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Management summary 

The Delivery Control Tower (DCT) is a software product of Simacan that is designed for monitoring and 

communication in home delivery operations of retailers. Since the recent introduction of this product 

at a large Dutch retailer, a team of six people uses the product to monitor the home delivery operation, 

communicating with the vehicle drivers as well. Real-time vehicle positions and expected arrival times 

are calculated for all customers on delivery routes in the DCT. In case of expected lateness of delivery, 

drivers call the control room. They determine en-route rescheduling solutions to reduce the number 

of late deliveries. They use three basic strategies for rescheduling: 1) intra-route switching in the 

sequence of customers, 2) inter-route helper actions, where a helper vehicle drives towards a 

disrupted vehicle to transfer orders, or 3) accepting the lateness of delivery. They use relatively simple 

rules to determine their solutions, only utilizing moving expected late deliveries forward in the 

sequence or using empty vehicles as helper vehicles. 

The current rescheduling process is labor-intensive, and non-optimal rescheduling solutions are often 

proposed. Therefore, Simacan wishes to introduce an en-route rescheduling method that 

automatically triggers on lateness, suggesting the best rescheduling solution. They wish to implement 

this in a Decision Support System (DSS) for control room teams to receive automated suggestions for 

en-route rescheduling. Therefore, we define our research goal as follows: 

“To develop a methodology for en-route rescheduling of home deliveries” 

The subject of en-route rescheduling is scarce in literature. Few papers consider en-route rescheduling 

with time windows, and they mainly consider vehicle breakdowns and changed customer wishes as 

triggers. 

Rescheduling method 

We propose to solve en-route rescheduling problems using a Tabu Search Rescheduling (TSR) method. 

We use Tabu Search as our metaheuristic to guide our local search problems of rescheduling because 

of the quality, flexibility, and speed in finding feasible solutions. Our TSR method consists of three 

phases: triggers, selection of a relevant helper vehicles, and the rescheduling calculations. We test 

triggers on expected lateness, vehicle defects and vehicle breakdowns. When we trigger for 

rescheduling, we determine relevant vehicles we want to evaluate for helper-actions based on helper 

distance and the number of deliveries to be made by the helper. We evaluate all helper vehicles by 

insertion of the transfer location using our adapted version of the Solomon I1 insertion heuristic, where 

we include waiting times. We test 2-opt*-, or-opt- and exchange-operators for inter-route Tabu Search 

to find the best inter-route solution given a transfer location we select. Simultaneously with the 

evaluation of inter-route transfers, we use Tabu Search to find the best intra-route switching solution.  

We determine the solution quality of the initial solution, all possible helper actions and the intra-route 

switching solutions using an objective function. We select the best solution found to continue the 

routes of the en-route vehicles using a function with the total time needed for the vehicles, time 

window violation penalties, and an exponential robustness bonus function. We translate all variables 

into time to get a single result from our function that we use to select the rescheduling solution. 

Simulation model 

To test the TSR method performance, we develop a simulation model. This model aims to find good 

TSR method settings, while showing the potential savings of our method as well. We run the simulation 

model on two weeks of planning instances of the case study retailer, which include morning (PO) and 

afternoon (PA) shifts. We verify our simulation model, and we find that we overestimate the number 
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of late deliveries. We conclude that we model reality close enough to make a fair comparison between 

experimental settings. The total time fits the real situation well and the numbers of late deliveries are 

comparable to the real situation. The model enables us to show the results of our TSR method well, 

but the precise benefits of the method might differ slightly when actually implemented in the DCT. 

Results 

Our TSR method is able to reduce the number of late deliveries with 63% for new customers and 24% 

for recurring customers in our simulation model. No more manual work by the control room is involved 

because we automatically trigger and calculate rescheduling solutions that can be implemented in a 

decision support system. We find that the TSR method works best with TSR triggers (without 

robustness trigger), a linear penalty function for time window violations, an exponential bonus 

function for more robust solutions, customer distinction between recurring and new customers, and 

the use of only or-opt-operators in our method. Figure 1 shows the simulation results over all shifts in 

the simulation data, where we are able to reduce the late deliveries for all shifts in the test set.  

In additional analyses, we show that that on time departure can reduce the number and severity of 

late deliveries. We show that the effect of knowledge on future travel times is large, meaning that a 

good travel time prediction is key in en-route rescheduling. Finally, we find that our reduction of late 

deliveries is mostly caused by intra-route switching. 

 

Figure 1: total number of late deliveries (sum of new and recurring customers) for every day in the simulation comparing the 
current method and the best experimental settings for the TSR method. 

Recommendations 

We recommend the implementation of the TSR method as a DSS in the DCT. We prove the 

effectiveness of the TSR method in our simulation and find good settings for implementation. As a first 

version, Simacan can consider to only implement the intra-route switching part of our TSR algorithm. 

This can ensure a large decrease in late deliveries already, while being easier to implement in a live 

software product. The inter-route transfers are mostly lucrative and relevant in extreme cases. 

Eventually it is interesting to automatically support decision making for transfers as well. 

The TSR method is suitable for more general application, so it can be used for en-route rescheduling 

problems with time windows in general. Although the algorithm is demonstrated on a retail home 

delivery case, more general applications can be found in other sectors such as parcel delivery services.  
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1 INTRODUCTION 

This document contains the master thesis of Peter Bijl. The subject of the thesis is en-route 

rescheduling of home deliveries. We develop a method and test it on a case study of a home delivery 

operation of a large retail organization in the Netherlands. 

Section 1.1 introduces Simacan B.V. (initiator of the research project) and background information on 

the research problem. The motivation of the project is further described in Section 1.2, focusing on the 

added value of our research from a literature point of view. We describe the research goal, research 

questions and research scope subsequently in Section 1.3, Section 1.4 and Section 1.5. Finally, we set 

out the research approach we use to achieve our research goal in Section 1.6.  

1.1 CONTEXT 
This master thesis is written in cooperation with Simacan B.V., a company in software products and 

that integrates real-time traffic information in primary business processes of other companies. They 

specialize in making geospatial data accessible and useful for both the traffic and the logistics sector. 

An important product of Simacan is a home delivery specific product called the Delivery Control Tower 

(DCT). The Delivery Control Tower (DCT) is a product of Simacan that provides overview and control in 

home delivery operations. 

The DCT calculates Estimated Times of Arrival (ETA’s) for all vehicles in the home delivery operations 

for all positions that they communicate to the DCT (generally one update per minute). The monitoring 

process in the DCT uses real-time insight in vehicle positions and traffic information. The traffic 

information is based on TomTom traffic data. Simacan uses an arrival time prediction framework in 

the Delivery Control Tower for ETA calculation in multi-stop delivery routes. Stops are made for all 

customers in the case of home deliveries. The Simacan ETA framework in the DCT contains the 

following modules: 

 Next-Stop (NS) travel time module: predicts the driving time of a vehicle towards the next 

three stops of a trip. This part of the ETA prediction is based on instantaneous travel times1 

using real-time travel time information of TomTom. 

 Service time module: predicts the service time needed for a stop. This is based on the planned 

service time that is determined by the retailer with the home delivery service.  

 Between-Future-Stops (BFS) travel time module: predicts the driving time between stops that 

are both after the next three stops in the delivery trip. This part of the ETA prediction is based 

on a trajectory travel time2 method. 

 Break prediction module: predicts the moment that a vehicle driver will take a break. Time and 

duration of breaks are based on the retailer specific driving time rules. Planned breaks are used 

as predicted breaks in the current implementation within the DCT. 

                                                           
1 Instantaneous travel times: The instantaneous travel time is defined as the travel time of a hypothetical vehicle 
traveling through the considered section at a speed profile identical to that of the present local speeds at all road 
segments (Treiber & Kesting, 2013). 
2 Trajectory travel times: determining a route travel time by using expected travel times for all road segments on 
the route that are based on road-segment-, day-of-the-week-, 5-minute-specific profiles of TomTom. The 
expected start time for a road segment is based on the expected time needed for all previous road segments on 
the route. 
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The case study used in this research is the home delivery operation of a large Dutch retailer. The 

retailer makes about 7,000 home deliveries on a daily basis. They do this with over 250 vehicles and 

two daily delivery shifts; morning (PO) and afternoon (PA). Throughout the Netherlands, they use 14 

different distribution locations where vehicles depart. All trips made by the vehicles are monitored and 

controlled by a control room team. The use the DCT monitoring for this. Six people work during both 

shifts to supervise the home delivery operation. 

Figure 2 displays an overview in the DCT that is used for monitoring by the control room team. The 

screenshot shown is of deliveries in region Utrecht. The following information is shown in this figure: 

1. Current vehicle positions; 

2. Name of the trip made by one of the vehicles; 

3. Name of the distribution location where the vehicle starts its trip; 

4. Current deviation of a trip compared to the planned arrival times; 

5. Summary of current deviations of the selection (based on e.g., location, trip name) that are (or 

will be) late as fraction of the total number of customers in the selection. 

 

Figure 2: screenshot of an overview of vehicles driving in region Utrecht within the DCT. 

When a customer places an order for home delivery, they select a time window for their order. This 

time window can range from one to six hours, where more narrow time windows often correspond to 

higher delivery cost. The retailer aims to deliver all products within the specified time windows to keep 

the service quality as high as possible. To do this, they sometimes use rescheduling of vehicles when 

problems occur. Rescheduling means that they alter an original plan to be able to make more deliveries 

in time. The rescheduling is en-route when all vehicles involved are already driving their delivery 

routes. 

Both the control room team and the vehicle drivers observe possible problems regarding late 

deliveries. The control room team and the vehicle driver call each other and the control room team 

determines solutions. The control room team has the following options for rescheduling to solve 

expected late deliveries: 

1. Switch: several customers receive products from one vehicle, and the sequence of these 

customers is planned beforehand. It is possible to deliver the customers in a different 

sequence when the time windows allow this. Additional distance might be travelled by the 
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vehicle, but this is accepted when the switch ensures that all deliveries are within the customer 

time windows. 

2. Transfer: when a rescheduling involves one vehicle helping another by taking over some 

customers in order to be in time, this involves a transfer of the ordered goods. In this case, one 

of the vehicles is ‘disrupted’, and the other vehicle is a ‘helper’. The control room team 

determines the customer orders to be transferred and a meeting location. Although the 

control room team is allowed to make transfers between two full vehicles, generally only 

transfers are made with on empty vehicle to minimize the risk of lateness later in the trip. 

3. Accept & inform: when no possibility to ensure on-time delivery is found by the control room 

team, the customer service department of the retailer is informed. The customer service 

informs the customer about the lateness of the delivery. 

When making rescheduling decisions, trip- and customer specific information is used. The trip specific 

information can be shown using the little arrow as displayed in Figure 2. Figure 3 shows an example of 

this information. The trip, with all customers that have to be visited, is displayed on the map. The 

following information is available in the list: 

1. The planned start and end of the service time at a customer; 

2. The realized start and end of the service time at a customer: a green edge means that the 

delivery was in time, a red edge means that the delivery was more than 20 minutes later than 

planned, and a red rectangle means a delivery outside the time window; 

3. A timeline of the delivery: the blue part is the time window of the customer, the black part is 

the planned service time, the green/red triangle shows a realized time, and the grey rectangle 

shows the current time; 

4. The number of goods in the customer order; 

5. Expected deviation of arrival time from the planned arrival time based on current lateness and 

ETA-information. 

 

Figure 3: screenshot that shows trip-specific information within the DCT. 

When asked to give an estimation on the number of rescheduling operations, the Dutch retailer from 

our case study stated that about ten percent of all trips are rescheduled. Most of these rescheduling 

operations only involve the switching of customers within a trip.  
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The current rescheduling leaves much room for human errors. The control room team is busy and has 

to determine good solutions within seconds. Simacan wishes to research an additional feature that can 

be part of the DCT. They want to introduce a Decision Support System (DSS) for the en-route 

rescheduling as described based on the current traffic situation on the road, specifically for home 

delivery operations. The retailer of our case study has a strong focus on service quality. The DSS should 

enable the control room team to make better en-route rescheduling decisions for home deliveries. 

Furthermore, the rescheduling solution should be robust for further changes, meaning that 

rescheduling does not occur too often or too easily. 

We design an algorithm to be used in the DSS for en-route rescheduling of home deliveries in this 

study. Because are not able to test the rescheduling of home deliveries in real-life because of cost, 

time and control on the operations, we set up a simulation that enables us to predict system 

performance and the effects of our method on system performance. 

1.2 MOTIVATION 
As mentioned, the current rescheduling process by control room employees leaves room for human 

errors, while being labor-intensive at the same time. The people that determine the en-route 

rescheduling are busy and they have to determine good solutions within seconds. The practical 

motivation of our study comes from this point of view, helping control rooms to make better en-route 

rescheduling decisions. 

For the motivation from literature, we first need to mention that home deliveries are planned on 

expected travel times between different customer pairs without any knowledge of the actual traffic 

situation at the time of travel. Expected service times for all customers are planned based on customer 

characteristics. The planning of vehicle routes before departure of the vehicles is a well-known NP-

hard combinatorial optimization problem (Vehicle Routing Problem or VRP) that has received 

considerable attention in the scientific community. 

We define routes and paths here because this study is influenced by both vehicle routing research and 

traffic engineering research. Different definitions for ‘routes’ are used in both research areas, ensuring 

possible confusion when using this term.  We use routes in the vehicle routing research meaning, so 

this is defined as a sequence of stops for a vehicle. A path is defined as a list of road segments that is 

used to drive from one stop to another, so the actual path used by the vehicle to drive from point A to 

point B. 

During the execution of the planned home deliveries, unexpected events can occur, causing travel 

times or service times to be either shorter or longer. In case of unexpected delays in the delivery 

process, conditions that are set by the home delivery company might no longer apply for the given 

operation. Examples of unexpected events in a home delivery process are: severe traffic conditions, 

accidents on the road, and the breakdown of vehicles. The events can ensure the need for deviation 

from the original schedule. A problem that consists of defining a new schedule for a set of en-route 

trips emerges. This problem is often referred to as the Vehicle ReScheduling Problem (VRSP). Other 

names for similar problems might be found in literature as well. The VRSP is essentially a class of VRP 

problems where extra constraints apply. 

VRSP research is scarce in literature (Visentini, Borenstein, Li, & Mirchandani, 2014), but some 

examples are known. Li, Mirchandani, and Borenstein (2007) approach the VRSP as a dynamic version 

of the classic VRP. VRSP research has often focused on disruptions based on vehicle breakdowns (Li, 

Borenstein, & Mirchandani, 2007; Li, Mirchandani, et al., 2007; Li, Mirchandani, & Borenstein, 2009). 

The main objective of the VRSP is to minimize the involved operation and delay costs, under the 
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condition that uncompleted trips, including the disrupted one, must be finished (Li, Borenstein, et al., 

2007; Spliet, Gabor, & Dekker, 2014). Ferrucci and Bock (2014) researched a very similar case to our 

research problem under the name of the Dynamic Pickup and Delivery Problem with Real-Time Control 

(DPDPRC). They consider minimizing lateness as the primary objective, and minimizing vehicle 

operating cost as a secondary objective. They consider dynamic events (e.g., traffic congestion) and 

orders that arrive dynamically over time. Because pick-up is also part of their problem, transfers 

between vehicles are prohibited in their methodology (except in case of vehicle breakdowns). 

The future work on the dynamic problems mentioned by Ferrucci and Bock (2014) is, among others, to 

reduce vulnerability of a plan caused by unexpected dynamic events. Methods for improving the 

robustness of generated plans should be explored and integrated. They also state that interesting 

possibilities can be found in the anticipation of traffic congestion and time-dependent differences in 

travel times. The review work on the VRSP by Visentini et al. (2014) states that disruptions and real-

time recovery for buses and trucks are topics that need to be further explored. They state that 

robustness in rescheduling is interesting to introduce when evaluating rescheduling options. 

This research project distinguishes itself from other research by using a combination of triggers (the 

moments when rescheduling is suggested), transfers of goods between vehicles, and an en-route 

rescheduling method that reschedules home deliveries with time windows. In this context, we also 

introduce robustness in an objective function for the rescheduling in order to get more future-

problem-proof new plans. The development of a fast heuristic solution approach for an en-route 

vehicle routing problem in our research project is an important contribution to the practice of 

rescheduling within the DCT, and a scarce subject within literature. The wish of Simacan to set up a 

general solution approach for the problem ensures that the methods developed here will be used by 

multiple home delivery operations or postal services in the future, adding even more practical value 

to our research project. 

1.3 RESEARCH GOAL 
The aim of this research project is to achieve the following research goal: 

“To develop a methodology for en-route rescheduling of home deliveries.” 

1.4 RESEARCH QUESTIONS 
The following research questions will be answered in the research process to finally achieve the 

research goal:  

1) What is the current state of research on en-route rescheduling related subjects? 

2) What is the current rescheduling process in the home delivery case study? 

3) How can we ensure robust en-route rescheduling of home deliveries? 

3.1) When is it necessary to reschedule home delivery routes and what are relevant triggers to 

signal this? 

3.2) How can we determine selection of a search space in the en-route rescheduling process? 

3.3) What is a good method to reschedule customers within and between en-route vehicles? 

4) How can we test rescheduling performance of the developed algorithm? 

5) What performance can we expect from the methods developed in 3)? 

5.1) What are good settings for our rescheduling algorithm? 

5.2) Which managerial insights can be obtained regarding the en-route rescheduling algorithm? 
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1.5 RESEARCH SCOPE 
This section specifies the scope of our research project. The moment of re-optimization takes place 

when all vehicles are loaded and driving towards their customers. This is of big influence on constraints 

and possible operational decisions. 

The geographic scope of our research project is the Netherlands. Algorithms can also be applied in 

other countries, but our case study is limited to a home delivery operation that does home deliveries 

within the Netherlands. A set of data is available for the period September 7th to October 11th. This will 

ensure that the research project includes five weeks of both morning and afternoon shifts. More data 

cannot be collected since the operation has not been completely monitored before September 7th. End 

date is set so October 11th because of the total project lead time and data privacy issues of the retailer. 

In this research project, no complete information about the real-time actions and results of 

rescheduling by the control room team is available. Since it is important to know the benefits of our 

algorithm, benchmark data will be based on a simple heuristic that follows from decision rules used by 

the control room team. Note that team members sometimes also use other knowledge or rules, but 

that it is impossible to include all human behavior in a simple benchmark policy. 

1.6 RESEARCH APPROACH 
This section introduces the research approach that will be used to achieve the research goal described 

in Section 1.3. Figure 4 displays the research approach we use in this study. The first part of the project 

introduces the research project in general.  

Chapter 2 describes the existing literature on vehicle routing problems and vehicle rescheduling 

problems. We end this chapter with a research gap that we find from the literature study. Chapter 3 

describes the process & data analyses of our case study. Chapter 4 defines the algorithms we develop 

to solve the problem of en-route rescheduling. Chapter 5 describes the simulation setup we use for 

evaluation of our algorithms. Chapter 6 presents the results of the rescheduling method in the 

simulation setup. We end Chapter 3 to Chapter 6 with a chapter conclusion that we do not show in the 

research approach. Chapter 7 shows the conclusions & discussion that follow from our study. 
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Figure 4: Research approach for IEM master thesis project of Peter Bijl. 
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2 LITERATURE REVIEW 

This chapter reviews literature on relevant subjects for our research project. Aim of this chapter is to 

get an overview of methods for related problems to our research problem, and to find directions for 

good solution methods in our project.  

Section 2.1 presents a brief introduction on the general Vehicle Routing Problem (VRP) and its many 

variants. Section 2.2 describes the VRP with Time Windows (VRPTW), which is very relevant in context 

of our research problem because we deal with a time window problem here. Section 2.3 and Section 

2.4 describe literature on two relevant sub classes of the VRP: the Dynamic VRP (DVRP) and the Vehicle 

ReScheduling Problem (VRSP). Section 2.5 describes the availability of other research on relevant 

subjects for our research problem: triggers and transfers. Section 2.6 ends this chapter with a research 

gap and methodology conclusion from the discussed literature. 

2.1 VEHICLE ROUTING PROBLEM 
The Vehicle Routing Problem (VRP) is an optimization problem that aims to find a solution to service 

customers with a given fleet of vehicles. The objective is to find the route with minimal cost where all 

customers are served by the fleet of vehicles. Cost is generally expressed in distance or travel time. 

The VRP is an NP-hard combinatorial optimization problem that was first introduced by Dantzig and 

Ramser (1959) under the name of ‘truck dispatching problem’. The VRP holds a central place in 

distribution management and it has become one of the most widely studied problems in combinatorial 

optimization (Cordeau, Gendreau, Laporte, Potvin, & Semet, 2002). 

In VRP literature, a distinction between many different VRP variants is made. Some important variants 

of the VRP are the following: 

 Open Vehicle Routing Problem (OVRP): same as the general VRP, only difference is that 

vehicles do not have to return to the depot. 

 Capacitated Vehicle Routing Problem (CVRP): vehicles have limited capacity for the goods that 

have to be delivered. 

 Vehicle Routing Problem with Time Windows (VRPTW): all service locations have time 

windows in which the service must occur. 

 VRP with Pickup and Delivery (VRPPD): goods are picked up at specific locations, and they have 

to be delivered at other locations. This problem type is also referred to as the Pickup and 

Delivery Problem (PDP). 

 Dynamic VRP (DVRP): the customers of the VRP that require service dynamically request 

service over time, ensuring that new plans need to be made dynamically as well. 

 Vehicle ReScheduling Problem (VRSP): disruptions cause a planned schedule to be infeasible 

or too expensive. En-route modifications are made to the plan to ensure a feasible or less 

expensive plan. 

Note that many other problem types are introduced by several authors. Some are very similar or even 

identical to others, but a new names are often introduced. 

As mentioned in Chapter 1, we deal with time windows for the customers of this study. Therefore, we 

review literature on this subject first. After this, we review literature on the Dynamic Vehicle Routing 

Problem (DVRP). Next, we describe the Vehicle ReScheduling Problem (VRSP). 
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2.2 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 
VRPTW literature makes a distinction in the use of hard and soft time windows. In case of hard time 

windows, no time window violations are allowed in the planning process. Extra vehicles are used if 

necessary. In the soft time window constraints research time window violations are penalized in the 

cost function, but they are allowed if this ensures a significant cost reduction for the total planning. 

We do not distinguish the two types in this chapter because solution methods are often similar. We 

describe exact algorithms for the VRPTW first. Next, we define criteria that we use to select a method 

in our research. After this, we describe heuristics and metaheuristics often used in VRPTW literature.  

2.2.1 Exact algorithms for the VRPTW 

An overview of exact algorithms is given by Cordeau, Laporte, Savelsbergh, and Vigo (2006). The 

methods they described are explained briefly below: 

 Lagrangean relaxation: provides an approximate solution to the original problem with a 

simplification of the original problem by penalizing inequality constraints using a Lagrange 

multiplier. 

 Column generation: this algorithm generates only the variables that have the potential to 

improve the objective function. It is based on the idea that only a subset of variables need to 

be considered when solving the optimization problem. 

 Branch-and-cut: this algorithm uses a branch and bound algorithm while using cutting planes 

to tighten the linear programming relaxations. 

Because the VRPTW is a complex and NP-hard combinatorial optimization problem to solve, real-time 

optimization of problem instances of the VRPTW is difficult. Solving VRP’s exactly is time-consuming, 

even for small problem sizes (Cordeau et al., 2006). When a solution for a given situation in real-time 

is found, chances are that the situation already changed. Therefore, we focus on heuristic approaches 

in our problem instance. Heuristic approaches are more suitable in the context of our research project 

(Cordeau et al., 2002). Cordeau et al. (2002) state that heuristics for VRPTW’s can be grouped in two 

categories: classic heuristics and metaheuristics. Both types of heuristics are described subsequently 

in the following sub sections. 

2.2.2 Criteria for good VRPTW heuristics 

Perspective on good heuristics is necessary to select our rescheduling heuristic algorithms. We use the 

four attributes of good VRPTW heuristics that Cordeau et al. (2002) define to select our rescheduling 

method. Cordeau et al. (2002) distinguish the following attributes for good VRPTW heuristics: 

1. Accuracy: the degree of deviation of a heuristic solution value from the optimal value; 

2. Speed: how fast the heuristic finds its heuristic solution for the problem; 

3. Simplicity: measures how complicated or easy to understand the heuristic is; 

4. Flexibility: how flexible the heuristic is to be applied to a large number of real-life applications. 

Because we deal with real-time optimization, speed of our methods is even more important than for 

the regular VRPTW case. Exact optimization is in our case not possible due to problem size and 

available time.  

2.2.3 Classic heuristics for the VRPTW 

Classic heuristics are problem-dependent techniques that put an emphasis on quickly obtaining a 

feasible solution. A distinction within the classic heuristics can be made between construction and 

improvement heuristics. Additionally, some heuristics apply a postoptimization procedure on the 

result found. 
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2.2.3.1 Construction heuristics 

Construction heuristics are applied when building an initial route for the VRPTW. The heuristics 

generally aim at obtaining a feasible solution in as little time as possible. Examples of construction 

heuristics are: 

 Savings heuristic: the time window based saving heuristic as proposed by Solomon (1987) is 

an extension of the original savings based heuristic for VRP’s by Clarke and Wright (1964). The 

heuristic starts with a separate route of depot – customer – depot for each customer. The 

savings of insertion of customer in a route are determined by the reduced cost when a 

customer is inserted into an existing route. In addition to taking into account vehicle capacity 

constraints, we must check time window constraints for violation at every step in the heuristic 

process.  

 Nearest Neighbor (NN) heuristic: this heuristic starts every route by finding the non-routed 

customer “closest” (e.g., in distance or time) to the depot. At each iteration, the heuristic looks 

for the next customer “closest" to the last customer that was added to the route. This search 

is performed among all the customers that are feasible (on all constraints, so time windows, 

vehicle capacity, etc.) to add to the emerging route. A new route is started any time the search 

fails, unless there are no more customers to schedule (Solomon, 1987). 

 Insertion heuristics: Solomon (1987) described three types of insertion heuristics that apply 

for the VRPTW. All types start with a tour of a subset of the set of vertices, extending it with 

additional vertices. A route is first initialized with a seed customer and the remaining non-

routed customers are added into this route until it is full (looking at scheduling horizon and/or 

vehicle capacity). This is done until all customers are serviced. The seed customers are selected 

by finding either the geographically farthest non-routed customer in relation to the depot or 

the non-routed customer with the lowest starting time for service. The three types of insertion 

heuristics used are: 

o Insertion heuristic type I1 by Solomon is the most successful in evaluation (Bräysy & 

Gendreau, 2005a). This heuristic minimizes extra distance and extra time required to 

visit the customer that is evaluated for insertion. 

o The second type of insertion heuristics by Solomon I2 aims to select customers whose 

insertion costs minimize a measure of total route distance and time.  

o The third type of insertion heuristics by Solomon I3 accounts for the urgency of 

servicing a customer (Bräysy & Gendreau, 2005a). 

 Sweep heuristic: the version of this heuristic without time window constraints was first 

proposed by Gillett and Miller (1974). It starts with a ray from the depot that sweeps clockwise 

(or count-clockwise), adding customers encountered. A new route is started when the vehicle 

is full. An example of the sweep heuristic with time windows is given by Solomon (1987). The 

VRPTW is split into subsequent clustering and scheduling stages. In the first stage, the original 

sweep heuristic (without considering time windows) is applied. Next, a center of gravity is 

computed and customers are partitioned according to angle. In the second stage, customers 

assigned to a vehicle are scheduled using an insertion heuristic. 

2.2.3.2 Improvement heuristics 

Improvement heuristics start with a feasible initial solution and then try to improve this by 

modification of this solution. Improvement heuristics are very relevant for our research problem, 

because an initial solution already exists at the moment of rescheduling.  

To design an improvement heuristic, one typically needs to specify a move-generation mechanism that 

creates neighboring solutions by changing one attribute or a combination of attributes of a given 
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solution. Once a neighboring solution is identified, it is compared against the current best solution 

found. The current solution is used for further improvement (Bräysy & Gendreau, 2005a). Two types 

of moves (or improvements) apply for the VRPTW: intra-route improvements and inter-route 

improvements. Intra-route improvements are made within routes, inter-route improvements are 

made between routes.  

First, we describe the possible neighborhood structures for the VRPTW. This is the basis of all research 

on both intra-route and inter-route improvement heuristics. Next, we describe examples of 

improvement heuristics. 

Neighborhood structures 
The basis of almost all route-improving heuristics is the notion of a neighborhood: the set of solutions 

that can be generated with a single modification of the current solution (El-Sherbeny, 2010). El-

Sherbeny (2010) listed the following most used neighborhood heuristics: 

 Relocate operator: the moving of one customer from one route to another; 

 Exchange operator: the interchange of two customers; 

 k-Opt operator: the interchange of one (or more) segment(s) of a route with one (or more) 

segment(s) within one route or between two routes; 

 2-Opt* operators: a case of the k-Opt operator that only allows inter-route interchange of 2 

segments, while ensuring that no reversal of some portion of the route is realized; 

 Or-Opt operator: the moving of a chain of one, two or three consecutive customers to a 

different location in search space. This type of operator is very suitable for time window 

problems; 

 K-node interchange operator: each customer i, its successor j and the two customers closest 

to i and j on a different route are removed and the k most promising insertions of the four 

vertices are evaluated; 

 λ-interchange operator: subset of customers of size ≤ λ is exchanged with a subset of 

customers of size ≤ λ from another route; 

 Shift-sequence operator: the moving of a customer from one route to another while checking 

all possible insertion positions. If an insertion is feasible by removing another customer j, it is 

removed and inserted in another route. 

Potvin and Rousseau (1995) describe operators specifically for the VRPTW. They state that the use of 

the 2-opt* operator and the Or-opt operator in heuristics that designed for time window problems 

yield good results. Both types of operators preserve order of customers when finding new solutions in 

the search process. 

Heuristics 
Intra-route optimization is often combined with inter-route optimization for the VRPTW. For instance, 

Lin (1965) tested 2-opt and 3-opt edge exchange procedures, both for intra-route and inter-route 

exchanges. He concluded that only less than 10% of the solution improvements involve the reversal of 

the orientation of a sequence of two or more customers. Other intra-route interchange heuristic 

approaches are researched by, for example, Calvo (2000) and Ohlmann and Thomas (2007). 

Inter-route heuristics make adaptations to vehicle routes over the different routes that are already 

scheduled. In the context of improvement heuristics, we often start from a greedy or fast feasible 

solution. Changing the visits of customers can be done by the neighborhood structures as described. 

As mentioned, intra-route improvements and inter-route improvements are often combined. 
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Bräysy and Gendreau (2005a) presented a complete overview of search methods, comparing the speed 

and solution quality of the methods in six different classes. They use the original research Solomon 

(1987) for the 56 benchmark instances they use.  These specific problems have 100 customers, a 

central depot, capacity constraints, time windows on the time of delivery, and a total route time 

constraint. The benchmark instances can be classified on location clustered (C) customers, location 

random (R) customers, and location mixed random and clustered (RC) customers.  

Bräysy and Gendreau (2005a) make an additional distinction in their evaluation for short-haul (1) 

routes and long-haul (2) routes (where the short-haul routes generally require more vehicles). They 

evaluate the results on all individual benchmark instances and aggregate the results to the classes 

described to get feeling for solution quality of the algorithms in the different classes of instances. The 

best results on the benchmark instances are, in the comparison by Bräysy and Gendreau (2005a), found 

in the research of Caseau and Laburthe (1999), Schrimpf, Schneider, Stamm-Wilbrandt, and Dueck 

(2000), Cordone and Calvo (2001), and Bräysy (2002). The most of the methods use construction 

heuristics proposed by Solomon, and an improvement heuristic as described here: 

 Caseau and Laburthe (1999) use swap, relocate, and flush and relocate as in their improvement 

phase. In swap, they remove a chain of consecutive customers on a route to another. In 

relocate, they remove a vertex from one route to another. This can result in relocating a vertex 

from that route to the next. The relocate move is followed by re-optimization of each route 

concerned by the move. In their last move, flush and relocate, Caseau and Laburthe (1999) 

remove all nodes that can be directly relocated into another route from a given route, before 

trying to insert a given customer (Bräysy & Gendreau, 2005a). 

 Schrimpf et al. (2000) introduced a heuristic that the authors name ‘ruin and recreate’. Three 

strategies are used to remove a set of customers from a solution: randomly, based on the 

distance to a randomly selected key customer and a set of succeeding customers on the same 

route with the key customer. The removed customers are then reinserted in random order 

using a greedy cheapest insertion heuristic. 

 Cordone and Calvo (2001) proposed a deterministic heuristic based on classic k-opt exchanges 

combined with a procedure to reduce the number of routes. The special feature of their 

algorithm is that it alternates between minimization of total distance and of total route 

duration to escape from local minima (Bräysy & Gendreau, 2005a). 

 A heuristic, referred to as B3 by Bräysy (2002), used multiple feasible starting routes, reducing 

the number of routes using a new ejection chain-based approach that also considers 

reordering of the routes. After this, Or-opt exchanges are used to minimize total traveled 

distance. 

Some other interesting research is found in the work of Gendreau, Hertz, and Laporte (1992), who 

apply GENI and GENIUS methods. The GENI (GENeralized Insertion) method is a hybrid of tour 

construction and local search. Cities are inserted one by one and 3- and 4-Opt moves are performed 

after every insertion. The GENIUS (GENeralized Insertion Unstringing and Stringing) method  by 

Gendreau et al. (1992) starts with a GENI solution, looks for the best deletion, followed by 3- and 4-

Opt moves, and applies the GENI method to reinsert the deleted city in a route. 

2.2.3.3 Postoptimization procedures 

A postoptimization procedure is a heuristic that applies some extra simple modifications of the solution 

found to possibly minimize the cost even further. It is different from an improvement heuristic in the 

sense that it only modifies other variables than the route itself (e.g., departure time). We mention two 

examples of postoptimization procedures. 
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 Forward Time Slack was first introduced by Savelsbergh (1992). He introduced the concept of 

forward time slack that may be used to postpone the beginning of service at a given node 

without causing any time window violation. When feasibility must be maintained through 

exchanges, the forward time slack is the largest increase in the beginning of service at a 

customer that will not cause any time window violation (Cordeau, Laporte, & Mercier, 2004). 

 Rochat and Taillard (1995) propose a postoptimization procedure by solving a set-partitioning 

problem. They determine the best solution using tours in a set of total solutions using local 

search. Their postoptimization procedure allows the solutions to be improved with a modest 

increase in computation time (Rochat & Taillard, 1995). 

2.2.4 Metaheuristics for the VRPTW 

Metaheuristics are problem-independent techniques that do not take advantage of any specificity of 

the problem. The metaheuristics are mainly based on two principles: local search and population 

search  (Cordeau et al., 2002). The most frequently used metaheuristics for VRPTW instances, 

according to research of Cordeau et al. (2002), Gendreau (2002) and El-Sherbeny (2010), are listed 

below. The same neighborhood heuristics listed for the classic improvement heuristics are also 

applicable to be used in context of metaheuristics. 

 Simulated Annealing (SA): a method that searches the neighborhood in a defined order, first 

introduced by Kirkpatrick (1984). In SA, neighborhood solutions are accepted as the new 

incumbent solution if either the solution is better, or the solution is worse but still accepted 

based on a certain probability. This temperature variable is lowered gradually in the search 

process, steadily reducing the probability that a non-improving solution will be accepted. The 

simulated annealing algorithm stops when a fixed consecutive number of searches fail to 

produce a new incumbent solution, or when a defined stop temperature is reached (El-

Sherbeny, 2010). 

 Tabu Search (TS): this technique was first introduced by Glover (1986). TS explores the search 

space by moving to the best solution in the direct neighborhood at each iteration. To avoid 

cycling, recently explored solutions or moves are declared forbidden using a Tabu list. When a 

solution or move is on this Tabu list, the move is not allowed and the next best move is selected 

(if not on the Tabu list as well). The duration that an attribute remains Tabu is called its Tabu 

tenure. TS is often terminated when no improvement is found for a given time or a given 

number of iterations. 

 Genetic Algorithms (GAs): the concept of GAs was first introduced by Holland (1975). GAs are 

metaheuristics to find good solutions through the process of simulated natural selection. It 

basically consists of four phases: representation, selection, recombination, and mutation. The 

representation of the solution space consists of encoding significant features of a solution as 

a chromosome, defining an individual member of a population. Selection consists of randomly 

choosing two parents, where ‘fit’ parents (good solutions) are more likely to be picked. 

Recombination makes use of genes of the parents to generate offspring. Finally, mutation 

makes it possible that genes of the children as determined by the other steps are modified 

randomly (Bräysy & Gendreau, 2005b). 

 Other promising examples of algorithms used in context of the VRPTW are: 

o Adaptive Memory Procedures (AMPs): the first AMP in context of the VRP was 

introduced by Rochat and Taillard (1995). The adaptive memory is a pool of routes 

taken from the best solutions visited during the search. Goal is to provide new starting 

solutions for local search methods through selection and combination of routes 

extracted from the memory. The selection of routes from the memory is done 
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probabilistically and the probability of selecting a particular route depends on the 

value of the solution to which the route belongs (Bräysy & Gendreau, 2005b). 

o Variable Neighborhood Search (VNS): VNS is a metaheuristic that systematically 

changes the neighborhood structure, combining this with local search to get to local 

optima. First implementation of the heuristic in context of the VRPTW is found in 

Mladenović and Hansen (1997).  

o Large Neighborhood Search (LNS): LNS is a metaheuristic where an initial solution is 

gradually improved by alternately destroying and repairing the solution. An important 

parameter is the size of the part of the solution that is destroyed. If this is only a small 

part of the solution, LNS acts as a regular local search method. If the part of the 

solution that is destroyed is large, LNS rebuilds new solutions from scratch. First 

implementation for the VRPTW is found in Shaw (1998). 

o Ant Colony Optimization (ACO): The ACO is inspired by an analogy with real ant 

colonies looking for food. The ants mark paths they travel by a pheromone trail. This 

pheromone provides information to other ants that are attracted to it. With time, 

paths leading to the more interesting food sources are visited more frequently and 

theses paths are marked with larger amounts of pheromone (Bräysy & Gendreau, 

2005b). Known implementations of this algorithm in the context of the VRPTW are 

provided by Gambardella, Taillard, and Agazzi (1999) and (Dorigo, Caro, & 

Gambardella, 1999). 

Gendreau (2002) and Cordeau et al. (2002) both state that Tabu Search is the most suitable 

metaheuristic for the VRPTW as is finds good solutions fast. Gendreau (2002) states that Tabu Search 

methods generally perform better compared to the other metaheuristics. Furthermore, he stated that 

speed is a paramount criterion in real-time problems. Methods such as SA and GA slowly converge to 

good solutions, and are therefore less suitable in a real-time context. El-Sherbeny (2010) states, after 

an elaborate literature review of metaheuristics for the VRPTW, that applications show that Tabu 

Search is flexible and efficient. Furthermore, they found that Tabu Search gives results which compete 

or exceed those of the best heuristics known for many problem instances. Pillac, Gendreau, Guéret, 

and Medaglia (2013) state that Tabu Search particularly led to impressive results on different dynamic 

vehicle routing problems. 

We outlined four attributes to select a good heuristic earlier. When evaluating the simplicity of the 

method, SA and Tabu Search would score about the same. GA is harder to understand however, thus 

scoring lower on the simplicity criterion. Cordeau et al. (2002) also scored a Taburoute implementation 

by Gendreau, Hertz, and Laporte (1994) with high accuracy, medium speed, medium simplicity, and 

high flexibility in their paper.  

2.3 DYNAMIC VEHICLE ROUTING PROBLEM 
In the Dynamic Vehicle Routing Problem (DVRP) requests for service arrive dynamically over time. The 

word dynamic indicates that information is revealed during the design or execution of routes. This class 

of problems is also referred to as online or real time (Jaillet & Wagner, 2008). Dynamic vehicle routing 

is attracting a growing attention from transportation companies (Respen, Zufferey, & Potvin, 2014). In 

recent years, much research in the DVRP literature focused on uncertain travel times, uncertain (or 

stochastic) demands and online requests (Bertsimas & Simchi-Levi, 1996; Gendreau & Potvin, 1998; 

Pillac et al., 2013).  

Ichoua, Gendreau, and Potvin (2000) consider a long-haul courier service application. Their objective 

is to minimize a weighted sum of travel distance and lateness at customer locations. They enable 
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diversion by applying a variant of a real-time routing approach. Computational results show that 

diversion can significantly improve the solution quality. 

Klundert and Wormer (2010) study a real-time problem of assigning servicemen to requests that arrive 

dynamically over time. They aim to optimize responsiveness, i.e., minimize the waiting in excess of a 

promised response time, and they do this in context of a practical use case of the ANWB (a Dutch 

roadside service association). They show that, when aiming to minimize end-of-day lateness, real-time 

assignment on a combination of travel distance and waiting time provides significantly better results 

than alternatives that directly rely on lateness objectives. 

An interesting series of work on the vehicle routing problem with urgent delivery of goods is performed 

by Ferrucci and Bock (Ferrucci & Bock, 2014, 2015; Ferrucci, Bock, & Gendreau, 2013). In Ferrucci et al. 

(2013), they propose a new pro-active real-time control approach that exploits stochastic knowledge 

in order to actively guide vehicles into future request-likely areas in a use case where new customer 

demands are introduced dynamically. They introduce an objective function that determines the 

following cost per customer: weight of customer * customer inconvenience + diversion penalty. Here, 

customer inconvenience is operationalized by a function of request response times.  

Ferrucci and Bock (2014) introduce the Dynamic Pickup and Delivery Problem with Real-Time  Control 

(DPDPRTC) for urgent real-world transportation services. They consider minimizing lateness as the 

primary objective, and minimizing vehicle operating cost as a secondary objective. By optimizing 

consecutive static problem instances, which are snapshots of the ongoing transportation service, the 

authors buffer all dynamic events that occur during a set time. They consider dynamic events (or 

triggers) such as traffic congestion, vehicle slowdowns and vehicle breakdowns. All these dynamic 

events are considered in the next static problem instance. 

In order to efficiently adapt the existing transportation plan to the consequences of dynamic events, 

Ferrucci and Bock (2014) apply a staged Tabu Search approach. Within the staged Tabu Search they 

consider: 1) within tour insertion, 2) relocation, 3) multi-stop relocation, 4) large neighborhood search, 

and 5) exchange of stops between tours. When no improvement is found for X iterations in one of the 

stages, the next stage is selected for further improvement.  

It is important to note that the work of Ferrucci and Bock (2014) does not consider transfers when the 

relocation operator is used. They assume that transfers are not allowed, except if a vehicle breaks 

down. Pick-up is also part of their problem, meaning that the products are not yet loaded into one of 

the vehicles. 

In another article Ferrucci and Bock (2015) focus on DVRP’s in which new requests arrive over the day 

in a daily distribution process of urgent goods with the same objective function as before. The results 

they found are interesting for further research in VRPTW instances as well. Ferrucci and Bock (2015) 

state that it would be interesting to test the efficiency of the approach on routing problems with a 

different objective function as well, e.g., the minimization of travel time, or a combination of 

minimization of travel time and customer inconvenience. 
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2.4 VEHICLE RESCHEDULING PROBLEM 
A review of the real-time vehicle schedule recovery problem is given by Visentini et al. (2014). In their 

review they distinguished three areas where the problems might emerge: road-based services (the 

VRSP), train-based scheduling and airline schedule recovery problems. We focus on literature on the 

road-based services here, since our use case is in this area specifically. 

Li, Borenstein, et al. (2007) stated that the main objective of the VRSP is to minimize operation and 

delay costs, while serving the passengers or cargo on the disrupted trip and completing all remaining 

trips including the disrupted one. They developed a Decision Support System (DSS) for single-depot 

rescheduling to help human schedulers to find optimal schedules with and without unexpected 

incidents. They apply a procedure ‘Build-Feasible-Networks’ to build the set of all possible feasible 

networks and the forward-backward combined auction algorithm to find the minimal cost. Li, 

Borenstein, et al. (2007) found that their DSS can be an effective and efficient tool for real-time 

operational planning in transportation/logistic companies. 

In another research project, Li, Mirchandani, et al. (2007) formulated a model for the VRSP and develop 

several fast algorithms to solve it with parallel synchronous auction algorithms. Computational results 

on randomly generated problems show that, for small problems, all of the developed algorithms 

demonstrate very good computational performances. For large problems, parallel auction algorithms 

(ensuring parallel computing) provide the optimal solution with small computation times. 

In a different paper by the same authors, Li et al. (2009), introduced the real-time rescheduling of the 

VRPTW. An important issue with the time windows is related to route disruptions. If only operating 

costs and service cancellation costs are minimized, the original routes might be considerably disrupted. 

Thus, it is crucial to reduce the number of changes in the development of new routes since truck drivers 

may not be familiar with new delivery or pickup points. The strategy of Li et al. (2009) is to impose 

penalties on each route change in order to reduce route disruptions. They apply this in a Lagrangian 

relaxation that initially relaxes the hard constraints. The resulting Lagrangian relaxation problem is 

decomposed into constrained shortest path problems with time windows and vehicle capacity 

constraints. In order to obtain a solution for the Lagrangian relaxation problem quickly, a dynamic 

programming based heuristic solves the constrained shortest path problem heuristically and an 

insertion algorithm is used to obtain a feasible solution. 

Mirchandani, Li, and Hickman (2010) researched the VRSP in context of bus breakdowns. They reassign 

and reschedule the bus fleet in case of a bus breakdown. They minimize the sum of operating costs, 

delay costs, schedule disruption costs, and trip cancellation costs. In their research, they combine the 

VRSP with bus signal priority, which can reduce bus delays at signalized intersections.  

Mu, Fu, Lysgaard, and Eglese (2011) researched an instance of vehicle rescheduling for the capacitated 

VRP. They state that the VRSP is different from the VRP in five ways: 

1) Vehicles do not depart from one depot, but they are at different locations when rescheduling 

occurs; 

2) Computing time is a critical factor in the VRSP; 

3) The solution to the original VRP can be used when solving the VRSP, while the VRP has to be 

solved from scratch; 

4) Additional cost need to be taken into account for plan deviation when solving the VRSP, while 

the VRP only aims to minimize the cost given the relevant constraints; 
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5) Not all decisions are possible when solving the VRSP. In some cases, constraint violation might 

be unavoidable, and it will be more important to support the decision maker in its decisions. 

For the VRP, extra vehicles can be dispatched if the plan is not yet feasible. 

In their research, Mu et al. (2011) found that a flexible and simple Tabu Search implementation, with 

a relocation neighborhood structure, gives very promising results in their test cases of the capacitated 

VRP. 

A second study on the VRSP with time windows is found in Wang, Ruan, and Shi (2012). They 

researched disruption events in logistics delivery, focusing on changed customer wishes. The triggers 

are different from our research project. The nested partitioning they use to find a solutions for the 

VRSPTW performs well compared to other heuristics. 

Another research project on the VRSP without the use of time windows is performed by Spliet et al. 

(2014). They experienced that Dutch retail companies currently reschedule manually when a long-term 

schedule no longer applies. They proposed a two-phase heuristic that is capable of finding good 

solutions within a small amount of computation time. Their numerical experiments show that solutions 

of the two-phase heuristic are on average close to optimal. The two-phase heuristic by Spliet et al. 

(2014) starts with an infeasible master schedule SM and modify it to make it feasible. The new feasible 

solution STP is then introduced. In the first phase of the heuristic, a specific set of edges is removed 

from the master schedule. The second phase adds new edges to make the obtained schedule feasible, 

and ensuring that it has low deviation costs. 

2.5 TRIGGERS & TRANSFERS 
This section introduces some additional relevant subjects for the en-route rescheduling of vehicles. 

First, we introduce triggers: situations that cause a need for rescheduling. Next, we describe transfers 

of goods between vehicles, which is relevant when inter-route modifications in the plan are made.  

2.5.1 Triggers 

In context of the vehicle rescheduling problem, certain triggers for rescheduling vehicles are already 

used. Triggers often considered in literature are vehicle breakdowns or accidents of the vehicle on a 

route (Li, Borenstein, et al., 2007; Mirchandani et al., 2010; Mu et al., 2011).  

Another trigger for rescheduling might be found in the working hour regulations of truck drivers. In all 

member countries of the European Union and in many other countries, regulations for driving and 

working hours of persons involved in road transportation are effective (Kok, Meyer, Kopfer, & 

Schutten, 2010). It is therefore important to include the violation of these driver regulations as a 

trigger, since delays can ensure that drivers have to take long breaks to working hour regulations.  

Wang et al. (2012) mention four types of triggers for the VRSP:  

1) Vehicle disruptions: vehicle breakdowns or blocked vehicles; 

2) Cargo disruptions: damaged cargo; 

3) Customer disruptions: changed time windows, demand, or delivery addresses; 

4) Combinational disruptions: a combination of multiple disruptions as mentioned in 1) to 3). 

The most relevant triggers for our project are the vehicle disruptions, while Wang et al. (2012) only 

focus on the customer disruptions. Customer disruptions will not occur in our case because the plans 

are made when customer orders cannot be changed anymore.  
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Traffic delays can be an important trigger for rescheduling as well (Visentini et al., 2014). Huisman, 

Freling, and Wagelmans (2004) build in their research on this information for instances of the DVRP. 

However, they use the information before the actual departure of the vehicles from the depot. Still, 

traffic or service time delays are important to consider as triggers for rescheduling, provided that the 

delay is sufficiently large. 

2.5.2 Transfers 

When solving the VRSP as defined for our research project, transfers need to be included in the 

rescheduling since goods for customers are often already placed in the trucks. Respen et al. (2014) 

propose the assumption that the position of each vehicle is known at all times, thanks to accurate GPS 

devices. They show the positive impact of vehicle position tracking devices on solution quality. Their 

results indicate that a reassignment action, ensuring that a transfer will be necessary in our case, 

should be considered disruption of the current plan is detected.  

Some literature on including transfers is found for the Pickup and Delivery Problem (PDP). Thangiah, 

Fergany, and Awan (2007) included transfers for shipments when these transfers lead to an 

improvement of the objective function in their research on the split – delivery pickup and delivery 

problem with time windows and transfers. If a vehicle arrives at a depot before a second vehicle, a 

shipment can be transferred to the second vehicle that visits this depot. Other research on the transfer 

of shipments is found in Bouros, Sacharidis, Dalamagas, and Sellis (2011). They distinguish two types 

of transfers, ‘without detours’ and ‘with detours’, and show their method includes both types of 

transfers in an objective function.  

For people transfers, more research is available within the PDP. Cortés, Matamala, and Contardo 

(2010) added flexibility to the PDP formulation by providing the option for passengers to transfer from 

one vehicle to another at specific locations. To do this, they included special transfer nodes where 

multiple visits are allowed. Renaud  Masson, Lehuédé, and Péton (2013) developed an efficient 

heuristic that inserts requests through transfer points with an adaptive large neighborhood search for 

the PDP in disabled people transport. This required the introduction of new destruction and repairing 

heuristics dedicated to the use of transfer points. In a follow-up research, Renaud Masson, Lehuédé, 

and Péton (2014) looked at the dial-a-ride problem with transfers, where requests of users between a 

set of pickup points and a set of delivery points occur in the presence of ride time constraints. They 

found that the introduction of transfer points led to non-negligible savings in their problem case using 

an adaptive large neighborhood search. 

In their research on bus schedule recovery, Mirchandani et al. (2010) stated that the selection of the 

helper vehicle involves several factors such as the time when the trip was disrupted, the position of 

the currently operating buses, the available capacities of potential backup buses, and the 

compatibilities of itineraries among the bus trips.  

Some more literature on the subject of transfers may be found in literature on different problem types. 

For example, intermodal transport and ride-sharing problems can also include transfers. However, we 

chose not to outline the literature on these subjects because of limited time for our review and 

because the different nature of the transfers in these other problem types. 

2.6 LITERATURE REVIEW CONCLUSION 
This chapter provides an overview of existing literature on relevant subjects for our research project. 

We describe the research gap and methodology conclusion from the literature review subsequently 

here. Because we use many overview papers (VRPTW: Cordeau et al. (2002), Bräysy and Gendreau 
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(2005b), El-Sherbeny (2010), DVRP: Pillac et al. (2013), VRSP: Visentini et al. (2014)) to review 

literature, we believe we present a complete overview of available literature on the relevant subjects. 

2.6.1 Research gap 

We find that detection and prediction of triggers is rare and quite new to the existing research. A lot 

of research is available for the VRPTW, but these methods are mostly suitable before the start of a 

home delivery operation. Still, many techniques for optimization that relate to the use of time windows 

are known in this domain, which is important for the context of our research.  

We also provided an overview of research on the DVRP and VRSP. Generally speaking, the literature 

on vehicle rerouting for road transport is scarce (Spliet et al., 2014). Very few papers consider en-route 

rerouting with time windows, but some examples are available on the subject (Ferrucci & Bock, 2014; 

Li et al., 2009; Wang et al., 2012). These studies mainly consider vehicle breakdowns and change 

customer wishes however, which differs from our focus on lateness triggers in the home delivery 

operation.  

The transfer of goods from one vehicle to another, as the case is in this research project, seems to 

primarily exist in the context of people transfer in (public) transport versions of the VRP. It has, to our 

knowledge, not yet been applied to the use case of en-route rescheduling of home deliveries. 

We contribute to the current state of VRSP research by researching en-route rescheduling in home 

delivery operations with violation triggers, transfers and time windows. The integration of these 

subjects with time-dependent travel times and robustness of solutions makes this project of 

potentially very much added value.  

2.6.2 Methodology conclusion 

Based on the literature we described in this chapter we decide on a solution method that consists of 

three phases: triggers, search space selection and optimization of the solution. Triggers are developed 

to signal a need for rescheduling calculations. The triggers are a part of the rescheduling solution in 

general, they influence the moment of rescheduling, therefore influencing the results of a solution. 

However, not all vehicles on the road are relevant for a rescheduling solution. Variables such as 

distance to the disrupted vehicle and available capacity in the potential helper vehicle can be important 

in determining which potential helper vehicles can be part of the rescheduling solution. 

We use a metaheuristic to optimize our rescheduling solution. Metaheuristic can be used to guide the 

local search within our search space to find a good solution more quickly, which is very important in 

our research. We select Tabu Search as the metaheuristic used for our research problem because of 

the quality, flexibility, and speed in finding feasible solutions (as described in Section 2.2). 

Within the Tabu Search we have to select operators to generate neighbor solutions. From this chapter 

follows that the type I1 insertion heuristic by Solomon (1987), based on the minimization of extra 

distance and extra time required to visit the customer that is evaluated for insertion, is superior to 

other insertion operators. This can be used for the evaluation of transfer locations, which have to be 

inserted into routes to be able to transfer goods between vehicles. 

For other operators that generate neighbor solutions to optimize routes, both intra- and inter-route, 

we selected the exchange, 2-opt* and Or-opt operators. We use the exchange operator because it is 

simple, effective and useable for both intra- and inter-route optimization. We select 2-opt* and Or-

opt operators because they are well adapted to problems with time windows and because they 

preserve the orientation of routes.  
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3 PROCESS- & DATA-ANALYSIS 

This chapter gives insight into the case study process and data. We aim to find the current process of 

rescheduling and we give an insight in the case study data. Section 3.1 presents information on the 

current processes in the case study. Section 3.2 gives an analysis of case study data. Section 3.3 

describes a chapter conclusion on the process and data of our case study. 

3.1 PROCESS ANALYSIS 
As mentioned in the introduction, our case study is a Dutch retailer with a home delivery service. They 

use 14 different departure locations within the Netherlands, referred to as depots in the remainder of 

this study. All vehicles that deliver goods for the retailer belong to a given depot where they start and 

end their route.  

All trips made by the vehicles are monitored and controlled by a control room. Now, potential delivery 

problems as described are observed by the vehicle drivers or the control room team. The problems 

and solutions are communicated by phone. As mentioned in the introduction, the control room team 

basically uses three different rescheduling strategies: 1) Switch, 2) Transfer, and 3) Accept & inform. 

These strategies mean that they 1) alter the sequence of customers within a route, 2) transfer 

customer orders to another vehicle, and 3) accept the expected lateness and communicate this 

towards the customer. Backup vehicles are sometimes used for transfers as well. It has been a 

management choice not to use too many backup vehicles because of the cost. Therefore, three 

vehicles, located in Rotterdam, Utrecht and Almere, are used as backup vehicles. 

The control room team tries to limit the number of Time Window (TW) violations during the execution 

of a planning instance. We define a TW violation as a delivery that is started when the time window 

has already ended. Only the late deliveries are set out because a vehicle waits when it arrives too early. 

The planning instances used by the retailer are based on minimization of cost. In a cost minimization, 

the number of vehicles used is also an important factor. The retailer cannot use a separate vehicle for 

each customer because this would be too expensive. Therefore, they aim to use all available vehicles 

as much as possible in the delivery process, meaning little slack is planned for travel and service times. 

Unexpected delays can ensure TW violations later in the delivery process. 

Figure 5 displays the case study workflow timeline. The following tasks are presented for both the PO 

morning (PO) and afternoon (PA) shifts on separate timelines in this figure: 

1) Planning is made by the retailer;  

2) Planning is uploaded into the DCT; 

3) Vehicle numbers are linked to planned routes; 

4) Vehicle numbers are provided to the DCT; 

5) Vehicle is loaded at the depot and a sheet with the planned route of the vehicle is provided to 

the driver; 

6) Start of execution of planned routes and start of the control room team monitoring the 

vehicles; 

7) Rescheduling of disrupted routes. 
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Figure 5: workflow timelines of current planning and driving process. 

The control room team monitors the home delivery and they possibly notice delays from their 

monitoring in the DCT. It is also possible that vehicle drivers call the control room about a delay. The 

way in which the control room team determines a rescheduling of routes is presented in Figure 6. Here, 

the disrupted route is the route that is expected to be late for one of its deliveries.  

Work agreements of the retailer state that drivers call the control room instantly when a breakdown 

of their vehicle occurs. Furthermore, drivers call the control room when they are 20 minutes or more 

behind on schedule. The control room team checks for rescheduling options within the disrupted route 

itself (intra-route) first. When a call arrives, the team checks if there is a problem for one of the 

customers. When this is not the case, they continue as currently planned. Otherwise the team checks 

if they can solve the problem by moving the stop forward in the sequence, meaning that the possible 

problem stops receives its delivery earlier in the sequence than originally planned. When the control 

room team cannot solve the problem in this way, they check for empty vehicles near the disrupted 

route. They only use empty vehicles to reduce the risk of disrupting the planned deliveries of other 

routes. When an empty vehicle is found near the disrupted vehicle, the control room sends the empty 

vehicle to meet the vehicle of the disrupted route to transfer some of the deliveries. Back-up vehicles 

and an available driver wait at three of the larger depots. When necessary, these backup vehicles can 

be used by the control room team to help out disrupted vehicles as well. If no empty vehicle is available 

near the disrupted vehicle that could ensure on time deliveries, all customers that are expected to 

receive a late delivery are informed by the customer service.  

The control room team generally reschedules routes only once in the current working process. 

Furthermore, a distinction is made between new and recurring customers when checking priorities. A 

customer is considered to be new only the first time a customer orders at the retailer. New customers 

have a higher priority for on time delivery when rescheduling is performed. This means that the new 

customers are always considered first for helper actions when having to choose between customers 

that receive their goods outside their time window.  

A lot of manual work is involved in this current rescheduling process, resulting in many possibilities for 

human errors. On top of this, only empty vehicles are now used to help out on the disrupted routes. 

The possibility of other vehicles that help out are topic of this research as well. 
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Figure 6: Current rescheduling operations as performed by the control room of the case study retailer. 

3.2 DATA-ANALYSIS 
With our data-analyses in this section, we aim to give an insight in different activities and durations in 

the delivery process for our case study retailer. Because of the recent introduction of the DCT and the 

data confidentiality of the retailer, a limited period of time is used. We use data for the time period of 

September 7th to October 11th in this section. An analysis of lateness of delivery is included in Appendix 

A. We also provide other analyses there that are not included in the main report because of data 

confidentiality. In this section, we first describe the departure and service times of our case study. 

Next, we analyze travel times and a travel time approximation for the case study.  

3.2.1 Departure and service times 

We introduce analyses of departure and service times registered in the DCT here. We end this part of 

our data-analysis section with a short conclusion on departure and service times. 

3.2.1.1 Departure times 

We analyze the lateness of departure from depot to see if the depot departure lateness is a cause for 

lateness of delivery. In the researched time period, we find the results shown in Figure 7. We show the 

lateness of departure class, where we subtract the planned departure time from the realized departure 

time, on the x-axis and we show the percentage of trips that are in this lateness class on the y-axis. We 

see that vehicles generally departure too late from the depot. The biggest percentage of vehicles 

departs between 0 and 10 minutes late from the depot. On time departure could already prevent a lot 

of lateness in the delivery process, meaning it could also lead to more on time deliveries. 
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Figure 7: lateness of departure from the depot for all registered trips in the DCT between 07-09-2015 and 11-10-2015. 

3.2.1.2 Service times 

We analyze service time delays here to see the delays that occur during the service of customers. 

Figure 8 shows the results for the researched time period. The delay class is the number of minutes 

that a registered service time was longer than planned. We see that around 50% of the service times 

is realized in between 2 minutes too short and 2 minutes too long. The planned service times appear 

to give a good estimation for the service times, although small differences do occur. We see that delays 

in the service times follow a normal distribution and we conclude that the planned service time is 

generally a good estimation for a service time. 

 

Figure 8: service time delays for all registered service times in the DCT between 07-09-2015 and 11-10-2015. 
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3.2.2 Travel times 

We research travel times and differences with realized travel times here for planned travel times and 

Euclidian travel times. We analyze the first because we want to know the quality of planned times. We 

analyze the second because we want to have a fast alternative for travel time calculations in our 

simulation model (see Chapter 5). 

3.2.2.1 Planned travel times 

We analyze the planned travel times and compare them to the realizations from the DCT. Figure 9 

shows that the planned travel times are not a good predictor of the realized travel times. We see much 

deviation in the realized travel times compared to the planned travel times. Furthermore, when 

vehicles drive the customers in a different order than originally planned, no access to the travel time 

algorithm used for the planning is available. We conclude that the planned travel times are not a good 

estimation for travel times, and that late deliveries can partly be explained by the travel time deviations 

that occur in the delivery process. 

 

Figure 9: travel time delays for all registered travel times where the vehicles drove in the planned order in the DCT between 
07-09-2015 and 11-10-2015. 

3.2.2.2 Euclidian travel times 

We analyze an approximation of travel times here for when fast calculation of travel times is necessary. 

In a simulation context, real travel time calculations mean larger computation times, resulting in large 

computation times for the simulation runs as well. We propose and analyse an approximation where 

we use a freeflow travel time – the travel time of a vehicle that could drive freely everywhere and 

would experience no delays (traffic and non-traffic) whatsoever – and a delay compared to this travel 

time. We research the subject in different distance classes because travel time deviations can differ a 

lot on different distances, especially when analyzing the delays with percentages.  

For the freeflow we use the 95th percentile of the speeds for each of the distance classes, where speeds 

are calculated by taking the Euclidian distance between two stops and dividing this by the registered 

travel time. We listed the freeflow and mean travel times in the different distance classes in Table 1. 

Appendix B presents figures of the distributions we find for the realized percentage delays compared 

to the travel times based on the freeflow speeds for Euclidian distances. We find feasible values for 

both the average and freeflow speeds, while a logical pattern occurs where average speeds are much 

lower when the distance between stops is lower. We conclude that this Euclidian travel time approach 

is realistic enough to use. 
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Table 1: realized travel time and speed values for different Euclidian distance classes. 

Distance 
class [km] 

Mean travel 
time [min] 

SD travel 
time [min] 

Average speed 
[km/h] 

Freeflow speed 
[km/h] 

 0.0-0.5 2.94 2.00 5.61 13.75 

 0.5-1.0 5.92 2.61 8.71 16.61 

 1.0-1.5 7.63 3.04 11.15 19.36 

 1.5-2.0 9.04 3.27 13.06 21.52 

 2.0-2.5 10.27 3.45 14.73 24.10 

 2.5-3.0 11.33 3.79 16.39 26.40 

 3.0-4.0 12.73 4.28 18.45 29.58 

 4.0-5.0 14.31 4.59 21.08 32.80 

 5.0-6.0 15.96 4.92 23.01 34.66 

 6.0-7.0 17.63 5.49 24.66 36.83 

 7.0-8.0 18.96 5.80 26.42 38.76 

 8.0-10.0 20.79 6.00 28.57 42.35 

 10.0-12.5 22.94 6.05 31.32 45.21 

 12.5-15.0 25.37 6.57 34.60 49.00 

 15.0-20.0 29.62 7.75 38.06 54.60 

 20.0-25.0 34.17 8.45 42.16 58.32 

 25.0 < 41.03 11.13 50.39 70.38 

 

3.3 PROCESS- & DATA-ANALYSIS CONCLUSION 
We describe the current process of rescheduling and insights on the case study data in this chapter. 

We find that a labor-intensive and simple rescheduling procedure is used by the case study retailer. 

Drivers call the control room and they determine en-route rescheduling solutions to reduce the 

number of late deliveries. They use three basic strategies to do so: 1) intra-route switching in the 

sequence of customers, 2) inter-route helper actions, where a helper vehicle drives towards a 

disrupted vehicle to take over some of its customers, or 3) accepting the late delivery and inform the 

customers about the lateness of delivery. They use relatively simple ways to determine their solutions, 

only utilizing moving expected late deliveries forward in the sequence or using empty vehicles as helper 

vehicles. 

From our data-analysis we find that late departure from the depot is an important source of delays on 

route. The effects of on time departure are interesting to research. The planned service times seem to 

give a good prediction of service times. No structural delays can be found in the service times. The 

planned travel times do not give a good approximation of travel times and planned travel times are 

not always available for all paths. Therefore, we propose an approximation based on Euclidian 

distances. The approximation appears to be realistic enough to be used in a simulation model 
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4 RESCHEDULING METHODOLOGY 

This chapter describes the methodology we propose for en-route rescheduling of home deliveries. Aim 

is to set out the methodology for automated en-route rescheduling based on the findings from our 

literature review and process- and data-analysis. Our rescheduling algorithm consists of three steps 

that follow from Chapter 2: triggers, search space selection and a rescheduling algorithm. Section 4.1 

introduces the triggers that are relevant for a home delivery operation. The triggers are a part of the 

rescheduling solution in general; they influence the moment of rescheduling, therefore influencing the 

results of a solution. Section 4.2 describes the process where we limit the search space to only the 

most relevant vehicles that might be able to help a disrupted vehicle. Section 4.3 describes the design 

of our metaheuristic for rescheduling. Section 0 ends this chapter with conclusions on the 

methodology. 

4.1 TRIGGERS 
This section introduces the triggers used in our solution methodology. Within the Delivery Control 

Tower (DCT) of Simacan, all current locations, planned deliveries and real-time calculated Estimated 

Times of Arrival (ETA’s) are known, and these variables are updated every minute. The Simacan routing 

algorithm, TomTom real-time travel times, and TomTom profile travel times are used to determine the 

ETA’s in the DCT, using the method as described in the introduction. At each new vehicle position we 

can determine whether or not a rescheduling operation is relevant as well. When this is the case, a 

rescheduling calculation will be performed and possible en-route changes can be suggested. We base 

the following list of triggers on all real-time information sources available in the DCT: 

 Delay trigger: current delay of a vehicle on its route is larger than a threshold delay. This 

threshold delay can be determined using the smallest difference between planned service 

start time at a customer and the end of the time window. Other threshold values are possible 

as well however, for example the difference mentioned with an additional five minutes.  

 ETA trigger: the ETA of the vehicle (calculated in the DCT) is later than the end of the time 

window as defined by one of the customers. This means a delivery is expected to be too late, 

which is undesirable for the retailer. Keep in mind that an ETA trigger can replace the delay 

trigger, since this trigger predicts expected times based on occurring delays as well. This trigger 

should only go of when no other path to prevent a delay is possible, since choosing another 

path from A to B is also possible for traffic-related delays. 

 Robustness trigger: this type of trigger applies when the robustness of a route is in danger, 

meaning that the probability of possible lateness further on in the route is large. The 

robustness trigger can apply, for example, when a vehicle has two or more stops where it 

expects to arrive in a 5-minute window around the end of a customer time window. The 

robustness trigger is an addition to the delay or ETA trigger. 

 Vehicle defect trigger: this trigger applies when a small defect of a vehicle ensures that the 

vehicle cannot continue right away. A roadside assistance vehicle is send to resolve the defect 

at the place where the vehicle is stranded. The fleet support manager of the retailer states 

that this type of defect occurred 773 times for the approximately 135,000 trips made in 2014. 

Average delay time is about one hour on average (45 minutes of waiting time for the roadside 

assistance vehicle, 15 minutes of repair time). 

 Breakdown trigger: a breakdown of a vehicle occurs during the route of a vehicle. The vehicle 

is stranded and has to be towed. The deliveries that are in the trucks are either not delivered 

to the customer, or a helper action is performed by another vehicle that takes over all 
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customers of the stranded vehicle. The fleet support manager of the retailer states that this 

type of defect occurred 87 times for the approximately 135,000 trips made in 2014.  

 Accident trigger: there is an accident on the road that interferes with the route of a vehicle. 

An accident is expected to affect an area where multiple vehicles might be present or planned 

to drive. When no rescheduling or the choosing of alternative paths is used, all vehicles are 

expected to experience delays. 

 Event trigger: there is an event (e.g., soccer matches or carnival parades) that ensures 

congestion on the roads where retailer vehicles drive or are a planned to drive. This triggers a 

rescheduling operation when the event ensures large delays, and when it is not expected to 

be resolved quickly. Event delays are expected to affect an area. The event trigger is a different 

type of trigger from the other ones mentioned here. It is possible to know about large events 

before the start of a shift, meaning the retailer can plan differently instead of using en-route 

rescheduling. Still, events can be unnoticed till the actual day of delivery (e.g., larger block 

parties or small festivals), making it necessary to reschedule en-route.  

As said, the triggers can be checked at each new vehicle position. A trigger is followed by a rescheduling 

calculation. It is possible that triggers for multiple vehicles are active at the same time because vehicle 

positions are generally sent to the DCT in batches. When multiple triggers go off at the same time, 

multiple rescheduling calculations can start at the same time. Of course, when these rescheduling 

calculations have a search space with no overlapping vehicles, the rescheduling calculations can be 

done parallel to each other. However, when the rescheduling calculations do have an overlap in 

vehicles, the solutions should not conflict with each other. Therefore, the solution would be to consider 

one rescheduling calculation with multiple disrupted routes. The number of occurrences of this case is 

expected to be very small because the triggers would occur on exactly the same minute. The case when 

multiple disrupted routes occur at the same time is therefore not considered as topic in this research.  

Triggers can possibly keep on giving trigger signals for the same route because we determine new 

positions and delays every minute. However previous rescheduling calculations might already solve 

the problem or determine that no better option is available. Therefore, we recommend the use of a 

“rescheduled” state to keep track of which vehicles have just been rescheduled. When either no better 

option is available or when an intra-route switch is made, the route and vehicle remain in a 

“rescheduled” state for a given period of time (for example an hour). When a transfer between vehicles 

is made, both vehicles remain in a “rescheduled” state until all transfer actions are finished. In 

calibration of this part of our rescheduling methodology we tune the triggers in a way that we do not 

want the system to be too nervous, meaning that the system would trigger rescheduling calculations 

too often. We tune only the ETA and robustness triggers in this process. 

4.2 SEARCH SPACE SELECTION 
This section outlines the selection of a search space to reschedule routes. The selection of possible 

helper vehicles that can play an important role in finding good solutions more quickly. We propose a 

method to limit the search space in order to speed up the search process in a real-time context. We 

allow pre-emption when the current activity of the vehicle is driving, waiting or breaking. A vehicle is 

always obliged to finish its service activity at a customer, meaning that no pre-emption is allowed. The 

service time has to be finished by the driver because he cannot stop in the middle of a delivery. 

As found in our literature review in Chapter 2, several factors as time of disruption, vehicle location 

and potential backup vehicles are important in selection of a helper candidate. Because there are 

multiple factors that determine whether or not a vehicle is available to be rescheduled, we define an 

equation to select the vehicles other than the vehicle of the disrupted route (which is always in the 
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search space) in a search space for home deliveries. We use the following variables in the search space 

selection equation: 

1) Current location of the potential helper vehicle is the first of our selection variables. Distance 

from the potential helper to the disrupted vehicle is an important attribute in this context. This 

is important because the distance relates to the additional travel time needed for to be able 

to transfer customers. We use a Euclidian distance (in meters) for this distance because this 

enables us to determine many distances fast. 

2) When a vehicle has to make deliveries for many customers itself, it is not smart to use this 

vehicle in a helper action. There is still too much unknown about its own route, ensuring that 

the transfer might be a bad idea because we only shift a problem to a different route. We 

therefore use the number of customers that a potential search space vehicle still has to visit 

itself as an additional variable for in- or exclusion in the search space.  

We want to ensure that vehicles that are either too far from the disrupted vehicle or that have too 

many customers in their own route are excluded from the search space. We therefore set two 

threshold values for both variables. We exclude vehicles that have one of the search space selection 

variables that exceeds the threshold value. We set the following threshold values for our search space 

selection: 1) the distance between of helper vehicle to disrupted vehicle is 10 kilometers or less and 2) 

the number of customers to deliver for the helper vehicle should be 4 or less. 

We use the definitions from Table 2 to determine a general function for a score of a vehicle in the 

search space selection process. The equation for the search space score of each vehicle is given in 

Equation 1. 

Table 2: variables used in search space selection equations. 

Term Definition 

K Set of all vehicles. 

dv Vehicle of the disrupted route. 

d Distance between two vehicle locations. 

lock Location of vehicle k. 

nk Remaining customers for vehicle k. 

α1, α2  Variables determining the importance of the factors in the search space selection. 

sk Score for vehicle k. 

Sthreshold Threshold score for inclusion of vehicle in the search space. The score of a vehicle has to 
be at least equal to this threshold score. 

  

 
 (1) 

 

The score is used to determine which vehicles are in the search space of our rescheduling process. We 

first determine a score for each of the vehicles, and then select the vehicles relevant for rescheduling 

using Sthreshold. Based on the threshold values for our search space variables as mentioned, we can 

determine the α-values by setting the threshold values equal to each other. This means that we the 

equation defined in Equation 2. We find that the value for α1 is 0.28 and the value for α2 is 0.72 (where 

the sum is equal to 1). Using these values, we come to a Sthreshold of 0.35 for inclusion in the search 

space. 

 
 (2) 
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4.3 RESCHEDULING ALGORITHM 
We describe the rescheduling calculations that we develop in this study. As stated before, we use a 

metaheuristic to guide the search for a good and feasible solution for our research problem of home 

delivery routes. We use a metaheuristic because it is not possible to find the exact solution for the 

problem. Metaheuristics are suitable to find good solutions for large NP-hard problems, such as the 

VRPTW or subclasses of the VRPTW. In Chapter 2 we selected Tabu Search as the metaheuristic used 

for our research problem because of the quality, flexibility, and speed in finding feasible solutions. 

First, we describe the Tabu Search Rescheduling (TSR) algorithm we developed. After this, we 

introduce the objective function, possible operators and stopping criteria for our algorithm. 

4.3.1 Tabu Search Rescheduling algorithm 

We develop a Tabu Search implementation that evaluates options to solve our rescheduling problem 

by intra-route switching and by inter-route transfers simultaneously. The state of the routes involved 

in the rescheduling are defined as the initial solution in our rescheduling process. We choose an 

approach with intra-route and inter-route calculations because we want to solve occurring problems 

by continuing as planned or switching intra-route as much as possible. However, when no other 

options can solve the problem, we want to transfer orders between routes (inter-route) to ensure that 

as many customers as possible receive their orders on time. Our objective function determines the 

quality of each of the solutions, and selects the best. Here, a measure of the time needed over all 

vehicles is included as well to discourage vehicles from detours to help other vehicles. 

Figure 10 displays our Tabu Search Rescheduling (TSR) method within the selected search space that 

follows from the method in Section 4.2. We introduce the intra-route part (left side of the figure) and 

inter-route part (right side of the figure) subsequently here.  

4.3.1.1 Intra-route Tabu Search Rescheduling 

As said before, we aim to solve as many of the rescheduling problems by intra-route changes because 

this has less impact on the whole delivery process than inter-route changes. We start with the current 

state of the disrupted route as the initial solution. This is also initialized as the current solution to start 

our search process and we initialize an empty Tabu list. In the Tabu list we will keep track of the 

solutions we already evaluated to keep the local search from cycling at local minima. In the entire 

process we do remember the very best solution of the search to ensure that we eventually select the 

best solution visited.  

After initializing an empty Tabu list we randomly select a move-operator from the allowed moves list 

to check the neighbor solutions. The allowed operators differ per experiment (see Chapter 5), but for 

most experiments multiple operators are allowed. When we have an operator, we evaluate all 

solutions that are direct neighbors of the current solution by checking the move for each customer in 

the search space where the resulting solution is not on the Tabu list. We evaluate all neighbor solutions 

using the objective function, selecting the best move as the move to carry out. We carry out this move 

on the current solution, thereby updating the current solution to a new one. We add the previous 

solution to the Tabu list to prevent the search process from visiting it again. 

When we not yet satisfy one of our stopping criteria, we continue with the selection of a new operator 

and checking the neighborhood. We repeat this procedure until we reach the stopping criteria we 

defined for the intra-route TSR part. We set the best solution found during the entire search process 

as the best switching solution for the disrupted route. We evaluate this in context with the other routes 

in the search space to be able to compare the solution with the initial solution and the best transfer 

solution. 
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Figure 10: Tabu Search Rescheduling (TSR) method as developed in this study. 
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4.3.1.2 Inter-route Tabu Search Rescheduling 

Simultaneously with the intra-route TSR part, we start with the inter-route part of our TSR method. 

Here, we also start with the current state of the routes as initial solution, but we evaluate inter-route 

changes involving the disrupted route. Therefore, we evaluate a search space objective function result 

instead of a route objective function result, as done for the intra-route part of the TSR method.  

We start with the search space selection step as described in the previous section. It is important to 

note that transfer can include both backup vehicles (waiting at a depot) and en-route vehicles. Both 

types of vehicles are initialized in the search space selection when a trigger for rescheduling is triggered 

if their search space score is high enough to be included in the local search. 

For each of the initialized helper vehicles in the search space we will evaluate what the best location 

is to transfer orders from one vehicle to another. Two transfer types can be distinguished for making 

a transfer in general. A transfer is either performed at an intermediate point for two trips, or at a stop 

of one of the trips. Figure 11 shows an example of the transfer types for two example trip-ids: 901 and 

902. For the first transfer type, the additional travel time is for both vehicles from a stop (or the current 

vehicle location) to the transfer point and from the transfer point to the next stop, where we subtract 

the travel time between the current location and the next stop. For the second transfer type, additional 

travel time only applies for the helper vehicle, where the additional travel time consists of the travel 

time from a current location to the transfer point and from the transfer point to the next stop, 

subtracting the travel time between the stop, or the current location, and the next stop.  

 

 

Figure 11: Transfer types for en-route rescheduling. 

Because we do not want to evaluate all possible locations in the Netherlands for the transfers, we 

evaluate transferpoints in three classes for each of the potential helper vehicles. We select the best 

transferpoint found in this search based on an insertion heuristic we designed specifically for transfers. 

We first introduce the transferpoints we evaluate here: 
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1. Meeting as fast as possible: the two vehicles drive directly towards each other and they meet 

exactly in the geographical middle. When one of the vehicles is involved in a service time, 

meaning no pre-emption is allowed, the other vehicle waits a little longer at the transfer point. 

2. Meeting where paths cross: when modelling the two routes as a graph, possible intersections 

between the helper-route and disrupted route exist. We calculate the transfer location using 

a general line intersection equation and evaluate this transfer between the stops where the 

line intersection occurs. 

3. Meeting at one of the stops of the disrupted route: we evaluate all stops of the disrupted route 

as shown for the second transfer type (Figure 11). We only evaluate the stops of the disrupted 

routes because we do not want to further disturb the deliveries of this route. 

The insertion heuristic we use to evaluate which of the transferpoints is the bested is based on the 

Solomon I1 insertion heuristic, because we found in Chapter 2 that this is a simple and efficient way to 

evaluate insertions. However, we modify this heuristic to make it applicable for our situation. 

We define u as the transferpoint we evaluate for insertion on a route. We define dij as a distance 

between stop i and j, bj as the time of service for a customer j, bj(u) as the new time of service for 

customer j, and bu as the time of service for the inserted transferpoint. Equation 3 gives the cost 

component for the additional distance travelled. Equation 4 gives the cost component for changed 

time of service for customers.  

Because we insert the transferpoints in two routes we also calculate a waiting time. When one of the 

vehicles arrives before the other. We add the time it has to wait to the cost of the insertion in Equation 

5. We multiply this cost with the same weight as the other time component. We evaluate the added 

cost for the helper-route (kh) and disrupted route (kd) and select the minimum insertion cost as the 

transferpoint for the helper-route we evaluate. Equation 6 combines the cost components from 

Equation 3, 4 and 5 to calculate insertion cost c, where α1 and α2 are used to determine weights for 

distance and time respectively.  

 
 For kd and kh (3) 

 
 For kd and kh (4) 

 
 (5) 

  (6) 

 

A lot of parameters can be altered in our TSR method and we have only limited time to do so. 

Therefore, we fix the weights of distance and time in this insertion heuristic here. We measure our 

distances in meters and our times in seconds for this evaluation. We mostly base all of our evaluations 

on time, and because the time windows are the whole reason we reschedule, we also want to focus 

on the time part of this insertion heuristic here. Therefore, we set the weight of the time at four times 

the weight of the distance. Because the total of the two weight has to be equal to 1, this means we set 

α1 to 0.2 and α2 to 0.8. 

With the transferpoint as a known stop for both the potential helper vehicle and the disrupted vehicle 

we continue with the next step of our inter-route part of the TSR method. To determine the customers 

we transfer we use inter-route Tabu Search with all customers that are after the transferpoint for the 

helper-route and the disrupted route. As done for the intra-route Tabu Search, we first initialize an 

empty Tabu list and we select a move-operator for the neighborhood evaluation. With the selected 

move from the allowed inter-route moves we select the best solution using our objective function and 

we update our Tabu list. We repeat this process until the stopping criteria for the inter-route TSR are 
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satisfied. When we satisfy these stopping criteria we check if there is another vehicle to evaluate. 

When this is the case, we start selecting the best transfer location for this vehicle, otherwise we select 

the best transfer to be made over all potential helper vehicles and select this as the best transfer 

solution. 

4.3.2 Objective function 

Within the Tabu Search metaheuristic, we use an objective function to determine the best solution for 

the rescheduling problem. We define time in minutes for all routes as our main criterion for 

minimization. We use expected travel, service, break and wait times here because we deal with a 

future situation.  

We minimize the time needed to visit all customers in our search space. Since we deal with a problem 

where time windows are important, we penalize time window violations in some way in our objective 

function. Furthermore, we give a bonus to solutions that are more robust against future uncertainties. 

The robustness of a solution is measured in the number of minutes between the end of a customer 

time window and the planned time of service. Both bonuses and penalties are expressed in minutes, 

so the result of the goal function is in minutes as well. Keep in mind that this score does not directly 

translate to the duration of the tour. 

All routes have to return to their original depot. Therefore, we include the depot as the final stop of all 

routes. The origin locations of the routes are always given by the current location of the vehicle, where 

an attribute indicates the earliest departure time from the current location. All customers not yet 

visited are included as stops in the route. Within the minimization, all customers in the search space 

have to receive their order from one of the vehicles and vehicle capacities cannot be violated when 

transfers between vehicles are made. 

In our objective function, we define V as the set of all stops to be visited by all vehicles in our search 

space; customers, transferpoints and finally the depot. The planned arrival time at stop i is defined as 

xi. Furthermore, we define ti as the travel time towards stop i, bi as the break time of the vehicle when 

a planned break occurs in the drive to stop i, and si as the service time for the activity at stop i (delivery 

at a customer, transfer time at a transferpoint). Time windows are indicated by ai as the start of the 

time window, and ei as the end of a time window. Furthermore, we introduce waiting time wi when a 

vehicle would arrive at stop i before the start of the time window. It then waits till the time window 

starts, because it is allowed to start at that time. A transferpoint is visited by two vehicles that have to 

be at the transferpoint at the same time. Therefore, waiting time is introduced for the first vehicle that 

waits for the arrival of the second vehicle. The objective function for our metaheuristic is defined in 

Equation 7. 

 

 
(7) 

 

Functions are used in the objective function to penalize time window violations (f_penalty) and to give 

a bonus to robust solutions (f_robustness). Both have as input the end of the time window subtracted 

from the planned arrival time, indicating the expected lateness of arrival. We experiment with both 

the time window violation penalty function and the robustness function in this study. 

For our time window violation penalty we define three different types of functions that we want to 

research: 1) a linear penalty function, 2) a quadratic penalty function, 3) hard time windows with some 

‘grace’ time period, where we allow arrival during a small time period after the end of the time window. 

In the first type of function, we penalize al time window violation linearly for every minute of violation. 
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Disadvantage of this type of function might be that it can compensate many possibly small violations 

by creating one large time window violation. We use 10 times the TW violation time as our function to 

ensure that TW violations are not easily compensated by reduced total route time. The second function 

type (quadratic) test a function that deals with this problem. Disadvantage here might be that many 

customers receive deliveries a little late. To keep the quadratic function in the same order of 

magnitude as the other penalty functions, we use a simple quadratic function of x2. Equation 8 and 9 

define the first two penalty function types. 

 
 (8) 

 
 (9) 

 

We experiment with two more penalty functions: 5 minutes ‘grace’ and 15 minutes ‘grace’ to see the 

effects of some additional time in a real-time rescheduling context. Hard time windows are forced 

using a large penalty value. A hard time window is modelled with a penalty value of 1,000,000 minutes 

instead of infinite minutes. This way, when no solution is found without violation a hard time window, 

we are still able to find the best solution compared to the others. However, if one solution ensure no 

violation of hard time windows, this solution is always best because of the large penalty value. 5 and 

15 minutes are used as ‘grace’ values to see the effects of small (5 minutes) and somewhat larger (15 

minutes) ‘grace’ time. 

Because we work with a distinction between new and recurring customers in our study, where new 

customer time windows are indicated to be more important, we define hard time windows without 

‘grace’ for all function types. However, we also experiment with no distinction between the customer 

types (as we will explain in Chapter 5). Figure 12 shows all types of time window violation penalty 

functions we test in this study visually. 

 

Figure 12: time window violation penalty functions used in objective function. 

In our study, we also experiment with a robustness bonus function to find solutions that are more 

robust against future uncertainty. We use a function that gives a bonus only when negative delays 

exist. The maximum value of the bonus function is defined as max_robustness, a value we will fix in 

calibration of our rescheduling algorithm. Because a solution is not much more robust from other 
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solutions at a certain input value, we give the maximum robustness bonus when there is at least 15 

minutes between the end of the time window and the planned arrival. We do not use a linear function 

between 0 and 15 minutes of robustness because a robustness increase from 1 to 2 minutes is more 

valuable than a robustness increase of 14 to 15 minutes. Therefore, an exponential type of function is 

used to calculate bonus values on the interval between 0 and 15 minutes of robustness. The 

exponential function is calibrated visually using an online function plotting tool. Rapidly increasing 

bonus for the first part of the bonus function, while flattening the bonus for the larger robustness 

values to the max_robustness value, are calibration goals for this function. We find the bonus function 

defined in Equation 10 to fit this purpose. Figure 13 shows the robustness function tested in this study 

visually. 

 
 (10) 

 

 

Figure 13: Robustness bonus function used in objective function.  

4.3.3 Rescheduling operators 

Several operators can be selected for finding the best routes for intra- and inter-route Tabu Search. 

We describe the operators we selected in Chapter 2: exchange, 2-opt*, and Or-opt. The 2-opt* and Or-

opt operators where found in the literature as the best heuristics for problems with time windows. 

The exchange operator is included as a very fast and simple alternative. In the next chapter we 

experiment with the use of one or more of the operators. 

4.3.3.1 Exchange operator 

The exchange operator simply switches two customers that are within the ‘local’ Tabu Search process. 

It can be used for both intra-route and inter-route exchanges (both vehicles of inter-route exchanges 

have to be involved in the transfer). Major advantage of this heuristic is that the implementation is 

simple and fast. Major disadvantage is that is does not consider time windows in selection of the 

exchange candidates, so that it often evaluates options that are not likely an improvement on the 

current solution. 

An example of an intra-route exchange is presented in Figure 14. Here, stop 901_3 and stop 901_5 are 

exchanged in the sequence of delivery shown in 14a. The outcome of the exchange operator is shown 

in Figure 14b.  
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Figure 14: example of an intra-route exchange operation where: (a) is the original situation, and (b) is the exchanged-nodes 
situation. Note that it is also possible to use these exchange operations for inter-route exchanges. 

4.3.3.2 2-opt* operator 

2-opt* moves are specially designed for the use in problem instances with time windows. Problems 

with multiple routes enable us to exchange pairs of links while keeping the orientation within the 

route. In the 2-opt* heuristic, two arcs in the two selected routes are eliminated, replacing them with 

new arcs that connect the first customers on the first route to the last customers on the second route. 

An example is provided in Figure 15, where arcs 901_2  901_3 and 902_1  902_2 are eliminated 

and replaced by new arcs that connect the 901 and 902 routes. 

 

Figure 15: example of 2-opt* neighbor-generating move where: (a) is the original situation, (b) is the eliminated arcs situation, 
and (c) is the replacement arcs situation. 
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4.3.3.3 Or-opt operator 

The Or-opt exchange is a well-known node exchange heuristic. Where k-opt heuristics consider 

breaking arcs and replacing them with new connections, the Or-opt exchange considers sequences of 

one, two and three adjacent customers in a solution, moving it back or forth in the route sequence. 

The Or-opt heuristic moves sequences of adjacent customers that are close in space and time. The 

customers are inserted at a new location, while the orientation of the routes is preserved. Or-opt 

exchanges are suitable for inter-route and intra-route modifications, and because we use a small 

number of routes in the Or-opt Tabu Search, we use it both intra-route and inter-route (both vehicles 

of inter-route moves have to be involved in the transfer). An example of the Or-opt heuristic is 

provided in Figure 16, where the sequence of stop 901_1 and 901_2 is moved in front of stop 901_4. 

 

Figure 16: example of an intra-route Or-opt neighbor-generating move where stop 901_1 and 901_2 are moved to behind 
stop 901_4. (a) Shows the before Or-opt situation, (b) shows the after Or-opt situation. 

4.3.4 Stopping criteria 

The stopping criteria for our Tabu Search are defined as follows: if the best solution so far has not 

improved for I (Iintra and Iinter) consecutive iterations or when the total runtime of the algorithm is more 

than T (Tintra and Tinter) seconds, the we terminate the Tabu Search process and return the best solution 

so far. The stopping criteria are part of the experimental factors of our simulation setup, meaning that 

we experiment with the best settings for the stopping criteria. 
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4.4 RESCHEDULING METHODOLOGY CONCLUSION 
Our TSR method to solve rescheduling problems consists of three phases: triggers, selection of a 

relevant helper vehicles, and rescheduling calculations. We identify possible triggers on delays, ETA’s, 

robustness, vehicle defects, vehicle breakdowns, accidents and events. When we trigger for 

rescheduling, we determine relevant vehicles we want to evaluate for helper-actions based on helper 

distance, and the number of deliveries to be made by the helper. We select vehicles we evaluate for 

helper actions based on a threshold score. We evaluate all helper vehicles by insertion of the transfer 

location using an adapted version of the Solomon I1 insertion heuristic where we include waiting times. 

We test 2-opt*-, or-opt- and exchange-operators for inter-route Tabu Search to find the best inter-

route solution given a transfer location we select. Simultaneously with the evaluation of inter-route 

transfers, we use Tabu Search to find the best intra-route switching solution.  

We determine the solution quality of the initial solution, all possible helper actions and the intra-route 

switching using an objective function, and we select the best solution found to continue the routes of 

the en-route vehicles. The objective function consists of total time needed for the vehicles, time 

window violation penalties, and possibly an exponential robustness bonus function. To test the 

effectiveness of our TSR method, we need to set up a simulation that enables us to compare the 

current rescheduling process (as decribed in Chapter 3) with our TSR method (as described in this 

chapter). We describe the simulation model we use in the next chapter. 
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5 SIMULATION MODEL 

We set up a simulation model to be able to compare the current rescheduling process and the TSR 

method. We use simulation because we are not able to test the rescheduling of routes in real-life 

because of cost, time and control of operations. We set up a simulation model to achieve the following 

goals: to calibrate general settings for the TSR method, determine the effectiveness of different trigger 

settings, find good objective function settings and determine the most effective neighbor operators. 

The type of simulation we use is discrete event simulation. Discrete event simulation only models the 

points in time at which the state of the system changes (Robinson, 2004). More specifically, we apply 

the three phase approach. This approach classifies Booked (B) events and Conditional (C) events. First 

phase of the approach is to go to the next chronological event. Second phase is to execute all B-events. 

Third phase is to execute all C-events. 

We use a discrete event simulation software package called Simpy. We chose Simpy – a Python library 

specifically designed for discrete event simulation – as our simulation software because it enables us 

to very quickly simulate a large number of discrete events. Another advantage is that, because we 

programmed our algorithm in Python as well, we limit the number of programs used for our research. 

Disadvantage of using Simpy is the fact that it has no animation component. Print statements of events 

enable us to debug and verify the model, and to follow the occurring events in a simulation run.  

We aim to model reality as closely as possible in our experiments. We use actual planning data of our 

retailer case study as the planned instances for our simulation runs. We do this to be as close to real 

instances as possible, but also to ensure that we do not have to make an initial planning for each of 

the simulated days. We use planning data of September 28th to October 11th for our simulation runs. 

We run simulations for all planned shifts in this time period: Monday to Saturday, both morning shift 

(PO) and afternoon shift (PA). We model the delivery process as a graph of nodes (i.e., stops) and edges 

(i.e., paths between the stops), where travel times determine the time a vehicle needs to drive over 

an edge. 

Section 5.1 introduces the conceptual model for our simulation setup. Section 5.2 describes the 

implementation of methods in the model. Section 5.3 describes the model verification and validation. 

Section 5.4 gives conclusions that follow from our simulation model chapter. 

5.1 CONCEPTUAL MODEL 
A conceptual model is a non-software specific description of the simulation model that is to be 

developed (Robinson, 2004). To describe our conceptual model, we introduce the model assumptions, 

objects, events, input and output.  

5.1.1 Model assumptions 

To be able to model our real-world delivery process, we have to make assumptions to simplify reality. 

We make the following assumptions for our simulation model: 

General assumptions 

 The delivery process is modelled as a graph of nodes (i.e., stops) and edges (i.e., paths).  

 Customer orders are all placed and definitive. No changes to either the demand or the time 

windows are made during the simulation runs. 

 Service cancellations are not allowed, all customers need to be served. 

 A homogeneous fleet of vehicles is used.  
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 Backhaul is not included. All transportation materials (crates, boxes, etc.) that are returned by 

the vehicles can be folded and stacked to ensure that negligible space is taken by the products. 

 No additional goods are available at the depots. This means that the goods available in a 

specific vehicle have to be delivered by the current vehicle, or be transferred to another vehicle 

that is available for this. 

 Customers are assumed to always be at home at the time of delivery. Customers are also 

assumed to be at home when a vehicle is up to 15 minutes earlier than the start of the time 

window. 

 Once a vehicle has returned to its depot, it is otherwise occupied and it is not available for 

helping out other vehicles. 

 One backup vehicle is available at three depot locations in the Netherlands: Almere, Rotterdam 

and Utrecht. All backup vehicles are empty and they are able to help instantly if necessary. 

Departure times, service times & driving times 

 Depot departure delays are based on the realized departure delays. As explained in Chapter 3, 

we have a good dataset of departure delays for all vehicles driving. We use these in our 

simulation runs as well, without additional uncertainty. When no depot departure is registered 

for the trip, the planned departure is used without any delay. 

 Service times are based on realization data as well, meaning no additional uncertainty is used 

in the simulation runs. When no service time is registered for the trip, the planned service time 

we use the planned service time without delay. Service times are always completed, meaning 

that the process cannot be interrupted during the servicing of the customer. 

 Both departure time delays and service time delays are modelled as ‘sudden’ delays, meaning 

that the delay is known when the vehicle departs from the depot or stop location. 

 Travel times between stops are calculated using the freeflow speed (see Chapter 3) for the 

distance class on the Euclidian distance between the two stops. Next to using this 

approximation of the freeflow speed we sample a percentage travel time delay from the 

empirical distributions in Appendix B. We do this using empirical data sampling described by 

Robinson (2004). We sample a delay class from the distributions and use a uniform distribution 

within each delay class to find the exact percentage delay. 

 We assume not-correlated travel delays (between one drive and the next) because delays in 

the delivery process that is modelled can be caused by multiple factors such as traffic, difficulty 

of finding a parking space or administrative actions of the driver. It is therefore hard to 

determine when we can, and when we cannot assume correlated delays. 

 Travel time delays are gradually added to a path travel time. E.g., when a delay of 150% occurs, 

all parts of the path take 150% more time than planned. 

 When calculating rescheduling options, we assume that we can accurately predict the travel 

times towards the following five stops, meaning we deal with a prediction horizon of 

approximately 80 minutes. We sample percentage delays as described, and we apply the same 

percentage delay on all travel times towards possible next stops from the current location in 

our rescheduling calculations. This means that for each changed sequence of stops we apply 

the same delays to ensure we do not make an unfair comparison. For the remainder of the 

travel times on each of the routes we plan on the average speed in each distance class because 

we assume that we cannot fully predict these travel times. 
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Breaks & waiting time 

 Vehicle drivers are obliged to take planned breaks because of driving time laws and 

regulations. We therefore assume that breaks are always held. A break is usually planned 

before a stop. When a rescheduling operation is performed, breaks are held at the stop closest 

to the originally planned time of a break. The breaks are linked to a vehicle, so when a stop is 

transferred, the break is not transferred. 

 Breaks are held at a stop location, right before the service time of the stop. 

 Break times are equal to the planned break times of the retailer. 

 Waiting time is applied for a vehicle when it arrives more than 15 minutes earlier then the start 

of the time window. A vehicle is allowed to start a delivery when it is 15 minutes or less too 

early compared to the start of the time window. 

 When needed for a rescheduling operation, wait and break events can be interrupted. The 

remainder of the waiting or breaking time is cancelled. 

Breakdowns & defects 

 We know instantly about vehicle defects and breakdowns upon occurrence. 

 A vehicle cannot have a defect and a breakdown on the same route. 

 Vehicle breakdowns are technical vehicle problems that cause a vehicle not being able to 

continue its route. We determine the vehicle breakdown probability in our simulation setup 

to be 87/135,000=0.06%, based on the data provide by the fleet support manager (Section 

4.1).  

 Vehicle breakdowns cause a pickup of the remaining customer orders needed at the 

breakdown location.  

 We initialize before the start of a simulation if a vehicle will have a breakdown during its route. 

When this is the case, we determine the time of the breakdown for this vehicle. The moment 

of a vehicle breakdown is determined using a uniform distribution over all travel times of a 

route, since the probability of vehicle breakdowns is the same for every minute that the vehicle 

drives. 

 Vehicle defects are problems with a vehicle that can be solved with some minor roadside 

assistance. The probability of a vehicle defect occurrence is 773/135,000=0.6%, based on the 

data provide by the fleet support manager (Section 4.1).  

 Vehicle defects take 60 minutes to solve.  

 We initialize before the start of a simulation if a vehicle will have a defect during its route. 

When this is the case, we determine the time of the defect for this vehicle. The moment of the 

vehicle defect is determined using a uniform distribution over all travel times of a route. The 

underlying assumption here is that the probability of vehicle defects is the same for every 

minute that the vehicle drives. 

 Vehicle defects and breakdowns can only occur during a driving activity of the vehicle. 

Triggers & rescheduling 

 When a trigger for rescheduling occurs, the simulation is temporarily stopped to calculate 

rescheduling options. When finished with the rescheduling calculations, the simulation is 

continued with the new routes as determined in the rescheduling. 

 The location of vehicles when a rescheduling operation is triggered are determined as follows 

(more information on the vehicle states is included later in this section):  

o At the stop when the state of the vehicle is “service”. 
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o At a distance that is equal to the time driven by the vehicle divided by the total driving 

time for the path when the state of the vehicle is “drive“. 

o At the break location (always a customer) when the state of the vehicle is “break“. 

o At the wait location (always a customer) when the state of the vehicle is “wait“. 

o At the vehicle breakdown location when the state of the vehicle is “breakdown”. 

o At the vehicle defect location when the state of the vehicle is “defect”. 

 Transferring goods takes a fixed time of 3 minutes plus 0.5 minutes for each unit of demand 

that is transferred. 

 Vehicles can park everywhere. When a transfer location between two stops is used, it is 

assumed that the vehicles are always able to park in this location. 

 When a route is rescheduled with an inter-route transfer, the vehicle cannot be rescheduled 

anymore during the rest of the simulation. 

 When a route is rescheduled with an intra-route switch, the vehicle cannot be rescheduled for 

an hour. 

 Vehicles that are involved in another rescheduling operation are occupied and cannot help out 

other vehicles that need rescheduling. 

 We set a high penalty (1,000,000 minutes) on time window violations for new customers. This 

way, new customer time window violations are not impossible, but options without time 

window violations for new customers will always be preferred.  

 We use the same penalty function for new customers as for recurring customers in the 

experiments of the objective function phase where there is no new customer distinction. 

5.1.2 Objects & attributes 

We define objects and object attributes for our simulation model here. Figure 17 presents the objects 

and object relations of the objects used in our model. If a relation between two objects exists, we use 

an arrow for this relation with a given multiplicity for the relation. We use the following objects in our 

simulation model: 

 Plan: this is the planned collection of vehicles, customers, the sequence of the customers (a 

route), and orders. Plans are made by the case study retailer and separate planning instances 

are available for each morning (PO) and afternoon (PA) shift. During the simulation, routes 

might be altered by rescheduling, but the collection of orders remains intact because of the 

assumption that no new demand arrives dynamically over time. 

 Vehicle: all vehicles are modelled as separate objects. The vehicles have several attributes, all 

shown in Figure 17. A vehicle always has a single vehicle id and “ritid” (id for the route). A 

route_type attribute represents the type of route. The list of stops is an ordered collection of 

locations that are to be visited by the vehicle driving the route. The list of stops can be altered 

during the simulation. Order ids in the vehicle that belong to a stop are removed from the 

vehicle when the stop is visited. When no more order ids are in the vehicle, the vehicle is 

empty. State indicates what the vehicle is doing at that moment in the simulation. Table 3 

displays the possible states of a vehicle. The state of the vehicle is updated for each simulation 

event (see the next part of this section for more explanation). A vehicle has an is_rescheduled 

attribute to indicate whether or not the vehicle has just been rescheduled. If this is set to ‘True’ 

the vehicle is not available for rescheduling. When a vehicle is involved in a transfer, this 

attribute remains ‘True’ for the rest of its route. When an en-route order switch is done for 

the vehicle, a timeout is set for when the is_rescheduled attribute is set back to its default 

value: ‘False’, meaning the vehicle can be triggered for rescheduling again.  
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 Stop: in most cases, stops are customers that placed an order with a time window (startTW to 

endTW). The depot is also included as a stop at the start and end of the route. For rescheduling 

purposes, two additional stop types are introduced: transferpoints and current locations. At 

transferpoints, goods are transferred from one vehicle to another. A transferpoint can have 

the same location as a stop, but it is modelled as a separate stop. The current location stop 

type is used when a vehicle is driving. Another stop type is the dummy customer. Backup 

vehicles drive towards a dummy customer to wait here until they are possibly needed in 

rescheduling actions. They dummy customers can also be located at a depot. All possible stop 

types are summarized in Table 4. Next to a stop type, each stop has a name and location (x, y). 

All stops also have an order id and a Boolean new_cust attribute. Remaining attributes of the 

Stop-object represent arrival (planned and realized), departure (planned and realized), wait 

and break times. 

 Order: the object order is a given number of packages that belongs to a customer’s order_id. 

Order is modelled as a separate object to be able to also refer to orders from the vehicle object. 

Table 3: possible vehicle states during a simulation run. 

Vehicle state Description  

Loading Vehicle is loading orders at the depot. 

Driving Vehicle drives towards one of the stops on his route. 

Servicing Vehicle is busy servicing a stop (delivery of goods). 

Breaking Vehicle takes a break in the delivery process. 

Waiting Vehicle waits till the start of the time window to start service. 

Breakdown Vehicle is broken down and cannot continue its route. 

Defect Vehicle receives minor roadside assistance to solve technical problems. 

Drive_empty Vehicle has delivered all orders on its route and drives back empty to its depot. 

Backup Vehicle waits as a backup vehicle at a given location. 

Finished Vehicle is finished with its entire route and it is no longer available for the rest of 
the simulation process. 

 

Table 4: possible stop types within the simulation. 

Stop type Description  

Current_location The current location of a vehicle, only relevant when rescheduling. 

Customer A customer that ordered goods at the retailer. Goal is to visit all customers 
within specified time windows. 

Transferpoint A location where goods are transferred from one vehicle to another. A 
transferpoint is part of two different routes, so it is visited by two vehicles. 

Dummy_customer A dummy customer that is used for backup vehicles. They drive towards this 
dummy customer a ‘service’ this customer. Because it is a dummy customer, the 
service time can be interrupted in this case. 

Depot The start and end location of a vehicle. 
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Figure 17: object relations, types and attributes of the model implementation. 
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5.1.3 Events 

In our simulation for en-route rescheduling we define events that cause the state of our system to 

change. Because we apply the three phase approach, Booked (B) events and Conditional (C) events are 

set for in our event list. Table 5 displays the events. An event is finished at the same moment that the 

next event starts. Figure 18 displays how a simulation replication steps through the event list in our 

simulation model. Here, the 24 shifts in our test set are a single replication. When a trigger from either 

the benchmark heuristic or the Tabu Search rescheduling algorithm is triggered during one of the 

simulation runs, the simulation is paused and the rescheduling actions are performed. 

Table 5: event list for rescheduling test simulation. 

Event name Belongs to [Object] Event type Event description 

Start of shift Plan C The earliest time a vehicle finished 
loading at the depot, the shift starts. 

Load Vehicle B We only know the end of the loading 
time in our simulation. Departure delays 
can occur during the loading time. 
Realized delays are used. When no 
realization of the departure is known, 
the planned departure time is used. 

Drive Vehicle B A vehicle starts driving towards its next 
stop upon finishing a service time at a 
previous customer. The drive duration is 
based on a simulated driving time. 

Break Vehicle B A vehicle starts a break according to the 
planned break time after finishing the 
previous event. The break is held at the 
location of a stop before the start of a 
service. 

Wait Vehicle C A vehicle starts a waiting events when it 
finishes the driving event more than 15 
minutes earlier than the start of a time 
window. The vehicle waits with the start 
of a service until it is allowed to start. 

Service Vehicle B A vehicle starts the service of a 
customer at the moment of arrival (if no 
break or waiting time is relevant). The 
service time is based on a realized 
service time. When no realized service 
time is available the planned service 
time is used. 

Reschedule Vehicle, Plan C Triggers are checked and if  a trigger is 
activated, the vehicle and potential 
helper vehicles from the search space 
selection function in the plan are 
rescheduled. A switch is instantly 
effective. A transfer is added as a stop 
to the relevant routes. 

Transfer Vehicle B A vehicle starts to transfer after 
deciding on the transfer in a 
rescheduling calculation. The transfer 
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time needed is based on the number of 
demand units that have to be 
transferred. Orders are moved from one 
vehicle to another. 

Breakdown Vehicle C When the state of a vehicle is “driving” 
and the current simulation time is larger 
than the breakdown time of the vehicle, 
a breakdown starts and the vehicle 
cannot continue its route. 

Defect Vehicle C When the state of a vehicle is “driving” 
and the current simulation time is larger 
than the defect time of the vehicle, a 
defect starts and an hour is needed to 
solve this vehicle defect. 

Arrive at depot Vehicle B All customers are visited and the vehicle 
is back at the depot. The vehicle is now 
no longer available for rescheduling. 

End of shift Plan C If all vehicles are finished with their 
route, we set the end of the shift. We 
then continue with the next shift. 

 

 

Figure 18: event handling in simulation runs.  
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5.1.4 Model input 

We describe the simulation data, number of replications, and experimental factors here. 

5.1.4.1 Simulation data 

We use actual planning data of our retailer case study as the planned instances for our simulation runs. 

We use planning instances of all shifts between September 28th and October 11th for our simulation 

runs. We only use two weeks of the total available dataset because of the total runtime needed for 

simulation runs. We selected the last two weeks of the available dataset because the registration of 

delivery times in the DCT was the best for these weeks (see Appendix A).  

We use common random numbers for tests of the different scenarios and methods, meaning that all 

events with variability have the same characteristics for the different scenarios and methods that are 

compared. Common random numbers are applied for each shift and replication over the different 

experiments. The events that are based on variability are: vehicle defects, vehicle breakdowns, driving 

events (travel times), and operator selection within the allowed operator types. All distributions used 

for the travel times in the simulation replications are based on the distributions found in Chapter 3 and 

Appendix B. We use the defect and breakdown probabilities as defined at the start of this section. We 

do our operator selection using uniform distributions. 

5.1.4.2 Number of replications 

The time windows are already specified in the plan we retrieve from the database of the DCT in our 

simulation replications (runs). We can assume that the demand or time windows cannot change 

anymore after the plan is uploaded in the DCT. This is not allowed in the real-world case as well.  

We deal with a terminating solution, meaning that the simulation will stop once no more events are 

scheduled. Therefore, long simulation runs are not an option, and we choose to do multiple 

replications for each of the planning instances. A replication is a single run of a simulation model that 

uses specified streams of random numbers, which in turn cause a specific sequence of random events. 

By performing multiple replications and taking the mean of the results, a better estimate of model 

performance is gained.  

Variables that are based on variability in our simulation model are: the number of vehicle defects, the 

number of vehicle breakdowns, travel times, and the selection of an operator within the allowed 

operator types. Some replications will include defects and breakdowns, but we select the travel times 

to determine the number of replications because we sample travel times for all paths from the 

distributions we defined in all experimentes.  

We determine a number of replications for our simulation experiments using the confidence interval 

method described in Robinson (2004). This method keeps track of all travel times in the simulation to 

see how well the mean of a variable is being estimated. The narrower the interval the more accurate 

the estimate is deemed to be. A confidence interval can be determined using Equation 11. We define 

CI as the confidence interval, t as the value of the t-distribution based on n-1 degrees of freedom and 

α as confidence value (we use a 99% confidence interval). Furthermore, we define S as the standard 

deviation of the output data of the replications, �̅� as the average travel time over a replication, and n 

as the number of replications. 

 

 
(11) 
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We accept deviation up to 1% for our simulation runs because one run is long, meaning that many 

travel times are sampled in each of the runs. Table 6 shows the results of the confidence interval 

method, where a percentage deviation is eventually determined on the lower- and upper intervals. 

Based on the results we find, we determine that we use 3 runs for each of our experiments. 

Table 6: Number of runs determination using the confidence interval method on travel times within the simulation model. 

Run Mean travel 
time [min] 

Cumulative 
mean [min] 

Standard 
deviation 

Lower 
interval 

Upper 
interval 

Percentage 
deviation 

1 9.1162 9.1162 n/a n/a n/a n/a 

2 9.1223 9.1193 0.0044 8.9230 9.3155 2.15% 

3 9.1175 9.1187 0.0032 9.1001 9.1373 0.20% 

 

5.1.4.3 Experimental factors 

The experimental factors are the input variables that are varied over the different experiments. As 

explained before, we test two types of methods: a benchmark heuristic and our Tabu Search 

Rescheduling (TSR) method. Table 7 presents the experimental factors used in our simulation runs. If 

we would experiment with all possible combinations, this would result in a lot of experiments. Because 

it is difficult and time-consuming to analyze too many experimental results, we propose a simulation 

setup that consists of the following phases:  

1. Calibration phase aims to find settings that ensure realistic and feasible solutions for 

rescheduling; 

2. Trigger test phase aims to find the influence of different types of trigger sets for the benchmark 

and Tabu Search rescheduling methods; 

3. Objective function phase aims to find good settings for the objective function in Tabu Search 

rescheduling for our use case; 

4. Operator selection phase aims to find good ‘local’ operator settings for our use case; 

5. Managerial insights phase aims to give additional insights for management purposes. The 

experiments are defined based on findings in other experiments. We define the managerial 

insights experiments in Section 6.5. 

The first phase fixes some parameters for use in the rest of the experiments. We consider experiment 

1 and 2 as our base experiments for the benchmark heuristic and TSR method respectively. Phases 2, 

3, and 4 are used to see the influence of triggers, objective function variations, and allowed operators 

for rescheduling respectively. In the operator selection phase we distinguish between intra- and inter-

route rescheduling, because the 2*-operator can only be used in inter-route rescheduling. We include 

a final phase to show some additional insights on the results of our rescheduling method for 

management purposes. Table 8 shows the results of different combinations of experimental settings 

in the experiment settings for our simulation model. 

Table 7: Experimental factors. 

Simulation phase Parameter Values 

1) Calibration Method Benchmark Rescheduling Heuristic (BRH) 
Tabu Search Rescheduling (TSR) 

2) Trigger tests Triggers Benchmark triggers 
TS triggers 

 Robustness trigger in minutes  5 minutes 
10 minutes 

3) Objective function TW violation penalty Linear penalty function  
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Quadratic penalty function 
5 minutes 'grace' (HTW) 
15 minutes 'grace' (HTW) 

 Robustness bonus No bonus 
Robustness bonus function 

 Whether or not we distinguish 
new customers in our objective 
function 

Yes 
No 

4) Operator selection The use of different types of 
exchange/2-opt*/Or-opt 
operators in the ‘local’ Tabu 
Search part of the rescheduling 
algorithm 

33% exchange, 33% 2-opt*, 33% Or-opt 
100% Or-opt 
100% exchange 
50% exchange, 50% Or-opt 
50% 2-opt*, 50% exchange 
50% 2-opt*, 50% Or-opt 

5) Managerial insights Additional analyses that are 
interesting for management. 

To be defined in Chapter 6. 

 

5.1.5 Model output 

We compare the performance of different methods and settings to determine the solution quality of 

different TSR settings. The performance measures we use to compare the different solutions are listed 

below. We present total numbers of the two weeks of simulation data, where the average values are 

used per shift. This way we limit the amount of output we analyze, while we are able to state how 

much we can save over a time period of two weeks. 

 New customers late [#]: a measure for the number of new customers that receive a late 

delivery for customers that place a first time order at the retailer; 

 Recurring customers late [#]: a measure for the number of recurring customers that receive a 

late delivery for customers that have placed order at the retailer before; 

 Violation time [min]: the total time that vehicles arrived after the end of the time window 

summarized over all late deliveries; 

 Total distance [km]: the distance that all vehicles together travel to service all customers; 

 Switches made [#]: the number of times a rescheduling calculation results in an intra-route 

switch of customers; 

 Transfers made [#]: the number of times a rescheduling calculation results in an inter-route 

transfer of customers:  

 CPU time for rescheduling calculations [s]: the time in seconds we need for our TSR method. 

Additional output that we do not show in our main report, but only in our more detailed representation 

of the results in Appendix D, is listed below. 

 Vehicles [#]: total number of vehicles we use to service all customers; 

 New cust. [#]: total number of new customers in all shifts; 

 Rec. cust. [#]: total number of recurring customers in all shifts; 

 Total time [min]: the total time needed for all vehicles to service all customers (includes break, 

travel, service and waiting times); 

 Breakdowns [#]: the average number of breakdowns for the experiment; 

 Defects [#]: the average number of defects for the experiment; 

 No changes [#]: the number of times that TSR calculations did not find a better option than to 

continue as planned before. 
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Table 8: Experiment settings for the simulation model. 

Exp Method Triggers Robustness trigger TW violation penalty Robustness bonus New cust. 
distinction 

intra-route 
operators 

Inter-route operators 

1 BRH BRH - - - - - - 

2 TSR TSR No Linear No Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

3 TSR TSR Yes Linear No Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

4 BRH TSR Yes - - - - - 

5 BRH TSR No - - - - - 

6 TSR BRH - Linear No Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

7 TSR TSR No Quadratic No Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

8 TSR TSR No 5-min HTW No Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

9 TSR TSR No 15-min HTW No Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

10 TSR TSR No Linear Yes Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

11 TSR TSR No Quadratic Yes Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

12 TSR TSR No 5-min HTW Yes Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

13 TSR TSR No 15-min HTW Yes Yes 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

14 TSR TSR No Linear No No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

15 TSR TSR No Quadratic No No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

16 TSR TSR No 5-min HTW No No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

17 TSR TSR No 15-min HTW No No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

18 TSR TSR No Linear Yes No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

19 TSR TSR No Quadratic Yes No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

20 TSR TSR No 5-min HTW Yes No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

21 TSR TSR No 15-min HTW Yes No 50%EX, 50%OR 33%2*, 33%EX, 33%OR 

22 TSR TSR No Linear No Yes 100%OR 100%OR 

23 TSR TSR No Linear No Yes 100%EX 100%EX 

24 TSR TSR No Linear No Yes 50%EX, 50%OR 50%EX, 50%OR 

25 TSR TSR No Linear No Yes 50%EX, 50%OR 50%2*, 50%EX 

26 TSR TSR No Linear No Yes 50%EX, 50%OR 50%2*, 50%OR 
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5.2 MODEL IMPLEMENTATION 
This section describes how the rescheduling methods are implemented in the simulation model. We 

first describe the benchmark rescheduling heuristic, which mimics the control room rescheduling 

actions. After this, we describe the Tabu Search Rescheduling (TSR) method implementation. 

5.2.1 Benchmark heuristic 

Vehicle drivers are obliged to call the control room about their lateness when they are either stranded 

(e.g., due to a vehicle defect or breakdown), or when they are 20 minutes or more behind schedule. 

This is, in the benchmark heuristic, the moment that the control room team is triggered to start 

rescheduling. We assume that stranded vehicles are instant triggers for the control room team. They 

state that the 20 minutes lateness call is correctly done by most drivers. Still, some variation can be 

assumed for the time of calling. To mimic drivers calling about their lateness we use a uniform 

distribution with 20 minutes late and 30 minutes late as its boundaries. Each vehicle has a randomly 

assigned threshold value from this uniform distribution for the moment it will call the control room. 

When the lateness exceeds this threshold we simulate a call by the driver in our benchmark heuristic. 

The control room team starts with checking if there are stops where the current delay will ensure late 

delivery based on delay and time windows. If not, the simulation continues without setting a timeout 

till the next trigger. If a problem exists for one or more stops, these stops are remembered in the next 

steps of the benchmark heuristic.  

The control room team first tries to solve the problem for the problem stops by moving stops forward 

in the route sequence, so that they will receive their order earlier. When this solves at least a part of 

the problem without creating another problem in the route, the stop is moved in the order. They check 

if there still is a problem after this. If this is the case, they continue to look for a transfer. The control 

room team checks for empty helper vehicles in a range of 15 kilometers Euclidian distance. This is a 

large range, but they do this because they only work with empty helper vehicles so no other deliveries 

are endangered by reschedule actions. If a helper vehicle is found, the empty vehicle drives towards 

one of the next stops of the disrupted vehicle to transfer customer orders.  

In case of a breakdown, the situation is somewhat different than when lateness triggers rescheduling. 

When a breakdown occurs, the nearest empty vehicle is used as helper to pick up the customer orders 

from the breakdown location of the disrupted vehicle. No maximum distance of the helper is used in 

this case. 

When no switch or transfer identified by the benchmark heuristic can ensure in-time delivery for all 

customers, the customers that will receive a late delivery are informed about the lateness by the 

customer service department of the retailer.  

5.2.2 Tabu Search rescheduling 

For the Tabu Search rescheduling, we fully described the methodology in Chapter 4. However, we used 

some simplifications and generalizations for our triggers when implementing the method in our 

simulation model. The triggers are implemented in the model setup in the following way: 

 ETA/Robustness trigger: expected violation of time windows based on current lateness of a 

vehicle and expected travel times. A rescheduling operation is triggered here when the 

expected lateness of a vehicle is larger than the smallest difference between expected start 

time at a customer and the end of the time window. When using a robustness trigger, not the 

end of the time window, but the end of the time window minus some additional robustness is 

used to earlier signal a need for rescheduling. The use of the robustness trigger is varied in 
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different experiments. We assume that no other (faster) paths are available for a vehicle when 

its ETA trigger is triggered. 

 Vehicle defect trigger: vehicle defects are problems with a vehicle that can be solved with 

some minor roadside assistance. When such a problem occurs, this trigger is instantly activated 

and a rescheduling is initiated. 

 Vehicle breakdown trigger: we consider vehicle breakdowns as a vehicle that is not able to 

continue its route. When such a problem occurs, this trigger is instantly activated and a 

rescheduling is initiated. 

Other triggers we mentioned are accident and event triggers. These are hard to include in the 

simulation setup however, and no data on the actual disruptions caused by accidents and events is 

available. We therefore omit these trigger types from our simulation experiments. 

5.3 MODEL VERIFICATION & VALIDATION 
This section describes the model verification and validation steps subsequently. The verification step 

aims to verify if the simulation works as intended. The validation step determines if the simulation 

model is an accurate representation of the real system. 

5.3.1 Verification 

The verification process is concerned with determining if a simulation program works as intended (Law, 

2007). Verification is done as an iterative process throughout the model construction phase. Every 

time new objects are added to the model, the correct implementation is checked by printing all 

attribute changes of objects on events. When the attribute changes are correct with respect to the 

conceptual model for each type of event, new objects and functions are added to the model, verifying 

them as well. 

We also verified the correctness of the simulated travel times, defects and breakdowns here. Table 9 

shows both the historical mean and variance and the mean and variance of the model output. We find 

that the differences are small enough to verify that our model input is correct. We do see lower model 

output mean values for the travel times, but the differences are small. The standard deviations are 

similar as well for the historical and model output variables. The number of runs and the 

implementation of defects and breakdowns seem to ensure realistic percentages for these verification 

numbers in the simulation output. 

Table 9: Verification of simulation model output. 

Name Historical 
mean [min] 

Historical 
standard 
dev. [min] 

Model 
output  
mean [min] 

Model output 
standard dev. 
[min] 

Travel times in distance class 0-0.5 km 2.94 2.00 3.15 2.92 

Travel times in distance class 0.5-1.0 km 5.92 2.61 5.76 2.70 

Travel times in distance class 1.0-1.5 km 7.63 3.04 7.34 2.80 

Travel times in distance class 1.5-2.0 km 9.04 3.27 8.66 2.95 

Travel times in distance class 2.0-2.5 km 10.27 3.45 9.89 3.17 

Travel times in distance class 2.5-3.0 km 11.33 3.79 10.80 3.38 

Travel times in distance class 3.0-4.0 km 12.73 4.28 12.13 3.94 

Travel times in distance class 4.0-5.0 km 14.31 4.59 13.63 4.22 

Travel times in distance class 5.0-6.0 km 15.96 4.92 15.18 4.40 

Travel times in distance class 6.0-7.0 km 17.63 5.49 16.81 5.11 

Travel times in distance class 7.0-8.0 km 18.96 5.80 18.09 5.25 
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Travel times in distance class 8.0-10.0 km 20.79 6.00 19.92 5.66 

Travel times in distance class 10.0-12.5 km 22.94 6.05 22.06 5.72 

Travel times in distance class 12.5-15.0 km 25.37 6.57 24.45 6.27 

Travel times in distance class 15.0-20.0 km 29.62 7.75 28.90 7.96 

Travel times in distance class 20.0-25.0 km 34.17 8.45 33.02 8.39 

Travel times in distance class 25.0 km < 41.03 11.13 41.99 12.69 

Vehicle Breakdowns 0.06% - 0.05% - 

Vehicle Defects 0.60% - 0.62% - 

 

5.3.2 Validation 

The validation process determines whether the simulation model is an accurate representation of the 

system, for the objectives of the study (Law, 2007). We check if the overall model provides a sufficiently 

accurate representation of the real world system here. We check if the results of running an 

experiment with common random numbers gives similar results to the actual delivery times and 

durations. We validate on the model output of experiment 1: the benchmark heuristic base 

experiment. This experiment aims to model the current method of rescheduling. We compare the 

output of this experiment with the realized data from the DCT database. 

Figure 19 shows that the distribution of time window violation times in our benchmark experiment is 

similar to the one found in the realization data. Largest differences are found in the category 0-5 

minutes delay – where the realization data has a larger percentage – and the categories with the most 

extreme delays – where the benchmark experiment has a larger percentage. This indicates that we 

overestimate the number of extreme travel delays in our experiments.  

Figure 20 and Figure 21 display the validation results on numbers of late deliveries and total time 

needed for delivery respectively. We use percentage deviations of our simulation results from the 

realizion data in the DCT to preserve data confidentiality. We include the realization data from the DCT 

itself in Appendix C. We calculate the percentage deviation using: (simulation – realization) / 

realization. Figure 20 shows that we overestimate the total number of late deliveries in our simulation 

experiments, where we used a total number of late deliveries for recurring and new customers. The 

general pattern is similar to the realization data, but we do not find a fit of our simulation results. We 

also see this in the fluctuations of our percentage deviation. The total number of late deliveries is too 

high for most days in the simulation data. The overestimation of the number of late deliveries might 

be explained by the fact that our benchmark heuristic only looks at solving the number of ‘problems’ 

on routes. The control room team probably takes some measure of problem severity into account that 

we did not model in our benchmark heuristic.  

Figure 21 shows that the total time for all vehicles and deliveries in the benchmark experiment is very 

close to the realized total time. We find most deviations within a margin of 5%, with maximum 

deviations of 8%. We see that morning shifts often underestimate the total time, while afternoon shifts 

often overestimate the total time. This indicates that there is a distinction between morning and 

afternoon travel times. Still, the deviations are small enough to say that the travel times and fit of total 

time are good enough for our simulation model. 

We overestimate the total number of late deliveries in our simulation model. We conclude that we 

model reality close enough to make a fair comparison between experimental settings and different 

numbers of late deliveries. The total time fits the real situation well and the numbers of late deliveries 

are comparable to the real situation. The model enables us to show the results of our TSR method well, 

but the precise benefits of the method might differ slightly when actually implemented in the DCT. 
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Figure 19: histogram of time window violations according to the realization data and experiment 1. 

 

Figure 20: percentage deviation of the simulated total number of late deliveries (number of recurring + new customers with 
late delivery) from the realized late deliveries per shift in the test set 
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Figure 21: percentage deviation of simulated total time (including all service, travel, wait, break times) needed for all 
deliveries from the realized total time needed for all deliveries per shift in the test set. 

5.4 SIMULATION MODEL CONCLUSION 
To test the TSR method settings and performance, we develop a simulation model. We decide to run 

the simulation model on two weeks of planning instances of the case study retailer, which include 

morning (PO) and afternoon (PA) shifts. We model all activities of the delivery vehicles, and we verify 

and validate the simulation model on realizations from the DCT databases. We verify our simulation 

model, but we find that we overestimate the number of late deliveries. We conclude that we model 

reality close enough to make a fair comparison between experimental settings. The total time fits the 

real situation well and the numbers of late deliveries are comparable to the real situation. The model 

enables us to show the results of our TSR method well, but the benefits of the method might differ 

slightly when actually implementing it in the DCT. 

  



56 
 

6 RESULTS 

In this chapter, we present the results of our simulation study on en-route rescheduling of a home 

delivery operation. We present the results of the calibration phase in Section 6.1, where we aim to 

find good model parameters for our Tabu Search Rescheduling (TSR) method that we can fix during 

the simulation experiments. We describe the results of the trigger test, objective function and operator 

selection phases in Section 6.2, 6.3 and 6.4 subsequently, where we aim to find the best settings for 

our TSR method. In Section 6.5, we describe managerial insights on on-time departure, backup vehicle 

locations, combining settings from the other phases, knowledge of future travel times, initial planning 

quality and phased TSR method implementation. We describe result conclusions in Section 6.6. We 

present totals over the simulation time period to get a general insight into the results of the simulation 

experiments. We include the elaborate simulation results in Appendix D.  

6.1 CALIBRATION 
We aim to find good model parameters for our TSR method that we can fix during the simulation 

experiments. We display these parameters in Table 10. We use experiment 2 as defined in the previous 

chapter, with the basic setting for triggers, objective function parameters and operators, to calibrate 

these values. Calibration goals are the following:  

 Number of new and recurring customers that receive deliveries should be equal to the planned 

number of customers; 

 One simulation run should not require more than 2.5 minutes per shift in the experiment runs 

(meaning that a single replication over all 24 shifts takes no more than 1 hour of simulation 

time) to ensure we can run all simulation runs and experiments in reasonable time; 

 The system should not be too nervous, i.e., triggers should not go off all the time; 

 Number of vehicles in the search space of a solution should be small (i.e., around 5 vehicles); 

 The plans of the Tabu Search Rescheduling algorithm should “make sense”. This means we 

analyze the plans visually based on time windows and geographic location. When the results 

are not logical, more calibration of the model and algorithm is needed; 

We first run experiment 2 with the settings as displayed for step 1 in Table 10. The number of new and 

recurring customers that received deliveries are equal to the number of planned customers in both 

categories, meaning that no customer deliveries are “lost” in the TSR method and simulation process. 

We find the rescheduling calculations to be running far too long, resulting in too large running times 

for a single run (up to 3 hours). We therefore tune the stopping criteria of the Tabu Search: the 

maximum number of iterations without improvement and maximum allowed CPU time per 

rescheduling operation to be lower (both intra-route and inter-route). We differentiate between intra-

route and inter-route here, because the number of options is generally much lower for the intra-route 

search. Furthermore, we check if the system is not too nervous in rescheduling, meaning that it would 

keep on rescheduling routes that have just been rescheduled. This is the case, so we want to limit the 

total number of rescheduling calculations. We therefore prohibit vehicles to be in another rescheduling 

action when they were already involved in a transfer. For the switch moves, a timeout of an hour is 

used until they can be triggered again. Next to this, we find that the settings mentioned for step 2 

satisfy the time condition we set. 

Next, we run the simulation experiment with the settings for step 2 in Table 10. We find that solutions 

are visited more than once in the search process. We therefore make our Tabu lists longer to ensure 
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that solutions are not visited more than once in the search. We find that a Tabu list of length 50 ensures 

that this is the case. 

In step 3 of the calibration phase we find that the robustness bonus is too large, ensuring that solutions 

with late deliveries for certain customers are too much compensated by the robustness of others. 

Therefore, we decrease the maximum robustness bonus to 3 minutes, ensuring that solutions with 

expected lateness of delivery are less favorable from solutions without lateness. 

From our first few experiments we find that transfer penalties in the objective function would be a bit 

overkill for transfer (un)attractiveness in our case study. The additional driving time and time that is 

required to transfer orders makes solutions that include transfers unattractive enough to not use 

transfer penalties. 

The calibration steps are summarized in Table 10. We show the parameter settings at the start of the 

calibration, the parameter settings at the two steps in between, and the final parameter settings that 

follow from the calibration. The no improvement and CPU time parameters are the stopping criteria 

of the Tabu Search algorithms, with separate parameters for inter-route and intra-route moves. The 

Tabu list length parameters define the maximum length of the Tabu list containing already visited 

solutions. The maximum robustness bonus parameter defines the maximum bonus given in the 

objective function of the TSR method on a customer level. 

Table 10: Calibration steps and values for the different parameters and calibration goals. 

Calibration parameter Step 1 Step 2 Step 3 Final settings 

No improvement for Iinter 
consecutive iterations 

200 50 50 50 

CPU time of inter-route 
algorithm > Tinter seconds 

30 10 10 10 

No improvement for Iintra 
consecutive iterations 

200 30 30 30 

CPU time of intra-route 
algorithm > Tintra seconds 

30 5 5 5 

Tabu list length inter-route 20 20 50 50 

Tabu list length intra-route 20 20 50 50 

Maximum robustness bonus in 
minutes 

5 5 5 3 

 

6.2 TRIGGERS 
This section presents the results of experiments 1 to 6 to find the effectiveness of triggers on both the 

benchmark method and the TSR method. Experiment 1 and 2 are the base experiments for the 

benchmark heuristic and TSR respectively. Experiment 3 adds a robustness trigger to the TSR, where 

triggers are activated when a vehicle is expected to arrive in the last five minutes of a time window. 

Experiment 4 and 5 use the TSR triggers in combination with the benchmark heuristic, with a 

robustness trigger and no robustness triggers respectively. Experiment 6 combines the benchmark 

triggers with the TSR rescheduling algorithm. 

Table 11 shows the simulation results of experiment 1 to 6, with experiment 1 and 2 included to show 

differences of experiment 3 to 6 compared to the base experiments results. Figure 22 shows these 

results visually. 
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Table 11: Trigger test phase experiments results. 

Exp New 
customers 
late [#] 

Recurring 
customers 
late [#] 

Violation 
time 
[min] 

Total 
distance 
[km] 

Switches 
made [#] 

Transfers 
made [#] 

CPU time for 
rescheduling 
calculations [s] 

1 214 4865 128665 354072 566 122 213 

2 76 3761 119225 354466 3281 88 8499 

3 81 3832 126633 355850 4165 81 9619 

4 210 4721 127379 355540 1238 88 451 

5 210 4729 128451 355269 1132 97 417 

6 142 4218 115538 352723 1215 55 6446 

 

 

Figure 22: late deliveries of experiment 1 to 6, with visual distinction between new and recurring customers. 

Our aim here is to test the effectiveness of the implemented triggers in the simulation. We see that 

varying the benchmark triggers and TSR triggers (experiment 1 vs 4) for the benchmark heuristic results 

in little difference in rescheduling results. The use of benchmark triggers in combination with the TSR 

method ensures an increase in late deliveries compared to the use of TSR triggers (experiment 6 vs 2). 

This indicates that the TSR triggers are best to use when for the TSR method.  

The robustness trigger does not seem to significantly affect the rescheduling results (experiment 4 vs 

5 and 2 vs 3) for both methods. Possible explanation is that delays are often linked to expected 

lateness, making the triggers similar in the sense that a delay will often ensure a trigger. Still, many 

more routes are changed when we use the TSR triggers. It therefore seems that the TSR triggers are 

more nervous, meaning they initiate rescheduling calculations more often. Most problems are 

triggered by the benchmark triggers as well, ensuring similar results in the end. 

The number of intra-route switches increases a lot when using TSR triggers and the TSR method. More 

triggers occur and more than one rescheduling operation is allowed for each vehicle. We see that a lot 

less transfers are made in the TSR method, indicating that when an objective function that translates 

all parts of the delivery penalties and bonuses into time, transfers are generally less efficient than 

smart switching of customers. Although the increase in additional distance is significant and consistent 

for the TSR method, 2000 additional kilometers for 24 shifts to reduce this many late deliveries is 

reasonable. The CPU time increases a lot when using the TSR method. 
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6.3 OBJECTIVE FUNCTION 
This section presents the results of experiments 7 to 21 to find the effects of different objective 

function configurations. Table 12 and Figure 23 show the simulation results of experiment 7 to 21. 

Recall that the following parameters are varied in these experiments: 

 Experiment 2, 10, 14 and 18 use a linear penalty function for expected time window violations; 

 Experiment 7, 11, 15 and 19 use a quadratic penalty function; 

 Experiment 8, 12, 16 and 20 use hard time window penalties with 5 minutes ‘grace’; 

 Experiment 9, 13, 17 and 21 use hard time window penalties with 15 minutes ‘grace’; 

 Experiment 2, 7 to 9 and 14 to 17 use no robustness bonus while experiment 10 to 13 and 18 

to 21 do apply a robustness bonus according to the robustness function as defined; 

 Experiment 2 and 7 to 13 make a distinction between time window violations for new and 

recurring customers in the objective function while experiment 14 to 21 use the same 

penalties for both types of customers. 

Table 12: Objective function phase experiments results. 

Exp New 
customers 
late [#] 

Recurring 
customers 
late [#] 

Violation 
time 
[min] 

Total 
distance 
[km] 

Switches 
made [#] 

Transfers 
made [#] 

CPU time for 
rescheduling 
calculations [s] 

2 76 3761 119225 354466 3281 88 8499 

7 71 3839 119302 354375 3200 97 8637 

8 85 3909 127562 356530 3291 82 8555 

9 74 3837 126879 354770 3144 70 8175 

10 73 3910 119169 356071 3284 85 8911 

11 71 3943 119336 356096 3260 75 8988 

12 85 3822 125522 356098 3330 83 9028 

13 79 3900 123908 356097 3252 45 9059 

14 83 3940 119618 356051 3252 76 8297 

15 85 3968 119489 356095 3208 88 8377 

16 86 3905 127722 356552 3274 84 8539 

17 92 4033 126426 356400 3138 46 8570 

18 83 3895 119042 355992 3247 84 8455 

19 81 3918 119357 356151 3216 75 8544 

20 84 3824 125253 356113 3326 79 8662 

21 90 3931 124328 356119 3226 42 8684 

 

We aim to find good settings for our objective function. We find that the use of 15 minutes ‘grace’ and 

hard time windows in our time window violation penalty function results in the most customers 

receiving late deliveries and a large total time window violation time. The use of 5 minutes ‘grace’ and 

hard time windows decreases the number of time window violations, but it increases the total time 

window violation time compared to experiments where a type of soft time windows is used. We find 

that the linear penalty function experiments show more late deliveries for new customers and less for 

the recurring customers, when compared to the quadratic penalty function experiments. The linear 

penalty function can be considered to perform best of all penalty functions, since the total time 

window violation time is the lowest, while the number of late deliveries is low compared to the other 

types of penalty functions. 
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Figure 23: late deliveries of experiment 7 to 21, with visual distinction between new and recurring customers. 

The use of a robustness bonus results in a decrease in the number of late deliveries and total time 

window violation time. Although differences are small, we find a consistent improvement for all 

experiments with the robustness function applied versus the experiment with all the same settings 

except that the robustness function is not applied. We recommend the use of our exponential 

robustness function in en-route rescheduling. 

We experiment with the distinction between new and recurring customers in our penalty function. We 

see that the number of new customer late deliveries increases when we do not use the distinction 

between customer types in the penalty function. The number of late deliveries for recurring customers 

decreases slightly when we do not use customer distinction. The total time window violation time 

remains approximately the same when comparing an experiment with customer distinction to the 

same experiment without customer distinction. We recommend the use of new customer distinction. 

The customer distinction decreases the late deliveries for new customers (with higher priority), while 

no big sacrifice is necessary for the late delivery of the recurring customers. Note that this is based on 

a lot fewer new customers than recurring customers, so customer distinction might give different 

results in other cases. 

For all variations of this phase we find similar numbers of transfers made, distance travelled and CPU 

time needed for the rescheduling calculations. Only the 15 minutes ‘grace’ hard time window penalty 

function shows a different number of transfers made, which can be explained by the fact that this 

penalty function accepts more violation, so more problems can be solved by switching only. Therefore, 

it is interesting to look at only using intra-route switching for solving en-route rescheduling problems 

in our managerial insights. 

6.4 OPERATOR SELECTION 
This section presents the results of experiments 22 to 26 to find the effects of different objective 

function configurations. Experiment 22 uses only or-opt moves (both intra-route and inter-route) and 

experiment 23 uses only exchange-moves. Experiment 24 to 26 use 50% exchange- and 50% or-opt-

moves intra-route, and combinations of exchange-, or-opt-, and 2*-moves inter-route. Table 13 and 

Figure 24 show the simulation results of experiment 22 to 26. 
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Table 13: Operator selection phase experiments results. 

Exp New 
customers 
late [#] 

Recurring 
customers 
late [#] 

Violation 
time 
[min] 

Total 
distance 
[km] 

Switches 
made [#] 

Transfers 
made [#] 

CPU time for 
rescheduling 
calculations [s] 

22 76 3744 120767 354964 3273 85 11550 

23 74 3907 119084 356208 3290 10 3955 

24 76 4004 122061 365113 3300 34 5962 

25 78 3770 116871 356218 3344 28 7222 

26 76 3756 121143 354430 3281 88 8647 

 

 

Figure 24: late deliveries of experiment 22 to 26, with visual distinction between new and recurring customers. 

We look for the best operator settings for our TSR method here. From experiments 22 and 23 we see 

that the use of the Or-opt operator is superior to the use of the simple exchange-operator on numbers 

of late deliveries and total violation time. This requires a lot more CPU time, but we generally find 

better solutions. The exchange-operator does not seem to work well in the context of en-route 

rescheduling with time windows. The 2-opt*-operator does not seem to significantly affect the quality 

of the final solutions. 

6.5 MANAGERIAL INSIGHTS 
In this section, we aim find managerial insights on on-time departure, backup vehicle locations, 

combination of settings from the other phases, knowledge of future travel times, initial planning 

quality and phased TSR method implementation. We listed questions for further experimentation with 

our simulation model. For each of these questions, we describe how we test it with our simulation 

model. We show the experiment number for each of the additional experiments as well. 

27. What is the influence of on time departure for all vehicles in the current situation? We test this 

by running an experiment, with the settings of our benchmark heuristic base experiment, 

without departure delays. 
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28. What is the influence of adding additional slack time for the vehicles? We test this by running 

an experiment, with the settings of our benchmark heuristic base experiment, where the 

vehicles leave 10 minutes before the planned departure. 

29. What are the effects of different, more logical, locations for backup vehicles? We test this by 

placing backup vehicles in the centers of the three cities with the most late deliveries of the 

case study (see Appendix A): Amsterdam, Rotterdam and Den Haag.  

30. What are the potential benefits of our en-route rescheduling situation when using the best 

settings we find in each of the phases? We run an experiment with the best experimental 

settings found in the previous phases: TSR triggers (without robustness trigger), a linear 

penalty function for time window violations, an exponential bonus function for more robust 

solutions, customer distinction between recurring and new customers, and the use of only or-

opt-operators. 

31. What is the effect of the TSR method when we have no knowledge of future travel times at the 

moment of rescheduling? We run an experiment with the settings of experiment 30 on a case 

where we know nothing about the future travel times at the moment of rescheduling. 

32. What is the effect the TSR method when we have complete knowledge of future travel times at 

the moment of rescheduling? We run an experiment with the settings of experiment 30 on a 

case where we know all future travel times at the moment of rescheduling. 

33. What is the effect of the initial planning quality on the benchmark rescheduling heuristic 

results? To test the effects of the intial planning we reschedule all routes with the intra-route 

part of the TSR method before departure. From this initial planning we assume we have closer 

to optimal routes with respect to the input we use in our simulation model. We use the 

benchmark rescheduling heuristic to find en-route rescheduling solutions in this experiment. 

34. What is the effect of the initial planning quality on the TSR method results? Here, we 

reschedule all routes with our the intra-route part of our TSR method before departure as well. 

We use the TSR method to find en-route rescheduling solutions in this experiment with the 

settings of experiment 30 for this experiment. We compare the results of experiment 33 and 

34 to find the benefits of the TSR method given that the quality of the intial plan is of less 

influence. 

35. What is the effect when we use only the en-route switching of customers part of the TSR 

method? We run an experiment with the TSR method using the settings of experiment 30, 

where we only allow switch moves for the en-route rescheduling. When a breakdown occurs, 

a transfer of goods is still used, but no transfers are considered in the rest of the en-route 

rescheduling calculations. 

Table 14 and Figure 25 (note that we use a different y-axis scale in this figure compared to previous 

figures) present the results of experiments 1, and 27 to 29. We run these experiments on the base 

experiment settings of the benchmark heuristic to study the influence of on time departure and 

backup-vehicle locations compared to the current situation (experiment 1). We find that on time 

departure (experiment 27) has a huge effect on the on time delivery and number of rescheduling 

operations needed. Of course, all vehicles departing on time is unrealistic and difficult to manage, but 

the impact of improvements on departure time level are large. We also see this impact in experiment 

28, where we allow the vehicles to leave before the planned time. The impact of different backup 

vehicle locations is barely visible, as shown in experiment 29. 
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Table 14: Managerial insights phase experiments results based on benchmark heuristic base experiment. 

Exp New 
customers 
late [#] 

Recurring 
customers 
late [#] 

Violation 
time 
[min] 

Total 
distance 
[km] 

Switches 
made [#] 

Transfers 
made [#] 

CPU time for 
rescheduling 
calculations [s] 

1  214 4865 128665 354072 566 122 213 

27 126 3045 49702 352775 266 105 81 

28 80 1769 27628 352144 121 83 43 

29 214 4851 125527 353862 555 132 216 

 

 

Figure 25: number of late deliveries for experiment 1, and 27 to 29 to show the effects of on time departure (experiment 27), 
extra slack (experiment 28) and different backup vehicle locations (experiment 29). 

In Section 6.2 to 6.4, we found that TSR triggers without robustness trigger, a linear penalty function, 

use of a robustness function, new customer distinction and the use of only or-opt moves are the best 

settings for the case study problem. We therefore run these settings as experiment 30 to find the 

potential savings if we use the settings we found in the previous phases. We find that the combination 

of thes settings from each of the phases shows the best results so far for our TSR method. We are able 

to decrease the number of late deliveries with 63% for new customers and 24% for recurring 

customers. We display the decrease in the total number of customer (new and recurring) in Figure 26. 

The total time window violation time is reduced with 9% in this experiment. Only 0.3% extra distance 

needs to be travelled for this, but more rescheduling calculations are necessary. The total number of 

changes is about 5 times higher, but these changes are mostly intra-route. Furthermore, we determine 

the changes automatically, which ensures that no manual determination of en-route rescheduling 

solutions is needed for a control room. 
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Figure 26: total number of late deliveries (sum of new and recurring customers) for every day in the simulation comparing the 
current situation and the best settings for the TSR method. 

We show the results of experiment 30 to 35 in Table 15 and Figure 27, where bothFigure 27 also display 

the basic benchmark experiment to show the improvements compared to the current situation.  We 

find that the effect of our rescheduling method when we have no knowledge of future travel times 

(experiment 31) at the moment of rescheduling is minor when compared to the current situation 

(experiment 1). Although we find good improvements for the number of new customers that receives 

a late delivery, the other variables show only a minor improvement when we know knothing about the 

future travel times at the moment of rescheduling. When we would be able to accurately predict all 

travel times at the moment of rescheduling, our TSR method shows much more improvement. The 

experiment with complete knowledge of future travel times (experiment 32) shows that we even 

further reduce the number of late deliveries when we can accurately predict all future travel times. 

When researching the effects of initial planning quality, we test pre-departure intra-route TSR method 

optimization of routes in combination with the benchmark rescheduling heuristic (experiment 33) and 

en-route TSR method (experiment 34). We find that the initial planning quality influences the number 

of late deliveries for both methods. When comparing experiment 1 (which models the current 

situation) and experiment 33 we see a large decrease in numbers of late deliveries for recurring 

customers when the initial planning quality effect is removed. We see virtually no effects when 

comparing experiment 30 and 34 however. This means that for the TSR method, pre-departure 

optimization is less relevant. This can probably be explained by the fact that the triggers would go off 

in this method soon enough when the vehicles depart from the depot in this method. The use of the 

TSR method for en-route rescheduling is still effective when pre-departure rescheduling is used to 

remove initial planning quality effects. The TSR method (experiment 34) results in less late deliveries 

than the benchmark rescheduling heuristic (experiment 33). However, we do find that the difference 

in late deliveries is smaller than when the planning instances are not rescheduled pre-departure. 

Finally, we test the effect of only implementing the intra-route switching part of the TSR method in 

experiment 35 to see the results of when a phased implementation of the TSR method is used in the 

DCT. Furthermore, as stated in Section 6.3, few transfers are made in the TSR method anyway. We see 

that the number of late deliveries is close to the total found in experiment 30, with only a slight 

increase in late deliveries for recurring customers. The number of transfers that are used is exactly 

equal to the number of breakdowns (see also Appendix D), so transfers are used only when a vehicle 

cannot continue. Based on these results we recommend a phased implementation.  
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Table 15: Managerial insights phase experiments results based on best settings for TSR algorithm. 

Exp New 
customers 
late [#] 

Recurring 
customers 
late [#] 

Violation 
time 
[min] 

Total 
distance 
[km] 

Switches 
made [#] 

Transfers 
made [#] 

CPU time for 
rescheduling 
calculations [s] 

1 214 4865 128665 354072 566 122 213 

30 80 3692 118013 355117 3258 86 11499 

31 98 4462 124551 355500 3118 84 11376 

32 75 3570 114403 354960 3225 81 12103 

33 238 3886 122062 350776 399 128 165 

34 80 3672 112051 357060 2774 90 10528 

35 75 3740 114252 356937 3330 4 7971 

 

 

Figure 27: number of late deliveries for experiment 1, and 30 to 35 to show the effects of the best TSR method settings (30), 
knowledge of future travel times (31 and 32), intial planning quality (33 and 34), and a phased implementation (35). 

6.6 RESULTS CONCLUSION 
Our TSR method is able to reduce the number of late deliveries with 63% for new customers and 24% 

for recurring customers in a realistic simulation. No more manual work by control room teams is 

involved because we automatically trigger and calculate rescheduling solutions that can be 

implemented in a decision support system. We find that the TSR method works best with TSR triggers 

(without robustness trigger), a linear penalty function for time window violations, an exponential 

bonus function for more robust solutions, customer distinction between recurring and new customers, 

and the use of only or-opt-operators in our method. We show that we are able to reduce the late 

deliveries for all shifts in the test set based on our simulation model.  

We that on time departure can reduce the number and severity of late deliveries. We show that the 

effect of knowledge on future travel times is significant. Large differences are found when 

experimenting between no and complete knowledge of future travel times. Initial planning quality is 

of large influence on the number of late deliveries, but for en-route rescheduling we find that the TSR 

method still outperforms the benchmark rescheduling heuristic. We show that we are able to solve 

most rescheduling problems by only intra-route switching, so we recommend a phased 

implementation. Transfers should be used when this is really necessary, which is often not the case. 
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7 CONCLUSIONS & DISCUSSION 

This chapter aims to answer the research question and discuss our findings. First, we answer the 

research questions and draw conclusions with respect to our research goal in Section 7.1. Next, we 

discuss the method and test simulation of our study in Section 7.2. 

7.1 CONCLUSIONS 
In this section, we describe our conclusions with respect to our research goal of developing a 

methodology for en-route rescheduling of home deliveries. To achieve the research goal, we defined 

multiple research questions in Chapter 1. We answer each of these questions individually here, to 

eventually come to a general conclusion on our methodology for en-route rescheduling of home 

deliveries. 

1) What is the current state of research on en-route rescheduling related subjects? 

We find that literature on vehicle rerouting for road transport is scarce. The studies on the subject that 

do exist mainly consider vehicle breakdowns and changing customer wishes, which differs from our 

focus in the home delivery operation case study. Triggers for rescheduling and the transfer of goods 

from one vehicle to another, as the case is in this research project, seems to be new in the use case of 

en-route rescheduling of home deliveries. In existing literature on the subject, variants of Tabu Search 

are often applied because this metaheuristic is able to find good solutions fast. We contribute to the 

current state of en-route rescheduling research by researching en-route rescheduling in home delivery 

operations with violation triggers, transfers and time windows.  

 2) What is the current rescheduling process in the home delivery case study? 

The current rescheduling process is designed in such a way that a control room team supervises a 

delivery operation. They think of solutions when a driver calls that he is running more than 20 minutes 

late. Much added value is already found when their decision making process can be supported by 

automated rescheduling calculations, because the current rescheduling process is labor-intensive. 

When a control room needs to find a rescheduling solution they check if they can solve the problem 

by moving possibly late stops forward in time. When this does not solve the existing problem, he checks 

for empty vehicles near the disrupted vehicle to see if another vehicle is available to help.  

3) How can we ensure robust en-route rescheduling of home deliveries? 

Based on the current process and the literature review, we find that a combination of triggers, search 

space selection and Tabu Search for the best rescheduling solution is interesting for en-route 

rescheduling solutions. We use triggers to determine when we think it is necessary to reschedule the 

current course of events. Possible triggers are: delays, expected lateness, possible lateness (which 

includes a robustness trigger), vehicle defects, vehicle breakdowns, and accidents or events on the 

planned path of the vehicle. For testing purposes, we test only the eta, vehicle defect and vehicle 

breakdown triggers in this study. 

When we trigger for rescheduling, we select vehicles we want to evaluate for helper-actions. We 

determine the possible helper vehicles using an equation based on helper distance and the number of 

deliveries to be made by the helper. We evaluate all helper actions by backup and en-route vehicles 

simultaneously with intra-route switching of customers. We determine the solution quality of the 

initial solution, all possible helper actions and the intra-route switching using an objective function. 

We select the solution with the lowest cost to continue the routes of vehicles. The objective function 
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consists of total time needed for the vehicles, time window violation penalties, and a possible 

robustness bonus function. We translate all variables into time to get a single result from our function. 

4) How can we test rescheduling performance of the developed algorithm? 

To test the TSR method performance we made a simulation model. The simulation model aims to find 

good TSR method settings and to show potential savings of our TSR method. We run the simulation 

model on two weeks of data, meaning that we run 24 morning and afternoon shifts for all tested TSR 

method settings. We model all activities of the delivery vehicles, and we verify and validate the 

simulation model on realizion data from the DCT. We verify that the model is implemented correctly. 

We validate the model and find that, although more late deliveries follow from our model, the general 

pattern is similar to the real situation. The total time fits the real situation well and the numbers of late 

deliveries are in the same order of magnitude as in the real situation. The simulation model enables us 

to show the results of our TSR method compared to the current situation. 

5) What performance can we expect from the methods we develop? 

We find that the TSR method works best with TSR triggers (without robustness trigger), a linear penalty 

function for time window violations, an exponential bonus function for more robust solutions, 

customer distinction between recurring and new customers, and the use of only or-opt-operators in 

the Tabu Search processes. Using these settings, we find from our simulation that we can potentially 

decrease the number of late deliveries with 63% for new customers and 24% for recurring customers. 

The total time window violation time is reduced with 9%. Only little additional distance is travelled to 

do this, but a lot more rescheduling calculations are necessary. The total number of changes made en-

route is around 5 times higher. 

We also see that on time departure can reduce the number and severity of late deliveries. When 

possible, the retailer should even aim to depart earlier to have some slack in the route planning. We 

see a large decrease in lateness when we do this. We show that the effect of knowledge on future 

travel times is large. Initial planning quality is of big influence on the number of late deliveries, but for 

en-route rescheduling we find that the TSR method still outperforms the benchmark rescheduling 

heuristic. We show that we are able to solve most rescheduling problems by only intra-route switching, 

so we recommend a phased implementation. From our simulation study we find that transfers are only 

rarely better than intra-route changes in a home delivery process. 

In general, we conclude that we successfully developed a method for en-route rescheduling of home 

deliveries. Our TSR method is able to greatly reduce the number of late deliveries by calculating the 

best intra-route and inter-route changes. No more manual work by control room teams is involved 

because we automatically trigger and calculate rescheduling solutions that can be implemented in a 

decision support system. 

7.2 DISCUSSION 
In this section we discuss the method and the simulation model. After this, we set our directions for 

future research on the subject of en-route rescheduling. We end this chapter with recommendations 

for practical implementation of the solutions. 

7.2.1 Discussion 

We discuss the TSR method and the simulation setup here. We give an overview of possible triggers, 

but we were not able to test all of them. The cause of a trigger can be different in some cases, meaning 

that it should be treated differently for the rescheduling input. We left out some real-world constraints 



68 
 

to reduce computation time. Still, some real-world constraints for the rescheduling problem, such as 

the capacity of vehicles and driving time regulations for the drivers, might influence solutions and 

solution quality as well in reality. We tested a few operators in the en-route rescheduling and found 

some interesting results for this subject. Still, more operators exist in reality that might be interesting 

to include in future testing as well. Because of the pre-selection we make based on literature, we think 

we incorporated the most relevant operators for testing in our research. 

In our research we used an objective function where we translate all variables into time. This means 

that we use travel time as our main variable, but it also means that we translate all penalties and 

bonuses into time variables. This can ensure that we can compensate expected lateness (which is 

expressed in a penalty) with either a shorter total route time or a bonus that we apply for finding a 

more robust solution for other customers. We therefore tuned the bonus functions to give a much 

lower bonus to a robust solution than the penalty that we apply for expected time window violations, 

but it is possible that we compensate lateness with other variables in the objective function. 

An important discussion point of this study is the degree of realism of our simulation setup. We 

conclude that the algorithm we designed can potentially ensure large savings, but this can also be 

caused by the way that we set up the simulation. We believe simulation is the best choice for this 

preliminary study, but tests of actual implementation can always give different results. It was not 

possible to translate all actions of the control room team into an algorithm, because it is difficult to 

model such human behavior. Furthermore, we did not have full information on which rescheduling 

actions are performed at the moment, meaning that we could not validate the rescheduling actions 

white-boxed. Small differences show between the simulation and real-world situation, but a general 

pattern is modelled well in our simulation. We can say that, although the savings might differ in real-

world implementation, we believe to show a realistic insight in what the savings from the use of our 

Tabu Search Rescheduling (TSR) method might be. 

We apply our test simulation on real-life planning instances of our case study retailer. These planning 

instances are based on different data sources than what we can access in this study. Another issue of 

using the real-world planning instances is that the savings we find depend on the initial planning 

quality. When many illogical customer sequences exist in the initial planning instances, more 

improvements can be found when en-route rescheduling it triggered.  Based on our initial planning 

quality experiments we can still find a reduction in the number of late deliveries, meaning that the 

results we find are not only caused by bad planning instances. However, the effects of our TSR method 

are smaller in when using pre-departure rescheduling. 

Another point of discussion is that we use two weeks of data for our simulation runs. We select these 

specific weeks based on their completeness of the data and registrations. Furthermore, the weeks we 

select are not holidays or special weeks in another way, meaning that they will be representative for 

the quality of our method when it is applied on a different time period. The service of the retailer is 

quickly growing however, so the future situation might be that many more deliveries are made. The 

method, and the product we aim to use for application of our method, are general in the sense that it 

is possible to tune the algorithm for other use cases, for example a retailer that does not wish to apply 

different customer priorities in its delivery service. 

Final point of discussion is that we use an approximation of the travel times to reduce the calculation 

times within our experiments. Because we could not model the entire road network and possible paths 

due to limited time and resources, we use travel times based on Euclidian distance classes. A random 

deviation is based on realized deviation from the realization data. Although we apply the same delays 

to all the paths towards the following five stops from the current location, so our solution prediction 
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is not influenced by the randomness, the assumption that we can predict the travel times to the next 

five stops precisely and that the rest of the travel times is completely unpredictable is somewhat 

unrealistic. The realism of the test simulation might improve by using better travel time information. 

No information of the time of the day and the possible traffic situation is included in our 

approximation. Because of our assumptions on travel times, we also assumed that travel delays are 

not correlated, but the question might be if the delay is caused by traffic or other activities (e.g., finding 

a parking space and administrative actions by a driver). Our travel time assumptions cause delays to 

be a little more random than the real-world situation. We do believe that the results we find are a 

good indication of the savings that apply when using real-world travel times and travel time 

predictions. 

7.2.2 Directions for future research 

Because only little research exists on the subject of en-route rescheduling, a lot of interesting 

directions for future research can be set out based on our research. We introduce many new aspects 

to this subject, but a lot of them might require more research in future projects.  

We give an overview of possible triggers and test some of the them. It would be interesting to test 

other trigger types in a simulation context, such as the accident or event triggers, where geographic 

areas are affected by delays. Another interesting topic of research can be to trigger rescheduling 

calculations when vehicles are way too early, meaning they can alter their route to reduce the total 

time needed in planning instances where (too) much slack is used. 

Besides triggers, a form of continuous calculation of possible improvements can be interesting for 

future research as well. In this type of methods, possible intra-route and inter-route improvements 

can be calculated continuously, and when more than a threshold improvement is found, this can be 

proposed in the same decision support way as described for our research.  

In our research, we select a certain type of search space selection to define possible vehicles for inter-

route changes when triggered for en-route rescheduling. We did not have the time and resources to 

check if this is the best way to find relevant helper-vehicles. More research on good search space 

selection could help make the en-route rescheduling, and even the more general DVRP and VRPTW 

problems be solved faster and more efficiently. 

We choose to use Tabu Search as our local search algorithm in the rescheduling calculations based on 

the literature that is already available on the subject, but other metaheuristics might be interesting for 

future research as well. The characteristic of Tabu Search, that it finds good solutions fast, makes it 

suitable for en-route rescheduling, but when using a different metaheuristic good solution might be 

found as well. Especially when combined with continuous calculation of improvements, more time is 

available for rescheduling calculations, making it possible that other metaheuristics are interesting for 

en-route rescheduling. 

We apply some objective functions in this research that can be interesting for the more general VRPTW 

problem as well. Different soft time window violation functions are often tested in literature, but the 

application of a robustness function can be interesting when much uncertainty in vehicle routing 

instances exists. Furthermore, the customer priority we use for new customers can be interesting to 

research further for different priority-classes as well. We show that we can effectively use customer 

priority without harming the general solution quality too much in our en-route rescheduling 

simulation. This makes the customer priority part an interesting subject to research in the future, 

possibly in combination with a different robustness function for customer priority. 
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The use of simulation to test the robustness is necessary to see the effects of different objective 

functions in a delivery process with uncertainty. This research direction is interesting for future 

research, since the late deliveries depend largely on the uncertainty in the delivery process. A larger 

and more time-consuming simulation of realistic road network and realistic traffic data is interesting 

in this context as well. 

Another interesting direction for future research is real-world testing and implementation. When the 

method is implemented and used as we will describe in the next section, it is interesting to evaluate 

the number and severity of late deliveries by the retailer. The results of this are relevant for future 

research and implementation of rescheduling methods. 

7.2.3 Recommendations for implementation in the DCT 

This research project is initiated by Simacan to find the added value of a Decision Support System (DSS) 

in their Delivery Control Tower (DCT). The case study retailer is interested in the outcomes of our 

research as well, since it might potentially decrease their number of late deliveries and because it can 

save their control room team much time and effort. Because of this practical added value of the 

project, we describe the recommendations for implementation in the DCT here. 

We showed in this study that the TSR method as a whole has a lot of potential to decrease the number 

and severity of late deliveries in a home delivery operation. Because the implementation of the entire 

solution is time-consuming and potentially difficult, we propose a light-weight version of the 

rescheduling method.  

Arrival times are already predicted for each of the stops on a route in the DCT, so the TSR triggers can 

be easily implemented as described for the simulation setup. Still, it should be possible to manually 

request a rescheduling calculation, since defects and breakdowns will still be communicated by phone. 

The difficulty of actual implementation will exist mostly in the calculation of transfers. This is the most 

difficult part of our TSR method. As shown in the results of this study, only a few transfers are made 

as a result of this difficult methodology. The added value of all these extra calculations is relevant, but 

the time and difficulty of implementation might mean that the benefits of implementing this part of 

the solution do not outweigh the cost of implementation.  

We recommend to only implement the TSR method switching solution with the best settings we find 

for the TSR method first. This way, many potentially late deliveries are automatically triggered and the 

switching algorithm ensures that good solutions are proposed automatically by the DSS implemented 

in the DCT. We prove to find the largest reduction in late deliveries by only implementing our switching 

solution, while the transfers only add little additional decrease when compared with the intra-route 

switching. Implementation of the inter-route transfers is also lucrative, but implementation is a lot 

more difficult and the need for a transfer occurs less frequent. In the more exceptional cases, transfers 

can still be determined manually by the control room. 

With the implementation of our TSR method, a control room has to devote less time and effort to find 

rescheduling solutions, and they can just either accept or reject the solution. This ensures that they 

are able to focus on other urgent tasks in the delivery process. A large part of the possibly late 

deliveries can be automatically prevented using the TSR method.  
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