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Preface 
This report has been written to finalize my three months internship at ITA as a part of my Master 

Mechanical Engineering at the University of Twente. 

This report contributes to the field of Health and Usage Monitoring Systems (HUMS) for helicopters. 

The work focuses on training a model for automatically detecting a failure of the oil cooler fan shaft 

of an EC225 helicopter, using vibrational signals from the Brazilian helicopter fleet.  

I would like to thank my supervisor at ITA, Professor Luiz Carlos Sandoval Góes, for his professional 

input and our good cooperation during my internship. Furthermore, I would like to thank Helibras for 

providing mechanical and vibrational data from their helicopter fleet. This real data set made the 

work a lot more interesting. 
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Summary 
This report is aimed at improving the HUMS capabilities of an EC225 helicopter for an unknown 

failure related to the oil cooler fan shaft of the helicopter’s main gearbox. HUMS is the acronym for 

Health and Usage Monitoring System, which is a system that monitors the critical components of a 

helicopter during the flight using different types of sensors, such as accelerometers. The main goal of 

HUMS is to detect failures during the flight and warn the helicopter crew as quickly as possible to 

prevent a crash, whereas HUMS is also useful in optimizing a helicopter’s maintenance program.  

In this report HUMS acceleration data is used that describes an unknown failure related to the oil 

cooler fan shaft, located in the main gearbox of the helicopter. The goal of this report is to find out 

how to extract the vibrational information of the oil cooler fan shaft from the available 

accelerometer signals and how to determine the type of failure. Subsequently a suitable model has 

to be found that can be effectively trained to detect this failure in the future. 

The work starts with selecting the right accelerometer for detecting the vibrations of the oil cooler 

fan shaft. In order to extract the vibrational information of the oil cooler fan shaft from the 

accelerometer signal the principle of Time Synchronous Averaging is used to remove vibrations from 

other components.  

Condition indicators are identified, whose values are expected to be sensitive for a change in the 

health state of the oil cooler fan shaft. The first type of condition indicator used is OMx, showing the 

energy at a frequency of x times the shaft rotational frequency. The second type of condition 

indicator used is MODx, showing the energy of the first sidebands at x times the shaft rotational 

frequency. Furthermore, the RMS and Kurtosis are used, showing respectively the average vibration 

energy of the signal and how peaked the data is. By looking at the behavior of the different 

indicators, the type of failure is estimated to be an unbalanced fan. 

The available vibration data of the oil cooler fan shaft is divided into a part for training and a part for 

testing the model. Different types of clustering algorithms are used for generating healthy and 

unhealthy clusters from the training data and classifying the health state of the testing points. Only 

the most relevant condition indicators are used for this modeling procedure: OM1, Kurtosis and RMS. 

The performances of K-means, Hierarchical Clustering, Support Vector Machine, Multivariate 

Gaussian and Gaussian Mixture Model are compared using confusion matrices and calculating time. 

The first three methods use both healthy and unhealthy training data, making them less suitable for 

detecting unknown failures; failures that were not present in the training data but can occur in real 

life. 

The Multivariate Gaussian is evaluated for different types of training data: only healthy, only 

unhealthy and a combination of healthy and unhealthy training data. This method determines the 

health state of the testing data by looking at the p-value of the model at the location of the data 

point. The Gaussian Mixture Model uses only healthy training data and also determines the health 

state of the testing data by comparing the p-value with a threshold value.  

The p-value of a single n-dimensional Gaussian can be calculated using the n-dimensional chi-squared 

distribution. For a Gaussian Mixture Model the p-value cannot be calculated with a chi-squared 

distribution. Instead, the Gaussian Mixture Model probability density function has to be integrated 

by a Monte-Carlo or Riemann integration procedure.  
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After creating the p-value boundary, the behavior of the Mahalanobis distance over the p-value 

boundary is examined. The Mahalanobis distance appears to be constant for the dominant mixture 

component at that point of the boundary. The Mahalanobis distances of the constant parts belonging 

to different mixture components are not equal, which is in this case caused by covariance 

differences, but can also be caused by different weight factors: components with smaller covariance 

and higher weight factor have a higher Mahalanobis distance. The Mahalanobis distance values of 

the Gaussian Mixture Model appear to be lower than those of a single multivariate Gaussian with the 

same p-value, which is caused by overlapping mixture components. 

Based on the classification performance and the computational time required, Hierarchical Clustering 

appears to be superior for classifying the investigated failure of the oil cooler fan shaft. In order to 

improve the model’s capability to detect failure modes that were not present in the training data, it 

is important to use a model that uses only healthy training data and high dimensional data points, 

based on many condition indicators. It is then smarter to use an eight-dimensional Gaussian that is 

capable of detecting a wide variety of failures by looking at disturbances of eight condition indicator 

values. The Gaussian Mixture Model appears to be too computationally intensive for this relatively 

easy clustering task, but probably has superior performance in classification problems with a less 

clear separation between healthy and unhealthy data. 
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Tables of symbols, abbreviations and reference types 
Symbol Definition 

𝛽 Modulation index (relative amplitude of sidebands compared to carrier frequency) 

𝜇 Mean of distribution 

𝜇𝑐 Mean of component c of GMM 

𝜎 Covariance of distribution 

𝜎𝑐 Covariance of component c of GMM 

Ω Rotational frequency fan shaft 

𝜔𝑐 Weight factor of component c of GMM 

𝑑 Dimensionality of data 

𝑓𝑐 Carrier frequency 

𝑓𝑚 Modulation frequency 

𝑘 Number of components of GMM 

𝐿 Maximized likelihood function 

𝑚 Sum of 𝑚𝑐 values for all components of GMM 

𝑚𝑐 Sum of 𝑟𝑖𝑐 values for component C of GMM 

𝑚(𝑡) Modulation signal 

𝑁 Number of time synchronous averages 

𝑁𝑅 Number of fan blades 

𝑟𝑖𝑐 Responsibility value of cluster c for data point i 

�̅� Mean value of synchronously averaged signal 

𝑠𝑖 Sample on a synchronously averaged signal 

 

Abbreviation Definition 

AIC Akaike Information Criterion 

AM Amplitude Modulation 

EM Expectation Maximization 

FFT Fast Fourier Transform 

GMM Gaussian Mixture Model 

HUMS Health & Usage Monitoring System 

RMS Root Mean Square 

SVM Support Vector Machine 

 

Brackets Definition 

(  ) Formula reference 

[  ] Literature reference 

{  } Matlab file reference 
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1 Introduction 
This report is focused on studies of Health and Usage Monitoring Systems (HUMS) for helicopters. 

HUMS is used to monitor the health of critical components of the helicopter during the flight. 

Examples of components generally monitored by HUMS are the fuselage and the drivetrain, including 

rotors, gears, bearings and drive shafts. The main goal of HUMS is to detect failures during the flight 

and warn the helicopter crew as quickly as possible to prevent the helicopter from crashing. 

Furthermore, HUMS can be used to predict future failures and optimize the maintenance program of 

the helicopter according to this information.  

A big challenge for HUMS is to detect failures in an early stage, while minimizing the occurrence of 

false alarms. In order to be able to do this, one needs detailed information about the behavior of 

every critical component. Generally, the vibrations of these components are monitored by 

accelerometers, located at different positions in the helicopter. Different condition indicators are 

calculated using the accelerometer signals, to extract as much information about the component as 

possible.  

In this report vibration signals from the Brazilian helicopter fleet are used for training and testing a 

model that is able to classify the health state of the oil cooler fan shaft of an EC225 helicopter.  

The report will start with a problem definition in which the main goals of this internship assignment 

are introduced.  

Then an overview will be given of the different research methods that are used to achieve these 

goals.  

The chapter “Research results” will show the application of the different research methods to the 

vibrational data of the helicopter.  

The conclusions will be focused on answering the questions that were introduced in the problem 

definition.  

Finally some recommendations will be given, showing interesting directions for further research. 

Appendix A contains an overview of the Matlab scripts used for this report. Appendix B gives an 

overview of the simulation results of the clustering algorithms with different settings. 
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2 Problem definition 
In this report acceleration data from the Health and Usage Monitoring System of an EC225 helicopter 

from the Brazilian helicopter fleet is analyzed. It is known that the vibrational data contains the onset 

of a failure related to the oil cooler fan shaft of the helicopter. Furthermore, the health state (healthy 

or unhealthy) for each of the data points is known.  

The goals of this report are to find out what the type of failure is and which methods should be used 

for training a model to automatically detect this failure in the future.  

In order to be able to achieve these goals it should be determined  

 how to extract the vibrational characteristics of the oil cooler fan shaft from the available 

accelerometer signals 

 what are the most probable causes of failure based on these vibrational characteristics 

 how to implement existing clustering algorithms to differentiate between a healthy and an 

unhealthy data set 

 how to measure the performances of the different algorithms 
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3 Research methods used 

3.1 Time Synchronous Averaging 
The Health and Usage Monitoring System of the helicopter monitors the vibrations of critical 

components using accelerometers. In order to be able to extract the vibrations of a component of 

interest, one should know which accelerometer has the best capability of detecting the vibrations 

from this component. The EC225 helicopter has a health monitoring overview, describing which 

components are monitored by each accelerometer.  

The signal from this accelerometer does however not only contain the vibrations from the 

component of interest, but will also contain vibrations originating from other components of the 

helicopter and vibrations caused by flight conditions.  

Time Synchronous Averaging can be used to remove this noise from the accelerometer signal by 

resampling the vibration data with a frequency synchronous to the rotational frequency of the oil 

cooler fan shaft. Subsequently one should take the average from a number of rotations. 

The process of taking the average from multiple rotations will remove the noise from the vibration 

signal so that only the vibration of the oil cooler fan shaft will remain. [1] This can be explained by 

the fact that the vibration signature of the shaft of interest will be similar for every rotation of the 

shaft, but the signatures from the flight conditions or other gears, shafts or bearings in the 

transmission system will be different for every rotation, because they won’t have a fixed orientation 

for every rotation of the oil cooler fan shaft. So when enough rotations are analyzed and averaged, 

the vibrations from the other components will be removed from the signal.  

3.2 Condition indicators 
Besides the amplitude, plotting the vibrations of a component in time does not give much 

information about its vibrational characteristics. Generally it is not possible to determine the health 

state of a component by only looking at the amplitude of the vibrational signal. In order to get more 

information out of the signal, condition indicators will be introduced that are expected to show a 

clear increase or decrease in value when going from the healthy to the unhealthy state. Some of 

these indicators are based on the time domain signal (RMS and Kurtosis) and some on the frequency 

domain signal (OMx and MODx). An FFT procedure is performed to transform the time domain data 

into the frequency domain. The following condition indicators are calculated in order to describe the 

state of the system. 

3.2.1 OMx 

This condition indicator shows the energy at a frequency of x times the shaft rotational frequency. 

The OM1 indicator can be used to detect a bent fan shaft, an unbalanced fan, or a broken fan blade. 

These failures will result in an increase of the energy belonging to the shaft rotational frequency. If 

the shaft is bent close to the coupling, also a large amplitude increase at 2 times the shaft rotational 

frequency is expected [2],[3]. So the OM2 indicator is also interesting to look at. 

The OM15 and OM30 indicators show the energy at 15 and respectively 30 times the shaft rotational 

frequency. These frequencies are chosen as they represent the blade passing frequency of the fan 

and its first higher harmonic. These frequencies can be calculated with formula (1),[4]. 
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𝑓𝑘 = 𝑘𝑁𝑅Ω  (1) 

where 𝑘=1, 2, 3,… and Ω and 𝑁𝑅 are respectively the shaft rotational frequency and the number of 

fan blades.  

The oil cooler fan has 15 blades, which means that the blade passing frequency equals 15 times the 

shaft rotational frequency. The amplitudes of the blade passing frequency and its higher harmonics 

depend on the flow conditions of the air around the rotating fan. A vibration occurs when the fan 

blade passes a closely placed obstruction, such as a stator blade. It is more difficult to move the air in 

the vicinity of a stator blade, resulting in a pressure fluctuation on the fan blade when passing a 

stator blade. This results in a fluctuating force on the fan blade as well as on the stator blade, thereby 

generating a vibration at a specific frequency: the blade passing frequency. As the vibration signal 

will not be exactly sinusoidal, also higher harmonics will occur at integer multiples of this blade 

passing frequency. The OM15 and OM30 indicators are for instance interesting for the detection of a 

broken fan blade, as this fault will decrease the vibrational energy at the blade passing frequency and 

its higher harmonics.  

3.2.2 MODx 

This condition indicator shows the sideband energy of the first sidebands at x times the shaft 

rotational frequency. MOD15 and MOD30 are chosen as condition indicators for the fan. As 

discussed before, a healthy oil cooler fan will generate a blade passing frequency equal to 15 times 

the shaft rotational frequency. Also higher harmonics will be visible in the frequency spectrum at 

integer multiples of the blade passing frequency. A damaged fan blade will result in amplitude 

modulation of the blade passing frequency, with a modulating frequency equal to the shaft rotational 

frequency, thereby producing two sidebands: both with a distance of one rotational frequency from 

the blade passing frequency. The sideband energies of both the blade passing frequency and its first 

harmonic are good indicators for fan blade damage. In case of damage, the amplitudes of the 

sidebands will increase. 

Theory of Amplitude Modulation 

In Amplitude Modulation (AM) there is a carrier signal, which is a single tone with frequency 𝑓𝑐. The 

amplitude of this carrier signal is modulated by a lower frequency modulation signal 𝑚(𝑡). 

𝐴𝑚 = 𝐴(𝑡) 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)    (2) 

𝐴(𝑡) = 𝐴0[1 + 𝑚(𝑡)]    (3) 

When it is assumed that the modulation signal is a single frequency tone with frequency 𝑓𝑚 

𝐴𝑚 = 𝐴0[1 + 𝛽 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡)] 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) (4) 

in which β is the modulation index, which represents the relative amplitude of the sidebands 

compared to the carrier frequency. This equation can be expanded to 

𝐴𝑚 = 𝐴0 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) +
𝐴0𝛽

2
𝑐𝑜𝑠[2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡] +

𝐴0𝛽

2
𝑐𝑜𝑠[2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡] (5) 

It can be seen that the AM process produces three frequency components: the carrier frequency and 

a lower and higher sideband.  
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3.2.3 Root Mean Square 

The Root Mean Square (RMS) value is a measure of the total vibration level of a signal. Signals with 

high vibration levels over a large period of time intend to generate a large RMS value. A narrow peak 

will not affect the parameter very much, making it less sensitive to small faults. The vibrational 

energy is expected to increase in case of failure, thereby increasing the RMS value. The RMS value 

can be calculated using formula (6), where 𝑠𝑖 is a sample on a synchronously averaged signal. [5] 

𝑅𝑀𝑆 = √
1

𝑁
∑ (𝑠𝑖)2𝑁

𝑖=1   (6) 

3.2.4 Kurtosis 

This indicator is also known as the fourth moment of the distribution and measures the relative 

peakedness or flatness of a distribution as compared to a normal distribution. A signal containing 

many sharp peaks will result in a high Kurtosis value. The expected behavior of the Kurtosis indicator 

will now be described for two different failure types. 

In case of a bearing failure, minor damage increases the impulsiveness of the signal and thereby 

increases the Kurtosis. When the damage spreads, the signal becomes less coherent and the Kurtosis 

value drops again. [6] 

When looking at the case of a bent shaft as a result of a crack, a more or less similar behavior is 

expected. When the crack is still small the shaft can bend in just one direction and a more or less 

sinusoidal vibration is expected with a frequency equal to the shaft rotational frequency, thereby 

increasing the Kurtosis value. When the crack length increases some more movement is possible in 

other directions, resulting in vibrations in a small band of frequencies around the shaft rotational 

frequency. As this vibration is again less coherent, the Kurtosis value is expected to drop. 

So, in both of these cases an increasing Kurtosis value is expected as an early indicator of damage, 

followed by a decreasing value showing the real transition from the healthy to the unhealthy state. 

The Kurtosis of a signal can be calculated with formula (7), where 𝑠𝑖 is a sample on a synchronously 

averaged signal and �̅� is the mean value of the same signal. A normally distributed signal will result in 

a Kurtosis value around 3. [5] 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑁 ∑ (𝑠𝑖−𝑠̅)4𝑁

𝑖=1

(∑   (𝑠𝑖−𝑠̅)2)2𝑁
𝑖=1

 (7) 

3.3 Clustering algorithms 

3.3.1 K-means clustering 

K-means clustering is a clustering algorithm with the objective of minimizing the average squared 

Euclidean distance between the data points in a cluster and the cluster center 𝜇 [7]. 

When using K-means clustering it is important to know beforehand over how many clusters the data 

points should be divided. Consequently, K-means clustering is only suitable on its own when the 

different clusters are clearly visible in the data. As will be shown later, it is possible to use K-means 

clustering combined with another clustering algorithm. 
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Creating the clusters 

The first step of the K-means algorithm consists of randomly selecting a number of data points from 

the data as a first estimate for the cluster means. The number of selected data points should 

therefore be equal to the number of clusters wanted. 

The Euclidean distances between all data points and the different cluster centers are compared. Each 

data point is assigned to the cluster with the smallest Euclidean distance. 

When all data points are assigned to a cluster, the cluster means are recalculated by averaging over 

all data points in the cluster.  

When these new cluster means are determined, the K-means algorithm continues with its second 

iteration. Every data point is again allocated to one of the clusters, based on the Euclidean distances 

to the new cluster means. 

The K-means algorithm stops when the positions of the means do not change anymore compared to 

the previous iteration. In figure 1 an example of a K-means clustering procedure with two clusters is 

shown. It can be seen that there is no visible difference between the fifth and the sixth iteration, 

which means that the K-means algorithm has converged. The result of the K-means algorithm 

depends on which data points were selected to represent the initial cluster means. For this reason 

the K-means clustering algorithm has to be executed multiple times to find the correct clusters in the 

data. Depending on the application of the K-means algorithm a method has to be found to select the 

best model from the set of models. 

 

Figure 1: K-means clustering algorithm [8] 
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Allocating new data to the clusters 

New data points are allocated to one of the clusters by comparing the Euclidean distances of each 

data point to the different cluster centers. Each data point is allocated to the cluster with the 

smallest Euclidean distance. 

3.3.2 Hierarchical clustering 

The Hierarchical clustering algorithm combines two data points into the same cluster when they are 

close together. Before the hierarchical clustering algorithm starts all data points are considered to be 

separate clusters, so the number of clusters is equal to the number of data points. 

Creating the clusters 

In the first step of the algorithm the two clusters that are closest together are combined into one 

cluster. This step can be iterated until all data points are combined into one large cluster. 

The distance between two clusters is called the cophenetic distance. A dendogram is a schematic 

overview which displays which clusters are combined together. The height of the horizontal lines in 

the dendogram represents the cophenetic distance between the two clusters that are combined. 

     

Figure 2: Hierarchical clustering algorithm [9]    Figure 3: Dendogram [9] 

The hierarchical clustering algorithm can be stopped when the number of clusters equals the 

predefined number of clusters. Another possibility is to look at the change of the cophenetic distance 

over the iterations. It is possible that the cophenetic distance is gradually increasing for the first ten 

iterations, but then suddenly increases way more at the eleventh iteration. One could then decide to 

stop the Hierarchical clustering algorithm after the tenth iteration. A sudden, unexpectedly large 

increase in cophenetic distance can indicate that the clusters are too different to be combined into 

one cluster. 
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Figure 4: Unexpectedly large increments in cophenetic distance [9] 

Allocating new data to the clusters 

New data points are allocated to one of the clusters by determining the distances of a new data point 

to all of the training points. The new data point is allocated to the same cluster as to where the 

nearest training point belongs.  

3.3.3 Support Vector Machines 

Support Vector Machines (SVMs) can be used for separation of data points into two classes: for 

instance healthy and unhealthy data. [10] 

Linearly separable data 

The basic idea of SVMs is to find an optimal n-dimensional hyperplane that separates the classes. An 

optimal hyperplane is found by maximizing the margin between the two classes. The margin is 

defined as the maximal width of the slab parallel to the hyperplane that has no interior points. The 

points that determine the margin of the hyperplane are called support vectors. These points 

determine the position of the hyperplane.  

 

Figure 5: Hyperplane with support vectors [10] 

The data for training is a set of 𝑑-dimensional points (vectors) 𝑥𝑖 along with their categories          

𝑦𝑖(= ±1). The equation of a hyperplane is 

< 𝑤, 𝑥 > +𝑏 = 0  (8) 

where 𝑤 ∈ 𝑅𝑑 and < 𝑤, 𝑥 > is the dot product of 𝑤 and 𝑥.  
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The best separating hyperplane can be found by finding 𝑤 and 𝑏 that minimize ‖𝑤‖ such that for all 

data points (𝑥𝑖 , 𝑦𝑖) 

𝑦𝑖(< 𝑤, 𝑥𝑖 > +𝑏) ≥ 1  (9) 

Nonlinear transformation with kernels 

Some binary classification problems do not have a simple hyperplane as a useful separating criterion. 

For those problems, there is a variant of the mathematical approach that retains nearly all the 

simplicity of an SVM separating hyperplane. This approach uses results from the theory of 

reproducing kernels. [11] There is a class of functions 𝐾(𝑥, 𝑦) with the following property: there is a 

linear space 𝑆 and a function 𝜙 mapping 𝑥 to 𝑆 such that  

𝐾(𝑥, 𝑦) =< 𝜙(𝑥), 𝜙(𝑦) >   (10) 

The dot product takes place in the space 𝑆. One of these functions is the radial basis functions, 

described by formula (11) 

𝐾(𝑥, 𝑦) = exp (
−<(𝑥−𝑦),(𝑥−𝑦)>

2𝜎2 ) (11) 

where σ is some positive number. 

All the calculations for the hyperplane classification use nothing more than dot products. Therefore, 

nonlinear kernels can use identical calculations and solution algorithms and obtain classifiers that are 

nonlinear. The resulting classifiers are hypersurfaces in some space S, but the space S does not have 

to be identified or examined. 

3.3.4 Gaussian Mixture Models 

Gaussian Mixture Models (GMMs) are an extension of the K-means model. Clusters are modeled with 

Gaussian distributions. A Gaussian distribution does not only have a mean, but also a covariance 

which can describe an ellipsoidal shape. As a GMM consists of multiple Gaussians, that are all able to 

describe an ellipsoidal shape, it is possible to describe clusters with complex shapes. The K-means 

algorithm is only capable of creating circular clusters. [12] 

A GMM is generated by maximizing the likelihood of the observed data, using an Expectation 

Maximization (EM) algorithm. This algorithm assigns data to each cluster with some soft probability, 

which enables GMMs to describe clusters that overlap each other.  

 

Figure 6: Data with overlapping clusters [12] 
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The K-means algorithm would not be able to divide the data points over the two clusters shown in 

figure 6. This is because the K-means algorithm only looks at the distance from a data point to the 

mean of both clusters to decide to which cluster the point should belong. In the figure displayed 

above the two clusters have exactly the same mean, so the K-means algorithm has not enough 

information to split the data points. 

In d-dimensional space the Gaussian probability density function can be written as [5] 

𝑔𝜇,𝜎(𝑥) =
1

√2𝜋
𝑑

√det(σ)
𝑒−

1

2
(𝑥−𝜇)𝑇σ−1(𝑥−𝜇)  (12) 

A weighted mixture of 𝑐 Gaussians can be written as [5] 

𝑔𝑚(𝑥) = ∑ 𝜔𝑐 ∙ 𝑔𝜇𝑐,𝜎𝑐
(𝑥)𝐶

𝑐=1    (13) 

where the weights 𝜔𝑐 are positive and sum to one. 

The GMM begins with several mixture components indexed by 𝑐; each of them is described by a 

Gaussian distribution. They are described by a mean 𝜇𝑐 a variance 𝜎𝑐 and a weight 𝜔𝑐. The joint 

probability distribution is defined by the weighted average of the joint components. After clustering 

a set of training data, a probability model of the data is obtained, which can be used to do a 

quantitative classification of testing data.  

Expectation maximization 

The EM algorithm consists of two steps, the so-called E- and M-step. These steps are iterated in order 

to find the GMM that suits the data best. [12],[13] 

E-step 

This step is equivalent to assigning clusters to each data point in K-means, but in a soft way [14]. The 

Gaussian parameters 𝜇𝑐, 𝜎𝑐 and 𝜔𝑐 are treated as fixed. For each data point 𝑥(𝑖) and each cluster 𝑐 

the responsibility value 𝑟𝑖𝑐 is computed. This is the relative probability that the data point 

𝑥(𝑖)belongs to cluster 𝑐, which is just the probability component 𝑥(𝑖) under model component 𝑐 

normalized by the total of all the values of 𝑐.  

If a particular component c is not a very good explanation for 𝑥 it will typically have a small 𝑟𝑖𝑐 value. 

If it is by far the best explanation for 𝑥 it will have an 𝑟𝑖𝑐 value close to 1. The responsibilities can be 

seen as the relative heights of the different probability density functions at the location of the data 

point. 𝑟𝑖𝑐 is a number of data by number of cluster matrix that sums to 1 over the index 𝑐. The 𝑟𝑖𝑐 

values are determined by maximizing the log-likelihood over all possible values of 𝑟𝑖𝑐 (so between 0 

and 1). 

M-step 

This step is equivalent to updating the cluster centers in K-means [14]. The assignment 

responsibilities 𝑟𝑖𝑐  are fixed and the parameters of the clusters 𝜇𝑐, 𝜎𝑐 and 𝜔𝑐 are updated. The 

parameters for each cluster 𝑐 are updated using an estimate weighted by the probabilities 𝑟𝑖𝑐. As if 

some fraction 𝑟𝑖𝑐 of data point 𝑥(𝑖) is observed. Cluster 𝑐 sees some total number of data points 𝑚𝑐 

that is the sum of these soft memberships. 𝜔𝑐 is this number normalized by the total number of data 

𝑚, so 𝜔𝑐 is the fraction of data point probabilities that is assigned to cluster 𝑐. 𝜇𝑐 is the weighted 
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average of the data for component 𝑐: every data point 𝑥(𝑖) is given weight factor 𝑟𝑖𝑐 and is divided 

by the sum of 𝑚𝑐 values, which is 𝑚. The larger 𝑟𝑖𝑐, the more 𝑥(𝑖) will influence the mean. The 

covariance 𝜎𝑐 is a weighted average of the outer product of (𝑥(𝑖) − 𝜇𝑐) with itself.   

Formulas 

𝑚𝑐 = ∑ 𝑟𝑐𝑖𝑖      (14) 

𝜔𝑐 =
𝑚𝑐

𝑚
     (15) 

𝜇𝑐 =
1

𝑚𝑐
∑ 𝑟𝑖𝑐𝑥(𝑖)𝑖     (16) 

𝜎𝑐 =
1

𝑚𝑐
∑ 𝑟𝑖𝑐(𝑥(𝑖) − 𝜇𝑐)𝑇(𝑥(𝑖) − 𝜇𝑐)𝑖   (17) 

The EM algorithm will increase the log-likelihood in every iteration. Convergence to a global optimum 

is however not guaranteed, so it is necessary to start from several initializations and use the            

log-likelihood to find the best. 

Training a Gaussian Mixture Model 

Divide the data into distinct parts for training and testing. Of course, the more data points are used 

for training the better the performance of the model will be in classifying the testing points. The 

performance of the model can however only be properly assessed when enough data points are 

available for testing the model. For this reason there is chosen to use 70 percent of the available data 

for training and 30 percent for testing. 

In Matlab a GMM can be fitted to data points with the function gmdistribution.fit. The inputs for this 

function are a vector 𝑥 with the data points and the number of Gaussians in the mixture model 𝑘. 

Most of the times, the number of Gaussians in the mixture model is not known beforehand. For this 

reason, one has to try multiple values for 𝑘 and find out which one suits the data best. 

Maximum number of Gaussians in mixture model 

A multivariate Gaussian in 𝑑 dimensions can be described by a mean vector 𝜇 and a covariance 

matrix 𝜎. It is known that 𝜇 is a 𝑑 x 1 vector and 𝜎 is a 𝑑 x 𝑑 matrix.  

It is therefore known that 𝜇 consists of 𝑑 unknowns. 𝜎 consists of 𝑑2 components, but because 𝜎 has 

to be a symmetrical matrix it has 
𝑑2

2
+

𝑑

2
 unknowns. 

In order to be able to fit a multivariate Gaussian to a number of sample points, one should comply 

with formula (18) in order to get a fully defined Gaussian. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 >
𝑑2

2
+

𝑑

2
+ 𝑑  (18) 

In case of using a GMM consisting of 𝑘 Gaussians with 𝑑 dimensions, one should at least comply with 

formula (19). If one does not comply with this formula, it is impossible to get a fully defined GMM. 

This formula gives an upper boundary for the number of Gaussians used in the GMM.  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 > 𝑘 (
𝑑2

2
+

𝑑

2
+ 𝑑)  (19) 
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When 2 condition indicators are used for modeling the helicopter vibration data, 𝑑 = 2. When filling 

in the number of dimensions in formula (19) the following expression is obtained. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 > 5 ∙ 𝑘 

When 30 percent of the healthy data points is used for training and 70 percent for testing, this means 

that there are only 149 healthy data points for fitting the GMM. The maximum number of Gaussians 

that is theoretically possible to create a fully defined GMM under these conditions is 29. When more 

data is used for training or when the dimensionality of the data is reduced it is possible to create 

GMMs with even more components. The gmdistribution.fit function can be used to generate models 

from 1 up to the maximum number of components, which is a time consuming procedure. The 

Akaike Information Criterion can then be used to select the best model up to this maximum. The 

maximum number of Gaussians used in the gmdistribution.fit function can be set to a lower value to 

save computational time. This will in general not influence the classification performance of the 

model as the Akaike Information Criterion is not likely to choose a model with a high number of 

Gaussians, which will be explained in the next paragraph.  

Akaike Information Criterion 

The Akaike Information Criterion (AIC) predicts the relative information loss when using GMMs with 

different numbers of Gaussians. The AIC rewards goodness of fit and penalizes overfitting (when 𝑘 is 

too large).  

The AIC can be calculated with formula (21),[15] 

𝐴𝐼𝐶(𝑘) = 2𝑘 − 2ln(𝐿)  (21) 

where 𝐿 is the maximized value of the log-likelihood function. The best value for k is the one that 

results in the lowest AIC value.  

Local instead of global optimum, combination of K-means with gmdistribution.fit 

When using the gmdistribution.fit function, one has to keep in mind that this function uses an EM 

procedure to find the parameters of the GMM by maximizing the log-likelihood. EM is susceptible to 

finding a local maximum instead of a global maximum. When just selecting random initial parameters 

for the GMM, there is a high chance that the global maximum is not found. The chance of finding the 

global maximum can be increased by executing the function gmdistribution.fit multiple times, with 

random initial parameters. The best GMM is found by simply selecting the one with the highest      

log-likelihood. The disadvantage of this method is the high computational effort needed to generate 

multiple GMMs. 

Another possibility is to use the K-means clustering algorithm to find the initial guess of the 

component index for each data point [14]. This initial guess can then be used to guide the GMM 

towards the global optimum. This method can be visualized by generating some two-dimensional 

data points based on three known normal distributions. These distributions have the following 

properties. 
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For each of the distributions described above 2000 data points are generated, as shown in figure 7. 

 

Figure 7: 2D data points generated by three normal distributions 

Before the gmdistribution.fit function is executed, first a K-means clustering procedure is performed. 

Now, it is known that the data points are generated by three normal distributions, so the K-means 

algorithm will be set up to generate three clusters {1}. In reality GMMs with different numbers of 

components will be generated, so also the K-means algorithm will be performed based on different 

numbers of clusters. After generating the GMMs the AIC can be used to determine the optimal 

GMM. 

 

Figure 8: K-means clustering using three clusters 

It can be seen from the results of the K-means algorithm in figure 8 that the clusters match very well 

with the real origin of the data points. Especially the positions of the cluster means are quite good. 

They are important inputs for the gmdistribution.fit function. These pictures make the effect of the 

K-means algorithm very clear.  

Classifying testing points using a single Gaussian 

In the learning phase training data is used to determine the properties of a Gaussian distribution. The 

goal of the testing phase is to classify new data points as belonging to the distribution or not. 
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One way to determine to determine the likelihood of a new data point to belong to a (multivariate) 

Gaussian, is to use the principle of the Mahalanobis distance. The Mahalanobis distance is the 

distance from the test point to the mean of the distribution, divided by the variance of the 

distribution in the direction of the data point. 

The Mahalanobis distance can be described with formula (22),[16] 

𝑑𝑀𝐻(𝑥) = √(𝑥 − 𝜇)𝑇𝜎−1(𝑥 − 𝜇)  (22) 

in which 𝑥 are the coordinates of the new data point, 𝜇 is the mean of the multivariate Gaussian 

distribution and 𝜎 is the covariance matrix of the distribution. 

The square of the Mahalanobis distance (𝑑𝑀𝐻)2 is chi-squared distributed. The p-value of the        

chi-squared distribution can now be calculated as a quantitative measure for the likelihood of the 

new data point belonging to the Gaussian distribution. The p-value, displayed in figure 9, describes 

the percentage of data points from the Gaussian distribution with a higher Mahalanobis distance to 

the mean of the distribution than the point under examination. It is for instance possible to define a 

threshold value for the Mahalanobis distance based on a predefined p-value. 

 

Figure 9: Definition p-value 

Classifying testing points using a Gaussian Mixture Model 

Calculating the p-value of a Gaussian Mixture Model 

Calculating the p-value of a GMM is not as trivial as calculating the p-value of a single multivariate 

Gaussian. In the case of a single multivariate Gaussian, the p-value can be calculated using the       

chi-squared distribution.  

In order to be able to calculate the p-value threshold of a GMM one should be able to calculate 

probabilities based on the known probability density function. This means that a method has to be 

found to integrate the known probability density function. Two possible methods are Monte-Carlo 

integration and Riemann integration. 

Monte-Carlo integration 

This method starts by generating many data points using the known probability density function.  

The two-dimensional space is then subdivided into small area elements. The number of generated 

data points in each of these area elements is calculated. Subsequently, the area elements are sorted 

in descending order in a vector, based on the number of generated data points they contain. The p-
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value boundary is constructed by assuming that the area elements containing the highest numbers of 

data points are located within the p-value boundary until  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 ≥ (1 − 𝑝𝑣𝑎𝑙𝑢𝑒) ∙ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

whereas the remaining area elements are located outside the p-value boundary.  

Riemann integration 

This method is similar to the Monte-Carlo integration method. Also for this method the two-

dimensional space is subdivided into small area elements. The area elements are however not 

ordered based on the number of data points they contain, but based on the heights of the 

probability density function in the middle of the elements. These heights are multiplied by the areas 

of the respective elements to obtain volumes, representing probabilities. The p-value boundary is 

constructed by assuming that the area elements with the highest probabilities are located within the 

p-value boundary until 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ≥ 1 − 𝑝𝑣𝑎𝑙𝑢𝑒 

The Riemann integration method is more accurate than the Monte-Carlo integration method as the 

probability density function itself is used instead of a finite number of data points generated by this 

probability density function. Moreover, the fact that no data points have to be generated saves a lot 

of time, which makes the method more computationally efficient. 

Drawing the p-value boundary 

In order to be able to draw the p-value boundary, some points are needed. The coordinates of the 

corner points of all included areas are stored in an array. All the coordinates that occur more than 

once are removed from this array. 

In figure 10, three different methods are displayed for creating a p-value boundary. The green points 

represent the points used for creating the p-value boundary by linear interpolation. One of the green 

points is the starting point of the interpolation procedure. A linear line is drawn from this point to an 

adjacent green point with the smallest distance. Points that have already been used get a penalty 

value added to their distances, so the same point cannot be used twice when constructing the p-

value boundary. 

Monte-Carlo 

When using the Monte-Carlo integration procedure it is possible that some area elements close to 

the p-value boundary are not included, whereas their surrounding elements are included. This can 

cause errors when generating the p-value boundary. It can be seen in figure 10.1 that the procedure 

which uses only points that belong to one square is not very susceptible for errors. Only when 

multiple excluded area elements are coupled together inside the included elements, an error can 

occur. When more corner points are used for creating the p-value boundary (figures 10.2 and 10.3) it 

can be seen that a better approximation of the outer boundary is achieved, but that the method 

becomes more susceptible to exclusions in the interior.  

The choice for one of the three methods of figure 10 should be based on the available computational 

power as well as the p-value of the boundary that has to be created. The number of points that can 

be generated for the Monte-Carlo integration is limited by the available computational power.  
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The smaller the p-value of the boundary and the smaller the number of points generated for the 

Monte-Carlo integration, the higher the chance of errors in the interior due to exclusions.  

In order to prevent errors the size of the area elements can be increased or an algorithm should be 

used that uses fewer corner points for constructing the p-value boundary. From these options, the 

last option is favorable for drawing a smooth p-value boundary, thereby making the method of figure 

10.1 most suitable in case of Monte-Carlo integration. 

Riemann 

The Riemann integration procedure is not susceptible to these errors in the interior. It can however 

be seen from figure 10.3 that there are sometimes multiple options when connecting the green 

points to their closest neighbors, which can cause errors in the p-value boundary. For this reason the 

method of figure 10.2 is advisable in case of Riemann integration.  

 

Figure 10: Three settings for creating p-value boundary 

Testing the algorithm 

In order to test the Monte-Carlo algorithm introduced above, a two-dimensional set of data points is 

created using three normal distributions. A GMM is generated that fits the data set. Because of the 

susceptibility of making errors, there is chosen to use the first of the three methods to generate the 

p-value boundary {2}. In the Monte-Carlo simulation 5∙107 data points are generated, which is the 

maximum number of data points possible with the computational power available. The area 

elements that are used for constructing the p-value boundary have a size of 0.1 by 0.1. A boundary 

with a p-value of 0.1 is created and drawn in figure 11. 

 

Figure 11: P-value boundary (p=0.1) of 2D GMM 
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It is possible to determine the condition of new data points by checking whether the point is inside 

the boundary or outside. This is done using the Matlab function inpolygon {2}. The results of this 

procedure are displayed in figure 12. 

 

Figure 12: Checking if point is inside or outside the p-value boundary 

It might be interesting to look at the variation of the Mahalanobis distances to the different GMM 

components when moving along the p-value boundary. If a relation can be found between the 

Mahalanobis distances and the p-value of the GMM it is no longer necessary to perform an 

integration of the probability density function, which would save a lot of computational time.  

The Mahalanobis distance along the p-value boundary is plotted in figure 13, where the starting 

point is located at (0.4, 2.8) and the movement along the p-value boundary is counterclockwise {2}.  

 

Figure 13: Mahalanobis distance over p-value boundary 

When looking at the graph of figure 13, one will notice that the graph shows three parts with a more 

or less constant Mahalanobis distance. The position of this constant part depends on the Gaussian 

mixture component. It can be seen that from the left side of the graph, the first constant part 

belongs to the second mixture component. In order to determine if this is a logical result, first the 

Gaussian mixture components will be given. 
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From these Gaussian mixture components it can be seen that the graph of the Mahalanobis distance 

starts in the transition region from component 3 to component 2. Then there is a region that is only 

influenced by component 2. Subsequently, there is a transition region from component 2 to 

component 1 (with a little influence of component 3). After this there is a region that is only 

influenced by component 1. Finally, a transition region between component 1 and component 3 is 

visible, followed by a region that is only influenced by component 3. The rightmost point of the 

Mahalanobis distance graph is the same point as the leftmost point of the graph. This means that the 

graph shows the Mahalanobis distance over the entire p-value boundary. 

In the case of a single Gaussian, a constant p-value boundary will result in a constant Mahalanobis 

distance. In the case of a GMM, there is a different dominant mixture component when moving 

along the p-value boundary. In the regions where there is a clear dominance of one of the 

components of the GMM, the Mahalanobis distance acts the same as for a single Gaussian and 

remains constant.  

The remaining question is: Why is the Mahalanobis distance not the same for all constant parts in the 

graph? It seems as if the Mahalanobis distance for each component depends on the covariance of 

the respective component: the higher the covariance, the lower the Mahalanobis distance at the       

p-value boundary. This observation can be easily explained by the definition used to determine the   

p-value boundary of the GMM.  

A lot of points were generated using the GMM and the two-dimensional space was divided into 

multiple small area elements. When determining which area elements were located inside the           

p-value boundary, priority was given to those elements containing the highest numbers of data 

points. A distribution with a higher covariance will result in data points that are more spread out than 

the data points belonging to a distribution with a smaller covariance. A Mahalanobis distance of 1 

from a distribution with a high covariance will cover a lot more space than a distribution with a small 

covariance, although containing the same number of data points. The area elements of the 

distribution with the higher covariance will contain fewer data points and will therefore be excluded 

from the p-value enclosure before excluding the area elements of the small covariance distribution. 

This suggests that a GMM consisting of Gaussians with similar covariance matrices will result in a 

Mahalanobis distance graph in which the constant parts have the same Mahalanobis distance. This is 

checked by regenerating the p-value boundary, but this time using the same covariance matrix with 

0.6 on the diagonal and zeros as off-diagonal terms for generating the initial data. The Mahalanobis 

distance over the p-value boundary is displayed in figure 14 {2}. 
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Figure 14: Mahalanobis distance along p-value boundary for GMM components with equal covariances 

It can be seen in figure 14 that there are still three parts with a constant Mahalanobis distance along 

the p-value boundary and that they all show the same Mahalanobis distance value. The positions of 

the constant parts are changed, because a different start position is used on the p-value boundary 

for generating the graph and the p-value boundary has a different length. Also component 1 and 2 

are interchanged in this graph, which is possible because the gmdistribution.fit function assigns a 

more or less random component number to its components. So every time the gmdistribution.fit 

function is executed, the order of the components may change. 

Now the difference in Mahalanobis distance for the mixture components has been explained, it is still 

not known how the amplitude of the Mahalanobis distance can be explained. In case of a single 

Gaussian distribution, a Mahalanobis distance of 4.6 results in a p-value of roughly 0.10. The GMM 

under investigation also has a p-value boundary of 0.10, but the minimum Mahalanobis distance over 

the p-value boundary is much less than 4.6. This can be explained by the overlap of the different 

Gaussians in the mixture model.  

In figure 15 a schematic overview is given of a GMM consisting of two components with an overlap. 

The blue circle describes the p-value boundary for component 1; the red circle describes the p-value 

boundary for component 2. When the outer boundary of the two components is used for 

constructing the p-value of the total GMM, too many points are included in the p-value enclosure. 

This is caused by the fact that points created by component 1 can still be included by component 2, 

even when they are outside the p-value boundary of component 1. This can be seen in figure 15 by 

the grey and the pink areas. In a GMM, instead of including only the points in the grey area, also the 

points in the pink area are included. 

Similarly, points created by component 2 can still be included by component 1, even when they are 

outside the p-value boundary of component 2. This means that the p-value boundary of the GMM 

should differ from the outer boundaries and should be moved a bit closer to the component means, 

resulting in a Mahalanobis distance that is no longer equal to 4.6 but smaller. It can therefore be said 

that the actual values of the Mahalanobis distance depend on the overlap of the different 

components of the mixture model. When two components of the GMM are very far away from each 

other, this phenomenon can be neglected and the Mahalanobis distance will be close to 4.6. 
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Figure 15: Overlap of mixture components 

The change in Mahalanobis distance, when moving the Gaussians with respect to each other, can be 

shown by moving the Gaussians closer to each other. This causes however the problem that the 

gmdistribution.fit function is no longer able to properly distinguish three Gaussians in the GMM. It is 

possible that the function finds only one or two Gaussians. Showing the change in Mahalanobis 

distance, by increasing the distance between the distributions, is also limited. The Matlab program 

generating the p-value boundary and the Mahalanobis distance over this boundary does only work 

when the p-value boundary encloses a single area. When the Gaussians are too far away from each 

other, multiple areas will be enclosed by multiple p-value boundaries.  

There is chosen to slightly increase the distance between the distributions, while still making sure 

that only one area is enclosed by the p-value boundary. This results in a Mahalanobis distance over 

the p-value boundary that shows a slight increase in amplitude for the constant parts {2}.  

 

Figure 16: Mahalanobis distance along the p-value boundary for a different amount of overlap 

3.4 Quantifying algorithm performances 
The performances of the different algorithms can be divided into classification performance and 

computational efficiency.  

The classification performance is a measure for the correctness of the estimated health state for the 

test data. The classification performance can be described with a confusion matrix. The rows of a 

confusion matrix represent the actual state of the data point (first row = unhealthy, second row = 

healthy). The columns of the confusion matrix represent the state estimated by the model (first 

column = unhealthy, second column = healthy). A faultless data classification would therefore result 

in a diagonal 2 by 2 matrix. 

The computational efficiencies of the different algorithms can easily be compared by looking at the 

computational times needed for the execution of their scripts.  
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4 Research results 

4.1 Time Synchronous Averaging 
During the learning period of HUMS it is possible to provide the system with accelerometer data 

from a component in healthy state. Based on this data it is possible to calculate a mean and a 

standard deviation for data derived from a healthy system. One way to identify new data is to 

compare the amplitude of the accelerometer signal with a reference value. One could decide to 

identify new data as healthy if the amplitude of the acceleration is within a certain number of 

standard deviations from the mean, determined during the learning period. A disadvantage of this 

method is that different flight conditions can result in a changing magnitude of the accelerometer 

values, even when there is no change in health of the components. Furthermore it is impossible to 

determine which component has failed, by looking at the time domain data only. 

Figure 17 shows the time synchronous average of the accelerometer data, obtained by resampling 

the vibration signal with 512 data points per revolution and averaging over 100 revolutions {3}. The 

data contains 583 time synchronous averages, of which the first 495 belong to the healthy state and 

the last 88 to the unhealthy state.  

 The vertical axis shows the acceleration amplitude and the horizontal axis shows the number of the 

data point. The total number of data points used for constructing this graph is 512 data points per 

time synchronous average multiplied by 583 time synchronous averages, which results in 2.98∙105 

data points. The blue part of the graph corresponds to the healthy state of the system, whereas the 

red part corresponds to the unhealthy state. 

 

Figure 17: Time Synchronous Average of accelerometer data 

In figure 17 can be seen that it is impossible to determine the health state of the system based only 

on the time domain accelerometer data. The unhealthy part of the graph shows slightly higher 

amplitudes than the part before, but all the way to the left the healthy system shows even higher 

accelerations. So when the state of the system would only be identified based on the accelerometer 

amplitude, one would either falsely identify the first part of the graph as belonging to an unhealthy 

state or one would miss the unhealthy state at the end and think that all data belongs to a healthy 

system. Both of these errors are unwanted. 
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4.2 Condition indicators 

4.2.1 Calculating indicator values 

A more reliable approach for detecting failures can be achieved by not only looking at the time 

domain accelerometer data but also at the Fourier Transform of the data, to find out the 

contribution of one specific frequency in the frequency domain of the data. This information is less 

susceptible to flight conditions. Condition indicators can be calculated from the accelerometer data 

in order to be able to differentiate between different types of failures. Different failures will result in 

different behaviors of the condition indicators. Some condition indicators use the time domain data, 

while other condition indicators are calculated based on the frequency domain data. Only by looking 

at the combinations of condition indicator values, the health state of the system can be determined. 

This way, changing flight conditions will only influence a couple of indicators. When the other 

indicators show no sign of an unhealthy component, the system is assumed to be still healthy.  

The condition indicators are calculated for each of the 583 time synchronous averages that each 

contain 512 data points. In figures 18-25, the development of the eight different condition indicators 

in time are shown {3}. The vertical axes of the plots show the amplitude of the respective condition 

indicator, whereas the horizontal axes show the number of the time synchronous average (higher 

number means that it occurred later in time). The blue part of each graph corresponds to the healthy 

state of the system, whereas the red part corresponds to the unhealthy state. 

 

Figure 18: OM1 condition indicator in time        Figure 19: OM2 condition indicator in time 

 

Figure 20: OM15 condition indicator in time       Figure 21: OM30 condition indicator in time 
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Figure 22: MOD15 condition indicator in time       Figure 23: MOD30 condition indicator in time 

 

Figure 24: RMS condition indicator in time         Figure 25: Kurtosis condition indicator in time 

4.2.2 Possible cause of the problem associated with this vibration signature 

It can be seen from the condition indicators that the OM1 condition indicator shows a great 

increment when going from the healthy to the unhealthy state, combined with a simultaneously 

increasing RMS value and a decreasing Kurtosis value. This behavior can only be explained by a 

failure that causes OM1 to become the dominant vibration component in the signal. Based on the 

increment of the OM1 indicator and the more or less unchanging behavior of the OM2, OM15, 

OM30, MOD15 and MOD30 indicators, it is not likely that a damaged or broken fan blade is the cause 

of failure. It is more likely that an unbalanced fan caused the vibration level to increase.  

Are there other possible failures that could have caused this behavior? A bearing failure is not likely 

as this would only cause a high increment in vibrational energy for higher frequencies and not for 

OM1. One other option remains, being a damaged gear tooth of the gear that is coupled to the fan 

shaft. This would cause an increment of the OM1 indicator as the gear tooth gets into contact with 

the adjoining gear once a revolution. In order to test this possibility the OM44 and MOD44 indicators 

are calculated as the gear contains 44 teeth. A gear tooth failure is expected to change the value of 

the OM44 indicator and is expected to increase the value of the MOD44 indicator due to amplitude 

modulation. 
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Figure 26: Properties gear-shaft-fan assembly 

 

Figure 27: OM44 condition indicator in time       Figure 28: MOD44 condition indicator in time 

It can be seen in figures 27 and 28 that both the OM44 as the MOD44 indicator do not show a clear 

change in indicator value when comparing the healthy and unhealthy situations. It can therefore be 

said that the given vibration signature was most likely caused by an unbalanced fan. 

The transition region between the healthy and unhealthy stat is not the only point in time where 

indicator values suddenly change. The OM1 for instance shows a distinct peak at data point 83. Also 

the OM15, OM30, MOD15 and Kurtosis show a changing amplitude around this data point. 

Furthermore a clear peak around data point 300 can be seen for both the OM15 and RMS condition 

indicators. It might be interesting to investigate the causes of these sudden deviations from the trend 

of the indicator values. It could be an indication that the onset of failure already starts at an earlier 

point in time. An in-depth investigation of this behavior will not be performed in this report. 

4.3 Clustering algorithms 
In the previous section condition indicators were used for determining the cause of the failure 

related to the oil cooler fan shaft.  

Choosing a suitable condition indicator 

In order to train a model to distinguish between a healthy and an unhealthy state a condition 

indicator should be used that results in a clear separation of the two data clusters. It can be seen that 

the OM1 condition indicator shows a clear difference in value for the healthy and the unhealthy 

state. Based on the behavior of this condition indicator one could say that this single condition 

indicator is sufficient for determining the health state of the system. It can however be seen that the 

OM1 plot shows a peak at data point 83. This value corresponds to the OM1 values of the unhealthy 

state whereas the data point is known to belong to the healthy state.  
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Increasing distinction between healthy and unhealthy data 

In order to make this point more distinctive from the unhealthy data, one can try to include 

additional condition indicators with different healthy and unhealthy values. RMS and Kurtosis are the 

only other condition indicators that show a clear difference between the healthy and unhealthy state 

of the system. 

              

Figure 29: Cluster separation OM1+Kurtosis                    Figure 30: Cluster separation OM1+RMS 

It can be seen in figures 29 and 30 that adding an extra dimension to the data points in the form of 

Kurtosis or RMS increases the separation between the healthy (blue) and unhealthy (red) data points. 

This separation is however still very limited and probably not very effective. 

The different clustering algorithms will be tested for only OM1, OM1 & RMS, OM1 & Kurtosis and 

OM1 & RMS & Kurtosis, so for one-, two- and three-dimensional data. 

Detecting unknown failures 

As discussed in section 3.2 there are many possible failures of the fan-shaft assembly that can be 

detected by (a combination of) different condition indicators. The available set of data points 

contains only one of those failures. Models that use data of the known failure to determine the 

health state of testing points are less likely to detect other types of failures than models that only use 

healthy training data. It is for instance possible that a different type of failure has completely 

different characteristics than the known failure. It is possible that these characteristics are more 

analogous to the healthy data cluster than to the known unhealthy data cluster, which makes it 

impossible for the model to detect this new type of failure.  

In such a case it is more effective to use only healthy data for training the model and to determine 

the health state of each testing point by looking at the chance that the point is part of the healthy 

data set. As different failure types are detected by different condition indicators it is then interesting 

to include all condition indicators in the model that were introduced in section 3.2, making the data 

points eight-dimensional.  

In section 4.2.2 there were two additional condition indicator introduced to exclude a gear failure to 

be the cause of the given vibration signature. According to documentation provided by Eurocopter, 

this gear failure is more effectively monitored by a different accelerometer. For that reason, these 

condition indicators will not be used in the remainder of this report. 
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Selecting training data 

The set of available data has to be split up in a part for training and a part for testing the model. 

Depending on the type of clustering algorithm one has to determine whether to use healthy, 

unhealthy or a combination of healthy and unhealthy data for training. It is important that the 

training data gives a good representation of the complete data cluster. For this reason there is 

chosen to select the training data randomly from the healthy/unhealthy data set. Especially when the 

health state gradually changes from healthy to unhealthy, random selection of training points is the 

only way to cover the complete scope of the clusters. In figures 31 and 32 the complete healthy data 

set is displayed, with the blue points representing the first 50 percent in time and the green points 

the last 50 percent in time. It can be clearly seen that the blue points are not a good representation 

of the complete healthy data set. 

              

Figure 31: First and last 50% of healthy data OM1+Kurtosis              Figure 32: First and last 50% of healthy data OM1+RMS 

Of course, when more data is used for training the model a more accurate model will be obtained 

with a better classification performance of the testing data. In order to be able to give a reliable 

judgement of a model’s performance a high number of testing points is desirable. Furthermore, in 

real life HUMS data points are scarce. The values of the 16 accelerometers, located around the main 

gearbox and tail drive shaft of the EC225 helicopter, are extracted sequentially. It takes 20 minutes of 

flying before all accelerometer values are stored in a single data point. Therefore, the robustness of 

the clustering algorithms will be compared to find out which model delivers the best classification 

performance with the smallest number of training points. 

Comparing performances 

All clustering algorithms will be tested using 70, 50 and 30 percent of the available data for training. 

The algorithms will be compared by looking at their classification performances, given by their 

confusion matrices, and the computational times needed for the execution of the algorithms. An 

elaborate list of the algorithm performances can be found in Appendix B. 

As discussed before, different sets of data points are used for training and testing of the model. The 

disadvantage of having a single deviating healthy data point is that this point can only be used for 

either training or testing purposes. When this point is used for training purposes it will in fact 

improve the model for classifying testing points located in the surroundings of this training point. In 

this case however, there is no testing point left to test the model on this performance. The other way 

around: when this deviating healthy data point is only used for testing, a model will be tested that 
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was not trained for data points with these extreme properties. The solution that is used to solve this 

problem is to use the extreme data point for both training and testing of the models. 

4.3.1 K-means clustering 

As discussed in section 3.3.1 the k-means clustering algorithm is capable of automatically detecting 

clusters in a given set of data points. This method is very helpful when the health state of the 

individual data points is not known beforehand. In this application the health state of every training 

point is already known beforehand, so the clusters do not have to be created anymore. The testing 

points are however still classified by assigning them to the cluster with the nearest mean {4}.  

Appendix B shows the classification performance of the k-means method, using different amounts of 

training data and different data dimensionalities.  

It can be seen that in case of one-dimensional data, the extreme healthy data point is classified as 

being unhealthy. The same holds for the two-dimensional situation where the data points are plotted 

in the OM1/Kurtosis domain. When the data points are however plotted in the OM1/RMS domain, 

one can see that there are more healthy data points classified as being unhealthy. This is caused by 

the fact that the healthy data is less properly clustered in this domain. More healthy testing points 

are therefore located further away from the healthy cluster center and are therefore more likely to 

be erroneously allocated to the unhealthy data cluster. When OM1, Kurtosis and RMS are used to 

plot the data points a performance can be seen that is in between of the two two-dimensional 

models.  

It is interesting to see that the amount of data used for training the model does not have a high 

influence on the performance of the model. When using the right condition indicators (OM1 or a 

combination of OM1 and Kurtosis), 30 percent of training data is sufficient.  

Concluding, it can be said that the k-means algorithm is not suitable for representing data clusters 

with some extreme values. The extreme values only have a small influence on the position of the 

cluster mean. 

4.3.2 Hierarchical clustering 

Also the hierarchical clustering algorithm is capable of automatically distinguishing clusters in a given 

data set without any foreknowledge. This capability is not required as the health state of the training 

points and therefore the healthy and unhealthy clusters are already known. New data is classified by 

looking at the distance of the data point to the closest healthy data point and the distance to the 

closest unhealthy data point. The new data point is assigned to the cluster with the smallest distance 

{5}. 

According to the results given in Appendix B, the hierarchical clustering algorithm is susceptible to 

one type of error, where unhealthy testing points are classified as belonging to the healthy cluster. 

When looking at the one-dimensional situation many classification errors can be seen. When using 

OM1 and RMS for modeling the number of errors already starts to drop compared to the one-

dimensional case. When using OM1 and Kurtosis a faultless data classification is achieved, even when 

using only 30 percent of the available data for training purposes. Using three-dimensional data for 

modeling results in a slightly worse performance compared to the OM1/Kurtosis domain.  



28 
 

The computational time of the hierarchical clustering method is slightly higher than that of the k-

means method. In contrast to the k-means algorithm, the amount of training data appears to have a 

high influence on the classification performance of the model. This can however be easily explained. 

The extreme healthy data point is located close to the unhealthy data cluster. When there are more 

unhealthy training points, the chance becomes smaller for an unhealthy testing point to be located 

closer to the extreme healthy data point than to an unhealthy training point, thereby making fewer 

classification errors. 

4.3.3 Support Vector Machines 

The SVM method can be used for generating a model and classifying new data points as belonging to 

the healthy or the unhealthy cluster. This clustering algorithm uses the known health state of the 

training data for generating a boundary between the healthy and unhealthy data points, thereby 

generating the clusters.  

Two different types of the SVM method are compared: one using a hyperplane to separate the data 

into two clusters and one using a Gaussian radial basis function. The performances of the methods 

are determined and compared using the confusion matrices again {6}.  

It can be seen in Appendix B that the classification performances of all models are the same: they all 

misclassify the extreme healthy data point. The dimensionality of the data points and the amount of 

training data appear not to influence the classification results. The computational times of the SVM 

method are comparable to those of hierarchical clustering. 

Furthermore it can be observed that the SVM with hyperplane is slightly more computationally 

efficient than the SVM with radial basis function. The hyperplane appears to be the best basis 

function for the problem at hand.  

4.3.4 Single multivariate Gaussian 

Selection of training data 

There are different options for training a Gaussian. It is possible to train a Gaussian based on healthy 

data points only. In this case a p-value threshold is used to determine if a testing point belongs to the 

healthy cluster or not. If the testing point is located inside the p-value boundary the point is assumed 

to be healthy, when it is located outside the p-value boundary it is assumed to be unhealthy. 

Another possibility is to train a Gaussian based on the unhealthy data points only. In this case again a 

p-value threshold is used; this time to determine if a testing point belongs to the unhealthy cluster or 

not. If the testing point is located inside the p-value boundary the point is assumed to be unhealthy, 

when it is located outside the p-value boundary it is assumed to be healthy.  

Finally, it is possible to train one Gaussian for the healthy data and another Gaussian for the 

unhealthy data. For every testing point the p-values for both of the Gaussians are calculated and 

compared. The testing point is assigned to the cluster with the largest p-value.  

The methods are compared using similar settings: a p-value threshold of 0.01 {7},{8},{9}. The 

performance of each method is determined based on the confusion matrix. 
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Discussion of the performances 

It can be seen from Appendix B that the amount of training data does not have a high influence on 

the models classification performances. The performance especially depends on the type of data 

used for training the model.  

The model using healthy training data misclassifies some of the healthy testing points, but properly 

classifies all unhealthy testing points. 

The best performing model is obtained when only unhealthy training data is used, whereas also the 

combination of healthy and unhealthy training data performs well. These models only misclassify the 

extreme healthy data point and apart from that perform a perfect data classification. For these 

models a better performance is obtained with higher dimensional data. For the three- and eight-

dimensional situation some faultless data classifications were obtained.  

The models that only use healthy or unhealthy training data are less computationally intensive than 

the model that uses both types for training. Based on these performances one could say that only 

unhealthy data should be used for training the model. It must however be kept in mind that these 

models are only able to detect failures that were present in the training data and that it is not likely 

that such a method detects any other types of failures that may occur. 

4.3.5 Gaussian Mixture Model 

As described in section 3.3.4 there are two different ways to calculate the p-value boundary of a 

GMM by integrating the probability density function: Monte-Carlo integration or integration using a 

two-dimensional Riemann procedure {10},{11}. Both methods are evaluated using the same settings: 

a p-value threshold of 0.01 and an element size of 0.05 (for discretizing the one- or two-dimensional 

space created by the condition indicator(s)). The Monte-Carlo integration is performed by generating 

fifty million data points.  

In contrast to the other clustering algorithms, the GMM algorithm is only executed for one- and two-

dimensional data. In theory it is possible to perform this algorithm for higher dimensional data. This 

makes the integration procedure however far more complicated and therefore less efficient.  

It can be seen from Appendix B that the Riemann integration scheme has superior classification 

performance compared to Monte-Carlo integration and is far more efficient in terms of 

computational time. Performing data classification by constructing a GMM p-value boundary with 

Riemann integration requires only one third of the computational time needed by the Monte-Carlo 

method.  

The more data points are used for training, the better the performance of the GMM algorithm. 

The Monte-Carlo method is not able to generate two separate p-value boundaries, which makes this 

method susceptible to errors when trying to create the p-value for a cluster containing some 

extreme values, as shown in figures 33 and 35. In the pictures on the next page two results of the 

Monte-Carlo method are shown; one performing a faultless data classification (figure 34) and one 

making many mistakes (figure 36). For these pictures, 70 percent of the available healthy data was 

used for training, thereby making sure that the extreme healthy data point was included in both the 

training and testing set. 
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Figure 33: P-value GMM Monte-Carlo                                                    Figure 34: Classification testing data GMM Monte-Carlo 

              

Figure 35: P-value GMM Monte-Carlo error                                 Figure 36: Classification testing data GMM Mont-Carlo error 

 

The Riemann integration method is capable of creating two separate p-value boundaries (figures 37 

and 38) and will therefore not make the error of the Monte-Carlo method. This functionality is 

included by introducing a threshold value for the distance between two neighboring corner points. 

When this distance is larger than the threshold value a new p-value boundary has to be created. This 

functionality cannot easily be included in the Monte-Carlo method as this method uses fewer corner 

points for creating the p-value boundary. It is then possible that neighboring corner points are 

further away than the threshold value, but still belong to the same p-value boundary.  

              

Figure 37: P-value GMM Riemann                                                       Figure 38: Classification testing data GMM Riemann error 
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What is interesting to note based on the pictures in this paragraph, is that the GMM clustering 

algorithm is capable of fine tuning a cluster to incorporate data points that are located far from the 

other points of the cluster. The cluster boundary appears to be really flexible and easily adapts to 

these extreme data points. 

4.4 Selecting the best clustering algorithm 

For the investigated failure 

In order to be able to select the best classification method for the failure under investigation, one 

should look at both the number of erroneously classified data points and the time needed for the 

execution of the script. The K-means clustering, Hierarchical Clustering, SVM, single Gaussian model 

and GMM are compared using different settings, of which the results are displayed in Appendix B.  

From the confusion matrices in Appendix B can be seen that the proposed methods for automatic 

failure detection all give satisfactory results. For some settings, the methods give better results than 

for other settings. The best settings for each method were found by searching for the best 

classification performance in the form of confusion matrices. When different settings showed similar 

classification performances, the setting was chosen that uses the least amount of training data. 

When the amount of training data was also the same, the setting with the smallest computational 

time was chosen. 

All methods were capable of performing a perfect classification of the unhealthy testing points. Some 

methods were however unable to perform a faultless classification of all the healthy testing points, 

especially the point that was located close to the unhealthy data points. It can be seen that only the 

Hierarchical Clustering algorithm and the Multivariate Gaussian were able to do a perfect data 

classification five times in a row. The Hierarchical clustering algorithm is however more 

computationally efficient and is for that reason chosen to be the most appropriate algorithm for 

modeling and classifying the health state of the helicopter oil cooler fan/shaft assembly.  

Algorithm Dimensionality Training data Confusion 
matrices (5x) 

Av. comp. time 

K-means 1D 30% of healthy 
and unhealthy 

[
62 0
1 346

] (5x) 1.190 s 

Hierarchical 2D (OM1+Kurt) 30% of healthy 
and unhealthy 

[
62 0
0 347

] (5x) 1.470 s 

SVM (linear) 1D 30% of healthy 
and unhealthy 

[
62 0
1 346

] (5x) 1.371 s 

Gaussian 8D 30% of unhealthy [
62 0
0 495

] (5x) 1.820 s 

GMM (Riemann) 2D (OM1+Kurt) 70% of healthy [
88 0
0 149

] (4x) 

[
88 0
1 148

] (1x) 

47.833 s 

Table 1: Best performing models for classification of testing data 

When there is a high chance that unknown failures occur 

Next to the classification performance and the computational efficiency there are some other 

differences between the algorithms, which make some algorithms more suitable than others for 

detecting the investigated failure under specific conditions. The K-means, Hierarchical Clustering and 

SVM algorithms have a downside. They are trained with specific failure information and are 

therefore not likely to detect failures that are not included in the training data. The same holds for 
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the Multivariate Gaussian that uses unhealthy data for training. The Multivariate Gaussian model 

based on healthy training data and the GMM only use healthy data points for training and are 

therefore more likely to detect unknown failures. As discussed in section 3.2 different failures are 

detected by examining different condition indicators. The Multivariate Gaussian is capable of 

modeling eight-dimensional data points, thereby including all important condition indicators in one 

model. The GMM is only capable of modeling two-dimensional data, thereby limiting the failure 

detection capabilities to changes in just two of the eight condition indicators that were introduced. 

For this reason the Multivariate Gaussian method is most suitable in situations where there is a high 

chance that ‘unknown’ failures will occur in the system. As the given data set contains only one type 

of failure, the only way to assess the performance of the model is by looking at the classification 

performance with respect to the known failure. As there is no improved performance visible when 

the amount of training data is increased, the model with 30 percent training data is the best 

performing model in this case. 

Algorithm Dimensionality Training data Confusion 
matrices (5x) 

Av. comp. time 

Gaussian 8D 30% of healthy [
88 0
2 345

] (3x) 

[
88 0
3 344

] (1x) 

[
88 0
6 341

] (1x) 

1.880 s 

Table 2: Best model for detecting known and unknown failures 
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5 Conclusions 
The vibrational behavior of the oil cooler fan shaft was extracted from the accelerometer data by 

using the principle of Time Synchronous Averaging, which removes noise from the acceleration signal 

caused by flight conditions or vibrations of other components. 

In order to find the type of failure belonging to this acceleration signal a set of possible failure modes 

for the oil cooler fan/shaft assembly was established. For each of these failure modes one or more 

condition indicators were introduced that were expected to show a change in indicator value when a 

certain type of failure occurs. The indicators with the highest sensitivity for the failure of the oil 

cooler fan shaft were OM1, RMS and Kurtosis. Based on the behavior of these indicators, combined 

with the indicators OM15, OM30, OM44, MOD15, MOD30 and MOD44 that showed no clear 

difference in value between the healthy and unhealthy state, the most probable cause of failure is an 

unbalanced fan. The indicators showed no evidence for a damaged fan blade or a damaged gear 

tooth.  

In this report five different clustering algorithms were used for training a model, being able to 

differentiate between healthy and unhealthy data: K-means, Hierarchical Clustering, SVM, Gaussian 

and GMM. These models were compared by looking at their performance of classifying test data and 

their computational efficiency. It was found that the choice for a clustering algorithm should depend 

on the chance of unknown failures to occur. Those are failures that are not present in the available 

data set, but may occur in real life. When this chance is assumed to be negligibly small, Hierarchical 

Clustering is the best clustering algorithm to use. If the chance of unknown failures is not negligibly 

small it is better to use a single multivariate Gaussian to model the healthy data set. The two-

dimensional GMM shows in 80 percent of the simulations a faultless data classification, but is highly 

computationally intensive compared to the other algorithms. It expected that the GMM algorithm 

shows superior classification performance in clustering tasks where the data sets are less clearly 

separated from one another. 
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6 Recommendations 
In this report only a qualitative analysis of the Mahalanobis distance over the p-value boundary of a 

GMM was given. It would be interesting to understand the quantitative relation. This would make 

the GMM integration unnecessary and would therefore greatly improve the computational efficiency 

of determining the p-value boundary of a GMM. As this computational efficiency causes the current 

limit of two-dimensional data, it would then be possible to extend the algorithm to higher 

dimensional data. This way, more condition indicators can be included in the model, resulting in 

improved classification performances for a wide variety of failures. 

As long as this quantitative relation between p-value and Mahalanobis distance is not known for a 

GMM, one should try to further automate the existing GMM procedure. In this report, some settings 

of the GMM procedure were manually adjusted by looking at the properties of the given data set. 

One example of such a setting is the element size that is used for integrating the probability density 

function and drawing the p-value boundary. Another example is the threshold value that is included 

in the Riemann method to be able to generate two separate p-value boundaries under certain 

conditions. It would be nice if the adjustments of these variables can be automated by looking at 

certain properties of the data set, such that the right settings can be determined without human 

interference.  

Furthermore, it is interesting to compare the different clustering algorithms again for a component 

with a less clear separation between healthy and unhealthy data to find out if a GMM has superior 

performance in that case.  
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Appendix A: overview of Matlab files used in this report 

{1} Illustrate the effect of using K-means algorithm to improve the results of the 

gmdistribution.fit function 

 MATLAB: Generate_pictures_kmeans.m 

{2} Determine the p-value boundary and plot the Mahalanobis distance over the boundary for 

2D data generated by three normal distributions and approximated by a GMM 

 MATLAB: GMM_test.m 

{3} Plot acceleration and condition indicator values 

 MATLAB: Plot_indicators_in_time.m 

{4} Use K-means to train a model and classify helicopter data 

 MATLAB: Kmeans.m 

{5} Use Hierarchical Clustering to train a model and classify helicopter data 

 MATLAB: Hierarchical.m 

{6} Use SVM to train a model and classify helicopter data 

 MATLAB: SVM.m 

{7} Use a single multivariate Gaussian to train a model and classify helicopter data by random 

selection of training data from the healthy data set 

 MATLAB: Gaussian_healthy.m 

{8} Use a single multivariate Gaussian to train a model and classify helicopter data by random 

selection of training data from the unhealthy data set 

 MATLAB: Gaussian_failure.m 

{9} Use single multivariate Gaussians to train one model by random selection of training data 

from the healthy data set and the other model by random selection of training data from the 

unhealthy data set 

 MATLAB: Gaussian_healthy_AND_failure.m 

{10} Use a GMM to train a model and classify helicopter data by random selection of training data 

from the healthy data set (Monte-Carlo integration) 

 MATLAB: GMM_Monte_Carlo.m 

{11} Use a GMM to train a model and classify helicopter data by random selection of training data 

from the healthy data set (Riemann integration) 

 MATLAB: GMM_Riemann.m  
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Appendix B: performances of clustering algorithms 
This appendix shows the performances of the different clustering algorithms for multiple settings. 

For each of the settings 5 simulations are executed to obtain reliable results. The average 

computational time is calculated by averaging the computational times of these 5 simulations. The 

confusion matrix shows the classification performance, the number behind this matrix shows how 

many times this confusion matrix was obtained in 5 simulations. 

K-means 

Dimensionality % training data Confusion matrix Av. comp. time 

1D 30 [
62 0
1 346

] (5x) 

 

1.190 s 

 50 [
44 0
1 247

] (5x) 

 

1.186 s 

 70 [
26 0
1 148

] (5x) 

 

1.176 s 

2D (OM1 & RMS) 30 [
62 0
3 344

] (2x) 

[
62 0
5 342

] (2x) 

[
62 0
7 340

] (5x) 

 

1.176 s 

 50 [
44 0
2 246

] (1x) 

[
44 0
3 245

] (3x) 

[
44 0
6 242

] (1x) 

 

1.197 s 

 70 [
26 0
1 148

] (1x) 

[
26 0
2 147

] (3x) 

[
26 0
5 144

] (1x) 

 

1.195 s 

2D (OM1 & Kurt) 30 [
62 0
1 346

] (5x) 

 

1.228 s 

 50 [
44 0
1 247

] (5x) 

 

1.184 s 

 70 [
26 0
1 148

] (5x) 

 

1.198 s 

3D 30 [
62 0
1 346

] (1x) 

[
62 0
2 345

] (3x) 

[
62 0
3 344

] (1x) 

 

1.202 s 
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 50 [
44 0
1 247

] (2x) 

[
44 0
2 246

] (2x) 

[
44 0
3 245

] (1x) 

 

1.198 s 

 70 [
26 0
1 148

] (2x) 

[
26 0
2 147

] (2x) 

[
26 0
3 146

] (1x) 

 

1.193 s 

 

Hierarchical clustering 

Dimensionality % training data Confusion matrix Av. comp. time 

1D 30 [
61 1
0 347

] (1x) 

[
60 2
0 347

] (1x) 

[
59 3
0 347

] (1x) 

[
58 4
0 347

] (1x) 

[
57 5
0 347

] (1x) 

 

1.382 s 

 50 [
44 0
0 248

] (3x) 

[
42 2
0 248

] (1x) 

[
41 3
0 248

] (1x) 

 

1.410 s 

 70 [
26 0
0 149

] (3x) 

[
25 1
0 149

] (2x) 

 

1.364 s 

2D (OM1 & RMS) 30 [
62 0
0 347

] (2x) 

[
61 1
0 347

] (2x) 

[
60 2
0 347

] (1x) 

 

1.454 s 

 50 [
44 0
0 248

] (5x) 

 

1.491 s 

 70 [
26 0
0 149

] (5x) 

 

1.437 s 

2D (OM1 & Kurt) 30 [
62 0
0 347

] (5x) 

 
 

1.470 s 
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 50 [
44 0
0 248

] (5x) 

 

1.496 s 

 70 [
26 0
0 149

] (5x) 

 

1.444 s 

3D 30 [
62 0
0 347

] (2x) 

[
61 1
0 347

] (3x) 

 

1.461 s 

 50 [
44 0
0 248

] (4x) 

[
43 1
0 248

] (1x) 

 

1.481 s 

 70 [
26 0
0 149

] (5x) 

 

1.446 s 

 

Support Vector Machine 

Dimensionality Basis function % training data Confusion matrix Av. comp. time 

1D Linear 30 [
62 0
1 346

] (5x) 

 

1.371 s 

  50 [
44 0
1 247

] (5x) 

 

1.349 s 

  70 [
26 0
1 148

] (5x) 

 

1.349 s 

 Radial 30 [
62 0
1 346

] (5x) 

 

1.361 s 

  50 [
44 0
1 247

] (5x) 

 

1.376 s 

  70 [
26 0
1 148

] (5x) 

 

1.379 s 

2D (OM1 & RMS) Linear 30 [
62 0
1 346

] (5x) 

 

1.383 s 

  50 [
44 0
1 247

] (5x) 

 

1.376 s 

  70 [
26 0
1 148

] (5x) 

 

1.372 s 

 Radial 30 [
62 0
1 346

] (5x) 

 

1.395 s 

  50 [
44 0
1 247

] (5x) 

 

1.390 s 
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  70 [
26 0
1 148

] (5x) 

 

1.380 s 

2D (OM1 & Kurt) Linear 30 [
62 0
1 346

] (5x) 

 

1.378 s 

  50 [
44 0
1 247

] (5x) 

 

1.369 s 

  70 [
26 0
1 148

] (5x) 

 

1.365 s 

 Radial 30 [
62 0
1 346

] (5x) 

 

1.378 s 

  50 [
44 0
1 247

] (5x) 

 

1.380 s 

  70 [
26 0
1 148

] (5x) 

 

1.395 s 

3D Linear 30 [
62 0
1 346

] (5x) 

 

1.398 s 

  50 [
44 0
1 247

] (5x) 

 

1.382 s 

  70 [
26 0
1 148

] (5x) 

 

1.373 s 

 Radial 30 [
62 0
1 346

] (5x) 

 

1.392 s 

  50 [
44 0
1 247

] (5x) 

 

1.393 s 

  70 [
26 0
1 148

] (5x) 

 

1.397 s 
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Multivariate Gaussian (p=0.01) 

Dimensionality Type of 
training data 

% training data Confusion matrix Av. comp. time 

1D Healthy 30 [
88 0
1 346

] (3x) 

[
88 0
2 345

] (1x) 

[
88 0
3 344

] (1x) 

 

1.783 s 

  50 [
88 0
1 247

] (2x) 

[
88 0
2 246

] (1x) 

[
88 0
3 245

] (1x) 

[
88 0
6 242

] (1x) 

 

1.752 s 

  70 [
88 0
1 148

] (3x) 

[
88 0
2 147

] (1x) 

[
88 0
3 146

] (1x) 

 

1.722 s 

 Unhealthy 30 [
62 0
1 494

] (5x) 

 

1.746 s 

  50 [
44 0
1 494

] (5x) 

 

1.739 s 

  70 [
26 0
1 494

] (5x) 

 

1.736 s 

 Healthy & unh 30 [
62 0
1 346

] (5x) 

 

2.238 s 

  50 [
44 0
1 247

] (5x) 

 

2.101 s 

  70 [
26 0
1 148

] (5x) 

 

1.956 s 

2D (OM1 & RMS) Healthy 30 [
88 0
1 346

] (2x) 

[
88 0
2 345

] (1x) 

[
88 0
3 344

] (2x) 

 

1.801 s 

  50 [
88 0
1 247

] (1x) 

[
88 0
2 246

] (3x) 

[
88 0
4 244

] (1x) 

 

1.768 s 
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  70 [
88 0
1 148

] (2x) 

[
88 0
2 147

] (1x) 

[
88 0
4 145

] (2x) 

 

1.752 s 

 Unhealthy 30 [
62 0
0 495

] (2x) 

[
62 0
1 494

] (3x) 

 

1.759 s 

  50 [
44 0
1 494

] (5x) 

 

1.781 s 

  70 [
26 0
1 494

] (5x) 

 

1.792 s 

 Healthy & unh 30 [
62 0
1 346

] (5x) 

 

2.294 s 

  50 [
44 0
1 247

] (5x) 

 

2.152 s 

  70 [
26 0
1 148

] (5x) 

 

2.017 s 

2D (OM1 & Kurt) Healthy 30 [
88 0
1 346

] (1x) 

[
88 0
2 345

] (4x) 

 

1.824 s 

  50 [
88 0
1 247

] (3x) 

[
88 0
2 246

] (2x) 

 

1.788 s 

  70 [
88 0
1 148

] (4x) 

[
88 0
2 147

] (1x) 

 

1.757 s 

 Unhealthy 30 [
62 0
1 494

] (5x) 

 

1.774 s 

  50 [
44 0
1 494

] (5x) 

 

1.775 s 

  70 [
26 0
1 494

] (5x) 

 

1.776 s 

 Healthy & unh 30 [
62 0
1 346

] (5x) 

 

2.298 s 

  50 [
44 0
1 247

] (5x) 

 
 

2.167 s 
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  70 [
26 0
1 148

] (5x) 

 

2.026 s 

3D Healthy 30 [
88 0
2 345

] (2x) 

[
88 0
3 344

] (1x) 

[
88 0
4 343

] (1x) 

[
88 0
8 339

] (1x) 

 

1.810 s 

  50 [
88 0
1 247

] (1x) 

[
88 0
2 246

] (4x) 

 

1.787 s 

  70 [
88 0
1 148

] (1x) 

[
88 0
2 147

] (4x) 

 

1.752 s 

 Unhealthy 30 [
62 0
0 495

] (2x) 

[
62 0
1 494

] (3x) 

 

1.790 s 

  50 [
44 0
1 494

] (5x) 

 

1.775 s 

  70 [
26 0
0 494

] (1x) 

[
26 0
1 494

] (4x) 

 

1.798 s 

 Healthy & unh 30 [
62 0
1 346

] (5x) 

 

2.303 s 

  50 [
44 0
1 247

] (5x) 

 

2.175 s 

  70 [
26 0
1 148

] (5x) 

 

2.038 s 

8D Healthy 30 [
88 0
2 345

] (3x) 

[
88 0
3 344

] (1x) 

[
88 0
6 341

] (1x) 

 

1.880 s 

  50 [
88 0
2 246

] (2x) 

[
88 0
3 245

] (2x) 

[
88 0
4 244

] (1x) 

 
 

1.813 s 
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  70 [
88 0
2 147

] (1x) 

[
88 0
3 146

] (1x) 

[
88 0
4 145

] (2x) 

[
88 0
5 144

] (1x) 

 

1.790 s 

 Unhealthy 30 [
62 0
0 495

] (5x) 

 

1.820 s 

  50 [
44 0
0 495

] (5x) 

 

1.812 s 

  70 [
26 0
0 495

] (5x) 

 

1.806 s 

 Healthy & unh 30 [
62 0
0 347

] (2x) 

[
62 0
1 346

] (3x) 

 

2.367 s 

  50 [
44 0
1 247

] (5x) 

 

2.229 s 

  70 [
26 0
1 148

] (5x) 

 

2.068 s 
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Gaussian Mixture Model (p=0.01) 

Dimensionality Int. method % training data Confusion 
matrix 

Av. comp. time 

1D Monte-Carlo 30 [
88 0
1 346

] (4x) 

[
77 11
0 347

] (1x) 

 

46.044 s 

  50 [
88 0
1 247

] (5x) 

 

47.058 s 

  70 [
88 0
1 148

] (4x) 

[
88 0
10 139

] (1x) 

 

49.170 s 

 Riemann 30 [
88 0
1 346

] (4x) 

[
88 0
2 345

] (1x) 

 

8.637 s 

  50 [
88 0
1 247

] (5x) 

 

10.428 s 

  70 [
88 0
1 148

] (5x) 

 

11.761 s 

2D (OM1 & RMS) Monte-Carlo 30 [
87 1
8 339

] (1x) 

[
87 1
9 338

] (1x) 

[
87 1
82 265

] (1x) 

[
83 5
1 247

] (1x) 

[
82 6
36 311

] (1x) 

 

94.660 s 

  50 [
88 0
3 245

] (1x) 

[
88 0
5 243

] (1x) 

[
88 0
57 191

] (1x) 

[
86 2
4 244

] (1x) 

[
83 5
1 247

] (1x) 

 
 
 
 
 
 
 
 
 

99.509 s 
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  70 [
88 0
3 146

] (1x) 

[
88 0
4 145

] (1x) 

[
88 0
6 143

] (1x) 

[
87 1
37 112

] (1x) 

[
86 2
1 148

] (1x) 

 

103.209 s 

 Riemann 30 [
88 0
2 345

] (1x) 

[
88 0
4 343

] (1x) 

[
87 1
4 343

] (1x) 

[
86 2
13 334

] (1x) 

[
83 5
9 338

] (1x) 

 

34.607 s 

  50 [
88 0
1 247

] (1x) 

[
88 0
3 245

] (1x) 

[
88 0
4 244

] (1x) 

[
86 2
1 247

] (2x) 

 

39.751 s 

  70 [
88 0
1 148

] (2x) 

[
88 0
2 147

] (1x) 

[
88 0
3 146

] (1x) 

[
86 2
0 149

] (1x) 

 

48.448 s 

2D (OM1 & Kurt) Monte-Carlo 30 [
88 0
1 346

] (1x) 

[
88 0
2 345

] (1x) 

[
88 0
3 344

] (1x) 

[
87 1
2 345

] (1x) 

[
87 1
3 344

] (1x) 

 

106.588 s 

  50 [
88 0
0 248

] (1x) 

[
88 0
2 246

] (2x) 

[
87 1
1 247

] (1x) 

[
87 1

102 146
] (1x) 

 

113.679 s 
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  70 [
88 0
0 149

] (2x) 

[
88 0
2 147

] (2x) 

[
88 0
45 104

] (1x) 

 

124.539 s 

 Riemann 30 [
87 1
1 346

] (2x) 

[
87 1
2 345

] (2x) 

[
87 1
4 343

] (1x) 

 

43.298 s 

  50 [
88 0
0 248

] (1x) 

[
88 0
1 247

] (1x) 

[
87 1
0 248

] (1x) 

[
87 1
1 247

] (1x) 

[
87 1
3 245

] (1x) 

 

37.916 s 

  70 [
88 0
0 149

] (4x) 

[
88 0
1 148

] (1x) 

 

47.833 s 

 


