
Grid Importing for CFD Simulations of

Turbomachines

Author: S. Lamboo
Student number: s1069446

Organisation: University of Queensland
Supervisor: Dr P. Jacobs
Brisbane, Queensland

University of Twente
Faculty: CTW

Group: Engineering Fluid Dynamics
Supervisor: Prof.dr.ir. H.W.M. Hoeijmakers

Monday 10th November, 2014 - Tuesday 17th February, 2015

Preface

This report is the documentation of my Occupational Traineeship at the
School of Mechanical Engineering and Mining at the University of Queens-
land. The traineeship was done as part of the curriculum of my masters
degree Sustainable Energy Technology at the University of Twente. The as-
signment revolved around the importing of grids for the use in CFD simula-
tions by the Turbomachinery department. The Turbomachinery department
has grids in CGNS format, but the CGNS format is not compatible with
Eilmer3; the UQ principal simulation code for gas dynamics simulations.

The theses of Wright [1] and Salter [2] were of a similar topic. Wright
and Salter studied the possibility to convert CGNS files for use with the
open source CFD package OpenFOAM.

1

Abstract

The turbomachinery department of the University of Queensland Mechani-
cal and Mining Engineering group has CGNS format files that are not com-
patible with the in house gas dynamics simulation code Eilmer3. For this
a conversion software has been designed to read the CGNS files and write
the grid to an ASCII format VTK file. The conversion software also writes
a text file with the boundary condtions stored in the CGNS file. The soft-
ware has been proven to succesfully convert the CGNS files into Eilmer3
friendly format files. Next the converted files were read using Python and
made ready for simulations with Eilmer3. During preprocessing it became
evident that the CGNS file used as a reference throughout the assignment
was corrupted. The grid was constructed, but because it was corrupted no
flow simulations were possible.

Despite the fact that no full simulations could be run with the example
CGNS file a number of things were learned throughout the project. The
most important being that working with CGNS files can be time intensive
and frustrating. It is therefore recommended that either time is dedicated
to CGNS and to work consistently when writing CGNS files or to explore
possible alternatives like GridPro, Pointwise, or OpenFOAM to work with
grids in the future.

Contents

1 Introduction 2

Introduction 2
1.1 Background and aim . 2
1.2 Structure . 2

2 CGNS 4
2.1 Introduction to CGNS . 4
2.2 Stator8.cgns . 4

3 CGNS to Eilmer3 conversion 7

4 Eilmer3 simulation 9
4.1 Python code for Eilmer3 simulation 9
4.2 Simulation results . 10

5 Conclusions and recommendations 12

Appendices 15

A Source code for CGNS to Eilmer converter 16

B Python code 36

1

Chapter 1

Introduction

1.1 Background and aim

Computational Fluid Dynamics (CFD) is widely used for the design of tur-
bomachinery components [1, 2]. There are many commercial and in house
CFD codes that are used for the turbomachinery design process. The main
in house CFD code used for gas dynamics simulations by the turbomachinery
department at the University of Queensland is the Eilmer3 code. Eilmer3 is
the result of years of development at the UQ of what started as a Multi-Block
Compressible Navier-Stokes solver. The code has been improved, expanded,
and enhanced for over 20 years. Even so the code does not currently have
capabilities to work with CGNS format files. In Chapter 2 CGNS will be
discussed in further detail. For now it is enough to mention that the tur-
bomachinery department at the UQ sometimes has to deal with CGNS files
and has no means to use these files for CFD simulations with Eilmer3.

The goal of this assignment is to develop a conversion software which can
convert CGNS format files to formats which are more suited for the Eilmer3
code. The software will be tested by means of an example case, a stator blade
mesh built for CFD simulations for the design of a radial inflow turbine from
the PhD thesis of Carlos de Miranda Ventura [3]. The conversion software
will be written as general as possible, but will be specifically be adjusted to
the example case. The mesh is shown in Figure 1.1.

1.2 Structure

In Chapter 2 CGNS is discussed and the structure of the CGNS example
case is studied. In Chapter 3 the CGNS conversion software is discussed. In
Chapter 4 the Eilmer3 test simulation setup and results will be discussed.
Finally the report is concluded with a conclusion and recommendations sec-
tion.

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Mesh for CGNS example stator [3].

Chapter 2

CGNS

In this chapter CGNS and the structure of CGNS format files will sbe dis-
cussed shortly. Then it will be demonstrated how the content of CGNS files
can be visualized using the CGNS package cgnstools.

2.1 Introduction to CGNS

The CFD General Notation System, better known as CGNS, is a notation
system developed in the mid 1990’s by NASA, Boeing, and McDonnell Dou-
glas. The purpose of CGNS is to create a standard file format for the storage
and retrieval of CFD analysis data. The main CGNS software is used to
read, write, and modify the files written in this format. A very useful pack-
age to add to the standard CGNS library is the cgnstools package.

CGNS files have a hierarchical structure, with nodes stemming from a
single root node. There is quite some freedom in the construction of the
tree of nodes, which is something I will come back to in Chapter 3. In the
next setion two tools from the cgnstools package will be used to study the
example case stator8.cgns.

2.2 Stator8.cgns

The example Stator8 CGNS file has been visualized in Figure 2.1 using the
cgnsview tool. Cgnsview is a very useful tool for studying the hierarchical
structure of a CGNS file, as can be seen in Figure 2.1. The root node in
Figure 2.1 has one daughter node: the Base node. The Base node in turn
has 30 daughter nodes known as Zone nodes and named domain.000xx. All
the grid information such as grid structure, connectivity, and boundary con-
ditions are stored under the Zone nodes.

4

CHAPTER 2. CGNS 5

Figure 2.1: CGNS node tree for Stator8.

It is important to note that in this case the information stored under
the BC on SF## nodes is UserDefined for all boundary conditions. The
actual boundary condition name (HUB, BLADE, etc.) is stored under the
FamilyName node.

The Stator8 example is a fairly simple CGNS file, storing just the grid
and boundary conditions. In general much more information can be stored
in a CGNS file, such as the flow solution or a reference state.

Whilst it is useful to know what information is stored in a CGNS file
and under which nodes the information is stored, the amount of information
showed by cgnsview can make it difficult to visualize the grid itself. The tool
cgnsplot more appropriate to visualize the grid. The tool is also useful to
see how the blocks fit together and what boundary conditions apply on the
surfaces. The resulting visualization of the Stator8 grid is shown in Figure
2.2. The grid in Figure 2.2 seems in accordance with the geometry that was
shown in Figure 1.1.

CHAPTER 2. CGNS 6

Figure 2.2: CGNS plot for Stator8.

Chapter 3

CGNS to Eilmer3 conversion

Unfortunately, the CGNS format is not compatible with the principal gas
dynamics symulation code used at the UQ: Eilmer3. Therefore, conversion
software was developed to convert the CGNS file to a more suitable format
for simulations with Eilmer3. More acurately, the existing cgns to vtk.c con-
verter code, part of cgnstools and also available at the CGNS website [4], was
altered to write the grid to VTK files and a text file with the corresponding
boundary conditions from a CGNS file.

The original cgns to vtk.c writes binary format VTK files by default,
without writing the boundary conditions. For use with Eilmer3 ASCII for-
mat VTK files are preferred and therefore the code was altered to write
ASCII format VTK files. Furthermore, code was added to read and write
the boundary conditions. The boundary conditions are written in a simple
text format, which can then easily be read with Python for simulations with
Eilmer3. In the text file the zone (block) number, surface number, BC type
and i-, j-, and k- ranges of the surface are printed for each of the 6 block
surfaces.

As mentioned in Chapter 2, the boundary conditions in stator8.cgns
are defined in a somewhat irregular fashion. The boundary conditions are
initially read from the Zone BC node, where it is common to expect the
boundary condition information to be stored in CGNS files. The software
then checks whether the BC type read is UserDefined, as is the case with
the Stator8 example case. If the BC type is not UserDefined the BC type
is printed to the outfile. If the BC type is UserDefined the CGNS func-
tion cgns goto is used to navigate to the directory where the correct BCs
can be read in the Stator8 case. The BCs are subsequently read from the
FamilyName node and written to the outfile. If the BCs are not found under
the FamilyName node the code returns an error and exits.

7

CHAPTER 3. CGNS TO EILMER3 CONVERSION 8

The approach used here works to read boundary conditions from CGNS
files where the boundary conditions are stored under the Zone BC node or
files with exactly the same node structure as the stator8.cgns file is written.
For files written with another CGNS node tree structure, the software will
need to be adapted to read the boundary conditions. From this a drawback
of the freedom of writing CGNS files becomes evident, for it makes devel-
oping conversion software applicable to all CGNS files difficult.

Lastly, large chunks of the cgns to vtk.c code that were not relevant for
the cgns2eilmer.c code were deleted. Even withouth these parts the code is
quite long, but a copy has been included in Appendix A.

The following commands can be used to compile and write the output
files, respectively:

$ cc cgns2eilmer.c -o cgns2eilmer -lm -lcgns -lhdf5
$./cgns2eilmer file.cgns [dir]

The output files will be written to the specified directory [dir] or to the
current directory if none is specified.

Chapter 4

Eilmer3 simulation

Now that the CGNS file has been converted to a more Eilmer3 friendly
format, simulations can be set up. Python is used to read the output files
from the CGNS converter, both because of its great text reading capabilities
and because Python is used to set up Eilmer3 simulations. In this chapter
the Python code will be discussed shortly and the simulation results are
discussed. A copy of the Python code can be found in Appendix B.

4.1 Python code for Eilmer3 simulation

Per block the cgns2eilmer code writes two text based files that can subse-
quently be used to set up the Eilmer3 simulation. In order to do this the
text files have to be read and the grid has to be prepared for simulations.
For this three functions are necessary:

1. Read grid from the VTK file and create blocks.

2. Read the BC conditions and translate to Eilmer3 equivalent.

3. Assign BC conditions to correct surface.

Reading the grid is quite straightforward as this has been done before for
previous Eilmer3 simulations and some code exists to facilitate this. Read-
ing and converting the boundary conditions in itself does not pose a great
problem, but the specific way the boundary conditions have been assigned
in the Stator8 CGNS file does lead to some difficulties. Most of the sur-
faces of the Stator8 blocks have the boundary condition ”ORPHAN”. After
some investigation these seem to be the surfaces which are adjacent to a
surface from another block. These boundary conditions are irrelevant after
the use of the identify block connections function which connects all adja-
cent blocks to each other. However, besides the surfaces that are adjacent to
one another there are some other surfaces on which the boundary condition

9

CHAPTER 4. EILMER3 SIMULATION 10

is ”ORPHAN”. These surfaces turn out to be the surfaces where a symme-
try boundary would be applied for simulations of a complete turbine. The
symmetry boundary condition surfaces surround almost the entire contour
of the geometry (with the exception of the inlet and outlet) and without
any other information it would take a lot of work to map out surfaces which
would connect in order for the symmetry to be of effect. For the initial test
the remaining ”ORPHAN” boundary conditions were assigned as the de-
fault Eilmer3 boundary condition ”SLIP WALL” which is effectively a solid
but inviscid wall.

Next the boundary conditions have to be assigned to the correct surfaces
of the constructed blocks. Eilmer3 uses a NORTH-SOUTH-EAST-WEST-
TOP-BOTTOM definition to assign boundary conditions to block surfaces.
A function was hence introduced to check which i, j, and k values a sur-
face has. The surface is then identified as one of the NSEWTB surfaces by
checking the minimum and maximum i, j, and k values and the BC type is
applied on the surface.

The rest of the simulation is set up for a fairly simple case with inviscid,
supersonic flow and an ideal gas model. The goal of the simulation is simply
to check whether the generated files can be used for Eilmer3 simulations.

4.2 Simulation results

An Eilmer3 simulation can be broken down into 3 steps: preprocessing,
running the simulation, and postprocessing. It is common to run the pre-
processing and postprocessing once before simulating to check the grid.
During the first preprocessing run an error was returned saying that some
faces could not be matched because of coinciding points on the blocks.
There were two of such cases, which were subsequently excluded from the
identify block connections function. Excluding these connections a grid was
succesfully generated, the result is shown in Figure 4.1.

The generated grid seemed to have two collapsed blocks, which have
been circled in Figure 4.1. The grid in stator8.cgns was checked to see if
it looked collapsed already, using different visualization software. These
checks confirmed that the grid was collapsed already in the stator8.cgns file
and that it was not a result of the conversion to Eilmer3 suitable formats
that caused the grid to collapse. With the collapsed grid however, further
simulations were not possible.

CHAPTER 4. EILMER3 SIMULATION 11

Figure 4.1: Generated grid visualized in Paraview.

Chapter 5

Conclusions and
recommendations

Even though it was not possible to run a full simulation with Eilmer3 using
the grid converted from CGNS to VTK, a number of things were achieved
and there are some lessons that can be drawn from this assignment which
can be used for future grid importing research at the UQ turbomachinery
department. The conversion software was succesful in writing both VTK
files containing the grid information and files containing the boundary con-
ditions. The Eilmer3 simulation showed that the output files from the con-
version software can be picked up and used to set up a simulation. Whether
the coverted grid could also be used for CFD simulations could unfortu-
nately not be verified because of the collapsed grid.

From the results it also became evident that the freedom with which
CGNS files can be constructed makes writing general conversion software
challenging. For future work it is therefore recommended to be consistent
with the use of a CGNS file structure, for it will make developing conversion
software easier. Being more consistent with file structures will likely make
working with CGNS much less frustrating. It is also recommended to add
an additional boundary condition for symmetry surfaces. If the symmetry
surfaces are labled cleverly, such as ‘left symmetry boundary’ and ‘right
symmetry boundary’ existing Eilmer3 code can be used to map the symme-
try surfaces onto each other and facilitate setting up Eilmer3 simulations
considerably.

The conversion software was largely based on existing software, which in-
dicates that there are more people dealing with similar issues. Even though
it is not well documented, there seems to be a lot of software that can be
found which saves time and work developing new software. Documentation
in general is an issue with CGNS, especially for someone with little experi-

12

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 13

ence with grid importing or programming in general it can be challenging
to get used to CGNS software.

Overall, working with CGNS could be very frustrating at times. How-
ever, by the end of the assignments the benefits of CGNS became clearer.
Once used to the standard CGNS functions, it becomes easier to work with
the CGNS files. The freedom to of writing CGNS files however, makes work-
ing with CGNS files more time intensive.

In the end I believe the choice has to be made to either continue working
with CGNS or investigate other grid writing options. If the decision is made
to continue working with CGNS it will be necessary dedicate more time to
CGNS and ensure that the CGNS files are written in a way that will facilitate
further work. There are also, many alternatives that can be considered.
There are both commercial packages such as GridPro and Pointwise or open
source packages such as OpenFOAM that can work with grids and which
can be considerd as options instead of CGNS for future work with grids in
the turbomachinery group.

Bibliography

[1] M. Wright: CFD Calculations for Turbomachinery Using OpenFoam
(2012)

[2] T. Salter: CFD Calculations for Turbomachinery Using OpenFoam
(2013)

[3] C.A. de Miranda Ventura: Aerodynamic Design and Performance Es-
timation of Radial Inflow Turbines for Renewable Power Generation
Applications (2012)

[4] http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/

cgnstools/index.html

14

http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/cgnstools/index.html
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/cgnstools/index.html

Appendices

15

Appendix A

Source code for CGNS to
Eilmer converter

/*

* cgns2eilmer - read CGNS file, write grid in VTK format, and BCs

in text format

*/

/*

* This is an altered version of cgns_to_vtk.c, which is a part of

cgnstools.

* The alterations have been made for reading CGNS files and

writing Eilmer3 friendly formatted files.

* The code reads the grid from a provided CGNS file and writes the

grid in an ASCII format VTK file.

* The boundary conditions are read and written into a seperate

text file.

* The code assumes that the CGNS library is installed and is newer

than version 2.5.

*

* For a more general cgns to vtk converter I would suggest taking

a look at cgns_to_vtk.c, which can be downloaded from

http://cgns.sourceforge.net/download.html.

*

* The code can be compiled and ran using the following:

*

* $ cc cgns2eilmer.c -o cgns2eilmer.x -lm -lcgns -lhdf5

* $./cgns2eilmer.x file.cgns

*

* There are more advanced options for running the code, which are

given in the usage message.

*/

#include <stdio.h>

16

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER17

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <math.h>

#include <sys/types.h>

#include <sys/stat.h>

#ifdef _WIN32

include <io.h>

include <direct.h>

define chdir _chdir

#else

include <unistd.h>

#endif

/* include CGNS library for use of CGNS functions */

#include "cgnslib.h"

#ifndef CG_MODE_READ

define CG_MODE_READ MODE_READ

#endif

/* options for cgns2eilmer */

static char options[] = "b:z:s";

/* usage message for cgns2eilmer */

static char *usgmsg[] = {

"usage : cgns2eilmer [options] CGNSfile [outdir]"

"options:"

" -b<base> = base number (default 1)",

" -z<zone> = zone number (default 0 - all)",

" -s<soln> = solution number (default 1)",

"<outdir> is the output directory for the VTK files.",

"If not specified, it defaults to the current directory.",

NULL

};

typedef float Node[3];

typedef struct {

int cnt;

char name[33];

} Variable;

static int nzones;

static int nbases;

static int cgnsfn;

/* The code only reads the first base, if another base has to be

read it should be specified in the options */

static int cgnsbase = 1; /* standard setting for base */

static int cgnszone = 0; /* standard setting for zone */

static int cgnssol = 1; /* standard setting for solution */

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER18

static int CellDim, PhyDim;

static int nnodes;

static Node *nodes;

static CGNS_ENUMT(GridLocation_t) varloc;

static int nvars, ndata;

static Variable *vars;

static cgsize_t varrng[2][3];

/*------- usage - display usage message and exit -------*/

void print_usage (char **usgmsg, char *errmsg)

{

int n;

if (NULL != errmsg)

fprintf (stderr, "ERROR: %s\n", errmsg);

for (n = 0; NULL != usgmsg[n]; n++)

fprintf (stderr, "%s\n", usgmsg[n]);

exit (NULL != errmsg);

}

/*------- getargs

--

* get option letter from argument vector or terminates on error

* this is similar to getopt()

--/

int argind = 0; /* index into argv array */

int argerr = 1; /* error output flag */

char *argarg; /* pointer to argument string */

int getargs (int argc, char **argv, char *ostr)

{

int argopt;

char *oli;

static char *place;

static int nextarg;

/* initialization */

if (!argind)

nextarg = 1;

if (nextarg) { /* update scanning pointer */

if (argind >= argc || ++argind == argc) {

argarg = NULL;

return (-1);

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER19

}

if (’-’ != argv[argind][0]) {

argarg = argv[argind];

return (0);

}

place = argarg = &argv[argind][1];

if (!*place) {

if (++argind == argc) {

argarg = NULL;

return (-1);

}

argarg = argv[argind];

return (0);

}

nextarg = 0;

}

/* check for valid option */

if ((argopt = *place++) == ’:’ || argopt == ’;’ ||

(oli = strchr (ostr, argopt)) == NULL) {

if (argerr) {

fprintf (stderr, "invalid option - ‘%c’\n", argopt);

exit (-1);

}

return (argopt);

}

/* don’t need argument */

if (*++oli != ’:’) {

if (*place && *oli == ’;’) { /* optional argument */

argarg = place;

nextarg = 1;

}

else {

argarg = NULL;

if (!*place)

nextarg = 1;

}

return (argopt);

}

/* get argument */

if (!*place) {

if (++argind >= argc) {

if (!argerr) return (’:’);

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER20

fprintf (stderr, "missing argument for option ‘%c’\n",

argopt);

exit (1);

}

place = argv[argind];

}

argarg = place;

nextarg = 1;

return (argopt);

}

/*---------- FATAL ---

* exit with error message

---/

static void FATAL (char *errmsg)

{

if (NULL == errmsg)

fprintf (stderr, "CGNS error:%s\n", cg_get_error());

else

fprintf (stderr, "%s\n", errmsg);

exit (1);

}

/*---------- create_filename---------------------------------------

* create valid filename

--/

static void create_filename (char *str, char *fname)

{

int n = 0;

char *p;

for (p = str; *p; p++) {

#ifdef _WIN32

if (strchr ("\\/:*?\"<>|", *p) == NULL)

#else

if (isspace(*p)) continue;

if (strchr ("\\/:*?\"<>|[]()", *p) == NULL)

#endif

fname[n++] = *p;

else

fname[n++] = ’_’;

}

fname[n] = 0;

}

/*---------- fix_name --

* remove invalid characters from variable name

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER21

--/

static void fix_name (char *str, char *name)

{

int n = 0;

char *p;

for (p = str; *p; p++) {

if (!isspace(*p))

name[n++] = *p;

}

name[n] = 0;

}

/*------- write_ints ---

* write integers to VTK file

--/

static void write_ints (FILE *fp, int cnt, int *data)

{

fprintf (fp, "%d", *data);

while (--cnt > 0) {

data++;

fprintf (fp, " %d", *data);

}

putc (’\n’, fp);

}

/*------- write_floats ---

* write floats to VTK file

--/

static void write_floats (FILE *fp, int cnt, float *data)

{

fprintf (fp, "%g", *data);

while (--cnt > 0) {

data++;

fprintf (fp, " %g", *data);

}

putc (’\n’, fp);

}

/*------- get_nodes --

* read zone nodes

--/

static int get_nodes (int nz, CGNS_ENUMT(ZoneType_t) zonetype,

cgsize_t *sizes)

{

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER22

int i, j, n, ncoords;

int rind[6];

cgsize_t nn, rng[2][3];

CGNS_ENUMT(DataType_t) datatype;

float *xyz;

double rad, theta, phi;

char name[33], coordtype[4];

/* get number of coordinates */

/* CGNS functions like these are used quite often throughout the

code. This one returns number of coordinates as ncoords.

Definitions of the functions can be found in the cgnslib.h

file. */

if (cg_ncoords (cgnsfn, cgnsbase, nz, &ncoords))

FATAL (NULL);

if (ncoords < PhyDim)

FATAL ("less than PhyDim coordinates");

/* check for rind */

if (cg_goto (cgnsfn, cgnsbase, "Zone_t", nz,

"GridCoordinates_t", 1, "end"))

FATAL (NULL);

if ((i = cg_rind_read (rind)) != CG_OK) {

if (i != CG_NODE_NOT_FOUND)

FATAL (NULL);

for (n = 0; n < 6; n++)

rind[n] = 0;

}

/* get grid coordinate range */

if (zonetype == CGNS_ENUMV(Structured)) {

for (n = 0; n < 3; n++) {

rng[0][n] = 1;

rng[1][n] = 1;

}

nn = 1;

for (n = 0; n < CellDim; n++) {

rng[0][n] = rind[2*n] + 1;

rng[1][n] = rind[2*n] + sizes[n];

nn *= sizes[n];

}

}

else {

nn = sizes[0] + rind[0] + rind[1];

rng[0][0] = 1;

rng[1][0] = nn;

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER23

}

nnodes = (int)nn;

/* read the nodes */

strcpy (coordtype, " ");

xyz = (float *) malloc (nnodes * sizeof(float));

nodes = (Node *) malloc (nnodes * sizeof(Node));

if (xyz == NULL || nodes == NULL)

FATAL ("malloc failed for nodes");

for (i = 1; i <= ncoords; i++) {

if (cg_coord_info (cgnsfn, cgnsbase, nz, i, &datatype, name)

||

cg_coord_read (cgnsfn, cgnsbase, nz, name,

CGNS_ENUMV(RealSingle), rng[0], rng[1], xyz))

FATAL (NULL);

if (0 == strcmp (name, "CoordinateX") ||

0 == strcmp (name, "CoordinateR"))

j = 0;

else if (0 == strcmp (name, "CoordinateY") ||

0 == strcmp (name, "CoordinateTheta"))

j = 1;

else if (0 == strcmp (name, "CoordinateZ") ||

0 == strcmp (name, "CoordinatePhi"))

j = 2;

else

continue;

if (coordtype[j] == ’ ’ || strchr ("XYZ", name[10]) != NULL)

coordtype[j] = name[10];

for (n = 0; n < nnodes; n++)

nodes[n][j] = xyz[n];

}

free (xyz);

/* change coordinate system to cartesian */

if (0 == strncmp (coordtype, "RTZ", PhyDim)) {

for (n = 0; n < nnodes; n++) {

rad = nodes[n][0];

theta = nodes[n][1];

nodes[n][0] = (float)(rad * cos (theta));

nodes[n][1] = (float)(rad * sin (theta));

}

}

else if (0 == strcmp (coordtype, "RTP")) {

for (n = 0; n < nnodes; n++) {

rad = nodes[n][0];

theta = nodes[n][1];

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER24

phi = nodes[n][2];

nodes[n][0] = (float)(rad * sin (theta) * cos (phi));

nodes[n][1] = (float)(rad * sin (theta) * sin (phi));

nodes[n][2] = (float)(rad * cos (theta));

}

}

else if (strncmp (coordtype, "XYZ", PhyDim))

FATAL ("unknown coordinate system");

return nnodes;

}

/*------- sort_variables

--

* sort variables by name

---/

static int sort_variables (const void *v1, const void *v2)

{

Variable *var1 = (Variable *)v1;

Variable *var2 = (Variable *)v2;

return (strcmp (var1->name, var2->name));

}

/*------- get_variables

* get the solution variables

---/

static int get_variables (int nz, CGNS_ENUMT(ZoneType_t) zonetype,

cgsize_t *sizes)

{

char name[33];

int n, len, nv, nsols;

int rind[6];

CGNS_ENUMT(DataType_t) datatype;

nvars = 0;

if (cg_nsols (cgnsfn, cgnsbase, nz, &nsols))

FATAL (NULL);

if (cgnssol < 1 || cgnssol > nsols) return 0;

if (cg_sol_info (cgnsfn, cgnsbase, nz, cgnssol, name, &varloc)

||

cg_nfields (cgnsfn, cgnsbase, nz, cgnssol, &nv))

FATAL (NULL);

if (nv < 1) return 0;

if (varloc != CGNS_ENUMV(Vertex) && varloc !=

CGNS_ENUMV(CellCenter)) return 0;

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER25

nvars = nv;

/* check for rind */

if (cg_goto (cgnsfn, cgnsbase, "Zone_t", nz,

"FlowSolution_t", cgnssol, "end"))

FATAL (NULL);

if ((n = cg_rind_read (rind)) != CG_OK) {

if (n != CG_NODE_NOT_FOUND)

FATAL (NULL);

for (n = 0; n < 6; n++)

rind[n] = 0;

}

/* get solution data range */

if (zonetype == CGNS_ENUMV(Structured)) {

nv = varloc == CGNS_ENUMV(Vertex) ? 0 : CellDim;

for (n = 0; n < 3; n++) {

varrng[0][n] = 1;

varrng[1][n] = 1;

}

ndata = 1;

for (n = 0; n < CellDim; n++) {

varrng[0][n] = rind[2*n] + 1;

varrng[1][n] = rind[2*n] + sizes[n+nv];

ndata *= (int)sizes[n+nv];

}

}

else {

nv = varloc == CGNS_ENUMV(Vertex) ? 0 : 1;

ndata = (int)sizes[nv];

varrng[0][0] = rind[0] + 1;

varrng[1][0] = rind[0] + ndata;

}

/* get variable names */

vars = (Variable *) malloc (nvars * sizeof(Variable));

if (vars == NULL)

FATAL ("malloc failed for variable names");

for (nv = 0; nv < nvars; nv++) {

if (cg_field_info (cgnsfn, cgnsbase, nz, cgnssol, nv+1,

&datatype, name))

FATAL (NULL);

vars[nv].cnt = 1;

strcpy (vars[nv].name, name);

}

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER26

qsort (vars, nvars, sizeof(Variable), sort_variables);

/* get number of scalars and vectors */

for (nv = 2; nv < nvars; nv++) {

len = (int)strlen(vars[nv].name) - 1;

if (vars[nv].name[len] == ’Z’) {

strcpy (name, vars[nv].name);

name[len] = ’Y’;

if (0 == strcmp (name, vars[nv-1].name)) {

name[len] = ’X’;

if (0 == strcmp (name, vars[nv-2].name)) {

vars[nv-2].cnt = 3;

vars[nv-1].cnt = 0;

vars[nv].cnt = 0;

}

}

}

}

return nvars;

}

/*---------- write_volume_cells-----------------------------------

* write volume cell data to VTK file

--/

static void write_volume_cells (FILE *fp, int nz)

{

int i, n, ns, nsect, nn, ip;

int elemcnt, elemsize;

int *types, cell[9];

cgsize_t is, ie, nelems, maxsize, maxelems;

cgsize_t size, *conn;

CGNS_ENUMT(ElementType_t) elemtype, et;

char name[33];

if (cg_nsections (cgnsfn, cgnsbase, nz, &nsect))

FATAL (NULL);

if (nsect < 1) FATAL ("no sections defined");

maxsize = maxelems = 0;

for (ns = 1; ns <= nsect; ns++) {

if (cg_section_read (cgnsfn, cgnsbase, nz, ns,

name, &elemtype, &is, &ie, &nn, &ip) ||

cg_ElementDataSize (cgnsfn, cgnsbase, nz, ns, &size))

FATAL (NULL);

nelems = ie - is + 1;

if (maxelems < nelems) maxelems = nelems;

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER27

if (maxsize < size) maxsize = size;

}

if (maxsize > CG_MAX_INT32) FATAL("too many elements for 32-bit

integer");

conn = (cgsize_t *) malloc ((size_t)maxsize * sizeof(cgsize_t));

if (conn == NULL)

FATAL ("malloc failed for element connectivity");

/* count volume cells */

elemcnt = elemsize = 0;

for (ns = 1; ns <= nsect; ns++) {

if (cg_section_read (cgnsfn, cgnsbase, nz, ns,

name, &elemtype, &is, &ie, &nn, &ip))

FATAL (NULL);

if (elemtype < CGNS_ENUMV(TETRA_4) || elemtype >

CGNS_ENUMV(MIXED)) continue;

nelems = ie - is + 1;

if (elemtype == CGNS_ENUMV(MIXED)) {

if (cg_elements_read (cgnsfn, cgnsbase, nz, ns, conn,

NULL))

FATAL (NULL);

for (i = 0, n = 0; n < nelems; n++) {

et = (int)conn[i++];

switch (et) {

case CGNS_ENUMV(TETRA_4):

case CGNS_ENUMV(TETRA_10):

elemcnt++;

elemsize += 5;

break;

case CGNS_ENUMV(PYRA_5):

case CGNS_ENUMV(PYRA_14):

elemcnt++;

elemsize += 6;

break;

case CGNS_ENUMV(PENTA_6):

case CGNS_ENUMV(PENTA_15):

case CGNS_ENUMV(PENTA_18):

elemcnt++;

elemsize += 7;

break;

case CGNS_ENUMV(HEXA_8):

case CGNS_ENUMV(HEXA_20):

case CGNS_ENUMV(HEXA_27):

elemcnt++;

elemsize += 9;

break;

default:

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER28

break;

}

if (cg_npe (et, &nn) || nn == 0)

FATAL ("invalid element type in mixed");

i += nn;

}

}

else {

switch (elemtype) {

case CGNS_ENUMV(TETRA_4):

case CGNS_ENUMV(TETRA_10):

nn = 5;

break;

case CGNS_ENUMV(PYRA_5):

case CGNS_ENUMV(PYRA_14):

nn = 6;

break;

case CGNS_ENUMV(PENTA_6):

case CGNS_ENUMV(PENTA_15):

case CGNS_ENUMV(PENTA_18):

nn = 7;

break;

case CGNS_ENUMV(HEXA_8):

case CGNS_ENUMV(HEXA_20):

case CGNS_ENUMV(HEXA_27):

nn = 9;

break;

default:

nn = 0;

break;

}

if (nn) {

elemcnt += (int)nelems;

elemsize += (nn * (int)nelems);

}

}

}

if (elemcnt == 0) {

free (conn);

return;

}

types = (int *) malloc (elemcnt * sizeof(int));

if (types == NULL)

FATAL ("malloc failed for cell types");

/* write the elements */

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER29

fprintf (fp, "CELLS %d %d\n", elemcnt, elemsize);

elemcnt = 0;

for (ns = 1; ns <= nsect; ns++) {

if (cg_section_read (cgnsfn, cgnsbase, nz, ns,

name, &elemtype, &is, &ie, &nn, &ip))

FATAL (NULL);

if (elemtype < CGNS_ENUMV(TETRA_4) || elemtype >

CGNS_ENUMV(MIXED)) continue;

nelems = ie - is + 1;

if (cg_elements_read (cgnsfn, cgnsbase, nz, ns, conn, NULL))

FATAL (NULL);

et = elemtype;

for (i = 0, n = 0; n < nelems; n++) {

if (elemtype == CGNS_ENUMV(MIXED)) et = (int)conn[i++];

switch (et) {

case CGNS_ENUMV(TETRA_4):

case CGNS_ENUMV(TETRA_10):

nn = 4;

types[elemcnt++] = 10;

break;

case CGNS_ENUMV(PYRA_5):

case CGNS_ENUMV(PYRA_14):

nn = 5;

types[elemcnt++] = 14;

break;

case CGNS_ENUMV(PENTA_6):

case CGNS_ENUMV(PENTA_15):

case CGNS_ENUMV(PENTA_18):

nn = 6;

types[elemcnt++] = 13;

break;

case CGNS_ENUMV(HEXA_8):

case CGNS_ENUMV(HEXA_20):

case CGNS_ENUMV(HEXA_27):

nn = 8;

types[elemcnt++] = 12;

break;

default:

nn = 0;

break;

}

if (nn) {

cell[0] = nn;

for (ip = 0; ip < nn; ip++)

cell[ip+1] = (int)conn[i+ip] - 1;

write_ints (fp, nn+1, cell);

}

if (cg_npe (et, &nn) || nn == 0)

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER30

FATAL ("invalid element type");

i += nn;

}

}

free (conn);

/* write the element types */

fprintf (fp, "CELL_TYPES %d\n", elemcnt);

write_ints (fp, elemcnt, types);

free (types);

}

/*------------- read_bc ---

* read boundary conditions

---/

static void read_bc (FILE *fp, int nz)

{

int ib, nbocos;

char boconame[33], famname[33];

int normalindex[3], ndataset;

int normallist;

BCType_t ibocotype;

PointSetType_t iptset;

DataType_t normaldatatype;

cgsize_t ipnts[2][3];

cgsize_t npts, normallistflag;

/* find out number of BCs that exist under this zone */

cg_nbocos(cgnsfn,cgnsbase,nz,&nbocos);

/* do loop over the total number of BCs */

for (ib=1; ib <= nbocos; ib++) {

/* get BC info */

cg_boco_info(cgnsfn,cgnsbase,nz,ib,boconame,&ibocotype,

&iptset,&npts,normalindex,&normallistflag,&normaldatatype,&ndataset);

if (iptset != PointRange)

FATAL ("For this program, BCs must be set up as

PointRange type %s\n");

fprintf(fp, "\nzone number: %d\n", nz);

fprintf(fp, "BC number: %i\n",ib);

fprintf(fp, " name= %s\n",boconame);

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER31

/* Check if BC is UserDefined. If so read BC info from the

node Family Name, if not print BCType.

THIS IS EXTREMELY SPECIFIC TO CERTAIN CGNS FILES WHERE BC

INFO IS UNDER NODE

/Base_t/Zone_t/ZoneBC_t/BC_t/FamilyName.

IF THE BC’S ARE NOT READ CORRECTLY THE PATH FOR cg_goto

MIGHT HAVE TO BE ADJUSTED */

if (ibocotype == 1) { // bocotype 1 is

UserDefined

if (cg_goto (cgnsfn, cgnsbase, "Zone_t", nz, "ZoneBC_t",

1, "BC_t", ib, "end"))

FATAL("BC_t node not found");

if (cg_famname_read(famname))

FATAL("Family name not found");

fprintf(fp, " type= %s\n", famname);

}

else fprintf(fp, " type= %s\n",BCTypeName[ibocotype]);

/* read point range in here */

cg_boco_read(cgnsfn,cgnsbase,nz,ib,ipnts[0],&normallist);

fprintf(fp," i-range= %i ,

%i\n",(int)ipnts[0][0],(int)ipnts[1][0]);

fprintf(fp," j-range= %i ,

%i\n",(int)ipnts[0][1],(int)ipnts[1][1]);

fprintf(fp," k-range= %i ,

%i\n",(int)ipnts[0][2],(int)ipnts[1][2]);

}

}

/*========== main ==*/

int main (int argc, char *argv[])

{

int n, nz;

char name[33], BCname[35], outfile[37], outfileBC[37];

cgsize_t sizes[9];

CGNS_ENUMT(ZoneType_t) zonetype;

struct stat st;

FILE *fp, *fpBC;

/* print usage message if there are not sufficient arguments

given */

if (argc < 2)

print_usage (usgmsg, NULL);

/* get options from arguments */

while ((n = getargs (argc, argv, options)) > 0) {

switch (n) {

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER32

case ’b’:

cgnsbase = atoi (argarg);

break;

case ’z’:

cgnszone = atoi (argarg);

break;

case ’s’:

cgnssol = atoi (argarg);

break;

}

}

if (argind >= argc)

print_usage (usgmsg, "filename not specified");

if (stat (argv[argind], &st)) {

fprintf (stderr, "can’t stat <%s>\n", argv[argind]);

exit (1);

}

if (S_IFREG != (st.st_mode & S_IFMT)) {

fprintf (stderr, "<%s> is not a regular file\n",

argv[argind]);

exit (1);

}

/* open CGNS file */

printf ("reading CGNS file from \"%s\"\n", argv[argind]);

fflush (stdout);

if (cg_open (argv[argind], CG_MODE_READ, &cgnsfn))

FATAL (NULL);

if (cg_base_read (cgnsfn, cgnsbase, name, &CellDim, &PhyDim))

FATAL (NULL);

printf (" using base %d - %s\n", cgnsbase, name);

fflush (stdout);

if (PhyDim != 3 /*|| (CellDim != 1 && CellDim != 3)*/)

FATAL ("cell and/or physical dimension invalid");

/* check amount of zones */

if (cg_nzones (cgnsfn, cgnsbase, &nzones))

FATAL (NULL);

if (nzones == 0)

FATAL ("no zones in the CGNS file");

if (cgnszone && cgnszone > nzones)

FATAL ("zone number invalid");

/* file output directory */

if (++argind < argc) {

if (stat (argv[argind], &st) &&

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER33

#ifdef _WIN32

_mkdir (argv[argind])) {

#else

mkdir (argv[argind], S_IRWXU|S_IRWXG|S_IROTH|S_IXOTH)) {

#endif

cg_close (cgnsfn);

fprintf (stderr, "couldn’t create the directory <%s>\n",

argv[argind]);

exit (1);

}

if (chdir (argv[argind])) {

cg_close (cgnsfn);

fprintf (stderr, "couldn’t chdir to <%s>\n",

argv[argind]);

exit (1);

}

printf ("writing ASCII VTK files to directory \"%s\"\n",

argv[argind]);

}

else

printf ("writing ASCII VTK files to current directory\n");

for (nz = 1; nz <= nzones; nz++) {

if (cgnszone && nz != cgnszone) continue;

if (cg_zone_type (cgnsfn, cgnsbase, nz, &zonetype) ||

cg_zone_read (cgnsfn, cgnsbase, nz, name, sizes))

FATAL (NULL);

if (zonetype == CGNS_ENUMV(Structured)) {

if (sizes[0]*sizes[1]*sizes[2] > CG_MAX_INT32)

FATAL("too many coordinates for 32-bit integer");

}

else if (zonetype == CGNS_ENUMV(Unstructured)) {

if (sizes[0] > CG_MAX_INT32)

FATAL("too many coordinates for 32-bit integer");

}

else

FATAL ("invalid zone type");

/* grid reading and writing */

/* create VTK file for grid */

create_filename (name, outfile);

strcat (outfile, ".vtk");

printf ("writing zone %d as %s to \"%s\"\n", nz,

cg_ZoneTypeName(zonetype), outfile);

fflush (stdout);

if ((fp = fopen (outfile, "w+b")) == NULL) {

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER34

fprintf (stderr, "couldn’t open <%s> for output\n",

outfile);

exit (1);

}

fprintf (fp, "# vtk DataFile Version 2.0\n");

fprintf (fp, "zone %d - %s\n", nz, name);

fprintf (fp, "ASCII\n");

if (zonetype == CGNS_ENUMV(Structured)) {

fprintf (fp, "DATASET STRUCTURED_GRID\n");

fprintf (fp, "DIMENSIONS %d %d %d\n",

(int)sizes[0], (int)sizes[1], (int)sizes[2]);

}

else

fprintf (fp, "DATASET UNSTRUCTURED_GRID\n");

/* write data */

get_nodes (nz, zonetype, sizes);

fprintf (fp, "POINTS %d float\n", nnodes);

for (n = 0; n < nnodes; n++)

write_floats (fp, 3, nodes[n]);

if (zonetype == CGNS_ENUMV(Unstructured))

write_volume_cells (fp, nz);

fclose (fp);

free (nodes);

if (nvars) free (vars);

/* BC reading and writing */

/* create file for BC’s */

create_filename (name, outfileBC);

strcat (outfileBC, "BC");

printf ("writing BC’s for zone %d to \"%s\"\n", nz,

outfileBC);

/* read out BC’s */

if ((fpBC = fopen (outfileBC, "w+b")) == NULL) {

fprintf (stderr, "couldn’t open <%s> for output\n",

outfileBC);

exit (1);

}

read_bc (fpBC, nz);

APPENDIX A. SOURCE CODE FOR CGNS TO EILMER CONVERTER35

fclose (fpBC);

}

cg_close (cgnsfn);

return 0;

}

Appendix B

Python code

stator8test.py

test case for importing grid from VTK file

job_title = "Stator8 cgns2vtk test case"

print job_title

Accept defaults for air giving R=287.1, gamma=1.4

select_gas_model(model=’ideal gas’, species=[’air’])

Set up flow conditions

from math import pi, sin, cos

alpha = -pi # angle of attack in radians

initial = FlowCondition(p=1000.0, u=0.0, T=300.0)

M_inf = 1.5

u_inf = M_inf * initial.flow.gas.a

inflow_condition = FlowCondition(p=50.0e3, u=-u_inf*cos(alpha),

v=u_inf*sin(alpha), T=300.0)

Do a little more setting of global data.

gdata.dimensions = 3

gdata.title = job_title

gdata.viscous_flag = 0 # inviscid flow

gdata.flux_calc = ADAPTIVE

gdata.max_time = 5.0e-3 # seconds

gdata.max_step = 100

gdata.dt = 1.0e-7

gdata.dt_plot = 1.5e-3

gdata.dt_history = 10.0e-5

Create blocks

blk_list = []

for n in range(1, 10):

fp = open("domain.0000%d.vtk" % n, ’r’)

36

APPENDIX B. PYTHON CODE 37

grid = StructuredGrid()

grid.read_block_in_VTK_format(fp)

fp.close

label = "BLOCK-%d" % n

blk_list.append(Block3D(grid=grid, label=label,

fill_condition=initial))

for n in range(10, 31):

fp = open("domain.000%d.vtk" % n, ’r’)

grid = StructuredGrid()

grid.read_block_in_VTK_format(fp)

fp.close

label = "BLOCK-%d" % n

blk_list.append(Block3D(grid=grid, label=label,

fill_condition=initial))

identify_block_connections(exclude_list = [(blk_list[0],

blk_list[15]), (blk_list[7], blk_list[14])])

Boundary conditions

function that assigns CGNS BC to corresponding Eilmer BC

def correct_bc_type(bctype):

if bctype == ’INLET’:

return ’SUP_IN’

elif bctype == ’OUTLET’:

return ’SUP_OUT’

elif bctype == ’HUB’:

return ’ADIABATIC’

elif bctype == ’SHROUD’:

return ’ADIABATIC’

elif bctype == ’BLADE’:

return ’ADIABATIC’

elif bctype == ’ORPHAN’:

return ’SLIP_WALL’

else:

return ’SLIP_WALL’ # The default option

function to read lines and find specified target. Used for both

BC number and i, j, k ranges.

def locate_target(target, f):

found = False; tokens = []

while not found:

line = f.readline()

if len(line) == 0: break # end of file

line = line.strip()

if target.lower() in line.lower():

tokens = line.split()

found = True; break

APPENDIX B. PYTHON CODE 38

if not found:

raise RuntimeError("Did not find %s while reading VTK grid

file" % target)

return tokens

def read_bc(z, fp):

loop to find all 6 BC numbers

n = 1

while n <= 6:

assign target to find BC conditions in order

target = "BC number: %d" % (n)

locate_target(target, fp)

read BC type

target = "type="

BCtype = locate_target (target, fp) # BCtype[1] will contain

the type i.e. ’HUB’ or ’BLADE’

read i, j and, k ranges and assign BCtype

target = "i-range="

tks = locate_target (target, fp)

imin = tks[1]; imax = tks[3] # assumes the line read is of

the form i-range= imin , imax

#

if imin = imax, we know the boundary is either EAST or WEST

if imin == imax and imin == "1":

blk_list[z].set_BC("WEST", correct_bc_type(BCtype[1]))

n += 1

continue

elif imin == imax and imin != "1":

blk_list[z].set_BC("EAST", correct_bc_type(BCtype[1]))

n += 1

continue

target = "j-range="

tks = locate_target (target, fp)

jmin = tks[1]; jmax = tks[3]

if jmin == jmax and jmin == "1":

blk_list[z].set_BC("SOUTH", correct_bc_type(BCtype[1]))

n += 1

continue

elif jmin == jmax and jmin != "1":

blk_list[z].set_BC("NORTH", correct_bc_type(BCtype[1]))

n += 1

continue

target = "k-range="

tks = locate_target (target, fp)

APPENDIX B. PYTHON CODE 39

kmin = tks[1]; kmax = tks[3]

if kmin == kmax and kmin == "1":

blk_list[z].set_BC("BOTTOM", correct_bc_type(BCtype[1]))

n += 1

continue

elif kmin == kmax and kmin != "1":

blk_list[z].set_BC("TOP", correct_bc_type(BCtype[1]))

n += 1

continue

two loops are necessary because of filenames

for z in range(1, 10):

open BC file

fp = open(’domain.0000%dBC’ % z, ’r’)

z -= 2

read_bc (z, fp)

z += 2

for z in range(10, 31):

open BC file

fp = open(’domain.000%dBC’ % z, ’r’)

z -= 2

read_bc (z, fp)

z -= 2

	Introduction
	Introduction
	Background and aim
	Structure

	CGNS
	Introduction to CGNS
	Stator8.cgns

	CGNS to Eilmer3 conversion
	Eilmer3 simulation
	Python code for Eilmer3 simulation
	Simulation results

	Conclusions and recommendations
	Appendices
	Source code for CGNS to Eilmer converter
	Python code

