of the chapter is mainly concerned with
details and implementation issues of the ASM algorithm and concludes with a
performance evaluation. In chapter 4 a discrete-time linear state space model
as a possible framework for tongue and lip modeling is described. The chap-
ter considers possible state vectors, discusses the involved matrices and system
parameters, and motivates assumptions that have to be made in absence of
actual input signals. Chapter 5 is focused on the actual identification of the
linear state space model and is therefore mainly concerned with the derivation
of algorithms for the estimation of states, input and system parameters from
measured output variables. Finally, in chapter 6 conclusions are drawn about
the executed research and recommendations are given for future work.
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Tongue and lip modeling

2.1 Introduction

Human organs that are part of the oral cavity and the pharynx, are complicated
biomechanical systems. This is especially true for the tongue. The development
of a mathematical descriptive model for such a complicated physical system is an
extremely complex and challenging task, without a straightforward approach.
Over the years researchers have made several efforts to build a model that is
empirically adequate. Such a model shows the same (outward) behavior as the
system, regardless of whether the mathematical structure of the model corre-
sponds to the internal structure of the actual system or not. However, a full
three-dimensional model, that is able to simulate and predict realistic tongue
movements, is not yet developed. Reasons for this are the complex muscular and
neural structure of the tongue, the complicated shape, the interaction of differ-
ent muscles, the limited visibility (inside the mouth) and the lack of sufficient
anatomical data.

This chapter focuses on the aspects that are part of the development of a
model for the tongue or lips. The chapter starts in section 2.2 with presenting a
general structure for a model with input and output signals. In this section also
the involved variables and parameters will be defined and some general charac-
teristics to classify a model will be explained. For the development and testing
of a model, measurements on the actual system are required. In section 2.3 sev-
eral techniques to acquire data of real tongue and lip properties and movements
will be discussed. Next, the commonly applied approach for modeling physical
systems will be discussed in section 2.4. This is the so-called finite element
approach. The resulting models are called physiological models. However, the
finite element approach requires a lot of physiological information about the
actual system. Therefore an introduction to phenomenological blackbox mod-
eling, which requires less physiological information, will be given in section 2.5.
In the last section (section 2.6) the different aspects and approaches for tongue
and lip modeling will be summarized and their advantages and disadvantages
will be discussed.

5



6 Tongue and lip modeling 2

2.2 Model structuring

A mathematical model usually describes a system by a set of variables and
parameters and a set of equations that establish relationships between these
variables and parameters. The variables represent properties of the system.
They are physical quantities that often change in time. Examples of variables
are input signals, output signals and system state variables. Parameters (ap-
proximately) don’t change in time. Examples of parameters are the mass and
elasticity of a material. Furthermore, there are the running variables. These
are time and position variables. The actual model is the set of functions that
describes the relations between the different variables and parameters. In this
section it will be discussed what these different variables, parameters and func-
tions can be in case of a model for the tongue or lips.

2.2.1 Model overview

On the highest level of consideration, a human organ like the tongue or lips
can be considered as a system with input and output variables (see figure 2.1).
Input variables, indicated by u(t), are in this case muscular activation signals.
Output variables, indicated by z(t), are for examples parameters that describe
(dynamical) shapes of the tongue or lips. Between input and output, mathe-
matical operations take place. The functions inside the model describe how a
certain set of input signals at time t leads to an output at time t+ ∆t. (In case
of a causal system ∆t is equal to or greater than zero.)

System:
- variables
- relations

Input variables
(muscle activation)

Output variables
(tongue/lip shape)

Figure 2.1: General model structure.

2.2.2 Feature vector

Features are variables of the system that represent specific properties of the
system. These features together form the feature vector, indicated by x(t). The
feature vector is based on the state vector, which is the minimum set of variables
to describe the dynamics of the system, and that summarizes the system’s past.
The features depend on the state variables. Examples of basic features in case
of a model for the tongue or lips are the positions of landmarks on the tongue or
lip contour and the velocity and acceleration vectors of these landmarks. Other
examples of features that could be included in the feature vector are the vertical
distances between the upper and lower boundaries and the two angles of the
mouth corners. Figure 2.2 shows in an image of the mouth with some possible lip
features. But all in all, such a feature vector can become quite large, which can
be a disadvantage for the computational performance of the model. However,
there might be a lot of correlation between the different features. Therefore
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a mathematical technique, called principal component analysis, can be applied
to transform the original feature vectors to new features vector with a smaller
number of uncorrelated variables. This technique will be further discussed in
chapter 4.

Figure 2.2: Examples of lip features (white dots: landmarks, blue arrows: velocity
vectors, green lines: lip distances, red archs: lip angles).

2.2.3 System parameters

Examples of system parameters are the volume of the tongue or lips, the mass
density and viscosity of the soft tissue and the damping and elasticity of muscles.
These parameters are patient specific. However, it is not unrealistic to assume
that most of the system parameters are time-invariant, i.e. the system charac-
teristics do not change over time. Otherwise it would also make prediction more
difficult. When all the physical variables and parameters are punctually identi-
fied and the relations are implemented according to the correct physical laws,
the model is called a white-box model. On the other hand, when the model is
only based on a description of the behavior between input and output variables,
the model is called a black-box model. This type of modeling can be used when
there is no a priori information about the system available or when it is difficult
to identify the physical structure and parameters of the system. Usually it is
preferable to use as much a priori information as possible to make the model
more accurate. If there is not enough a priori information available, the sys-
tem parameters have to be estimated from measured input and/or output data.
When only a part of the model is constructed according to physical laws, the
model is called a gray-box model.

2.2.4 Model characteristics

A model can be classified based on some general characteristics. The most
important characteristics will be mentioned here.
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Continuous vs. discrete time

The behavior of a system can be described with a model in the continuous-time
domain or in the discrete-time domain. In case of a continuous-time model,
state and output variables can be calculated at every time moment t. In case of
a discrete-time model, this can only be done at discrete-time moments i, where i
is an integer time index. Usually a model is time-discrete, since input or output
variables are sampled signals from the actual system and thus time-discrete.

Static vs. dynamic

A model can be static or dynamic. In case of a static model, the variables are
only a function of the current input signals. So, actually a static model does
not account for the element of time. In case of a dynamic model, some variables
depend on their past, i.e. on previous values. These are the state variables.
Dynamic models typically are represented by differential equations when the
model is time-continue and by difference equations when the model is time-
discrete. Table 2.1 shows the form of the state vector function for the different
type of models. The vector ẋ is the time-derivative of the state vector. In the
table it is assumed that the system parameters are constant in time. In that
case, the system is time-invariant. If the system parameters are time-dependent,
the system is time-variant and the system function depends explicitly on time.

Continuous-time Discrete-time

Static x(t) = f(u(t)) x(i) = f(u(i))

Dynamic ẋ(t) = f (x(t),u(t)) x(i+ 1) = f (x(i),u(i))

Table 2.1: Function form of state vector for different type of models.

Linear vs. nonlinear

The state vector is a function of the input, the system parameters and of previous
state variables. The output is a function of the state vector. When these
functions are linear (i.e. there are no second or higher order terms involved), the
model is defined as linear. Otherwise, the model is considered to be nonlinear.

Deterministic vs. probabilistic

A model can also be deterministic or probabilistic. A deterministic model is one
in which every set of state and output variables is uniquely determined by the
system parameters, input signals and previous states. A deterministic model
always performs the same way for a given set of initial conditions. However,
when there is randomness present, caused by process and/or measurement noise,
the variables are not described by unique values, but rather by probability
distributions. In that case the model is called probabilistic or stochastic.
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Distributed vs. lumped

Furthermore, a difference can be made between distributed and lumped models.
A distributed model is one in which all state variables are functions of time and
one or more spatial variables. A lumped model is one in which the variables of
interest are a function of time alone. A distributed model is usually described
with a partial differential equation and a lumped model with an ordinary dif-
ferential equation. A distributed model is more accurate and more complex
than a lumped model. A lumped model can be seen as a simplification of its
distributed version. (More details will follow in section 2.4.)

2.3 Data acquisition techniques

For the development of a dynamic model of the oral cavity and the pharynx,
data about real tongue and lip movements is required. In case of a black-box
model, this data consists of sequences of measured features that describe the
evolution of shapes belonging to realistic movements. Realistic movements are
assumed to be movements belonging to, for example, swallowing and the pro-
nouncement of phonemes. Ideally, the measurements of these features are linked
to measured muscle activation signals, such that also the corresponding input
variables are available. Data of lip movements can relatively simple be obtained
with (a high speed) video camera. However, tracking tongue movements is more
difficult, especially in three dimensions. This section shortly reviews a few pos-
sible techniques for the acquisition of especially tongue data. (A detailed report
about acquisition techniques for tongue data is recently presented by another
student, see [2].)

2.3.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) [3] is a medical imaging technique to visual-
ize the internal structure of a body. It uses a powerful magnetic field (typically
2 to 3 tesla) to align the nuclear magnetization of hydrogen atoms in the body.
Radio frequency fields are applied to systematically alter the alignment of this
magnetization. When the fields are turned off, protons return to their original
magnetization alignment. Thereby they create a signal which can be detected
by the scanner (receiver coils). Additional magnetic fields are used to manipu-
late the signal, such that information can be obtained to construct an image of
the body.

MRI has been used in many researches to extract information about (dy-
namic) tongue shapes. In [4] a three-dimensional static tongue model is de-
veloped by manually extracting tongue contours from MR images in several
planes. However, most of the research is focused on (automatic) tracking of
tongue motion. In [5] the motion of the internal tongue is modeled from tagged
MR images. In tagged-MRI a grid is created on a cross-section of the tongue
by temporarily terminating certain magnetic spins. In the meantime a short
sequence of MR images can be created during a simple tongue movement. Af-
terward, positions in the different images can easily be linked thanks to the
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grid-tags. Unfortunately, the termination of the magnetic spins on the grid is
only very temporarily, such that only a few low-resolution images with tags
on the tongue can be recorded. However, a lot of research is still going on to
extent and improve the principle working of tagged-MRI. For example, in a
quite recently publication [6] a certain sequence - called zHARP - of RF-pulses
and magnetic field gradients is described to record a simple three-dimensional
tongue motion from three orthogonal tag orientations (sagittal, coronal and
transversal).

Summarized, MRI is a safe technique to create images of a cross-section
inside the mouth. In these images, the tongue contour can be detected manually
or automatically. From images in several planes it is possible to construct the
three-dimensional shape. However, the quality of the MR images depends on the
acquisition speed, i.e. the resolution is inversely proportional to the speed. For
now, the acquisition speed is too low for tracking the tongue during realistic
movements, especially in three dimensions. In the future MRI might be an
option for the acquisition of proper tongue data.

(a) Sagittal (b) Transverse (c) Coronal

Figure 2.3: Examples of MR images of the tongue in the different planes.

2.3.2 Ultrasonic imaging

Also Ultrasonic imaging [3] is a safe and non-invasive medical imaging tech-
nique that enables visualization of the tongue inside the mouth without placing
any obstructions on the tongue. The basic principle of ultrasonic imaging is
simple. A propagating wave partially reflects at the interface between tissues
with different densities. If these reflections are measured as a function of time,
information is obtained on the position of the tissue. This way the tongue tissue
can be distinguished from other tissue and air in the mouth.

In [7] ultrasonic images are recorded by placing a probe, mounted on a special
helmet, under the test person’s chin. The probe emits ultrasonic waves which
are reflected at a boundary between different types of tissue. It appeared to be
possible to record tongue images with a frame rate of 30 fps. A disadvantage
is that a raised tongue tip with an air pocket below it cannot be imaged, since
the reflection at the air boundary is almost 100%.
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2.3.3 Radiography

Radiography is an imaging technique that uses electromagnetic radiation. The
most useful type of radiation for imaging purposes is X-rays [3], because of the
relative high energy of the electromagnetic waves. X-rays consist of photons that
can interact with matter and tissue in three different ways. When a photon hits
an atom it can lead to photoelectric absorption, electron scattering or electron-
positron pair production. The way of interaction depends on the density and
composition of the material. An image is formed by a detector, behind the
object, that projects the not-absorbed X-rays on a radiation-sensitive film.

Although X-rays can be used to create very clear images of organs, there is
always a small risk on radiation damage. Another disadvantage is that teeth in
the mouth make the detection of the tongue more difficult, because the difference
between different types of tissue is very small compared to the difference between
tissue and teeth.

2.3.4 Accelerometers

A different way to track tongue motion might be accomplished with small ac-
celeration sensors on the tongue. The main advantages are the high sample
rate and the accuracy. Main disadvantages include the weight of the sensors,
the required electric cords that have to go into the mouth and the low resolu-
tion (probably just a few sensors can be ‘mounted’ on the tongue). The sensor
weights and the cords will probably influence and limit the tongue movements.

2.4 Physiological modeling

Most of the developed models of the tongue or lips so far, are so-called physio-
logical models. A physiological model describes the (dynamical) behavior of a
physical system by analyzing and modeling the content of the physical system.
In case of developing a physiological model of the tongue or lips, information
about the internal and external structure of these organs is required, like the
extrinsic and intrinsic musculature, the shape and tissue properties (e.g. mass
and stiffness). The required physiological information is generally obtained from
anatomical and physiological studies, X-ray images and MRI scans.

2.4.1 Continuous description

Initially, physical systems like the tongue and lips are considered as distributed
systems. This means that different physical quantities interact (e.g. force and
velocity) and that different dynamic laws are needed to describe the dynam-
ical behavior. The most relevant laws, in case of a dynamical system in the
(bio)mechanical domain, are Newton’s second law, Hooke’s law and the fric-
tion law. Newton’s second law, F = ma, describes how an applied force F
on a mass m results in an acceleration a of that mass. Hooke’s law, F = kx,
is an elasticity law and describes the relation between an applied force on a
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spring and its stretching. The constant k represents the stiffness of the spring.
Furthermore, in most mechanical systems, friction is involved. The friction or
damping law, F = dv, describes how a friction force F influences the velocity
v of a moving object. The constant d represents the damping of the material.
Here, the friction is assumed to be viscous, i.e. linear. But often friction forces
are nonlinear.

A simple physiological model of for example the tongue, consists of mass
points connected to each other by springs and dashpots (dampers) in three
dimensions. When, in case of a one-dimensional system, the number of points
(or elements) is approximately infinite and the distance between two points
approaches zero, it can be derived that the continuous dynamical behavior, in
terms of force and velocity, can be described with the following two differential
equations:

∂v(x, t)

∂x
= −1

k

∂F (x, t)

∂t
− 1

d
F (x, t) (2.1a)

∂F (x, t)

∂x
= −m∂v(x, t)

∂t
(2.1b)

In these equations, ∂v(x, t) and ∂F (x, t) are respectively the differential velocity
and the differential force of a particle at position x and time t. The constants
m, k and d represent respectively the mass density, the stiffness and damping of
the material. By differentiating equation (2.1a) with respect to x and equation
(2.1b) with respect to t, the resulting equations can be combined to the following
partial differential equation:

∂2

∂x2
F (x, t) =

m

k

∂2

∂t2
F (x, t) +

m

d

∂

∂t
F (x, t) (2.2)

In case of a three-dimensional dynamical system, the partial differential equation
also contains the second derivatives of the force with respect to y and z. This
is the divergence of the gradient of F , also called the Laplacian (∇2) of F :

∇2F (x, y, z, t) =
m

k

∂2

∂t2
F (x, y, z, t) +

m

d

∂

∂t
F (x, y, z, t) (2.3)

Together with some boundary conditions (e.g. v(x, y, 0, t) = 0 and F (x, y, z, 0) =
0), equation (2.3) can be used to derive the velocity and force of certain point
on the material at a certain time moment.

2.4.2 Discretization

Solving partial differential equations (PDE) like the one of equation (2.2) is a
complex task; especially in case of PDE’s that describe constructions or systems
in three dimensions this is practically impossible. A commonly used approach
for finding approximate solutions of PDE’s is the finite element method (FEM).
The basic idea of the FEM is to completely eliminate the PDE’s and to render
them into an approximating system of ordinary differential equations. This is
done by dividing the construction into a finite number of elements, which are
connected to each other by nodes. The configuration of these nodes defines
the finite element mesh. A finite element model is also called a lumped model.
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Figure 2.4 shows a lumped model of a one-dimensional dynamical system (e.g.
an elastic cord). It consists of a finite number of mass points connected to each
other by springs and dashpots.

m∆x

k/∆x

d∆x

Fin (0,t)

∆x

Fuit (L,t)

Figure 2.4: Example of a lumped model of a one-dimensional dynamical system.

Tongue and lip modeling using FEM

Over the years, there have been several efforts to model the tongue and lips
by using the FEM approach. The developed models can be divided into two-
dimensional, ‘two-and-a-half’ dimensional and three-dimensional models. One
of the first physiological model of the tongue is presented by Perkell [8] in 1974.
This is a two-dimensional model in the mid-sagittal plane, consisting of sixteen
elements (see figure 2.5a). Muscles are modeled as linear elastic material with
springs and-dashpots. Perkell based his model on information from anatomical
studies. A more advanced two-dimensional finite-element model of the tongue
is developed by Payan and Perrier [9] in 1997 and consists of 48 elements. The
model geometry is based on X-ray images.

(a) 2D-model Perkell [8].

59

Figure 2.9: Two-dimensional tongue model from Sanguineti et al. (1998).

Figure 2.10: Two-and-a-half-dimensional Dang & Honda tongue model; this figure
is from Dang and Honda (2002).

(b) 2.5D-model Dang and Honda [10].

Figure 2.5: Two (and-a-half) dimensional finite element models of the tongue.

Dang and Honda presented several versions of a ‘two-and-a-half’ dimensional
tongue model [10, 11]. Such a model does not cover the whole tongue, but has
a thickness (2 cm) in the sagittal plane (see figue 2.5b). The ‘two-and-a-half’
dimensional model of Dang and Honda consists of 120 elements. The geome-
try of the model is based on three-dimensional anatomical data, consisting of 15
sagittal slices of MR images. The developed lumped model can be considered as
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a network of mass points connected by spring-and-dashpot elements. The cor-
responding motion equation is described as a second order differential equation:

Mẍ(t) + Dẋ(t) + Kx(t) = F(t) (2.4)

In this equation M is a diagonal matrix consisting of the masses of all the mass
points within the model. D and K are the damping and stiffness matrices and x,
ẋ(i) and ẍ(i) are respectively the displacement, velocity and acceleration state
vectors of the finite element assemblage at time t. F(t) denotes the external
forces applied on the nodal points. Using a backward-difference method, it
is relative simple to obtain the solution of x(t). However, the small number
of elements constrains the number of possible shapes and movements in the
sagittal plane.

Full three-dimensional tongue models that incorporate the complex muscle
structure and biomechanical properties are rare. One of the most advanced
and sophisticated model was introduced by Wilhelms-Tricarico [12] in 1995. He
was the first to model passive stress using hyperelastic material. In previous
models, material was assumed to be linear elastic. The finite element mesh also
shows an increase of precision, compared to previous models. It consists of 740
elements and the node locations are based on data from the Visible Human
Project1. The mesh proposed by Wilhelms-Tricarico was the basis for further
FEM tongue models. However, most of the presented FEM tongue models are
focused on the investigation of speech production and are therefore symmetric
in the sagittal plane. Fujita [13] constructed a three-dimensional physiological
tongue model focused on clinical applications and also included asymmetric
postures. Estimated muscle activation patterns belonging to basic movements
are incorporated in this model. Simulations were compared to actual tongue
movements and demonstrated that the model is able to reproduce these basic
movements. A quite recent (2006) three-dimensional finite element model of the
tongue is presented by Wu and Han [14]. The volume mesh and fiber directions
are derived by an iterative optimization procedure that fits mesh to data set
obtained from the female Visible Human.

(a) Model Wilhelms-Tricarico [12]. (b) Model Wu and Han [14].

Figure 2.6: Three-dimensional finite element models of the tongue.

1Website VHP: http://www.nlm.nih.gov/research/visible/visible human.html

http://www.nlm.nih.gov/research/visible/visible_human.html
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From the considered literature the general procedure for the creation of
a three-dimensional finite element model of the tongue can be derived. This
procedure consists of the following basic steps:

1. Based on geometric descriptions from anatomical studies and MR or X-
ray images, a volumetric representation is produced. This representation is
discrete: the volume of the tongue is represented by a collection of voxels.
The geometric representation is smoothed by lofting between calculated
splines.

2. The geometric representation is divided into simple volumetric elements
(e.g. tetrahedrals), forming the finite element mesh. This division is based
on muscle and fiber orientations.

3. A mathematical description of the behavior of the involved materials (e.g.
soft tissue and muscles) is formulated. This description contains informa-
tion about the deformation of the materials in response to applied external
loads and the stresses generated by the material itself. It also involves a
kinematic model of muscles.

4. Boundary conditions are assigned. This means that nodes in positions
belonging to external attachment sites of the tongue are determined to be
fixed. These nodes are based on anatomical criteria.

5. In the last step the applied loads (input signals) are described. In case
of the tongue, the loads are provided mainly by muscle contraction. The
muscle activation scheme can be specified by the user, generally in pressure
units.

After these parts, the FEM model is defined and it is possible to calculate how
the model will deform, given a certain set of inputs signals (innovated muscles).
This deformation is generally calculated with an ordinary differential equation,
similar to (2.4). Such a differential equation can relatively easy be solved, in
contrary to the partial differential equation of (2.3).

2.5 Phenomenological modeling

In case of phenomenological or black-box modeling one tries to build a model
of a system without looking at its internal structure, but only by considering
the observable behavior of the system. Knowledge about the exact system
parameters and state variables is not required. System identification by means of
phenomenological modeling is especially useful for modeling systems that cannot
easily be represented in terms of first principles or known physical laws. The
challenge in phenomenological modeling is to estimate the system parameters,
the state variables and possibly even the input signals from measured data. The
system parameters of a phenomenological model do not need to have a physical
interpretation.

The observable phenomena of a biomechanical system like the tongue and
lips are the dynamical shapes of for example movements belonging to swallowing
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and the pronouncement of phonemes. These dynamical shapes can be consid-
ered as the output variables of the general system model in figure 2.1. A few
possible techniques for measuring data that describe dynamical tongue shapes
are already reviewed in section 2.3. Once there is proper measurement data
available, the model can be identified from these measurements by using sta-
tistical techniques. The main idea is to find a relative small number of control
variables that can explain the most important (dynamical) shapes. The ulti-
mate goal is to relate these control signals to measured activating EMG signals.
Once this connection is established, it will be possible to calculate to dynamical
deformation as a function of muscle activation signals.

So far, not many tongue or lip models have been developed by means of
phenomenological modeling. In [15] the temporal evolution of lip features (land-
marks on the lip contour) during the pronouncement of simple visemes is mod-
eled as a linear dynamical system. The system parameters are estimated from
the measurements by using system identification techniques. However, since
this research was focused on lip articulation classification, input signals are not
estimated. In [16] a phenomenological three-dimensional static model of the
tongue is presented, based on (manually) extracted tongue contours from MR
images. The used data contained 44 sets of MR images for different tongue
shapes. Each set consisted of 54 MRI slices in different planes. The total ac-
quisition time per set was 43 seconds and during this time the tongue had to be
sustained at the same position. The slices were placed on an in advance deter-
mined grid for the three-dimensional construction, see figure 2.7. A statistical
technique, called linear component analysis, was used to derive six static con-
trol parameters, representing tongue parameters like the jaw height, the tongue
width and the tongue tip. Another measurement technique, called Electromag-
netic articulography (EMA), was applied to measure the actual values of these
parameters in time. The combination of the MRI and EMA was used to make
animated sequences of tongue shapes as a function of these parameters.

(upper-most) axial gridplane (gridplane 5 in Fig.

2b) before the resampling, so that they were re-

sampled with 18 points above that plane and 10

below (5 on each side).

This allowed for a polygon mesh construction

of the tongue by connecting each vertex (vi) to its
neighbour in the same gridplane (viþ1) and to the

corresponding vertex (vj) and its neighbour (vjþ1)

on the adjacent gridplane. In the junction between

gridplane 16 and the axial and semi-polar parts of

the grid, the 18 vertices of contour 16 that were

above gridline 5 were connected to the 18 vertices

of contour 15, as outlined above for the other

gridplanes, whereas the 10 that were below were
connected to the ends of the 5 axial contours no.

1–5.

This resulted in an ordered mesh consisting of

420 vertices and approximately 800 polygons. In

this mesh the sagittal coordinates refer to the co-

ordinate from the inner part of the grid to the

outside of the tongue. The lateral coordinates run

from left to right.
The tongue shape when the subject was at rest

with closed jaw was used as the reference shape for

the polygon model as well as in the parameter

extraction process. This means that tongue shapes

for all other articulations were created in the

model as deformations from the reference shape

using the articulatory control parameters defined

in the component analysis described below.

In the last part of the reconstruction process,

the sagittal fibres were binominially smoothed to

suppress some local variations. This smoothing

was mainly for visual purposes, reducing tongue
shape variations due to reconstruction artefacts,

and had only minor influence (4%) on the model�s
ability to explain the data variability (cf. Section

3.4).

3.2. The linear component analysis

The extraction of the model�s parameters was

done by decomposing the geometrical points de-

scribing the tongue in linear components. In the

present study this was done through linear com-

ponent analysis (LCA), where the factors to be
extracted were imposed on the model.

The advantage of using LCA is that every ex-

tracted control parameter has a well-defined artic-

ulatory influence on themodel and that articulatory

measures, such as the jaw height can be used in the

extraction process. The disadvantage is that the

data variation is not as efficiently explained as with

PCA or PARAFAC. LCA was chosen neverthe-
less, due to its compatibility with the definition of

Fig. 2. Initial 3D tongue shape reconstructions of [a a], with gridline numbers indicated.

O. Engwall / Speech Communication 41 (2003) 303–329 309

Figure 2.7: Three-dimensional phenomenological tongue model from Engwall [16].
The right image shows the grid for the 3D construction from MRI slices.

http://www.articulograph.com/introduction.htm
http://www.articulograph.com/introduction.htm
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2.6 Summary and discussion

Modeling the human lips and especially the tongue is a difficult task, due to the
complex muscular and neural structure, the complicated shape, the interaction
of different muscles, the limited visibility (inside the mouth) and the lack of
enough anatomical data. Over the years researchers have already made several
efforts to arrive at a working model. The main distinctions concerning the
different type of models are between physiological and phenomenological (or
statistical) models, between two- and three-dimensional models and between
static and dynamic models.

The physiological modeling approach aims at the understanding and model-
ing of the muscular structure and functions of the system and the biomechanical
constraints involved, such as volume conservation and tissue deformation. How-
ever, physiological modeling has some big disadvantages and difficulties. The
method requires detailed information and understanding of the actual system,
like the direction and location of different muscles and neurons and values of
physiological and mechanical parameters. Dynamical physiological models are
generally constructed by using the finite element method. Although FEM is
a relative simple method for solving complex differential equations, it is very
computationally intensive and requires advanced software tools.

A different approach for the development of a tongue or lip model is phe-
nomenological modeling. A phenomenological model is constructed based on
observed or measured phenomena, i.e. the outside behavior of the system. So,
the main advantage of phenomenological modeling is that it does not require
knowledge about the exact anatomical structure of the system. Another advan-
tage of dynamic phenomenological models is that they are less computational
intensive and simple enough to be incorporated in a real-time system. However,
this approach has also some disadvantages and difficulties. Because of the lim-
ited visibility of the tongue, it is difficult to obtain proper measurement data.
Tracking (three-dimensional) tongue movements inside the mouth requires ad-
vanced measurement techniques. A few of those techniques have been discussed
in section 2.3. Furthermore, other challenges in case of phenomenological mod-
eling involve the estimation of system parameters and setting up the relation
between derived control parameters and actual muscle activation signals.
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Tongue contour detection

3.1 Introduction

In case MRI is used as the technique for the acquisition of tongue data or
patient-specific parameters, the first step is the detection of the tongue contour
in the MR images. The objective of the project part, described in this chapter,
was therefore the development of an algorithm for automatic tongue contour
detection in (sequences of) MR images. In such a MR image, the tongue cross-
section (e.g. in a sagittal, coronal or transversal plane, see figure 2.3) usually
covers only a small part of the image. Because of MRI technical reasons, it is
more efficient and faster to make images of the whole head. Taking MR images
involves making a trade-off between image quality (in terms of resolution and
noise) and acquisition speed. Especially in capturing a sequence of MR images
during a tongue movement, the quality suffers. The detection method should
therefore be robust against a significant amount of noise in the image.

For the detection it was decided to implement an Active Shape Model (ASM)
algorithm. The main reasons for choosing this algorithm include its performance
in noisy images, its relative large feature detection range and its matching speed.
The choice will be further motivated in section 3.2, where a comparison will be
made with other methods for contour detection. In section 3.3 details and
implementation issues of the ASM algorithm, focused on tongue contour detec-
tion in MR images, will be described. In section 3.4 the performance of the
implemented algorithm, in terms of detection results, will be discussed. For
this performance evaluation, sequences of captured MR images during simple
tongue movements in the sagittal and transverse plane are used. This chap-
ter concludes in section 3.5 with some critical remarks concerning the tongue
contour detection algorithm.

19
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3.2 Methods for contour detection

Most of the existing methods for finding a shape or contour in an image use
flexible models or deformable templates that are build based on training images
containing an example of the concerning object. Such models usually have a
number of parameters to control the shape and pose of all parts of the model.
During shape search in a new image, these parameters are adjusted in an itera-
tive process based on object features - such as edges - in the image. Three of the
most significant methods for shape or contour detection are Active Contours,
Active Shape Models and Active Appearance Models. In this section a short
review of these methods will be given.

3.2.1 Active Contours

The basic concept of contour detection algorithms was introduced in 1988 and
is called Active Contours [17] or snakes. A snake is placed on an image and
moves toward an optimal position and shape. Fitting active contours to shapes
in images is an iterative process. The operator must suggest an initial contour,
which is quite close to the intended shape. The contour will then be attracted
to features in the image. This happens by minimizing an energy function,
which consists of a sum of external and internal energy. The external energy is
supposed to be minimal when the snake is at the boundary of an object. The
internal energy is related to applied constraints. These constraints ensure that
the contour remains smooth and limit the freedom of bending and deformation.

3.2.2 Active Shape Models

Although the deformation of active contours can be limited by applying some
constraints, active contours are usually free to take almost any smooth shape
and easily snap to wrong boundaries. Cootes introduced in 1995 [18] a method
to effectively limit the deformation of contours. From a training set of shapes,
a point distribution model is inferred that represents the mean geometry of the
shapes and statistical modes of geometric variation. The point distribution
model leads to an Active Shape Model (ASM), which can only deform to fit
objects in ways consistent with the training set.

The ASM describes a shape with a set of points. The contour is created
by interpolation between the points. During each iteration, a search is made
around the current position of each point, along a profile normal to the contour,
to find a point nearby which best matches the model of the texture expected
at the landmark. The parameters of the shape model controlling the point
positions are then updated to move the model points closer to the points found
in the image. Because the shapes are constrained to be similar to those in the
training set, the method is able to automatically locate structures in complex,
noisy, and cluttered images. The ASM algorithm can easily be extended to
the three-dimensional case [19]. An object in a three-dimensional space is than
searched by taking samples along profiles normal to the object surface.



3.2 Methods for contour detection 21

3.2.3 Active Appearance Models

The Active Appearance Model (AAM) [20] is closely related to the Active Shape
Model. The AAM is generated by combining a model of shape variation with
a model of texture variation. From the training set, a mean shape and modes
of variation are inferred that represent both shape and texture. Given a new
image, labeled with a set of landmarks, an approximation with the model can
be generated in iterative process. In each iteration, the AAM only samples the
image under the current position of the model. The model parameters are then
updated based on these sample results. Figure 3.1 shows an example of applying
this method to face images.

Figure 3.1: Example of applying the AAM on face images.

The AAM is able to give a better match with the image texture than the
ASM. But since the AAM only examines the image directly under its current
area, this method has a smaller capture range (feature detection range) than the
ASM, which searches around the current location, along profiles. The smaller
the capture range, the higher the demands on the initial position of the model
on the new image and the slower the convergence speed. Also according to
experimental results, described in [20], the ASM is faster and has a larger feature
detection range than the AAM, especially in medical MR images.

3.2.4 Conclusion

Based on the reviews in the above subsections, it can be concluded that the
Active Shape Model would be the most appropriate method for the detection
of tongue contours in MR images. Simple Active Contours are not based on
a trained model and can therefore deform into invalid shapes during search.
The Active Appearance Model is focused on synthesizing a complete image
of an object and might therefore be a bit overkill for this application. The
Active Shape Model is fast, accurate, appropriate for noisy images and able
to search for shape features in a wide range. The latter property is desirable
since tongue shapes can have a large deviation from the mean shape (e.g. in
case of an image with a protruded tongue). Furthermore, the ASM algorithm
can easily be extended to the three-dimensional case. This is also desirable,
since ultimately the envisaged system should enable virtual surgery in the three
spatial dimensions.
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3.3 ASM for tongue contour detection

Based on the papers [18, 20, 21], an ASM algorithm for the detection of tongue
contours in MR images is implemented in Matlab. Some small modifications
and adjustments, compared to the basic version of the ASM, have been made to
make the algorithm especially suitable for this application. In this section, im-
plementation issues will be described and design issues will be motivated. In the
upcoming subsection it will first be explained how tongue contours can actually
be represented. The next two subsection describe the steps to be executed in
the training and application stage.

3.3.1 Representation of tongue contours

The model of an object shape can be represented by a set of points (landmarks).
In case of representing the contour of an object, the landmarks have to be
placed at the object’s boundary. For good performance, the locations of these
landmarks should be places of interest where there is the most information.
Excellent locations are for example corners and ‘T’-junctions. Intermediate
points can be used to define the boundary more precisely.

If a shape is described by l points in d dimensions, the shape can be repre-
sented by an element vector x of length p = ld, formed by concatenating the
elements of the individual point position vectors. In case of representing the l
landmark points, (xi, yi), of a shape in a 2D image, the shape vector becomes
a 2l element vector:

x = [x1, x2, . . . , xl, y1, y2, . . . , yl]
T

(3.1)

Next, a curve through the landmarks can be drawn by using a spline in-
terpolation method. Beside doing this for visualization purposes, samples in
the image will be taken at landmarks along a profile perpendicular to the con-
tour. Several algorithms for calculating splines exist. One of the commonly
used algorithms is cubic spline interpolation. Since Matlab is provided with
a ready-made function for calculating cubic spline curves, it was decided to use
this one. The cubic spline between two points is of the form:

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 (3.2)

The algorithm calculates the coefficients ai, bi, ci, di such that the values of two
spline functions are equal at landmark positions, as well as the derivatives and
second derivatives of the functions at that position:

Si(xi) = Si−1(xi)

S
′

i(xi) = S
′

i−1(xi)

S
′′

i (xi) = S
′′

i−1(xi)

(3.3)

Since the tongue contours are closed contours, the curve of the last landmark
should properly be connected to the first landmark. This is accomplished by
including the following constraints: S1(x1) = Sl(x1), S

′

1(x1) = S
′

l (x1) and

S
′′

1 (x1) = S
′′

l (x1). Figure 3.2 shows three examples of MR images with assigned
tongue landmarks and calculated spline curves.
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Figure 3.2: Examples of MR images in the mid-sagittal plane with assigned tongue
landmarks and calculated spline curves.

3.3.2 Training stage

In the training stage data is generated that specifies the active shape model.
The ASM-data can be used to find a shape, in a new image, that is similar to
the shapes in the training set. During training, the following operations take
place: generating profile statistics, aligning the training shapes, and extracting
the modes of variation from the aligned training set.

Generating profile statistics

During each iteration in the application stage, a suggested movement for each
shape point will be calculated by matching its local structure with a statistical
model of the corresponding landmark. The model for a certain landmark is ob-
tained by calculating its texture profile in each training image. So, suppose the
training set consists of I images, with for each image a (manually) determined
shape specified by l landmarks. The profile of the jth landmark in the ith image
is then obtained by taking k samples at either side of the landmark (see figure
3.3).

Since the sample points are most of the times not exactly located in the
middle of a pixel, it was decided to apply bilinear interpolation:

gsij = ga(1− α)(1− β) + gb(α)(1− β) + gc(1− α)(β) + gd(α)(β) (3.4)

In this equation ga, gb, gc and gd are the values of the four nearest pixels around
the sample point sij and α and β are respectively the horizontal and vertical
distance from the sample point to the centers of pixel a. The 2k + 1 samples
are put in a vector gij . To reduce the effects of global intensity changes (i.e.
offset differences), the sampled profile is differentiated and then normalized by
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Figure 3.3: For each landmark, samples are taken along a profile perpendicular to
the contour. Sampling is done by using bilinear interpolation.

dividing by the Euclidean distance of the differentiated vector dgij . This results
in a profile vector of length 2k:

gij →
dgij√∑2k
s=1 dg

2
sij

(3.5)

The procedure is repeated for each training image and results in a set of
I normalized profile vectors for each landmark point. Assuming that these
vectors are distributed as a multivariate Gaussian, the mean profile vector ḡj
and covariance matrix Sgj of the jth landmark can be calculated as follows:

ḡj =
1

I

I∑
i=1

gij (3.6)

Sgj =
1

I − 1

I∑
i=1

(
gij − ḡj

) (
gij − ḡj

)T
(3.7)

Aligning the training set

During the acquisition of the MRI data, the head might have moved a bit.
This kind of small movements results in small pose differences - between the
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shapes - that are not caused by actual tongue movements. For the extraction of
the statistical shape parameters, it is important that these pose differences are
filtered out. Therefore the shapes are first aligned to each other by applying a
transformation Ti on the landmarks of each shape xi, consisting of a translation
(Xt, Yt)i, a rotation θi and a scaling si. For instance, if applied on a single
landmark (x, y):

TXt,Yt,s,θ

[
x
y

]
=

[
s cos θ s sin θ
−s sin θ s cos θ

] [
x
y

]
+

[
Xt

Yt

]
(3.8)

Aligning the shapes is an iterative process. First, all the shapes are trans-
lated such that their centers of gravity are at the origin. In each iteration the
shapes are aligned, one by one, to the current estimate of the mean shape. Ini-
tially, the first shape in the training set is chosen as the mean shape and after
each iteration the mean shape is re-estimated from the aligned set. The process
continues until the mean shape does not change significantly after one iteration.
The pseudo code of the alignment process is as follows:

1. Translate each shape such that its center of gravity is at the origin.

2. Choose first shape in set as initial estimate of mean shape: x̄ = x1.

3. Start iterative alignment:

(a) Align shapes one by one to the estimated mean shape.

(b) Re-estimate mean shape from aligned shapes.

(c) Return to 3(a) unless convergence or a maximum number of iterations
is reached.

So, each iteration consists of the alignments of two shapes (shape i to the
current estimate). However, there is no unique solution for the alignment of
two shapes. The shapes are namely specified by a whole set of landmarks, while
there are only four transformation parameters. Therefore, the transformation
parameters (Xt, Yt, s, θ) for the alignment of shape xi onto the mean shape x̄
are calculated by minimizing the following quadratic criterion:

E = (x̄− T(Xt, Yt, s, θ)xi)
T

W (x̄− T(Xt, Yt, s, θ)xi) (3.9)

In this equation W is a diagonal matrix of weights for each landmark. These
weights are based on the variance of each landmark in the training set. The
weight wj for the jth landmark is calculated as follows:

wj =

(
l∑

k=1

VRjk

)−1

, (3.10)

where Rjk represents the distance between landmarks j and k in a shape and
VRjk

the variance in this distance over the set of shapes:

VRjk
= Var

{√
(xi,j − xi,k)

2
+ (yi,j − yi,k)

2

}
, i = 1, . . . , l (3.11)
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So, stable landmarks have a low variance and are assigned with a higher weight
than unstable landmarks, which have a high variance. Minimizing criterion (3.9)
is done by differentiating the equation with respect to each of the four variables
Xt, Yt, s, θ and equating the resulting equations to zero. The alignment of shape
xi to the mean shape x̄ is then accomplished by carrying out the transformation
of equation (3.8) on xi with the calculated transformation parameters. Figure
3.4 shows the result of the alignment of ten tongue shapes.1
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−40

−20
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20

40
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Figure 3.4: Aligned training shapes (scatter plots) and mean shape (green curve).

Modeling shape variation

From the aligned set of training shapes, a Point Distribution Model (PDM)
can be derived, consisting of the basic modes of shape variation. With these
modes, new examples of shapes can be generated that are similar to those in
the training set. As can be seen in figure 3.4, some landmarks show little
variability over the training set, while others form more diffuse clouds. The
PDM seeks to model the variation of the coordinates within these clouds, but
the PDM also takes into account that landmarks do not move independently -
their positions are partially correlated. For the generation of the shape modes,
Principal Component Analysis (PCA) is applied on the training set. PCA can
transform the original data to a new coordinate system with less dimensions.
This is done by calculating the eigenvalues λk (k = 1, . . . , 2l) and eigenvectors

1The difference with the unaligned set is in this case not very large, since the head was
kept quite stable during the MRI-scans.
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pk of the covariance matrix S of the original data set:

x̄ =
1

I

I∑
i=1

xi (3.12)

S =
1

I

I∑
i=1

(xi − x̄) (xi − x̄)
T

(3.13)

Spk = λkpk (3.14)

The covariance matrix indicates how much the dimensions vary from the mean
with respect to each other. The eigenvectors with the highest eigenvalues contain
the most information and are the principal components of the data set. A
new shape example can now be generated by taking the mean shape, x̄, and a
weighted sum of the modes of variation:

xnew = x̄ + Pb (3.15)

In this equation, P is a matrix consisting of t eigenvectors corresponding to the
first t highest eigenvalues of the covariance matrix and b is a vector of weights
(shape parameters):

P = [p1 p2 . . . pt] (3.16)

b = [b1 b2 . . . bt]
T (3.17)

The number of modes t can be chosen so that it explains a certain proportion
(e.g. 95 %) of the total variance in the training set (which is the sum of all
the eigenvalues). To generate only plausible shapes, the values of bk have to be
limited. Since most of the population lies within three standard deviations of
the mean, suitable limits are:

−3
√
λk ≤ bk ≤ 3

√
λk (3.18)

Figure 3.5 shows examples of tongue shapes by varying the weights of the
first, second and third eigenvectors (shapes modes) within the allowed limits.
As can be seen in this figure, these parameters mainly control the tip of the
tongue. This corresponds with figure 3.4, since most of the variation occurs at
this part of the tongue.

3.3.3 Application stage

In the application stage the generated ASM data is used to find a shape, similar
to the shapes in the training set, in a new image. This is done in an iterative
process. In each iteration a suggested movement for the current shape is calcu-
lated, based on the detection of model features. The shape is then transformed
(scaled, rotated and translated) and deformed (in allowed deformation modes)
to best match the shape to the new points. Since tongue shapes can have a large
deviation from the mean shape, it was decided to further improve the detection
range. This was accomplished by the implementation of multi-resolution ASM,
which implies feature search on different resolution levels.
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Figure 3.5: Shape effects of parameter variation.

Calculating a suggested movement

Given a certain shape, consisting of a set of model points in the image frame,
the algorithm should determine a set of adjustments which will move each point
toward a better position. Since the model points represent the boundary of
the object, this involves moving them toward image edges. For the calculation
of these suggested movements, the local texture profile of each shape point in
the image is calculated. This is done in the same way the texture profiles are
calculated during training, but now with a larger number of sample points along
a longer profile normal.

The sample profile gs of a certain shape point consists of m sample points
either side of the shape point, where m > k (k is the number of sample points
either of the shape points during training). Next, the quality of fit with the
training model is determined for each of the 2(m−k)+1 possible positions, along
the profile, by calculating the Mahalonobis distances (3.19) or the Euclidean
distances (3.20):

DM (gs) = (gs − ḡ)
T

S−1
g (gs − ḡ) (3.19)

DE(gs) = (gs − ḡ)
T

I (gs − ḡ) (3.20)

The Mahalonobis is scale-invariant and takes into account the correlations in
the data set by using the covariance matrix Sg, see equation (3.7). However, in
case of a small training set with not too much variation, the covariance matrix
might become ill-conditioned. In such a case, calculating the matrix inverse can
be a problem. This problem can be avoided by using the Euclidean distance or
by applying matrix regularization (see appendix D). The best profile match is
than calculated as follows:

DR(gs) = (gs − ḡ)
T

(Sg + γI)
−1

(gs − ḡ) (3.21)
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In this equation γ has a small value (e.g. 0.1), but big enough to make the
matrix Sg + γI invertible. The position which gives the best profile match with
the model (lowest value of D(gs)) is chosen as the suggested movement position
for the concerning shape point, see figure 3.6.

Figure 3.6: Search along sample profile to find best match with training model.

Updating pose and shape parameters

After a new position is calculated for each point, the current pose and shape
parameters should be updated to best match the current shape positions x to
the set of suggested positions xsug. The parameter are updated as follows:

Xt → Xt + dXt

Yt → Yt + dYt

θ → θ + dθ

s→ s(1 + ds)

b→ b + db

(3.22)

The translation (dXc, dYc), rotation dθ, scaling factor 1 + ds, and shape db are
calculated such that the following expression is minimized:

|xsug − TXt,Yt,s,θ (x̄ + Pb)|2 (3.23)

Calculating (dXc, dYc), dθ and 1 + ds is done by using the same function
(and weight matrix) used during training for the alignment of two shapes. The
update, db, for the shape parameters is based on the residual adjustments dx
(after applying the transformation with the pose parameters). db is calculated
such that:

x + dx ≈ x̄ + P(b + db) (3.24)

Since there are only t modes of variation available and dx can move the points in
2l different degrees of freedom, only an approximation to the required deforma-
tion can be achieved. To maintain only plausible shapes, the shape parameters
will be limited according to equation (3.18). If the initial value of an updated
parameter exceeds its limit, than the value becomes that limit.
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Multi-resolution search

To improve the efficiency and the detection range of the ASM algorithm, it
is implemented in a multi-resolution framework. This involves first searching
in a low-resolution image, to find the location of the object on a coarse scale.
Then searching is performed in a series of higher resolution images, to refine
the location of the object. This extension leads to a faster algorithm, and one
which is less likely to get stuck on wrong image structures.

For each training and application image, a set of different resolution images
is created. The base image (level 0) is the original image. The next image (level
1) is formed by smoothing and subsampling the original to obtain an image
with half the number of pixels in each dimension. Images on subsequent levels
are formed by further smoothing and subsampling. During training, a PDM is
build for each resolution level. The same number of sample points on the profile
normals is used, regardless of the level. Since pixels of images at level L are
2L times the size of those in the original image, the models at coarser levels
represent more of the image. During search in the application stage, this will
allow quite large movements. At finer resolution levels, the feature detection is
more precise and this leads to smaller movements.

During search, the algorithm needs to decide when to switch to the next
(higher) resolution level or to stop searching. This is done by recording the
number of times that the best found position, along a search profile, is within a
certain percentage (e.g. 50 %) of the profile length. When a sufficient number
(e.g. 90 %) of these positions are found, the algorithm is declared to have
converged at that resolution. The current shape model is then projected into
the image at the next level and searching is performed again untill convergence
is reached. When convergence is reached on the finest resolution level (level 0),
the search is stopped. Figure 3.7 shows three images with the shape location
during the search process at different resolution levels. In this case confergence
was reached in nine iterations (two iterations at level 2, three iterations at level
1 and four iterations at level 0).

(a) Level 2 (b) Level 1 (c) Level 0

Figure 3.7: Object search at different resolution levels. The red arrows indicate the
suggested movements before pose and shape transformation.

The multi-resolution version of the ASM-algorithm can be summarized as
follows:
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1. Set L = Lmax.

2. While L ≥ 0

(a) Compute model point positions in image at level L.

(b) Calculate a suggested movement for each model point.

(c) Update pose and shape parameters to fit model to suggested points.

(d) Return to 2(a) unless convergence or a maximum number of iterations
is reached at this resolution level.

(e) If L > 0 than L→ L− 1.

3. Final shape is described by the parameters after convergence at level 0.

Object tracking in sequences

In image sequences that describe the evolution of an object in time, like a
tongue movement, the difference between object shapes in two adjacent images
is small. This fact can be used to improve the contour detection and tracking of
the object, by using the parameters pi−1, that describe the final shape in image
i − 1, as initial parameters qi for the shape in image i. However, to prevent
that a possible detection error in a certain image fully propagates into the next
images, the mean parameter vector p̄ should be included as well:

qi = αpi−1 + (1− α)p̄i−1 (3.25)

In this equation, α (0 ≤ α ≤ 1) indicates the ratio between the preceding pa-
rameter vector and the mean parameter vector. The parameter vector contains

both the pose and shape parameters: pi =
[
Xt,i Yt,i θi si bTi

]T
. The mean

parameter vector is updated after each search:

p̄i =
1

i

i∑
j=1

pi (3.26)

The initial parameters q1 for the shape in the first image have to be properly
determined by the user. The values of these parameter should be chosen such
that the initial shape is relative close to the object contour.

3.4 Performance evaluation

The in section 3.3 described ASM algorithm is implemented in Matlab. The
performance of the algorithm is tested by using MRI data. This MRI data
consists of image sequences in the sagittal and transverse plane during simple
and slow tongue movements. Objective was to detect and track the tongue
contour in these MRI sequences.
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3.4.1 MRI data

The used MRI data is obtained by using the MRI scanner at the department of
clinical physics at the Netherlands Cancer Institute / Antoni van Leeuwenhoek
Hospital, Amsterdam, the Netherlands. The MRI scanner is a Philips Achieva
3-Tesla scanner2, see figure 3.8. A female test person was asked to perform the
tongue movements, with her head positioned in the scanner.

Parameters MRI scanner

The sequences are captured with the following MRI parameters:

• 2D TSE single shot FA 90, TA = TR = 0.794 s (NSA = 1), TE = 44.

• FOV 230x122 mm acq pixel 1.8x2 mm recon pixel 0.6 mm S=L 5mm.

• Water fat shift 1.5 pixel BW 295 Hz.

• TSE factor 37.

Figure 3.8: Philips Achieva 3-Tesla MRI scanner.

Tongue movements

MR Image sequences are captured in the sagittal and transverse plane (in the
coronal plane the visible displacement is not very large) during some simple
tongue movements: in and out sticking and movement from left to right. Since
the acquisition time per MR image was 0.8 seconds, the tongue movements
had to be carried out slowly. The MRI sequences consist of 50 images with a
resolution of about 200 × 384 pixels (sagittal) and 200 × 200 pixels (transverse).

2For more specifications concerning the MRI scanner, see: http://www.medical.philips.

com/us/products/mri/systems/achievatx/index.wpd

 http://www.medical.philips.com/us/products/mri/systems/achievatx/index.wpd
 http://www.medical.philips.com/us/products/mri/systems/achievatx/index.wpd
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Figure 3.9: Examples of sagittal MR images during protruding the tongue.

Figure 3.10: Examples of transverse MR images during protruding the tongue.

3.4.2 ASM parameters

The construction of the ASM training model requires the input of the following
input arguments and parameters:

• A set of training images (representative for the whole data set);

• A matrix with landmark coordinates for each training image;

• k: the number of profile samples at either side of the landmarks during
training;

• m: the number of profile samples at either side of the landmarks during
application (m > k);

• Lmax: the number of resolution levels (on which search is performed);

• t: the number of shape modes;

• q1: The initial shape and pose parameters for the shape in in the first
image.

For obtaining a reliable ASM model, as much training images as possible should
be used. These training images should be representative for the images in the
application set (in terms of shape variation and texture profiles). However, in
our case, the captured sequence during the tongue movement consists of just
50 images. Therefore, it was decided to use ten from the fifty sequence images
for training: the fifth, the tenth, the fifteenth, etc. These images were assigned
with 22 landmarks, most of them at places of interest (e.g. corners, see figure
3.2).

The choice of the number of shape modes is commonly based on the relation
between the number of features (p = 2 × 22 = 44) and the number of training
images. According to a rule of thumb, there about 5× p = 220 images required
to properly estimate the covariance matrix. However, since in this case just
10 training images are used, only the first few eigenvectors can be trusted. It
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was decided to choose the number of shape modes such that 95% of the total
variation is explained. For the used training set, this resulted in six modes for
the sagittal images and four modes for the transverse images.

Unfortunately, in literature not much is written about how to choose the
exact parameter values. The values of k, m and Lmax mainly depend on the
resolution of the images. k should be large enough to obtain a proper ‘descrip-
tion’ of the local texture profiles. However, k should be also not too large, to
prevent that variating structures are taken into account. The exact values are
determined empirically. Adequate choices appeared to be: k = 4, m = 9 and
Lmax = 3. The initial shape and pose parameters were chosen such that the
first shape is at the center (Xc, Yc) of the image (Xt,1 = Xc, Yt,1 = Yc, θ1 = 0,
s1 = 1, b1 = 0).

3.4.3 Experimental results

The Active Shape Model, with the parameters chosen as motivated in the pre-
vious subsection, has been applied on the MRI sequences of tongue movements
in the sagittal plane and in the transverse plane. Especially in the sequence of
sagittal images, the model performs well: in most images the tongue contour
is detected correct. However, in 16 of the 50 images small detection errors are
made. These detection errors can be caused by vague object edges or by incon-
sistency with the training model. Figure 3.11a shows an example of an image
where such a detection error is made. An image of the tongue protruded this
way is not included in the training set. So, the ASM model does not allow to
deform in this way.

Detection and tracking of the tongue contour in the transverse images ap-
peared to be more difficult. It happens frequently that the model snaps at
wrong edges. Figure 3.11c shows an example of this kind of detection errors.
The main cause is the big difference with the tongue shape in the previous image
(figure 3.11b) of the sequence. In this image the tongue is protruded such that
the tongue tip strikes the lip. And, as can be seen, the difference between the
tongue tip (which is actually inside the mouth) and a part of the lip contour is
very small. So, the algorithm actually considers the lip as part of the tongue in
this case. Also the choice of the initial shape and pose parameters appeared to
have much influence on the detection performance. When the initial shape in
the first image is too far away from the actual tongue contour, the algorithm is
not able to find the correct contour and the errors also propagate into the next
images.

3.5 Conclusions

In this chapter the implementation and performance of an Active Shape Model
algorithm are discussed. The ASM algorithm can be used to detect object
contours with vague edges in images contaminated with noise. The basic idea is
that from a set of training images a model is inferred that represents the mean
geometry of the concerning shapes and statistical modes of geometric variation.
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(a) Sagittal (b) Transverse at i = 7 (c) Transverse at i = 8

Figure 3.11: Examples of tongue contour detection errors.

This model can then be used to find similar shapes in new images. Some small
extensions, compared to the basic ASM version, have been implemented to make
the algorithm especially suitable for the application of contour detection of a
moving object in an image sequence. The algorithm is therefore very useful for
detection and tracking of tongue movements in a sequence of noisy magnetic
resonance images. In case of such a sequence, tongue landmarks have to be
assigned in only a small number of the images. The resulting model can then
be used to detect the tongue contour in the other images. Although the ASM
algorithm is only tested on MR images of the tongue, it is expected that the
algorithm can also be used for lip contour detection in normal images.

An important issue in using ASM for object contour detection is training.
The resulting model should be representative for the application images. Most
of the detection errors are caused by deviations from the actual model (con-
cerning both the allowed shapes and expected texture profiles). Although the
ASM algorithm has a relative large detection range, it followed from the exper-
iments that the choice of the initial shape parameters is also important. These
parameters should be chosen such that the initial model shape is close to the
object, otherwise detection errors are made easily. Furthermore, it can be con-
cluded from the experiments that the algorithm performs well when the object
in the images is clearly visible. In some images (e.g. figure 3.11c) the complete
tongue is hardly visible with the bare eye. In such a case also the algorithm
fails. Another disadvantage of the ASM algorithm is that landmarks in the
training images have to be assigned manually. This can be a time consuming
task. Ideally a fully automated system would be developed, that is able to au-
tomatically place landmarks on a presented set of training images. However,
this is a difficult task, mainly because it is not clear what optimal landmark
locations are.
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Linear state space model

4.1 Introduction

This chapter is concerned with the setup and investigation of a possible model
framework for the description of a physical system like the tongue and lips. It
is expected that in the near future measured EMG data of muscle activation
signals will become available, which can be used to derive the actual input
signals. However, in the current research this input data is not yet available
and this research therefore limited to measured output variables (lip/tongue
movements). The objective here is to already perform an exploration study
concerning the development of a phenomenological model of the tongue and
lips. In a later stage, this model can be coupled to actual muscle activation
signals.

The key challenges in this chapter and in the next chapter are the construc-
tion of an appropriate state vector and the estimation of system parameters
and input variables. However, because of the limited available information it is
necessary to make some assumptions about the actual system and input signals.
These assumptions will be motivated in this chapter. For the derivation and
estimation of the mentioned parameters and variables, the general framework
of figure 4.1 will be considered:

System
model

+

++Distribution
model

Measurement
function

EMG transfer 
model 1

2 3 4

Figure 4.1: General framework for a model of the tongue and lips.
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In this model framework the following variables are involved (i represents the
discrete-time index, with i = 0, 1, 2, . . . , I − 1):

• s(i) ∈ <k: Muscle activation signals

• y(i) ∈ <q: EMG measurements

• u(i) ∈ <m: Model input variables

• x(i) ∈ <n: System states

• z(i) ∈ <p: Output variables (lip/tongue landmarks)

• r(i) ∈ <q: EMG measurement noise

• v(i) ∈ <p: Shape measurement noise (landmark detection noise)

• w(i) ∈ <n: Process noise

The relations between the variables are described by the four blocks:

1. EMG transfer model – Describes the transfer from the actual muscle ac-
tivation signals s(i) to the measured EMG signals y(i). Note that the
dimensions of these vector are not necessary equal to each other. It might
for example be possible that less signals can be measured than actually
are involved.

2. Distribution model – Describes the coupling between the actual muscle
activation signals s(i) and the model input variables u(i).

3. System model – Describes how the system states x(i) depend on the input
variables u(i) and possibly on previous states, e.g. x(i− 1).

4. Measurement function – Describes the relation between system states x(i)
and output variables z(i).

The ultimate objective is to identify in figure 4.1 the content of the blocks 2, 3
and 4, such that the causal relation between actual muscle activation signals and
output (tongue and lip shapes and movements) can be established. Note that for
the identification of block 2 (the distribution model) it is necessary to know the
content of block 1 (the EMG transfer model) and to have the measured EMG
signals available. The research for now is concerned with the parts between u(i)
and z(i) in the figure and on the identification of blocks 3 and 4. Therefore,
this chapter explores the setup of a possible dynamic system model. In section
4.2 this system model will be defined. Several possible state vectors will be
discussed in section 4.3 and the construction or estimation of system matrices
will be considered in section 4.4. Furthermore, in section 4.5 techniques will be
explained that can be used for the evaluation and justification of the model in
practice.
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4.2 Model setup

The starting point is z(i), a sequence of measured output vectors (e.g. the
detected tongue landmarks). The first step is to choose a possible system model
(see section 2.2.4). In a simple case this is just a static model, which means that
the state variables are a function of only the input variables, i.e. x = f(u(i)).
An example of a static model is actually already considered in chapter 3, where
static input variables are obtained by applying PCA. However, tongue and lip
movements are probably dynamic processes.

In general, a dynamic process can be described in discrete-time with the
equation x(i+ 1) = f(x(i), u(i)), which means that the next state is a function
of the current state and the current (in our case unknown) input. However,
in most situations, and especially in case of phenomenological modeling of the
tongue and the lips, it is difficult to derive a non-linear function. Therefore the
dynamical description of tongue or lip movements will (initially) be limited to a
discrete-time, linear, time-invariant state space model. This is a restriction, of
course. However, this type of model has already proved to approximate many
real-world problems and physical processes accurately and it can be a good
starting point for finding more elaborate, non-linear models. The state space
model will therefore be described with the following set of difference equations:

x(i+ 1) = F (x(i)− ¯̄x) + ¯̄x + Lu(i) + w(i)

z(i) = Hx(i) + v(i)
(4.1)

The system matrix F ∈ <n×n describes how the next state vector is linearly
formed from the current state values. The matrix L ∈ <n×m represents the
input matrix and describes the influence of the input signals on the next state
vector. The matrix H ∈ <p×n is the measurement matrix and translates the
state variables to the output variables. The system equations are linearized
around an equilibrium state vector ¯̄x, such that the same equilibrium can be
chosen for the sequences of all phonemes or visemes1. This equilibrium vector
can be seen as the state vector corresponding to the tongue or lips in equilibrium
or rest position. The process noise w(i) and measurement noise v(i) are modeled
as zero mean, Gaussian white noise sequences and with covariance matrices Cw

and Cv. Process noise and measurement noise are assumed to be uncorrelated:
Cwv = 0. The elements of the process noise vector w(i) can sometimes also be
considered as the unknown input signals at time i.

4.3 State vectors

The measurement vector consists of p elements, which are the measured coor-
dinates of the l = 0.5p landmarks (either on the tongue or lip contour):

z(i) =
[
xi1, x

i
2, . . . , x

i
l, y

i
1, y

i
2, . . . , y

i
l

]T
(4.2)

1A vismeme is a basic unit of speech in the visual domain.
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The first task is now to construct an appropriate state vector. In this section
several possibilities concerning the representation of the state vector will be
considered.

4.3.1 Position only

In the simplest case the state vector only consists of the actual landmark posi-
tions xp. The measurement matrix H (the third block in figure 4.1) is than just
the identity matrix I and the state vectors are equal to the measured positions
(including measurement noise). Since the measurement noise is assumed to have
zero mean, the mean state vector ¯̄x is equal to the mean ¯̄z of the measurement
vectors.

4.3.2 Position, velocity and acceleration

The set of landmark coordinates changes dynamically in time. Therefore a more
advanced and dynamic representation of the state vector would also include
the velocity (xv) and possibly even the acceleration (xa) components of the
landmarks. The state vectors are in that case also provided with information
about the transitions. The length of these state vectors becomes 3l:

xpva(i) =
[
xTp (i),xTv (i),xTa (i)

]T
(4.3)

where xv(i) and xa(i) are the velocity and acceleration vectors:

xv(i) =
[
vix1

, vix2
, . . . , vixl

, viy1 , v
i
y2 , . . . , v

i
yl

]T
xa(i) =

[
aix1

, aix2
, . . . , aixl

, aiy1 , a
i
y2 , . . . , a

i
yl

]T (4.4)

The measurement matrix should only extract the position elements of the state
vector. These are the first p elements of the vector. In equilibrium or rest
position, it will be assumed that the velocity and acceleration are zero. So, the
measurement matrix and the mean state vector are in case of including velocity
and acceleration states given by the following equation:

H = [I,0,0]

¯̄xpva = [¯̄zT ,0T ,0T ]T
(4.5)

The velocity and acceleration components of the landmarks during move-
ment cannot easily be measured (unless the tags are provided with acceleration
sensors or something similar). So, they have to be derived from the sequence
of measured positions. The easiest way to find the velocity of a certain land-
mark (either the x- or y-component) at time i implies subtracting the previous
position (at i− 1) from the current position and dividing the difference by the
sample time ∆t, e.g. vxj

(i) = (xj(i) − xj(i − 1))/∆t. The acceleration can be
found by applying the same operation on the calculated velocity sequence.

However, the just described way of calculating velocity and acceleration is
not measurement noise robust and does not compensate for abrupt transitions
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(no smoothing). A neater method for deriving the the velocity and accelera-
tion components can be accomplished by using a Kalman filter. Details of the
Kalman filter are described in section 4.5.1.

4.3.3 Dimension reduction using PCA

Principal Component Analysis (PCA) [22] can be be applied to reduce the size
of the original measurement vector (e.g equation (4.3)) and to come close to
the state vector that contains the minimum number of variables to describe the
dynamic behavior. By choosing an appropriate number of eigenvectors of the
covariance matrix of the original set of vectors, the dimensions can significantly
be reduced, while nearly information is lost. The latter of course depends on
the correlation between the vector elements. But as already shown in section
3.3.2, landmarks on the tongue during movement are certainly correlated.

The procedure for obtaining those eigenvectors is described in section 3.3.2
(equations (3.12 - 3.17)). The PCA-vector xPCA(i) consists of the t weights for
each eigenvector:

xPCA(i) = PT (xoriginal(i)− ¯̄x)

=
[
bi1, b

i
2, . . . , b

i
t

]T (4.6)

In this equation, P is the matrix with the t eigenvectors of the covariance matrix
of the of the training set (see equation (3.16)). The vector xoriginal(i) is the
original measurement vector (e.g xp(i) or xpva(i)) at time i and ¯̄x is the mean
feature vector. The measurement function has to transform the PCA-vector
back to z and thus becomes:

hPCA = HxPCA + ¯̄x (4.7)

The measurement matrix H is equal to P in case of only position elements and
is equal to [I,0,0]P in case of position, velocity and acceleration elements.

4.4 System matrices and parameters

The matrices of the state space model (4.1) (block 3 in figure 4.1) that have to
be identified are the system matrix F, the input matrix L, the covariance ma-
trix Cw of the process noise and the covariance matrix Cv of the measurement
noise. The latter depends on the measurement setup, see appendix A. For the
identification of the other matrices it is necessary to make assumptions, since it
is not possible to identify all these matrices based on measured output variables
only. Two main options can be considered. The first one involves the full esti-
mation of the system matrix F and the covariance matrix Cw from trajectories
of state vectors. For this, it will be assumed that the states can directly be
derived from the measurements and that the muscle activation signals can be
considered as unknown process noise with zero-mean white Gaussian distribu-
tion. However, the latter is of course an unrealistic assumption (since muscle
activation signals are probably correlated). Therefore, in the second option this
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whiteness assumption will be relaxed. Instead, these input signals will be mod-
eled explicitly and estimated simultaneously with the estimation of the states
and system parameters. However, for this option it is necessary that the input
matrix, the measurement matrix and the main structure of the system matrix
are known or measured. Therefore, in the next subsection these matrices will
be derived by making assumptions about the kinematic and dynamic properties
of the system. The actual estimation possibilities are discussed in chapter 5.

4.4.1 Kinematic-dynamic assumptions

It will be assumed that a tongue or lip landmark can be modeled as a mass point
that experiences muscle forces and behaves as a mass-spring-damper system,
see figure 4.2. Without applied forces, the mass point is in equilibrium position
(e.g. corresponding to a closed mouth). An applied muscle force Fext causes
an acceleration and thus a displacement of the mass point. However, the mass
point also experiences an opposite force Fk, in the direction of its equilibrium
position. This force increases as the distance from the equilibrium position
increases. Furthermore, the mass point also experiences a kind of friction or
damping force Fd, which limits its velocity.

k

d

m Fext

v(t)

Figure 4.2: Mass-spring-damper system.

A mass-spring-damper system is a second order kinematic system. Such a
system can be described with kinematic equations and dynamic laws. Kinematic
equations (e.g. v = δx/δt and a = δv/δt) describe the motion of a mass point
without exact consideration of the causes leading to the motion. Dynamic laws
describe the relationship between forces acting on a mass and the motion of that
mass. These dynamic laws involve Newton’s second law (Fm = ma), Hooke’s
law (Fk = kx) and the damping law (Fd = dv). The variables x, v and a
represent respectively the position (or displacement), velocity and acceleration
of the landmark with mass m. The elasticity constant k and the friction constant
d are considered to be the system parameters.

System matrices

The system matrices can be derived from the force balance equation:

ΣF = Fext − Fk − Fd
ma(i) = Fext(i)− kx(i)− dv(i)

(4.8)
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The acceleration a(i) can be approximated by (v(i+ i)− v(i)) /∆t, where ∆t is
the sampling interval. Substitution of the kinematic equations and dynamic laws
in equation (4.8) results in the following difference equations for the position
and velocity of the mass:

x(i+ 1) = x(i) + ∆t v(i) (4.9a)

v(i+ 1) = v(i)− d

m
∆t v(i)− k

m
∆t x(i) +

Fext(i)

m
∆t (4.9b)

These two equations can be written in matrix form as follows:[
x(i+ 1)
v(i+ 1)

]
=

[
1 ∆t

− k
m∆t 1− d

m∆t

] [
x(i)
v(i)

]
+

[
0

∆t
m

]
Fext(i) (4.10)

The system matrix F and the input matrix L follow by comparing this matrix
equation with the state space model (5.5). Assuming that both the displacement
and the velocity can be measured, the measurement matrix H becomes an
identity matrix. The muscle force Fext(i) represents the input.

F =

[
1 ∆t

− k
m∆t 1− d

m∆t

]
; L =

[
0

∆t
m

]
; H =

[
1 0
0 1

]
(4.11)

Note that in case of multi-dimensional state vectors, the matrix elements
have to be multiplied with the identity matrix. A one-dimensional test model
(just one mass point) is implemented in Matlab. Figure 4.3 shows the simu-
lation results for two different input forces. These results are as expected; they
comply with the kinematic equations and dynamic laws.
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Figure 4.3: Simulations of the kinematic model (4.10): input force [N] (blue), velocity
[m/s] (red) and displacement [m] (green) as a function of time [s]. (Parameter values:
m = 1 kg, k = 0.4 N/m, d = 0.6 Ns/m, ∆t = 0.1 s.)

Process and measurement noise

It will be assumed that the process noise (now separated from input signals)
and the measurement noise can be modeled as zero-mean, Gaussian white noise
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sequences, with covariance matrices Cw and Cv. Suppose that in the actual
system (continuous-time) the velocity undergoes process noise with a spectral
density σ2

w. In [23] (page 262-263) it is derived that in that case the covariance
matrix of the discrete-time process noise is:

Cw = E
[
w(i)wT (i)

]
=

[
1
3∆t3 1

2∆t2

1
2∆t2 ∆t

]
σ2
w (4.12)

Suppose that measurements can be taken with an accuracy of σv. In case
both the position and the velocity can be measured, the covariance matrix of
the measurement noise is:

Cv = E
[
v(i)vT (i)

]
=

[
1 0
0 1

]
σ2
v (4.13)

Figure 4.4 shows simulations of the model whereby the states are contami-
nated with process noise and the measurements with measurement noise.
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Figure 4.4: Simulations of the kinematic model including process and measurement
noise (σw = 0.02, σv = 0.02).

4.5 Model evaluation techniques

Since it is assumed that the physical behavior of the tongue or the lips can be
modeled as a linear state space model with Gaussian white noise processes, the
model (4.1) can be tested and evaluated by using a Kalman filter. Furthermore,
techniques will be considered which can be used to check whether the model be-
haves consistently. This mainly implies checking whether the model parameters
contain as much information as provided by the available data and to determine
if the Gaussian assumptions are actually justified.
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4.5.1 Kalman filtering

A Kalman filter [22] is a recursive filter that estimates the states of a linear
dynamic system from a series of (noisy) measurements. Each iteration cycles
through a number of equations, which can be subdivided into an update part
(4.14a) and a prediction part (4.14b).

Update:

ẑ(i) = Hx̂(i|i− 1) (predicted measurement)
z̃(i) = z(i)− ẑ(i) (innovations)

S(i) = HC(i|i− 1)HT + Cv (innovation matrix)

K(i) = C(i|i− 1)HTS−1(i) (Kalman gain matrix)
x̂(i|i) = x̂(i|i− 1) + K(i)z̃(i) (updated estimate)

C(i|i) = C(i|i− 1)−K(i)S(i)KT (i) (error covariance matrix)

(4.14a)

Prediction:

x̂(i+ 1|i) = F(i) (x̂(i|i)− ¯̄x) + ¯̄x (predicted state vector)

C(i+ 1|i) = F(i)C(i|i)FT (i) + Cw (predicted state covariance)
(4.14b)

In each iteration i the estimate for the current states x̂(i|i) is computed using
only the estimated states from the previous time step x̂(i|i− 1) and the current
measurements z(i). Beside the state estimates, an error covariance matrix C(i|i)
is calculated. The values of this matrix are measures for the uncertainty of the
state estimates. Both x̂(i|i) and C(i|i) are based on their previous values (x̂(i|i−
1) and C(i|i−1)), the innovation matrix S(i) and the Kalman gain matrix K(i).
The innovation matrix represents the uncertainty of the predicted measurements
and is determined by the uncertainty of the previous states, expressed by C(i|i−
1), and the current measurement noise v(i), expressed by Cv. The Kalman gain
matrix K(i) can be seen as the feedback matrix. This matrix has large values
when the measurements are relative accurate.

If there is no measurement vector available, the values of the measurement
covariance matrix Cv are infinitely large and thus the values of the Kalman
gain matrix K(i) become zero. In that case, the next state estimate and error
covariance matrix just become equal to their predictions: x̂(i|i) = x̂(i|i − 1);
C(i|i) = C(i|i − 1). For evaluating the prediction performance of the system
matrix F, vectors can be eliminated from the measurement sequences. In this
way it can be seen how the states evaluate without measurement input.

Summarized, the Kalman filter can be used for three things: filtering of
noise source (both process noise and measurement noise), connecting the mea-
surement data with the state variables (even the ones that cannot directly be
measured) and prediction of next state values. Measurement errors can, in case
of measuring landmark positions on the tongue or lips, be seen as small land-
mark detection errors. Suppose that all landmarks can be detected with an
inaccuracy of σv (e.g. two pixels), than the error covariance matrix becomes:
Cv = σvI. The state estimates can be seen as a kind of trade-off between pre-
diction and innovations. In case of large (diagonal) values in Cw, emphasis is
put on the innovations. In case of small values, emphasis is put the predicted
states. The Kalman filter can in this way also be used for estimation of velocity
and acceleration components from position measurements.



46 Linear state space model 4

4.5.2 Consistency checks

The purpose of consistency checks is to determine whether the model on which
the Kalman filter is built is accurate enough. Therefore three different types
of estimation error variances have to be considered. These are the minimal
variances, Vmin, that would be obtained with the most appropriate model, the
actual variances, Vact, in case of using a certain model and the estimated vari-
ances, Vkf, from the covariance matrix of the Kalman filter. In case of a correct
model, these variances are equal: Vmin = Vact = Vkf. The error signals that can
be considered are the innovation sequences and the state estimation error sig-
nals. However, for calculating the state estimation error signals, the exact state
values have to be available. Since in the situation of measuring marker locations
on the lips or tongue, this data won’t be available, only the innovation signals
will be considered. The innovation sequence z̃(i) is the predicted measurement
sequence subtracted from the measurement sequence:

z̃(i) = z(i)− ẑ(i) (4.15)

In case of a correct model, these innovations should be white and normally
distributed with zero mean and covariance similar to the covariance matrix S,
i.e.: z̃(i) ∼ N(0,S). To check if the distribution property is satisfied, the so-
called NIS (Normalized Innovations Squared) can be investigated:

NIS(i) = z̃T (i)S−1(i)z̃(i) (4.16)

The NIS should comply with a χ2
p distribution (with p the number of degrees

of freedom, in this case the number of vector elements). This follows from the
following proof:

Proof 4.1

A χ2
N distributed signal can be constructed from the sum of the square of

random and independent variables with zero mean and unit variance. So:

z̃(i) ∼ N(0,S)

S−
1
2 z̃(i) ∼ N(0, I)

N∑
i=1

[
S−

1
2 z̃(i)

]2
∼ χ2

N

(4.17)

And since

N∑
i=1

[
S−

1
2 z̃(i)

]2
=
[
S−

1
2 z̃(i)

]T [
S−

1
2 z̃(i)

]
= z̃T (i)S−1z̃(i) (4.18)

z̃T (i)S−1z̃(i) ∼ χ2
N when z̃(i) ∼ N(0,S).

To check the whiteness property of the innovations, the periodogram of the
sequence can be considered. The periodogram is the normalized frequency power
spectrum of the innovation sequence:

Pn(k) =
|Z̃n(k)|2

I
(4.19)
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where Z̃n(k) is the discrete Fourier transform of the nth innovation sequence:

Z̃n(k) =

I−1∑
i=0

z̃n(i)e−j2πki/I (4.20)

The whiteness property implies that the power spectrum of any element of z̃(i)
must be flat. In appendix C it is proven that the flatness of Pn(k), and thus the
whiteness of z̃n(i), can be tested by checking whether the sequence 2Pn(k)/σ2

n

is χ2
2 distributed.

In order to check whether the NIS or the 2Pn(k)/σ2
n sequence obey the

desired distribution, a distribution test needs to be applied. A quick and com-
monly used test for chi-square distributions is the one-sided 95% acceptance
boundary test [22]. For this test a boundary is defined, under which 95% of the
distribution must be. The corresponding value also depends on the number of
degrees of freedom and can be calculated with chi-square cumulative distribu-
tion function. If the number of samples below this boundary is about 95% of
the full number of samples, the model predictions are considered to make sense.





5

System identification with
unknown inputs

5.1 Introduction

This chapter is concerned with the system identification of the linear state space
model, defined in chapter 4. Assuming this type of model, the objective is to
already derive some possibilities for the identification of the blocks 3 and 4 in
figure 4.1 and the estimation of states, input variables and system parameters.
Once again, it is emphasized that the actual muscle activation signals are not yet
available. The identification and estimation are thus only based on measured
output variables and on the in chapter 4 motivated assumptions. The two
possibilties to be considered are:

• Estimation of entire system matrix and covariance of process noise from
state sequences. Assumption: Muscle activation signals can be considered
as unknown process noise with zero-mean white Gaussian distribution.

• Estimation of states, input and system matrix parameters from measure-
ment sequences. Assumptions: Input matrix, measurement matrix, main
structure of system matrix and the noise distributions are known.

Section 5.2 considers the first possibility. However, it will be shown that the
required assumption regarding the input is indeed unrealistic. The next two
sections of this chapter are about the second possibility. These sections are
mainly focused on the derivation of the estimation algorithms. In section 5.3
two algorithms will be derived. The first algorithm performs recursive state
and input estimation and assumes unconstrained input. The second algorithm is
based on closed-form estimation, which makes it possible to constrain the input.
In section 5.4 the estimation problem problem will be extended to parameter
estimation, by deriving a cost function that also includes the system parameters.
The performance of the algorithms is tested on the kinematic-dynamic model
defined in section 4.4.1.

49
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5.2 Estimation of system matrix

Assuming that the measurement noise is small and that the states can easily
be derived from the measurements, it is possible to estimate the system matrix
of the linear state space model from the sequence of state vectors. This can be
done by calculating the covariance matrices E

[
ε(i+ 1)εT (i)

]
and E

[
ε(i)εT (i)

]
,

where ε(i) is the deviation from the mean state vector: ε(i) = x(i) − ¯̄x. The
derivation of the system matrix on this way is as follows:

ε(i+ 1)εT (i) = Fε(i)εT (i) + w(i)εT (i)

E
[
ε(i+ 1)εT (i)

]
= E

[
Fε(i)εT (i)

]
+ E

[
w(i)εT (i)

]
E
[
ε(i+ 1)εT (i)

]
= FE

[
ε(i)εT (i)

] (5.1)

Resulting in the following equation for the estimation of the system matrix:

F = E
[
ε(i+ 1)εT (i)

]
E
[
ε(i)εT (i)

]−1
(5.2)

As can be seen in the derivation (5.1), the process noise (including the unknown
input Lu(i)) is crossed out. This can be done because of the assumption that the
process noise has zero mean, which means that the expectation E

[
w(i)εT (i)

]
is zero as well.

An estimate of the covariance matrix of the process noise can now be ob-
tained from the sequence of residuals Pw.

Pw = [ε(2), ε(3), . . . , ε(I)]− F× [ε(1), ε(2), . . . , ε(I − 1)] (5.3)

So, the covariance matrix of the process noise can be estimated as follows:

Cw =
PwPT

w

I − 1
(5.4)

In these equations, I is the number of measurement samples.

Consistency checks

The system matrix and covariance matrix of the process noise are estimated
from state vectors derived from measured landmark trajectories on the lips,
see appendix A. The considered state vectors are: position only (n = 16),
position + velocity (n = 32), position - PCA-reduced (n = 8) and position
+ velocity - PCA-reduced (n = 12). The NIS and innovation sequences are
calculated for the resulting models. Figure 5.1 shows the NIS of the four different
model configurations. In all four cases, only a small number of samples is
near the acceptance boundary. This means that the NIS sequences are not χ2

16

distributed. Figure 5.2 and 5.3 show respectively the innovations sequence z̃1(i)
and the corresponding periodogram. As can be seen, the sequence 2Pn(k)/σ2

n

does not obey the χ2
2 distribution and thus the power spectrum is not flat.

The periodograms of the other innovation sequences look similar. From these
consistency checks it can be concluded that the innovations are not white. This
means that the state estimator is not optimal or that the data is not Gaussian
distributed. Therefore it can be concluded that the assumption about the input
distribution (white Gaussian zero-mean) is indeed invalid.
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Figure 5.1: NIS of four different model configurations, applied on the sequence of
random lip movements. The red lines indicate the one-sided 95% acceptance boundary
of the χ2

n cumulative distribution, which is in case of n = 16 about 26.
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Figure 5.3: Periodogram 2P1(k)/σ2
1 of the innovation sequence z̃1(i) . The red line

indicates the χ2
2 cumulative distribution level.

5.3 State and input estimation

This section is focused on the derivation of mathematical algorithms for state
and input estimation from a measurement sequence. Two different possibilities
are considered: recursive state and input estimation and closed-form state and
input estimation. The recursive algorithm is more appropriate for a system with
vectors and matrices of high dimensions and a large number of measurement
samples. The closed-form algorithm stacks the vectors, which enables input
constrainment. This can be done by including possible a priori information
concerning the correlation between input signals.

The discrete-time linear state space model, on which the derivations are
based, is repeated here (see section 4.2 for the definitions of the involved matrices
and vector):

x(i+ 1) = Fx(i) + Lu(i) + w(i)

z(i) = Hx(i) + v(i)
(5.5)

Once again, it is assumed that the model matrices are known and that the
process and measurement noise are mutually uncorrelated, zero-mean, white
random signals with known covariance matrices (Cw and Cv). To make the
derivations more orderly, it will be assumed that the state vectors are already
normalized to zero, i.e. ¯̄x = 0. For convenience, in this section the discrete-time
indices of vectors are given in subscript, instead of between brackets.
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5.3.1 Recursive

Objective formulation

Objective is to obtain an optimal estimate - in terms of minimum variance - of
the state vector xi+1 ∈ <n and the input vector ui ∈ <m given the measurement
zi+1 ∈ <p and the estimate of the current state vector x̂i. Solving this problem
comes down to maximizing the probability density function p(xi+1,ui|zi+1, x̂i):

(x̂i+1, ûi) = argmax
xi+1,ui

{p(xi+1,ui|zi+1, x̂i)} (5.6)

Solution derivation

By using Bayes’ theorem1, equation (5.6) can be written into probability density
functions with known distributions:

p(xi+1,ui|zi+1, x̂i) = p(xi+1|ui, zi+1, x̂i)p(ui|zi+1, x̂i)

=
p(xi+1|ui, x̂i)p(zi+1|xi+1)

p(zi+1|ui, x̂i)
p(ui|x̂i)p(zi+1|ui, x̂i)

p(zi+1|x̂i)

=
p(xi+1|ui, x̂i)p(zi+1|xi+1)p(ui|x̂i)

p(zi+1|x̂i)

(5.7)

The function p(zi+1|x̂i) is independent of the arguments xi+1 and ui. Further-
more, ui and x̂i are uncorrelated, so p(ui|x̂i) can also be disregarded. Therefore,
the following holds:

p(xi+1,ui|zi+1, x̂i) ∝ p(xi+1|ui, x̂i)p(zi+1|xi+1) (5.8)

The remaining two probability density functions are known. Both p(xi+1|ui, x̂i)
and p(zi+1|xi+1) are multivariate normally distributed. Their mean vector and
covariance matrix can be derived from the state space model (5.5).

p(xi+1|ui, x̂i) ∼ N
(
Fx̂i + Lui,FCi|iF

T + Cw

)
(5.9)

p(zi+1|xi+1) ∼ N (Hxi+1,Cv) (5.10)

In general, the probability density function of a multivariate normally dis-
tributed signal x ∈ <N , with mean vector µ and covariance matrix Σ, is as
follows:

fx =
1

(2π)N/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(5.11)

Since the term in front of the exponential does not include the input argument
vector, the maximization problem of equation (5.6) can be written as:

(x̂i+1, ûi) = argmax
xi+1,ui

exp

(
−1

2
(xi+1 − Fx̂i − Lui)

TP1,i(xi+1 − Fx̂i − Lui)

)
× exp

(
−1

2
(zi+1 −Hxi+1)TP2(zi+1 −Hxi+1)

) (5.12)

1Bayes’ theorem: p(A|B)p(B) = p(B|A)p(A)
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where

P1,i =
(
FCi|iF

T + Cw

)−1

(5.13)

and

P2 = C−1
v (5.14)

By applying the ln-function (natural logarithm), equation (5.12) can be further
simplified and comes now down to a minimization problem:

(x̂i+1, ûi) = argmin
xi+1,ui

1

2

(
[ In −L ]

[
xi+1

ui

]
− Fx̂i

)T
P1,i

(
[ In −L ]

[
xi+1

ui

]
− Fx̂i

)
+

1

2

(
[ −H 0p×m ]

[
xi+1

ui

]
+ zi+1

)T
P2

(
[ −H 0p×m ]

[
xi+1

ui

]
+ zi+1

) (5.15)

Differentiation with respect to the vector

[
xi+1

ui

]
and equating to zero results

in the following two equations:

[
In −L

]T
P1,i

([
In −L

] [ xi+1

ui

]
− Fx̂i

)
= 0 (5.16a)

[
−H 0p×m

]T
P2

([
−H 0p×m

] [ xi+1

ui

]
+ zi+1

)
= 0 (5.16b)

The equations (5.16) can be written in the form:

Ai

[
xi+1

ui

]
= Bi

[
x̂i

zi+1

]
(5.17)

where

Ai =

[ [
In −L

]T
P1,i

[
In −L

][
−H 0p×m

]T
P2

[
−H 0p×m

] ] (5.18)

Bi =

[ [
In −L

]T
P1,iF 0(n+m)×p

0(n+m)×n
[

H 0p×m
]T

P2

]
(5.19)

Since the matrix Ai is not square (and thus not invertible), there is no unique
solution for xi+1 and ui. A least squares (‘best fit’) solution can be calculated
by using the pseudo inverse of Ai: A+

i = (AT
i Ai)

−1AT
i . So, the solution

of equation (5.6) and thus the optimal estimate of xi+1 and ui is given by
equation (5.20). The corresponding minimum covariance matrices by are given
by equation (5.21). [

x̂i+1

ûi

]
= A+

i Bi

[
x̂i

zi+1

]
(5.20)

[
Ci+1|i 0n×p
0p×n Ui

]
= A+

i Bi

[
Ci|i 0n×p
0p×n Cv

]
BT
i (A+

i )T (5.21)
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Algorithm summary

Summarized, each iteration of the derived algorithm for recursive state and
input estimation consists of the following steps:

1. Calculate the inverse matrices P1,i (5.13) and P2 (5.14).

2. Calculate the matrices Ai (5.18) and Bi (5.19).

3. Estimate the states x̂i+1 and input ûi (5.20).

4. Update the covariance matrices Ci+1|i and Ui (5.21).

The initial state x0 and initial state error covariance C0 are input arguments.

Simulation results

The algorithm is implemented in Matlab and tested on the kinematic-dynamic
model defined in section 4.4.1. The simulation results are shown in figure 5.4.
As can be seen, the process noise on the first state is filtered. All the noise is
shifted to (explained by) the input, since the input is unconstrained.
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(a) Measurements and actual input
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(b) Estimated states and estimated input

Figure 5.4: Simulation results of recursive state and input estimation from position
and velocity measurements.

5.3.2 Closed form

Objective formulation

The estimated input without enforced constraints is contaminated with a high
amount of (white) noise, as can be seen in figure 5.4. The input value at a
certain discrete-time moment can be totally different from neighbor values, i.e.
there is no correlation between input signals at different time moments. To
improve the estimation of the input and the states, two assumptions regarding
the input will be made:
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• The chance on high input signals is at the beginning of a sequence larger
than at the end of the sequence.

• Within a certain time-window, input signals are correlated. This means
it will be assumed that input signals can not change very quickly, i.e. a
kind of bandwidth limitation.

To accomplish the enforcement of these constraints, the recursive state space
model of equation 5.5 has to be translated to a model in closed-form by stacking
the vector variables:

U =

 u0

...
uI−1

 ; X =

 x1

...
xI

 ; Z =

 z1

...
zI

 (5.22)

The closed-form model (non-iterative) is described by the following two equa-
tions:

X = GU + Fsx0 + W

Z = HsX + V
(5.23)

The vectors W and V are respectively the stacked process and measurement
noise vectors. G and Hs are respectively the input matrix and measurement
matrix for the stacked case. Furthermore, Fs is a matrix that describes the
influence of the initial state x0 on the stacked state vector.

Now a covariance matrix CU for the stacked input vector U can be con-
structed to include the two assumptions. The objective is then to estimate the
stacked state and input vectors (X,U) given the stacked measurement vector
Z and the initial state vector x0:(

X̂, Û
)

= argmax
X,U

{p (X,U|Z,x0)} (5.24)

Solution derivation

Again by using Bayes theorem, equation (5.24) can be written into (conditional)
probability density functions with known distributions:

p (X,U|Z,x0) =
p (Z|X,U,x0) p (X,U,x0)

p (Z,x0)

=
p (Z|X,U,x0) p (X|U,x0) p (U|x0) p (x0)

p (Z,x0)

∝ p (Z|X) p (X|U,x0) p (U)

(5.25)

Note that the probability density functions p (Z,x0) and p (x0) are disregarded
because they are independent of the argument vectors X and U. Furthermore,
p (Z|X,U,x0) = p (Z|X) and p (U|x0) = p (U). These remaining probability
density functions are multivariate normally distributed as follows:

p (Z|X) ∼ N (HsX,CV ) (5.26a)
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p (X|U,x0) ∼ N (GU + Fsx0,CX) (5.26b)

p (U) ∼ N (0,CU ) (5.26c)

The matrices Hs and CV (with respectively dimensions pI × nI and pI × pI)
are easily constructed. They just consist of H and Cv on the diagonal:

Hs =

 H 0
. . .

0 H

 (5.27)

CV =

 Cv 0
. . .

0 Cv

 (5.28)

The matrices G and Fs can be deduced from the following recursions:

x1 = Fx0 + Lu0

x2 = Fx1 + Lu1 = L (Fu0 + u1) + F2x0

x3 = Fx2 + Lu2 = L
(
F2u0 + Fu1 + u2

)
+ F3x0

etc.

(5.29)

In general, the state vector xi can be calculated from the inputs (u0, . . . , ui−1)
and the initial state x0 as follows:

xi = L

i−1∑
j=0

Fi−j−1uj + Fix0 (5.30)

So, when X and U are stacked as indicate by equation (5.24), equation (5.30)
can be written as X = GU + Fsx0, where:

G =


L 0 0 . . . 0
FL L 0 . . . 0

F2L FL L . . . 0
...

...
...

. . .
...

FI−1L FI−2L FI−3L . . . L

 (5.31)

Fs =

[ (
F1
)T (

F2
)T

. . .
(
FI
)T ]T

(5.32)

The state error covariance matrix CX , belonging to the stacked state vectors
X, consists of the covariance matrices E

[
xix

T
i

]
on the diagonal, the cross-

covariance matrices E
[
xi+jx

T
i

]
left from the diagonal and E

[
xix

T
i+j

]
right from

the diagonal:

CX = E
[
XXT

]
=


E
[
x1x

T
1

]
E
[
x1x

T
2

]
. . . E

[
x1x

T
I

]
E
[
x2x

T
1

]
E
[
x2x

T
2

]
. . . E

[
x2x

T
I

]
...

...
. . .

...
E
[
xIx

T
1

]
E
[
xIx

T
2

]
. . . E

[
xIx

T
I

]

 (5.33)
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The matrices E
[
xix

T
i

]
can be expressed as a function of the system matrix F

and the process noise covariance matrix Cw:

E
[
x1x

T
1

]
= Cw

E
[
x2x

T
2

]
= FCwFT + Cw

E
[
x3x

T
3

]
= F2Cw

(
F2
)T

+ FCwFT + Cw

E
[
xix

T
i

]
=

i−1∑
k=0

FkCw

(
Fk
)T (5.34)

An equation for the error covariance E
[
xi+jx

T
i

]
can be derived by first consid-

ering the following state recursions:

xi+1 = Fxi + wi

xi+2 = F2xi + Fwi + wi+1

xi+3 = F3xi + F2wi + Fwi+1 + wi+2

xi+j = Fjxi +

j−1∑
k=0

Fj−k−1wi+k

(5.35)

So, E
[
xi+jx

T
i

]
becomes:

E
[
xi+jx

T
i

]
= E

[(
Fjxi +

j−1∑
k=0

Fj−k−1wi+k

)
xTi

]

= E
[
Fjxix

T
i

]
+ E

[
j−1∑
k=0

Fj−k−1wi+kx
T
i

]
= FjE

[
xix

T
i

]
(5.36)

Note that E
[∑j−1

k=0 Fj−k−1wi+kx
T
i

]
is always zero, because wi is assumed to

be zero-mean white noise. Thus the expectation of wi+k times another vector

is zero as well. Furthermore, it can be proven that E
[
xix

T
i+j

]
= E

[
xi+jx

T
i

]T
.

Now that all matrices in the equations (5.26) are defined, the maximization
problem (5.24) can be further evaluated by using the general probability den-
sity function (5.11) for multivariate normally distributed signals. Again, since
maximizing this equation is equal to maximizing the natural logarithm of this
equation, the problem can be simplified to the following minimization problem:

(
X̂, Û

)
= argmax

X,U
{p (Z|X) p (X|U,x0) p (U)}

= argmin
X,U

1

2

(
[ Hs 0 ]

[
X
U

]
+ Z

)T
C
−1
V

(
[ Hs 0 ]

[
X
U

]
+ Z

)
+

1

2

(
[ 0 I ]

[
X
U

])T
C
−1
U

(
[ 0 I ]

[
X
U

])
+

1

2

(
[ I −G ]

[
X
U

]
− Fsx0

)T
C
−1
X

(
[ I −G ]

[
X
U

]
− Fsx0

)
(5.37)
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Differentiation with respect to the vector

[
X
U

]
and equating to zero results in

the following least squares solution:[
X̂

Û

]
= A+B (5.38)

where A+ is the pseudo inverse of A:

A =


[
−Hs 0

]T
C−1
V

[
−Hs 0

][
0 I

]T
C−1
U

[
0 I

][
I −G

]T
C−1
X

[
I −G

]
 (5.39)

and B:

B =


[

Hs 0
]T

C−1
V Z

0[
I −G

]T
C−1
X Fsx0

 (5.40)

Algorithm summary

The algorithm for state and input estimation in closed-form consists of the
following mains steps:

1. Stack measurement vectors.

2. Construct the model matrices G (5.31), Fs (5.32) and Hs (5.32).

3. Construct the covariance matrices CX (5.33) and CV (5.28).

4. Calculate matrices A (5.39) and B (5.40) and estimate X and U (5.38).

5. Unstack X and U into vectors xi+1 and ui.

The calculation of the covariance matrices E
[
xix

T
i

]
and E

[
xi+jx

T
i

]
and the

input matrix G can be done iteratively.

Simulation results

As already explained, constraints on the input estimation can now be enforced
by means of a covariance matrix. The diagonal elements of this covariance
matrix can be used to assign an estimation of the input profile in time. The
cross elements can be used to limit the bandwidth and thus to reduce the noise.
In case of the kinematic-dynamic test model, the diagonal elements of the input
covariance matrix are calculated by convolving the original input sequence with
a (one-dimensional) Gaussian window, see figure 5.5a. Furthermore, a small
off-set is added to all diagonal elements, to make the matrix invertible (see
appendix D for explanation). The cross elements are assigned by applying a
two-dimensional Gaussian convolution, see figure 5.5b.

The closed-form state and input estimation is implemented and applied on
the test model as well. Figure 5.6a shows the simulation results whereby the
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Figure 5.5: Input covariance matrix CU of the kinematic test model.

estimation is based on measured position and velocity (i.e. H is the identity
matrix). As can be seen the noise on the estimated input is significantly re-
duced. Furthermore, also a simulation is performed whereby only the position
is measured (i.e. H = [1 0]). These results are shown in figure 5.6b. As can be
seen in this figure, the states and input are still estimated quite well. So, it can
be concluded that the algorithm performs well even in the situation where not
all states can be measured.
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Figure 5.6: Simulation results of closed-form state and input estimation from position
and velocity measurements (a) and from position measurements only (b).

5.4 Parameter estimation

In the previous section the system parameters were assumed to be known. How-
ever, in case of the development of a tongue or lip model, information about
system parameters requires information about (possible unavailable) physical or
biomechanical properties of the actual system. In case of a kinematic-dynamic
model, these system parameters are for example mass, damping and stiffness
coefficients of the soft tissue. In this section it will be discussed how to deal
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with a system with known (kinematic) structure, but with unknown system
parameters. The objective is to estimate, beside the states and input, also the
system parameters from the measurement sequence.

Derivation of cost function

Suppose the main structure of the system matrix is known (or assumed to be
known), but does contain some unknown parameters, gathered in the vector
α. The system matrix is than a function of these unknow parameters: F(α).
In case of the test model, the unknow parameters are for example the spring
coefficient k and the damping coefficient d, so α = [k d]T . The objective is now
to estimate, beside the states X and the input U, also the system parameters
α, given the measurements Z:(

X̂, Û, α̂
)

= argmax
X,U,α

{p (X,U,α|Z)}

= argmax
X,U,α

{p (Z|X,U,α) p (X|U,α) p (U|α) p (α)}

= argmax
X,U,α

{p (Z|X,U) p (X|U,α) p (U)}

(5.41)

It will be assumed that p (α) is uniformly distributed (possibly within a certain
interval). This means that each possible value for the system parameters has an
equal chance and that p (α) has no maximum value. Furthermore, p (U|α) =
p (U) and p (Z|X,U,α) = p (Z|X,U), since these probabilities are independent
of the system parameters.

The distributions of p (Z|X,U) and p (U) are given by respectively the equa-
tions (5.26a) and (5.26c). The distribution of p (X|U,α) is similar to equation
(5.26b). However, the matrix G and the covariance matrix CX are now a func-
tion of F and thus a function α:

p (X|U,x0) ∼ N (G(α)U + Fsx0,CX(α)) (5.42)

Since the covariance matrix is thus also a function of the input arguments,
the term in front of the exponential in the probability density function cannot
simply be neglected anymore when maximizing this function. An expression for
the maximization of p (X|U,α) can is this case be derived as follows:

argmax
X,U,α

{p (X|U,α)}

= argmax
X,U,α

{
1

(2π)nI/2|CX |1/2
exp

(
−1

2
(X−GU)TC−1

X (X−GU)

)}
= argmax

X,U,α

{
log

(
1

|CX |1/2
exp

(
−1

2
(X−GU)TC−1

X (X−GU)

))}
= argmax

X,U,α

{
−1

2
(X−GU)TC−1

X (X−GU)− 1

2
log |CX |

}
= argmin

X,U,α

{
(X−GU)TC−1

X (X−GU) + log |CX |
}

(5.43)
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Combining this equation with the other two probability density functions results
in the following cost function:

J(X,U,α) = (Z−HsX)
T

C−1
V (Z−HsX) + UTC−1

U U+

(X−GU)
T

CX(α)−1 (X−GU) + log |CX(α)|
(5.44)

As can be seen, this cost function also includes the determinant of the covariance
matrix |CX |. In case of a large matrix with many values smaller than one on its
diagonal, the determinant becomes very small. Mathematical software packages,
like Matlab, round this easily to zero. The determinant of a certain matrix
can therefore also be calculated by calculating the product of all the eigenvalues
λi of the matrix:

|CX | =
nI∏
i=1

λi (5.45)

The natural logarithm of the matrix determinant can now be calculated without
any problem by computing the sum of all the eigenvalue-logarithms:

log |CX | = log

(
nI∏
i=1

λi

)
=

nI∑
i=1

log (λi) (5.46)

Minimization of cost function

An estimate of the stacked states X, input U and system parameters α can
be obtained by minimizing the cost function of equation (5.44). However, this
equation is not linear anymore and cannot easily be differentiated. Therefore
an algorithm is implemented in Matlab that finds the minimum value of J and
the corresponding parameters numerically, by using the function fminsearch.
This function uses the simplex search method described in [24].

Simulation results

With the test model a measurement sequence is generated with system matrix
parameters k = 1.6 and d = 2. This measurement sequence and the model
structure (without the parameter values) are supplied to the state, input and
parameter estimation algorithm. Figure 5.7 shows the calculated values of J for
different values of the system parameters k and d. The function has a global
minimum and the shape suggest that finding the minimum value can’t be too
difficult. This minimum value is numerically calculated and is indeed at the
correct parameter values of k and d.

Furthermore, in the contour plot it can clearly be seen that there is a kind
of trough. This trough goes in the direction of the origin. So, it looks like that
there is a small linear relation between the two parameters and that scaling both
parameters with the same (small) value does not have much influence on the
minimum value of the cost function. This is an advantage in case the (patient
specific) parameters can be measured and the focus is on input (and state)
estimation, since it relaxes the accuracy of these measurements a bit. Most
import is the linear relation between the two parameters.
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Figure 5.7: Value of J for different system parameter values.
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5.5 Conclusions

This chapter was concerned with the investigation of possibilities for system
identification with unknown inputs. Therefore, the chapter was mainly focused
on the derivation of algorithms for the estimation of states, input and system
parameters of a linear discrete-time state space model. The developed algo-
rithms assume that the main structure (e.g. kinematic-dynamic) of the system
is known and require, beside a sequence of measurements, the input of covariance
matrices for the measurement noise, the process noise and the input signals.

For the estimation of the states and input signals, two different algorithms
have been derived and implemented. The first one is recursive and is therefore
appropriate for a system with vectors and matrices of high dimensions and a
large number of measurement samples. The second algorithm is in closed-form,
which means that the states and input are estimated from the stacked mea-
surement vectors and stacked model matrices. This enables the possibility to
constrain the input by supplying a covariance matrix that describes the corre-
lation between input signals (bandwidth limitation) and the chance on input
signals at certain time moments. On this way, the input can be estimated more
accurately. However, the disadvantage of the closed-form algorithm is that the
construction of the closed-form matrices is time-consuming and that the matri-
ces might become too large in case of high-dimensional vectors. Furthermore, a
cost function (for the closed-form case) has been derived to include the estima-
tion of system parameters as well. This cost function is minimized numerically.
From experiments performed on the implemented test model, it can be con-
cluded the algorithms work properly: the measurement noise and process noise
are mainly filtered out, the input signals are estimated quite accurate and the
system parameters are determined correctly (with a reasonable initial guess).

Summarized, with these algorithms a first step is made in the research to
phenomenological identification possibilities of a physical system like the tongue
and lips. The algorithms show that it is possible to estimate the model input
variables from measured output variables only. However, to do so, a priori
knowledge about the actual system is required, for example that the system can
be modeled as a kinematic-dynamic system. Overall, it can be concluded that for
the development of an adequate and complete model, at least information from
EMG measurements is required and preferably also more information about the
actual physical system (e.g. muscle behavior).



6

Conclusions and
recommendations

6.1 Conclusions

This thesis project was concerned with the exploration of a dynamic model of the
human tongue and lips. Because of the complicated anatomical and muscular
structure of these organs, it was decided to aim at a phenomenological black-
box model, rather than at a complicated, detailed physiological model. Since a
phenomenological model is developed based on the outside behavior of a system
(or organ), methods have been investigated to capture and describe tongue
and lip shapes and movements. Furthermore, a large part of this research was
focused on the derivation, investigation and implementation of mathematical
algorithms for modeling dynamic systems. The purpose of this research part
was not to directly postulate the ultimate solution, but rather to show a proof
of concept of possible approaches.

Contour detection and tracking

Initially, the research was mainly focused on the tongue. Therefore, an algorithm
is developed that is able to detect and to track the tongue contour in (sequences
of) magnetic resonance images. This algorithm uses an Active Shape Model,
which is formed by training. The algorithm performs well when the tongue is
clearly visible and when the images are not contaminated with too much noise.
Although the ASM algorithm is only tested on MR images of the tongue, it is
expected that it can also be used for lip contour detection in normal images.

Phenomenological modeling

A discrete-time linear state space model is investigated as a possible framework
for the description of the dynamic behavior of the tongue and lips. This relative
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simple model framework was chosen because of the limited amount of knowledge
and information about the actual ‘system’ (i.e. the tongue or lips). From
measured output signals (trajectories of landmarks on the lips) it was tried to
derive as much information as possible for the construction and estimation of
the model matrices. Therefore, it was also necessary to make some assumptions.
In a first attempt it was assumed that the input (muscle activation signals) can
be approximated as white Gaussian distributed process noise with zero-mean.
This hypothesis enabled the estimation of the system matrix and the covariance
matrix for the process noise. However, model evaluation by applying consistency
checks showed that this model in combination with the mentioned assumptions
is not optimal.

To estimate input signal from measured output signals, it is necessary to
make assumptions about the system matrices. Therefore, in a second consider-
ation, it was assumed that the motion modes of the tongue and lip can be mod-
eled as a damped harmonic oscillator. Based on this hypothesis, a kinematic-
dynamic test has been defined with known system matrices and known input
distribution. Algorithms have been derived and implemented to estimate the
input signals and system parameters from a measurement sequence. The al-
gorithms perform well on the test model. However, application on the actual
lip data does not yet make much sense, since validation of the estimations is
not possible with this limited amount of data and information. Therefore, the
derived algorithms should be considered as a proof of concept, i.e. they proof
that it is possible to estimate input signals and system parameters, but only
when the system structure is known and statistical information about the dis-
tribution of input signals is available. Summarized, it can be concluded that for
the development of an adequate model of the tongue and lips information from
EMG measurements is required.

6.2 Recommendations

The main focus of future work, concerning this project, should be on measuring
muscular activation signals and on the establishment of a distribution model.
This distribution model should describe the relation between groups of muscular
activation signals and the dynamic variables describing the shape and motion
of the tongue and lips. It is easier to capture and track lip movements than
tongue movements and it is probably also easier to measure muscular activation
signals on the lips (by using EMG). Therefore it is recommended to derive a
distribution model for the lips first. Once this distribution model is established
for the lips, possibilities can be investigated to do something similar for the
tongue as well.

For the development of an adequate and accurate model, it is expected
that beside measured input variables (muscle activation signals) and measured
output variables (tongue and lip movements), it would also be useful to include
some more information about biomechanical properties of the tongue and lips.
These properties are for example the mass and elasticity of tongue and lip
tissue. The resulting biomechanical constraints and parameters can be used for
better estimation of system parameters. More information also opens the door
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to the investigation of more advanced models. As is shown in this research,
a linear state space model is quite limited. This implies that it is actually
recommended to focus not on pure phenomenological modeling, but also to
include some physiological information.

Furthermore, there are some other issues that have to be investigated. One
of them is the investigation of proper methods for the acquisition of fast tongue
movements. The current acquisition speed of an MRI scanner appeared to be
too low for capturing realistic (fast) tongue movements. Also a way has to be
found to measure muscle activation signals of the tongue. In a later stage, when
such a model is successfully derived for the tongue as well, the models can even
be further extended to the total oral cavity and pharynx. In the end this should
result in a complete system that enables virtual surgery for a specific patient.





A

Lip data

Because of a shortage of appropriate tongue data (i.e. trajectories of landmarks
on the tongue contour during fast and realistic1 tongue movements), developed
models can initially be evaluated by using data of fast lip movements. This
data consists of trajectories of landmarks on the outer lip contour. This ap-
pendix describes how this data is obtained. Furthermore, in this appendix also
some small experimental results are presented to provide a general idea of lip
movement experiments.

A.1 Acquisition method

Since the emphasis of a large part of the research project is on the development
of a dynamic model and not on the way how the lip data is obtained, it was
decided to design a simple, but robust, acquisition method. For easy automatic
detection of lip features, the lips were provided with eight markers. The created
markers were circular white stickers with a diameter of 5 mm. They were
provided with a black dot - with a diameter of about 1.5 mm - in the middle of
the sticker. This kind of markers was chosen since they can easily be detected
by convolving the images with a Gaussian function. More details concerning
the detection procedure will follow in subsection A.2.

For capturing the lip movements, a normal consumer camera (the Casio Ex-
ilim EX-FC100 ) was used. This camera can take color images with a resolution
of 480 × 360 pixels at a frame rate of 210 images per second. The camera was
installed in a room with sufficient daylight. The test person, provided with eight
markers on his lips, had to take place on a chair with his face in front of the
camera. Figure A.1 shows an example of the captured images.

To obtain proper data for the evaluation models, marker trajectories of dif-
ferent lip movements are captured: two sequences of 14 seconds (2940 images)
during random movements and furthermore sequences during the pronounce-

1Realistic tongue movements are assumed to be movements belonging to for example swal-
lowing and the pronouncement of visemes.
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(a) Mouth closed (b) Mouth open

Figure A.1: Examples of a captured image for the extraction of lip data.

ment of several basic visemes. The random lip movements consisted of a few
clear movements, like opening and closing of the mouth, compression and de-
compression of the lips in horizontal direction and the pronouncement of letters
in English. This kind of data is expected to be appropriate for the extraction
of principal lip shapes (by applying PCA). Furthermore, sequences are cap-
tured during the pronouncement of the words /papa/, /mama/ and a selection
of visemes from [25]: /silent/, /boat/, /wet/, /size/, /eat/, /earth/ and
/if/. It is expected that for example /papa/ and /mama/ results in similar fea-
ture trajectories and visemes like /papa/ and /boat/ in different trajectories.

A.2 Detection and tracking of markers

Detection

As already described, the used lip markers are circular white stickers with a
black dot in the middle. These simple textures do not occur in the rest of the
face (and background) and can easily be detected by convolving the images with
the second derivatives of a Gaussian function, one in x- and one in y-direction.
The formula of the second derivative in x-direction is given by equation (A.1).

hxx =

(
− 1

2πσ4
+

x2

2πσ6

)
exp

(
−x

2 + y2

2σ2

)
(A.1)

The width of the function is determined by σ (see figure A.2) and its value
is based on the width (in pixels) of the dots on the stickers in the images.
The Gaussian functions also work as a kind of low pass filter. So, after the
convolution (hxx ∗ I + hyy ∗ I) the image is smoothed and only the positions
of the markers are amplified (figure A.3b). By finding the m highest regional
maxima (m is the number of markers), the center locations of the markers are
determined (figure A.3c). In this way the markers can be detected with an
estimated accuracy of about two pixels.
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Figure A.2: Second derivative of a Gaussian in x-direction.

Tracking

For tracking landmarks in a sequence of lip images, the detected markers have
to be sorted. In the first image of a sequence, the markers are sorted by angle
from the center of the mouth, which is the mean of all markers in x- and y-
direction (figure A.3d). Since the distances between corresponding markers in
two successive images is small, tracking is done by finding for each marker in
an image the nearest marker in the previous image. This is done by calculating
the Euclidean distances.

(a) Original image (b) Convolution with Gaussian function

(c) Detection of regional maxima

1
2

3 4
5

678

(d) Arrangement of detected markers

Figure A.3: Detection procedure of markers on the lips.
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Alignment

During capturing the sequences of lip movements, the test person’s head might
have moved a bit, for example closer to or further away from the camera or a
bit more to the left or right. So, the capturing method is not yet scale, rotation
and translation invariant. For comparing different marker trajectories, these
possible scaling, rotation and translation differences have to filtered out. This
is accomplished by applying the same algorithm as described in section 3.3.2 for
the alignment of training shapes.

A.3 Experiments

This section describes the results of some experiments performed on the mea-
sured lip landmark trajectories. These experiments include the estimation of
velocity (and acceleration) components, feature reduction by using principal
component analysis and the investigation of feature trajectories for different
visemes.

Estimation of velocity and acceleration

The velocity and acceleration components are estimated from the detected land-
mark position by using the implemented Kalman filter (see section 4.5.1). The
used system matrix is based on kinematic equations:

F =

 I ∆tI 1
2∆t2I

0 I ∆tI
0 0 I

 (A.2)

The sample period ∆t is 1/210 second. Since the markers are detected with
an accuracy of about two pixels, the used covariance matrix of the measure-
ment noise is chosen as: Cv = σ2

vI, with σ2
v = 2. The covariance matrix of

the process noise is determined empirically. Figure A.4 shows two examples of
images with detected markers and estimated velocity and acceleration compo-
nents. The results are as would be expected: the arrows point in the correct
moving direction.

Principal lip shapes

PCA training is applied on the state vectors belonging to the sequence of ran-
dom lip movements. In case of only landmark positions (n = 16), four principal
components appeared to be sufficient to explain 99% of the total variation. In
case of position and velocity components (n = 32), six components appeared to
be sufficient to obtain this percentage. Figure A.5 shows the effects on lip shapes
and velocity components by varying the first three principal shape parameters.
As can been seen in this figure, the first parameter describes the dynamic open-
ing and closing of the mouth in vertical direction, the second parameter the
dynamic opening and closing in horizontal direction and the third parameter
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(a) Start of mouth opening (b) Start of mouth closing

Figure A.4: Captured images during the pronouncement of a viseme. The blue
asterisks indicate the measured tag locations, the red asterisks the estimated locations,
the red arrows the estimated velocity (magnitude and direction) and the green arrows
the estimated acceleration (magnitude and direction).

mainly the static vertical opening. The parameters are varied only within ±
1.5 times the standard deviation. By exceeding these limits, unrealistic shapes
are generated. For example when the third parameter becomes smaller than
-1.5 times the standard deviation, the lip landmarks cross each other in vertical
direction. Apparently, the feature data it not fully Gaussian distributed.
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Figure A.5: Effects on lip shapes and velocity components by varying the first three
principal static control parameters (which explains 95% of the total variation).

Trajectory investigation

The trajectories (evolution in time) of the first element in the PCA-reduced state
vector have been investigated for the pronouncement of the different visemes.
This vector element describes the opening and closing of the mouth. Figure A.6
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shows the trajectories for several pronouncements of /papa/ and /mama/. For
comparison purposes, these trajectories are aligned in time (horizontal transla-
tion) by using the convolution technique. As can been in the figure, the pattern
of the trajectories is similar (as would be expected), but the pronouncement of
/mama/ is shorter than the pronouncement of /papa/. Furthermore, the am-
plitudes are different: in case of /papa/ the mouth opening is larger and the
lips are pushed closer to each other. Figure A.7 shows a comparison between
the pronouncement of the visemes /papa/ and /boat/. As can be seen, the
trajectories have different patterns in time and the amplitudes are different as
well. So, these visemes can clearly distinguished by considering the evolution of
their lip features in time.
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Figure A.6: Trajectories of the first shape parameter for the pronouncement of /papa/
(3×) and /mama/ (3×). The value on the y-axis indicates the opening of the mouth
(the lower the value, the larger the mouth opening).
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Figure A.7: Trajectories of the first shape parameter for the pronouncement of /papa/
and /boat/.





B

GUI for tongue and lip
simulations

To illustrate the idea of a static and dynamic model of the tongue and lips, a
graphical user interface (see figure B.1) has been developed, which can be used
to simulate static shapes and dynamic movements. The used lip data consists of
aligned landmark trajectories that describe the random lip movements and the
movements belonging to the pronouncement of the visemes. On this data PCA
has been applied to extract the mean shape and the deformation modes. The
dynamic behavior is described with the discrete-time linear state space model:[

x(i+ 1)
v(i+ 1)

]
=

[
I ∆tI

− k
m∆tI I− d

m∆tI

] [
x(i)
v(i)

]
+

[
0

∆t
m I

]
c(i)

z(i) = P [I 0]

[
x(i)
v(i)

] (B.1)

The states x ∈ <t and v ∈ <t represent respectively the PCA-transformed
position and velocity of the landmarks. The matrix P ∈ <n×t consists of the
eigenvectors corresponding to the first t highest eigenvalues of the covariance
matrix of the training set. The elements of the vector c ∈ <t represent the
muscle activation signals. The mass m, the elasticity k and the damping d are
the system parameters and ∆t is the sample period.
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Figure B.1: Print-screen of the GUI for lip (and tongue) shape and movement sim-
ulations, using a kinematic-dynamic model whereby t = 4.



C

Distribution normalized
periodogram

Suppose that x(i), with i = 0, . . . , I − 1, is a normally distributed signal with
zero mean and variance σ2, i.e:

x(i) ∼ N(0, σ2)

x(i), x(u) uncorrelated for i 6= u
(C.1)

The discrete Fourier transform of x(i), calculated over i = 0, . . . , I − 1, is:

X(k) =

I−1∑
i=0

x(i)e−j2πki/I

=

I−1∑
i=0

x(i)

[
cos

(
2πik

I

)
− j sin

(
2πik

I

)] (C.2)

The normalized periodogram is defined as P (k) = |X(k)|2/I. In this appendix
it will be proven that the sequence 2P (k)/σ2 (k = 1, . . . , I−1) is χ2

2 distributed
for all k.

Proof C.1

A random variable y is χ2
N distributed when it can be constructed from the

sum of the square of random and independent Gaussian random variables
ui with zero mean and unit variance:

y =

N∑
i=1

u2
i (C.3)

To prove that 2|X(k)|2
σ2I ∼ χ2

2, the signal |X(k)|2 has to be elaborated.
X(k) can be split into a real part and an imaginary part:

X(k) = <(X(k))− j=(X(k)) (C.4)
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with

<(X(k)) =

I−1∑
i=0

x(i) cos

(
2πik

I

)
(C.5a)

=(X(k)) =

I−1∑
i=0

x(i) sin

(
2πik

I

)
(C.5b)

The squared magnitude of X(k) can be written as:

|X(k)|2 = Re(X(k))
2

+ =(X(k))
2

(C.6)

The above equation already explains the two degrees of freedom. Compare
it with equation C.3, where u1 = <(X(k)) and u2 = =(X(k)). Since x(i)
are random variables with zero mean, the expectation values of <(X(k)) and
=(X(k)) are also zero. The variance of x(i) is σ2, so the variance of <(X(k))
is calculated as follows:

Var (<(X(k))) = Var

(
I−1∑
i=0

x(i) cos

(
2πik

I

))

= Var(x(i))

I−1∑
i=0

cos2

(
2πik

I

)

= σ2
I−1∑
i=0

cos2

(
2πik

I

)
=
σ2I

2

(C.7)

The last step follows from the fact that the series
∑I−1
i=0 cos2

(
2πik
I

)
is equal

to I/2 for all k. Since Var (=(X(k))) will give the same result, both <(X(k))

and =(X(k)) are normally distributed with zero mean and variance σ2I
2 . So,

|X(k)|2 ∼ σ2I
2 χ2

2 and thus:

2|X(k)|2
σ2I

∼ χ2
2 (C.8)



D

Matrix regularization

In case of large covariance matrices, calculating the inverse can be a problem.
This is the case when the difference between the maximum and minimum eigen-
values of the matrix is large. Such a matrix is called ill-conditioned. In this
appendix it will be shown that the condition of a covariance matrix can be
improved (regularized) by adding the identity matrix times a certain factor γ.

Consider the covariance matrix A, which is a symmetric n× n matrix with
eigenvector matrix V = [v1 . . .vn] and eigenvalue matrix Λ, a diagonal matrix
with diagonal entries λ1, . . . , λn (λi ≥ 0). These matrices are related to each
other as follows:

AV = VΛ (D.1)

Since A is a symmetric matrix, its eigenvectors are orthogonal and thus the
inverse of V is equal to its transpose. So, the inverse of A can be expressed in
its eigenvector and eigenvalue matrices as follows:

A−1 = VΛ−1VT =

n∑
i=1

1

λi
viv

T
i (D.2)

In this equation it can be seen that for a big difference between eigenvalue values,
the inverse of the matrix becomes unstable. The condition of a symmetric matrix
is defined as the absolute value of the ratio between the highest and smallest
eigenvalue:

Cond(A) =

∣∣∣∣λmax

λmin

∣∣∣∣ (D.3)

In case of a stable matrix, this value is close to one. In case of an unstable
matrix the condition value is large, which means that the matrix is close to
singularity. Now it will be proven that a matrix can be stabilized by adding the
identity matrix times a factor γ: A + γI.

Proof D.1

Suppose the eigenvector matrix of A + γI is W and its eigenvalues are αi
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(i = 1, . . . , n). These eigenvalues can be expressed in λ and γ as follows:

(A + γI)W = αW

AW + γV = αW

AW = (α− γI)W
(D.4)

By comparing this result with equation (D.1), it can be seen that W = V
and (α− γI) = Λ. The eigenvectors of A + γI are λi = αi − γi and thus
αi = λi + γ. So, the matrix A + γI has eigenvalues λ + γ and the same
eigenvector matrix V as A. The condition of A + γI is:

Cond(A + γI) =

∣∣∣∣λmax + γ

λmin + γ

∣∣∣∣ (D.5)

When γ is much larger than λmin, λmin can be neglected in relation to γ.
So, on this way the condition of a covariance matrix can be improved, while
keeping the same eigenvectors.
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