

	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	

	
	

	
	 	

	
Precise localization of a UAV

using visual odometry

T.H. (Tjark) Post

 MSc Report

C e
Prof.dr.ir. S. Stramigioli

Dr.ir. M. Fumagalli
Dr.ir. F. van der Heijden

Dr. F.C. Nex

December 2015
	

037RAM2015
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede
The Netherlands	

Contents

1 Introduction 5

2 Literature 7
2.1 External motion capture system 7
2.2 VI-sensor . 7
2.3 EuRoC . 8
2.4 SLAM vs VO+IMU sensor fusion 8
2.5 Visual odometry . 8
2.6 Comparison of sensor fusion methods 9

2.6.1 Comparison . 9
2.6.2 Remarks . 9
2.6.3 Choice of sensor fusion implementation 10

3 Sensor fusion with VI-sensor 11
3.1 Software setup . 11
3.2 Sensor fusion . 12

3.2.1 IMU as propagation sensor 12
3.2.2 Coordinate frames . 12
3.2.3 Drift observability . 13
3.2.4 Kalman procedure . 13
3.2.5 Fixed and known configuration 20
3.2.6 Lost visual odometry . 20
3.2.7 Time delay compensation 21

3.3 Mapping . 21

4 Realisation 22
4.1 System setup . 22
4.2 Control setup . 23

4.2.1 Frame transformation . 24
4.2.2 Offboard controller . 25

4.3 Fail-safe . 25
4.3.1 Frame alignment . 26
4.3.2 Switching procedure . 27

5 Experiments and discussion 29
5.1 Evaluation of position and yaw estimation during flight 29
5.2 Evaluation of sensor fusion . 33
5.3 Mapping . 36

3

5.4 Discussion . 37
5.4.1 Frame transformation . 37
5.4.2 Motor vibrations . 38
5.4.3 Sensor fusion . 39
5.4.4 VO-IMU coupling . 39
5.4.5 Point cloud generation . 39
5.4.6 Outdoor . 39
5.4.7 Multiple sensors . 39

6 Conclusion and recommendations 40
6.1 Conclusion . 40
6.2 Recommendations . 40

6.2.1 Robust pose from vision 40
6.2.2 Motor vibrations . 41
6.2.3 Frame transformation estimation 41
6.2.4 Cascaded sensor fusion . 41
6.2.5 Outdoor testing . 41
6.2.6 Additional sensors . 41
6.2.7 SLAM . 41
6.2.8 Multi sensor fusion . 42
6.2.9 Point cloud generation . 42
6.2.10 VIKI integration . 42
6.2.11 Haptic interface . 42

A Observation matrix of ESEKF 43
A.1 Position . 43
A.2 Attitude . 47

B Physical design 49
B.1 Mount of VI-sensor and NUC . 49
B.2 Electronics . 50

C Software setup 51
C.1 vi sensor node . 51
C.2 stereo image proc . 52
C.3 fovis ros . 53
C.4 ethzasl sensor fusion . 53
C.5 mocap optitrack . 54
C.6 aeroquad control . 54
C.7 mavros . 55
C.8 octomap server . 55
C.9 Pixhawk firmware . 55

D Coordinate frames 56
D.1 Frame naming . 56

4

Chapter 1

Introduction

Nowadays a lot of research is done on the topic of multirotor Unmanned Aerial
Vehicles (UAV’s). These UAV’s can reach places which are hardly reachable
for humans. At the University of Twente we are researching aerial manipula-
tion. This research is part of the AEROWORKS project. The AEROWORKS
project aims at researching and developing Aerial Robotic Workers (ARW’s)
who can collaboratively perform maintenance tasks. One of the use cases envi-
sioned by AEROWORKS is the inspection and maintenance of lightning rods
on windmills. These can corrode over time and need yearly inspection. This
is currently done by shutting down the windmill and a man going up to do
the inspection. AEROWORKS believes that this task can also be executed by
ARW’s. To achieve this different fields are further researched such as mapping,
collaboration, manipulation and localization.

The field of operation of our currently researched aerial manipulation will be
outdoors eventually. At the UT however we have no UAV’s which are able to fly
outdoors. The goal of this project is to setup a UAV which is capable of outdoor
operation. This UAV can then function as a platform for further research on
aerial manipulation.

A multirotor UAV from itself is a very unstable system. It requires proper
high bandwidth control to stabilize the UAV. Therefore almost every UAV is
equipped with an Inertial Measurement Unit (IMU). This IMU consists of a
accelerometer and a gyroscope providing high bandwidth measurements of the
linear acceleration and the angular velocity of the UAV. To obtain position
and attitude (orientation) the accelerometer measurement has to be integrated
twice and the gyroscope measurement has to be integrated once. A bias on
the measurement readings will result in a drift on the position and attitude.
This results in the UAV not being able to stabilize itself. The drift of the pitch
and roll can be compensated using the gravity vector provided by the IMU.
To compensate for the position drift extra position measurements have to be
incorporated. These position measurements can be low bandwidth and have to
be fused with the IMU measurements.

In the outdoor field GPS is often used as a position sensor. The position mea-
surement provided by GPS however is accurate within a few meters. Performing

5

a maintenance task on for example a lightning rod requires a higher accuracy
than GPS can provide. Also GPS is not always available which is an extra disad-
vantage. Other methods for position sensing have been subject of research. For
example LIDAR, laser scanning, stereo vision or monocular vision can be used
for position sensing. These sensors have to be carried onboard with the UAV.
This makes that size and weight become important factors since it affects flight
performance and flight duration. Also it is important that the position sen-
sor can provide position measurements under a wide variety of circumstances.
Stereo vision can provide a lot of information about the environment while the
mass and size of cameras is small. It however requires a lot of computational
power to extract this information from the camera images. But with the ex-
ponentially growing computation power of computers this is already feasible to
run the necessary algorithms real time onboard of the UAV. Furthermore in
the future the required computers will become more light-weight and also more
computational expensive algorithms can be used to estimate the position from
the camera images. Stereo cameras have the advantage over mono cameras that
they provide an accurate depth map on a metric scale while with a mono camera
the depth information requires a scaling factor to map it on a metric scale.

In this project the Skybotix VI-sensor is used. This VI-sensor consists of a
stereo camera and an IMU. The stereo camera will be used to measure the pose
of the VI-sensor. This pose will be fused with the IMU of the VI-sensor to
obtain a high bandwidth pose measurement. The flight controller will use this
pose measurement in its own sensor fusion to obtain an accurate high-bandwidth
pose estimation which is necessary to stabilize and control the UAV.

First a literature study is performed to explore methods for localization based
on vision and to explore sensor fusion methods. Then the chosen sensor fu-
sion method is elaborated. This results in a high-bandwidth pose estimation
from the VI-sensor. The chapter Realization describes how the setup is de-
signed in which the VI-sensor is used as an external pose measurement. The
chapter Experiments and discussion shows the experiments which have been
performed to validate the performance of the setup and the performance will be
discussed. Then in the chapter Conclusions and recommendations conclusions
will be drawn and recommendations for further research will be made.

6

Chapter 2

Literature

This chapter describes the literature study. First the motion capture system
and the VI-sensor are explained. Then the previous work in our group is shortly
addressed. This is followed by a comparison of a SLAM and a VO+IMU system.
Furthermore previous work of others on visual odometry and sensor fusion is
described after which a choice is made what is going to be used in our setup.

2.1 External motion capture system

For localization of the UAV often a motion capture system like VICON or
OptiTrack is used. This system consists of multiple cameras observing the
flying area. Retroreflective markers are rigidly attached to the UAV and are
detected by the cameras of the motion capture system. With multiple cameras
observing the same marker the position of that marker can be measured with
sub-millimeter accuracy. The system requires a calibration procedure before it
can be used. At the University of Twente are two OptiTrack motion capture
systems available for research.

Figure 2.1: UAVs flying using a motion capture system for localization

2.2 VI-sensor

For pose estimation based on vision the VI-sensor[8] is used. The VI-sensor
combines two Aptina MT9V034 global shutter cameras with a ADIS 16488
IMU in a time-synchronized setup. The cameras provide 8 bits monochrome
images with a resolution of 752x480 pixels at 20 Hz using the ROS interface.

7

The VI-sensor comes with a factory calibration containing camera calibration
and inter sensor dimensions. The base line of the stereo camera is 11 cm.

Figure 2.2: VI-sensor

2.3 EuRoC

This project is a follow-up of the EuRoC project at the University of Twente.
The EuRoC project aimed at developing a platform for localization and mapping
in an unknown environment with the help of two webcams and an IMU and
lateron also a VI-sensor. An important recommendation from this project was
to implement sensor fusion to increase the accuracy of the platform.

2.4 SLAM vs VO+IMU sensor fusion

Two approaches can be taken to solve the localization problem. The first solu-
tion is Simultaneous Localization And Mapping (SLAM). The SLAM algorithm
keeps track of the pose of the observer and of the pose of the recognized land-
marks. The other solution is sensor fusion of Visual Odometry and an IMU. This
approach only keeps track of the pose of the observer and not the landmarks.
This makes that the pose estimation of the VO+IMU sensor fusion approach
can drift over time since estimation errors are accumulating and can’t be cor-
rected. The SLAM approach is not drifting since the drift of the observer can
be observed by keeping track of the pose of the landmarks. A SLAM algorithm
is therefore more complicated than a VO+IMU sensor fusion algorithm. SLAM
also has a higher computational burden. The drift of the VO+IMU sensor fu-
sion is not very big and can be corrected easily by the user. The disadvantage of
the temporal drift does not weigh up to the advantage of easier implementation
of the VO+IMU sensor fusion therefore this method will be chosen.

2.5 Visual odometry

Determining the motion of a camera by analysing the associated camera images
is called visual odometry. Visual odometry algorithms determine the motion
based on two consecutive images. The algorithm basically consists of the fol-
lowing steps:

8

1. Feature extraction

2. Feature matching

3. Motion estimation

The motion of the camera is calculated using only two consecutive frames so
small errors in the estimation will accumulate and cause the estimate to drift. A
pose estimation from visual odometry can be obtained by integrating the motion
estimate. A comparison of different odometry methods for RGB-D cameras has
been performed by Fang and Scherer[1]. They describe image based methods
and depth based methods. Image based methods are found more faster and
more accurate than depth based methods in feature rich environments. Since
depth information from a stereo camera also relies on the number and quality
of features it is better to look at the image based methods. Three image based
methods are described of which only FOVIS[5] and VISO2[3] are applicable
for monochrome stereo cameras. Both algorithms have a ROS implementation.
The paper concludes that FOVIS is the best choice for accuracy and speed so
FOVIS is chosen as visual odometry method.

2.6 Comparison of sensor fusion methods

The sensor fusion algorithm fuses visual odometry with IMU measurements.
FOVIS provides a twist measurement including a covariance matrix. It can also
provide a pose measurement which is the integration of the twist measurements.
This pose measurement does not provide a covariance matrix. The IMU mea-
surement consists of a linear acceleration and an angular velocity measurement.
Since we are not aiming at improving the state of the art we are looking for
already implemented packages. This resulted in three packages: Robot pose
EKF1, Robot localization2 and ETHZ ASL Sensor fusion3.

2.6.1 Comparison

Important properties of the sensor fusion is what it accepts as input measure-
ment and which states are tracked. An overview of this can be seen in table 2.1.

2.6.2 Remarks

Not everything can be put in a table so a few remarks on the different sensor
fusion algorithms are made here.

2.6.2.1 Robot pose EKF

The sensor fusion algorithm uses only the orientation data provided in a ROS
IMU message. This means that an extra filter is needed to estimate the orien-
tation of the IMU based on the IMU measurements.

1http://wiki.ros.org/robot_pose_ekf
2http://wiki.ros.org/robot_localization
3http://wiki.ros.org/ethzasl_sensor_fusion

9

http://wiki.ros.org/robot_pose_ekf
http://wiki.ros.org/robot_localization
http://wiki.ros.org/ethzasl_sensor_fusion

Robot pose
EKF

Robot
localization

ETHZ ASL
Sensor fusion

Input:
IMU X* X(multiple) X(one)
Pose sensor X X X
Twist sensor X Only linear

velocity
Tracked states:
Position X X X
Linear velocity X X
Linear acceleration X X
Orientation X X X
Angular velocity X X
IMU bias X
Sensor-IMU configuration X
Pose scale X
Roll and pitch drift X
*Only accelerometer. Requires an extra filter to obtain attitude from IMU.

Table 2.1: Overview of the inputs and the tracked states of the different sensor
fusion algorithms

2.6.2.2 Robot localization

This sensor fusion is set up very general. It has an Extended Kalman Filter and
an Unscented Kalman Filter implementation. The input measurements have to
match the states such that the observation matrix H is identity. The process
noise can be tuned by the user but it is not clear how this should be done.

2.6.2.3 ETHZ ASL Sensor fusion

This sensor fusion is designed for use with Micro Air Vehicles (MAV). It is
based on an Extended Kalman Filter. The IMU is used in the propagation
step. This makes that the linear acceleration and the angular velocity states
can not be updated by other sensors than the IMU. The sensor fusion framework
compensates for time delay in the measurements. The sensor-IMU configuration
and the pose scale are also estimated but those are already known on beforehand.
The process noise covariance is already determined in this implementation.

2.6.3 Choice of sensor fusion implementation

Comparing the different sensor fusion implementations it is clear that Robot
pose EKF is not good enough compared to the other two methods. Robot
localization and ETHZ ASL Sensor fusion have both their pro’s and cons but
the ETHZ ASL Sensor fusion is chosen since it has more features and is already
designed focused on use with MAV’s.

10

Chapter 3

Sensor fusion with
VI-sensor

This chapter details how the sensor fusion algorithm works. This sensor fusion
algorithm is published by Weiss[12]. This sensor fusion algorithm has been
implemented to work with the VI-sensor. The IMU measurements are fused
with the pose estimation obtained by the visual odometry to obtain a high-
bandwidth pose estimation from the VI-sensor. The sensor fusion is able to
detect pitch and roll drift and can compensate for the time delay caused by the
calculation time of the visual odometry. First the general functioning of the
sensor fusion is elaborated. Then it will be described how the visual odometry
pose has to be incorporated in the algorithm. The VI-sensor can also be used
to create a map of the area. This will be described at the end of this chapter.

3.1 Software setup

Figure 3.1 shows the software setup which is used to obtain a high-bandwidth
pose from the VI-sensor.

Figure 3.1: Software setup

The VI-sensor provides a stereo image stream. The image rectifier will re-
move distortion from the images using the provided camera calibration param-
eters which results in rectified camera images. The visual odometry block will

11

calculate the pose using the rectified camera images and the known transfor-
mation between both cameras. This pose is published at the frame rate of the
camera which is 20 Hz in the case of the VI-sensor. The low bandwidth pose
is fed to the sensor fusion together with the IMU data. The sensor fusion uses
the known configuration of the IMU with respect to the camera to calculate a
high bandwidth pose.

3.2 Sensor fusion

The sensor fusion algorithm used is an Error State Extended Kalman Filter
(ESEKF) or Indirect Extended Kalman Filter. It uses three states: the true
state x representing the physical state in which the vehicle is, the estimated state
x̂ which is our estimation of the true state and the error state x̃ which is the
difference between the true state and the error state x̃ = x− x̂. Ideally we want
our estimated state to be the same as our true state so we want the error state
to go to zero. The ESEKF measures the difference between our measurement
and our estimation, which is the error, and uses this to calculate the corrections
which has to be performed on the estimated state. This is elaborated more in
the Kalman procedure. Recent work has been published which provides a very
detailed description of the working of an ESEKF[10].

3.2.1 IMU as propagation sensor

The IMU is used as a propagation sensor in the sensor fusion. The bandwidth
of the IMU is already high enough for the desired output bandwidth. Therefore
it is unnecessary to compute extra prediction steps inbetween the IMU mea-
surements. The IMU is affected by bias and noise. The bias is estimated in the
filter and can therefore be compensated.

3.2.2 Coordinate frames

Four frames can be identified in the ESEKF model which can be seen in fig-
ure 3.2.

The world frame is always aligned with gravity. The IMU frame is the frame
in which the IMU measurements are done. The camera frame is the origin of
the reference camera. The vision frame is the world as observed by the cam-
eras. The transformations between these frames are indicated using p and q.
pic describes the three-dimensional position of the origin of the camera frame of
reference expressed in the IMU frame of reference. qic is the quaternion repre-
sentation of the orientation of the camera frame of reference expressed in the
IMU frame of reference. The same holds for the other transformations where c
describes the camera frame of reference, v describes the vision frame of refer-
ence, w describes the world frame of reference and i describes the IMU frame
of reference.

The VI-sensor has an initial orientation in the filter. The visual odometry
defines this initial orientation as a unity rotation. The filter however uses a
different rotation. The initial rotation is known since it is defined by how it
is mounted on the UAV (assumed the UAV is leveled on initialization). This

12

Figure 3.2: Model used in EKF

initial rotation is incorporated in the rotation of the vision frame with respect
to the world frame.

3.2.3 Drift observability

Since the pose measurements from visual odometry can drift the vision frame
is defined separately from the world frame. The position drift of the visual
odometry is unobservable in this setup. By forcing pvw = 0 the position of the
vision frame equals the position of the world frame which means that the world
frame is drifting in position along with the vision frame.

A drift in roll or pitch is observable using the gravity vector which can be
obtained from the accelerometer. Therefore the rotation of the world frame in
the vision frame can become non-zero. This non-zero rotation represents the
roll and pitch drift of the visual odometry attitude measurement. A yaw drift
is still unobservable. Therefore the yaw of the world frame is aligned with the
yaw of the vision frame. This is done and further detailed in the update step of
the ESEKF.

3.2.4 Kalman procedure

This section will detail the Kalman procedure which is used. A Kalman proce-
dure consists of two steps: a propagation step and an update step. The IMU
measurements are used in the propagation step and the visual odometry pose
measurement will be used in the update step.

13

3.2.4.1 State vector

The state vector of the ESEKF is:

x̂ =
[
pwi vwi qwi bω ba λ qvw qic pic

]T
(3.1)

with pwi and vwi describing respectively the three-dimensional position and
velocity and qwi describing the quaternion representation of the orientation of
the IMU frame expressed in the world frame. The three-dimensional vectors
bω and ba describe the bias terms on respectively the gyroscope and the ac-
celerometer. The scalar λ describes the scaling factor which is needed when
scaled position measurements are done for example when using a mono camera
setup. The quaternion qvw describes the orientation of the world frame expressed
in the vision frame and the quaternion qic and the three-dimensional position pic
describe respectively the orientation and the position of the camera expressed
in the IMU frame.

The error state is defined as:

x̃ =
[
p̃wi ṽwi δθwi b̃ω b̃a λ̃ δθvw δθic p̃ic

]T
(3.2)

where p̃wi represents the difference between the real position pwi and the
estimated position p̂wi : p̃wi = pwi −p̂wi . Similarly for velocity, scale and bias terms.
The error in the orientation cannot be expressed by simple subtraction. The
error in the orientation can be described by introducing the error quaternion:

δqwi = q̂w−1
i ⊗ qwi (3.3)

The ⊗ operator is the quaternion multiplication operator. This equation
describes the same as:

δRwi = R̂w−1
i Rwi (3.4)

In the working area of the ESEKF the estimation of the orientation will be
close to the real value of the estimation. This means that the error quaternion
δq is close to identity. This allows to use a small angle approximation of the
error quaternion:

δRwi = I + bδθwi c× (3.5)

In which bxc× is the skew-symmetric matrix composed from the vector x.
The relationship between δq and δθ is given by:

δq ≈
[
1 1

2δθx
1
2δθy

1
2δθz

]T
=
[
1 1

2δθ
]T

(3.6)

The small angle approximation of the error allows to express the error using
three terms in stead of four. This small angle approximation δθ is used in the
error state.

14

3.2.4.2 Propagation step

During the propagation step the states of the ESEKF are propagated using
the IMU measurements. For every IMU measurement the following steps are
performed:

1. Propagate the state variables according to their differential equations. For
quaternions the first order quaternion integration is used[11].

2. Calculate Fd and Qd which describe the propagation of the error state
covariance matrix and the additional measurement noise.

3. Compute the propagated error state covariance matrix according to

Pk+1|k = FdPk|kF
T
d +Qd (3.7)

3.2.4.2.1 Propagate using differential equations
The differential equations used to propagate the state variables are:

ˆ̇pwi = v̂wi
ˆ̇vwi = Rwi (am − b̂a)− g

ˆ̇qwi =
1

2
Ω(ωm − b̂ω)q̂wi

ˆ̇
bω = 0,

ˆ̇
ba = 0,

ˆ̇
λ = 0

ˆ̇pic = 0, ˆ̇qic = 0, ˆ̇pvw = 0, ˆ̇qvw = 0

where am and ωm are respectively the measurements of the accelerometer
and the gyroscope and Ω(ω) is the quaternion-multiplication matrix of ω. It is
constructed as:

Ω(ω) =

−ωx −ωy −ωz 0

0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz

 (3.8)

when the quaternion is defined as q =
[
qw qx qy qz

]T
The position and velocity are updated according to

p̂wik+1|k
= p̂wik|k

+ ˆ̇pwi ∆t

v̂wik+1|k
= v̂wik|k

+ ˆ̇vwi ∆t

For the quaternion a first order quaternion integrator is used to integrate
the quaternions[11].

3.2.4.2.2 Calculate propagation of error state covariance matrix and
additional measurement noise
To calculate the propagation of the error state covariance matrix and the ad-
ditional measurement first the dynamics of the error state are needed[12]. The
error state dynamics in continuous time are:

15

∆ṗwi = ∆vwi

∆v̇wi = −Rwi bam − b̂ac×δθwi −Rwi ∆ba −Rwi na
δθ̇wi = −bωm − b̂ωc×δθwi −∆bω − nω
∆ḃω = nbω ∆ḃa = nba ∆λ̇ = 0

∆ṗic = 0 δq̇ic = 0 ∆ṗvw = 0 δq̇vw = 0

The error state dynamics can be described in the linearized continuous time
error state equation

˙̃x = Fcx̃+Gcn (3.9)

with n being the noise vector n =
[
nTa , n

T
ba
, nTω , n

T
bω

]T
. The continuous-time

error state covariance matrix Fc can be discretized:

Fd = exp(Fc∆t) = Id + Fc∆t+
1

2!
F 2
c (∆t)2 + . . . (3.10)

A repetitive and sparse structure can be found in the matrix exponents which
allows to express Fd exactly as

Fd =

I3 ∆t A B −R̂wi

(∆t)2

2 03×13

03 I3 C D −R̂wi ∆t 03×13

03 03 E F 03 03×13

03 03 03 I3 03 03×13

03 03 03 03 I3 03×13

013×3 013×3 013×3 013×3 013×3 I13

 (3.11)

with

A = −R̂wi bâc×
(

(∆t)2

2
− (∆t)3

3!
bωc× +

(∆t)4

4!
(bωc×)2

)
(3.12)

B = −R̂wi bâc×
(
−(∆t)3

3!
+

(∆t)4

4!
bωc× −

(∆t)5

5!
(bωc×)2

)
(3.13)

C = −R̂wi bâc×
(

∆t− (∆t)2

2
bωc× +

(∆t)3

3!
(bωc×)2

)
(3.14)

D = −A (3.15)

E = I3 −∆tbωc× +
(∆t)2

2!
(bωc×)2 (3.16)

F = −∆t+
(∆t)2

2!
bωc× −

(∆t)3

3!
(bωc×)2 (3.17)

The matrix Gc describes the propagation of the noise. It can be written as

16

Gc =

03 03 03 03

−R̂wi 03 03 03

03 03 −I3 03

03 03 03 I3
03 I3 03 03

013×3 013×3 013×3 013×3

 (3.18)

The discrete time system noise covariance matrix Qd can now be calculated
as[6]:

Qd =

∫
∆t

Fd(τ)GcQcG
T
c Fd(τ)T dτ (3.19)

with

Qc =

σ2
na

03 03 03

03 σ2
nba

03 03

03 03 σ2
nω

03

03 03 03 σ2
nbω

 (3.20)

For the VI-sensor IMU, ADIS 16488, this matrix is

Qc =

0.0225632 · I3 03 03 03

03 0.000082 · I3 03 03

03 03 0.0042 · I3 03

03 03 03 0.0000032 · I3

 (3.21)

3.2.4.3 Measurement update

With only the propagation the error state covariance matrix will continue to
grow i.e. the estimation becomes more uncertain. A measurement from another
sensor can provide extra information to update the estimate and reduce the
uncertainty. The Kalman procedure for the measurement update is as follows:

1. Compute the residual z̃ = z − ẑ

2. Compute the innovation S = HPHT +R

3. Compute the Kalman gain K = PHTS−1

4. Compute the correction ˆ̃x = Kz̃

5. Update states x̂k+1|k+1 = x̂k+1|k + ˆ̃x

6. Update error state covariance matrix
Pk+1|k+1 = (Id −KH)Pk+1|k(Id −KH)T +KRKT

17

in which z is the performed measurement, ẑ is the estimated measurement
based on the estimated states, H is the observation matrix relating the measure-
ment error z̃ with the error state x̃ as z̃ = Hx̃. P is the error state covariance
matrix and R is the measurement noise covariance matrix.

To process the measurement the residual z̃, the observation matrix H and the
measurement noise covariance matrix R have to be determined. The visual
odometry pose is used as a measurement. This measurement can be split in
three parts: the position, the attitude and an artificial yaw measurement. The
artificial yaw measurement is included since the yaw drift is unobservable. By
including an artificial yaw measurement it can be assured that the yaw of the
vision frame is aligned with the yaw of the world frame. The three parts of the
pose measurement can be computed separately and at the end combined in one
observation matrix, one residual and one measurement noise covariance matrix.

3.2.4.3.1 Position measurement
For the position measurement the measurement function is:

hp(x̃) = z̃p = Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂ (3.22)

To obtain the observation matrix H the measurement function has to be
linearized around the estimated state:

Hp =
∂hp(x̃)

∂x̃
|x=x̂ (3.23)

This results in the following observation matrix:

Hp =

R̂vwλ̂
03x3

−R̂vwR̂wi bp̂ic×cλ̂
03x3

03x3

R̂vw(p̂wi + R̂wi p̂
i
c)

−R̂vwb(p̂wi + R̂wi p̂
i
c)λ̂×c

03x3

R̂vwR̂
w
i λ̂

T

(3.24)

How to derive this observation matrix is detailed in the appendix. The
measurement noise covariance matrix was not given by the visual odometry so
this is estimated at:

R =

0.01 0 0
0 0.01 0
0 0 0.01

 (3.25)

The residual is

z̃p = zp − R̂vw(p̂wi + R̂wi p̂
i
c)λ̂ (3.26)

18

3.2.4.3.2 Attitude measurement
For the attitude measurement the measurement function is:

hq(x̃) = z̃q = (q̂vc)−1 ⊗ qvc = (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ (q̂vw)−1 ⊗ qvw ⊗ qwi ⊗ qic (3.27)

Linearizing this function around the estimated state results in the following
observation matrix:

Hq =

03x3

03x3
1
2R

c
i

03x3

03x3

0
1
2R

c
iR

i
w

1
2I3

03x3

T

(3.28)

The measurement covariance matrix R is also not given for the attitude so
it is also estimated. The estimation used is:

R =

0.02 0 0
0 0.02 0
0 0 0.02

 (3.29)

The residual of the attitude measurement is:

z̃q = (q̂vc)−1 ⊗ zq (3.30)

3.2.4.3.3 Artificial yaw measurement
The artificial yaw measurement is to align the yaw of the vision frame with the
yaw of the world frame. This can be achieved by using an observation scalar
H = 1, a measurement noise covariance of 1 · 10−6 and a residual

y = yaw((q̂vw)−1 ⊗ qvw) (3.31)

where the yaw of a quaternion is calculated as

yaw(q) = atan2(2(qwqz + qxqy), (1− 2(q2
y + q2

z))) (3.32)

3.2.4.4 Complete measurement

The three parts can be combined together. This will result for the observation
matrix in z̃p

z̃q
z̃yaw

 =

Hp

Hq

1

 x̃ (3.33)

19

The total measurement error covariance matrix is

R =

0.01 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.02 0 0 0
0 0 0 0 0.02 0 0
0 0 0 0 0 0.02 0
0 0 0 0 0 0 1 · 10−6

(3.34)

And the total residual is

z̃ =

zp − R̂vw(p̂wi + R̂wi p̂
i
c)λ̂

(q̂vc)−1 ⊗ zq
yaw((q̂vw)−1 ⊗ qvw)

 (3.35)

3.2.5 Fixed and known configuration

The EKF was designed for configurations in which the scale and the camera-IMU
configuration is not known on beforehand. That means that those values are
incorporated in the state vector. In our configuration however the camera-IMU
configuration is known since the stereo cameras were calibrated in the factory
and this data is provided with the cameras. Also the scale is known and fixed
on 1 since a stereo camera is used. The states pic, δθ

i
c and λ could be removed

from the state vector since their values do not need to be estimated. But the
software implementation also allows to fix the scale and the configuration. In
addition the initial error state covariance matrix has to be put to zero at the
rows and columns corresponding to the known states. This makes the filter
know that these states are fully known.

3.2.6 Lost visual odometry

It can happen that the visual odometry algorithm is not able to estimate the
pose. This can be caused for example when it can’t find enough features in the
image. The algorithm will produce a faulty measurement which can be recog-
nized by all zeros. In such a situation the measurement should not be taken
into account in the sensor fusion. This can be done by setting the H-matrix and
the residual to zero. The state estimation of the sensor fusion will now only be
determined based on the IMU.

When the visual odometry has recovered it will continue to provide measure-
ment data. The motion estimation is again valid but the pose estimation, which
is an integration of the motion estimation, will continue from the pose it had
before the visual odometry was lost. This is not correct. It should start from
the pose estimation given by the sensor fusion at the moment of recovery. This
error can be compensated by introducing a bias on the pose. This bias will be
calculated at the moment of recovery.

pbias = ẑp − zp
qbias = ẑq ⊗ z−1

q

20

Where ẑ is the expected measurement value using the estimated states of
the sensor fusion and z is the obtained measurement value. The calculated bias
should now be added to every new measurement value.

zp = pbias + zp

zq = qbias ⊗ zq

Next to an update of the measurement using a bias term the uncertainty of
the measurement value has also increased.

3.2.7 Time delay compensation

A useful property of the ESEKF implementation of Weiss[12] is that it allows
for time delay compensation. The visual odometry algorithm which extracts
the pose from the camera images takes some time and meanwhile the IMU has
already propagated further. Timestamps of the camera images and the IMU
are used to update the ESEKF at the time where the measurement took place.
Then the state is further propagated from the time where the measurement took
place using buffered IMU-measurements. This is shown in figure 3.3.

Figure 3.3: Time delay compensation in the ESEKF

In a) the UAV is using the current state as reference. In b) a delayed mea-
surement update arrives and the corresponding buffered state is corrected using
the measurement. In c) the states following the corrected states are corrected
by propagating the buffered IMU measurements using the propagation step of
the ESEKF.

3.3 Mapping

A map is also created during the flight. To create a map a point cloud and a
corresponding pose estimate are needed. The point cloud can be transformed
in to the world frame using the estimated pose of the UAV. The point cloud is
generated using Stereo Block matching on the stereo camera images. The map
is build using an octomap[4] structure to reduce memory load. In the chapter
Experiments and discussion a map built with this method is shown.

21

Chapter 4

Realisation

Chapter 3 showed the theoretical approach toward the use of the VI-sensor as
a high bandwidth pose sensor. The next step is to set up a system in which
the external pose estimation can be used to control a UAV. This chapter first
describes how the UAV is setup. Then the setup used to control the UAV is
elaborated. Since the first test flights are performed inside an OptiTrack area a
fail-safe has been implemented which switches back to OptiTrack in case visual
odometry fails. This will described in the end of this chapter.

4.1 System setup

The UAV used is the ArduCopter Hexa-B. Six AC2830-358 850Kv motors are
mounted on the frame. The ESCs are from 3D Robotics and can deliver 20 A
of current and 6-16.8 V DC voltage. A FPV Radio Telemetry Ground Module
is also mounted which allows wireless Mavlink communication. The flight con-
troller used is a Pixhawk.

Mounted on the UAV are the VI-sensor and an Intel NUC 5i5RYK computer.
The computer is running Ubuntu 14.04 LTS. ROS (Robot Operating System)
Jade is used as framework for the software which is used. Communication be-
tween the NUC and the Pixhawk is done using the Mavlink protocol. Since the
NUC and the Pixhawk are both mounted on the drone the communication link
is a USB cable. The whole system is designed such that it can operate on a
LiPo 4S battery. Further details about the design can be found in the appendix.
A picture of the UAV can be seen in figure 4.1.

22

Figure 4.1: Hexacopter

The picture shows the UAV. On top and in the center of the UAV the Pix-
hawk flight controller is located. The grey balls are the OptiTrack markers used
for the OptiTrack pose estimation. The blue arms of the UAV show the front
of the UAV. At the front the VI-sensor is mounted. At the back the Intel NUC
is mounted. Both units weigh approximately the same and are placed such that
the center of mass of the UAV stays in the center of the UAV.

In this picture also relevant frames are shown. The visual odometry (VO)
frame is located in the reference camera and is the frame in which the visual
odometry algorithm expresses its pose. The sensor fusion frame is located in
the IMU of the VI-sensor and is the frame in which the sensor fusion expresses
its pose. The Pixhawk frame is located in the IMU of the Pixhawk and is the
frame in which the Pixhawk expresses its pose. Based on this pose the UAV is
controlled. The OptiTrack pose is not shown for clarity of the image but the
frame is in approximately the same position and orientation as the Pixhawk
frame.

4.2 Control setup

An external controller is used to control the UAV. This means that part of the
controller is run outside the Pixhawk which is called offboard. The Pixhawk can
be put in an offboard control mode. In this mode the setpoints for the onboard
controller are computed offboard. The offboard control mode accepts attitude,
position, velocity and acceleration setpoints. It also allows to directly control
the actuators. The control setup can be seen in figure 4.2.

23

Figure 4.2: Control setup

Two external poses can be seen in figure 4.2. One is the external pose
expressed in its own frame. The location of these frames can be seen in figure 4.1.
The other is the external pose expressed in the Pixhawk frame. Inbetween is a
transformation which transforms the external pose from its own frame to the
Pixhawk frame. This external pose can be OptiTrack, visual odometry, the pose
output of the sensor fusion or another pose. In the Pixhawk the external pose
is used in the pose estimation to compensate for drift of the Pixhawk IMU. The
onboard pose estimation consists of two parts: an attitude estimation and a
position estimation. Both estimators estimate position and attitude based on
IMU readings from the Pixhawk IMU which are corrected by the external pose.
The onboard pose estimator publishes its pose which is used in the offboard
controller. The control algorithm compares the onboard pose estimation with a
reference pose and publishes a control command based on this difference. This
control command is sent to the controller onboard the Pixhawk.

4.2.1 Frame transformation

Figure 4.2 shows that a frame transformation is required to transform the pose
expressed in the external frame such that it is expressed in the Pixhawk frame.
For the visual odometry and the sensor fusion this pose is estimated using a ruler.
The position of the VO frame expressed in the Pixhawk frame is estimated at

pPV O =

 0.15
−0.055
−0.1

 (4.1)

The rotation of the VO frame expressed in the Pixhawk frame is estimated at

RPV O =

0 0 1
1 0 0
0 1 0

 (4.2)

For the sensor fusion the rotation is estimated the same as VO RPSF = RPV O.
The position is estimated at

pPSF =

0.15
0
−0.1

 (4.3)

For OptiTrack it is assumed that the center of the markers is at the same posi-
tion as the Pixhawk IMU. The OptiTrack pose estimation is initialized with the

24

Pixhawk frame aligned with the OptiTrack frame. This makes that no transfor-
mation matrix is required since the OptiTrack frame is aligned in position and
orientation with the Pixhawk frame.

4.2.2 Offboard controller

The offboard controller used is a PD position+yaw controller with velocity set-
points as a control command to the Pixhawk. Velocity setpoints as an output is
chosen because of compatibility with other UAVs. Also an advantage of using
an offboard control algorithm is that it is easier to tune and understand what is
going on. The reference position and yaw can be set by a Graphical User Inter-
face (GUI). This GUI also allows to set the gains of the controller. A screenshot
of the GUI can be seen in figure 4.3.

Figure 4.3: Graphical User Interface

4.3 Fail-safe

When flying on visual odometry it is possible that the visual odometry algorithm
fails. This can be caused by too little features inside the image (for example
flying in front of a evenly white wall) or motion blur caused by rapid movements.
When visual odometry fails the position and attitude estimator are not able to
estimate the pose of the UAV correctly which will cause the UAV to crash. Since
most of the test flights are still performed inside an OptiTrack arena a fail-safe
is implemented which switches back to OptiTrack if the visual odometry fails.
This can be seen in figure 4.4.

25

Figure 4.4: Fail-safe

The input poses are not aligned with each other. For continuity in the output
of the fail-safe during the switch it is necessary that both poses are aligned with
each other. The OptiTrack pose is sent as the external pose when the fail-
safe is activated. For safety it is best that the OptiTrack pose is not changed.
Therefor the VO pose has to modified to align both input poses. How to align
these frames is elaborated in subsection 4.3.1. With the input poses aligned
the fail-safe also has to decide whether it should be activated. This is further
elaborated in subsection 4.3.2.

4.3.1 Frame alignment

The vision pose and the OptiTrack pose are not aligned with each other. Both
poses are presented in their own frame of reference. The vision pose can be
expressed as homogeneous matrix HV

S . A homogeneous matrix describes the
orientation and translation in one matrix:

HV
S =

[
RVS pVS
0 1

]
(4.4)

where RVS is the orientation of the sensor expressed in the visual odometry frame
of reference and pVS is the position of the sensor expressed in the VO frame of
reference. In the same way the OptiTrack pose can be expressed as HO

S which
is the pose of the sensor expressed in the OptiTrack reference frame.

The OptiTrack frame is used as reference frame so the sensor pose expressed in
the VO frame has to be expressed in the OptiTrack reference frame. To express
the sensor pose in the OptiTrack reference frame the following transformation
is needed:

HO
S = HO

V H
V
S (4.5)

This requires the transformation matrix HO
V . This transformation matrix

can be calculated during a frame alignment procedure:

HO
S = HO

V H
V
S (4.6)

HO
V = HO

S (HV
S)−1 (4.7)

The resulting transformation matrix HO
V can now be used to transform new

sensor pose measurements from the VO reference frame into the OptiTrack
reference frame. Note that the frames are only aligned at the moment of frame
alignment. After the alignment procedure the sensor pose in the VO reference
frame can drift again. Continuously aligning the VO frame with the OptiTrack
frame would mean that while flying on vision actually the OptiTrack pose is

26

used. Aligning the OptiTrack reference frame with the VO reference frame
would require to transform the OptiTrack pose which is not desirable since the
OptiTrack is the backup and transforming this pose might cause the backup to
fail.

4.3.2 Switching procedure

There are two situations in which the fail-safe should switch to OptiTrack. The
most obvious one is when the visual odometry fails to estimate a pose. This
can be caused by insufficient inliers or a reprojection error. This is easy to
detect since an error is produced by the VO algorithm. The other situation is
when the visual odometry provides a bad estimation which is way off the actual
value. This can happen when the visual odometry has little features but still
finds a solution (which is an incorrect solution). To detect this situation the
velocity of the visual odometry is compared with the velocity of the OptiTrack
pose measurement. When the difference exceeds a threshold value, the fail-
safe switch is activated. The velocity of the VO can be obtained directly from
the velocity measurement of the VO. For OptiTrack only a pose measurement is
received. To estimate the OptiTrack velocity a first order fixed window approach
is used with a window of 10 samples. This calculates the velocity as

v(n) =
p(n)− p(n− 10)

t(n)− t(n− 10)
(4.8)

The fail-safe detector has been implemented as a state machine. This can be
seen in figure 4.5.

Figure 4.5: Fail-safe detector state machine

Information of the state in which the state machine is is provided to the user
through the GUI. This can also be seen in figure 4.3. The system starts up in
the ’Flying on OptiTrack - not aligned’ state. By pressing the ’align’ button
the vision pose is aligned with the OptiTrack pose according to the procedure
described above. This brings the state machine in the ’Flying on OptiTrack -
aligned’ state. Still the OptiTrack pose is sent to the UAV. Now the system
is ready to make the switch to vision. No sudden changes are expected since
both poses are aligned. By pressing the ’switch to vision’ button the system
will switch to vision which means that now the vision pose is sent to the UAV
as external pose. The state machine is now in the ’Flying on Vision - aligned’
state. For every state holds that when the switching conditions of the fail-safe

27

are met the state machine will go to the ’Flying on OptiTrack - not aligned’
state. Flying on OptiTrack since this is the safest mode now and not aligned
since it is not sure that vision and OptiTrack are still aligned. Alignment and
switching to vision however can be performed in air. Additionally switching to
OptiTrack can also be done by pressing the ’switch to OptiTrack’ button in the
GUI.

28

Chapter 5

Experiments and discussion

Three experiments have been performed to test the performance of the algo-
rithms presented before. The first experiment compares the different position
and yaw estimation algorithms during a flight. It appeared that motor vi-
brations affect the sensor fusion a lot therefore a second experiment has been
performed in which the motors are not armed. The third experiment shows
the results of the mapping algorithm described in chapter 2. At the end of the
chapter there is a discussion on the experiments and the presented work.

5.1 Evaluation of position and yaw estimation
during flight

The goal of this experiment is to evaluate and compare the position and yaw
estimations of the different pose estimation algorithms. The experiment setup
is shown in figure 5.1.

Figure 5.1: Experiment setup

This frame shows at the left the OptiTrack pose and the visual odome-
try (VO) pose obtained from the stereo camera images. The VO pose is first
transformed to the Pixhawk frame using the frame transformation described in
subsection 4.2.1. Then it is used as an input for the fail-safe detector together
with the OptiTrack pose. The fail-safe detector also aligns both frames. The
output of the fail-safe detector is the VO pose expressed in the Pixhawk frame
aligned with the OptiTrack pose. This pose is sent to the UAV where the on-
board pose estimation fuses this pose with the Pixhawk IMU measurements.
This results in the Pixhawk pose which is the pose used for control of the UAV.

29

The other path in the figure shows the VO pose fused with the VI-sensor IMU
using the ESEKF. This results in the sensor fusion pose expressed in the sensor
fusion frame. Unfortunately the frame transformation to express the pose in
the Pixhawk frame is forgotten to include here. The sensor fusion pose is also
aligned with the OptiTrack pose such that the poses are easy to compare. This
results in the sensor fusion pose expressed in the sensor fusion frame aligned with
OptiTrack. The position and yaw of the pose estimations in the grey boxes are
compared in the experiments.

The motor vibrations have a big effect on the IMU measurements. This is
shown in figure 5.2

Figure 5.2: Effect of motor vibrations on IMU measurements

The noise on the accelerometer and gyroscope increases a lot when the mo-
tors are armed at around t = 8. This effect will be taken into account in the
sensor fusion by increasing the noise parameters of the accelerometer and the
gyroscope by a factor 100. The bias parameters remain the same.

To compare the different algorithms a flight is performed in which all the three
linear directions and the yaw have been excited. It appeared from the experi-
ment that the Pixhawk pose had a slight delay of 0.14 s. It is not clear what
caused this delay. This has been compensated in the post-processing of the
experiment. Also all the frames have been aligned at t = 0. The results of the
flight can be seen in figure 5.3 and figure 5.4.

30

Figure 5.3: Comparison of pose estimation algorithms, x and y.

Figure 5.4: Comparison of pose estimation algorithms, z and yaw.

31

It can be seen that the UAV follows the setpoint. How well it follows this
setpoint is a matter of control. In this experiment we are only interested in the
accuracy of the pose estimation. It can be seen that for x, y and z the VO,
the Pixhawk and the OptiTrack estimations are similar. For x and z the Sensor
fusion estimation clearly shows a low accuracy. For y however it seems to follow
the OptiTrack estimation. A remark has to be made for the Sensor fusion. The
frame transformation shown in figure 4.2 has not been included. The alignment
procedure compensates for this error when the yaw does not change but at
t = 40 − 48 the yaw changes which causes an error in x and y at that time.
The yaw estimation of OptiTrack shows short peaks. OptiTrack estimates the
pose based on the location of multiple markers. If these markers are close to a
rotation-symmetric configuration OptiTrack can measure a different orientation
of the UAV. This could be the cause of these short peaks. In these figures
it is hard to see what the differences between the different pose estimation
algorithms are. In figure 5.5 and figure 5.6 these differences are better shown.
In these figures OptiTrack is used as ground truth and for every pose estimation
the difference with OptiTrack is shown. The absolute position error in figure 5.6

is calculated by ep =
√
e2
x + e2

y + e2
z.

Figure 5.5: Pose estimation error for x, y, and z.

32

Figure 5.6: Pose estimation error for yaw and absolute position error.

Figure 5.5 shows that the error of the VO position is within 3 cm for x and
within 6 cm for y. The position error in z shows a drift of approximately 13
cm after 60 seconds. The absolute position error shown in figure 5.6 is also
approximately 13 cm which is mostly caused by the position error in z. For the
error in yaw it can be seen that the error stays within 3 degrees. It was expected
that the Pixhawk error would follow the VO error but apparently they are not
the same. It is not clear what the reason is why they are not the same.

5.2 Evaluation of sensor fusion

As seen in figure 5.2 the motor vibrations have a big effect on the IMU measure-
ments. Therefore also a ’flight’ has been performed without the motors armed.
The UAV is moved around in the OptiTrack area and the estimation of the
sensor fusion is recorded. The same experiment setup as in figure 5.1 is used.
The original IMU noise values are used. The result of this experiment can be
seen in figure 5.7 and 5.8.

33

Figure 5.7: Evaluation of sensor fusion, x and y.

Figure 5.8: Evaluation of sensor fusion, z and yaw.

34

In this figure it can also be seen that an extra error in the sensor fusion
position x and y is introduced when the UAV is yawing from t = 35−42. Around
t = 25 a short OptiTrack error occurred. Since the fail-safe algorithm checks
the difference in velocity of OptiTrack and VO the fail-safe is also activated
when OptiTrack generates a position error. That is the case at around t = 25.
From this moment the Pixhawk pose estimation receives OptiTrack as external
pose. The peaks in the yaw plot have the same reason as with the previous
experiment. In these figures the performance of the sensor fusion is better now.
Still it is hard to see how well it is performing. Therefore also an error plot is
made. This can be seen in figure 5.9 and figure 5.10.

Figure 5.9: Evaluation of sensor fusion for x, y and z.

35

Figure 5.10: Evaluation of sensor fusion for yaw and absolute position error.

Still the error due to the missing transformation matrix can be seen. Apart
from that the sensor fusion seems to follow the VO. The absolute position error
is approximately 25 cm after 50 seconds but then reduces to approximately 15
cm.

5.3 Mapping

In chapter 2 the mapping algorithm is described. A flight has been performed
with the VI-sensor mounted on the UAV to map the environment. The Pixhawk
pose is used as reference to project the point clouds in the map. The Pixhawk
is flying using visual odometry. Figure 5.11 shows the total map of the small
flying arena of the RAM group at the University of Twente created by the UAV.
Figure 5.12 shows the map compared to a photo from approximately the same
point of view.

36

Figure 5.11: Octomap of the small fly arena of the RAM group at the University
of Twente

Figure 5.12: Comparison of map and photo.

The comparison of the map and the photo shows that walls closeby are well
observed. Also the glass door can be seen in the map as a rectangular hole in
the wall. Below in the image also the desk with the computer can be observed.
Further away from the UAV the map does not look that accurate anymore. This
could be caused by the Stereo Block matching algorithm not being accurate at
long distances. Maybe other point cloud generation techniques will provide
better results.

5.4 Discussion

This section will discuss the experimental results and the presented work.

5.4.1 Frame transformation

The final pose estimation which is used for control is expressed in the Pixhawk
frame of reference. This makes that all the external pose estimations which are
sent to the Pixhawk also have to be expressed in the Pixhawk frame of reference.

37

The experiments shown in section 5.1 and 5.2 show that not incorporating this
transformation leads to additional errors. For VO this transformation between
VO and Pixhawk has been estimated using a ruler and for OptiTrack it is tried
to align the OptiTrack frame as good as possible with the Pixhawk frame such
that no transformation is needed. The better this transformation is estimated,
the lower the error caused by misalignment will affect the pose estimation. This
would result in better flight performance. The sensor fusion described in chapter
3 is able to estimate the transformation matrix between an external pose sensor
and an IMU. This could be used to estimate these frame transformations.

5.4.2 Motor vibrations

As shown in figure 5.2 the motor vibrations have a big effect on the IMU mea-
surements of the VI-sensor IMU. The experiments show that this deteriorates
the performance of the sensor fusion. Already damping between the UAV and
the VI-sensor has been applied to reduce the vibrations but this is still not
enough. Aligning the motors could help to reduce the vibrations of the motor.
The motor vibrations are now tried to be compensated by modeling it as an
increase of noise in the sensor fusion. However, the source of the vibrations is
clear and since the motors are spinning at high speed the vibrations could also
be reduced by applying a low-pass filter on the IMU measurements. This has
been researched a little bit with Matlab on the same IMU data as figure 5.2.
An averaging filter where the last five measurements are averaged gives the
following result:

Figure 5.13: Effect of motor vibrations on IMU measurements

38

It can be seen that the vibrations are reduced significantly compared to
figure 5.2. But this has to be tested to evaluate the effects in the real setup.

5.4.3 Sensor fusion

The ESEKF is implemented to obtain a high-bandwidth pose estimation from
the VI-sensor. This is useful when the VI-sensor is used separately. However
in the UAV setup also a sensor fusion algorithm is implemented onboard of the
UAV. This made it possible to fly the UAV using only the VO measurement.
The proposed setup had two sensor fusion algorithms cascaded. When the
sensor fusion performs properly with the motors armed it should be tested if
this cascaded sensor fusion will have better performance than using only one
sensor fusion algorithm. Bypassing the Pixhawk sensor fusion however requires
that the control of the UAV also has to be done offboard.

5.4.4 VO-IMU coupling

The visual odometry pose estimation and the IMU are loosely-coupled in the
ESEKF meaning that both are treated as separate parts not interacting with
each other. This makes that when visual odometry is lost it re-initializes from its
last known visual odometry pose and not the sensor fusion pose. An attempt
has been done to re-initialize at the sensor fusion pose but this hasn’t been
tested. It may be better to use a tightly-coupled sensor fusion for fusing the
visual odometry pose with the IMU.

5.4.5 Point cloud generation

The map is generated based on the point clouds which are generated from the
stereo camera images. The algorithm used for this is Stereo Block matching.
According to the KITTI benchmark[7] there are algorithms with better results
which can also run at real time. A more accurate point cloud results in a more
accurate map.

5.4.6 Outdoor

The setup has now only been tested indoor. It is designed for outdoor operation
so additional experiments should be performed to test the performance in an
outdoor environment.

5.4.7 Multiple sensors

The drawback of visual odometry is that when the cameras can’t find features in
the images the algorithm is not capable of estimation the pose of the UAV. This
means that the pose estimator in the flight controller is not able to estimate the
pose accurately since it only has IMU measurements as input. Position control
is then not possible anymore. Adding more sensors to the framework like GPS
lowers the chance that no pose can be estimated.

39

Chapter 6

Conclusion and
recommendations

6.1 Conclusion

This project aimed at obtaining an accurate localization from vision. The VI-
sensor was used to provide stereo camera images and IMU measurements. The
visual odometry algorithm FOVIS obtained a pose estimation from the stereo
camera images. The sensor fusion algorithm published by Weiss has been used to
fuse the VO pose with the IMU measurements. This provides a high-bandwidth
pose estimation from the VI-sensor. This high-bandwidth pose estimation was
aimed to be used in a UAV setup providing the localization of the UAV. How-
ever the motor vibrations affected the sensor fusion too much to be used in the
setup. Therefore only the low-bandwidth VO pose has been used for providing
the localization of the UAV. A working setup has been created with a hexacopter
equipped with the VI-sensor and an Intel NUC which can fly using visual odom-
etry pose estimation. A fail-safe has been designed and implemented to prevent
the UAV from crashing when visual odometry fails and flying inside an Opti-
Track area. Experiments show a good accuracy and drifts up to 15 cm/min.
During the flight also a map of the environment can be created.

6.2 Recommendations

6.2.1 Robust pose from vision

A problem encountered in this project is that when visual odometry is lost
once an error is introduced between the estimated pose and the actual pose.
This has been tried to solve by adding a bias to the VO pose which should
align both frames. Better would be to make a tightly-coupled sensor fusion
which fuses visual odometry with IMU. This will make the pose estimation
more robust. Time delay compensation and roll and pitch drift compensation
should be included in the new sensor fusion.

40

6.2.2 Motor vibrations

The effect of motor vibrations on the IMU measurements has to be reduced.
This should be done preferably mechanically. Using proper damping between
the motors and the VI-sensor can reduce the damping. This has to be investi-
gated more. Another mechanical solution is aligning the motors to reduce the
eccentricity. The effect of vibrations can also be reduced in the software by
implementing a low-pass filter on the IMU measurements.

6.2.3 Frame transformation estimation

Using incorrect frame transformations between the Pixhawk and the external
pose sensor leads to additional errors in the localization. These frames have to
be estimated more accurately. The sensor fusion algorithm of Weiss described
in this project can likely be used to estimate these frame transformations.

6.2.4 Cascaded sensor fusion

When the ESEKF provides accurate enough pose estimations to be used in
flight the system consists of two sensor fusion algorithms: the ESEKF and the
onboard pose estimation. It should be investigated how much benefit is gained
from using only VO and onboard pose estimation to using ESEKF and onboard
pose estimation.

6.2.5 Outdoor testing

The setup has been designed for outdoor operation but it has never been tested
outdoor. This should be done to verify that the setup can be used outdoor.

6.2.6 Additional sensors

More sensors should be added to reduce the dependency on the visual odometry
pose. When VO is lost this shouldn’t lead to uncontrollability of the UAV. For
example including GPS would still provide pose estimation when VO is lost even
if this GPS pose is less accurate. It should be considered however that extra
sensors will add extra mass to the UAV.

6.2.7 SLAM

The VO pose estimation is subject to drift. Implementing a visual SLAM (Si-
multaneous Localization And Mapping) algorithm would eliminate the drift in
the pose estimation. Next to a more accurate pose estimation elimination of
the drift will also result in more accurate maps. A visual SLAM algorithm
however is more computational intensive than VO. If VO and visual SLAM are
used next to each other then VO can provide real-time pose estimation and the
visual SLAM can correct for the drift of the VO. Then it is not necessary that
the visual SLAM algorithm runs in real-time.

41

6.2.8 Multi sensor fusion

In this project the single sensor fusion (SSF) framework has been used. From
the same authors and with the same principle also exists the multi sensor fusion
(MSF) framework. This allows to fuse more than one sensor with the IMU
measurements. Also when only one sensor is used next to the IMU it is good
to use the MSF since it seems that this framework is maintained.

6.2.9 Point cloud generation

The map is built using point clouds generated by Stereo Block Matching. As
shown in the discussion better point cloud generation techniques exist. Imple-
menting these newer techniques would increase the accuracy of the generated
point cloud and therefore also the accuracy of the created map.

6.2.10 VIKI integration

VIKI is a ROS GUI currently developed within the AEROWORKS group. Its
goal is to make it easier for the user to use ROS packages and connecting different
packages into one system. This requires a modular design of the system. The
current implementation of this project has to be made more modular. The fail-
safe, control and GUI are now integrated in one module while it would be better
to separate these modules. Then the modules have to be integrated in the VIKI
framework.

6.2.11 Haptic interface

Currently the UAV is operated by moving sliders in a GUI on a computer screen.
A haptic interface provides a more natural way of controlling the UAV. Also
information from the environment can be def to the pilot as a haptic feedback.

42

Appendix A

Observation matrix of
ESEKF

This appendix describes how to derive the observation matrix used in the ES-
EKF. The observation matrix H relates the measurement function z̃ to the error
state used in the ESEKF x̃ as

z̃ = Hx̃ (A.1)

A.1 Position

For the position measurement part the following measurement function is used:

hp(x̃) = z̃p = Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂ (A.2)

To obtain the observation matrix, this function has to be linearized around
the estimated state:

Hp =
∂hp(x̃)

∂x̃
|x=x̂ (A.3)

This equation can be solved for every state apart and then be concatenated
at the end. Let’s start with solving it for p̃wi . First we fill in the equation:

∂hp(x̃)

∂p̃wi
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂p̃wi
|x=x̂ (A.4)

We want to find the derivative with respect to p̃wi . It can be seen that pwi
can be rewritten as pwi = p̃wi + p̂wi . This will result in the following equation:

∂hp(x̃)

∂p̃wi
|x=x̂ =

∂(Rvw((p̃wi + p̂wi) +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂p̃wi
|x=x̂

(A.5)
The next step is to evaluate the equation at x = x̂. This will result that

all the variables referring to the real values (without a hat) can be substituted
with variables referring to the estimate (with a hat).

43

∂hp(x̃)

∂p̃wi
|x=x̂ =

∂(R̂vw((p̃wi + p̂wi) + R̂wi p̂
i
c)λ̂+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂p̃wi
(A.6)

Analysing this equation shows that a lot of variables are cancelled out. Re-
moving this variables will result in:

∂hp(x̃)

∂p̃wi
|x=x̂ =

∂(R̂vwp̃
w
i λ̂+ np)

∂p̃wi
(A.7)

Since λ̂ is a scalar it is easy to solve the equation now resulting in

∂hp(x̃)

∂p̃wi
|x=x̂ = R̂vwλ̂ (A.8)

The same procedure can be repeated for the other states. For calculating
∂h(x̃)
∂ṽwi
|x=x̂ it is easy to see that

∂hp(x̃)

∂ṽwi
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂ṽwi
|x=x̂ (A.9)

= 03x3 (A.10)

For determining the derivative with respect to δθwi the derivation is slightly
different. We first start with writing down the equation

∂hp(x̃)

∂δθwi
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂δθwi
|x=x̂ (A.11)

Now we want to substitute Rwi with a term containing the estimate R̂wi and
the error δθwi . This relation can be derived from the definition of the error
quaternion.

qwi = q̂wi ⊗ δqwi (A.12)

Rwi = Rw
î
Rîi (A.13)

= R̂wi (I3 + bδθwi ×c) (A.14)

This relation can now be used to substitute Rwi .

∂hp(x̃)

∂δθwi
|x=x̂ =

∂(Rvw(pwi + R̂wi (I3 + bδθwi ×c)pic)λ+ np − R̂vw(p̂wi + R̂wi p̂
i
c)λ̂)

∂δθwi
|x=x̂

(A.15)
From here the same procedure is used by evaluating the equation at x = x̂

and cancelling out terms which are the same.

44

∂hp(x̃)

∂δθwi
|x=x̂ =

∂(R̂vw(p̂wi + R̂wi (I3 + bδθwi ×c)p̂ic)λ̂+ np − R̂vw(p̂wi + R̂wi p̂
i
c)λ̂)

∂δθwi
(A.16)

=
∂(R̂vwR̂

w
i bδθwi ×cp̂icλ̂+ np)

∂δθwi
(A.17)

The final step is to rewrite the equation such that δθwi is moved to the end
of the equation. This can be done by using the relation

A×B = −B ×A (A.18)

When this is applied on the equation this would make

bδθwi ×cp̂ic = −bp̂ic×cδθwi (A.19)

This will continue the derivation with

∂hp(x̃)

∂δθwi
|x=x̂ =

∂(R̂vwR̂
w
i bδθwi ×cp̂icλ̂+ np)

∂δθwi
(A.20)

=
∂(−R̂vwR̂wi bp̂ic×cδθwi λ̂+ np)

∂δθwi
(A.21)

= −R̂vwR̂wi bp̂ic×cλ̂ (A.22)

The derivation of the other states is similar to the derivations described
above. The derivations are listed below.

The derivative with respect to b̃ω:

∂hp(x̃)

∂b̃ω
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂b̃ω
|x=x̂

= 03x3

The derivative with respect to b̃a:

∂hp(x̃)

∂b̃a
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂b̃a
|x=x̂

= 03x3

The derivative with respect to λ̃:

45

∂hp(x̃)

∂λ̃
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂λ̃
|x=x̂

=
∂(Rvw(pwi +Rwi p

i
c)(λ̃+ λ̂) + np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂λ̃
|x=x̂

=
∂(R̂vw(p̂wi + R̂wi p̂

i
c)(λ̃+ λ̂) + np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂λ̃

=
∂(R̂vw(p̂wi + R̂wi p̂

i
c)λ̃+ np

∂λ̃

= R̂vw(p̂wi + R̂wi p̂
i
c)

The derivative with respect to δθvw:

∂hp(x̃)

∂δθvw
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂δθvw
|x=x̂

=
∂(R̂vw(I3 + bδθvw×c)(pwi +Rwi p

i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂δθvw
|x=x̂

=
∂(R̂vw(I3 + bδθvw×c)(p̂wi + R̂wi p̂

i
c)λ̂+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂δθvw

=
∂(R̂vwbδθvw×c(p̂wi + R̂wi p̂

i
c)λ̂+ np)

∂δθvw

=
∂(−R̂vwb(p̂wi + R̂wi p̂

i
c)λ̂×cδθvw + np)

∂δθvw

= −R̂vwb(p̂wi + R̂wi p̂
i
c)λ̂×c

The derivative with respect to δθic:

∂hp(x̃)

∂δθic
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂δθic
|x=x̂

= 03x3

The derivative with respect to p̃ic:

∂hp(x̃)

∂p̃ic
|x=x̂ =

∂(Rvw(pwi +Rwi p
i
c)λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂p̃ic
|x=x̂

=
∂(Rvw(pwi +Rwi (p̃ic + p̂ic))λ+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂p̃ic
|x=x̂

=
∂(R̂vw(p̂wi + R̂wi (p̃ic + p̂ic))λ̂+ np − R̂vw(p̂wi + R̂wi p̂

i
c)λ̂)

∂p̃ic

=
∂(R̂vw(p̂wi + R̂wi p̃

i
c)λ̂+ np)

∂p̃ic

= R̂vwR̂
w
i λ̂

46

This will result in the following observation matrix:

Hp =

R̂vwλ̂
03x3

−R̂vwR̂wi bp̂ic×cλ̂
03x3

03x3

R̂vw(p̂wi + R̂wi p̂
i
c)

−R̂vwb(p̂wi + R̂wi p̂
i
c)λ̂×c

03x3

R̂vwR̂
w
i λ̂

(A.23)

A.2 Attitude

For the position measurement part the following measurement function is used:

hq(x̃) = z̃q = (q̂vc)−1 ⊗ qvc = (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ (q̂vw)−1 ⊗ qvw ⊗ qwi ⊗ qic (A.24)

To obtain the observation matrix, this function has to be linearized around
the estimated state:

Hq =
∂hq(x̃)

∂x̃
|x=x̂ (A.25)

This derivation can also be split up in three parts containing. The first part
is the derivative with respect to δθic. The derivative is calculated at x = x̂ so
every quaternion except qic can be substituted by its estimated variant:

hq(x̃) = (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ (q̂vw)−1 ⊗ q̂vw ⊗ q̂wi ⊗ qic (A.26)

The equation q̂−1⊗ q̂ results in the unit quaternion and can then be removed
from the equation. This results in the following equation:

hq(x̃) = (q̂ic)
−1 ⊗ qic (A.27)

This equation can be recognized as the definition of the error quaternion so
it can also be written as

hq(x̃) = δqic (A.28)

The error quaternion can also be written as its small angle approximation:

hq(x̃) =

[
1

1
2δθ

i
c

]
(A.29)

When we now look at the derivative
∂hq(x̃)
∂δθic

it can be solved as

∂hq(x̃)

∂δθic
=

1

2
I3 (A.30)

For δθwi the measurement function reduces to:

47

hq(x̃) = (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ (q̂vw)−1 ⊗ q̂vw ⊗ qwi ⊗ q̂ic

= (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ qwi ⊗ q̂ic

= (q̂ic)
−1 ⊗ δqwi ⊗ q̂ic

Now we need the following quaternion property:

q ⊗
[

0
x

]
⊗ q−1 =

[
0
Rx

]
(A.31)

where q and R describe the same rotation.
Now the equation can be rewritten as

hq(x̃) =

[
1 0
0 Rci

]
δqwi

=

[
1 0
0 Rci

] [
1

1
2δθ

w
i

]
The partial derivative can now be solved:

∂h(x̃)

∂δθwi
=
∂(Rci

1
2δθ

w
i)

∂δθwi

=
1

2
Rci

And last for δθvw the same procedure can be followed to find the solution:

h(x̃) = (q̂vc)−1 ⊗ qvc = (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ (q̂vw)−1 ⊗ qvw ⊗ q̂wi ⊗ q̂ic

= (q̂ic)
−1 ⊗ (q̂wi)−1 ⊗ δθvw ⊗ q̂wi ⊗ q̂ic

=

[
1 0
0 Rci

] [
1 0
0 Riw

]
δqvw

=

[
1 0
0 Rci

] [
1 0
0 Riw

] [
1

1
2δθ

v
w

]
∂h(x̃)

∂δθvw
=
∂(RciR

i
w

1
2δθ

v
w)

∂δθvw

=
1

2
RciR

i
w

This makes the full observation matrix

Hq =

03x3

03x3
1
2R

c
i

03x3

03x3

0
1
2R

c
iR

i
w

1
2I3

03x3

(A.32)

48

Appendix B

Physical design

The hexacopter was already assembled and available. A few mounts have been
made for the Pixhawk, VI-sensor and Intel NUC.

B.1 Mount of VI-sensor and NUC

Mounting the VI-sensor and the Intel NUC required some more effort. The first
designs which were made were passing too much vibrations of the motors to
the IMU of the VI-sensor. A few iterations have been made to end up with the
design presented in figure B.1.

Figure B.1: Mount for VI-sensor and Intel NUC

49

On the left side of the image the VI-sensor can be recognized and on the
right side the Intel NUC can be recognized. The VI-sensor is put at the front
of the UAV. The mount is connected to the UAV with the four blue dampers.
These dampers reduce the vibrations of the motors on the mount.

B.2 Electronics

A few components on the UAV need to be powered. That is the Pixhawk, the
VI-sensor, the Intel NUC and the motors. The Pixhawk came with its own
power module which ensured correct powering of the Pixhawk. The following
table lists the voltage specifications of the different components.

Component Voltage
VI-sensor 10-13 V
Intel NUC 12-19 V
Motors 6-16.8 V

The system is powered by a LiPo battery. The LiPo battery is a series of
LiPo cells which determine the voltage. The following table lists the voltage
provided by different LiPo batteries.

Number of cells Minimum voltage Maximum voltage
1S 3.2 4.2
2S 6.4 8.4
3S 9.6 12.6
4S 12.8 16.8
5S 16 21

It can be seen that the Intel NUC requires a 4S battery, the motors can
operate with a 2S, 3S or 4S battery. The VI-sensor requires a 3S battery. A 4S
battery is chosen as power source. A voltage regulator is used to provide the
correct voltage for the VI-sensor. The circuit of the voltage divider can be seen
in figure B.2.

Figure B.2: Voltage regulator

The LT1085CT-12 is a 12V 5A voltage regulator which is commercially avail-
able. Two capacitors had to be added according to the datasheet.

50

Appendix C

Software setup

This appendix will elaborate the implementation of the software structure. A
block diagram of the software setup is given in figure C.1. Different colors are
used to distinguish the different elements of the software. The blue color rep-
resents the visual odometry. The red color represents the mapping. The green
color represents the sensor fusion. The purple color represents the Pixhawk
pose estimation. The yellow color represents the control algorithms and the
grey color represents OptiTrack. How this software structure is implemented
in ROS is given in figure C.2. The ellipses represent nodes and the rectangles
represent topics. In the rest of this appendix every ROS node will be explained.

C.1 vi sensor node

The package vi_sensor_node interfaces with the VI-sensor. It will publish the
camera streams of both the cameras on the topics cam0/image_raw and cam1/

image_raw. It also provides a camera info message which contains intrinsic and
extrinsic parameters of the cameras1. These messages are published together
with every camera image.

Next to two cameras, the VI-sensor also has an IMU. The values of the IMU
are published on the topic imu0. The relation between the IMU and the two
cameras can be found in the topic cam0/calibration and cam1/calibration.

Sometimes it can happen that the sensor is connected to the PC and you can
ping the sensor(10.0.0.1) but autodiscovery can’t find the sensor. It is possible
that the embedded software got locked due to unstable power at boot-up. The
symptom would be that the FPGA LEDs continue to blink alternating while
booting instead of having only one blinking LED when the sensor is ready. This
can be solved by doing the following steps:

ssh root@10.0.0.1
mount -o remount,rw /
rm fpga/FPGA_BITSTREAM_BROKEN
reboot && exit

1Message definition can be found at http://docs.ros.org/indigo/api/sensor_
msgs/html/msg/CameraInfo.html

51

http://docs.ros.org/indigo/api/sensor_msgs/html/msg/CameraInfo.html
http://docs.ros.org/indigo/api/sensor_msgs/html/msg/CameraInfo.html

Figure C.1: Software setup

For other issues refer to https://github.com/ethz-asl/visensor_node/
wiki/FAQ.

C.2 stereo image proc

The package stereo_image_proc performs image rectification of the stereo im-
ages and calculates the disparity between both image streams. For image rectifi-
cation it needs the raw image streams and the intrinsic and extrinsic parameters
located in the camera info message. The rectified images are published on left

/image_rect and right/image_rect. For calculating the disparity the node uses
OpenCV’s block matching algorithm. The node will also generate a point cloud
which can be used to create a map.

52

https://github.com/ethz-asl/visensor_node/wiki/FAQ
https://github.com/ethz-asl/visensor_node/wiki/FAQ

Figure C.2: Software setup

C.3 fovis ros

The package fovis_ros is the ROS implementation of the FOVIS algorithm. It
requires the rectified stereo images and the camera info message to calculate
the visual odometry. It will publish the odometry on the topic fovis/odometry.
The pose is published on fovis/pose.

C.4 ethzasl sensor fusion

The package ethzasl_sensor_fusion fuses the visual odometry pose with the
IMU values. The output of this sensor fusion is a pose which is published on
ssf_core/pose.

53

The package is divided in two main parts: ssf_core and ssf_updates. The
core of the EKF is meant to be unchanged. The updates part is where the
sensor specific files are located. Inside the src folder of the package three
files have to be created: vi_sensor_measurements.h, vi_sensor_sensor.cpp and
vi_sensor_sensor.h.

The file vi_sensor_measurements.h provides the initialization of the EKF. The
files vi_sensor_sensor.cpp and vi_sensor_sensor.h implement the measure-
ment callback. Inside this function the H-matrix, measurement residual and
measurement noise covariance matrix are determined and used to process the
measurement such that the core can correct the state vector using this measure-
ment.

A configuration file is used which contains information about the setup. This
file vi_sensor_fix.yaml contains the noise parameters of the IMU, the trans-
formation between camera and IMU, the initial orientation of the vision frame
with respect to the world frame.

The scale of a stereo camera is always 1 so the scale is initialized on 1 and
kept fixed. The bias has to be estimated by the filter so is not fixed. The IMU-
camera calibration is known and is therefor fixed. Here the noise of the IMU
can be provided for the sensor fusion. The following noise values are used:

noise_acc: 0.022563
noise_accbias: 0.00008
noise_gyro: 0.004
noise_gyrobias: 0.000003

The noise on the scale, qvw, qic and pic are all zero. The delay of the mea-
surement is also set to zero. The measurement noise is given as the standard
deviation. The measurement noise of the position is set at σp = 0.01 m. The
measurement noise of the orientation is set at σθ = 0.02 rad.

The IMU-camera calibration can be obtained from the cam0/calibration topic.
The initialization the orientation of the world frame in the vision frame is

qvw =
[
0 0

√
2

2

√
2

2

]T
.

C.5 mocap optitrack

The package mocap_optitrack publishes Optitrack data which is streamed by
Natural Point Tracking Tools on the topic aeroquad/unfiltered_pose. The file
mavros_mocap.yaml relates the ID’s of the trackables to the topics on which the
node should publish.

C.6 aeroquad control

The aeroquad_control package is the offboard controller of the UAV. The con-
troller was designed for AR.Drone Parrots. It has been adjusted to fly with
Pixhawk controlled UAV’s. It is a PD controller where the reference position

54

can be set through a graphical user interface. This reference position is com-
pared with the local position which is obtained from the Pixhawk. The control
output is a velocity command which is sent to the Pixhawk.

C.7 mavros

The package mavros creates a bridge between ROS and the Mavlink protocol.
The package consists of multiple plugins which converts ROS topics into Mavlink
messages and vice versa. For example to send the optitrack pose to the Pix-
hawk the pose can be published on the topic mavros/mocap/pose and the mavros

package will take care that the pose is streamed to the Pixhawk. The mavros

package is used to stream the velocity commands, the optitrack pose and the
vision pose from the NUC to the Pixhawk and to stream the local position of
the Pixhawk from the Pixhawk to the NUC.

C.8 octomap server

The package octomap_server is used to create a map of the environment. This
map is created in an octomap structure[4].

C.9 Pixhawk firmware

During the project a few changes have been made to the firmware. When the
firmware was downloaded the external heading in the attitude estimator was
not yet incorporated in the master version. Also there was a scaling problem
in position setpoints when flying on velocity setpoints. These issues have been
solved by the community and are now incorporated in the master version of the
Firmware. The only difference between the local version and the master version
should be the mavlink transmission rate of the local position of the UAV. This
local position is needed in the control. The original firmware transmits the local
position at 3 Hz. This is too low for control so it has been increased to 30 Hz.
It should also be possible to set the stream rate through via Mavlink. If that
is implemented would mean that our software can be operated on the original
firmware of the Pixhawk. Another point of interest is that our implementation
of the external attitude in the attitude estimator is slightly different than the
implementation in the original firmware although the functionality is the same.

55

Appendix D

Coordinate frames

For control it is very important to have every coordinate frame well defined. This
appendix will elaborate the coordinate frames which are used in the hexacopter
setup.

D.1 Frame naming

Frames are often named by using North, East, South, West, Up and Down. The
frame will be expressed using three letters which relate XYZ to three of the six
directions i.e. NED means X is pointing North, Y is pointing East and Z is
pointing Down. When a magnetometer is used in the setup the North has to
correspond to the real North of the earth. In this setup no magnetometer is
used so the North can be set arbitrarily. The ROS convention for a coordinate
frame in relation to a body is X forward, Y left and Z up or NWU[2]. The
Pixhawk coordinate convention is NED[9].

The different coordinate frames are showed in figure D.1.

56

Figure D.1: Coordinate frames

The software of OptiTrack, Natural Point Tracking Tools, uses another con-
vention in its graphical user interface. The coordinate frame is presented there
as showed in figure D.1 by Optitrack NPTT. The Optitrack ROS frame is the
frame as it is represented by the ROS mocap node. Note that on the image the
origin of Optitrack ROS and Optitrack NPTT is not drawn at the same location
but in reality the origin is in the same location. In NPTT a trackable can be
created from the Optitrack markers. The orientation of the UAV during this
initialization is defined as the unity rotation. It is necessary that this trackable
is oriented such that the X-axis of the trackable coincides with the X-axis of the
Pixhawk as shown in the image. The mavros package will convert the ROS coor-
dinate frame to the Pixhawk coordinate frame. This is done using the function
UAS::transform_frame_enu_ned. This function will do a frame transformation
which is a 180 degrees rotation around the x-axis. The naming of this function
is not very convenient since the transformation it really does is a NWU-NED
transformation.

57

Bibliography

[1] Zheng Fang and Sebastian Scherer. Experimental study of odometry es-
timation methods using rgb-d cameras. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), September 2014.

[2] Tully Foote and Mike Purvis. Standard units of measure and coordinate
conventions. http://www.ros.org/reps/rep-0103.html, Decem-
ber 2014.

[3] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense
3d reconstruction in real-time. In IEEE Intelligent Vehicles Symposium,
Baden-Baden, Germany, June 2011.

[4] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. OctoMap: An efficient probabilistic 3D mapping frame-
work based on octrees. Autonomous Robots, 2013. Software available at
http://octomap.github.com.

[5] Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel
Maturana, Dieter Fox, and Nicholas Roy. Visual odometry and mapping for
autonomous flight using an rgb-d camera. In Int. Symposium on Robotics
Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011.

[6] Peter S. Maybeck. Stochastic models, estimation, and control, volume 141
of Mathematics in Science and Engineering. 1979.

[7] Moritz Menze and Andreas Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. http://www.cvlibs.net/datasets/kitti/eval_
scene_flow.php?benchmark=stereo.

[8] Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl, Stefan
Leutenegger, Paul T Furgale, and Roland Siegwart. A synchronized visual-
inertial sensor system with fpga pre-processing for accurate real-time slam.
In Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 431–437. IEEE, 2014.

[9] Pixhawk. Frames of reference. https://pixhawk.org/dev/
know-how/frames_of_reference.

[10] Joan Solà. Quaternion kinematics for the error-state kf. Technical
report, Institut de Robòtica i Informàtica Industrial of Technical Uni-
versity of Catalonia and Spanish Council for Scientific Research, 2015.

58

http://www.ros.org/reps/rep-0103.html
http://octomap.github.com
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://pixhawk.org/dev/know-how/frames_of_reference
https://pixhawk.org/dev/know-how/frames_of_reference

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/
notes/kinematics.pdf.

[11] Nikolas Trawny and Stergios I. Roumeliotis. Indirect Kalman filter for 3D
attitude estimation. Technical Report 2005-002, University of Minnesota,
Dept. of Comp. Sci. & Eng., March 2005.

[12] Stephan M. Weiss. Vision Based Navigation for Micro Helicopters. PhD
thesis, ETH Zrich, 2012. http://e-collection.library.ethz.ch/
eserv/eth:5889/eth-5889-02.pdf.

59

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
http://e-collection.library.ethz.ch/eserv/eth:5889/eth-5889-02.pdf
http://e-collection.library.ethz.ch/eserv/eth:5889/eth-5889-02.pdf

	Introduction
	Literature
	External motion capture system
	VI-sensor
	EuRoC
	SLAM vs VO+IMU sensor fusion
	Visual odometry
	Comparison of sensor fusion methods
	Comparison
	Remarks
	Choice of sensor fusion implementation

	Sensor fusion with VI-sensor
	Software setup
	Sensor fusion
	IMU as propagation sensor
	Coordinate frames
	Drift observability
	Kalman procedure
	Fixed and known configuration
	Lost visual odometry
	Time delay compensation

	Mapping

	Realisation
	System setup
	Control setup
	Frame transformation
	Offboard controller

	Fail-safe
	Frame alignment
	Switching procedure

	Experiments and discussion
	Evaluation of position and yaw estimation during flight
	Evaluation of sensor fusion
	Mapping
	Discussion
	Frame transformation
	Motor vibrations
	Sensor fusion
	VO-IMU coupling
	Point cloud generation
	Outdoor
	Multiple sensors

	Conclusion and recommendations
	Conclusion
	Recommendations
	Robust pose from vision
	Motor vibrations
	Frame transformation estimation
	Cascaded sensor fusion
	Outdoor testing
	Additional sensors
	SLAM
	Multi sensor fusion
	Point cloud generation
	VIKI integration
	Haptic interface

	Observation matrix of ESEKF
	Position
	Attitude

	Physical design
	Mount of VI-sensor and NUC
	Electronics

	Software setup
	vi_sensor_node
	stereo_image_proc
	fovis_ros
	ethzasl_sensor_fusion
	mocap_optitrack
	aeroquad_control
	mavros
	octomap_server
	Pixhawk firmware

	Coordinate frames
	Frame naming

