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ABSTRACT

Abstract

Within the Sustainable Process Technology research group of the University of Twente several processes are investigated
which are operated at supercritical water conditions (T>374.0°C and P>22.05 MPa [1]). For example, supercritical
water desalination, supercritical water gasification both operating at low mass fluxes [2]. Operating processes at these
conditions is highly energy consuming and has direct influence on the operating costs. Therefore heat integration
is essential in these processes. Literature [4] describes a lot of research about heat transfer at sub- and supercritical
water at high mass fluxes (G>200 kg/m2s [4]) and in a turbulent flow regime. In previous research [5; 6] a correlation for
the heat transfer coefficient is developed for low mass fluxes (G<20 kg/m2s) in the (overall) laminar flow regime. This
correlation is supported with experimental results at subcritical temperatures.

In this research experiments were carried out in a vertical tube (OD of 33.40 mm, ID of 20.70 mm and length of 1.54
m) with upward flow at sub- and supercritical conditions. Experiments were done with 3 different flow rates; 4.1
(G=3.2 kg/m2s), 8.0 (G=6.3 kg/m2s) and 11.3 kg/h (G=8.8 kg/m2s). Temperatures are measured axial direction and in
radial direction at a specific position. To get axial and radial temperature profiles. For the radial temperature profile
in the fluid a probe with multiple thermocouples is used and for the radial temperature profile in the wall multiple
thermocouples where placed in the tube wall at two positions (55 cm and 100 cm from the inlet). With the temperatures
results from the wall the heat flux and thi inner wall temperature can be calculated. The temperatures of the probe are
used to estimate the fluid temperature. Finally the Heat Transfer Coefficient (HTC) is calculated from the heat flux and
temperature difference between the wall and fluid.

The results obtained at 300 bar and 55 cm are the most consistent. Below 350 C the results of the experimental HTC
are within the error bar in agreement with the correlation and increase from 1 kW/m2.°C up to 2 kW/m2.°C with
temperature. However the experimental HTCs are always above the values obtained from the correlation. Above
350°C the HTC increases exponentially up to the pseudocritical temperature, which is not the case for the correlation.
Experimental and correlation results show an increasing HTC at an increasing flow rate.

The measurements at 100 cm are more difficult to interpret. Probably as a result of an axial temperature gradient in the
wall the radial temperature profile in the wall shows a maximum. Due to this it is impossible to separate the radial and
axial heat flux. Estimation of the maximum and minimum radial heat flux is conducted but it results in HTCs, which
deviate too much.
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NOMENCLATURE

Nomenclature
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A heat transfer area m2
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D inside diameter m
di tube inside diameter m
do tube outside diameter m
g gravitational constant m/s2

G mass flux kg/(m2.s)
Gr Grashof number -
h enthalpy kJ/kg
hi tube-side heat transfer coefficient W/(m2.°C)
ID inner diameter m
k thermal conductivity W/(m.°C)
L heated length m
m mass flow rate kg/s
Nu Nusselt number -
OD outer diameter m
P pressure bar or MPa
Pr Prandtl number -
Q amount of transferred heat W
R gas constant J/(K.mol)
R tube radius -
Re Reynolds number -
T temperature °C
Tc centre-line temperature (at r=0) °C
Ti n inlet temperature °C
Ti w inner wall temperature °C
Tmc mixing cup temperature °C
Tow outer wall temperature °C
Uo overall heat transfer coefficient W/(m2.°C)
x axial coordinate m

Greek letters

β thermal expansion coefficient 1/°C
µ viscosity Pa.s
ρ density kg/m3

φ flow rate kg/h

Master thesis Wilmar den Hartog, BSc Page 5 of 54



NOMENCLATURE

Subscripts
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1 INTRODUCTION

1 Introduction

This research is a graduation assignment of the master Chemical and Process Engineering at the research group
Sustainable Process Technology (SPT) of the University of Twente. In this chapter the background and content of the
assignment are described.

1.1 Background

Within the SPT research group several processes are investigated which are operated at supercritical water conditions
(T>374.0 °C and P>22.1 MPa [1]). For example, supercritical water desalination, supercritical water gasification [2].
Operating processes at these conditions is highly energy consuming, due to the high amount of energy required to heat
the feed stream and the heat loss by cooling the product stream. These have direct influence on the operating costs and
therefore the economically feasibility of the process. The operating costs can be reduced to make the process more
economic feasible, heat integration is essential in these processes. Heat integration is achieved by heating the feed
stream with the product stream in a heat exchanger that operates at supercritical pressure and sub- to supercritical
temperatures.

In the critical region, where these processes operate, the properties of water change drastically with small changes in
temperature. Change in properties like density, viscosity, heat capacity and thermal conductivity have influence on the
heat transfer and therefore also on the design of the heat exchanger [3].

Many heat transfer coefficient (HTC) correlations are available in literature [4] for various fluids, including water, at
sub- and supercritical pressures [3]. Pioro and Duffey have performed a preliminary analysis on these HTC correlations
and found that the correlation of Bishop et al. was fitting well for sub- to supercritical water flow at high mass fluxes
in vertical tubes [4]. The Dittus-Boelter correlation is widely used as heat transfer correlation at subcritical pressures
for forced convection [3]. Later on the Dittus-Boelter correlation is adjusted to fit experimental data for heat transfer
at supercritical pressures [4]. The correlation of Bishop et al. is also based on the Dittus-Boelter correlations. Morky
[3] decribes more researchers who have adjusted or used these correlations, but these researches are mainly in the
turbulent flow.

In previous experimental research, on laminar flow, an indirect method is used to calculate the heat transfer coefficient
[5]. These indirect method is based on enthalpy difference in the energy balance [5]. In this report a direct method
will be used, based on the heat flux measurements through the tube wall. This will be explained in more detail in the
chapter 3 (Experimental section).

1.2 Objectives

In previous research on heat transfer to sub- and supercritical water, a HTC correlation was obtained from Comsol
simulations [6]. Previous experimental work has been carried out at temperatures below the pseudo-critical point1,
where the HTC is constant. One objective is to measure a maximum value of HTC. This will be done experimentally by
crossing the pseudo-critical temperature of water at the operating pressure. The second objective is to study the effect
of (supercritical) pressure on HTC at sub- and supercritical temperatures. The expectation of this research is that a
higher maximum value of HTC will be obtained when the pressure is closer to the critical pressure of the water. HTCs
obtained from experiments will be compared to the predictions of the HTC correlation obtained from Comsol.

1.3 Outline of the thesis

In the following chapter a literature overview is given about properties of supercritical fluids, like water and other
solvents. The properties of these fluids will be compared with each other. Here also prediction methods for heat transfer
at supercritical pressure are presented. These methods are for turbulent flow of supercritical fluids. The third chapter is
about the experimental methods and the calculation procedure. In chapter 4 the results will be discussed and in the
succeeding chapters the conclusion and recommendation will be given.

1Pseudo-critical point is a point at a pressure above the critical pressure and temperature above the critical temperature corresponding to the
maximum value of the specific heat capacity for the particular operating pressure.
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2 LITERATURE REVIEW

2 Literature review

In this chapter the literature review on supercritical water and other solvents is given. The focus will lay on different
properties of supercritical fluids and especially the heat transfer coefficient (HTC). Also a literature review of available
HTCs correlations for sub- and supercritical water flow in tubes is given.

2.1 Supercritical water (SCW)

A fluid, like water, is supercritical when the temperature and pressure exceed the temperature and pressure at the
critical point, see the phase diagrams in Figure 1 [7]. The critical point of a fluid is at the end point of the liquid-vapour
equilibrium. Above this point a fluid cannot be liquefied. The fluid is then neither a liquid nor gas but has approximate
the behaviour of a perfect gas [4]. After this point the phase boundary vanishes (Figure 1(a) and (b)), but there is a
pseudocritical line. Each point on the pseudocritical line have a temperature and pressure above critical temperature
and critical pressure which corresponds to the maximum value of the specific heat at the particular pressure [8].

(a) (b)

Figure 1: (a): Phase diagram of most substances [9]. (b): Phase diagram of water [8].

The properties of supercritical fluids changes rapidly with small changes in temperature and pressure around the
critical point as for water which is shown in Figure 2. Water has an unusually high critical temperature this is due to the
high polarity of water [10]. Water has a liquid density of 998.2 kg/m3 at 20°C [11] and for steam 0.59 kg/m3 at 100°C
[12] both at atmospheric pressure. From Figure 2(a) it can be seen that the densities of supercritical water are lower
than liquid water (at 20°C), but higher than steam at atmospheric pressures [7]. In Figure 2 (a)-(c) the red and blue
lines of 210 bar and 221 bar are showing a straight vertical line, but for the 221 bar it is less pronounced. The 210 bar
is below the critical pressure of 220.5 bar, therefore there is a phase transition over the saturation line from liquid to
gas. Change in properties, where the pressure and temperature are slightly higher than the critical point conditions,
are large (Figure 2(c)) but near the pseudocritical points, by an increase of pressure, the change of properties are less
pronounced [4; 8]. The specific isobaric heat capacity of water near the critical point is 2-9 times higher than of liquid
water, which means that supercritical water can absorb more energy per unit of weight per temperature difference than
liquid water, see Figure 2(c). Therefore the heat transfer will be better for supercritical water than liquid water.

The properties change of the fluid in the supercritical region have some benefits in the applications in the process
industry. So water under supercritical conditions can be used as an extractive agent [1]. The dielectric constant of
SCW is much lower than liquid water and the hydrogen bonds become weaker, which make SCW a good agent to
dissolve most of the (nonpolar) organic compounds [7; 10]. Also electrolytes with the formation of ions can dissolve
in SCW if the density and relative permittivity are sufficiently high [7]. SCW is used to cool nuclear reactors (SCWR)
due to the good heat transfer of SCW. Supercritical water nuclear power plants have comparable with a regular nuclear
power plants a much higher operating parameters and therefore a simplified flow circuit [4]. This is possible due to
the relatively constant density of SCW under supercritical operating conditions, see Figure 2(a). Besides its use as
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2 LITERATURE REVIEW

(a) (b)

(c)

Figure 2: Different properties of water at 210, 222 and 300 bar; (a) Density, (b) Enthalpy and (c) Specific isobaric heat
capacity [13].

an extractive agent and coolant, SCW can be used in reactions. If the pressure is high enough SCW is miscible with
organic compounds and oxygen, which make it an attractive medium for (hydrothermal) oxidation reactions [10]. The
drawbacks of using SCW are the high pressure and high temperature [10].

2.1.1 Heat transfer at SCW conditions

Natural convection

Due to the strong change in properties near the (pseudo-) critical point, a strong buoyancy effect and acceleration
effect exist near the wall [14; 6]. Hodes et al. [15] said that when natural convection become important it may reduce
or enhance forced convective heat transfer. The importance depends on forced convection, tube orientation, flow
direction, and flow regime (turbulent or laminar). So will in laminar, vertical flows, buoyancy forces which act in the
flow direction increase the heat transfer, while the buoyancy forces in opposite direction reduce the heat transfer. In
case of the turbulent upward flow, natural convection can enhance or reduce the heat transfer [15].

Heat transfer coefficient of sub- and supercritical water

Yamagata et al. [16] found that the HTC increases abruptly when the bulk temperature become close up to the
pseudocritical temperature, see Figure 3. Furthermore, they show that the maximum HTC value increases with a
decrease of the heat flux.

Yamagata et al. [16] concluded from his experiments that there is no appreciable difference in HTC for the flows in
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Figure 3: HTC against the bulk temperature in a horizontal flow [16].

three different directions (horizontal, vertical upward and downward) at low heat fluxes (q”<698 kW/m2). Yamagata et
al. [16] also found, in case of vertical upward flow of water, that the HTC in the pseudocritical region becomes higher
when the pressure approaches the critical pressure, see Figure 4. Dang [17] found in his research an increase of HTC
when the mass flux is increasing. The explanation he gives is that when the mass flux increase there is an increase in
turbulent diffusion. By this turbulent diffusion more heat can be transferred from the wall to the fluid.

(a) (b)

(c)

Figure 4: HTC against bulk enthalpy for vertically upward flow; (a) P=226 bar, (b) P=245 bar and (c) P=294 bar. Where the
different lines are HTC results of different heat fluxes: 1)q′′=233 kW/m2; 2. q′′=465 kW/m2; 3. q′′=698 kW/m2; 4. q′′=930
kW/m2 [16]

.
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2.1.2 Heat transfer enhancement in SCW

Ackermann (1970) [4; 18] investigated heat transfer to SCW with smooth vertical tubes and tubes with internal ribs.
His experiments show that in ribbed tubes the pseudo-film boiling (i.e. low-density fluid prevents high-density fluid
from ′′rewetting′′ a heated surface, this occurs at subcritical pressures) was suppressed. Pseudo-film boiling is due
to the large differences in the fluid density, between the wall and the bulk, below the pseudocritical point. In Figure
5(a) the temperature against the bulk fluid enthalpy is shown. In this figure the bulk fluid temperature and inside wall
temperatures are presented. The inside wall temperature for the ribbed tubes are presented for two different heat fluxes.
The HTCs for these inside wall temperatures are shown in Figure 5(b). The axial temperature profiles in the ribbed
tubes show a more continues line and therefore a more continues HTC line against high HTC peaks of the smooth tube,
see Figure 5(b). The temperature of the ribbed tube is also lower than the smooth tube due to a higher HTC in the
ribbed tube.

(a) (b)

Figure 5: (a) Temperature against bulk enthalpy and (b) HTC against bulk enthalpy along vertical smooth and ribbed
tubes cooled with SCW [4]

.

Lee and Haller [4; 19] found also this temperature and HTCs behaviour with twisted tubes. The explanation they give, is
that the twisted tube cause the flow to spin and therefore centrifugal forces are present. These forces causes a lower
temperature and denser fluid to move to the heated wall.

2.2 Critical point of different substances

Pioro and Duffey have listed critical parameters of different fluids, shown in Table 1 [4].

The change in of properties of supercritical solvents are similar as the change in properties of water. This phenomena is
used to describe the change in properties of supercritical solvent [4]. The properties of Helium and refrigerant R-134 as
function of temperature are shown in Appendix B in the book of Pioro and Duffey and follows the trend of the properties
of water. A lot of research is done in SCW but also in supercritical CO2 [4] and therefore supercritical carbon dioxide
will be shortly described and will be compared with SCW.
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Table 1: Critical parameters of different fluids [4].

2.3 Supercritical carbon dioxide

Carbon dioxide is a promising coolant because it is environmentally friendly, safe and has attractive properties on the
thermodynamics, such as low viscosity and high heat capacity [17]. For example: as shown in Table 1 carbon dioxide
(CO2) has a lower critical temperature and pressure than water. Looking at the properties of CO2, as in Figure 6, a
good comparison with water can be made. This figure shows different properties of CO2 which have similar trends
and influences of pressure as SCW. The changes of these properties with an increasing pressure become also less
pronounced (similar to SCW). The specific heat cp of CO2 shows a drastic variation when the temperature become
close to the pseudocritical temperature [4; 17].

Fewster and Jackson [18] did CO2 experiments in the turbulent flow regime (G=300-3300 kg/m2s),see Figure 7. This
figure gives the bulk fluid temperature, external wall temperature and the HTC coefficient. Here there are three modes
for heat transfer in vertical tubes with upward flow at a pressure of 7.58 MPa, mass flux of 289 kg/m2s and a heat flux of
50-460 kW/m2:

1. Normal heat transfer

2. Improved heat transfer (i.e. higher than expected HTC values); this takes place in an area where the external wall
temperature makes a drop and the bulk fluid temperature is below the critical temperature.

3. Deteriorated heat transfer (i.e. lower than expected HTC values); this may appear at high heat fluxes and
lower mass fluxes, and where the external wall temperature increases rapidly. This is also when the bulk fluid
temperature is below the critical temperature.

Pioro and Duffey [4] concluded that the heat transfer at supercritical conditions of carbon dioxide is affected with flow
directions (upward, downward and horizontal). Experiments in horizontal orientated tube (D=22.1 mm, L=2.4 m) at a
flow of 0.035-0.15 kg/s, shows a non-uniform temperature profile in the cross-section of the tube. The buoyancy effect
plays a role in the different HTC values in the cross-section. The heat transfer at the bottom of the tube is enhance by
the buoyancy effect and at the top it is reduced, because the hotter fluid is in the top of the tube. Yamagata et al. [16]
found this phenomenon also for SCW at low heat fluxes.

Pioro and Duffey [4] conducted experiments at a pressure of 7.58 MPa, turbulent flow (G=636 kg/m2s) and different
constant heat fluxes (q"=48-64 kW/m2). They calculated a HTC is between 1000-4000 W/m2K, see Figure 8. In this
figure the bulk fluid temperature, external wall temperature and the HTC coefficient are given. Here it is shown that
an increase in the heat flux results in a decreasing HTC. Also it is shown that the HTC of CO2 is nearly constant along
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(a) (b)

(c)

Figure 6: Different properties of carbon dioxide at 7.3773 and 8.36 MPa; (a) Density, (b) Enthalpy and (c) Specific isobaric
heat capacity. [4]

the heated length and no maximum of HTC is shown. Pioro and Duffey describe also a deteriorated heat transfer at
high heat fluxes and in any place along the heated length. Deteriorated heat transfer corresponds to a lower HTC and a
higher external wall temperature.

2.4 Prediction methods for heat transfer

Many correlations for HTC are proposed for SCW, but these are devoted to turbulent supercritical water flows (G>500
kg/m2s). Pioro and Duffey [4] studied many correlations which show quite different results within the same operating
range. In 1942, McAdams proposed to use the Dittus and Boelter equation, equation 1, for forced convective heat
transfer in turbulent flow and at subcritical pressures and later also at supercritical pressures [4; 3].

Nub = 0.0243Re0.8
b Pr 0.4

b (1)

This correlation is in good agreement with the measured data for supercritical water till 31 MPa and low heat fluxes but
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Figure 7: Variations in fluid and wall temperatures and in HTC along heated length [4]: CO2, circular tube, and upward
flow.

Figure 8: Variations in wall temperatures and in HTC along heated length at various heat fluxes [4]: CO2, circular tube,
and upward flow.

gives unrealistic results near the critical and pseudocritical point [4; 3].

Bishop et al. [20] conducted experiments in upward flow in smooth tubes with the following operating parameters:
pressure of 22.8-27.6 MPa, bulk-fluid temperature of 282°C-527°C, mass flux of 651-3662 kg/m2s and heat flux of
0.31-3.46 MW/m2. They recommend the following correlation, with a fit of ±15%:

Nux = 0.0069Re0.9
x P̄r

0.66
x

(
ρw

ρb

)0.43 (
1+2.4

D

x

)
(2)
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Where x is the axial location along the heated length. The last term corresponds to the entrance effect. Pioro and Duffey
[4] described that Swenson et al. derived to almost the same equation as Bishop et al. without the entrance effect.

Nuw = 0.00459Re0.923
x P̄r

0.613
x

(
ρw

ρb

)0.231

x
(3)

Equation 3 is obtained within the following operating parameters: P=22.8-27.6 MPa, Tw = 93°C-649°C, Tb = 75°C-576°C
and G=542-2150 kg/m2s, and this is within a fit of ±15%. Yamagata et al. [16] found that Equation 3 generally under
predicts the experimental HTC.

Morky et al. [3] tested experiment data to the following form for Bishop et al. correlation, without taking the entrance
effect into account:

Nux = 0.0069Re0.9
x P̄r

0.66
x

(
ρw

ρb

)0.43

x
(4)

The Dittus-Boelter correlation in the form which is in the most widely used interpretation:

Nub = 0.023Re0.8
b Pr 0.4

b (5)

Morky et al. have shown that the correlation of Bishop et al. (equation 4) is in good agreement with the experimental
HTCs outside the pseudocritical region. This correlation over predicts with 25% the HTC values within the pseudocritical
region. The Dittus-Boelter correlation also predicts the HTC values outside the pseudocritical region good but deviates
significantly from the experimental data within the pseudocritical region. This is also found by Pioro and Duffey [4].

The correlations (2)-(5) are based on force convection in the turbulent flow regime. Our research is focussed on low
fluxes (G<20 kg/m2s)in the laminar regime. In laminar flow, heat transport can be either by forced convection or by free
(natural) convection, or by combination of the two. In previous research [5] the following correlations on forced and
free convection are found in the literature. These correlations are for laminar flow "normal" (atmospheric pressure and
subcritical temperatures) conditions.

For laminar forced convection:

Nu = 1.86

(
RePr

di

L

)0.33 (
µb

µw

)0.14

= hi di

k
(6)

And for free convection in vertical systems:

Nus = f
(
Gr∗

s Pr
)= hi R

k
(7)

Where:

Gr∗
s = gβ (Ti w −Ti n)R3ρ2

µ2

R

L
(8)

Pr = Cpµ

k
(9)

The Nusselt correlation for a heated tube with a low Grashof numbers (Gr*s < 1) is given by [5]:

Nus = 0.0625
(
Gr∗

s Pr
)

(10)

And for high Grashof numbers the Nusselt correlation is given by [5]:

Nus = 0.52
(
Gr∗

s Pr
)1/4 (11)

The Nusselt correlation for laminar flow under sub- to supercritical conditions is obtained from Comsol simulations of
a vertical heated tube geometry and is describes as equation 12 [21]. This correlation is valid for the conditions which
are shown in Table 2.

Nu = 0.89Gr 0.3Re−0.2
(

cpi w

cpmc

)0.2

= HT C
di

kmc
(12)
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Where:

Gr = gβmc (Ti w −Tmc )d 3
i ρ

2
mc

µ2
mc

(13)

Re = Gdi

µmc
(14)

Table 2: Parameters for the Nusselt correlation.

Parameter Value
G (kg/m2s) 7, 20
P (bar) 300
Ti n(°C) 327
Tout (°C) 484
di (cm) 1
Re 1000-6500
Gr 2∗10−7 −2∗10−8

Pr 1.0 - 3.6
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3 Experimental section

In this chapter the experimental part of this research will be discussed. In the first part the setup will be described and
in the second part the correlations and calculation method to obtain the heat transfer coefficient (HTC) are given.

3.1 Setup design

The experimental setup to study heat transfer coefficient for SCW flow at low mass fluxes (G<20 kg/m2 s) is a heated
vertical tube. In this study demi-water is used to prevent any corrosion and solids deposition in the setup and to make
fair comparison with the Comsol simulation. A schematic illustration of the experimental setup is shown in Figure 9.

Figure 9: Schematic illustration of the experimental setup with the different specifications.

Demi-water flows from a pressurized vessel (up to 7 bar) via a high pressure pump from LEWA (0- 12 kg/h and maximum
pressure of 380 bar), to an electric preheater. The purpose of the preheater is to raise the temperature of water to the
desired inlet temperature for the heat exchanger. This preheater has a temperature control (T-C) to set the temperature
to the desired inlet temperature, and a temperature safety (T-S) which is used to shut down the pre-heater if the
temperature goes above the set value.

The heat exchanger is a stainless steel tube and has the following configuration: outer diameter (OD) of 33.40 mm,
inner diameter (ID) of 20.70 mm, wall thickness (t) of 6.35 mm and a length (l) of 1.54 m. The tube is surrounded with
14 aluminium heating blocks (height = 22 cm each) and each one covers half of the tube, so there are 7 heating blocks at
each side of the tube. At one side the heating blocks have also T-C and T-S controllers. The heating blocks are insulated
from the surroundings with stone wool. At the top of the tube is an additional, smaller (height = 11 cm) heating block
installed to prevent back flow at the top of the tube which might arise from cooling and condensing of the SCW before
exiting the tube.

To control the high pressure in the tube, a Back Pressure Regulator (BPR) is installed, which can operate up to 400 bar.
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This BPR is manually air-controlled from outside the high pressure box. In front of the BPR is a watercooler installed
because the BPR is not designed for temperatures higher than 80°C. Pressure indicators are installed at the inlet and
outlet of the tube to calculate the pressure drop over the tube.

For the radial temperature profile inside the tube a metal rod is placed with 7 Type K thermocouples (Ti ,1 to Ti ,7) for
measurements at a height of 55 cm from the tube inlet and 8 Type K thermocouples (Ti ,1 to Ti ,8) for the height of 100 cm.
This is shown in Appendix I. On the outside of the tube 18 thermocouples are placed for the axial temperature profile
(T1,T2,T3,..., see Figure 9 at the bottom of the figure). At four axial positions, 11, 33, 55 and 100 cm, thermocouples
are placed in the tube wall to measure the temperature gradient in the wall, as shown in Figure 10. Finally, one
thermocouple is placed at the inlet for the inlet temperature and one after the water cooler before the BPR. All the data
from the thermocouples, except the one for the BPR, are recorded with the data acquisition software (picolog) from
Picotech that is connected to a computer.

Figure 10: Labelling of the thermocouples positions in radial direction. For the position of: 55 cm r=10.70 mm, r1=11.70
mm, r2=13.70 mm, r3=15.70 mm and rout =17.05 mm from the tube center line. For the position of 100 cm: ri t =10.70 mm,
r1=11.45 mm, r2=13.64 mm, r3=14.75 mm and rout =17.05 mm from the tube center line.

During experiments the radial temperature profile can only be measured at one axial position. The radial temperature
profile is measured at two different heights: 55 cm and 100 cm. These heights are measured from the bottom of the
tube to the top, see the red lines in Figure 9. The heating blocks are numbered from 7 to 0 from the bottom to the top.
The middle of heating block 5 is at 55 cm and the middle of heating block 3 is at a height of 100 cm.

3.2 Operating procedure

Before starting an experiment it is necessary to ensure that there is enough water in the water tank and to adjust the
metal rod, which is holding the thermocouples for radial temperature measurements inside the tube, to the required
axial position. After adjusting the axial position of the thermocouple holder, the pump is switched on to check if there
are no leakages. Before switching on the heating blocks the cooling water must be switched on. Also the webcams and
thermocouple measurements have to be checked.

The pressure is increased with steps of 25-50 bar to the desired operating pressure. If the right pressure is reached, the
heating blocks are switch on one by one and set to their desired temperature. If the temperature readings are constant
(± 2°C for 5 min) the temperature measurement can start.

During the measurements the pressure, temperatures and webcam have to be monitored, to see if there are no leakages,
pump failures or other dangerous situations.
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3.3 Calculation procedure

In previous research [5], on laminar flow, an indirect method is used to calculate the heat transfer coefficient. This
indirect method is based on enthalpy changes in the water flow, see Figure 11. In this report a more direct method is
used, namely based on the calculation of the heat flux through the tube wall from the experimental wall temperatures.

(a) (b)

Figure 11: Calculation procedure of [a]: Raghda et al.[5] and [b]: this research.

The heat transfer coefficient (HTC) is a quantitative number which describes the heat transfer between a surface
(wall)and a fluid medium [22]. In this research this medium is inside of the tube and is sub- and supercritical water.
HTC is defined as:

HT C = q"

Tw all −T f lui d
(15)

Where HTC is the heat transfer coefficient in W/(m2K), q′′ is the heat flux in W/m2, Tw all is the wall temperature
inside the tube and this wall temperature can either be measured with the thermocouples attached to the probe
or predicted with extrapolation of Tw1 and Tw2 or Tout . T f lui d is the liquid temperature and is the experimental
measured center bulk temperature or the mixing cup temperature. The mixing cup temperature is the average of the
measured temperatures of the fluid over the cross section [23]. The temperature is depending on radial direction and
axial direction [23]. The mixing cup temperature (Tmc ), when a negligible axial conduction is assumed, is defined as:

Tmc =
∫

A ρuCp T dA∫
A ρuCp dA

(16)
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The heat flux, q′′, is defined as [24]:

q ′′ =−k∇T (17)

q ′′ =−k

Tw1 −Tw2

r ∗ ln
(

r2
r1

)
 (18)

The temperature gradient is based on experimental temperature measurements inside the cylindrical tube wall. The tip
positions of the thermocouples are r1 and r2 from the centre of the tube, see Figure 10.

Where k is the thermal conductivity, W/mK, which is a function of the average temperature of the wall according to,
equation 19.

k = aT b (19)

T is the average wall temperature in Kelvin, and the constants a=1.22 and b=0.432 [25].

For the HTC the inner wall temperature must be determined, because the heat transfer is from the inner wall to the
fluid. It is difficult to measure the exact temperature at the inside of the wall therefore different methods are used to
determine the temperature of the wall. The first method measures the temperature with a thermocouple from the fluid
side. One of the drawbacks of this method is that the sensitivity of the tip of the thermocouple is 0.5 mm, so not only
the temperature of the wall is measured but also a part of the fluid. Also the line-up of the thermocouple against the
wall is unknown. The second drawback is the probe, the place where the thermocouples are place at the metal rod, that
can influence the flow profile and therefore the temperature profile. The last drawback is that there is a local turbulence
at some locations, such as location near the wall. This is causes by natural convection i.e. buoyancy effect. These local
turbulences are at the experimental conditions and therefore the flow pattern is unknown. Therefore it also unknown if
fluid from lower or higher position has influence on the temperature at a certain/experimental height. Because the first
method has some drawbacks a second method is applied to predict the inner wall temperature at the interface. This
second method calculates the inner wall temperature assuming Fourier’s law, with temperature measurements inside
the wall, see Figure 10. This method is used to predict the interface wall temperature.

The heat transferred from position r1 to r must, by the first law of thermodynamics, be equal to r2 to r1. The tempera-
tures inside the wall are measured and using Equation 20 a prediction can be made for the temperature at the inner
wall of the tube:

Ti nner w al l ,pr edi cted = Tw1 −
 ln

(
r
r1

)
ln

(
r2
r1

) ∗ (Tw1 −Tw2)

 (20)

3.4 Nusselt correlation for sub- and supercritical water flow

In the previous chapter is prediction methods for heat transfer in the turbulent region were discussed. In this research
the focus is on heat transfer at low mass fluxes, in the laminar flow regime. In previous research [21] it is shown that
natural convection becomes more dominant and important in laminar flow. A new Nusselt correlation was obtained
from Comsol simulations, equation (12) to (14). With this correlation the HTCs can be simulated and compared with
experimental HTCs.

Equation 12 is based on the calculated properties of water at the mixing cup temperature, equation 16, and the operating
pressure. Cpi w is calculated for the predicted inner wall temperature, Ti w prediction is based on the measured radial
temperature profile in the tube wall. The parameters under which this correlation was derived are listed in Table 2. This
correlation fits the results obtained from a Comsol model that describes the experimental setup for an inside diameter
up to 2 cm at a mass flux of 7 and 20 kg/m2s within ± 15% error. [5]
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3.5 Thermocouple error determination

The absolute error in the Type-K thermocouples is experimentally determined. Four thermocouples were placed in a
copper heating block for uniform heating. Three thermocouples, which were taken from the setup, have already been
subjected to high temperatures during previous experiments. These three thermocouples are from the same batch and
the fourth thermocouple is from a new batch without any high treatment. The temperature of the copper heating block
was set at 300°C. When steady state was reached, temperature measurements of these thermocouples were recorded for
4 minutes.

In Appendix IV, Figure 38 shows the temperature measurement over time. The fluctuations in temperature over time
is due to the temperature control of the heating block. These fluctuations are the same for all four thermocouples,
therefore the results were averaged for each thermocouple. The average of the three old thermocouples (from the setup
and the same batch) is 303.58°C and the absolute error is ±0.10°C.

A correction factor of 2.30°C is added to the average temperature of the new thermocouple. This correction factor is
found experimentally in a steady state surroundings. In this experiment different thermocouples of two batches are
placed in water and heated till 90°C and had a temperature difference of 2.30°C. The average temperature of the fourth
thermocouple is (after adding the correction factor) 303.36°C. The average temperature of all four thermocouples (old
and new together) is 303.52°C. With this average temperature an absolute error of ±0.15°C is obtained.

For the position of the thermocouple, radius r, is measured with a Vernier Calliper and therefore the (possible) error is
±0.05 mm.

Master thesis Wilmar den Hartog, BSc Page 21 of 54



4 RESULTS

4 Results

The experimental research is divided in two parts: temperature measurements (axial, radial in the wall and radial in the
fluid using the probe) carried out at a height of 55 cm or at a height of 100 cm. At these axial positions a wide range of
experiments are performed with different flow rates, inlet temperatures, outer wall temperatures and pressures. In this
research three different flow rates are used: 4.1 kg/h (G=3.2 kg/m2s), 8.0 kg/h (G=6.2 kg/m2s) and 11.3 kg/h (G=8.8
kg/m2s). In this report the flow rates are presented as 4, 8 and 11 kg/h, respectively.

4.1 Experimental results at a height of 55 cm

In each of the experiments, temperatures were measured in axial and radial direction (in the wall and fluid). At 55 cm,
the wall thermocouples are located at the middle of the heating block 5, see Figure 9. The setting of heating block 6
(below heating block 5) is 10°C lower than heating block 5 to get a visible radial temperature gradient in the water.

From each of the experiments an axial temperature profile is obtained. These temperatures are the temperatures at the
outer wall of the tube in the axial direction, examples are Figure 12 and Figure 19. In this figure a steep temperature
gradient is shown in the first 30 cm, due to the good heat transfer of the wall to the fluid in this part. After 55 cm
the temperature become more or less constant, which means that the wall and the heating blocks have the same
temperature and there is no fast heat transport.

Figure 12: Axial temperature profile with a flow rate of 4 kg/h and pressure of 300 bar.

At the axial position of 55 cm the radial temperature profile in the wall and fluid is obtained, Figure 13. In this figure,
the temperatures in the fluid (left side) and the wall (right side) are shown. In the fluid a steep temperature gradient is
shown at the wall, this is in line with previous research [6]. In the wall a slightly curved temperature profile is visible and
this is in line with the heat transfer in cylindrical coordinates. Tw3 is not shown in this figure, because the thermocouple
was not in the right position to measure the temperature correctly. Two different inner wall temperature predictions are
shown in Figure 13. The star represents the predicted value based on the measured values inside the wall (Tw1 and Tw2).
The solid black dot is predicted based on the outer wall and the temperature deepest in the wall (Tw1 and Tout ). Both
predictions are very close, see also Appendix II: Figure 36. This is as expected because all the heat will be transferred
from the outer wall to the fluid. It that case it does not matter with which temperatures the heat flux will be calculated.
At the height of 55 cm the temperatures inside the wall (Tw1 and Tw2) are chosen for calculating the heat flux and for
predicting the inner wall temperature. In Figure 13, the measured temperature at the wall (blue star) is close to the
predicted values. The thermocouples in the fluid, which are against the wall (Ti 1 and Ti 2), are measuring the wall as
well the fluid and therefore the measured inner wall temperature is lower than the predicted inner wall temperature.
The predicted inner wall temperature is not influence by the fluid and therefore this temperature is more accurate. At
the radius of 0 mm the center bulk temperature is measured which will be used in the calculations and plots.
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Figure 13: Radial temperature profile at a height of 55 cm, flow rate of 4 kg/h and pressure of 300 bar.

In Figure 14 the HTCmeasur ed and the HTCpr edi cted are shown against the center bulk temperature. The blue star
solid line is the HTC based on the measured inner wall temperature (with the wall thermocouple in the probe) and
the blue circle dashed line is based on the predicted inner wall temperature. The predicted inner wall temperature
is based on the inside wall temperature; Tw1, Tw2, equation 20. The heat flux is in all cases calculated from the
temperatures Tw1 and Tw2, equation 18. On the right y-axis the ∆ T is shown against the center bulk temperature. ∆ T =
Ti nner w al l ,measur ed - Tcenter bulk and Ti nner w al l ,pr edi cted - Tcenter bulk .

The temperature differences, shown in Figure 14, are the driving force for the HTC, see equation 15. At lower bulk
temperatures the difference between the ∆ T is within 1°C. The deviation between these driving forces lies around the
pseudocritical temperature. The driving force for HTCmeasur ed is decreasing with an increasing center bulk temperature.
The driving force for HTCpr edi cted first increases followed by a dip around the pseudocritical temperature which is due
to the good heat transfer around the pseudocritical temperature. This dip in driving forces results in a peak in the HTC.

At subcritical center temperatures the HTC values of the HTCmeasur ed and the HTCpr edi cted are close to each other.
When the fluid temperature approaches the critical temperature, the HTC based on the measured inner wall temper-
ature increases rapidly and the error in the HTCsmeasur ed become larger, due to the smaller temperature difference
between the wall and the fluid. The thermocouples of the probe at the wall (Ti 1 and Ti 2) are more influenced, around
the critical temperature, by the fluid temperature than the wall temperature. In Figure 15 the HTCpr edi cted is compared
with the correlation (obtained in previous research). Here the HTCspr edi cted , at subcritical temperatures, fits the
correlation. For these reasons the predicted wall temperature will be used to calculate the HTC.

In Figure 15 the HTCpr edi cted is compared. Also the correlation with the driving force for the HTC calculation is
plotted. These driving forces have a dip around the pseudocritical point, which give the HTCpr edi cted a peak at 387°C,
5 kW/(m2K). This peak lies between the critical temperature and the pseudocritical temperature of water at 300 bar
(Tpseudocr i t i cal , 300 bar = 402°C). Yamagata et al. [16] has also reported this peak in the HTC for water between the
critical and pseudocritical temperature at 245 bar.

In the subcritical temperature range the HTCs from the correlation and the HTC calculated from the predicted inner
wall temperature are in the same order of magnitude. When the temperature approaches the critical temperature more
deviation in the HTCs is shown.

The experimental results are always above the correlation but at the subcritical temperatures within the error. Around
the critical temperature the correlation shows a strange behaviour this is due to the dip of the driving force. In the
correlation, equation 12, the Grashof correlation is represented and the Grashof correlation is a function of the driving
forces, equation 21. This causes the dip in the correlation result. The mass flux of the flow rate of 4 kg/h is below the
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Figure 14: HTC calculations based on i) the measured inner wall temperature line (star blue solid line) and ii) the
predicted inner wall temperature (circle black dashed line). The driving forces of i) HTCmeasur ed and ii) HTCpr edi cted are
shown on the right y-asis. Experimental parameters: H=55cm, P=300 bar, and ϕw ater =4 kg/h.

Figure 15: HTC calculations based on i) the predicted inner wall temperature (star blue solid line) and ii) the correlation
(solid black line). The driving forces are plotted on the right y-axis. Experimental parameters: H=55cm, P=300 bar and
ϕw ater =4 kg/h.

range which is given in Table 2.

Gr = gβmc (Ti w −Tmc )d 3
i ρ

2
mc

µ2
mc

(21)
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Effect of flow rate

Previous result were obtained with experiments at a flow rate of 4 kg/h. The experimental HTCs and HTCs obtained
with the correlation at a flow rate of 8 kg/h are shown in Figure 16. In this figure also the driving forces are shown at
the right y-axis. The heat flux is based on Tw1 and Tw2 in analogy with the flow rate of 4 kg/h. It is seen that in case
of the 8 kg/h no peak in the experimental HTC is obtained, probably due to the operating temperate which does not
exceed the pseudocritical temperature. In Figure 16 the experimental results are above the results from the correlation,
but the result from the correlation are in the same order of magnitude as the experimental results up to 320°C. At
higher temperatures the HTCs start to deviate; the experimental HTC increase and the correlation HTC decrease. This
decrease can be explained by the fact that the temperature difference between the bulk and the inner wall prediction
become smaller, as shown in Figure 16.

Figure 16: HTC calculations based on i) the predicted inner wall temperature (star blue solid line) and ii) the correlation
(solid black line). The driving forces are plotted on the right y-axis. Experimental parameters: H=55cm, P=300 bar and
ϕw ater =8 kg/h.

The results of the HTCs and there driving forces at a flow rate of 11 kg/h are shown in Figure 17. Here Tw1 and Tw2

are again used to calculate the heat flux. No real maximum in HTC value is obtained, since the operating temperature
did not reach the pseudocritical temperature of water. A higher operating temperature is not possible because the
heating power below 55 cm is not sufficient. The HTCs shows a decrease between 250°C and 300°C. The experiments of
these data points were obtained in two days (two different experimental runs), while the 4 and 8 kg/h are obtained
within one experimental run. In the two days the operating pressures were within the fluctuations (± 10 bar) and the
start-up procedure was the same. The difference is the starting point of the experimental run. It cannot be said that
these results are made in the same conditions; i.e. inlet temperature. Therefore it is important to perform supercritical
heat transfer experiments in one sufficiently long experimental run. In general, the experimental HTC is above the HTC
of the correlation and is increasing by increasing center bulk temperature.

In Figure 18 the experimental HTCs for all flows, including the HTC of the correlations are shown. This figure shows an
increase of the HTC when the mass flow increases, due to more fluid per unit of time passed the tube there is more heat
absorbed. This is also found in the HTCs of the correlation. This is also seen by Scalabrin et al. for the heat transfer
to carbon dioxide [26]. Dang [17] found an increase of HTC when the mass flux is increasing, due to the increase in
turbulent diffusion. The remark on the conclusions of Scalabrin et al. and Dang is that they both have a constant heat
flux. In the experiments of this research the heat flux changes (15.4*103-81.5*103 W/m2) with a changing flow rate and
therefore changing HTC.
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Figure 17: HTC calculations based on i) the predicted inner wall temperature (star blue solid line) and ii) the correlation
(solid black line). The driving forces are plotted on the right y-axis. Experimental parameters: H=55cm, P=300 bar and
ϕw ater =11 kg/h.

The maximum centre bulk temperature is restricted by the inlet heating power at a flow of 8 and 11 kg/h. This is the
most probably reason why no maximum in HTC is obtained. Therefore a new serie of measurements is repeated at a
higher position (at 100 cm).

Figure 18: HTC for three different flowrates; 4 kg/h, 8 kg/h and 11 kg/h, P=300bar, H=55cm.
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Effect of pressure

Experiments at a pressure of 230 bar were repeated with heating block temperature of 400°C, a preheater temperature
range of 20-350°C and flow rates of 4, 8 and 11 kg/h. The HTC results which were obtained where around the (pseudo-
)critical temperature. Due to the strong change of the physical properties around the critical point, there is a large
fluctuation of the HTCs. The results are shown in Appendix II.

New experiments are done at the height of 100 cm to get a higher temperature range and at a higher pressure (250 bar
and 300 bar) to reduce the fluctuation in the results when the temperature become close to the critical temperature.

4.2 Experimental results at a height of 100 cm

At the middle of heating block 3 the thermocouples in the wall are located at 100 cm from the inlet, see Figure ?? for the
exact depth. The temperature setting of heating block 4, just below heating block 3, is 40°C lower than heating block 3.
The reason for a higher temperature difference is to create a bigger radial temperature gradient in the fluid, especially
for the lower pressure of 250 bar. Furthermore all measurements, at a specific flow rate and pressure, are performed in
the same experimental run.

For each of the experiments at 100 cm also an axial temperature profile is obtained. These temperatures are the
temperatures at the outside of the tube in the axial direction, an example is Figure 19. In this figure a less steep
temperature gradient is shown compared the the experiment at 55 cm, due to the temperature settings in the first 60
cm as described before.

Figure 19: Axial temperature profile at 100 cm with a flow rate of 4 kg/h and pressure of 300 bar. With heating block
temperature settings: HB1-3: 450°C, HB4-7: 410°C.

Figure 20 shows two examples of radial temperature profiles obtained in the subcritical region at 100 cm. These figures
show a similar temperature profiles in the fluid and the wall, comparable to the measurements at 55 cm. The predicted
inner wall temperature based on the inside wall temperature (Tw1 and Tw2) is on top of the predicted inner wall
temperature based on temperatures Tw1 and Tout .

Figure 21 shows the radial temperature profile at the sub- to supercritical temperature level. It shows a maximum
in inside wall temperature which is higher than the outer wall (the outer wall is heated). This is not as expected and
different setup checks were done; temperature readings for existing and new thermocouples and depth control of the
thermocouples’ holes. These checks showed that there are no mistakes in the thermocouples measurements and the
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(a)

(b)

Figure 20: [a]: Subcritical radial temperature profile at H=100cm, P=300 bar and ϕw ater =4 kg/h. [b]: Subcritical radial
temperature profile at H=100cm, P=300 bar and ϕw ater =8 kg/h.

position of the thermocouples. An explanation for this maximum in the wall temperature profile might be an axial
heat flow. In Appendix III this explanation is supported by experimental data. Furthermore it is also investigated if
some magnetic fields has influence on the temperature readings. This is examined by switching off the heating blocks.
Results show there was still a similar temperature profile in the wall as in Figure 21. So no magnetic field are influencing
the temperature readings.

Figure 22 shows a schematic overview of a section of the tube with heat transfer in axial and radial direction. On
the right side, heat is supplied from the heating block to the tube; Q′′

r,hot . At the left side, water is transported along

the inside of the tube where heat is subtracted from the tube; Q′′
r,cold . When the heat supply is larger then the heat

withdrawal (Q′′
r,hot > Q′′

r,cold ) energy has to go to another direction, the axial direction. As shown in Figure 19 (especially
at 100 cm) the temperature at higher position is larger than a lower position. Therefore heat will be transported in
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(a)

(b)

Figure 21: [a]: Supercritical radial temperature profile at H=100cm, P=300 bar and ϕw ater =4 kg/h. [b]: Supercritical
radial temperature profile at H=100cm, P=300 bar and ϕw ater =8 kg/h.

downward vertical direction (Q′′
z,hot to Q′′

z,cold ). In the ideal case heat supply, in radial direction, is the same than the

heat withdrawal (Q′′
r,hot ≤ Q′′

r,cold ) which results in no axial heat flow if the axial temperature is constant. In the most

unfavourable situation the heat supply is much larger than the heat withdrawal (Q′′
r,hot À Q′′

r,cold ) and this will results
in axial heat transport.

A strong decrease in HTC is shown when the fluid is fully supercritical, see Figure 15 and 18 (for 4 kg/h) at T>380°C.
Below the (pseudo-)critical temperature heat transfer from the wall to the water (Q′′

r,hot ≤ Q′′
r,cold , Figure 22) is good.

Therefore there is a strong heat transport in radial direction and directly a lower outer wall temperature. This is the case
in the first 40 cm of the setup, see Figure 19. At the critical temperature the heat transfer is very good and above the
critical temperature the heat transfer will decrease and becomes bad, see Figures 3 and 4. That means that the heat
supplied above the critical temperature is not transferred fast enough to the supercritical water. The energy transport
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Figure 22: Schematic overview a section of the tube with heat transfer at supercritical water conditions.

in the radial direction is not fast enough and the heat will therefore be transported in vertical direction (Q′′
z of Figure 22).

The vertical heat transport is now dominant because the radial transport has limitations and the energy takes the way
of least resistance.

The hypothesis of vertical heat transfer is also checked by Comsol simulations. A wall temperature profile is found that
is comparable in shape to the wall temperature profile shown in Figure 21. This profile is only obtained when also heat
is supplied from a lower section, see Figure 23. It is strange that heat is supplied from a lower and colder section of the
tube to get the same temperature profile inside the wall. So it is still unknown what really happens inside the wall.

Figure 23: Schematic overview a section of the tube with heat supply from a higher and lower the wall section and heating
block (rigth side).

It is unknown how much heat is be transferred in axial direction and how much is transferred in radial direction.
Therefore two different HTCs will be calculated assuming two different driving forces for the heat flux in the wall.
Method I uses Tw1 and Tw2 (see Figure 10 and 21a) and method II uses Tw1 and Tout (see Figure 10 and 21a). The
maximum HTC value is based on method I. By the maximum HTC it is assumed that all the heat from a higher position
will transferred to the water. The minimum HTC value is based on method II. Here it is assumed that only heat is
transferred in radial direction and is not influenced by the vertical heat flow. In reality the HTCs will probably be
between this maximum and minimum value.

Figure 24 shows the maximum and minimum HTCs and the correlations with the different driving forces for the flow
rate of 4 kg/h and a pressure of 300 bar. In this figure the maximum HTC lies much higher than the minimum HTC
value, due to the higher temperature difference of Tw1-Tw2 and higher corresponding heat flux. It is shown that the
difference between the HTCs are large in the subcritical range. It was expected that that these HTCs are in the same
order of magnitude and comparable with the HTCs at 55 cm, seen in Figure 15. The large difference can be explained
by a maximum temperature in the wall. There is no explanation found for the maximum temperature in the wall at
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subcritical bulk temperatures.

(a)

(b)

Figure 24: [a]: The maximum HTCs (blue star) and minimum HTCs (blue circle). The black lines are the HTCs based
on the Nusselt correlation. The driving forces are plotted on the right y-axis. [b]: The minimum HTCs (blue circle line)
and the HTCs based on the correlation (black line). The black star is the HTC result out Comsol simulations at 100 cm.
Experimental parameters: H=100 cm, P=300 bar and ϕw ater =4 kg/h.

The way to predict the inner wall temperature is barely dependent on the method that is used (line I and II in Figure
21a. The driving forces are close to each other and therefore the HTCs from the correlation. In Figure 24(a) the solid
black line is the HTC based on the temperature difference Tw1-Tw2. The banded black line is based on the temperature
difference Tw1-Tout . Around the pseudocritical temperature the HTCs from the correlation are not showing a strange
behaviour comparable to the results obtained at 55 cm, see Figure 15. This is due to the higher driving force at 100 cm.

The black star, in Figure 24(b), is the HTC at 100 cm from Comsol simulations. This result is close to the correlation
and lower than the experimental value. During the simulations with Comsol a normal temperature profile in the wall
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was seen (no vertical heat transfer) and as seen in Figure 24(b) this result is close to the minimum experimental HTCs.
Also the minimum HTCs at 100 cm are comparable to the experimental HTCs at 55 cm. Therefore it is likely that the
minimum HTCs based on Tw1 and Tout , without heat effects from higher tube sections, are correct.

Effect of flow rate

Next to the 4 kg/h also a flow rate of 8 kg/h is examined at the height of 100 cm, see Figure 25. This figure shows the
maximum and minimum HTCs for the experiments and for the correlation. The calculation method for the maximum
and minimum experimental HTC are the same as for the 4 kg/h. The maximum HTC is based on the temperature
difference of Tw1 and Tw2 and the minimum HTC is based on the temperature difference of Tw1 and Tout . Three
points are in line at the centre bulk temperature of 400°C. Here the preheater setting is different but the center bulk
temperature remains the same. The difference in results of the maximum and minimum HTCs are not that extreme
as for the 4 kg/h at 100 cm, due to a higher heat withdrawal rate for 8 kg/h. The HTCs of the correlation at 8 kg/h lies
between the experimental maximum and minimum HTCs. This can imply that heat from a higher and hotter section in
the tube wall is transferred to the water. Also the correlation is now close to the valid range of mass flux given in Table 2
which can give a more accurate HTC value. This is not the case for the 4 kg/h because the corresponding mass flux is 3
kg/m2s.

Figure 25: The maximum HTCs (blue star) and minimum HTCs (blue circle). The black lines are the HTCs based on the
Nusselt correlation. The driving forces are plotted on the right y-axis. Experimental parameters: H=100 cm, P=300 bar
and ϕw ater =8 kg/h.

Figure 26 shows the minimum experimental HTCs with the flow rate of 4 and 8 kg/h. In this figure the experimental
HTCs of 4 kg/h lies above the 8 kg/h which is in contrast with the results at 55 cm and the literature. On the other hand
the HTCs from the correlation at 8 kg/h is above the 4 kg/h, which is in line with the expectations.

Effect of pressure

The last experiments were done at a pressure of 250 bar, see Figure 27. This figure shows also the experimental
maximum and minimum HTCs which have comparable trends as the 300 bar at 4 kg/h, see Figure 24a. This means that
for the pressure of 250 bar there is also a maximum temperature in the wall, see Figure 29.

Figure 27 shows the experimental and the correlation minimum HTCs for 250 and 300 bar. In this figure the HTC
peak of 250 bar is left to the peak of 300 bar, due to a lower pseudocritical temperature at 250 bar. When the pressure
decreases in the supercritical region the specific isobaric heat capacity of water increases, see Figure 2. This makes it
possible that the peak of the HTC increases with a decrease in pressure. Yamagata et al. and Swenson et al. saw that the
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Figure 26: The minimum HTCs for i) 4 kg/h (blue) and ii) 8 kg/h (red). The black lines are the HTCs based on the Nusselt
correlation. Experimental parameters: H=100 cm, P=300 bar.

Figure 27: The maximum HTCs (blue star) and minimum HTCs (blue circle). The black lines are the HTCs based on the
Nusselt correlation. The driving forces are plotted on the right y-axis. Experimental parameters: H=100 cm, P=250 bar
and ϕw ater =4 kg/h.

HTC in the pseudocritical region becomes higher as the pressure approaches the critical pressure [16; 27]. In Figure
28 The HTCs are in the same order of magnitude at the centre bulk temperature around the 450°C. In Figure 29 radial
temperature profiles are shown for the most right point of 250 and 300 bar. The difference in wall temperature cause
the difference in HTC.
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Figure 28: HTC of 250 bar (blue) and 300 bar (red) at flow rate of 4 kg/h, and H=100 cm.



(a)

(b)

Figure 29: [a]: Supercritical radial temperature profile at H=100cm, P=250 bar and ϕw ater =4 kg/h. [b]: Supercritical
radial temperature profile at H=100cm, P=300 bar and ϕw ater =4 kg/h.



5 CONCLUSIONS

5 Conclusions

In this research heat transfer experiments to sub- and supercritical water in a vertical heated tube are conducted to
investigate the influence of different flow rates (4.1, 8.3 and 11.3 kg/h) and pressure levels (300 and 250 bar) on the heat
transfer coefficient (HTC). Experiments were conducted at a height of 55 and 100 cm.

Experiments performed at 300 bar and a height of 55 cm show:

• In general a flat temperature profile in the water phase with a steep temperature increase close to the wall (within
0.2 mm from the wall). This is in agreement with Comsol model calculations.

• That the experimental HTC is almost linearly increasing from 1 kW/m2.°C at a bulk temperature of 100°C up to 2
kW/m2.°C at a bulk temperature of 350°C for all flows investigated.

• Above 350 °C the experimental HTC for 4.1 and 8.3 kg/h shows an exponential increase up to the pseudocritical
temperature (400°C at 300 bar) after which it drops again for the 4.1 kg/h. At higher flow rates it is not possible to
pass the 400 °C level due to a lack of heating power.

• The effect of flow rate is examined and there is an increase in HTC with increasing flow rate. This effect is also
reported in literature.

• At subcritical temperature the HTCs calculated with the correlation fits to experimental HTCs within the error
margin. In general the HTCs calculated with the correlation under predicts the experimental HTCs. When the
bulk temperature comes closer to (pseudo-) critical temperature more deviation between the experimental and
correlation HTCs is found. A strange behavior of the correlation is found around the pseudocritical temperature.
The driving force (Tw all -Tbulk ) becomes low which has a strong effect on the outcome of the correlation.

New experiments at 100 cm were performed because the maximum temperature was restricted by the power input
below 55 cm at higher flow rates. Experiments at 100 cm give more heating power. The maximum value of the 4.1 kg/h
is also found at this height but no maximum for 8.3 kg/h.

During the experiments, at a height of 100 cm, a strange phenomenon was detected: a maximum in the inner wall
temperature. The hypothesis of a vertical heat flow in the tube wall is studied and most probable the reason for this
temperature profile. It is unknown what exactly happens inside the tube wall in terms of heat transfer and how to
distinguish between the radial and axial heat flux. This is essential to calculate the value of the HTCs. More experimental
and simulation research is therefore needed.

The effect of pressure (250 and 300 bar) are clearly shown in the results. The HTCs are lower and the peak is at a lower
bulk temperature when the pressure approached the critical pressure of water.

Master thesis Wilmar den Hartog, BSc Page 36 of 54



6 RECOMMENDATIONS

6 Recommendations

The experimental results and the results of the correlation deviate the most around the pseudocritical temperature.
The correlation shows a strange u due to the small temperature difference between the wall and fluid at 55 cm. At larger
temperature differences between the wall and fluid, as at the height of 100 cm, this behaviour is less pronounced. The
correlation is thus sensitive for the temperature difference, which becomes small around the pseudocritical temperature.
It is recommended to do more Comsol simulation in this temperature region and if necessary, make adjustment to the
Nusselt correlation.

Investigate the influence of the experimental procedure on the experimental HTC results. In this research the tem-
perature of the heating blocks is increased stepwise (at a preheater temperature of 20°C) and when the heating block
temperature is maximal the temperature of the preheater is increased. The bulk temperature increased to the (pseudo-)
critical temperature when the temperature of the preheater increased. The temperature difference and so the driving
force become therefore smaller. The influence of this experimental procedure on the HTC is unknown. The reason is
that the heat transfer from the wall to the fluid is larger when the temperature become close to the (pseudo-) critical
temperature and therefore also the temperature difference become smaller. A change in sequence of increasing the
temperature of the heating block and preheater can show whether or not the experimental procedure has influence on
the HTC.

The experiments at 100 cm show a maximum in the wall temperature profile. The different calculation methods
for the heat flux result in significant different results for the HTCs. This radial gradient is probably due to an axial
temperature gradient in the wall. This should be avoided by adjusting the T-settings of the heating blocks to get a
constant temperature profile around 100 cm.

Apply a different method to calculate the radial heat flux. The heat flux is now calculated based on the radial temperature
gradient in the wall. An alternative is the heat flux calculation based on the change in temperature of the fluid. The
temperature at the hart of the tube is measured for two axial positions, which are 5 cm apart. With these temperatures
the change in enthalpy can be calculated and consequently the heat flux for this section.
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APPENDICES

Appendix I: Thermocouples configuration

Thermocouples to measure temperatures inside the HEX at 55 cm

Thermocouples to measure outside wall temperatures
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Thermocouples to measure temperatures inside the HEX at 100 cm

Thermocouples to measure outside wall temperatures
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Appendix II: Results of a pressures of 230 bar at a height of 55cm

At the measured height of 55 cm experiments at a pressure of 230 bar were done with heating block temperature of
400°C, a preheater temperature range of 20-350°C and flow rates of 8 and 11.34 kg/h. The results are shown in this
Appendix.

Figure 30: HTCs with a flow rate of 8 kg/h at 230 bar and a height of 55 cm.

Figure 31: HTCs with a flow rate of 11 kg/h at 230 bar and a height of 55 cm.
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Appendix III: Explanation radial temperature profiles

In chapter Results a higher inside wall temperature than the outer wall temperature was shown. In this chapter
the reason is given that there is a strong change in heat transfer coefficient at the point the measurement is taken.
Where below the critical temperature a good heat transfer is from the wall to the water and the heat transfer at the
critical temperature is good. If the temperature is higher than the critical temperature the heat transfer become bad.
That means that the heat supplied above the critical temperature is not transferred fast enough to the supercritical
water. Below the critical temperature there is strong heat transport in radial direction and therefore also a lower wall
temperature. The energy is now transported in vertical direction from the hotter wall section to the colder wall section
when the temperature is higher than the critical temperature. This is now more dominant because the radial transport
has dropped. In this appendix several points will be check from experimental data to support this hypothesis.

The different points to support this hypothesis are:

1. What is the temperature above the measured height?

2. How looks the radial temperature profiles with a temperature lower than 300°C?

3. What is the influence of a lower setting temperature of HB2 (HB2 is higher than HB3, HB3 is at measured
position)?

The results are shown in the tables below. First some information about the outline of the tables and some comments
on the figures.

The outline of the figures with a supercritical fluid:

Table 3: Supercritical fluids outline.

100 cm, new thermocouples 100 cm, old thermocouples
99 cm 55 cm

For the subcritical fluid is the outline:

Table 4: Subcritical fluids outline.

4 kg/h, THB ,measur ed ,hei g th=200°C 4 kg/h, THB ,measur ed ,hei g th=250°C
8 kg/h, THB ,measur ed ,hei g th=200°C 8 kg/h, THB ,measur ed ,hei g th=250°C
11 kg/h, THB ,measur ed ,hei g th=200°C 11 kg/h, THB ,measur ed ,hei g th=250°C

There are some comments on the figures, namely:

• The figure in the left upper corner by supercritical water; all the thermocouples are from the same batch. The
thermocouples in the wall are replaced with new ones, but in the fluid there are old ones (in terms of operating
time).

• Temperature results, in the figure in the left upper corner, of Ti-8 is not plotted in this figure because it was
broken.

• The thermocouples which do the measurement on the wall temperature in the case of 99 cm and 100 cm are at
the same positions/height.

• Outer wall temperature of bottom heating block 2, top heating block 3 and bottom heating block 3 and are added
to the radial temperature profile plots. Discussion of the results.

Discussion of the results

The results of the first point of supporting the hypothesis are shown in Figure 32-34. These tables shown a higher
temperature of HB3-top and HB2-Bottom compared to HB3-middle; the measured height (except for the 11 kg/h, H=99
cm). This makes the hypothesis possible that heat is transferred from a higher and hotter position to a lower and cooler
position. Also by an increasing flow there is an increasing driving force from the wall to the fluid. Therefore there is a
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higher driving forces and so an increasing heat flux and a better heat transfer in radial direction. This is also can be
seen by an increasing flux where a decreasing temperature peak in the wall occurs.

In Figure 36-37 radial temperature profiles with a temperature of heating block of the measured height is 200°C or
250°C. Here the expected temperature profile is shown where there is no influence of the heat in a higher location. So in
that case of subcritical circumstances there is no vertical heat transfer in the wall of the tube.

For the third and last point results with a setting temperature of heating block 3 of 485°C and 500°C are shown in
Figure 35. Heating blocks 1-2 and 4-7 were set on 450°C. In this table still the temperature gradient in the wall is shown,
because the temperature of the top position of heating block 3 is higher than the middle position. So there is no uniform
heating within the heating block and there is vertical heat transfer within one heating block section.
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(a) (b)

(c) (d)

Figure 32: Radial temperature profile of 4 kg/h at supercritical conditions. (a) new thermocouples in the wall, (b) old
thermocouples in the wall, (c) old thermocouples in the wall and (d) thermocouples in the wall are from an other batch.
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(a) (b)

(c) (d)

Figure 33: Radial temperature profile of 8 kg/h at supercritical conditions. (a) new thermocouples in the wall, (b) old
thermocouples in the wall, (c) old thermocouples in the wall and (d) thermocouples in the wall are from an other batch.
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(a)

There are no experiments done for 11 kg/h in this situation
(b)

(c) (d)

Figure 34: Radial temperature profile of 11 kg/h at supercritical conditions. (a) new thermocouples in the wall, (b) old
thermocouples in the wall, (c) old thermocouples in the wall and (d) thermocouples in the wall are from an other batch.
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(a) (b)

(c) (d)

Figure 35: Radial temperature profile with a THB2<THB3. In all figures the thermocouples in the wall are from the same
batch.
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(a) (b)

(c) (d)

(e) (f)

Figure 36: Radial temperature profile at 55 cm at low temperate (subcritical phase) for 4 (above), 8 (middle) and 11 kg/h
(under) with heating block on 200oC (left) and 250oC (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 37: Radial temperature profile at 100 cm at low temperate (subcritical phase) for 4 (above), 8 (middle) and 11 kg/h
(under) with heating block on 200oC (left) and 250oC (right).
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Appendix IV: Error calculations

Temperature calculation:

Ti nner w al l ,pr edi ct i on = Tw1 −
 ln

(
r
r1

)
ln

(
r2
r1

) ∗ (Tw1 −Tw2)

 (22)

Heat flux:

q ′′ =−k ∗ Tw1 −Tw2

r ∗ ln
(

r2
r1

) (23)

Thermal conductivity:
k = a ∗T b

i nner w al l (24)

HTC:

HT C = q ′′

Tw all −T f lui d
(25)

The absolute error in the Type-K thermocouples is experimentally determined. Four thermocouples were placed in a
copper heating block for uniform heating. Three thermocouples, which were taken from the setup, have already been
subjected to high temperatures during previous experiments. These three thermocouples are from the same batch and
the fourth thermocouple is from a new batch without any high treatment. The temperature of the copper heating block
was set at 300°C. When steady state was reached, temperature measurements of these thermocouples were recorded for
4 minutes.

In Figure 38 shows the temperature measurement over time. The fluctuations in temperature over time is due to the
temperature control of the heating block. These fluctuations are the same for all four thermocouples, therefore the
results were averaged for each thermocouple. The average of the three old thermocouples (from the setup and the same
batch) is 303.58°C and the absolute error is ±0.10°C.

A correction factor of 2.30°C is added to the average temperature of the new thermocouple. This correction factor is
found experimentally in a steady state surroundings. In this experiment different thermocouples of two batches are
placed in water and heated till 90°C and had a temperature difference of 2.30°C. The average temperature of the fourth
thermocouple is (after adding the correction factor) 303.36°C. The average temperature of all four thermocouples (old
and new together) is 303.52°C. With this average temperature an absolute error of ±0.15°C is obtained.

For the position of the thermocouple, radius r, is measured with a Vernier Calliper and therefore the (possible) error is
±0.05 mm.

The error equations are made according to the ’Algemene Practicumhandleiding’ of the faculty of Science and Technol-
ogy of the University of Twente [28].
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Figure 38: Thermocouple analysis for four different thermocouples. Experimental conditions: temperature copper heating
block: 300°C and atmospheric pressure.

Temperature prediction

Error calculation in term:

d ln(x) = d ln

(
r

r1

)
=

(
dr

r
+ dr

r1

)
(26)

d ln(y) = d ln

(
r2

r1

)
=

(
dr

r2
+ dr

r1

)
(27)

Error calculation ln/ln-term

d ln(tot al ) =
ln

(
r
r1

)
ln

(
r2
r1

) ∗
d ln(x)

ln
(

r
r1

) + d ln(y)

ln
(

r2
r1

)
 (28)

Error in

(
ln

(
r

r1

)
ln

(
r2
r1

) ∗ (Tw1 −Tw2)

)
= A:

d A =
ln

(
r
r1

)
ln

(
r2
r1

) ∗ (Tw1 −Tw2)∗

√√√√√√√√√


2
3 ∗d ln(tot al )

ln
(

r
r1

)
ln

(
r2
r1

)


2

+ dT 2 +dT 2

(Tw1 −Tw2)2 (29)

Error in temperature prediction:

dTr =
√

d A2 +dT 2 (30)

Heat flux

Error in r ∗ ln
(

r2
r1

)
= B :

dB = r ∗ ln

(
r2

r1

)
∗

d ln(y)

ln
(

r2
r1

) + dr

r

 (31)
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Error in Tw1−Tw2

r∗ln
(

r2
r1

) =C :

dC = Tw1 −Tw2

r ∗ ln
(

r2
r1

) ∗

√√√√√√ 2∗dT 2

(Tw1 −Tw2)2 +
 2

3 ∗dB

r ∗ ln
(

r2
r1

)
2

(32)

Error in thermal conductivity

dk = |a|∗T b ∗|b|∗ dT

T
(33)

Error in heat flux:

d q = q ∗

√√√√√√√(
dk

k

)2

+

 dC
Tw1−Tw2

r∗ln
(

r2
r1

)


2

(34)

HTC

d HTC = HT C ∗
√

2∗dT 2

(Tw1 −Tw2)2 +
(

d q

q

)2

(35)
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