

MASTER THESIS

INFLUENCE OF CULTURAL TIGHTNESS-LOOSENESS ON CAUSAL AND EFFECTUAL DECISION-MAKING

Ard A.M. Munster

FACULTY OF MANAGEMENT AND GOVERNANCE NIKOS INNOVATION & ENTREPRENEURSHIP

EXAMINATION COMMITTE M.R. Stienstra MSc. Dr. M.L. Ehrenhard

UNIVERSITY OF TWENTE.

MASTER THESIS

INFLUENCE OF CULTURAL TIGHTNESS-LOOSENESS ON CAUSAL AND EFFECTUAL DECISION-MAKING

Author

Name:	Ard A.M. Munster
Student no.:	s1244957
Study:	Business Administration
Track:	Innovation and Entrepreneurship
Email:	ardmunster@gmail.com
Phone:	+31 (0)6 14921912

First supervisor

Name:	M.R. Stienstra MSc.
Phone:	+31 (0)53 489 3534
Email:	m.r.stienstra@utwente.nl

Second supervisor

Name:	Dr. M.L. Ehrenhard		
Phone:	+31 (0)53 489 4531		
Email:	m.l.ehrenhard@utwente.nl		

UNIVERSITEIT TWENTE.

Preface

This document is my final step before receiving my Master of Science degree in Business Administration at the University of Twente in The Netherlands. During my university career, I participated in the track Innovation & Entrepreneurship, which examined topics that always triggered my attention. In a lecture on international entrepreneurship, the entrepreneurial decision-making strategy 'effectuation' passed by. For me this was completely new, because prior education taught me to develop rational business plans before creating a new venture. However, the theory of effectuation realised me that a business market and an end product could get created through the venturing process itself in a future that is inherently unpredictable. Combining this topic with my great hobby, travelling the world, became the foundation for my research. My interest arose to how entrepreneurial decision-making is performed behind the boundaries of a single country.

A good motivation is the start, but retain this motivation and get through the timely process of writing a master thesis is quite challenging. The reward on the finish line is a good-looking Master of Science degree that kept me going during the personal struggles I had to deal with. The passing away of my beloved father was a drastic life-changer that took time and effort to coop with. Therefore, I pay my sincere gratitude to my family, in particular to my mother, who kept faith in me and provided unconditional support. Without their encouragement and trust I was not able to succeed. In additon, I would like to thank my friends being there for me and not asking too many questions about my study progress. Writing a thesis is sometimes a lonely endeavour and is not possible without others.

I would like to express special gratitude to my first supervisor Martin Stienstra for his guidance and support. He has been a great help throughout my course and kept his patience. My second supervisor Michel Ehrenhard reviewed and examined my work, which I also would like to kindly thank him for. Studying at The University of Twente gave me satisfaction and taught me to define and defend my choices throughout the process of developing confidence as an academic. Presenting this thesis feels like a personal achievement.

Ard Munster Dronten, the Netherlands | February, 2016

Abstract

Effectuation is a non-predictive decision-making strategy for new venture creating effective in a future that is inherently unpredictable. This thinking logic is researched by Sarasvathy (2001) and emphasizes that the end product is unpredictable at the beginning of the process and the market and opportunity gets created though the process. This is contrary to the rational prediction-oriented business-planning strategy that Sarasvathy (2001) describe as causation. A new scale is developed to measure effectuation and causation in a quantitative way. This scale is used to measure to what extent the society influences entrepreneurs in using a causal or effectual decision-making approach. The cultural tightness-looseness construct (Gelfand et al, 2011) gained research attention in recent years and provides a new perspective on culture. This new perspective was desired because previous studies found unconvincing results with using the value perspective of Hofstede.

The hypotheses state the proposed relationships between cultural tightnesslooseness and the principles of effectuation and causation. It is found that entrepreneurs, who are influenced by a loose society, apply a more causal logic than an effectual logic in the decision-making process. Entrepreneurs, who are influence by a tight society, also apply more causal reasoning than effectual reasoning. These findings indicate that tight and loose entrepreneurs use both types of reasoning, but mainly apply the causal logic. The results show that some principles of effectuation and causation are shared constructs of each other and that effectuation is a formative construct, which is similar to findings of Chandler et al. (2011). Future research should expand on how effectuation and causation could be measure as separate constructs and how the broad construct can be applied to multiple fields of research. Also, further research can be recommended to investigate if Gelfand's scale on cultural strength is valid and reliable enough to apply it in an entrepreneurial context.

List Of Tables And Figures

Figure 1, Causal and effectual marketing process (Sarasvathy, 2001b) Figure 2, Dynamic model of effectuation (Sarasvathy, 2008) Figure 3, The onion diagram (Hofstede, 2001) Figure 4, A systems model of tightness-looseness (Gelfand et al., 2011) Figure 5, The conceptual model Figure 6, Masculinity comparison (Geert-hofstede.com, 2015)	
TABLE 1. PRINCIPLES OF EFFECTUATION (SARASVATHY, 2001: 2008)	
TABLE 2, PUBLISHED INDEX SCORES ON CULTURAL TIGHTNESS (GELFAND ET AL., 2011)	
TABLE 3, ROTATED COMPONENT MATRIX (VARIMAX ROTATION)	
TABLE 4, PARAMETRIC TEST RESULTS ON DUTCH ENTREPRENEURS	35
TABLE 5, PARAMETRIC TEST RESULTS ON GERMAN ENTREPRENEURS	35
TABLE 6, SUMMARY OF RESULTS OF HYPOTHESES TESTING	40

Table of contents

ABSTRACT	II
1. INTRODUCTION	1
1.1 GENERAL BACKGROUND	1
1.2 Research gap	
1.3 Research question	5
1.4 RELEVANCE OF STUDY	5
1.5 Research outline	5
2. THEORETICAL FRAMEWORK	6
2.1 EFFECTUATION & CAUSATION	6
2.2 CULTURE	10
3. HYPOTHESES	
3.1 MEANS-DRIVEN VS. GOAL-DRIVEN	15
3.2 AFFORDABLE LOSS VS. EXPECTED RETURNS	15
3.3 STRATEGIC ALLIANCES VS. COMPETITIVE ANALYSES	
3.4 Exploiting contingencies vs. avoiding contingencies	
3.5 CONTROL UNPREDICTABLE FUTURE VS. PREDICT UNCERTAIN FUTURE	
3.6 EFFECTUATION VS. CAUSATION	
3.7 CONCEPTUAL MODEL	19
4 METHODOLOGY	20
4.1 SCALE DEVELORMENT	
4.2 DATA COLLECTION	20 22
4.3 CONTROL VARIABLES	
4.5 DATA ANALVEES	
	25
5. RESULTS	
5.1 DATA VALIDATION	
5.2 SCALE VALIDATION	
5.3 CONTROL VARIABLES	
5.4 ANALYSES OF HYPOTHESES	
6. DISCUSSION	41
6.1 VALIDITY AND RELIABILITY	41
6.2 Hypotheses outcomes	42
6.3 IMPLICATIONS	43
7. CONCLUSION, LIMITATIONS AND FUTURE RESEARCH	45
7.1 CONCLUSION	45
7.2 LIMITATIONS AND FUTURE RESEARCH	45
BIBLIOGRAPHY	
APPENDIX I: TEST OF NORMALITY	53
APPENDIX II- FXPI ORATORY FACTOR ANALYSIS	C Q
APPENDIX III: INTERNAL CONSISTENCY	63
APPENDIX IV: CONTROL VARIABLES	66
APPENDIX V: CORRELATION MATRIX	70
APPENDIX VI: ANALYSES ON HYPOTHESES	72
APPENDIX VII: ITEMS ON QUESTIONNAIRE	84

1. Introduction

1.1 General background

Entrepreneurship is a fast-growing field of research and is involved with taking risks (Drucker, 1970) and the creation of new organisations (Gartner, 1988). Venkataraman (1997) explains that entrepreneurship is concerned with understanding "how opportunities to bring into existence 'future' goods and services are discovered, created, and exploited, by whom, and with what consequences" (p. 120). However, "new venture creation" is commonly known as the definition for entrepreneurship (Gartner, 1985, p. 697). Because research attention has been directed to multiple areas of the rich domain, each definition probably do not state the entire phenomenon of entrepreneurship (Shane & Venkataraman, 2000). Nonetheless, it serves entrepreneurship scholars in multiple academic fields. Perhaps, the best known definition of the entrepreneur is by the economist Schumpeter, who defines entrepreneurs as individuals that "reform or revolutionise the pattern of production by exploiting an invention [...] or untried technical possibility for producing a new commodity or producing an old one in a new way [...] this requires aptitudes that are present in only a small fraction of the population [...]" (Schumpeter, 1934, p. 132). He sees the role of the entrepreneur as the catalyst of change.

Personal values, sequence of activities, decisions and actions are all related to the process of new venture creation (Gartner, 1985), which is known as the 'entrepreneurial process'. Bygrave & Hofer (1991) define the entrepreneurial process as *"involving all the functions, activities, and actions associated with perceiving opportunities and creating organisations to pursue them"* (p. 14). Most research on entrepreneurial processes is based on rational decision-making models employed by neoclassical economics. Most entrepreneurship researcher assumed that individuals engage in rational goal-driven behaviours when pursuing entrepreneurial opportunities (Perry, Chandler, & Markova, 2012). MBA students in many business schools are taught goal-driven entrepreneurial decision models.

In research, a debate emerged on the value of business planning for established small and especially new firms when facing high degrees of uncertainty (Brinckmann, Grichnik, & Kapsa, 2010). Wiltbank, Dew, Read, & Sarasvathy (2006) explain that there are two schools of thoughts on the topic of what firms should do next in uncertain situations: the planning approaches and the adaptive approaches. According to Wiltbank et al. (2006), the role of prediction is a central issue in the decision-making process. The planning approach is systematic and prediction-oriented and uses a formal approach that results in venture performance. This

approach focuses on 'trying harder to predict better' for future challenges (Sarasvathy, 2001). Sarasvathy (2001) described these rational business-planning strategies as 'causation'. Contrary, researchers belonging to the learning school argue the value of prediction-oriented strategy and advocate that the focus should be on strategic flexibility, learning and controlling resources (Wiltbank, Dew, Read, & Sarasvathy, 2006; Brinckmann, Grichnik, & Kapsa, 2010). These adaptive or emergent strategies focus on 'moving faster to adapt better' (Sarasvathy, 2001). In recent years, research is directed towards and adaptive strategy to describe the underlying nature of the entrepreneurial process, i.e. the theory of effectuation (Sarasvathy, 2001), entrepreneurial bricolage (Baker & Nelson, 2005) and the creation perspective (Alvarez & Barney, 2007).

Moroz & Hindle (2012) reviewed 32 process models of entrepreneurship, to determine which models are both generic (all processes that are entrepreneurial do this) and distinct (only entrepreneurial processes do this) about the process of entrepreneurship. In their peer-review four models are found that provide insight on both characteristics, works by Gartner (1985), Bruyat & Julien (2000), Sarasvathy (2001) and Shane (2003). These models show entrepreneurial process in multiple perspectives, but none of them is simultaneously both generic and distinct. Sarasvathy's model of effectuation is the only model that presented a direct practical focus and has a rapidly growing volume of scholarship devoted to it (Moroz & Hindle, 2012). Research to date shows that effectuation theory is applied in the realm of management (Augier & Sarasvathy, 2004), economics (Dew, Sarasvathy, & Venkataraman, 2004), finance (Wiltbank, Read, Dew, & Sarasvathy, 2009), marketing (Read, Dew, Sarasvathy, Song, & Wiltbank, 2009), and R&D management (Brettel, Mauer, Engelen, & Kupper, 2012).

Sarasvathy (2001) researched a thinking logic that serves entrepreneurs in starting a business and provides a way to control a future that is inherently unpredictable. Effectuation begins with a given set of means and allows goals to emerge contingently over time from the varied imagination and diverse aspirations of the founders and the people they interact with (Sarasvathy, 2001b). This non-predictive strategy emphasize that the end product is unpredictable at the beginning of the process and the market and opportunity gets created though the process itself by determine the affordable loss, forming strategic alliances and pre-commitments with stakeholders, exploiting contingencies and controlling an unpredictable future. In contrast, causation is consistent with planned strategy approaches and includes activities such as opportunity recognition and business plan development (Sarasvathy, 2001).

Formal and informal institutions influence the decision-making process and the performance of a company. Formal institutions are political, economic and contractual rules that regulate the behaviour of an individual (North, 1990). The informal institution is a system of shared values and collective understanding between individuals and is not coded in standards and rules. National culture is seen as an import reflection of an informal institution (North, 1990). Holmes, Miller, Hitt, & Salmador (2013) indicated the importance of informal institutions and explain that cultural dimensions shape the country's formal institutions. In 1956, Weber already stated the importance of informal institutions and beliefs are factors that encourage entrepreneurship. Shane (1993; 1994) researched the association and effect between national culture and national rates of innovation and found positive correlations with the cultural values 'individualism' and 'power distance'. Research on the relationship between culture and entrepreneurship did not rapidly-develop after Shane.

A few years later, Mueller & Thomas (2000) explored if entrepreneurial traits (locus of control and innovativeness) varied across cultures and found that uncertainty avoiding and individualistic cultures are supporting entrepreneurship. Research slowly expanded on different entrepreneurial concepts related to culture. Hayton, George & Zahra (2002) reviewed and synthesized the findings of 21 empirical studies that examine the association of culture with entrepreneurship on national level. Multiple studies have concluded that entrepreneurs in different countries usually share some universal traits and they may also have other traits that are specific to their own culture. Most behavioural studies, which Hayton et al. (2002) reviewed, are skewed towards cultural values and entrepreneurial behaviour that stems from research of Hofstede.

Recent research described the cultural values extensively (Hofstede G., 1980; Schwartz, 1994; Smith, 1996; House, Hanges, Javidan, Dorfman, & Vipin, 2004; Taras, Kirkman, & Steel, 2010) and shows that the cultural values are one of the more influential context variables regarding the influence on entrepreneurship (Morrison, 2000). Most research is under the umbrella of international business, which does not focus on the entrepreneurial process itself.

1.2 Research gap

It is unclear to what extend culture influences the entrepreneurial process. Schumpeter (1965) suggests that activity in entrepreneurship depends upon the availability of prospective entrepreneurs (i.e. individuals possessing personality traits combined with personal circumstances). This indicates that the entrepreneur, with their own cultural set of beliefs and personal traits, has a key-role in the entrepreneurial process and could behave differently in other countries or societies.

In the field of International Entrepreneurship, no literature is found that goes into detail on cultural implications on entrepreneurial processes. In International Business literature Jones & Coviello (2005) view internationalisation as a *"time-based process of entrepreneurial behaviour"* (p. 284), where internal and external environmental changes lead to the entry mode choice and country selection. Even when Jones & Coviello (2005) highlight country diversity (geographic, economic and cultural distance), no detailed information is found on the (in)direct relationship of culture on entrepreneurial processes.

Also, Sarasvathy (2001) does not mention the implications of culture on new venture creation in an effectual way. Perry et al. (2012) reviewed the developments on the effectuation theory since the introduction of this topic. He states that empirical research on this topic is attempted by only a few researchers and is therefore lacking. He provides future research suggestions and argues that the relationship between established constructs and effectuation should be explored. The role of cultural values related to effectual decision-making is not mentioned, which could be valuable to the decision-making process.

The research project 'Entrepreneurial Processes in a Cultural Context' (EPICC), at the University of Twente, investigated the significance of the cultural context in the entrepreneurial decision-making processes. Previous studies of this project show mixed results of entrepreneurial decision-making in relationship to the cultural dimensions. For example, Krijgsman (2012) and Telman (2012) found evidence that uncertainty avoidance significantly correlates with effectuation. Mones (2012) explained that it was hard to find solid evidence of cultural influence on effectuation. Steentjes (2012) found that causal-oriented cultures are focused on internal control.

Due to the limited amount of published research on this subject and the unconvincing results of the EPICC project, it is unclear what influence culture has on the decision-making process in entrepreneurial processes. Also, it is questionable if the EPICC project used sufficient predictors to measure cultural influences on entrepreneurial decision-making. This triggers the search to find a cultural measurement that measures the cultural influence on the principles of effectuation. Gelfand's theory on societal tightness-looseness gained research attention in recent years and focused on the strength of social norms and the degree of sanctioning within societies (Gelfand, Raver, Nishii, Leslie, Lun, & Chong Lim, 2011). Taras et al. (2010) are the first researchers that introduced this theory related to Hofstede's cultural values and found that cultural values have significantly stronger effects in

culturally tighter, rather than looser, countries. Therefore, cultural tightnesslooseness is an interesting construct to link to effectual decision-making.

1.3 Research question

As the research gap indicates, interest arises to what extent the principles of effectuation is influenced beyond the boundaries of a single country. In order to measure the cultural influences on the decision-making process in entrepreneurial processes, the following research question is formulated:

"To what extent does cultural tightness-looseness influences the way in which entrepreneurs use a causal or effectual logic in the decision-making process?"

1.4 Relevance of study

This research will make a contribution to existing literature on effectuation and cultural tightness-looseness. Perry et al. (2012) argue that current research on effectuation can be classified as nascent and encourage a development to an intermediate state. Relating established construct as cultural tightness-looseness to effectuation hopefully contributes to develop the research stream. It will shine a new light on relating culture with effectuation and causation. Hopefully understanding the influence of cultural strenght on effectuation will expand the knowledge on how socials norms and behaviour in a society influence entrepreneurial decision-making. Also, Sarasvathy (2001) gathered and analysed think-aloud verbal protocols for her research, which is a time-consuming process. This research applies a new quantitative measure that hopefully improves the method of data collection and processing in future research. (Chandler, DeTienne, McKelvie, & Mumford, 2011; Perry, Chandler, & Markova, 2012).

1.5 Research outline

This thesis is organised around several chapters to answer the stated research question. Currently you have read the introduction, which explains the relevant concepts and the research gap, question and relevance. The second chapter provides the theoretical framework. In chapter three the hypotheses are formulated in how effectuation is committed with cultural tightness-looseness. The fourth part presents the methodology, which explains the method of data collection, operationalisation of variables and method of analyses. Subsequently, the results and interpretations of analyses are presented in chapter five and discussed in chapter six. Chapter seven answers the research question accompanied with limitations and recommendations for future research.

2. Theoretical framework

2.1 Effectuation & causation

2.1.1 Problem space

Most research on entrepreneurial processes is based on rational decision-making models. These models are based on entrepreneurs that use a rational goal-driven behaviour, which focuses on predicting an uncertain future. Sarasvathy's research focused on entrepreneurship as a process and studied entrepreneurial activity with their limitations. During her studies she found that entrepreneurs face three types of uncertainty (Sarasvathy, 2008). She describes the first type as 'Knightian uncertainty', which means that it is impossible to calculate possibilities for future consequences. She named the second type 'goal ambiguity', which implies that there is a lack of assumed or structured preferences. The third type of uncertainty is named 'environmental isotropy', which illustrates that it is difficult for entrepreneurs to determine on which elements of an environment the attention should be focused on (Sarasvathy, 2008). Sarasvathy wondered how this would influence the entrepreneurial decision-making process and recognised a pattern about how entrepreneurs create new firms in new markets. This pattern contradicts the planning approach (Wiltbank et al., 2006), which is taught to students in MBA programs across the world and by Sarasvathy termed as 'causation' (Sarasvathy, 2001).

2.1.2 Contrasting effectuation and causation

Sarasvathy (2001) developed the effectuation theory, which values an adaptive approach to reasoning and inverses the term 'causation' (Wiltbank et al., 2006). Effectual reasoning begins with a *"given set of means and allows goals to emerge contingently over time from the varied imagination and diverse aspirations of the founders and the people they interact with"* (Sarasvathy, 2001b, p. 2). Causal reasoning begins with a *"pre-determined goal and given set of means, and seeks to identify the optimal, fastest, cheapest, most efficient alternative to achieve the given goal"* (Sarasvathy, 2001b, p. 2). The distinguishing characteristic between the two modes is the set of choices. Choosing between means to create a particular effect, versus choosing between many possible effects using a particular set of means. To illustrate the difference between the two modes, a simple practical example will clarify: imagine a carpenter who is asked to build a desk, versus one who is given a toolbox and some wood, and asked to build whatever he or she chooses to (Sarasvathy, 2001). Figure 1 graphically contrasts the causal and effectual decision-making process.

Classic Causation Model from Marketing Textbooks

Sarasvathy (2001) defines causation as "processes that take a particular effect as given and focus on selecting between means to create that effect" (p. 245). This definition explains that the end product is determined by the initial opportunity and the adaptive changes over time to fit the pre-selected market and/or vision. This makes causation effect dependent and excellent at exploiting knowledge. Sarasvathy (2001) defines effectuation as "processes that take a set of means as given and focus on selecting between possible effects that can be created with that set of means" (p. 245). The end product in effectuation is unpredictable at the beginning of the process and both market and opportunity get created through the process itself. The end product is contingent on who comes on board and the actions and goals they enable and constrain. This makes effectuation actor dependent and excellent at exploiting contingencies.

It is necessary to notice that effectuation processes are not 'better' or 'more efficient' than causation processes in creating firms, markets and economies. This has implications for measuring effectuation and causation according to Perry et al. (2012). The two constructs looks like opposites end of a continuum, but entrepreneur can use both causal and effectual reasoning depending on what the

Process of Effectuation Used by Expert Entrepreneurs

circumstances call for. However, effectual reasoning is preferred over causal reasoning in the early stages of a new venture and in later stages causal reasoning is more required. This makes the effectual logic particularly useful and effective during the introduction of new products in new markets, where Sarasvathy (2001b) and Wiltbank et al. (2006) referred to as the 'suicide quadrant'. Ansoff (1957) defined a product-market matrix to helps among others entrepreneurs to determine strategies for future growth. Ansoff recognised this area as 'diversification', where traditional marketing techniques are ineffective according to Sarasvathy (2001b). The effectual cycle (figure 2) represents the useful and effective thinking process in domains such as creating products, markets, and ventures (Sarasvathy, 2008).

Figure 2, Dynamic model of effectuation (Sarasvathy, 2008)

Sarasvathy (2001) pluralised the concept of effectuation and develop key-elements that embody the core of the theory. These key-elements are known as principles.

2.1.3 Principles

Sarasvathy (2001) use four principles to compares the two constructs, in the form of dichotomies: affordable loss vs. expected returns, strategic alliances vs. competitive analyses, exploiting contingencies vs. avoiding contingencies and control vs. prediction. However literature on the effectuation topic has expanded over the last decade and has been applied in fields such as management (Augier & Sarasvathy, 2004), economics (Dew et al., 2004), finance (Wiltbank et al., 2009), marketing (Read et al., 2009), and R&D management (Brettel et al., 2012). The four original principles are updated to a list of five principles (table 1) that make up the effectual logic

(Sarasvathy, 2008). The principle 'means-driven vs. goal-driven' is added to the original four principles. The principles will be shortly introduced and chapter 3 provides more detail.

Causation	Effectuation	
Goal-driven	Means-driven	
Expected returns	Affordable loss	
Competitive analyses	Strategic alliances	
Avoiding contingencies	Exploiting contingencies	
Predict uncertain future	Control unpredictable future	

Table 1, Principles of effectuation (Sarasvathy, 2001; 2008)

The first principle emphasizes to create something new with existing means rather than discovering new ways to achieve given goals. Causation is focus on goal-driven action and effectuation is focus on means-driven action. The second principle prescribes how much someone is willing to lose rather than maximizing the potential return. Knowing the affordable loss create more options in the future over those that maximize returns in the present and focuses on the downside risks. The third principle focuses on forming strategic alliances and pre-commitments with stakeholders who are willing to actual commitment to the project, without worrying about opportunity costs, or carrying out elaborate competitive analyses like the causal reasoning. Who comes on board determines the goals of the enterprise. The fourth principle focuses on exploiting contingencies that arose unexpectedly over time. Acknowledging and appropriating contingency by leveraging surprises rather than trying to avoid them, overcome them, or adapt to them. Causation models might be preferable when pre-existing knowledge forms the source of the competitive advantage (Sarasvathy, 2001). The fifth principle focuses on controlling an unpredictable future rather than predicting an uncertain future. Effectuation relies on working with human agency as the prime driver of opportunity rather than limiting entrepreneurial efforts to exploiting exogenous factors such as technological trajectories and socioeconomic trends.

2.1.4 Underlying logic and future research

Sarasvathy (2001) states that underlying all the principles of effectuation is a coherent logic that contains different assumptions about the future than causation. Causal reasoning is based on the logic *"to the extent that we can predict the future, we can control it"* (Sarasvathy, 2001, p. 252). Effectual reasoning is based on the logic *"to the extent that we can need to predict it"* (Sarasvathy, 2001, p. 252).

Research on the effectuation topic expanded and effectuation is connected to constructs as for example new venture performance (Read & Sarasvathy, 2005) and trust (Goel & Karri, 2006; Karri & Goel, 2008). However, Perry et al. (2012) argues that the study can be classified as nascent and encourage a development to an intermediate state. He suggests implications for future research and mentions that researchers should relate the theory of effectuation to established constructs. Sarasvathy (2001) does not mention the role of culture in her adaptive decision-making strategy and neither does Perry et al. (2012). Therefore, the role of cultural values related to the effectual decision-making process will help the development process and could provide valuable information.

2.2 Culture

2.2.1 Definitions

The notion of 'culture' has multiple and variously inclusive definitions. Kroeber and Kluckhohn (1952) critically reviewed concepts and definitions of culture, and compiled a list of 164 different definitions. The review of Kroeber & Kluckhohn (1952) led to the following definition: "culture consists of patterns, explicit and implicit, of and for behaviour acquired and transmitted by symbols, constituting the distinctive achievements of human groups, including their embodiment in artefacts; the essential core of culture consists of traditional (i.e. historically derived and selected) ideas and especially their attached values; culture systems may, on the one hand, be considered as products of action, on the other, as conditional elements of future action" (p. 181; as cited by Adler, 1997, p. 14). Hofstede (1980) followed up this definition of Kroeber & Kluckhohn and defines culture as "the collective programming of the mind, which distinguishes the members of one group from another" (p. 25). The set of shared values and beliefs, values and expected behaviours are described extensively, among others (Hofstede, 1980; Schwartz, 1994; Smith, 1996; House et al., 2004; Taras et al., 2010) and are useful to differentiate between cultures.

The term 'culture' is difficult to describe, because it exists at different levels, ranging from organisational, national, clan and individual (Mitchell, Smith, Seawright, & Morse, 2000). Nations are normally the best representatives of culture, because the nationality of a person can easily be established, whereas membership of a sub-culture is more difficult to establish.

2.2.2 Cultural values

Hofstede (2001) discusses the multilevel nature of culture and represents this in an onion diagram (figure 3). He argues that culture looks like an onion and can be

peeled, layer-by-layer, in order to reveal the content (Dahl, 2004). As the figure indicates, four terms describe the concept of culture: values, symbols, heroes and rituals describe the concept of culture. The values are the most hidden layer of culture and are acquired early in a person's live. Easier to observe are rituals, heroes and symbols. Rituals are considered as social essential, such as ways of greeting and paying respect to others (Dahl, 2004). Heroes are admired persons who serve as an example for behaviour. Symbols are the most superficial layer. People who share a specific culture recognize these symbols like words, colour or artefacts that carry a special meaning (Dahl, 2004).

The cultural values have been the focus of most cross-cultural research. Hofstede (1994) argues that cultural values represent the deepest level of a culture. They are "broad feelings, often unconscious and not open to discussion, about what is good and what is bad, clean or dirty, beautiful or ugly, rational or irrational, normal or abnormal, natural or paradoxical, decent or indecent" (Hofstede, 1994, p. 14).

2.2.3 Hofstede's framework

Hofstede (1990; 1994) provides a framework containing four dimensions that he believes can be used to differentiate between national cultures, including power distance (the degree of inequality among the people that the population of a country consider normal), Individualism-collectivism (the degree to which people in a country prefer to act as individuals rather than members of groups), masculinity-femininity (the degree to which such 'masculine' values, such as assertiveness, competition, and success are emphasised, as opposed to such 'feminine' values as quality of life, warm personal relationships, service, etc.) and uncertainty avoidance (the degree to which people in a country prefer structured over unstructured situations). Later Hofstede added the dimension long-term orientation (implies a stress on virtuous living in this world, with thrift and persistence as key virtues) as the fifth cultural dimension. These dimensions provide a useful tool, which has the potential to categorise certain important aspects of culture.

Hofstede's framework is used extensively in management and international business literature and is a dominant model for research on national culture. Hofstede's dimensions led to an explosion of cross-cultural research in business, psychology, and other disciplines that favour quantitative research methods. His original cultural indices have been used in thousands of studies and provided a foundation for cross-cultural corporate training and international management courses in business and executive education curricula (Taras, Steel, & Kirkman, 2012).

Despite the enormous popularity, Hofstede's cultural indices are not without limitations. Scholars argue the reliance and generalizability on Hofstede's indices (Shane, 1993; Thomas & Mueller, 2000; Mueller & Thomas, 2000; Mitchell, Smith, Seawright, & Morse, 2000; McSweeney, 2002). Hofstede's dimensions were originally developed in the context of formal organisations and the study was based on a sample of employees in a single American organisation, IBM. With research developments on culture, it is uncertain if Hofstede's 40-year-old data is still reliably in today's application. Taras et al. (2010) analysed the relationship between several organisationally relevant outcomes with the cultural value dimensions. They compared empirical research that used the Hofstede's indices and found that the cultural values framework is still relevant. Two years later they published an article that offered an updated set of national cultural scores along the dimensions of Hofstede's cultural framework. These indices are based on a larger and more representative sample and cultural change is addressed by offering separate sets of indices for three decades. The updated dataset is more accurate than that offered by Hofstede or other cross-cultural comparison studies (Taras et al., 2012).

More recent studies have offered new sets of cultural indices, but largely remain subject to limitations, namely the limited ability to represent their respective populations and containment of a specific time period. Even the larger studies (Schwartz, 1994; Smith et al., 1996; House et al., 2004) are represented by a few dozen individuals and the data represented a single point in time or a period too short to effectively preclude longitudinal analysis (Taras et al., 2012).

The previous EPPIC studies used mainly the value perspective of Hofstede, but also other studies, to determine the impact of culture on the entrepreneurial decisionmaking process and found unconvincing results. It is questionable if Hofstede's dimensions are sufficient predictors to measure cultural influences on entrepreneurial decision-making. Perry et al. (2012) encourages development in effectuation research and therefore other established constructs of culture should be related to it. Gelfand's theory on societal tightness-looseness gained research attention in recent years and focused on the strength of social norms and the degree of sanctioning within societies. Taras et al. (2010) are the first researchers that introduced this theory related to cultural values and found that cultural values have significantly stronger effects in culturally tighter, rather than looser, countries. Gelfand, Nishii & Raver (2006) argues that the concept is unique and complementary to other cultural dimensions.

2.2.3 Tightness-Looseness

Early research in anthropology, sociology and psychology (Pelto, 1968; Triandis, 1989) showed the construct of tightness-looseness important in differentiating cultures and it can explain and predict cultural differences in many kinds of social behaviour. Pelto (1968) was the first on the development of a theory on tightness-looseness and argued that traditional societies varied in their expression of and adherence to social norms. Pelto described tight societies as *"those that were rigorously formal and disciplined, had clearly defined norms, and imposed severe sanctions on individuals who deviated from norms. By contrast, loose societies had a lack of formality and discipline, ill-defined norms, and a high tolerance for deviant behaviour"* (Gelfand, 2012, p. 420).

Pelto identified determinants of tightness-looseness including difference in kinship systems, population density and the dependence on food crops (economic system). In 1977, Triandis reintroduced the tight-loose construct and argued that it is an important dimension. Because the construct is different from other dimension of cultural variation (Triandis, 1989) there is the need to develop measures of tightness and looseness for cross-cultural research (Gelfand et al, 2006).

Gelfand et al. (2011) created a measure to provide insight into how tightnesslooseness operates in modern societies. With data from 33 nations, the study illustrates the differences between cultures that are tight (have many strong norms and a low tolerance of deviant behaviour) versus loose (have weak social norms and a high tolerance of deviant behaviour). Results showed that tightness-looseness is part of a complex, loosely integrated multilevel system that comprises a broad array of ecological and historical societal threats (e.g. population density, resource scarcity, vulnerability to natural disasters, and prevalence of disease), broad versus narrow socialisation in societal institutions (e.g., autocracy, media regulations), the strength of everyday recurring situations, and micro-level psychological affordances (e.g., prevention self-guides, high regulatory strength, need for structure) that nations have (or have not) encountered (Gelfand et al., 2011).

Figure 4, A systems model of tightness-looseness (Gelfand et al., 2011)

The 'systems model of tightness-looseness' (figure 4) illustrates the general model of how differences in tightness emerges and indicates that tightness is related to high population density, low percentage of arable land and food supply, high degrees of environmental threats, high police per capita and strength of criminal justice systems, high degrees of autocracy, and low openness of the media. Therefore, tight societies value order, formality, discipline and conformity and in contrast, loose societies value innovation, openness to change, tolerance and variety (Gelfand et al., 2006).

Research show that tightness-looseness is related to but distinct from other cultural dimensions. Triandis and Gelfand (1998) shared research history together and performed research mainly on individualism-collectivism. Carpenter (2000) found that the correlation between cultural tightness and individualism-collectivism was only moderately correlated. Later, Triandis (2004) investigated the relationship of Hofstede's uncertainty avoidance to tightness. He found that in cultures high in uncertainty avoidance, people want to have structure, to know precisely how they are supposed to behave and what is going to happen next. Gelfand et al. (2011) argues that the dimension of uncertainty avoidance is not significantly related with tightness-looseness. Hofstede's dimension of power distance is also related to but distinct from tightness-looseness. Tight societies may be more hierarchical, which helps to reinforce order and coordination, but this is not always the case. Results also show that power distance is distinct and moderately and positively correlated with tightness-looseness (Gelfand et al., 2011).

The next chapter elaborates on how loose and tight societies and possibly relates to effectual and causal decision-making. Hypotheses are formulated in order to explore the research question formulated at the introduction (chapter 1).

3. Hypotheses

This chapter elaborates on the relationship of effectual and causal decision-making with cultural tightness-looseness. Sarasvathy (2001; 2008) formulated five principles that make up the effectual logic, which are discussed separately and are linked to characteristics of cultural tightness-looseness. Each principle is formulated in a group of two hypotheses. The last group of hypotheses is a combination of the five principles in order to measure the whole construct of effectuation and causation.

3.1 Means-driven vs. goal-driven

The starting point of the effectual decision-making process is based on the set of means. Each stakeholder asks himself questions of who I am (identity), what I know (knowledge) and whom I know (network) and interaction with stakeholders result in selecting possible effects and decisions that can be imagined with the existing means. The stakeholders should be open to change in order to create valuable new combinations. Gelfand et al. (2006) argues that individuals in a loose society are more open to change and show more innovative behaviour, which can be beneficial for creating new ends with existing means. Gelfand et al. (2006) also explains that there is more variability in behaviour in loose societies, which implies that less similarity will be found and more possible effects can be imagined.

Sarasvathy (2001) argues that the causation model starts with goals as a given and that the basic decision for that model is the decision on what means should be accumulated to achieve these goals. Less openness to change and creativity is needed, which are characteristics of individuals in a tight society. Tight individuals seek predictability and order and avoid ambiguous and novel situations (Gelfand et al., 2006). Also, societal-tight individuals show less variability in their behaviour, which probably results in similar goals and actions.

The following hypotheses are stated:

H1a: A loose society influences entrepreneurs in emphasizing on means-based actions rather than goal-based action.

H1b: A tight society influences entrepreneurs in emphasizing on goal-based actions rather than means-based actions.

3.2 Affordable loss vs. expected returns

The difference between affordable loss and expected returns is based on predisposition towards risk and resources (Kraaijenbrink, 2008). Effectual reasoning entrepreneurs focus on projects where the loss in a worst-case scenario is affordable

(Chandler et al., 2011). The entrepreneur tries to estimate the down side potential and examines what she is willing to loose (Sarasvathy, 2001; Dew et al., 2009). Societal-loose individuals are risk seeking and show flexibility and experimentation in their behaviours, which likely contribute to cooping with affordable loss.

Causal reasoning entrepreneurs focus on the upside potential and emphasize on maximizing the expected returns for a decision by selecting optimal strategies (Sarasvathy, 2001; Dew et al., 2009). The causal entrepreneur calculates up front how much money is required for the new venture and invests time, effort and energy in the process of collecting this money (Sarasvathy, 2001). Individuals in tight societies are prevention focused and thus will be more cautious and dutiful (Gelfand et al., 2011). They are searching for stability and are content with risk avoidance (Gelfand et al., 2006).

The following hypotheses are stated:

H2a: A loose society influence entrepreneurs in emphasizing on affordable loss rather than expected returns.

H2b: A tight society influences entrepreneurs emphasizing on expected returns rather than affordable loss.

3.3 Strategic alliances vs. competitive analyses

The difference between effectuation and causation is also characterized by the attitude towards outside firms (Kraaijenbrink, 2008). The effectual logic favours cooperation and is focused on building strategic alliances (partnerships) and bringing stakeholders on board to determine the new venture's direction. Establishing cooperative partnerships will help determine what goals to pursue and over time creating a market with customers, suppliers and even prospective competitors. Individuals in a loose society are flexible and show tolerance for organisational change (Gelfand et al., 2006). These characteristics are important for the recruitment and selection process of stakeholders and organisational changes during the venturing process.

The causal logic of reasoning favours competition over cooperation and emphasizes detailed competitive analyses and business planning (Kraaijenbrink, 2008). For example, causal entrepreneur should constrain task relationships with customers and suppliers to what is necessary to limit dilution of ownership as far as possible (Sarasvathy & Dew, 2005). The entrepreneur should be restraint with the venture's information and focus on competition instead of cooperation. Tight societies value structure, formality and control over the future, which contributes to causal characteristics.

The following hypotheses are stated:

H3a: A loose society influence entrepreneurs in emphasizing on strategic alliances rather than competitive analyses.

H3b: A tight society influences entrepreneurs in emphasizing on competitive analyses rather than strategic alliances.

3.4 Exploiting contingencies vs. avoiding contingencies

The effectual frame focuses on exploiting contingencies that arise unexpectedly over time (Sarasvathy, 2001). Effectual entrepreneurs have the ability to turn the unexpected into the profitable by leveraging the contingencies rather than avoid them, overcome them or adapt to them. Cultural-loose individuals adapt easier to environmental contingencies, because they are flexible and open to change (Gelfand et al, 2011). Also, they are responsive and improvisational, which has high value for firm survival and performance (Baker, Miner, & Eesley, 2001). Engaging in more risktaking and innovative behaviour are main characteristics of cultural looseness, which are also important for exploiting these contingencies (Gelfand et al., 2006).

In causal reasoning, there is an explicit effort to avoid unpleasant surprises. It is preferable that expertise in a particular new technology forms the source of the competitive advantage in order to avoid contingencies (Sarasvathy, 2001). Individuals in tight societies are less flexible compared to loose societies and that influence to openness to contingencies. Contingencies are risky and challenging for organisations that value order, structure and formality. Therefore, individuals in tight societies will also avoid these contingencies to maintain their careful planning and focus on targets as causal entrepreneurs do (Dew et al., 2009).

The following hypotheses are stated:

H4a: A loose society influences entrepreneurs in a emphasizing on exploiting contingencies rather than avoiding contingencies.

H4b: A tight society influences entrepreneurs in emphasizing on avoiding contingencies rather than exploiting contingencies.

3.5 Control unpredictable future vs. predict uncertain future

The effectual and causal logic both seek control over the future, because this future is uncertain. The focus of effectuation is on the controllable aspects of an unpredictable future, based on the logic *"to the extent that we can control the future, we do not need to predict it"* (Sarasvathy, 2001, p. 252). The effectual logic frames the future as creating it with enlisted stakeholders who determine the venture creating process. Actions by the entrepreneur or stakeholders are the

predominant factor in shaping the future. The controllability of this non-predictive approach matches with a loose society, because flexibility and openness to change is required.

Causation focuses on the predictable aspects of an uncertain future and is based on the logic *"to the extent we can predict future, we can control it"* (Sarasvathy, 2001, p. 252). Decision maker chooses between alternative means based on forecasts about pre-selected favourable outcomes (Dew et al., 2009). Tight societies prevention focused likely show causal behaviour of preferring prediction-based actions to determine the course of the new venture (Gelfand et al., 2006).

The following hypotheses are stated:

H5a: A loose society influences entrepreneurs in emphasizing on control rather than prediction.

H5b: A tight society influences entrepreneurs in emphasizing on prediction rather than control.

3.6 Effectuation vs. causation

The five groups of hypotheses discuss the possible relationship with the principles of effectuation and causation with cultural tightness-looseness. These hypotheses assume that societal-loose individuals prefer an effectual decision-making process and societal-tight individuals prefer a causal decision-making process. Brinckmann et al. (2010) found that in countries with greater tolerance of uncertainty, like loose societies, entrepreneurs may feel more comfortable deviating from their plans. Flexibility, openness to change, improvisation, innovation and low need for structure are all characteristics that comply with a non-predictive approach of reasoning (Gelfand et al., 2006). The hypotheses regarding causation assume that causal entrepreneurs prefer a causal decision-making process. Tight societies have low tolerance of uncertainty and are therefore more goal driven and depending on prediction. Deviate from norms and business plans is expect to be avoided, which suggests that tight societies have a more causal focus.

The following hypotheses are stated:

H6a: A loose society influences entrepreneurs in emphasizing an effectual approach rather than a causal approach.

H6b: A tight society influences entrepreneurs in emphasizing a causal approach rather than an effectual approach.

3.7 Conceptual model

Figure 5 illustrates the conceptual model of the proposed influences of cultural strength on the effectual and causal decision-making process.

Figure 5, The conceptual model

4. Methodology

In order to investigate to what extent culture influence the way in which entrepreneurs use a causal or effectual logic, a quantitative exploratory research will be performed. This empirical research will hold concepts of cultural tightnesslooseness (Gelfand et al., 2011) and principles of the effectuation theory (Sarasvathy, 2001). This quantitative research tries to find reliable and objective relationships between variables to test the proposed hypotheses. This chapter provides insights on the method for scale development, data collection, control variables and data analyses.

4.1 Scale development

4.1.1 Research instrument

Sarasvathy gathered and analysed think-aloud verbal protocols of 27 entrepreneurs, in which the entrepreneurs talk aloud and describe what they are thinking. The process of transcribing and coding is necessary to make the data quantitative, but this is time-consuming. The EPICC project also used these methods of data collection and data processing. Chandler, DeTienne, McKelvie & Mumford (2011) argue that research on effectuation should be moved to an intermediate state and developing validated quantitative measures will contribute.

To measure the dimension of effectuation and cultural tightness-looseness for this research, a questionnaire is built around an entrepreneurial scenario. This questionnaire is purely quantitative with closed and Likert scale question. Choosing for data gathering by means of closed and Likert scale questions has several advantages and disadvantages. It is argued that it lacks validity, because there is no way to tell how truthful a respondent is and how much thought is put in an answer. Furthermore, questionnaires are argued to inadequately understand feelings and emotions (Popper, 1959; Ackroyd & Hughes, 1981). However, questionnaires are methods used to collect standardised data from large numbers of people in a statistical form. The researcher can carry out analyses with considerable affect to its validity and reliability, in a short period of time and in a relatively cost-effective way (Popper, 1959; Ackroyd & Hughes, 1981). Hence, standardised data and a large sample size in a short period of time are more appreciable than exactly understanding truthfulness, thought, emotions and feelings of the respondents.

In collaboration with colleague students at University of Twente, this questionnaire is constructed with multiple questions related to the effectuation process. Each colleague student is performing his own research on different concepts related to the effectuation theory. Krebbers (2015) developed a new scale in order to measure causation and effectuation in a quantitative way. He inspired the new scale on the multi-factor measurement models of Wiltbank et al. (2009), Chandler et al. (2011) and Brettel et al. (2012), which are the three most adopted scales in effectuation research.

The new developed scale is build around an entrepreneurial context to measure effectuation (13 items), causation (12 items) and the degree of tightness-looseness (6 items). The questionnaire is created with an online survey-tool and distributed mainly electronically by email and via social media within our own network. It is also distributed hard copy and manually imported in the online survey-tool.

4.2.1 Dependent variable

Effectual and causal decision-making are the dependent variables for this research. In order to measure these variables a quantitative way, a new scale is developed by Krebbers (2015). Krebbers use mainly the items of Brettel et al. (2012) to measure 4 of the 5 principles of effectuation. Brettel et al. (2012) does not cover the prediction and control principles, therefore, items of Wiltbank et al. (2009) are used for this part. All the items are rewritten to fit them in a student context (section 4.2.1). A list of 25 items is created to measure causal and effectual decision-making (Appendix VII).

Wiltbank et al. (2009) uses a seven-point Likert scale and Brettel et al. (2012) uses a six-point Likert scale. Due to the novelty of the theory, Brettel et al. (2012) used effectuation and causation as a dichotomy and measured it as polar opposites. An even-number Likert scale forces the respondent to choose one side of the continuum. Perry et al. (2012) do not view the concepts as opposing constructs and advise future researches to develop effectuation not as a dichotomy. Therefore, Krebbers (2015) used a seven-point Likert scale, ranging from 'strongly disagree' to 'strongly agree'. The five principles of effectuation and causation are measured by calculating the mean over all the items related to that particular principle. Additionally, effectual and causal decision-making is measure by calculating the mean over all items related to the particular construct.

4.2.2 Independent variable

The overall strength of social norms and tolerance of deviant behaviour is measured by six items of Gelfand et al. (2011). This 'degree of tightness-looseness' is de independent variable for this research. These six items are measured with a six-point Likert scale ranging from 'strongly disagree' to 'strongly agree'. The items are presented in Appendix VII. The calculated final score is the mean standardized score multiplied by 10 (Eun, Wang, & Xiao, 2012). A high average score means that the subject is tight and has many strong norms and a low tolerance of deviant behaviour. Logically, a low average score means that the subject is loose and has weak social norms and a high tolerance of deviant behaviour. Gelfand et al. (2011) provides evidence that this measure is reliable and valid.

4.2 Data collection

4.2.1 Sample selection

The unit of analyses in this research are students at universities and universities of professional education (in Dutch: HBO). Choosing students as a subject has several reasons. Multiple researchers in management and entrepreneurship have effectively utilized student samples (Isenberg, 1986; Mitchell, Smith, Seawright, & Morse, 2000). More specific on effectuation, Dew et al. (2009) investigated students to measure the decision-making process of novice entrepreneurs. They argue that the students' novice-ness can be used in a generic sense; it refers to non-experts due to less business knowledge and experience on entrepreneurship. Thomas & Mueller (2000) state *"today's university students represent a significant share of the pool of potential entrepreneurs in both the developed and developing countries"* (p. 291). Perry et al. (2012) suggest that more insights on the effectuation process by student should be collected.

Nielsen & Lassen (2012) report that "student entrepreneurs are characterized as being individuals with little, if any, business knowledge, few relations and little experience in how to act and make sense of the entrepreneurial process [...] student entrepreneurs represent an optimal sample group for the study of how identity construction unfolds in the entrepreneurial effectuation process" (p. 378). Additionally, Bae, Qian, Miao and Fiet (2014) research the impact of entrepreneurship education on the intention to start an own business and found that entrepreneurship education is positively associated with entrepreneurial intentions. This makes the role of universities become more important for educating and training entrepreneurship. Therefore, a sample of students in an entrepreneurial culture represents a wide variation of potential entrepreneurs possibly influenced by multiple characteristics.

The University of Twente is known as 'the entrepreneurial university' and developed an entrepreneurial culture, with successful academic spin-off companies as result (Lazzeretti & Tavoletti, 2005). Due to this familiarity to entrepreneurship, the sample mainly consists of students at this university. Additionally, they were easily accessible and it was possible to maintain some degree of control (i.e. familiar with terminology, age, gender, multiple nationalities). Control on nationality is important in order to differentiate in the tightness of the society. At this university, many German students are studying and are gathered in the data sample. German students are seen as societal-tighter than Dutch students (Gelfand et al., 2011).

4.1.2 Sample size

Perry et al. (2012) reports that most effectuation research to date analysed think aloud protocols or field studies that gathered qualitative data. The sample sizes of these researches are small, but Nielsen (1994) suggests that a small sample size will provide rich and extensive data and Cohen (1988) explains that effect sizes are large. However, research on effectuation is in a nascent state and should be moved to an intermediate state by developing validated quantitative measures (Chandler et al., 2011).

Dew et al. (2009) advise that the unit of analysis have to be large to have decent statistical power and that external validity will be improved. Recent contributions of Wiltbank et al. (2009), Chandler et al. (2011) and Brettel et al. (2012) used multi-factor measurement models in order to realise a large sample size and reliable analyses. Chandler et al. (2011) discuss multiple recommendations regarding the minimum sample size and concludes that, according to Guadagnoli and Velicer (1988), a sample size of 100 to 200 is adequate. This means that Wiltbank et al. (2009), Chandler et al. (2011) and Brettel et al. (2012) all three meet the minimum requirements. Therefore, it is a good starting point to collect at least 100 participants for this research.

In total, 759 students from multiple universities and different countries filled in the questionnaire. Unfortunately, during the data gathering process something went wrong with questions about nationality, familiarity to effectuation and year of birth. These questions were accidentally removed from the questionnaire and before this was noticed the largest part of the respondents already filled in the questionnaire. The questionnaire has been adjusted to collect all the information of the remaining respondents. Hence, the dataset contains missing values, but luckily a useful dataset is still collected. Selecting only Dutch and German students, a useful dataset of 285 students (Dutch = 82.1 %; German = 19.9 %) is used. The Dutch female-to-male ratio is 1:3 and the German ratio is 2:1, which is both not ideal but representative.

4.3 Control variables

4.3.1 Published tightness-looseness score

In the article of Gelfand et al. (2011) an index table is showed with the sample characteristics of 33 nations. The societal tightness is the independent variable and will be measured according the six items. The tightness score of Gelfand et al. (2011)

will be used to check if the values for Germany and The Netherlands are the same in the research (table 2). The tightness score of Ukraine is the lowest (1.6), which means that this society is loose. The tightness score of Pakistan is the highest (12.3), which means that this society is tight.

Nation	Number of participants	Mean age (±SD)	Percentage female	Percentage students	Tightness score
Netherlands	207	29.8 ± 11.9	55.6	53.1	3.3
Germany (former East)	201	31.6 ± 12.2	66.7	49.3	7.5
Germany (former West)	312	32.5 ± 14.5	63.8	51.6	6.5
Ukraine	184	30.8 ± 12.7	56.5	44.6	1.6
Pakistan	190	30.0 ± 9.8	51.1	52.6	12.3
[]	[]	[]	[]	[]	[]
Totals/means	6823	30.1 ± 11.3	58.6	49.2	6.5

Table 2, Published index scores on cultural tightness-looseness (Gelfand et al., 2011)

In this research, Germans students and Dutch students will be compared. However, Gelfand et al. (2011) measured the societal tightness of Germany in two scores: former East and former West. The percentage of female and students are almost similar for these two samples, only the sample size differs. Therefore, a weighted average tightness score of 6.9 will be used to represented Germany in one single score.

4.3.2 Masculinity - femininity

As discussed in section 2.2.3, Hofstede offers a framework containing five dimensions that are dominant for research on national culture. The masculinity–femininity dimensions explains the degree to which societies emphasize competition and materialism opposed to cooperation and fairness. Entrepreneurs usually score high on masculinity and, therefore, value success, assertiveness and competition (McGrath, MacMillan, Yang, & Tsai, 1992). Gelfand et al. (2011) did not expect any strong relationship with the cultural tightness-looseness construct and the masculinity-femininity dimension and shows that it is not significantly related.

This control variable is however useful as a reference to Hofstede work to see if the masculinity scores differs between Dutch and German students (figure 6). Germany has a score of 66 and is considered a masculine society. The Netherlands has a score of 14 on this dimension and is therefore a feminine society. Masculinity-Femininity is measured with four content questions according the Values Survey Module 2013

(VSM 2013). The VSM 2013 is a 30-item paper-and-pencil survey developed for comparing countries (Hofstede & Minkov, 2013). The four content questions for measuring the degree on masculinity-femininity are used as a control variable to evaluate the data sample (Appendix VII-D).

Figure 6, Masculinity comparison (Geert-hofstede.com, 2015)

4.3.3 Familiarity with effectuation

In order to find out if familiarity with the effectuation theory is of influence, the respondents answered the question if they are familiar with the effectuation theory. Familiarity with the theory could possibly influence the respondent's choice between causation and effectuation and is therefore used as a control variable.

4.3.4 Expert entrepreneurs

Dew et al. (2009) studied the difference between expert and novice entrepreneurs in the entrepreneurial decision-making process. They found that expert entrepreneurs frame decisions using an effectual logic and novice entrepreneurs use more causal reasoning. Novice entrepreneurs have less business knowledge and experience on entrepreneurship and show less entrepreneurial behaviour than experienced entrepreneurs. Consequently, the respondents in the process of venture creation might behave different than respondents not in the process. It is also questionable which role the parents play. Parents could serve as a role model and influence theirs children's decisions (Hout & Rosen, 2000). So, family background could result in more affinity with entrepreneurship, which could lead to more effectual reasoning for the student.

4.5 Data analyses

Questionnaires can be easily, quickly and scientifically analysed by the use of software packages. For this research, a statistical analysis software package is applied named IBM SPSS Statistics version 23. Before any analyses can be performed, it is essential to known if the data is normally distributed. To test the normality of the data, histograms and Q-Q plots will be analysed, skewness and kurtosis values will be calculated, and Shapiro-Wilk tests for statistical support will be performed. The results of these tests can be found in section 5.1.3. The analyses found that the data is normally distributed and therefore parametric testing is applied in further analyses.

An exploratory factor analysis will be extracted to explore the underlying dimensionality of the 25 items in section 5.2.1. Afterwards, the internal consistency of the scale will be calculated with a Cronbach's alpha test in section 5.2.2. The hypotheses will be explored in paragraph 5.4. Two Pearson correlation matrixes will be created to visualise the correlation between the dependent and independent variables. Also, paired sample t-tests will be performed to test the significant difference between the mean of the effectual and causal principles. Linear regression analyses will be used to show the statistical relationship between the degree of tightness-looseness and causal and effectual decision-making.

5. Results

5.1 Data validation

5.1.1 Response bias

The dataset is composed in collaboration with colleague students of University of Twente. Krebbers (2015) constructed the items to measure effectual and causal decision-making and started with validating the multi-item tool. Therefore, he already deleted cases with repetition (students filled in twice) and deleted students that did not meet the education level. The database that Krebbers (2015) adjusted is used for this research.

5.1.2 Missing values

The dataset contains missing values, due to unanswered questions of the respondents and the mistake during the data collaboration process. To deal with this, Field (2009) suggest two options for excluding and one option for replacing these missing data points. By default, SPSS excludes cases listwise that means for an analysis the whole case will be deleted if a respondent has a missing variable. Due to the small sample size, this option is not chosen. The second option is excluding pairwise, which means that the missing score for a particular variable will be excluded from the analysis on the involving variable. This means that the sample size will not become smaller and will be the best options. The last option is replacing the missing value by an average value. However, this will standardise the score and the standard deviation will be suppressed.

5.1.3 Test of normality

5.1.3.1 Distribution of decision-making

To test if the data is normally distributed, histograms (frequency distributions) are analysed. Appendix I-A shows the distributions of causal and effectual decisionmaking and visualises that the data does not entirely deviates from a normal distribution. The descriptive table (Appendix I-A) focuses on the symmetry and pointiness of the distribution and provides insight on skewness and kurtosis. In a normal distribution, the values of skewness and kurtosis should be zero (Field, 2009). Effectual decision-making is negatively skewed with a value of -.088 (SE = .145), which indicates a small pile-up on the right (Field, 2009). This also applies to causal decision-making with a skewness value of -.139 (SE = .145). The kurtosis value of effectual and causal decision-making is respectively .634 (SE = .288) and .159 (SE = .288) and indicates that effectual decision-making distribution is pointy. The normal Q-Q Plot (Appendix I-A) is used to visualise the expected values against the observed values (Field, 2009). Both effectual and causal decision-making plots show a close S- shaped curve around the diagonal line, which is caused by the negative skewness. Additionally, a Shapiro-Wilk test is performed to test the normality of the data. The test shows non-significance (p > .05) for effectual and causal decision-making (causation: SW(284) = .995; p = .455; effectuation: SW(284) = .991; p = .063), which means that the data is normally distributed. All this overwhelming results provides supporting evidence that parametric testing can be applied.

5.1.3.1 Distribution of principles

More specific, the principles of effectuation and causation will also be used for analyses. Even that it is assumed that the principles are normally distributed, because the upper-hand constructs are normally distributed, Shapiro-Wilk tests are analysed. Appendix I-B shows that all principles are significant, which implies that the distributions are significantly different from normal distributions. Testing normality with a Shapiro-Wilk test has limitations due to the sample size. Significant results do not necessarily means that the distributions deviates from a normal distribution and parametric tests still can be applied. However, parametric testing is not preferred for these non-normal data. The Q-Q plots presume a normal distribution and therefore the data will be treated as normally distributed even that there is no statistically support.

5.1.3.2 Distribution of cultural tightness-looseness

To test the normality on the degree of tightness-looseness, histograms are analysed. The histograms (Appendix I-C) for both Dutch and Germans students visualises a normal distribution. More in-depth, the distribution for Dutch students has a negative skewness value of -.028 (SE = .159) and a negative kurtosis value of -.014 (SE = .318). This means that frequent scores are slightly clustered to the right end of the scale and is slightly flatter that a normal distribution. The distribution for German students is negatively skewed with a value of -.229 (SE = .333) and has a negative kurtosis with a value of -.823 (SE = .656). The distribution looks similar to the Dutch distribution. The Q-Q plot shows a close S-shaped curve around the diagonal line, which is caused by the negative skewness. Additionally, a Shapiro-Wilk test is performed to test the normality (Appendix I-C). Contrary to the visual findings, this test shows non-significance (p > .05) for German students (SW(51) = .969; p = .205), which means that the distribution is not significantly different from a normal distribution. The distribution for Dutch students also show non-significance (SW(233) = .990; p = .090). Parametric testing can be applied.

5.2 Scale validation

5.2.1 Exploratory factor analysis

In order to validate the new developed measurement scale (Krebbers, 2015), an exploratory factor analysis is performed. This factor analysis examines inter-

relationships among the items and the common underlying dimensions. Before the underlying factor structure can be identified, assumption on correlations and sample adequacy are tested. Afterwards, a principal component analysis is used to determine the factor loading for each item. These factor loadings are necessary to consider removing items on the questionnaire based on the Cronbach's alpha scores in section (5.2.2).

5.2.1.1 Correlations and sample adequacy

The correlations matrix (Appendix II-A) is used to check the check the intercorrelation between the variables. By analysing this matrix, there is no reason to believe that there is multicollinearity in the data. However, because a principal component analysis is performed, multicollinearity is less important (Field, 2009).

The reliability of factor analysis is dependent on the sample size (Field, 2009). The sample size is described in section 4.1.2, and consists of 285 respondents. The common rule is that at least 10-15 respondents per item are necessary for factor analysis. Effectuation and causation is measured with 25 items, which means the sample should consists of at least 250-375 respondents and meets the requirement. An alternative is the use of Kaiser–Meyer–Olkin measure of sampling adequacy (KMO) to see if factor analyses are appropriate. The KMO test results in a value of .737 (Appendix II-B), which can be accepted as a 'good value' (Hutcheson & Sofroniou, 1999, as cited by Field, 2009). A significant Bartlett's Test of Sphericity (Appendix II-B) indicated that the correlations between the items are sufficiently large (Chi-square (300) = 1351.804, p = .000).

After the overall KMO statistic is checked, Field (2009) discuss that it is import to examine the diagonal elements of the ant-image correlation matrix (Appendix II-C). On the diagonal line, the matrix shows that all KMO values for individual items are above the minimum of 0.5. None of the variables should be excluded form analyses.

Based on the correlations and the adequate sample size, using factor analysis is appropriate.

5.2.1.2 Principal component analysis

A principal component analysis (PCA) is conducted on 25 items with an orthogonal rotation. Field (2009) discusses three methods of orthogonal factor rotation (varimax, quartimax and equamax) and varimax attempts to maximise the dispersion of loadings within factors and is therefore used. Appendix II-D list the eigenvalues associated with each linear component/factor before extraction, after extraction and after rotation. The initial analysis shows that eight components had eigenvalues over Kaiser's criterion of 1 (Field, 2009) and the combination of these eight components

explains 57.896 % of the total variance. The first two components explain the most variance before rotations, with a cumulative percentage of 26.397 % (16.036 + 10.361).

Interpreting the scree plot (Appendix II-E), the curve tails off after three factors. Cartell (1966, as cited by Field, 2009) argues that the cut-off point for selecting factors is at the point of inflexion. This point is when two imaginary lines are drawn that summarise the horizontal and vertical part of the plot. The point of inflexion occurs at component number 4, and indicates that the first three components should be retained at the left side of this point.

Even that the scree plot suggests retaining three components and that there is a sample size greater than 200 (Stevens, 2002; as cited by Field, 2009), the Kaiser's criterion suggest that all eight components with an eigenvalue above 1 should be retained. However, the Kaiser's criterion is accurate when there are less than 30 variables, the sample size exceeds 250 participants, and the average communality is greater than or equal to 0.6. The first two requirements are met with 25 items and 285 respondents. Calculation the average of the communalities results in a score of .579 (14.473/25) (Appendix II-F). Therefore, it is advised to use the scree plot and three components are retained (Field, 2009).

The rotated component matrix (table 3 & Appendix II-G) provides the factor loading on the three components. For interpretative purposes, the cut-off point of 0.4 is used (Field, 2009). Sarasvathy (2001) proposes that causation and effectuation are two different approaches, which means that the causal items are expected to load on one component and the effectual items should load on another component. As the matrix indicates, the items of causation load mainly together on component 1 and therefore component 1 represents causational decision-making. The items of effectuation loads on component 1, component 2 and component 3. The most items loads on component 2 and therefore component 2 represents effectual decisionmaking. As the rotated component matrix (table 2) indicates, several items of causation have cross-loadings with effectuation (component 2). This means that the principles goal-driven, competitive analyses, and predict uncertain future, are shared sub-constructs with the effectual approach. Also, several items of effectuation have cross-loadings with causation (component 2) and component 3. Chandler et al. (2011) found comparable findings in his data analyses and concludes that effectuation is a multidimensional construct.
	C	omponen	it
	1	2	3
Causation P1: I take a clearly pre-defined target as a starting point of the new venture.		.477	
Causation P1: Before starting my new venture, I will first acquire all resources needed to achieve my target.	.453		
Causation P2: Decisions will be primarily based on analysis of potential future returns.	.651		
Causation P2: Beforehand, I will calculate how many resources I need to achieve the expected returns.	.512		
Causation P3: I will focus on early identification of risks through market analysis.	.460		
Causation P3: I will try to identify markets by a thorough market analysis.	.519		
Causation P3: I will try to identify risks by a thorough competitors analysis.	.358	.457	
Causation P4: I will always pay attention that my initially defined target will be met.	.368		312
Causation P4: My first priority is reaching my pre-set target without any delay.			539
Causation P4: My planning will be set before I start the implementation process and cannot be [].			583
Causation P5: I will try to control the future based on predictions of my previously obtained knowledge.		.573	
Causation P5: I will study expert predictions on the direction the market is "heading", to determine what [].	.569		
Effectuation P1: The uncertainty of a market will not block me since I rely on my own experience to [].		.324	.354
Effectuation P1: The decisions I make when starting my new venture will be based on the resources [].	.508		
Effectuation P1: I start my new venture without defining a clear target.		305	
Effectuation P2: Decisions will be primarily based on minimization of risks and costs.	.489		
Effectuation P2: I only spend resources I have available and I am willing to lose.	.499		
Effectuation P3: I will ask my private network to help me out with starting my new venture.		.573	
Effectuation P3: I will ask customers and suppliers to pre-commit to my new venture in order to reduce risks.		.378	
Effectuation P3: Decisions will be made together with stakeholders based on our competences.	.336	.437	
Effectuation P4: I expect to change my original target when confronted with new findings.			.629
Effectuation P4: I allow changes in my planning if needed, even during the implementation process [].			.647
Effectuation P4: I allow delays during the development of my new venture when new opportunities emerge.			.587
Effectuation P5: I will talk to people I know to enlist their support in making opportunities a reality.		.629	
Effectuation P5: I will try to control the future by creating it.		.455	

5.2.1.3 Effectuation as a formative construct

Based on the results obtained from the analysis and comparing them with the findings of Chandler et al. (2011), effectuation may be a formative construct. This means that higher-order constructs are formed by lower-order constructs (Chandler et al., 2011). They explain that the lower-order indicators are defining characteristics of the construct and may be independent of each other. This implies that sub-component should not be deleted or changed in order to modify the upper-level construct. By deleting items for this research effectuations would have a different meaning, because it is measured with multiple sub-constructs (principles).

The rotated component matrix shows that almost all sub-constructs of effectuation (means-driven, affordable loss, partnership, leveraging contingencies, control) tend to load together in clusters. This indicates that each sub-construct can be treated as a reflective construct, which implies that the lower-order items reflect the upperorder items (Chandler et al., 2011). The means-driven principle is a shared subdimensions with causation and the partnership, leveraging contingencies and control principles are independent sub-dimensions of the formative construct effectuation. The affordable loss principle fully loads on the causation component. The scale reliability is calculated in the next section to see if the questionnaire is internally consistent.

5.2.2 Internal consistency

A Cronbach's alpha test is used to calculate the overall reliability of the questionnaire, which is the most common measure of scale reliability (Field, 2009). An alpha (α) score of .8 is generally accepted and a score of .7 is acceptable. Scores below .7 indicate that the scale is unreliable. However, the alpha score is dependent on the number of items that are measured, which means that an increase in items increases the score. Because effectuation and causation are measured as two different constructs, the scores on both constructs are measured separately.

As Appendix III-A shows, the Cronbach's alpha score on causal decision-making is .712, which is acceptable. This is above the 'rule of thumb' of .7 (Field, 2009). Deleting Q73 (My first priority is reaching my pre-set target without any delay) will result in a higher score of .721. Field (2009) explains that item should be deleted if it results in a substantially greater alpha value overall. This item does not load on component 1 as it should be, and it negatively loads on component 3 (table 3). Also, the sub-dimension is measure with 3 items and therefore deleting Q73 will not have statistical consequences. Q73 will be deleted and will not be used for further analysis on effectual decision-making. The Cronbach's alpha score will be increased to .721.

The Cronbach's alpha score on effectual decision-making is .520 (Appendix III-B), which is below the 'rule of thumb' of .7 (Field, 2009). Therefore, Q72 (I start my new venture without defining a clear target) can be deleted for a higher score of .551. However, this item is an indicator for the means-driven principle, which is a subdimension of the formative effectuation construct. Chandler et al. (2011) argued that it should not be deleted or changed in order to modify the upper-level construct. Table 2 explains that this item has a negative factor loading on component 2 (effectuation), which is not good. Field (2009) explains that a reverse-phrased item causes a negative factor loading for that item. However, Q72 is not reverse-phrased and therefore it will be deleted to gain a higher reliability score. Therefore, Q72 will not be used for further analysis on effectual decision-making. Unfortunately, the final score of .511 is still poor, but this can be devoted to measuring generic and broad constructs (Peters, 2014) and the low number of items measured (Field, 2009). The Cronbach's alpha score on the degree of tightness-looseness is .686 (Appendix II-C), which is questionable but close to the 'rule of thumb' of .7 (Field, 2009). Deleting Q87 (People in my home country have a great deal of freedom in deciding how they want to behave in most situations (recoded)) will result in a higher alpha score of .713. However, Gelfand proved the validity and reliability of these items in her own research. Therefore, the Cronbach's alpha score will be accepted for this research and Q87 will not be excluded for further analysis.

5.3 Control variables

5.3.1 Published tightness-looseness score

Gelfand et al. (2011) published tightness index score for the Netherlands and Germany (table 2). In order to check if the dataset corresponds with the published scores, the tightness index score of the German and Dutch respondents should be calculated. Unfortunately, the 'Supporting Online Material' of Gelfand's article is not clear enough to understand the calculation method. Therefore, I will focus on the mean scores and compare these.

An independent sample test is used to check if the mean of degree of tightnesslooseness is statistically different between German and Dutch students. The SPSS results (Appendix IV-A) show that the Levene's test for equality of variance is not significant (p = .056) and therefore it can be assumed that the variances are roughly equal between Dutch and Germans students. The t-test shows that there is no significant difference (p = .073) between the mean scores of the degree of tightnesslooseness between Dutch and German students. This implies that German students do not represent the tight society and Dutch students do not represent the loose society as initially aimed for in this research. This data set is not representative for Gelfand's index scores, which can be caused by the low number of scale-items or the broad-measured items. With Gelfand's published index scores in mind, the two groups still will be separated based on the average means scores.

5.3.2 Masculinity - femininity

The VSM manual (Hofstede & Minkov, 2013) provides a formula to measure the index score of masculinity. Therefore it is necessary to calculate the means on questions 80-83 for both Dutch and German students, see appendix IV-B. The index can be calculated as follow: MAS = 35 (mQ81 – mQ80) + 35 (mQ82 – mQ83) + C(mf). The indexes are calculated: masculinity The Netherlands = 35 (1.87–2.24) + 35 (2.16–2.02) = - 8.05; masculinity Germany = 35 (1.69–1.88) + 35 (2.16–2.02) = - 1.75.

The constant C(mf) is normally used to shift the score to values between 0 and 100. For the comparison of the two nationalities, this is not necessary. The calculations

indicate that Germany is more masculine than The Netherlands, which is also found by Hofstede (figure 5). However, the range between the calculated scores is 6.3 (-1.75 - -8.05), which is lower that published scores with a range of 52 (66-14). This implies that the range differs and the calculated scores do not perfectly compares with Hofstede's published scores.

5.3.3 Familiarity with effectuation

As a control variable, the sample will be checked on familiarity with the literature on effectuation. The concepts of effectuation are taught at the University of Twente and might influence the decision-making process. On average, students familiar to the effectuation literature use more effectual decision-making than causal decision-making (Appendix IV-C). Statistical evidence of this difference is found with t-test (paired sample test = 2.503, df = 36, p = 0.017). Students, unfamiliar to the effectuation literature, use on average more effectual decision-making than causal decision-making (Appendix IV-D). This is with significant evidence proved with a t-test (paired sample test = 2.789, df = 221, p = 0.006). The analyses show that students familiar and unfamiliar with the concepts of effectuation both prefer effectual decision-making.

5.4.4 Familiarity with entrepreneurship

In order to see if expert and novice entrepreneurs behave differently in the entrepreneurial process, a paired sample t-test is performed on entrepreneurial students and non-entrepreneurial student. The test significantly shows (Appendix IV-E) that student entrepreneurs use more effectuation than causation in the decision-making process (Paired sample test = 4.149, df = 37, p = 0.000). In Appendix IV-F, the test significantly shows that non-entrepreneurial students also significantly use more effectuation than causation (Paired sample test = 2.462, df = 244, p = .015). For this research it implies that entrepreneurial students do not differ from non-entrepreneurial students in their decision-making process.

As discussed, the role of family background is questionable. The paired sample t-test (Appendix IV-G) statistically shows that students with self-employed entrepreneurial parent or legal guardians use more effectuation than causation (Paired sample test = 2.855, df = 87, p = 0.005). Also, students without entrepreneurial family background use more effectuation than causation (Paired sample test = 2.675, df = 194, p = .008). This implies that family background does not play a role fore this research.

5.4 Analyses of hypotheses

To find out whether the principles of effectuation and causation are associated with the degree of tightness-looseness, a Pearson correlation matrix is constructed for German and Dutch students (Appendix V). For Dutch students, the matrix reveals significant correlations between the 'degree of tightness-looseness' and 'causal decision-making' as well as 'effectual decision-making'. Additionally, the 'degree of tightness-looseness' is significantly correlated with the principle 'means-driven approach', 'expected returns', 'affordable loss' and 'avoiding contingencies'. For German students, the matrix reveals a significant correlation between the 'degree of tightness-looseness' and 'effectual decision-making'. Also, the 'degree of tightness-looseness' and 'effectual decision-making'. Also, the 'degree of tightness-looseness' is significantly associated with the principles 'goal-driven', 'means-driven' and 'affordable loss'. Paragraph 5.4 will provide more profound knowledge on the correlations and the parametric tests that are performed. The results on the parametric tests are summarised in Appendix VI and visualized in table 4 and 5.

	Mean	Ν	SD	SE	T-test (α)	R (α)
Goal-driven	5.1609	233	.94050	.06161	4 746 (000)*	.057 (.384)
Means-driven	4.7511	233	.98165	.06431	4.740 (.000)	.129 (.049)*
Expected returns	5.3584	233	.97341	.06377	6 568 (000)*	.144 (.028)*
Affordable loss	4.8090	233	1.15641	.07576	- 0.008 (.000)	.190 (.004)*
Competitive analysis	5.0136	233	.88783	.05816	-1 232 (219)	.127 (.054)
Partnership	5.0930	233	.74112	.04855	1.252 (.215)	.011 (.865)
Avoiding contingencies	4.1180	233	1.04429	.06841	_12 217 (000)*	.131 (.046)*
Leveraging contingencies	5.4535	233	.87585	.05738	-13.217 (.000)	.016 (.813)
Prediction	5.0987	233	.80202	.05254	4 495 (000)*	.035 (.591)
Control	5.4013	233	.87279	.05718	4.495 (.000)	.083 (.208)
Causation	5.1300	233	.51794	.03393	4.096 (.000)*	.157 (.016)*
Effectuation	4.9558	233	.61125	.04004	- 4.050 (.000)	.146 (.026)*

Table 4, Parametric test results on Dutch entrepreneurs

Table 5, Parametric test results on German entrepreneurs

	Mean	Ν	SD	SE	T-test (α)	R (α)
Goal-driven	5.5882	51	.77270	.10820	3 071 (003)*	.289 (.039)*
Means-driven	5.1275	51	.79902	.11189	3.071 (.003)	.310 (.027)*
Expected returns	5.6471	51	.92895	.13008	4 043 (000)*	.083 (.563)
Affordable loss	4.9608	51	1.06228	.14875	4.043 (.000)	.311 (.026)*
Competitive analysis	5.2418	51	.84873	.11885	552 (582)	.011 (.940)
Partnership	5.3203	51	.72099	.10096	332 (.383)	.216 (.128)
Avoiding contingencies	4.5784	51	.98170	.13746	2 221 (002)*	.091 (.525)
Leveraging contingencies	5.2614	51	.88019	.12325	-3.221 (.002)	.025 (.860)
Prediction	5.1176	51	.82212	.11512	2 165 (002)*	.023 (.871)
Control	5.5098	51	.84552	.11840	3.103 (.003)	.172 (.229)
Causation	5.2451	51	.50233	.07034	106 (916)	.119 (.404)
Effectuation	5.2353	51	.58583	.08203	100 (.910)	.306 (.029)*

5.4.1 Means-driven vs. goal-driven

H1a: A loose society influences entrepreneurs in emphasizing on means-based actions rather than goal-based action.

Dutch students use on average a more goal-driven approach (mean = 5.1609, SE = .06161) than a means-driven approach (mean = 4.7511, SE = .06431). T-test shows significant difference between the two means (Paired sample test = 4.746, df = 232, p = 0.000). A linear regression is calculated to predict if the degree of tightness-looseness influences the goal-driven principle. The analyses show no statistically significant relationship (F (1,231) = .761, p = .384, r^2 = .003). However, a linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the means-driven principle (F (1,231) = 3.923, p = .049, r^2 = .017). This implies that the society influences loose entrepreneurs in using a means-driven approach for decision-making. Hypothesis H1a is supported.

H1b: A tight society influences entrepreneurs in emphasizing on goal-based actions rather than means-based actions.

German entrepreneurs use on average a more goal-driven approach (mean = 5.5882, SE = .10820) than a means-driven approach (mean = 5.1275, SE = .11189). T-test shows significant difference between the two means (Paired sample test = 3.071, df = 50, p = 0.003). A linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the goal-driven principle (F(1,49) = 4.475, p = .039, r^2 = 0.084). Also, linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the goal-driven principle (F(1,49) = 3.064, p = .027, r^2 = .096). This implies that the society influences tight entrepreneurs in using both means-based and goal-based actions. Hypothesis H1b is not supported.

5.4.2 Affordable loss vs. expected returns

H2a: A loose society influence entrepreneurs in emphasizing on affordable loss rather than expected returns.

Dutch entrepreneurs focus on average more on expected returns (mean = 5.3584, SE = .06377) than on affordable loss (mean = 4.8090, SE = .07576). T-test shows significant difference between the two means (Paired sample test = 6.568, df = 232, p = .000). Linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the expected returns principle (F (1,231) = 4.887, p = .028, r^2 = .021). Also, linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the affordable loss principle (F (1,231) = 8.672, p = .004, r^2 = .036). This implies that

the society influences loose entrepreneurs in using both the expected returns and affordable loss approach. Hypothesis H2a is not supported.

H2b: A tight society influences entrepreneurs emphasizing on expected returns rather than affordable loss

German entrepreneurs focus on average more on expected returns (mean = 5.6471, SE = .130008) than on affordable loss (mean = 4.9608, SE = .14875). T-test shows significant difference between the two means (Paired sample test = 4.043, df = 50, p = .000). Linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the expected returns principle (F (1,49) = .340, p = .563, r^2 = .007). However, linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the affordable loss principle (F (1,49) = 5.238, p = .026, r^2 = .097). This implies that the society influences tight entrepreneurs in using the affordable loss approach. Hypothesis H2b is not supported.

5.4.3 Strategic alliances vs. competitive analyses

H3a: A loose society influence entrepreneurs in emphasizing on strategic alliances rather than competitive analyses

Dutch entrepreneurs focus on average more on strategic alliances (mean = 5.0930, SE = .04855) than competitive analyses (mean = 5.0136, SE = .05816). However, t-test shows no significant difference between the two means (Paired sample test = -1.232, df = 232, p = .219). A linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the competitive analysis principle (F (1,231) = 3.764, p = .054, r^2 = .016). Also, a linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the degree of tightness-looseness and the strategic alliances principle (F (1,231) = .029, p = .865, r^2 = .000). The society does not influence the loose entrepreneurs in using a competitive analysis or strategic alliances approach. Hypothesis H3a is not supported.

H3b: A tight society influences entrepreneurs in emphasizing on competitive analyses rather than strategic alliances.

German entrepreneurs focus on average more on strategic alliances (mean = 5.3203, SE = .10096) than competitive analyses (mean = 5.2418, SE = .11885). T-test shows no significant difference between the two means (Paired sample test = -.552, df = 50, p = .583). The linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the competitive analysis principle (F (1,49) = .006, p = .940, r² = .000). Also, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the competitive analysis shows no statistically significant relationship between the degree of tightness-looseness and statistically significant relationship between the degree of tightness-looseness and

the strategic alliances principle (F (1,49) = 2.396, p = .128, r^2 = .047). This implies that the society does not influence the tight entrepreneurs in using a competitive analysis or strategic alliances approach. Hypothesis H3b is not supported.

5.4.4 Exploiting contingencies vs. avoiding contingencies

H4a: A loose society influences entrepreneurs in a emphasizing on exploiting contingencies rather than avoiding contingencies.

Dutch entrepreneurs focus on average more on exploiting contingencies (mean = 5.4535, SE = .05738) than on avoiding contingencies (mean = 4.1180, SE = .06841). T-test shows significant difference between the two means (Paired sample test = -13.217, df = 232, p = .000). The linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and the avoiding contingencies principle (F (1,231) = 4.042, p = .046, r^2 = .017). However, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the degree of tightness-looseness and the avoiding contingencies principle (F (1,231) = 4.042, p = .046, r^2 = .017). However, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the exploiting contingencies principle (F (1,231) = .056, p = .813, r^2 = .000). This implies that the society influence the loose entrepreneurs in using an avoiding contingencies approach. Hypothesis H4a is not supported.

H4b: A tight society influences entrepreneurs in emphasizing on avoiding contingencies rather than exploiting contingencies.

German entrepreneurs focus on average more on exploiting contingencies (mean = 5.2614, SE = .12325) than on avoiding contingencies (mean = 4.5784, SE = .13746). T-test shows significant difference between the two means (Paired sample test = -3.221, df = 50, p = .002). The linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the avoiding contingencies principle (F (1,49) = .409, p = .525, r² = .008). Also, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the degree of tightness-looseness and the avoiding contingencies principle (F (1,49) = .409, p = .525, r² = .008). Also, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the exploiting contingencies principle (F (1,49) = .032, p = .860, r² = .001). The society does not influence the tight entrepreneur in using a avoiding or exploiting contingencies approach. Hypothesis H4b is not supported.

5.4.5 Control unpredictable future vs. predict uncertain future

H5a: A loose society influences entrepreneurs in emphasizing on control rather than prediction.

Dutch entrepreneurs focus more on controlling an unpredictable future (mean = 5.4013, SE = .05718) than on predicting an uncertain future (mean = 5.0987, SE = .05254). The T-test shows significant difference between the two means (Paired sample test = -4.495, df = 232, p = .000). The linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and

the control principle (F (1,231) = 1.597, p = .208, r² = .007). Also, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the prediction principle (F (1,231) = .290, p = .591, r² = .001). This implies that the society does not influence the loose entrepreneur in using a prediction or control approach. Hypothesis H5a is not supported.

H5b: A tight society influences entrepreneurs in emphasizing on prediction rather than control.

German entrepreneurs focus more on controlling an unpredictable future (mean = 5.5098, SE = .11840) than on predicting an uncertain future (mean = 5.1176, SE = .11512). T-test shows significant difference between the two means (Paired sample test = -3.165, df = 50, p = .003). The linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the control principle (F (1,49) = 1.486, p = .229, r^2 = .029). Also, the linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and the prediction principle (F (1,49) = .027, p = .871, r^2 = .001). This implies that the society does not influence the tight entrepreneur is using a control or prediction approach. Hypothesis H5b is not supported.

5.4.6 Effectuation vs. causation

H6a: A loose society influences entrepreneurs in emphasizing an effectual approach rather than a causal approach.

Dutch entrepreneurs use on average more effectual decision-making (mean = 5.1300, SE = .03393) than causal decision-making (mean = 4.9558, SE = .04004). Ttest shows significant difference between the two means (Paired sample test = 4.096, df = 232, p = .000). The linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and causal decision-making (F (1,231) = 5.844, p = .016, r^2 = .025). Also, the linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and effectual decision-making (F (1,231) = 5.011, p = .026, r^2 = .021). This implies that the society influence the loose entrepreneur in both an effectual and causal approach. Hypothesis H5a is not supported.

H6b: A tight society influences entrepreneurs in emphasizing a causal approach rather than an effectual approach.

German entrepreneurs use on average more effectual decision-making (mean = 5.2451, SE = .07034) than causal decision-making (mean = 5.2353, SE = .08203). However, the T-test shows no significant difference between the two means (Paired sample test = .106, df = 50, p = .916). The linear regression analysis shows no statistically significant relationship between the degree of tightness-looseness and causal decision-making (F (1,49) = .708, p = .404, r^2 = .014). However, the linear regression analysis shows a statistically significant relationship between the degree of tightness-looseness and effectual decision-making (F (1,49) = 5.068, p = .029, r^2 = .094). This implies that the society influence the tight entrepreneur is using an effectual decision-making approach. Hypothesis H6b is not supported.

Table 6, Summary of results of hypotheses testing

Hypothesis	Result
> Means-driven vs. goal-driven	
H1a: A loose society influences entrepreneurs in emphasizing on means-based actions rather	Supported
than goal-based action.	
H1b: A tight society influences entrepreneurs in emphasizing on goal-based actions rather	Not supported
than means-based actions.	
> Affordable loss vs. expected returns	
H2a: A loose society influence entrepreneurs in emphasizing on affordable loss rather than	Not supported
expected returns.	
H2b: A tight society influences entrepreneurs emphasizing on expected returns rather than	Not supported
affordable loss	
> Strategic alliances vs. competitive analyses	
H3a: A loose society influence entrepreneurs in emphasizing on strategic alliances rather	Not supported
than competitive analyses.	
H3b: A tight society influences entrepreneurs in emphasizing on competitive analyses rather	Not supported
than strategic alliances.	
> Exploiting contingencies vs. avoiding contingencies	
H4a: A loose society influences entrepreneurs in a emphasizing on exploiting contingencies	Not supported
rather than avoiding contingencies.	
H4b: A tight society influences entrepreneurs in emphasizing on avoiding contingencies	Not supported
rather than exploiting contingencies.	
> Control unpredictable future vs. predict uncertain future	
H5a: A loose society influences entrepreneurs in emphasizing on control rather than	Not supported
prediction.	
H5b: A tight society influences entrepreneurs in emphasizing on prediction rather than	Not supported
control.	
> Effectuation vs. causation	
H6a: A loose society influences entrepreneurs in emphasizing an effectual approach rather	Not supported
than a causal approach.	
H6b: A tight society influences entrepreneurs in emphasizing a causal approach rather than	Not supported
an effectual approach.	

6. Discussion

6.1 Validity and reliability

This research tried to find out whether the society influences the entrepreneurial decision-making process. A new developed scale is developed to measure effectuation (13 items) and causation (12 items) on a quantitative way. Sarasvathy (2001) proposes that causation and effectuation are two different approaches. However, the rotated component matrix (table 3) showed that causation is a reflective construct and effectuation is a formative construct. This formative construct contains lower-levels represented in the principles of effectuation. In addition, the rotated component matrix also indicates that some principles are shared constructs. Paragraph 6.3 will elaborate on how this influences the results.

The society is measured by the construct of cultural tightness-looseness, which is developed by Gelfand et al. (2011). The proposed relationship between each principle of effectuation and the degree of tightness-looseness is stated in hypotheses. In these hypotheses, a division is made between Dutch and German entrepreneurs. According to Gelfand et al. (2011), the German society is tighter than the Dutch society. Six items measure the degree of tightness-looseness, which determines the overall strength of social norms and the tolerance of deviant behaviour. In this research, comparing means of German and Dutch entrepreneurs shows that Germans entrepreneurs are tighter. However, an independent sample test is drawn which indicates that there is no significant difference between the mean scores. This means that German entrepreneurs do not represent the tight society and Dutch students do not represent the loose society as initially aimed for in this research. It is questionable if Gelfand's six items are the correct indicators to measure cultural tightness-looseness in this research. With Gelfand's published index scores in mind, the two groups are still separated.

Statistical evidence is found that the distributing of causal and effectual decisionmaking is normally distributed. More specific, no statistical support is found that the principles of effectuation and causation are normally distributed. However, the Q-Q plots presume a normal distribution and therefore the data will be treated as normal. Also, the data of the cultural tightness-looseness construct for both German and Dutch entrepreneurs are normally distributed. This implies that parametric testing is applied.

6.2 Hypotheses outcomes

The first group of hypotheses focused on means-based and goal-based actions related to cultural tightness-looseness. It is significantly showed that Dutch entrepreneurs (loose) use more goal-driven actions than means-driven actions. However, a significant association is found between means-driven actions and the degree of tightness-looseness. This implies that the society influences loose entrepreneurs in using a means-driven approach for decision-making (H1a). Also, significant evidence is found that German students (tight) prefer goal-driven actions. However, significant relationships are found between the degree of tightnesslooseness and both goal-driven and means-driven actions. This implies that the society influences both approaches and tight entrepreneurs do not necessarily emphasize on goal-based actions rather than means-based actions (H1b). As the rotated component matrix indicates, the means-driven principle is a shared subconstruct with causation and the goal-driven principle is a shared sub-construct with effectuation. Sarasvathy (2001) proposes that causation and effectuation are two different approaches, but the factor analysis shows a contradiction. Therefore, it is difficult to explain the influence of cultural tightness-looseness on an effectual or causal approach. At least statistical support is found that the society relates to goals and means.

The second group of hypotheses focused on maximizing the potential returns for a decision by selecting optimal strategies (causal) or focus on projects where the loss in a worst-case scenario is affordable (effectual). Statistical evidence shows that Dutch entrepreneurs (loose) on average focus more on expected returns than on affordable loss. The relationship between the degree of tightness and the potential returns principle is significant as well with the affordable loss principle. This means that the society influences loose entrepreneurs in using both the expected returns and affordable loss approach (H2a). However, the rotated component matrix (table 3) indicates that the affordable loss principle fully loads on the causation component. Therefore, the society influences the loose entrepreneurs in using a causal approach. Also, it is statistically proven that German entrepreneurs (tight) focus on average more on expected returns than on affordable loss. Only a significant relationship is found with the degree of tightness-looseness and the affordable loss principle. As the affordable loss principle fully loads on the causation component, it is arguable if the society influences tight entrepreneurs in using a causal or effectual approach based on affordable loss and expected returns (H2b). .

The third group of hypotheses focused on detailed competitive analyses and business planning (causal) and strategic alliance and pre-commitments with stakeholders (effectual). For both Dutch (loose) and German (tight) entrepreneurs no statistical evidence is found that they prefer one of the principles. Either no significant relationship is found between the degree of tightness-looseness and competitive analyses (H3a) as well as strategic alliances (H3b). Therefore, it is unclear how cultural strength relates towards cooperation and competition.

The fourth group of hypotheses focused on the difference between the effort to avoid unpleasant surprises (causal) and exploiting contingencies that arise unexpectedly over time (effectual). Dutch entrepreneurs (loose) use on average a more effectual approach by focusing on exploiting contingencies. However, a statistical significant relationship is found between the degree of tightness-looseness and avoiding contingencies, which contradicts the hypothesis that state that the loose society influences entrepreneurs emphasizing on exploiting contingencies (H4a) rather than avoiding them. Analyses on German entrepreneurs (tight) indicate that they prefer exploiting contingencies more then avoiding them. However, there is no significant evidence found if cultural tightness relates to these principles.

The fifth group of hypotheses focused on how the view of the future related to cultural tightness-looseness. German and Dutch entrepreneurs both focus more on controlling an unpredictable future than predicting an uncertain future. For both nationalities, there is no significant relationship found if the degree of tightness-looseness influences the predictability (H5a) and controllability (H5b) of the future.

More general, the sixth group op hypotheses focused on the influence of cultural strength on a causal or effectual decision-making approach. This research provided significant evidence that Dutch entrepreneurs prefer effectual decision-making rather than causal decision-making. Statistically, both choices of decision-making significantly relates to the degree of tightness-looseness. This implies that the society influences loose entrepreneurs in emphasizing on effectual decision-making (H6a) as well as causal decision-making. Furthermore, significance evidence is found that the society influences tight entrepreneurs in emphasizing more on effectual decision-making, which contradicts the hypothesis (H6b).

6.3 Implications

In a research attempt to understand the influence of cultural tightness-looseness on entrepreneurial decision-making, this research found mixed results. It was expected that a loose society would entrepreneurs mainly in applying effectual reasoning in decision-making and a tight society would influence entrepreneurs mainly in applying causal reasoning. The outcomes of the analyses show that societal-tight and societal-loose entrepreneurs apply principles of both types of reasoning. Sarasvathy (2001) argues that causation and effectuation are two different approaches, but she also argues that entrepreneurs can use both together depending on what the circumstances call for. In earlier work, Brettel et al. (2012) measured effectuation and causation as polar opposites. Perry et al. (2012) argued that it should not be seen as opposing constructs, which is in line with Sarasvathy (2001).

As discussed in the literature chapter, individuals in tight societies value order, formality, discipline, and conformity (Gelfand et al., 2006). Characteristics that could easily suit a causal approach based on a rational prediction-oriented business planning strategy. The results show that cultural tightness is statistically significant related to the principles goal-driven (causal, but shared sub-construct with effectuation), means-driven (effectual, but shared sub-construct with the causation component), and affordable-loss (effectual, but fully loads on the causation component). These relationships indicate that tight entrepreneurs apply principles of the effectual and causal approach of reasoning. However, the principle goal-driven is a shared construct with effectuation and the means-driven principle is a shared construct with causation. In addition, the effectual principle affordable-loss fully loads on the causation component. This raises question marks about the validity and reliability of the new developed scale, which does not explain a clear cut between effectuation and causation.

In contrast, individuals in loose societies value innovation, openness to change, tolerance and variety (Gelfand et al., 2006). It is hypothesised that these are characteristics that fit an effectual reasoning where a non-predictive decision-making strategy is applied. The analyses indicate that cultural looseness statistically relates to the principles means-driven (effectual, but shared sub-construct with the causation component), expected returns (causal), affordable loss (effectual, but fully loads on the causation component), and avoiding contingencies (causal). These relationships show that loose entrepreneurs also both apply effectual and causal approach of reasoning. As abovementioned, the effectual principle means-driven is a shared construct with causation and the principle affordable loss load on the causation component. Due to this multidimensionality, it is difficult to contrast effectual and causal decision-making and determine the influence of culture.

Chandler et al. (2011) found similar findings and proposed that effectuation is a formative construct composed of three independent sub-dimensions (experimentation, affordable loss, and flexibility) and one sub-dimension which is shared with causation (pre-commitments). For this research, the goal-driven and means-driven principles are the shared construct and play a role for both approaches. Because affordable-loss fully loads on the causation component, it is considered as a causal approach. This implies that entrepreneurs, who are influenced by a loose society, apply more causal reasoning than effectual reasoning. Entrepreneurs, who are influence by a tight society, also apply more causal reasoning than effectual reasoning.

7. Conclusion, limitations and future research

7.1 Conclusion

This research is performed in order to understand the influence of cultural tightnesslooseness on entrepreneurial decision-making. A new develop scale is applied to measure effectuation and causation in a quantitative way. Cultural tightnesslooseness is measured with a scale that is originally developed by Gelfand et al. (2011). The influence of cultural looseness and tightness on the principles of effectuation and causation is hypothesized, in order to answer the upper hand research question, formulated as:

"To what extent does cultural tightness-looseness influences the way in which entrepreneurs use a causal or effectual logic in the decision-making process?"

By analysing the hypotheses, it is found that entrepreneurs, who are influenced by a loose society, apply a more causal logic than an effectual logic in the decision-making process. Entrepreneurs, who are influence by a tight society, also apply more causal reasoning than effectual reasoning. These findings indicate that tight and loose entrepreneurs use both types of reasoning, but mainly apply the causal logic. It is difficult to explain the precise influence of cultural tightness-looseness on the decision-making process, because the results show that some principles of effectuation and causation are shared constructs of each other. Also, this research shows that effectuation is a formative construct, which is similar to findings of Chandler et al. (2011).

7.2 Limitations and future research

This master thesis is carefully prepared to strive for a degree in Business Administration. Confidence is found regarding the chosen academic literature for describing the research problem on the cultural influence on entrepreneurial processes. To my best knowledge, the key concepts of this thesis are properly described and the research design is well developed. However, the findings show mixed results. Therefore, the limitations and shortcoming of this research are of important value and implications for future research are recommended.

An important limitation in virtue of methodology is the new developed multi-item tool to measure the principles of effectuation and cultural tightness-looseness. The effectuation and causation construct is measured by 25 items inspired on multi-factor measurement models of Wiltbank et al. (2009), Chandler et al. (2011) and Brettel et al. (2012). The scale reliability is measured and the Cronbach's alpha

scores for effectual decision-making, for both German and Dutch students, is below the 'rule of thumb' of .7 (Field, 2009). I devoted this poor score to the reason that effectuation is measured as a generic and broad construct (Peters, 2014). Effectuation is measured in multiple fields where quantitative measurement-items are uniquely specified to these respondents. Therefore, it is questionable if the results on effectual decision-making come out well. Additionally, the amount of 13 items that measure effectuation is probably to low for a reliable scale (Field, 2009). As a recommendation for future research, the validity and reliability of the new develop scale should investigated to determine if the rewritten items fit a student context and how measuring effectuation as a broad construct can by applied to multiple fields of research.

The degree of tightness-looseness is measure by a six-items scale that is originally developed by Gelfand et al. (2011). Gelfand's published index scores on tightness indicate that The Netherlands is a looser society compared to Germany. However, this research found no significant support for this difference. The Cronbach's alpha score are also below the 'rule of thumb' (Field, 2009) and therefore the reliability of the scale is questionable. Further research can be recommended to investigate if an amount of six items is enough to determine the cultural strength for students and entrepreneurs.

A regular recurring limitation in quantitative research is the sample size. In the methodology I stated that collecting at least 100 participants is a good starting point. This is based on Chandler et al. (2011) who discuss multiple recommendations regarding the minimum sample size and concludes that a sample size of 100 to 200 is adequate. The Dutch sample contains 234 respondents, which is adequate. The German sample contains 51 respondents, which is lower than discussed by Chandler et al. (2011). Even if it is difficult to determine the correct sample size, more reliable analyses with decent statistical power can be performed with a larger sample sizes (Dew et al., 2009). This will also improve the external validity of the research.

More in general, the focus of this research was to elaborate on the cultural influence on entrepreneurial processes. Besides the degree of tightness-looseness, there are multiple other aspects that predict the type of entrepreneurial decision-making.

Bibliography

Ackroyd, S., & Hughes, J. A. (1981). Data collection in context. London: Longman.

Adler, N. J. (1997). *International dimensions of organizational behavior*. New York, NY: Wadsworth Publishing.

Alvarez, S., & Barney, J. (2007). Discovery and creation: Alternative theories of entrepreneurial action. *Strategic Entrepreneurship Journal*, 1 (1-2), 11-26.

Ansoff, I. (1957). Strategies for diversification. *Harvard Business Review*, 35 (5), 113-124.

Augier, M. S., & Sarasvathy, S. D. (2004). Integrating cognition, evolution, and design: extending Simonian perspectives to strategic organization. *Strategic Organization*, 2 (2), 169-204.

Bae, T. J., Qian, S., Miao, C., & Fiet, J. O. (2014). The relationship between entrepreneurship education and entrepreneurial inentions: A meta-analytic review. *Entrepreneurship, Theory and Practice , 38* (2), 217-254.

Baker, T. M., Miner, A. S., & Eesley, D. T. (2001). Fake It until you make it: Improvisation and new ventures. *Fontiers of Entrepreneurship Research*, 153-164.

Baker, T., & Nelson, R. E. (2005). Creating something from nothing: resource construction through entrepreneurial bricolage. *Administrative Science Quarterly*, *50*, 329-366.

Brettel, M., Mauer, R., Engelen, A., & Kupper, D. (2012). Corporate effectuation: Entrepreneurial action and its impact on R&D project performance. *Journal of Business Venturing*, 27 (2), 167-184.

Brinckmann, J., Grichnik, D., & Kapsa, D. (2010). Should entrepreneurs plan or just storm the castle? A meta-analysis on contextual factors impacting the business planning–performance relationship in small firms . *Journal of Business Venturing*, 25, 24-40.

Bruyat, C., & Julien, P. A. (2000). Defining the field of research in entrepreneurship. *Journal of Business Venturing*, 16, 165-180.

Bygrave, W. D., & Hofer, C. W. (1991). Theorizing about Entrepreneurship. *Policy*, 16 (2), 13-22.

Carpenter, S. (2000). Effects of cultural tightness and collectivism on self-concept and causal attributions. *Cross-Cultural Research*, 34, 38-56.

Chandler, G. N., DeTienne, D. R., McKelvie, A., & Mumford, T. V. (2011). Causation and effectuation processes: A validation study. *Journal of Business Venturing*, *26*, 375-390.

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*. New York, NY: Lawrence Erlbaum Associates.

Dahl, S. (2004). *Intercultural research: The current state of knowledge.* Middlesex University Business School Discussion Paper.

Dew, N., Read, S., Sarasvathy, S. D., & Wiltbank, R. (2009). Effectual versus predictive logics in entrepreneurial decision-making: Differences between experts and novices. *Journal of Business Venturing*, 24, 287-309.

Dew, N., Sarasvathy, S. D., & Venkataraman, S. (2004). The economic implications of exaptation. *Journal of Evolutionary Economics*, 14 (1), 69-84.

Drucker, P. (1970). Entrepreneurship in business enterprise. *Journal of Business Policy*, 1, 3-12.

Eroglu, O., & Picak, M. (2011). Entrepreneurship, national culture and Turkey. *International Journal of Business and Social Science*, 2 (16), 146-151.

Eun, C. S., Wang, L., & Xiao, S. (2012). Culture and R2: The effects of tightness and individualism.

Field, A. (2009). Discovering statistics using SPSS (Vol. 3). London: Sage.

Gartner, W. B. (1985). A conceptual framework for describing the phenomenon of new venture creation. *The Academy of Management Review*, 10 (4), 696-706.

Gartner, W. B. (1988). Who is the Entrepreneur? is the wrong question. *American Journal of Small Business*, 12, 11-32.

Gelfand, M. J. (2012). Culture's constraints: International differences in the strength of social norms. *Current Directions in Psychological Science*, 21 (6), 420-424.

Gelfand, M. J., Nishii, L. H., & Raver, J. L. (2006). On the nature and importance of cultural tightness–looseness. *Journal of Applied Psychology*, 91 (6), 1225-1244.

Gelfand, M. J., Raver, J. L., Nishii, L., Leslie, L. M., Lun, J., & Chong Lim, B. (2011). Differences Between Tight and Loose Cultures: A 33-Nation Study. *Science*, *332*, 1100-1104.

Goel, s., & Karri, R. (2006). Entrepreneurs, effectual logic, and over-trust. *Entrepreneurship Theory and Practice*, 30, 477-493.

Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns. *Psychological Bulletin*, 103, 265-275.

Hayton, J. C., George, G., & Zahra, S. A. (2002). National eulture and entrepreneurship: A review of behavioral research. *Entrepreneurship, Theory and Practice*, 26 (4), 33-52.

Hofstede, G. (1980). *Culture's consequences: International differences in workrelated values.* Beverly Hills, CA: Sage.

Hofstede, G. H. (1994). *Cultures and organizations: Software of the mind.* New York, NY: McGraw-Hill.

Hofstede, G. H., & Minkov, M. (2013). Values survey module 2013 manual.

Holmes Jr., R. M., Miller, T., Hitt, M. A., & Salmador, M. P. (2013). The Interrelationships among informal institutions, formal Institutions, and inward foreign direct Investment. *Journal of Management*, *39* (2), 531-566. House, R. J., Hanges, P. J., Javidan, M., Dorfman, P. W., & Vipin, G. (2004). *Culture, leadership, and organizations: The GLOBE study of 62 societies.* Thousand Oaks, CA: Sage.

Hout, M., & Rosen, H. S. (2000). Self-employment, family background, and race. *The Journal of Human Resources*, 35 (4), 670-692.

Isenberg, D. J. (1986). Thinking and managing: A verbal protocol analysis of managerial problem solving. *The Academy of Management Journal*, 29 (4), 775-788.

Jones, M. V., & Coviello, N. E. (2005). Internationalisation: Conceptualising an entrepreneurial process of behaviour in time. *Journal of International Business Studies*, *36* (3), 284-303.

Karri, R., & Goel, S. (2008). Effectuation and over-trust: Response to Sarasvathy and Dew. *Entrepreneurship Theory and Practise*, 32, 739-748.

Kraaijenbrink, J. (2008). The nature of the entrepreneurial process: causation, effectuation, and pragmatism. *High Tech Small Firms Conference, University of Twente, Enschede, the Netherlands*, (pp. 1-11). Enschede.

Krebbers, L. (2015). *The first steps towards a quantitative measurement scale of causation and effectuation in a non-entrepreneurial student context.* Master thesis, University of Twente, Management & Governance, Enschede.

Krijgsman, J. (2012). The influence of national culture on entrepreneurial processes: A comparison between Mexican and Dutch entrepreneurs. Master Thesis, University of Twente, Management and Governance, NIKOS.

Kroeber, A. L., & Kluckhohn, C. (1952). Culture: A critical review of concepts and definitions. In *Papers of the Peabody Museum of American Archaeology and Ethnology*. Cambridge, MA: Harvard University Press.

Lazzeretti, L., & Tavoletti, E. (2005). Higher education excellence and local economic development: The case of the entrepreneurial University of Twente. *European Planning Studies*, *13* (3), 475-493.

McGrath, R. G., MacMillan, I. C., Yang, E. A., & Tsai, W. (1992). Does culture endure, or is it malleable? Issues for entrepreneurial economic development. *Journal of Business Venturing*, 7, 441-458.

McSweeney, B. (2002). Hofstede's model of national cultural differences and their consequences: A triumph of faith—A failure of analysis. *Human Relations*, 55 (1), 89-118.

Mitchell, R. K., Smith, B., Seawright, K. W., & Morse, E. A. (2000). Cross-cultural cognitions and the venture creation decision. *Academy of Management Journal*, 43 (5), 974–993.

Mones, R. A. (2012). The influence of national culture on entrepreneurial processes: A comparison between British and Dutch novice entrepreneurs. Master Thesis, University of Twente, Management and Governance.

Moroz, P. W., & Hindle, K. (2012). Entrepreneurship as a process: Toward harmonizing multiple perspectives. *Entrepreneurship Theory and Practice*, *36* (4), 781-818.

Morrison, A. (2000). Entrepreneurship: What triggers it? *International Journal of Entrepreneurial Behaviour & Research , 6* (2), 59-71.

Mueller, S. L., & Thomas, A. S. (2000). Culture and entrepreneurial potential: A ninecountry study of locus of control and innovativeness. *Journal of Business Venturing*, *16*, 51-75.

Nielsen, J. (1994). Estimating the number of subjects needed for a thinking aloud test. *International Journal of Human-Computer Studies*, *41*, 385-397.

Nielsen, S. L., & Lassen, A. H. (2012). Identity in entrepreneurship effectuation theory: a supplementary framework. *International Entrepreneurship Management Journal*, *8*, 373-389.

North, D. C. (1990). *Institutions, institutional change and economic performance*. Cambridge, MA: Cambridge University Press.

Pelto, P. J. (1968). The difference between 'tight' and 'loose' societies. *Transaction*, 5, 37-40.

Perry, J. T., Chandler, G. N., & Markova, G. (2012). Entrepreneurial effectuation: A review and suggestions for future research. *Entrepreneurship Theory and Practice*, 36 (4), 837-861.

Peters, G.-J. Y. (2014). The alpha and the omega of scale reliability and validity. *The European Healt Psychologist*, 16 (2), 56-69.

Popper, K. (1959). The logic of scientific discovery. London: Hutchinson & Co.

Read, S., & Sarasvathy, S. D. (2005). Knowing what to do and doing what you know: Effectuation as a form of entrepreneurial expertise. *The Journal of Private Equity*, *9* (1), 45-62.

Read, S., Dew, N., Sarasvathy, S. D., Song, M., & Wiltbank, R. (2009). Marketing under uncertainty: The logic of an effectual approach. *Journal of Marketing*, 73 (3), 1-18.

Sarasvathy, S. D. (2001). Causation and effectuation: Toward a theoretical shift from economic inevitability to entrepreneurial contingency. *The Academy of Management Review*, *26* (2), 243-263.

Sarasvathy, S. D. (2008). *Effectuation: Elements of entrepreneurial expertise*. Cheltenham, UK: Edward Elgar Publishing.

Sarasvathy, S. D. (2001b). *What makes entrepreneurs entrepreneurial?* The Darden Graduate School of Business Administration. Darden Business Publishing.

Sarasvathy, S. D., & Dew, N. (2005). Entrepreneurial logics for a technology of foolishness. *Scandinavian Journal of Management*, 21, 385-406.

Schumpeter, J. A. (1965). Economic theory and entrepreneurial history. (H. Aitken, Ed.) *Explorations in Enterprise*.

Schumpeter, J. A. (1934). The theory of economic development. *Harvard University Press*.

Schwartz, S. H. (1994). Beyond individualism/collectivism: New cultural dimensions of values. In U. Kim, H. C. Triandis, C. Kagitcibasi, S.-C. Choi, & G. Yoon, *Individualism and collectivism: Theory, methods and applications* (pp. 85-119). London: Sage.

Shane, S. (2003). A general theory of entrepreneurship: the individual-opportunity nexus.

Shane, S. (1993). Cultural Influences on national rates of innovation. *Journal of Business Venturing*, 8, 59-73.

Shane, S. (1994). Cultural values and the championing process. *Entrepreneurship Theory & Practice*, 18, 25-41.

Shane, S. (2008). The illusions of entrepreneurship: The costly myths that entrepreneurs, investors, and policy makers live by. London: Yale University Press.

Shane, S., & Venkataraman, S. (2000). The promise of entrepreneurship as a field of research. *Academy of Management Review*, 25 (1), 217-226.

Smith, P. (1996). National cultures and the values of organizational employees: Time for another look. In P. Joynt, & M. Warner, *Managing across cultures: Issues and perspectives* (pp. 92-102). London: International Thompson Business Press.

Steentjes, R. (2012). The influence of national culture on entrepreneurial processes: The usage of causation and effectuation among Dutch and Polish student entrepreneurs. Master Thesis, University of Twente, Management and Governance, NIKOS.

Taras, V., Kirkman, B. L., & Steel, P. (2010). Examining the impact of culture's consequences: A three-decade, multilevel, meta-Analytic review of Hofstede's cultural value dimensions. *Journal of Applied Psychology*, *9* (3), 405-439.

Taras, V., Steel, P., & Kirkman, B. L. (2012). Improving national cultural indices using a longitudinal meta-analysis of Hofstede's dimensions. *Journal of World Business*, 47, 329-341.

Telman, R. V. (2012). Entrepreneurial Processes in a cultural context: The influence of uncertainty avoidance on entrepreneurial processes in Denmark. Bachelor Thesis, University of Twente, Management & Governance, NIKOS.

Thomas, A. S., & Mueller, S. L. (2000). A case for comparative entrepreneurship: Assesing the relevance of culture. *Journal of International Business Studies*, *31* (2), 287-301.

Triandis, H. C. (1989). Self and social behavior in differing cultural contexts. *Psychological Review*, *96*, 506-520.

Triandis, H. C. (2004). The many dimensions of culture. *Academy of Management Executive*, 18 (1).

Triandis, H. C., & Gelfand, M. J. (1998). Converging mesurement of horizontal and vertical individualism and collectivism. *Journal of Personality and Social Psychology*, 74 (1), 118-128.

Venkataraman, S. (1997). The Distinctive Domain of Entrepreneurship Research: An editor's perspective. In J. Katz & R. Brockhaus (Eds.). *Advances in entrepreneurship, firm emergence, and growth*, *3*, 119-138.

Weber, M. (1956). The protestant ethic and the spirit of capitalism.

Wiltbank, R., Dew, N., Read, S., & Sarasvathy, S. D. (2006). What to do next? The case for non-predictive strategy. *Strategic Management Journal*, 27, 981-998.

Wiltbank, R., Read, S., Dew, N., & Sarasvathy, S. D. (2009). Prediction and control under uncertainty: Outcomes in angel investing. *Journal of Business Venturing*, *24* (2), 116-133.

Appendix I: Test of normality

A. Test of normality – Causal and effectual decision-making

Effectual Decision-making

Descriptives

			Statistic	Std. Error
Effectual	Mean		4.9476	.02862
Decision-making	95% Confidence	Lower Bound	4.8913	
	Interval for Mean	Upper Bound	5.0039	
	5% Trimmed Mean		4.9511	
	Median		4.9231	
	Variance		.233	
	Std. Deviation		.48233	
	Minimum		3.46	
	Maximum		6.54	
	Range	3.08		
	Interquartile Range		.60	
	Skewness		088	.145
	Kurtosis		.634	.288
Causal Decision-	Mean		4.9119	.03548
making	95% Confidence	Lower Bound	4.8421	
	Interval for Mean	Upper Bound	4.9818	
	5% Trimmed Mean		4.9164	
	Median		4.9167	
	Variance		.358	
	Std. Deviation		.59800	
	Minimum		3.08	
	Maximum		6.67	
	Range		3.58	
	Interquartile Range		.83	
	Skewness		139	.145
	Kurtosis		.159	.288

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Effectual Decision-making	.063	284	.008	.991	284	.063
Causal Decision- making	.055	284	.036	.995	284	.455

a. Lilliefors Significance Correction

B. Test of normality - Principles

Tests of Normality								
	Kolmo	Kolmogorov–Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.		
Mean Goal- driven	.140	284	.000	.953	284	.000		
Mean Expected Returns	.204	284	.000	.912	284	.000		
Mean Competitive Analysis	.120	284	.000	.972	284	.000		
Mean Avoiding contingencies	.128	284	.000	.972	284	.000		
Mean Prediction	.140	284	.000	.958	284	.000		
Mean Means driven	.106	284	.000	.965	284	.000		
Mean Affordable Loss	.125	284	.000	.962	284	.000		
Mean Partnership	.104	284	.000	.975	284	.000		
Mean Leveraging Contigencies	.164	284	.000	.950	284	.000		
Mean Control	.177	284	.000	.934	284	.000		

a. Lilliefors Significance Correction

Descriptives							
			Statistic	Std. Error			
Mean Goal-	Mean		5.2377	.05495			
driven	95% Confidence	Lower Bound	5.1295				
	Interval for Mean	Upper Bound	5.3458				
	5% Trimmed Mean		5.2621				
	Median		5.5000				
	Variance		.858				
	Std. Deviation		.92608				
	Minimum		2.00				
	Maximum		7.00				
	Range		5.00				
	Interquartile Range		1.50				
	Skewness		502	.145			
	Kurtosis		.212	.288			
Mean Expected	Mean		5.4102	.05758			
Returns	95% Confidence	Lower Bound	5.2969				
	Interval for Mean	Upper Bound	5.5235				
	5% Trimmed Mean		5.4613				
	Median		5.5000				
	Variance		.942				
	Std. Deviation		.97034				
	Minimum		1.50				
	Maximum		7.00				
	Range		5.50				
	Interquartile Range		1.00				
	Skewness		963	.145			
	Kurtosis		1.154	.288			
Mean	Mean		5.0546	.05245			
Analysis	95% Confidence	Lower Bound	4.9513				
rinaliy sis	Interval for Mean	Upper Bound	5.1578				
	5% Trimmed Mean		5.0818				
	Median		5.0000				
	Variance		.781				
	Std. Deviation		.88384				
	Minimum		2.00				
	Maximum		7.00				
	Range		5.00				
	Interquartile Range		1.33				
	Skewness		431	.145			
	Kurtosis		023	.288			

			Statistic	Std. Error
Mean Avoiding	Mean		4.2007	.06211
contingencies	95% Confidence	Lower Bound	4.0784	
	Interval for Mean	Upper Bound	4.3230	
	5% Trimmed Mean		4.2070	
	Median		4.0000	
	Variance		1.096	
	Std. Deviation		1.04672	
	Minimum		1.50	
	Maximum		7.00	
	Range		5.50	
	Interquartile Range		1.50	
	Skewness	030	.145	
	Kurtosis		.037	.288
Mean Prediction	Mean		5.1021	.04772
	95% Confidence	Lower Bound	5.0082	
	Interval for Mean	Upper Bound	5.1960	
	5% Trimmed Mean		5.1154	
	Median		5.0000	
	Variance		.647	
	Std. Deviation	.80423		
	Minimum		2.50	
	Maximum		7.00	
	Range		4.50	
	Interquartile Range		1.00	
	Skewness		269	.145
	Kurtosis		.120	.288
Mean Means	Mean		4.8187	.05703
driven	95% Confidence	Lower Bound	4.7064	
	Interval for Mean	Upper Bound	4.9309	
	5% Trimmed Mean		4.8396	
	Median		5.0000	
	Variance		.924	
	Std. Deviation		.96110	
	Minimum		2.00	
	Maximum		7.00	
	Range		5.00	
	Interquartile Range		1.50	
	Skewness		280	.145
	Kurtosis		.151	.288

			Statistic	Std. Error
Mean Affordable	Mean		4.8363	.06763
Loss	95% Confidence	Lower Bound	4.7031	
	Interval for Mean	Upper Bound	4.9694	
	5% Trimmed Mean		4.8756	
	Mean 95% Confidence Interval for Mean Lower Bound Upper Bound 5% Trimmed Mean Median Variance Std. Devlation Minimum Maximum Range Interquartile Range Skewness Kurtosis artnership Mean 95% Confidence Interquartile Range Lower Bound 5% Trimmed Mean Upper Bound 5% Trimmed Mean Mean 95% Confidence Interval for Mean Lower Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis everaging ncies Mean 95% Confidence Lower Bound S% Trimmed Mean Upper Bound S% Confidence Lower Bound S% Trimmed Mean Upper Bound S% Trimmed Mean Upper Bound S% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosi		5.0000	
	Variance		1.299	
	Std. Deviation		1.13977	
	Minimum		1.50	
	Maximum		7.00	
	Range		5.50	
	Interquartile Range		1.50	
	Skewness		463	.145
	Kurtosis		168	.288
Mean Partnership	Mean		5.1338	.04400
	95% Confidence	Lower Bound	5.0472	
	Interval for Mean	Upper Bound	5.2204	
	5% Trimmed Mean		5.1497	
	Median		5.0000	
	Variance		.550	
	Std. Deviation		.74146	
	Minimum		2.33	
	Maximum	7.00		
	Range		4.67	
	Interquartile Range		1.00	
	Skewness		340	.145
	Kurtosis		.569	.288
Mean Leveraging	Mean		5.4190	.05211
Contigencies	ean Leveraging Mean ontigencies 95% Confidence Low Interval for Mean Upp 5% Trimmed Mean	Lower Bound	5.3164	
		Upper Bound	5.5216	
	5% Trimmed Mean		5.4444	
	Median		5.6667	
	Variance		.771	
	Std. Deviation		.87818	
	Minimum		2.67	
	Maximum		7.00	
	Range		4.33	
	Interquartile Range		1.00	
	Skewness		549	.145
	KURTOSIS		548	.288
			Statistic	Std. Error
Mean Control	Mean		5.4208	.05148
	95% Confidence	Lower Bound	5.3195	
	interval for Mean	Upper Bound	5.5221	
	5% Trimmed Mean		5.4593	
	Median		5.5000	
	Variance		.753	
	Std. Deviation		.86749	
	Minimum		2.50	
	Maximum		7.00	
	Range		4.50	
	interquartile Range		1.00	
	Skewness		768	.145
	Kurtosis		.837	.288

Expected Normal

Descriptives

C. Test of normality – Degree of tightness-looseness

Descriptives for Q104_New_nationality= Dutch Statistic Std. Error What is your nationality? Degree of Tightness-Looseness Dutch Mean 3.8478 .04379 95% Confidence 3.7615 Lower Bound Interval for Mean Upper Bound 3.9341 5% Trimmed Mean 3.8486 Normal Median 3.8333 Expected Variance .447 Std. Deviation .66838 Minimum 2.17 5.67 Maximum Range 3.50 Interquartile Range .83 Skewness -.028 .159 Observed Value Kurtosis -.014 .318 German Mean 4.0392 10741 95% Confidence Interval for Mean No Lower Bound 3.8235 for Q104_New_nationality= German Upper Bound 4.2550 5% Trimmed Mean 4.0456 Median 4.1667 Variance .588 Std. Deviation 76709 Norma 16 2.50 Minimum Maximum 5.50 Expected Range 3.00 Interquartile Range 1.33 Skewness -.229 333 Kurtosis -.823 .656

Normal Q-Q Plot of Degree of Tightness-Looseness

Tests	of	Normality	
-------	----	-----------	--

	What is your	Kolm	ogorov-Smir	rnov ^a	S	hapiro-Wilk	
	nationality?	Statistic	df	Sig.	Statistic	df	Sig.
Degree of Tightness-	Dutch	.071	233	.006	.990	233	.090
Looseness	German	.120	51	.065	.969	51	.205

a. Lilliefors Significance Correction

Appendix II: Exploratory factor analysis

A. Correlation matrix

680	218 	400 400 142 142 142 142 142 142 157 157 157 157 157 157 157 157 0032 0032 0032 0032 0032 0032 0032 003
020	177 183 083 083 083 083 083 083 085 155 155 155 155 155 155 155 155 155 1	001 002 0082 0083 0013 0013 0013 0013 0014 0013 0013 001
044	-030 -033 -034 -044 -044 -044 -148 -148 -148 -148 -148 -148 -148 -1	250 2008 2008 2008 2009 2000 2000 2000 200
058	004 0915 0915 0915 0916 0916 0916 0916 0916 0916 0916 0916	445 445 0721 0721 0721 0721 0724 0724 0724 0724 0724 0724 0724 0724
061	-067 -1121 -	114 114 009 009 001 011 1100 011 011 000 000 00
370	144 1000 1000 1001 1001 1001 1001 1001	001 001 003 003 000 000 000 000 001 001
078	105 120 120 120 120 120 120 120 120 120 120	040 040 048 048 048 048 048 044 044 053 052 052 052 052 052 052 052 052 052 052
0.24	085 052 052 052 053 054 054 031 054 031 054 031 055 031 055 031 055 031 055 031 055 055 031 055 055 031 055 055 055 055 055 055 055 055 055 05	1972 1972 1869 1869 1865 1865 1865 1865 1865 1865 1865 1865
0.00	045 045 045 045 045 042 042 042 042 042 042 042 042 042 042	222 002 002 002 002 002 004 004 004 004
00.8	111 112 112 112 112 112 112 112 112 112	0014 0014 0000 0001 00110 00110 00110 0000 0000 0000 0000 0000 0000 0000 0000
(63)	1111 1111 1111 1111 1111 1111 1111 1111 1111	0000 0005 0005 0005 0005 0005 0005 000
090	103 104 105 105 105 105 105 105 105 105 105 105	043 001 001 001 001 001 001 001 000 000 00
690		0271 0271 1161 1161 1161 1161 1161 1161 1161 1
140	168 200 200 200 200 200 200 104 200 104 102 103 103 103 103 103 103 103 103 103 103	0002 0000 0000 0000 0000 0000 0000 000
0.24	2554 264 264 264 264 2054 2003 2003 2003 2003 2003 2003 2003 200	000 001 001 001 001 002 002 002
036	140 123 123 123 124 124 126 126 126 126 126 126 126 126 126 126	009 012 012 012 012 012 012 012 012
340	073 065 065 065 065 065 015 015 012 012 012 012 012 012 014 014 014 014 014 014 014 014 014 014	1119 1112 1112 1112 1112 1112 1112 1112
000	249 1127 1249 1249 1249 1242 1242 1242 1242 1242	0000 0001 0001 0001 0001 0001 0001 000
662	100 110 110 110 110 110 110 110 110 110	0366 0366 001 001 001 001 000 000 000 000 000 0
00	221 211 212 212 212 212 212 212 212 212	005 0000 0000 0000 0000 0000 0000 0000
674	110 110 110 110 110 110 110 110 110 110	0001 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000
000	213 289 289 289 289 289 289 289 289 289 289	0000 0000 0000 0000 0000 0000 0000 0000 0000
000	065 11000 2289 2289 2289 2289 2289 2289 2887 2500 2049 2075 2075 2075 2075 2075 2075 2075 2075	0066 0004 0002 0000 0000 0000 0000 0000
000	242 1,0000 1,0000 1,0000 1,00000000	.600 004 004 005 005 005 005 007 007 007 007 007 007
000	1000 1242 1242 1253 1521 1523 1525 1525 1525 1532 1532	0000 0068 0068 0001 0000 0000 0000 0000
	88888888888888888888888888888888888888	848 848 848 848 848 848 848 848 848 848
	Correlation	50 (t. 1997)

ation Matri

B. KMO Measure of Sampling Adequacy & Barlett's test of Sphericity

Kaiser-Meyer-Olk Sampling Adequad	in Measure of :y.	.737
Bartlett's Test of Sphericity	Approx. Chi- Square	1351.804
	df	300
	Sig.	.000

KMO and Bartlett's Test

D. Total explained variance

				Total Vari	ance Explained				
		Initial Eigenvalu	ies	Extractio	n Sums of Square	ed Loadings	Rotation	n Sums of Square	d Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.009	16.036	16.036	4.009	16.036	16.036	2.375	9.498	9.498
2	2.590	10.361	26.397	2.590	10.361	26.397	2.150	8.598	18.097
3	1.778	7.111	33.508	1.778	7.111	33.508	1.962	7.847	25.944
4	1.446	5.785	39.293	1.446	5.785	39.293	1.804	7.214	33.159
5	1.378	5.511	44.804	1.378	5.511	44.804	1.794	7.174	40.333
6	1.150	4.602	49.406	1.150	4.602	49.406	1.636	6.546	46.879
7	1.089	4.357	53.762	1.089	4.357	53.762	1.400	5.599	52.478
8	1.033	4.134	57.896	1.033	4.134	57.896	1.354	5.418	57.896
9	.934	3.736	61.632						
10	.867	3.469	65.101						
11	.839	3.356	68.457						
12	.794	3.178	71.635						
13	.768	3.073	74.708						
14	.703	2.812	77.519						
15	.680	2.721	80.241						
16	.633	2.534	82.775						
17	.603	2.412	85.187						
18	.570	2.281	87.468						
19	.540	2.160	89.628						
20	.518	2.073	91.701						
21	.486	1.945	93.646						
22	.451	1.802	95.448						
23	.417	1.668	97.116						
24	.388	1.553	98.670						
25	.333	1.330	100.000						

Extraction Method: Principal Component Analysis.

C. Anti-image correlation matrix

	Q67	141	06.4	057	-022	220-	600-	200-	-014	101	1011		040-	210-	039	054	056	.029	.036	022	-014	- 0.97	000	100	182	96	100	2011	990-	076	.031	030	012	070	200	2007-	110-		-122	051	-016	050	074	070	.038	.045	030	610	-131	0.79	136	.6174	
	C669	- 055	-036	043	250-	120.	0/0-	000	620	1000			200-	010	-036	085	-020	242	027	-129	- 094	0.56		100	200 -	088	002	200	960-	066	560.	.048	-127	080	190		660-	003	155	088	-027	.144	133	.029	363	039	202	147	091	029	.7262	136	
	064	034	- 024	280	1941	110	100	156	- 026	1001	100		+no	210	160'-	80	-003	050	002	-013	121 -	150	0.92		090	-048	100	1000	-1053	711.	.059	023	025	010	LUC	103	-1055	1907-	+:07-	005	-,017	122	0007	-,007	067	E00^-	-,018	181	230	.710*	029	620.	
	058	-004	-061	074	150.	500-	600-	180	261	000	100	1.1	C011-	0.10	010-	076	190.	.003	-010	033	- 051	6.2.4		1990	200	100-	- 076		760'-	-110	050	092	- 015	027	1941	0111	101	+10'-	.036	237	.023	014	.115	.084	012	015	649	076	692*	230	- 091	131	
	Q61	.042	-102	067	060.	050	100-	210	960	1000	110	110.	+00'-	+01-	009	007	015	120.	.017	058	700	130 -	111-	1000	910	.062	0.78		- 140	-,094	.136	050	- 002	128	140	120.	101	-115/	.016	-,006	143	094	010	023	.098	.023	660'-	702	076	181	-147	019	
	CI65	192	021	047	103	1201-	190	020	077		22	200-	con	141-	220-	200	047	.015	057	683	- 058	0.8.5	1000	0.0	1022	-285	066	0000	060.	068	157	052	023	0.80	190	100	501	500.	1007-	115	961	075	2002	.063	.021	077	744*	660	500	018	202	030	
	Q78	036	055	1007	2007-	500	0.00	210	-107	165	1000	0.00	1000	200	010	086	000	032	798	057	017	010	200-	100	1920	670	000	100	570	2007	003	004	-054	0.87	100		041-1	917-	-0.79	.088	043	046	-117	000	042	782*	077	.023	015	003	039	.045	
	0/5	-/021	-,035	005	+10	650		170-	-016	2112	110	140	0/0/-	04-D'-	++D	083	.074	.748	-,032	0.15	071	008			600	010/-	710-	010	540	1003	020	.053	043	077	120				250.	102	-,053	057	7117	260.	6204	042	.021	860.	0.12	-067	363	038	
	0/b	-105	052	065	510.	~~~~	010-	200	0.24	200	040	0.00	- CO	B 11	000-	-148	.617	÷10,	000	.047	-015	0.61	100	000	1000	008	136	0.00	Ce0	0.65	.027	200.	023	0.65		1001	001-	P-E-0.	-103	069	134	063	195	.656*	.0.95	000	.063	023	0.54	007	670.	070	
	C(6.8	024	126	210	-023	210-	200	901-	- 072	080 -	0000	2000	1	240	040	679	148	.083	086	.003	- 007	0.76	200		- 154	036	-117	100	-107	024	036	026	073	000	241	201		-162	÷10.	.146	066	067	-751*	198	-117	-117	.005	010	.115	000	133	074	
	0/2	161.	077	064	900	1004	010	-056	-030	770		1	+00-	010	227	-,048	050	-044	036	055	- 069	- 010	100-	1000	010-	267	720-	201	COT.	980	600	.0.54	022	950	100	610-	400°-	2000	-/073	070	510	.704*	067	-,063	057	.046	-,075	+60'-	014	122	144	050	
	063	-027	-048	2007	147	650	421-	010	035	100			110-	20.7	010	047	-100	-040	.033	-141	- 104	016			210	620	290-	2000	000'-	600	-067	.052	028	125		210	140	100.	195	018	.731ª	.013	066	134	053	.045	-196	-143	.023	017	.027	.016	
	C(6.2	110	040	100.	-00-		620.	100	6110	124		200		-10-	+c0	.105	055	078	690	083	- 004	- 165	2007	0.00	000	016	165	100	4cn.	2007	.006	058	040	144	000	200.	0.17	160.	104	586"	018	070	.146	069	102	.088	115	006	237	005	08.8	051	
	Q71	1207-	059	030	780	+0T	1001	076	020	200		0.00	200	0.14	CC0'-	010	078	.023	058	002	110	0.74	100	1000	050	076	120	100	CDD'-	-,043	125	147	-175	031	100	acc.	4.40		-376-	104	193	073	.014	103	.033	620	E00	.016	.036	+034	155	.122	
	6/0	-025	069	-026	-045		199	036	054	205	100		+00.	100-	4+0.	089	.025	-113	-162	.003	- 096	- 009	100		167	037	007	100	560.	037	068	010	-155	032	010	220	100	.742	5005	.047	100	090	129	.034	-155	-216	100	-137	+10-	064	003	225	
	1 9/1	-052	-032	-047	039	200-	1010	190	734	054		0.00	2117	50.	-020	072	064	016	-107	-077	0.94	1 0.2	126	200	016	079	078	240	CB0	065	057	013	-051	020		100.	1007	507-	620.	-158	-042	039	-102	-108	022	-140	109	.131	282	035	.035	019	
e Matrices	073 0	002	-014	.967	1007	2001	100-	262	190-	1950			100	210-	000-	106	.025	-041	037	-030	015	081	1001	000	200	E007-	060	010	-1013	160	-,078	-052	-050	101		11	100-	200	501.	6907	-,016	073	147	.031	054	047	-041	.021	116	207	043	002	
Anti-imag	326 0	960-	-044	-070	100	440	200	221	014	199	100	100	+01	+ 11 1	010	-000	048	.055	-065	190	960	018	100	190	120	142	207	100	500.	-100	-002	-062	090	7612	101	1010		000-	-031	-144	185	.096	600-	.065	077	-087	680.	.138	027	-010	-080	.070	
	277	-120	-003	150	661-	121-	0.00	034	034		112	111	0,0	110	510	.047	016	-029	038	.015	100	000	110	10.0	500	188	200		+00*-	.078	.323	-181	796 *	050		100	100-	21	5/1/2	040	.028	.022	570.	023	043	054	.023	002	-015	-025	-127	.013	
	257 0	-037	105	-022			141	1000	600	100	100			222	500	-018	50	680	500	-037	036	062	1000	100		-054	063	1000	1-1-0	-100	-061	8462	181	062		200	1010	210	-147	-058	-052	-084	-026	-002	-053	004	-052	-050	-092	-023	.048	030	
	274 0	-033	121	-067	679	760-	100	054	620	570		10.0	-	144	000	-023	019	014	-002	-103	060	021	100	100	022	052	101	101	161-	101-	.785*	190-	323	000	144	670	100-	240-	-125	008	.067	600	-036	.027	020	-003	-157	-136	-050	650	560	031	
	260 0	-024	-033	21	190-	2/01	140	022	047	926		200	100	200.	904	-012	065	200.	004	047	- 067	070	190		120	.035	160		151.	.834*	101.	001-	078	100	100	100		150-	043	2007	600'	.086	924	-,085	.003	500	.058	-094	-110	-117	-066	076	
	1 2 2 2 2	.023	ER.	.093	-151		200	10	032	090			240	240.	220	921-	-052	-035	055	120.	102	061	1000	980	0.66	034	018	the second	.607	-131	-197	.146	-004	063	010	100		850	590'-	054	990	-105	182	.068	-049	073	080	.146	.092	-033	056	.086	
	53 C	-079 ACC	013	i i			1	110	0.57		100	5	001		070-	-082	- 105	-025	0.02	-046	0.55	190	100	10.00	510	114	7408		010	-169	.024	-062	500	207		0.10		170	.120	.165	-065	034	- 117-	-136	034	2002	-066	.078	-075	100	760.	.105	
	366 0	.656	.023	024	500	150.	0.00	200	020	500		100-	110-		161.	+024	- 000	-021	036	2617	0.42	0.04	1010	530	191.	7224			650.	035	.052	.054	188	140	100	020		.03/	076	-016	.019	.267	035	-,008	030	049	-285	.062	-007	048	088	-196	INCOMISA)
		066	12	000	074	5	100	200	076			50	200	500	272	065	020	075	078	Cert	10					066	010	100	6	000	Q74	057	077	046		100		2	110	C62	C63	Q72	Cles	020	075	078	065	061	038	064	690	067	ping Adea
		Anti-image Countainea																								Anti-image	Correlation																										a. Measures of Sam.

E. Scree plot

F. Communalities

Communalities

	Initial	Extraction
Causation P1: Before starting my new venture, I will first acquire all resources needed to achieve my target.	1.000	.548
Causation P1: I take a clearly pre-defined target as a starting point of the new venture.	1.000	.618
Causation P2: Decisions will be primarily based on analysis of potential future returns.	1.000	.557
Causation P2: Beforehand, I will calculate how many resources I need to achieve the expected returns.	1.000	.521
Causation P3: I will try to identify markets by a thorough market analysis.	1.000	.522
Causation P3: I will focus on early identification of risks through market analysis.	1.000	.602
Causation P3: I will try to identify risks by a thorough competitors analysis.	1.000	.646
Causation P4: My first priority is reaching my pre-set target without any delay.	1.000	.615
Causation P4: My planning will be set before I start the implementation process and cannot be altered afterwards.	1.000	.522
Causation P4: I will always pay attention that my initially defined target will be met.	1.000	.575
Causation P5: I will study expert predictions on the direction the market is "heading", to determine what course of action my new venture will follow.	1.000	.593
Causation P5: I will try to control the future based on predictions of my previously obtained knowledge.	1.000	.613
Effectuation P1: The uncertainty of a market will not block me since I rely on my own experience to imagine opportunities.	1.000	.597
Effectuation P1: The decisions I make when starting my new venture will be based on the resources I have available.	1.000	.586
Effectuation P1: L start my new venture without defining a clear target.	1.000	.565
Effectuation P2: Decisions will be primarily based on minimization of risks and costs.	1.000	.624
Effectuation P2: Lonly spend resources Lhave available and Lam willing to lose.	1.000	.476
Effectuation P3: Decisions will be made together with stakeholders based on our competences.	1.000	.562
Effectuation P3: I will ask my private network to help me out with starting my new venture.	1.000	.586
Effectuation P3: I will ask customers and suppliers to pre-commit to my new venture in order to reduce risks.	1.000	.551
Effectuation P4: I allow changes in my planning if needed, even during the implementation process of my new venture.	1.000	.633
Effectuation P4: I expect to change my original target when confronted with new findings.	1.000	.534
Effectuation P4: I allow delays during the development of my new venture when new opportunities emerge.	1.000	.510
Effectuation P5: I will try to control the future by creating it.	1.000	.741
Effectuation P5: I will talk to people I know to enlist their support in making opportunities a reality.	1.000	.576

Extraction Method: Principal Component Analysis.

G. Rotated component matrix (factor loadings)

Rotated Component Matrix^a

		Component	
	1	2	3
Causation P1: I take a clearly pre-defined target as a starting point of the new venture.		.477	
Causation P1: Before starting my new venture, I will first acquire all resources needed to achieve my target.	.453		
Causation P2: Decisions will be primarily based on analysis of potential future returns.	.651		
Causation P2: Beforehand, I will calculate how many resources I need to achieve the expected returns.	.512		
Causation P3: I will focus on early identification of risks through market analysis.	.460		
Causation P3: I will try to identify markets by a thorough market analysis.	.519		
Causation P3: I will try to identify risks by a thorough competitors analysis.	.358	.457	
Causation P4: I will always pay attention that my initially defined target will be met.	.368		312
Causation P41 My first priority is reaching my pre-set target without any delay.			539
Causation P4: My planning will be set before I start the implementation process and cannot be altered afterwards.			583
Causation P5: Lwill try to control the future based on predictions of my previously obtained			
knowledge.		.573	
Causation P5: I will study expert predictions on the direction the market is "heading", to determine what course of action my new venture will follow.	.569		
Effectuation P1: The uncertainty of a market will not block me since I rely on my own experience to imagine opportunities.		.324	.354
Effectuation P1: The decisions I make when starting my new venture will be based on the resources I have available.	.508		
Effectuation P1: I start my new venture without defining a clear target.		305	
Effectuation P2: Decisions will be primarily based on minimization of risks and costs.	.489		
Effectuation P2: I only spend resources I have available and I am willing to lose.	.499		
Effectuation P3: I will ask my private network to help me out with starting my new venture.		.573	
reduce risks.		.378	
Effectuation P3: Decisions will be made together with stakeholders based on our competences.	.336	.437	
Effectuation P4: I expect to change my original target when confronted with new findings.			.629
Effectuation P4: I allow changes in my planning if needed, even during the implementation			647
process of my new venture.			.047
Effectuation P4: I allow delays during the development of my new venture when new opportunities emerge.			.587
Effectuation P5: I will talk to people I know to enlist their support in making opportunities a reality.		.629	
Effectuation P5: I will try to control the future by creating it.		.455	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 7 Iterations.

Appendix III: Internal consistency

A. Internal consistency - Causal decision-making

Case Processing Summary

		Ν	%
Cases	Valid	282	98.9
	Excluded ^a	3	1.1
	Total	285	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.712	.723	12

Item-Total Statistics

	Scale Mean If Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Causation P1: Before starting my new venture, I will first acquire all resources needed to achieve my target.	53.71	44.440	.335	.194	.696
Causation P1: I take a clearly pre- defined target as a starting point of the new venture.	53.61	44.986	.355	.182	.693
Causation P2: Beforehand, I will calculate how many resources I need to achieve the expected returns.	53.22	44.642	.381	.230	.690
Causation P2: Decisions will be primarily based on analysis of potential future returns.	53.76	43.671	.355	.215	.693
Causation P3: I will try to identify markets by a thorough market analysis.	53.66	43.088	.417	.237	.684
Causation P3: I will try to identify risks by a thorough competitors analysis.	53.84	43.565	.464	.359	.679
Causation P3: I will focus on early identification of risks through market analysis.	54.04	42.739	.502	.323	.673
Causation P4: My first priority is reaching my pre-set target without any delay.	55.03	45.938	.184	.124	.721
Causation P4: I will always pay attention that my initially defined target will be met.	53.67	43.452	.423	.242	.683
Causation P4: My planning will be set before I start the implementation process and cannot be altered afterwards.	55.73	44.532	.230	.100	.716
Causation P5: I will study expert predictions on the direction the market is "heading", to determine what course of action my new venture will follow.	53.79	44.913	.346	.219	.694
Causation P5: I will try to control the future based on predictions of my previously obtained knowledge.	53.81	47.145	.246	.120	.706

B. Internal consistency - Effectual decision-making

Case Processing Summary

		N	%
Cases	Valid	283	99.3
	Excluded ^a	2	.7
	Total	285	100.0

 Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.520	.549	13

Cronbach's Scale Corrected Squared Item-Total Multiple Scale Mean if Variance if Alpha if Item Item Deleted Item Deleted Correlation Correlation Deleted Effectuation P1: The uncertainty of a market will not block me since I rely on my own 60.01 33.695 .153 .165 .513 experience to imagine opportunities. Effectuation P1: The decisions I make when starting my new venture will be based on the 59.11 33,138 260 .156 485 resources I have available. Effectuation P1: I start my new venture without 61.88 36.869 -.014 .084 .551 defining a clear target. Effectuation P2: I only spend resources I have available and I am willing to lose. .517 59.43 34.232 .134 .127 Effectuation P2: Decisions will be primarily 59.65 34.711 .085 .218 .532 based on minimization of risks and costs. Effectuation P3: I will ask customers and suppliers to pre-commit to my new venture in 59.69 35.684 .078 .098 .528 order to reduce risks. Effectuation P3: I will ask my private network to 58.89 34.542 193 220 501 help me out with starting my new venture. Effectuation P3: Decisions will be made together with stakeholders based on our 59.14 33.075 .338 .198 .471 competences. Effectuation P4: I allow changes in my planning if needed, even during the implementation 58.60 33.985 .487 .264 .256 process of my new venture. Effectuation P4: | expect to change my original 58.87 32.138 337 .208 .466 target when confronted with new findings. Effectuation P4: I allow delays during the development of my new venture when new 59.40 33.056 .249 .192 .487 opportunities emerge. Effectuation P5: I will try to control the future 59.11 33.897 .498 .207 098 by creating it. Effectuation P5: I will talk to people I know to enlist their support in making opportunities a 58.80 32.599 .431 .359 .456 reality.

Item-Total Statistics

C. Internal consistency – Degree of tightness-looseness

Case Processing Summary

		N	%
Cases	Valid	282	98.9
	Excluded ^a	3	1.1
	Total	285	100.0

Reliabilit	y Statistics
------------	--------------

Cronbach's Alpha	N of Items
.686	6

a. Listwise deletion based on all variables in the procedure.

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha If Item Deleted
There are many social norms that people are supposed to abide by in my home country.	19.1028	11.858	.473	.626
In my home country, there are very clear expectations for how people should act in most situations.	18.9681	11.575	.585	.587
People agree upon what behaviours are appropriate versus inappropriate in most situations in my home country.	18.7766	13.420	.426	.646
People in my home country have a great deal of freedom in deciding how they want to behave in most situations (recoded).	20.9043	14.087	.209	.713
In my home country, if someone acts in an inappropriate way, others will strongly disapprove.	19.2943	12.657	.393	.654
People in this country almost always comply with social norms.	19.3191	12.481	.444	.636

Item-Total Statistics

Appendix IV: Control variables

A. Levene's Test for Equality of Variances – Degree of Tightness-Looseness

Group Statistics

	What is your nationality?	N	Mean	Std. Deviation	Std. Error Mean
Degree of	Dutch	233	3.8478	.66838	.04379
Looseness	German	51	4.0392	.76709	.10741

Independent Samples Test

Levene's Test for Equality of Variances t-test for Equality of Means										
		F	Siq.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Confiden the Diff Lower	ce Interval of erence Upper
Degree of Tightness- Looseness	Equal variances assumed Equal variances not assumed	3.7	.056	-1.803 -1.650	282 67.596	.073 .104	19143 19143	.10619 .11600	40047 42293	.01760

B. Mean scores for masculinity index

Di	utch		German
	N	Mean	N Mean
to get recognition for good performance.	233	2.24	to get recognition for good 51 1.88 performance.
to have pleasant people to work with.	233	1.87	to have pleasant people to work 51 1.69 with.
to live in a desirable area.	233	2.51	to live in a desirable area. 51 2.16
to have chances for promotion.	233	2.46	to have chances for promotion. 51 2.02
Valid N (listwise)	233		Valid N (listwise) 51

C. Paired sample test – Familiarity with effectuation

Paired Samples Statistics								
Mean N Deviation Mean								
Pair 1	Mean Effectual Decision-making	5.3468	37	.60141	.09887			
	Mean Causal Decision-making	5.0369	37	.61264	.10072			

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 Mean Effectual Decision-making & Mean Causal Decision-making	37	.230	.171

Paired Samples Test

	Paired Differences							
	Std. Std. Error 95% Confidence Interval of the Difference				Sig. (2-			
	Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1 Mean Effectual Decision-making - Mean Causal Decision-making	.30999	.75339	.12386	.05880	.56118	2.503	36	.017
D. Paired sample test – Unfamiliarity with effectuation

		Mean	N	Std. Deviation	Std. Error Mean				
Pair 1	Mean Effectual Decision-making	5.1270	222	.49195	.03302				
	Mean Causal Decision-making	5.0052	222	.61975	.04159				

Paired Samples Statistics

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 Mean Effectual Decision-making & Mean Causal Decision-making	222	.332	.000

Paired Samples Test

				Paired Differen	ces				
			Std.	Std. Error 95% Confidence Interval of the Difference				Sig. (2 -	
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1 Mean E Decisio - Mean Decisio	Effectual on-making n Causal on-making	.12185	.65090	.04369	.03576	.20795	2.789	221	.006

E. Paired sample test – entrepreneurial students

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Mean Effectual Decision-making	5.2346	38	.48237	.07825
	Mean Causal Decision-making	4.7656	38	.66591	.10802

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 Mean Effectual Decision-making & Mean Causal Decision-making	38	.295	.072

Paired Samples Test

				Paired Differences					
			Std.	Std. Error	95% Confidence Interval of the Difference				Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1 Mea Dec - M Dec	ean Effectual ecision-making Mean Causal ecision-making	.46910	.69752	.11315	.23983	.69837	4.146	37	.000

F. Paired sample t-test – non-entrepreneurial student

Paired	Same	dae	Statistics
raneu	Janip	163	Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Mean Effectual Decision-making	5.1413	245	.51889	.03315
	Mean Causal Decision-making	5.0422	245	.60094	.03839

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 Mean Effectual Decision-making & Mean Causal Decision-making	245	.374	.000

Paired Samples Test

		Paired Differences						
		Std.	Std. Error	95% Confidence Interval of the Difference				Sig. (2-
	Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1 Mean Effectual Decision-making - Mean Causal Decision-making	.09913	.63028	.04027	.01981	.17844	2.462	244	.015

G. Test – entrepreneurial family background

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Mean Effectual Decision-making	5.1468	88	.57347	.06113
	Mean Causal Decision-making	4.9360	88	.65282	.06959

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 Mean Effectual Decision-making & Mean Causal Decision-making	88	.367	.000

Paired Samples Test

				Paired Differen	ces				
			Std.	Std. Error	95% Confiden the Diff	ce interval of erence			Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	τ	df	tailed)
Pair 1	Mean Effectual Decision-making - Mean Causal Decision-making	.21083	.69283	.07386	.06403	.35763	2.855	87	.005

H. Test – non-entrepreneurial family background

	I	Paired Sam	ples Statist	ics	
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Mean Effectual Decision-making	5.1570	195	.48681	.03486
	Mean Causal Decision-making	5.0362	195	.59790	.04282

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Mean Effectual Decision-making & Mean Causal Decision-making	195	.338	.000

Paired Samples Test

				Paired Differen	ces				
			Std.	Std. Error	95% Confiden the Diff	ce Interval of erence			Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1	Mean Effectual Decision-making – Mean Causal Decision-making	.12082	.63076	.04517	.03173	.20990	2.675	194	.008

					Correlat	ons - Dut	ch students							
		1	2	3	4	5	9	7	8	σ	10	11	12	13
 Degree of Tightness- 	Pearson Correlation	1	.057	.129	.144	.,190	.127	.011	.131	.016	.035	.083	.157*	.146
Looseness	Sig. (2-tailed) N	233	384	.049 233	.028 233	233	.054 233	.865 233	.046 233	.813 233	.591 233	.208 233	.016	.026 233
2. Mean Goal- driven	Pearson Correlation	.057	1	.060	.291**	.251**	.270**	.239**	.336**	076	.146°	.184**	.610**	.218**
	Sig. (2-tailed) N	.384 233	233	.363	.000 233	.000	233	.000	.000	248	.026 233	.005 233	.000	.001 233
3. Mean Means driven	Pearson Correlation	.129*	.060	1	.143	.058	.054	.190	.062	.273**	.123	.237**	.128	.588**
	Sig. (2-tailed) N	.049 233	.363 233	233	.029 233	.381 233	.410	.004 233	.343 233	.000	.061 233	.000 233	.050 233	.000 233
4. Mean Expected	Pearson Correlation	.144	291	.143	1	.291	.397"	.144	.198	.187^^	.286	.165	.658	.331~
Returns	Sig. (2-tailed) N	.028 233	.000	.029 233	233	.000	233	.028 233	233	.004 233	.000	.012 233	.000	.000 233
5. Mean Affordable Loss	Pearson Correlation	.190**	.251**	.058	.291**	1	.187**	.055	.139	051	.219	.144	.324**	.429**
	Sig. (2-tailed) N	.004 233	233	.381 233	.000	233	.004 233	402	.034	.438 233	233	.028 233	.000	233
6. Mean Competitive	Pearson Correlation	.127	.270**	.054	.397**	.187**	1	.281**	.254**	.021	.481**	.157*	.780**	.240**
Analysis	Sig. (2-tailed) N	.054 233	.000	.410	.000 233	.004 233	233	.000 233	.000 233	.754 233	.000	.017 233	.000	.000 233
7. Mean Partnership	Pearson Correlation	.011	.239**	.190**	.144	.055	.281**	1	.148	.121	.386**	.365**	.358*	.593**
-	Sig. (2-tailed) N	.865 233	.000	.004 233	.028 233	.402 233	.000	233	.024 233	.066	.000 233	.000 233	.000	.000 233
8. Mean Avolding contingencies	Pearson Correlation	.131	.336	.062	.198 ^{°°}	.139	.254**	.148	1	285**	.156	029	.600	.013
1	Sig. (2-tailed) N	.046 233	233	.343 233	.002 233	.034	233	.024 233	233	.000	.017 233	.655 233	.000	.849 233
9. Mean Leveraging	Pearson Correlation	.016	076	.273**	.187**	051	.021	.121	285**	1	.136	.267**	015	.609.
Contigencies	Sig. (2-tailed) N	.813	248	233	.004 233	. 4 38 233	.754	.066	233	233	037	.000	.820	.000
10. Mean Prediction	Pearson Correlation	.035	.146*	.123	.286**	.219**	.481**	.386**	.156*	.136*	1	.250**	.601**	.387**
	Sig. (2-tailed) N	.591	.026 233	.061 233	.000	.001 233	233	.000	.017 233	.037 233	233	.000 233	.000	.000 233
11. Mean Control	Pearson Correlation	.083	.184**	.237**	.165	.144	.157*	.365**	.029	.267**	.250**	1	.230**	.653
	Sig. (2-tailed) N	.208	.005	.000 233	.012 233	.028 233	.017 233	.000	.655	233	.000 233	233	.000	.000 233
12. Mean Causal Decision-making	Pearson Correlation	.157^	.610	.128	.658^^	.324	.780**	.358	.600	015	.601	.230	1	.348
1	Sig. (2-tailed) N	.016 233	233	233	233	233	233	.000	233	.820 233	.000	233	233	233
13. Mean Effectual	Pearson Correlation	$.146^{*}$.218"	.588	.331**	.429**	.240**	.593	.013	.609.	.387"	.653	.348**	1
Decision-making	Sig. (2-tailed) N	.026 233	233	233	233	233	233	.000	.849	233	.000	233	.000	233
*. Correlation is sig	Inificant at the 0.05 le	evel (2-taile)	d). **. Corre	lation is sign	nificant at th	he 0.01 lev	el (2-tailed).							

Appendix V: Correlation matrix

		1	2	m	4	S	9	2	~	თ	10	11	12	13
Tightness-	Correlation	1	.289	.310	.083	IIE.	110.	.216	160'	025	023	.172	911.	.306
Looseness	Sig. (2-tailed) N	51	030 12	.027 51	563	.026 51	.940 51	.128	.525 51	.860	.871	.229 51	.404 51	.029 51
2. Mean Goal- driven	Pearson Correlation	.289*	1	.071	.274	.278*	.353	.475**	.248	.299*	.566	.435**	.678**	.540**
	Sig. (2-tailed) N	.039	13	.623	.052	.048 51	.011 51	.000	.080	.033 51	.000	.001 51	.000	.000 51
3. Mean Means driven	Pearson Correlation	.310	.071	1	100	094	159	.194	077	.454	.030	.065	091	.519*
	Sig. (2-tailed) N	.027 51	.623	51	.486 51	.511 51	.264	.173 51	.592 51	.001 51	.834 51	.652	.527 51	.000 51
4. Mean Expected	Pearson Correlation	.083	.274	100	1	.264	.508**	.162	.135	052	.252	021	.660**	960.
Returns	Sig. (2-tailed) N	.563	.052 51	.486 51	51	.061 51	.000	.256 51	.344 51	.717 51	.075 51	.884 51	.000	.502 51
5. Mean Affordable Loss	Pearson Correlation	.311	.278	094	.264	1	.037	191.	.176	.015	.263	.017	.278	.407**
	Sig. (2-tailed) N	.026 51	.048	.511 51	.061	51	.799 51	.180 51	.218 51	.918 51	.062	.905 51	.048	.003 51
6. Mean Competitive	Pearson Correlation	.011	.353	159	.508**	.037	1	.172	.149	143	.350	.136	.761**	.008
Analysis	Sig. (2-tailed) N	.940 51	110.	.264	.000	.799 51	51	.227 51	.297 51	.317 51	.012 51	.341 51	.000	.955 51
7. Mean Partnership	Pearson Correlation	.216	.475**	.194	.162	191.	.172	1	.218	.261	.368**	.432**	.389**	.713**
	Sig. (2-tailed) N	.128	.000	.173	.256	.180	.227 51	51	.124 51	.064	.008	.002 51	.005	.000
 Mean Avoiding contingencies 	Pearson Correlation	.091	.248	077	.135	.176	.149	.218	1	321 [°]	.335	.083	.547**	.002
	Sig. (2-tailed) N	.525 51	.080	.592 51	.344 51	.218 51	.297 51	.124 51	51	.022 51	.016	.561	.000	.986 51
9. Mean Leveraging	Pearson Correlation	025	.299°	.454**	052	.015	143	.261	321*	1	.150	.189	059	.710**
Contigencies	Sig. (2-tailed) N	.860	.033	.001 51	.717	.918 51	.317 51	.064 51	.022	51	.293	.184	.679 51	.000
10. Mean Prediction	Pearson Correlation	023	.566"	.030	.252	.263	.350	.368"	.335°	.150	1	.437**	.704**	.421
	Sig. (2-tailed) N	.871 51	.000	.834	.075	.062	.012	.008 51	.016	.293 51	51	.001 51	.000	.002
11. Mean Control	Pearson Correlation	.172	.435**	.065	021	.017	.136	.432**	.083	.189	.437**	1	.289	.542
	Sig. (2-tailed) N	.229 51	-001 51	-652	.884 51	-905 51	.341 51	.002	.561 51	.184	.001 51	51	.040 51	.000 51
12. Mean Causal Decision-making	Pearson Correlation	.119	.678**	091	.660**	.278*	.761**	.389**	.547**	059	.704**	.289*	1	.269
	Sig. (2-tailed) N	.404 51	.000	.527 51	.000	.048 51	.000	.005	.000	.679 51	.000	.040	51	.057 51
13. Mean Effectual	Pearson Correlation	.306	.540	.519	960.	.407**	.008	.713"	.002	.710**	.421	.542	.269	1
Decision-making	Sig. (2-tailed) N	.029 51	.000	.000	502	.003 51	.955 51	51	.986 51	.000	.002	.000	.057	51
*. Correlation is sk	quificant at the 0.05	evel (2-taile)	d). **. Corre	lation is sign	nificant at th	ie 0.01 leve	il (2-tailed).							

Correlations - German students

Appendix VI: Analyses on hypotheses

A. Hypothesis 1

Dutch students:

	Pair	ed Sample	s Statis	tics							
	N	lean	N	De	Std. viation	Std. B Me	Error San				
Pair 1 Mean Goal- driven	5.	.1609	233		.94050		06161				
Mean Means driven	4	.7511	233		.98165		06431				
Paired	Sample	s Correlati	ions orrelatio	n	Siq.						
Pair 1 Mean Goal- driven & Mean		233	.06	D	.363						
Means driven											
					Paired	Sample	s Test				
					Paired Diff	ferences			_		
			Std.		Std. Erro	r _	the Di	ference	<u> </u>	-16	Sig. (2 -
Pair 1 Mean Goal-	Ť	vean -	Levano		mean		LOWET	opper	t	ar	called)
Means driven	1	0987	1.310	\$15	.086	36	.23973	.5800	31 4.746	232	.000
	Mod	lel Sumn	nary							7	
		Ac	ljusted	R	Std. Err	or of	1				
Model K 1 .057 ^a	K Squa	are 03	square 0	001	.9	4099	-				
a. Predictors: (Cons	stant), D	egree of	Tightne	ess-Lo	oseness		-				
			ANO	VA ^a					_		
Model	Sc	um of Juares	d	If	Mean 5	quare	F	Sig.			
1 Regression		.674		1		.674	.761	.384	2		
Total		204.541		232		.000					
a. Dependent Varia	able: Me	an Goal-	driven						_		
b. Predictors: (Con	stant), D	egree of	Tightn	ess-Li	ooseness						
				offici	in the l						
				enic	ents	Stan	dardized	1		1	
		Unstan	dardize	d Coe	fficients	Co	efficients Reta		Sa		
1 (Constant)		4	.851	3(0	.361	+	DCID	13.438	.000	11	
Degree of Tightness-			.081		.092		.057	.872	.384		
Looseness	bler Me	Carl	detana							J	
a. Dependent varia	ible: Me	san Goal-	unven								
	Mod	el Summ Ad	ary iusted i	R	Std. Erro	ar of	1				
Model R	R Squa	re	Square		the Estir	nate					
a. Predictors: (Cons	tanti, D	egree of	.u Tightne	ss-Lo	oseness	332					
			ANO\	/A*							
Model	Su Sq	m of uares	di	F	Mean So	quare	F	Sig.	1		
1 Regression		3.734		1	3	.734	3.923	.049 ^b	1		
Total	2	23.562	2	232		.95Z					
a. Dependent Varia	ble: Me	an Means	driven						_		
b. Predictors: (Cons	tant), D	egree of	rightne	ss-Lo	oseness						
			Co	efficie	ents*						
						Stand	lardized				
Model		Unstand	lardize	d Coe Std.	flicients . Error	Coe	efficients Beta	t	Sig.		
1 (Constant)		4	.021		.374			10.745	.000		
Degree of Tightness– Looseness			.190		.096		.129	1.981	.049		

a. Dependent Variable: Mean Means driven

		Paired Sam	ples Statis	tics								
		Mean	N	SI Dev	id. iation	Std. E Me	rror an					
Pair 1	Mean Goal- driven	5.5882	51		.77270	.1	.0820					
	Mean Means driven	5.1275	51		79902	.1	.1189					
	Paired S	amples Correl	lations									
		N	Correlatio	n S	ig.							
Pair 1	Mean Goal- driven & Mean Means driven	51	.07	1	.623							
					Paired 3	Sample	s Test					
				P	aired Diffe	erences	an Confidence					
			Std.		Std. Error	. '	the Dif	ce inte ference	rval or			Sa. (2-
		Mean	Deviatio	n	Mean		Lower	U	pper	t	df	tailed)
Pair 1	Mean Goal- driven - Mean	46078	1.07	165	.150	06	.15938		76219	3.071	50	.003
	Means driven									2.071		
		Model Si	ım m ary									
			Adjuste	d R	Std. E	rror of						
Mode	R	R Square	2dna	re	the Es	stimate						
1	.289*	.084		.065		74717	'					
a. Pre	dictors: (Cons	tant), Degre	e of Tighi	ness-l	oosenes	55						
			AN	OVA ³								
<u> </u>		Sure of								7		
Mode		Square	s	df	Mean	Squar	e F		Sig.			
1	Regression	2.4	498	1		2.49	8 4.4	75	.039 ^b	1		
	Residual	27.3	355	49		.55	5					
	⊤otal	29.8	853	50								
a. De	pendent Varia	ble: Mean G	oal-drive	n						_		
h Pre	edictors: (Cons	tant) Decre	e of Tigh	tness-l	oosenes							

Coefficients^a

	Unstandardize	d Coefficients	Standardized Coefficients		
Model	В	Std. Error	Beta	τ	Sig.
1 (Constant)	4.411	.566		7.792	.000
Degree of Tightness- Looseness	.291	.138	.289	2.115	.039

a. Dependent Variable: Mean Goal-driven

		Model S	ummary	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.310 ^a	.096	.078	.76741
a. Pred	ictors: (Cons	stant), Degre	e of Tightness-L	ooseness

ANOVA ^a	
--------------------	--

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3.064	1	3.064	5.203	.027 ^b
	Residual	28.857	49	.589		
	Total	31.922	50			

a. Dependent Variable: Mean Means driven

	Co	efficients ^a			
	Unstandardize	d Coefficients	Standardized Coefficients		
Model	В	B Std. Error Beta		t	Sig.
1 (Constant) Degree of	3.824	.581		6.576	.000
Tightness – Looseness	.323	.141	.310	2.281	.027
a. Dependent Variable: Me	an Means driver	1			

B. Hypothesis 2

Dutch students:

		Paired Sam	ples Statistics						
		Mean	N	Std. Deviation	Std. Error Mean				
Pair 1	Mean Expected Returns	5.3584	233	.97341	.06377				
	Mean Affordable Loss	4.8090	233	1.15641	.07576				
	Paired Sam	ples Corre	lations						
		N	Correlation	Sig.					
Pair 1	Mean Expected Returns & Mean Affordable Loss	233	.291	.000					
				Paired Sa	imples Test				
				Paired Differ	ences				
			Std.	Std. Error	95% Confide the Di	nce Interval of fference			Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1	Mean Expected Returns - Mean Affordable Loss	.54936	1.27675	.08364	4 .38456	.71415	6.568	232	.000

		Mode	el Summ	ary					
Model	R	R Squa	re Ad	justed R Square	Std. Erro the Estim	r of nate			
1	.1443	.02	21	.016	.96	536			
a. Pred	ictors: (Con	stant), De	sgree of	Tightness–L	ooseness				
				ANOVA ^a					
Model		Sur Sq	m of uares	df	Mean Sq	uare	F	Sig.]
1	Regression		4.555	1	4	555	4.887	.028 ^b	1
	Residual	2	15.271	231		932			
	Total	2	19.826	232					
a. Depe	endent Varia	able: Mea	an Expec	ted Returns					
b. Pred	lictors: (Con	stant), De	egree of	Tightness-L	ooseness				
				Coeffic	ients ^a				
			Unstand	lardized Co	efficients	Stand Coe	lardized fficients		
Model			В	St	d. Error		Beta	t	Şig.
1	(Constant)		4	.552	.370			12.292	.000
	Degree of Tightness-			.210	.095		.144	2.211	.028
	LUGSETIESS		-						
a. Depe	endent Varia	able: Mea	an Expec	ted Returns					
		Mode	el Summ	ary					
Model	R	R Squa	re Ad	justed R Square	Std. Erro the Estim	r of hate			
1	.190	.03	6	.032	1.13	775			

a. Predictors: (Constant), Degree of Tightness-Looseness

			ANOVA ^a			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	11.226	1	11.226	8.672	.004 ^b
	Residual	299.025	231	1.294		
	Total	310.251	232			

a. Dependent Variable: Mean Affordable Loss

	Co	efficientsa				
	Unstandardized Coefficients Standard					
Model	В	Std. Error	Beta	t	Sig.	
1 (Constant)	3.543	.436		8.117	.000	
Degree of Tightness- Looseness	.329	.112	.190	2.945	.004	
a. Dependent Variable: Me	an Affordable Lo	055				

		Pai	ired Sam	ples Sta	tistics									
			Mean	N		Std. Deviation	5	td. Error Mean						
Pair 1	Mean Expecte Returns	d :	5.6471	5	1	.9289	5	.13008	1					
	Mean Affordat Loss	ble ,	4.9608	5	1	1.06228	8	.14875						
	Paired	Sample	es Correl	ations	tion	Sig	•							
Pair 1	Mean Expecte Returns & Mea	d	51	Curren	264	ag. 061	1							
	Affordable Lo	55	,1		204	.001								
						Pair	ed San	nples Test						
						Paired	Differe	nces	E		-1-(
			Мази	Sto Devi	t. ation	Std. E	rror	95% Con th	e Diff	erence	nar or		df	Sig. (2 - railed)
Pair 1	Mean Expecte Returns - Mea	d	68627	1	21227	. 1	6975	345	32	1	02723	4 043	50	000
	Affordable Lo	55	.00027	1.	61667		.0373	.540	52	1.	02725	4.043	50	.000
		Mode	el Sumn	nary										
Model	R	R Squa	Ac ire	ljusted Square	R	Std. Erro the Estim	r of nate							
1	.083ª	.00	07	0	13	.93	514							
a. Pre	dictors: (Const	tant), De	egree of	Tightne	55-L0	oseness								
				ANO	UA ^a									
		Su	m of		*^						1			
Model	Regression	Sq	uares	d	f 1	Mean Sq	uare 297	F		sig.				
-	Residual		42.850		49		.874							
a. Der	Total pendent Varial	ble: Mea	43.147 an Expe	ted Rei	50 turns]			
b. Pre	dictors: (Const	tant), D	egree of	Tightne	ess-Lo	oseness								
				Co	effici	ents*						_		
			Unstan	dardize	d Coe	fficients	Coe	fficients						
Model	(Constant)		B	241	Std	. Error 709		Beta	7	397	Sig.			
1	Degree of			100										
	Looseness			.100		.172		.085	-	585	.565			
a. Der	pendent Varial	ble: Mea	an Expe	ted Rei	turns									
		Mode	el Sumn	hary lineted	P	Std Erro	r of	1						
Model	R	R Squa	re	Square	<u>`</u>	the Estin	nate							
1 2 Prov	.311* dictors: (Const	.09 Ianti De	97 orree of	0. Tiabta	78	1.01	993							
a. 110		and, D	egree or	ngnun	.55-66	105611655								
				ANO	VA ^a									
Madal		Su	m of uares	d	f	Mean So	uare	F		Sia	1			
1	Regression	~	5.449		1	5	.449	5.238		.026 ^b	1			
	Residual Total		50.972		49 50	1	.040							
a. Dep	endent Varial	ble: Mea	an Afford	lable Lo	55				-		1			
b. Pre	dictors: (Const	tant), D	egree of	Tightne	ess-Lo	oseness								
				-										
				Co	effici	entsª	Starr	ardized				-		
			Unstan	dardize	d Coe	fficients	Coe	fficients		.	Eler.			
Model 1	(Constant)		в	.222	5(0	. 2773		neta	4.	170	.000	,		
	Degree of Tightness-			,430		,188		.311	2	289	.026	,		
L	Looseness			table f		.200			-					
a. Dep	oendent Varia	ole: Mea	an Afford	iable Lo	055									

C. Hypothesis 3

Dutch students:

	1	Paired Sam	ples Statisti	CS .						
		Mean	N	Std. Deviation	Std. Me	Error Ban				
Pair 1	Mean Competitive Analysis	5.0136	233	.88783	-	05816				
	Mean Partnership	5.0930	233	.74112		04855				
	Paired Sam	ples Correi	lations							
		N	Correlation	Sig.						
Pair 1	Mean Competitive Analysis & Mean Partnership	233	.281	.000						
				Pairee	i Sample	es Test				
				Paired Di	merences	5		_		
		Mean	Std. Deviation	Std. En	or _	95% Confid the I	Difference Upper		df	Sig. (2 - tailed)
Pair 1	Mean Competitive Analysis – Mean Partnership	07940	.983	59 .06	444	20636	6 .0475	6 -1.232	232	.219

		Model S	ummary	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.127*	.016	.012	.88259
a. Pred	ictors: (Con	stant), Degre	e of Tightness-L	ooseness

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.932	1	2.932	3.764	.054 ^b
	Residual	179.942	231	.779		
	Total	182.874	232			

	Co	efficients ^a			
	Unstandardize	d Coefficients	Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	4.366	.339		12.897	.000
Degree of Tightness- Looseness	.168	.087	.127	1.940	.054

a. Dependent Variable: Mean Competitive Analysis

		Mode	el Summa	ıγ						
Model	R	R Squa	re S	usted F quare	R	Std. Erro the Estim	r of nate			
1	.011 ^a	.00	0	00	04	.74	268			
a. Pred	ictors: (Cons	stant), De	gree of T	ightnes	ss-Lo	oseness				
				ANOV	/A ^a					
		Sur	n of							٦
Model		Squ	Jares	df	f	Mean Sq	uare	F	Sig.	
1	Regression		.016		1		016	.029	.865*	1
	Residual	1	27.414	2	31		552			
	Total	1	27.430	2	32					
a. Depe	endent Varia	ible: Mea	in Partner	ship						
b. Pred	lictors: (Con	stant), De	egree of T	ightne	ss-Lo	oseness				
				Co	effici	ents ^a				
						ento	Stand	lardiand		
			Unstanda	ardized	d Coe	fficients	Coe	fficients		
Model			В		Std	. Error		Beta	t	Sig.
1	(Constant)		5.0	045		.285			17.709	.000
	Degree of Tightness– Looseness			012		.073		.011	.170	.865
a. Dept	endent Varia	ible: Mea	in Partner	ship						

		Paired Sam	ples Statistics						
		Mean	N	Std. Deviation	Std. Error Mean				
Pair 1	Mean Competitive Analysis	5.2418	51	.84873	.11885				
	Mean Partnership	5.3203	51	.72099	.10096				
	Paired Sam	ples Corre	lations						
		N	Correlation	Sig.					
Pair 1	Mean Competitive Analysis & Mean Partnership	51	.172	.227					
		1		Paired Paired Diff	Samples Test				
				Fairea Dan	95% Cont	idence Interval of			
			Std.	Std. Erro	er the	Difference			Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	τ	df	tailed)
Pair 1	Mean Competitive Analysis – Mean Partnership	07843	1.01453	3 .142	206363	77 .20691	552	50	.583
							<u></u>		

	Model Summary										
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate							
1	.011 ²	.000	020	.85730							
a. Pred	a. Predictors: (Constant), Degree of Tightness-Looseness										

ANOVA²

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.004	1	.004	.006	.940 ^b
	Residual	36.013	49	.735		
	Total	36.017	50			

a. Dependent Variable: Mean Competitive Analysis

b. Predictors: (Constant), Degree of Tightness-Looseness

	Co	efficients*			
	Unstandardize	d Coefficients	Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	5.194	.650		7.995	.000
Degree of Tightness- Looseness	.012	.158	.011	.075	.940
a. Dependent Variable: Me	an Competitive J	Analysis			

Model Summary
Adjusted R Std. Error of

Model	R	R Square	Square	ĸ	the Estim	ate			
1	.216*	.047	.0)27	.71	113			
a. Pred	ictors: (Cons	tant), Degr	ee of Tightne	ess-Lo	oseness				
			ANO	VAª					
Model		Sum o Squar	es d	lf	Mean Sq	uare	F	Sig.]
1	Regression	1	.212	1	1.	212	2.396	.128 ^b	1
	Residual	2.4	780	49	.	506			1
	Total	25	.991	50					
a. Depe	endent Varia	ble: Mean A	Partnership						
b. Pred	ictors: (Cons	stant), Degn	ee of Tightn	ess-Lo	ooseness				
			-						
			Co	effici	ents^				
		Ur	istandardize	d Coe	fficients	Stand Coel	ardized fficients		
Model			В	Std	. Error	ſ	Seta	t	Sig.
1	(Constant)		4.501		.539			8.352	.000
	Degree of Tightness- Looseness		.203		.131		.216	1.548	.128
a. Depe	endent Varia	ble: Mean I	Partnership						

D. Hypothesis 4

Dutch students:

	1	Paired Samp	oles Statistic	5						
		Mean	N	Std. Deviation	Std.	Error ean				
Pair 1	Mean Avoiding contingencies	4.1180	233	1.04429		.06841				
	Mean Leveraging Contigencies	5.4535	233	.87585		.05738				
	Paired Sam	ples Correl	ations							
		N	Correlation	Sig.						
Pair 1	Mean Avoiding contingencies & Mean Leveraging Contigencies	233	285	.000						
				Pair Paired 0	ed Samp Difference	lles Test				
			Std.	Std. F	Frror	95% Confid the D	lence interval of Difference			Sia. (2 -
		Mean	Deviation	n Me	an	Lower	Upper	t	df	tailed)
Pair 1	Mean Avoiding contingencies – Mean Leveraging Contigencies	-1.33548	1.542	38 .	10104	-1.53456	6 -1.13640	-13.217	232	.000
	Contigencies									

Model Summary											
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate							
1	.131*	.017	.013	1.03751							
a. Predictors: (Constant), Degree of Tightness-Looseness											

ANOVA ^a														
Model		Sum of Squares	df	Mean Square	F	Sig.								
1	Regression	4.351	1	4.351	4.042	.046 ^b								
	Residual	248.653	231	1.076										
	Total	253.004	232											
a. Den	endent Variab	le: Nean Avoidin	 Dependent Variable: Mean Avoiding contingencies 											

b. Predictors: (Constant), Degree of Tightness-Looseness

Coefficients*										
	Unstandardize	d Coefficients	Standardized Coefficients							
Model	В	Std. Error	Beta	t	Sig.					
1 (Constant) Degree of	3.330	.398		8.366	.000					
Tightness– Looseness	.205	.102	.131	2.011	.046					

a. Dependent Variable: Mean Avoiding contingencies

	Model Summary												
Model	R	R Square	Adj Š	usted R quare	Std. Error of the Estimate								
1	1 .016 ³ .000004 .87763												
a. Pred	a. Predictors: (Constant), Degree of Tightness-Looseness												
				ANOVA*									
Model		Sum of Square	5	df	Mean Squar	e	F	Sig.					
1	Regression	1	043	1	.04	3	.056	.813 ^b					
	Residual 177.925 231 .770												
	Total	177.	969	232									
a. Dep	endent Varia	ble: Mean L	everad	ging Contig	encies								

	Coefficients ^a											
	Model	В	Std. Error	Beta	t	Sig.						
	1 (Constant)	5.375	.337		15.966	.000						
	Degree of Tightness- Looseness	.020	.086	.016	.237	.813						
ľ	a. Dependent Variable: Me	an Leveraging C	ontigencies									

		Pa	ired Sam	ples Sta	tistics									
			Mean	N		Std. Deviation		Std. Error Mean	1					
Pair 1 Me	ean Avoiding	9	4.5784	5	1	.9817	0	.13746	1					
Me Co	ean Leverag	ing	5.2614	5	1	.8801	19	.12325						
									-					
	Paired	Samp	les Corre	lations Correla	ation	Sia.	1							
Pair 1 Me	an Avoiding	2		corres		g .	1							
Me Co	ean Leverag Intigencies	ing	51		321	.022								
							-							
						Paired	ired Sa Differe	mples Test						
		F						95% Co	nfideno	a Inter	val of			
			Mean	St Dev	id. Iation	Std. M	Error ean	Lowe	r r	Up	per	t	df	Sig. (2- tailed)
Pair 1 Me Col Me Co	ean Avoiding ntingencies ean Leverag ntigencies	ng i	68301	1.	51447	,	21207	-1.10	0896	-	25706	-3.221	50	.002
		Mod	iel Sumn	nary								7		
		D Sau	Ac	ljusted	R	Std. Erro	r of							
1 1	к .091 [*]	к зqua .0	08	oquare 0	12	.98	755							
a. Predict	ors: (Const	tant), D	egree of	Tightne	ss-Lo	oseness								
				ANO	VA*									
Model		Sc Sc	um of quares	d	f	Mean Sq	uare	F	Sig	.				
1 Re	egression		.399		1		.399	.409	.52	5 ^b				
Te Re	otal		47.787 48.186		49 50		.975							
a. Depend	dent Varial	ble: Me	an Avoid	ing cont	tingend	ies								
b. Predict	tors: (Const	tant), D	Degree of	Tightne	ess-Lo	oseness								
				Co	efficie	ents"	Stand	ardized						
Model			Unstan	dardize	d Coet	ficients	Coe	fficients Reta			Sin			
1 (C	Constant)		4	.108	are.	.748			5.49	0	.000	-11		
De Ti	egree of ightness-			.116		.182		.091	.64	0	.525			
a. Depend	dent Varial	ble: Me	an Avoid	ing cont	tingend	ties						-		
		Mod	el Summ	arv								ī		
			Ac	ijusted	R	Std. Erro	rof							
Model	R 025*	R Squa	are 01	Square - 0	20	the Estim	ate 884							
a. Predict	ors: (Const	tant), D	egree of	Tightne	ss-Loo	oseness	001							
				ANO	VA ^a									
Medal		Si	im of		f	Maan So	113.55	F	Sic					
1 Re	egression		.025		1	Mean Sq	.025	.032	.86	0 ^b				
Re	esidual		38.711		49 50		.790							
a. Depend	dent Variat	ble: Me	an Leven	aging C	ontiger	ncies								
b. Predict	tors: (Const	tant), D	egree of	Tightne	ss-Lo	oseness								
				Co	efficie	ents ^a								
			Lincon	daedtec	d Cont	Release	Stand	ardized				1		
Model			B	uardize	Std.	Error	00	Beta	τ		Sig.			
1 (C	Constant)		5	.379		.673			7.98	7	.000	1		
Ti	ightness-		·	.029		.164		025	17	8	.860			
a. Depend	dent Variat	ble: Me	an Leven	aging C	ontiger	ncies	I					1		

E. Hypothesis 5

Dutch students:

		Paired Samp	les Statistic	cs						
		Mean	N	Std. Deviation	Std. Error Mean]				
Pair 1	Mean Prediction	5.0987	233	.80202	.05254	1				
	Mean Control	5.4013	233	.87279	.05718					
	Paired Sar	nples Correl	lations							
		N	Correlation	Sig.						
Pair 1	Mean Prediction & Mean Control	233	.250	.000						
				Paire	d Samples Test					
				Paired D	offerences					
		Mean	Std. Deviatio	n Std. Er	95% C	onfiden the Diff er	ce Interval of erence Upper	τ	df	Sig. (2- tailed)
Pair 1	Mean Prediction – Mean Control	30258	1.027	46 .0	67314	3519	16996	-4.495	232	.000

		Model S	ummary				
Model	R	R Square	Adjusted R Square	Std the	. Error of Estimate		
1	.035 ^a	.001	00	3	.80325		
a. Pred	ictors: (Cons	stant), Degre	e of Tightnes	s-Loose	ness	•	
			ANOV	A*			
Model		Sum of Square	f IS df	Me	an Square	F	Sig.
1	Regression		187	1	.187	.290	.591 ^b
	Residual	149.	043 2	31	.645		
	Total	149.	230 2	32			
a. Depe	endent Varia	ble: Mean P	rediction				

b. Predictors: (Constant), Degree of Tightness-Looseness

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
l	Model	В	Std. Error	Beta	t	Sig.
	1 (Constant) Degree of Tightness- Looseness	4.935 .042	.308 .079	.035	16.017 .538	.000 .591
1	a. Dependent Variable: Me	an Prediction				

		Model	Summa	ary						
Model	R	R Square	Adj S	usted quare	R	Std. Erro the Estin	r of nate			
1	.083 ²	.007		.0	03	.87	167			
a. Pred	ictors: (Cons	tant), Deg	ree of T	ightne	ess-Lo	oseness				
				ANO	VAª					
Model		Sum Squa	of res	d	lf	Mean Sc	uare	F	Sig.]
1	Regression		1.214		1	1	.214	1.597	.208 ^b	1
	Residual	17	5.516		231		.760			1
	Total	17	6.730		232					
a. Depe	endent Varia	ble: Mean	Contro							_
b. Pred	ictors: (Cons	tant), Deg	ree of 1	iightne	ess-Lo	ooseness				
				Co	effici	ents"				
			Instanda	ardize	d Coe	fficients	Stand Coe	ardized fficients		
Model			В		Std	. Error	1	Seta	t	Sig.
1	(Constant)		4.	985		.334			14.908	.000
	Degree of Tightness-			108		.086		.083	1.264	.208
a. Depe	endent Varia	ble: Mean	Contro							

		Paired Samp	les Statistics							
		Mean	N E	Std. eviation	Std. Error Mean					
Pair 1	Mean Prediction	5.1176	51	.82212	.11512					
	Mean Control	5.5098	51	.84552	.11840					
	Paired Sar	nples Correl	ations							
		N	Correlation	Sig.						
Pair 1	Mean Prediction & Mean Control	51	.437	.001						
				Daimed	Complex Test					
				Paired	samples lest					
				Paired Diff	erences					I
		Mean	Std. Deviation	Std. Erro Mean	95% Co Lowe	onfiden the Diffi	ce Interval of erence Upper	t	df	Sig. (2 - tailed)
Pair 1	Mean Prediction - Mean Control	39216	.88495	.123	9264	4105	14326	-3.165	50	.003

		Model S	ummary	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.023 ^a	.001	020	.83024

a. Predictors: (Constant), Degree of Tightness-Looseness

			ANOVA ^a			
Mod	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.018	1	.018	.027	.871 ^b
	Residual	33.776	49	.689		
	Total	33.794	50			

a. Dependent Variable: Mean Prediction

b. Predictors: (Constant), Degree of Tightness-Looseness

		Co	efficients ^a			
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant) Degree of	5.219	.629		8.295	.000
	Tightness- Looseness	025	.153	023	163	.871

a. Dependent Variable: Mean Prediction

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
	.172ª	.029	.010	.84144
redi	ctors: (Cons	stant), Degre	e of Tightness-L	ooseness

ANOVA ^a							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	1.052	1	1.052	1.486	.229 ^b	
	Residual	34.693	49	.708			
	Total	35.745	50				

a. Dependent Variable: Mean Control

	Co	efficients ^a			
	Unstandardize	d Coefficients	Standardized Coefficients		
Model	В	Std. Error	Beta	τ	Sig.
1 (Constant)	4.746	.638		7.444	.000
Degree of Tightness- Looseness	.189	.155	.172	1.219	.229
a. Dependent Variable: Me	an Control				

F. Hypothesis 6

Dutch students:

		Paired Sam	ples Statistic	cs						
		Mean	N	Std. Deviation	Std. Error Mean]				
Pair 1	Mean Effectual Decision-makin	g 5.1300	233	.51794	.03393	1				
	Mean Causal Decision-makin	4.9558	233	.61125	.04004					
	Faired S	amples Corre	lations			-				
		N	Correlation	Sig.						
Pair 1	Mean Effectual Decision-makin & Mean Causal Decision-makin	9 233 9	.348	.000						
				Paired Paired Di	Samples Test					
I .				rairea bii	95% Co	fidence int	erval of	-		
I .			Std.	Std. Erro	x 6	e Differenc	50 G			Sig. (2 -
		Mean	Deviation	Mean	Lower	1	Upper	t	df	táiled)
Pair 1	Mean Effectual Decision-makin - Mean Causal Decision-makin	9 .17420	.6492	.04	254 .09	940	.25801	4.096	232	.000
		Model Sur	nmary							
Model	R	R Square	Adjusted R Square	Std. Err the Esti	or of mate					
1	.157*	.025	.02	0.6	0496					
a. Pred	dictors: (Const	ant), Degree	of Tightnes	s-Looseness						
			ANOV	A *						
		Sum of	46	Maan	autor E		Cier,			

Mode	I	Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	2.139	1	2.139	5.844	.016 ^b					
	Residual	84.542	231	.366							
	Total	86.681	232								
a. Dependent Variable: Mean Causal Decision-making											
b. Pro	edictors: (Const	ant). Degree of T	iohtness-Lo	oseness							

0. De gree of Tightness–Loosene

Coefficients^a

		d Coefficients	Coefficients			
Model	В	Std. Error	Beta	τ	Sig.	
1 (Constant)	4.403	.232		18.974	.000	
Degree of Tightness- Looseness	.144	.059	.157	2.417	.016	

		Mode	l Summa	ry						
Model	R	R Squar	Adjusted R Std. Error of Square the Estimate							
1	.146 ^a	.02	.017			.51	352			
a. Pred	ictors: (Cons	tant), De	gree of T	ightne	ss-Lo	oseness				
				ANO\	/A ^a					
Model		Sun Squ	n of ares	df	f	Mean So	uare	F	Sig.]
1	Regression		1.321		1	1.321		5.011	.026 ^b	1
	Residual		50.914	2	231	.264				1
	Total	+	52.236	2	232					
a. Dep	endent Varia	ble: Mea	n Effectu	al Deci	ision-	making				-
b. Pred	lictors: (Cons	tant), De	gree of T	ightne	ss-Lo	oseness				
				Co	effici	ents ^a				
			Unstanda	ardize	d Coe	fficients	Stand Coe	ardized fficients		
Model		F	В		Std	. Error		Beta	t	Sig.
1	(Constant)		4.0	4.695 .197					23.837	.000

Model	В	Std. Error	Beta	t	Sig.					
1 (Constant)	4.695	.197		23.837	.000					
Degree of Tightness- Looseness	.113	.050	.146	2.238	.026					
a. Dependent Variable: Mean Effectual Decision-making										

Paired Samples Statistics														
			arrea	Jampin			Std.		Std. Error	1 I				
Pair 1	Mean Effect	lai	Mea	n	N	-	Deviation	•	Mean	-				
	Decision-ma Mean Causa	king	5.Z4	51	5	1	.502	53	.07034					
	Decision-ma	king	5.23	53	5	1	.5858	83	.08203					
	Paire	ed Samp	les C	orrelat	ions	tion	5 a	-						
Pair 1	Mean Effect	Jal	N	-	Lorrela	luon	sig.	+						
	& Mean Cau	sal		51	.269 .057									
	Decision-ma	iking												
Paired Samples Test														
	Paired Differences													
					Ste	1.	Std.	Error	95% Co	nfidence In he Differen	terval of ce			Sig. (2-
Data 1	Mana Effects		Mea	n	Deviation M		M	ean	Lowe	r	Upper	t	df	tailed)
Pair 1	Decision-ma	aking	.009	80		66138	a .	.09261	17	621	.19582	.106	50	.916
	Decision-ma	aking												
		MO	aerst	Adju	isted I	R	Std. Erro	rof	I					
Model	R	R Squ	are	Šq	quare		the Estin	nate						
a. Pre	.119" dictors: (Con	stant). I	014 Deare	e of Ti	0 ahtne	00 55-LO	.58 oseness	\$755	I					
			r e gi e		gnare		0000000							
					ANO	/A*								
		S	um of						_		7			
Model	Model Squares df				1	Mean Sc	juare 244	F 708	Sig.	,				
1	I Regression .244 I Residual 16.916 49						.345	.706	.404					
	Total 17.160 50													
a. Dep b. Pra	a. Dependent Variable: Mean Causal Decision-making h. Bredictory: (Constant) - Degree of Tichtness Lossenses													
5.110	anetora: (con	2 Galley -	o e gr e		ignare									
					Co	effici	ents*							
			Г					Stand	dardized					
Model			Un	standa B	rdize	d Coe Std	fficients Frror	Coe	efficients Beta	,	Sin			
1	(Constant)		\vdash	4.8	67	.445		<u> </u>		10.933	.000	-11		
	Degree of Tightness-		.0	.091		.108		.119	.841	.404				
Looseness														
a. Dep	oendent Vari	able: M	ean C	ausai I	Decisi	on-m	aking					_		
		Mod	lel Su	ımmar	γ									
Model	R	R Squ	are	Adju Sq	sted F Juare	R	Std. Erro the Estim	r of nate						
1	.306 ^a	.0	94		.07	75	.48	306						
a. Pre	dictors: (Con	stant), D	egre	e of Tig	ghtne	ss-Lo	oseness							
<u> </u>		5	um of		ANOV	A					7			
Model		Š	quare	s	df		Mean Sq	uare	F	Sig.	_			
1	Regression Residual		1.1	183		1 49	1	.183	5.068	.029				
	Total 12.617 50													
a. Dep	endent Varia	able: Me	ean Ef	ffectual	Deci	sion-r	making							
b. Prê	aictors: (Cón	stant), E	Jegre	e of Ti	gntne	ss-L0	oseness							
							and c B							
Coefficients"														
			Uns	tandar	rdizec	i Coet	fficients	Coe	fficients					
Model 1	(Constant)			6	35	Std.	.366		seta	t 12.117	Sig.	41		
l.	Degree of											11		
Looseness .200 .089 .306 2.251 .029														

a. Dependent Variable: Mean Effectual Decision-making

Appendix VII: Items on questionnaire

A: Questions on causal decision-making (12 items)

Entrepreneurial scenario:

For a while, I have been thinking of starting my own coffee-corner. When I looked at what existing franchising coffee-corners offered, I felt the price-quality ratio was unbalanced. I think, it should be possible to start my own successful coffee-corner with a better price-quality ratio. In several reports in newspapers and magazines I read that there is an increasing demand for drinking coffee in my home country.

The few resources or means that I have at my disposal are: limited financial capital, a few close business relations, and knowledge of the coffee industry, since I have been working at a coffee corner for five years.

Below you can find statements designed to identify your own approach in starting a coffee-corner. Please indicate to what extend you agree or disagree with each statement.

Goal:

Q59: Before starting my new venture, I will first acquire all resources needed to achieve my target.

Q66: I take a clearly pre-defined target as a starting point of the new venture.

Expected returns:

Q55: Decisions will be primarily based on analysis of potential future returns. Q60: Beforehand, I will calculate how many resources I need to achieve the expected returns.

Competitive analysis:

Q57: I will try to identify markets by a thorough market analysis.

Q74: I will focus on early identification of risks through market analysis.

Q77: I will try to identify risks by a thorough competitors analysis.

Avoiding contingencies:

Q56: I will always pay attention that my initially defined target will be met.

Q73: My first priority is reaching my pre-set target without any delay.

Q76: My planning will be set before I start the implementation process and cannot be altered afterwards.

Prediction:

Q71: I will study expert predictions on the direction the market is "heading", to determine what course of action my new venture will follow.

Q79: I will try to control the future based on predictions of my previously obtained knowledge.

For each statement, the survey respondent chooses from the following symmetric seven-point Likert scale: 1. Strongly disagree; 2. Disagree; 3. Somewhat disagree; 4. Neither agree nor disagree; 5. Somewhat agree; 6. Agree; 7. Strongly agree.

B: Questions on effectual decision-making (13 items)

Means:

Q62: The uncertainty of a market will not block me since I rely on my own experience to imagine opportunities.

Q63: The decisions I make when starting my new venture will be based on the resources I have available.

Q72: I start my new venture without defining a clear target.

Affordable loss:

Q68: Decisions will be primarily based on minimization of risks and costs. Q70: I only spend resources I have available and I am willing to lose.

Partnership:

Q65: Decisions will be made together with stakeholders based on our competences. Q75: I will ask my private network to help me out with starting my new venture. Q78: I will ask customers and suppliers to pre-commit to my new venture in order to reduce risks.

Leveraging contingencies:

Q58: I allow changes in my planning if needed, even during the implementation process of my new venture.

Q61: I expect to change my original target when confronted with new findings. Q64: I allow delays during the development of my new venture when new opportunities emerge.

Control:

Q67: I will try to control the future by creating it.

Q69: I will talk to people I know to enlist their support in making opportunities a reality.

For each statement, the survey respondent chooses from the following symmetric seven-point Likert scale: 1. Strongly disagree; 2. Disagree; 3. Somewhat disagree; 4. Neither agree nor disagree; 5. Somewhat agree; 6. Agree; 7. Strongly agree.

C. Questions on the degree of tightness-looseness (6 items)

The next six questions are about social norms in your home country. Choose the answer that comes the closest to your opinion.

Q84: There are many social norms that people are supposed to abide by in this country.

Q85: In this country, there are very clear expectations for how people should act in most situations.

Q86: People agree upon what behaviours are appropriate versus inappropriate in most situations this country.

Q87: People in this country have a great deal of freedom in deciding how they want to behave in most situations. (Reverse coded)

Q88: In this country, if someone acts in an inappropriate way, others will strongly disapprove.

Q89: People in this country almost always comply with social norms.

For each statement, the survey respondent chooses from the following symmetric six-point Likert scale: 1. Strongly disagree; 2. Moderately disagree; 3. Slightly disagree; 4. Slightly agree; 5. Moderately disagree; 6. Strongly Agree.

D. Questions on masculinity-femininity (4 items)

This part contains questions regarding cultural values. For the next four questions please think of an ideal job, disregarding your present job, if you have one. In this section the scenario no longer applies.

Q80: How important would it be to you to get recognition for good performance? Q81: How important would it be to you to have pleasant people to work with? Q82: How important would it be to you to live in a desirable area? Q83: How important would it be to you to have chances for promotion?

For each statement, the survey respondent chooses from the following symmetric five-point scale: 1. Utmost importance; 2. Very important; 3. Moderate importance; 4. Little importance; 5. Very little / no importance.