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Summary

This project considers an analysis and evaluation of diffemethods for wind turbine
aerodynamics. A Blade Element Momentum method is develapédapplied to the
Annex XX wind turbine blade. For the sectional data requif@dthis method, 2D
CFD simulations are performed with the HMB solver developgdhe University of
Liverpool. With the use of this BEM method the performancetted wind turbine
in terms of thrust, torque and power coefficient is calcudat8esides this also the
relative wind angle, angle of incidence and local valuenidt, torque, lift, drag etc.,
are computed and presented in this report.

Subsequently a 3D grid is build and used to perform 3D CFD kitimns of the
wind turbine blades. After this, a comparison is made betviee BEM method and
3D CFD simulations. For this comparison the University ofdrpool provided results
of a more advanced CFD simulations which includes the towedrantains a finer
grid. After a comparison of the overall thrust and torque aerdetailed analysis is
discussed by integrating sectional pressure data.

Finally a sensitivity analyses is performed to investighteeffect of inaccuracies in
data and how to deal with this. The discussion explains tiE\ Bnethods can predict
the performance of a wind turbine quite well without requirexcessive computational
power. With the CFD methods, not only the performance of thelvurbine can be
predicted very well, but also good insight in the flow behavican be provided since
the flow around the blade can be visualised.

The work presented in this report is part of a 3 month intépahthe CFD lab of
the University of Liverpool. The internship is conductedpast of the final year of a
master degree in Engineering Fluid Dynamics at the UnityeddiTwente.






Nomenclature

a Axial induction factor
a Rotational induction factor
A Surface Area
«@ Angle of Incidence
B Number of blades
I} Pitch angle
¢ Chord
Ca Normal coefficient defined a8, = ;fﬁ
Cp Drag coefficient defined aSp = T,0%A
2
Cy, Lift coefficient defined ag);, = lpLL,gA
2
Cu Moment coefficient defined a8, = %
5 (&
Cn Normal coefficient defined aSy = h}%
Cp Pressure coefficient defined@s = 1735‘;?
2
Crow  Power coefficient defined &s,,,, = T rifi
Thrust coefficient wind turbin€'; = —L—
spUZ A

Thrust coefficient helicopteilSr_;, = ——-

3PV TR2
Diameter of tower
Axial force, parallel to chord

rpe Qg
&

Speed ratio
At Tip speed ratio
M Moment
N Normal force, perpendicular to chord
n Normal vector
Q Rotational velocity
w Rotational velocity of the flow/wake
m Mass flow rate
) Relative inflow angle
P,y Power
P Pressure
Py Free stream pressure
Q Torque
r Radial position along the blade
ro Radius to begin of blade
Tsh Radius till where the blade experiences the shadow of thertow
p Density
R Outer radius of the blade

s Space variable along contgur
iii
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Shear stress at the wall

Thrust

Twist angle

Velocity

Free stream velocity of the wind
Relative velocity
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1 Introduction

Nowadays a significant part of our total energy productiqerévided by wind energy.
To satisfy the growing demand of wind energy, more and betiad turbines are
required. In order to improve the designs of wind turbinesrghis a lot of research
going on to flow prediction models in this field. As a result e increasing amount
of computational power of the current computer systemsntiraerical methods are
becoming more and more popular.

In the past there are a lot of methods developed to predictighearound wind
turbine blades. These methods differ from very complex risotterelatively simple
2D approaches. The decision for the use of a method dependamnaspects, like for
example the accuracy of the model, the required calculditioa and the complexity.
In wind turbine design it is important to have a clear undarding of the different
models and to be able to make justified choices between tferatit methods. This
report provides a comparison between a 2D BEM method, 3D GfDlations and
experimental data in order to give the reader better insigtite different models and
the design of wind turbines.

The first chapter of this report explains the mathematicadehbdehind the used
CFD-Solver. This chapter is composed of publications from Wniversity of Liver-
pool about the HMB-Solver [11] [27] [31]. After the introdiien of the CFD-solver the
Blade Element Momentum method is introduced. Subsequéral2D and 3D CFD
simulations are described after which the results of thizselations will be compared
with the results of the BEM based method and the experiméatal In this project the
NREL Annex XX blade is used as a reference blade, since thertot of experimental
data available regarding this blade.

This report is part of a 3 month intern-ship during the finadyef a Master degree
in Fluid Dynamics at the University of Twente. This intefmisis performed at the
CFD-laboratory of the University of Liverpool under supision of Dr. R. Steijl, Prof.
G.N. Barakos and Prof. H. W. M. Hoeijmakers.






2 Mathematical Models for Ro-
tor Flow Simulations

This chapter provides a explanation of the CFD solver thdeieloped by the Univer-
sity of Liverpool and is used in this project for the CFD siatidns. This chapter is
composed of publications of people connected to the Urityes§ Liverpool who de-
veloped this solver. This chapter doesn’t include work thaterformed as part of the
internship but has the aim to explain the solver and to peosigme extra information
for the interpretation of the results. This chapter is basethe material provided by
the University of Liverpool and previously published in [127] [37] [9].

2.1 The Helicopter Multi-Block CFD Solver

The flow solver has been revised and updated over a numbears gad has been suc-
cessfully applied to a variety of problems including cavibws, dynamic stall, rotors,
wind turbines and full helicopter configurations amongsieos. HMB is a 3D multi-
block structured solver for the Navier-Stokes equationthan 3D Cartesian frames
of reference. The Navier-Stokes equations consist of &dbiiferential Equations
(PDESs) describing the laws of conservation for:

¢ mass (continuity equation),
e momentum (Newton’s 2nd Law), and
 energy (1st Law of Thermodynamics).

The continuity equation simply states that the mass musbhserved. In Cartesian
coordinatesg;, this is written as

dp | 9 (pus)

=0 2.1)

wherep is the density of the fluid: is the time andu; is the velocity vector. In the
above, Einstein’s notation is used, which implies sumnmafibw repeated indices.

The second conservation principle states that momentunh lmeusonserved. It is
written in Cartesian coordinates as

d (pu;) n 0 (pujuy)

ap 87—2’]’
ot oz, *

8,%1‘ aCL’j

=pfi—

2.2)



where f; represents body forcep,the pressure and;; the Newtonian stress tensor,
which is defined as

8u7; 8uj 2 8uk
= - =0ii—1 2.3
Ti ’“‘Kaijraxi) 3 ]833J (2:3)
with 1 the molecular viscosity ang}; the Kronecker delta, defined as
5 1 if i=j 2.4)
R I otherwise ’
The third principle can be written in Cartesian coordinaes
OpFE 0 0
—— + — [u; (pE — — (w5 — q;) = 0. 25
whereF is the total energy of the fluid per unit volume, defined as
E = [e + ;uluz} (2.6)

ande is the specific internal energy withu; representing the kinetic energy.
The heat flux vecto;, is calculated using Fourier’s Law

oT
8:Ei
wherekr is the heat transfer coefficient afitis the temperature of the fluid.

An ideal gas approximation is used, and the adiabatic indeset toy = 1.4.
Sutherland’s law is used to calculate the viscosity:

3
o T 2 Tref + TSuth
B= Hres Tref T+ TSuth

¢ = —kr 2.7

(2.8)

2.1.1 Vector Form of the Conservation Laws

These three laws of conservation can be combined and wiittdre equation shown
below, which is referred to as the Navier-Stokes equatiorisafous flow. For brevity,
vector notation is used

0 (F' 4+ F? 0(G'+Gv o (H +HY
oW (R +F) 9(GHG) | o(H 1 H)

= 2.9
ot O Ay 0z Sns (2:9)
whereW is the vector of conserved variables and is defined by
W = (p, pu, pv, pw, pE)" (2.10)

with the variable®, u, v, w, p and £ having their usual meaning of density, the three
components of velocity, pressure and total energy, respdctThe superscriptsand
v in Equation 2.9 denote the inviscid and viscid componentb@fllux vectorsF (in
the x-direction),G (in the y-direction) andd (in the z-direction). The inviscid flux
vectorsF?, G' andH’, are given by

F' = (pu, pu® + p, puv, puw,u (pE +p))"

G = (pv, puv, p* + p, pow,v (pE +p))” (2.11)

H' = (pw, puw, pvw, pw* + p,w (pE +p))T ;
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while the viscous flux vectorg’, G* andH", contain terms for the heat flux and
viscous forces exerted on the body and can be represented by

, 1 .
B = Re (07 Teas Tayy Toz; UTzx + VTgy + WTyz + Qz) 3
G" = Re (0, Tags Tyys Tyzs UTay + 0Tyy + w7y + )7 (2.12)
HY — i .
o (07 Tazy Tyzy Tezy UTzz + UTyz + WTzx + QZ)

Re

Sy represents source terms. In most calculations, these smerset td), however,
for hovering rotors, a fixed grid approach is used and a sderoeis then added:

Sns = [0, —p@ x 1, 0] (2.13)

whereuy, is the local velocity field in the rotor-fixed frame of refecen

Although the Navier-Stokes equations completely desctilsbulent flows, the
large number of temporal and spatial turbulent scales &sdcwith high Reynolds
numbers make it difficult to resolve all the turbulent scatemputationally[33]. In
such circumstances, the number of turbulent scales areeddoy time averaging
the Navier-Stokes equations to give the Reynolds-Averd¢gder-Stokes equations
(RANS). This results in additional unknowns (called Reysotresses) which must
be modelled[28]. The fluid stress tensor mentioned in Eqn&2il2 is then approxi-
mated by the Boussinesq hypothesis[4], more descriptiamhith is provided in the
following sections.

2.1.2 Numerical Methods

The HMB solver uses a cell-centred finite volume approachidned with an implicit
dual-time method. In this manner, the solution marches @ugs-time for each real
time-step to achieve fast convergence. According to théefivdlume method, the
RANS equations can be discretised for each cell by

d
dt
whereV; ; i, denotes the cell volume aml; ; ;. represents the flux residual.

The implicit dual-time method proposed by Jameson[15] edifsr time-accurate
calculations. The residual is redefined to obtain a steaatg stquation which can be
solved using acceleration techniques. The following systéequations are solved in
the implicit scheme during the time integration process

(Wi7j7kvi7j,;€) + Ri,j,k =0. (2.14)

m-+1 m n+1 n
AVWi’j’k — AVWW-JC AVWLM — AVWZ-M _ gt (2.15)
AV AT AV At bk '

whereAV is the change in cell volume\r is the pseudo time-step increment aktl
is the real time-step increment. The flux residBé.ﬁI;,i is approximately defined by

R7L+1 ~R" 4 aR:lJak W7L+1 _ n (2 16)
gk T TRk T oW . i,4,k W4,k :
255

By substituting Equation 2.16 into Equation 2.15, the résgllinear system can be
written as 5
1 R\"
— — AW = —-R" 2.17
(3 (ow) ) @)
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where the subscripisyj, k have been dropped for clarity and1” is used for(WZ’j,i - ijk)

Osher’s upwind scheme [26] is used to resolve the convefitives although Roe’s
flux-splitting scheme [29] is also available. The Monotorestdeam-centred Schemes
for Conservation Laws (MUSCL) variable extrapolation nuetf89] is employed in
conjunction to formally provide second-order accuracye Van Albada limiter is also
applied to remove any spurious oscillations across shocslkesvaThe central differ-
encing spatial discretisation method is used to solve theouis terms. The non-linear
system of equations that is generated as a result of theibagan is then solved by
integration in pseudo-time using a first-order backwarféd#hce. A Generalised Con-
jugate Gradient (GCG)[1] method is then used in conjunctidh a Block Incomplete
Lower-Upper (BILU)[1] factorisation as a pre-conditioriersolve the linear system of
equations, which is obtained from a linearisation in psetitie.

The flow solver can be used in serial or parallel mode. To olariefficient paral-
lel method based on domain decomposition, different mettaod applied to the flow
solver [42]. An approximate form of the flux Jacobian resgitfrom the linearisation
in pseudo-time is used which reduces the overall size ofitleat system by reducing
the number of non-zero entries. Between the blocks of thtg tive BILU factorisation
is also decoupled thereby reducing the communication hetyeocessors. Each pro-
cessor is also allocated a vector that contains all the redle for all the blocks in the
grid. Message Passing Interface (MPI) is used for the conratiaon between the pro-
cessors in parallel. Most computations undertaken in tlhigcave been performed
on the Beowulf Pentium 4 130-processor workstations of tR® Caboratory at the
University of Liverpool. For very large grids, however, aalations were conducted
on different supercomputing clusters such as HECToR[3&dmburgh, UK, and the
necessary porting of the code onto these facilities pedtrlECTOR is based on the
Cray XE6 system and comprises 3712 12-core AMD Opteron 2ZLMEgny Cours
processors in 1856 XE6 compute nodes, delivering a pedkfpeaince of 373 Ter-
aflops.

A number of linear and non-linear statistical turbulencedeis have been imple-
mented into HMB. The one-equation SA turbulence model[84Etlise the turbulent
properties for DES computations, and the DDES approach hasvine SALSA mod-
ification of the SA turbulence model were implemented fos thioject. Options for
DES with two-equation WilcoX — w[40] and Menter'st — w Shear-Stress Transport
(SST)[22] turbulence models are also available. All thesbulence models and in-
deed the simulation techniques are described in greatai ttethe following sections.



2.2 General Description of Turbulence and its Modelling

Turbulent flows contain structures which show rapid fludaret in time and space. A
broad range of scales are observed to exist at high Reynotdbers where turbulence
develops as an instability of the laminar flow. Starting vifite laminar flow, fluid layers
slide smoothly past each other and the molecular viscoaityxns any high-frequency
small-scale instability. At high Reynolds number, the fl@aiches a periodic state. The
character of the flow also changes and becomes more diffasigalissipative. This
flow has increased mixing friction, heat transfer rate angaging rate. Boundary
layers consequently become thicker and less susceptibkparation[6].

The non-linearity of the Navier-Stokes equations leadsarious interactions be-
tween the turbulent fluctuations of different wavelengthd directions. Wavelengths
extend from a maximum comparable to the width of the flow to maimium fixed by
viscous dissipation of energy. A key process that spreagsifition over wide range
of wavelengths is called vortex stretching[6]. Turbulemtistures in the flow gain en-
ergy if the vortex elements are primarily orientated in @diion which allow the mean
velocity gradients to stretch them. This mechanism is dgit®duction of turbulence.
The kinetic energy of the turbulent structures is then cotadg diffused and dissipated.

Most of the energy is carried by the large scale structuhesptientation of which
is sensitive to the mean flow. The large eddies cascade eterdpe smaller ones
via stretching. Small eddies have less pronounced preferientheir orientation and
statistically appear to be isotropic. For the shortest Vemgths, energy is dissipated by
viscosity. This description corresponds to what is knowisagopic turbulence. For
this flow, the ratio of the largest to smaller scale increagéds Reynolds number[6].

If the unsteady Navier-Stokes equations are used to cédcilia flow, a vast range
of length and time scales would have to be computed. Thisdvagduire a very fine
grid and a very high resolution in time. This approach knowrDérect Numerical
Simulation of turbulence (DNS) is by today’s computing sfge@pplicable only to
flows at very low Reynolds number. One technique called L-&ddy Simulation
explicitly resolves the scales away from the wall and explaiodelling in the near-
wall regions. A sub-grid scale (SGS) model is used to modebthaller scales which
are assumed to be more isotropic. Although less computdlyoimtensive than DNS,
this is still expensive, especially for higher Reynolds iemflows.

A turbulence model therefore needs to account for some patteofluctuating
motion in order to keep the computing cost down. The optimuwdehshould therefore
be simple to implement, general and derived out of the flowsmisy It is equally
important that the model is computationally stable and brate invariant. These
statistical turbulence models are applied to a special fofithe equations of motion
called the Reynolds-Averaged Navier-Stokes (RANS) equati These are obtained
by Reynolds averaging the Navier-Stokes equations.

2.3 Reynolds Averaging
In a turbulent flow, the fields of pressure, velocity, temp&@and density vary ran-
domly in time. Reynolds’ approach involves separating thw fjuantities into station-

ary and random parts. The quantities are then presented s afshe mean flow
value and the fluctuating part[6]:

p=p+¢ (2.18)



This formulation is then inserted into the conservationatipms and a process
known as Reynolds averaging is performed. Three averagetgads are possible:

* time averaging,
 spatial averaging,

e ensemble averaging.

2.3.1 Time Averaging

Time averaging is the most common averaging method. It carseeé only for statis-
tically stationary turbulent flows, i.e. flows not varyingtiwitime on the average. For
such flows, the mean flow value is defined as

i+ Tinte
u;(x) = lim ! / ui(x,t)dt (2.19)

T—oo Tinte J;

In practice,T;,,c — oo means that the integration tinig,,;. needs to be long
enough relative to the maximum period of the assumed fluotst

2.3.2 Spatial Averaging

Spatial averaging can be applied to homogeneous turbylarteh is a type of tur-
bulent flow that is uniform in all directions, on average. histcase, a parameter is
averaged over all the spatial directions by performing aiv@ integral. The mean
flow value is then defined as

uq(t —Vlgnoov///ulxt (2.20)

whereV represents the volume of the domain.

2.3.3 Ensemble Averaging

The most general type of averaging is called ensemble angragd is applicable to
flows that decay in time, for instance. This method of averggs similar to time-
averaging but rather than dividing by the integration tifig,., the mean flow value
is obtained by taking a sum over all the measurements or samp| and is defined

by

ui(x) = lim %Zui(mt) (2.21)

For turbulent flows that are both stationary and homogenedite three types of
averages mentioned above are assumed to be equal. Thispgissuis referred to as
the ergodic hypothesis[6].

By time-averaging the mass, momentum and energy equati@Reynolds-Averaged
Navier-Stokes (RANS) equations are obtained. The conjirequation remains the
same since it is linear with respect to velocity. Howevetratierms appear in the mo-
mentum and energy equations due to the non-linearity of dngection term. These
extra terms are called the Reynolds Stressgsand are defined in tensor notation as



being equivalent t(}pu;ug. The time-averaged momentum equation then takes the
form o(ou) ) 5
pPU; PUU; R
— (73 o 2.22
o " o 5, 79 1 Tw) (2:22)

where the overbar has been dropped from the mean valuesfdy.cA similar result
is obtained for the energy equation (Equation 2.23):

dp
_pfi_%+

i. (ui (i +7f) = ¢fF) = 0. (2.23)

wherquR is the turbulent heat flux. The main problem in turbulence eflot involves
calculating the Reynolds stresses, from the known meantitjean One common ap-
proach is based on Boussinesq’s approximation.

2.4 Boussinesqg-Based Models

The Boussinesq approximation is based on an analogy betwissous and Reynolds
stresses and expresses the Reynolds stresses as a prothecedtly viscosity (1)
and the velocity gradient. Boussinesq’s eddy viscosityoltlygsis states that

—— Ou; ~ Ouy 2. Ou 2
—pujul; = pir [(833 + 8x]> - 55”- ﬁa:ﬂ - §p5ijk (2.24)
J i

wherek represents the specific kinetic energy of the fluctuationdsi@given by

~

2
The key idea behind Boussinesq’s hypothesis is that the d¥éyistresses can be cal-

culated as a product of the dynamic eddy-viscogity, and the strain-rate tensor of
the mean flow, i.e.

N

k

(2.25)

— 2
where L /8 5 s
U; U U
Sii = = L 25— 2.27
2 (8xj + oxr; 3 ]&vk) (2:27)

The eddy viscosityyr, is a scalar and consequently the Reynolds stress comonent
are linearly proportional to the mean strain-rate tensoratifhalso implied here is that
compressibility plays a secondary rate in the developmetiteoturbulent flow-field.
According to Morkovin’s hypothesis [24], compressibili&ffects turbulence only at
hypersonic speeds.

To computeur, further modelling is required and it is at this point thatiwience
models come into play. Turbulence models are classifieddategories based on the
number of transport equations required to calculate According to the number of
transport equations needed for the calculation of the ed&bosity, the Boussinesq-
based models are classified as:

* algebraic or zero-equation models, such as the Cebedh&hand Baldwin-
Lomax[2] models,

¢ one-equation models, such as the Spalart-Allmaras (8A33d Baldwin-Barth (BB)[3]
models.



* two-equation models, such as the- w[40], k — €[17], k — w baseline (BSL)
and shear-stress transport (SST)[22] &nd g[23] models.

< multi-equation models: three-equation[12, 10, 8], fequation[32], five-equation
[21] and multiple time-scale [13, 18, 7] models.

An additional family of models solves equations for all campnts of the Reynolds
stress tensor. These are also known as Reynolds StressdM&&i1), second-order
closures or second-moment closures.

2.5 Viscosity-Dependent Parameters

Non-dimensionalised wall distances for turbulent flgiy, and non-turbulent flow, ™,
are defined by the following

* ynkl/Q + _ YnlUr
Yy ) Yy =
v v

, (2.28)

wherey,, is the distance from the nearest wall, = /7., /p is the friction velocity
andr,, represents the dynamic wall shear stress. Turbulent Réymumbers for the
k — e model (denoted byr;) and for thek — w model (denoted by,,) are given by
the following equation

k2 k

Ry = —, R,=— , (2.29)

ve rw

which represents the importance of the eddy over molecigapsity.

2.6 Two-Equation Models

By far the most popular type of turbulence model used is ofttveeequation type.
Two-equation models are ‘complete’, i.e. can be used toigredoperties of a given
flow with no prior knowledge of the turbulence structure onfigeometry. Two trans-
port equations are used for the calculation of the turbkawtic energyk, and turbu-
lence length scalé, or a function of it. The choice of the 2nd variable is arbigrand
many proposals have been presented. The most popular@svesing:

» ¢ — specific dissipation rate of turbulence.
* w — k-specific dissipation rate.
e 7 — turbulent time-scale.

A description of the different types of two-equation modslgrovided in Table 2.1 be-
low. As well as indicating the variable used for the secoaddport equation, Table 2.1
includes the equation used to calculate the eddy viscosity.

One of the most widely used two-equation turbulence modetisek — = model.
One of the original versions of this model was developed medand Launder [17]
in 1972. The turbulent scale in tlhke— ¢ model is calculated using a second transport
equation for the turbulent dissipation rate,The eddy viscosity for thé — ¢ model is

typically derived from
kQ
pr = C;LP? (2.30)
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Table 2.1: Different types of two-equation turbulence msdend the corresponding
second variable.

Two-Equation Model Equation  2nd Variable Used

Kolmogorov (c. 1942) [20] k72—t w (Frequency Length Scale)
Rotta (c. 1950) [

Harlow-Nakayama (1967) [14] k3/21-1 ¢ (Energy Dissipation Rate)
Spalding (1969) [35] k=2 w’? (Vorticity fluctuations squared)
Speziale (1992) [36] 1k=1/2 7 (Time-Scale)

Nee kl kl (k times length scale)
Harlow-Nakayama Ik—1/2 v, (Eddy viscosity)

whereC,, is the model coefficient. The advantage of the= model is that it performs
well for attached flows with thin shear layers and jets busfto predict the correct
flow behaviour in many flows with adverse pressure gradientended separated flow
regions, swirl, buoyancy, curvature secondary flows anteawly flows.

The other class of two-equation turbulence models that éelyiused is thé: —
w model. In 1988, Wilcox[40] developed the famous w model originally conceived
by Kolmogorov. Thek — w model is similar to the&: — ¢ model but instead uses the
k-specific dissipation rate as a second variable to competéutiulent length scale.
The eddy viscosity is obtained by

k
jr = p= (2.31)
w

Although thek — w model provides better performance in adverse pressuréegtad
flows, it suffers largely from the same problems askhe ¢ model. Hybrid versions
of thek — w andk — ¢ models called thé — w baseline (BSL) and — w shear-
stress transport (SST) models were later introduced by &g#]. These, in partic-
ular thek — w SST version, perform well in separated flows. The idea bettied
k — w BSL model is to exploit the robust and accurate formulatibthe £ — «w model
near the wall but to also take advantage of the lack of sgitgitd free-stream values
of the £ — ¢ model away from the wall. Menter[22] achieved this by tramnsfing
the k — ¢ model into the same format as the- w formulation. This process gen-
erated an additional cross-diffusion parameter indh&ansport equation. For the
SST model[22], the idea was to improve the- w BSL model by including terms
to account for the transport of the principal shear stre$gs ferm is incorporated in
Reynolds Stress Models (RSM) and was also applied in theséohKing model[16].
Its importance was realised based on the significantly ingmtaesults for adverse
pressure gradient flows[22].

2.6.1 Model Equations: Lineark — w Model

Mathematical formulations of the different types of theskmk —w two-equation turbu-
lence models discussed in the previous sections are deddrdre. More information
on thek — ¢ andk — g models can be obtained from [25].

Since the introduction of the linear— w model by Wilcox in 1988[40], the other
notable modification to the — w model came from Menter in 1994[22] who proposed
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the hybridisation of thé& — w model with thek — ¢ model, as described previously.
Table 2.2 lists the four notable versions of the- w models and further describes if
they include parameters to compute the low Reynolds numiopepties.

Table 2.2: Different types of linedr — w turbulence models

Type of Model Low-Re
Wilcox (1988)[40] Yes
Wilcox (1994)[41] Yes
Menter (1994)[22] — (i) BSL Model Yes
Menter (1994)[22] — (ii) SST Model Yes

Turbulence transport equations used in the formulatiorhefit— w models are
given by the following:

53 00+ 5o U3k = o | (e 22) FE e p(m— k) (232)

0 0 0 ur\ Ow a, B
ot (pw) + Bz, (pUjw) = oz, KH + %) 8351] +p (Vth 5*w2> + pSi
(2.33)

In the transport equation fdr andw above, the production of turbulenck, and
the dissipation rate specific tg P,,, is defined by

* 6ﬂ7j’

P, P, =p2p,. (2.34)
14

Values for the coefficients used in all the four types of linka- w models discussed

here are given in the Table 2.3.

Menter's models[22] are constructed as a ‘blend’ of the w andk — ¢ models.
Here thek — ¢ model is phrased in the same form as the w model so as to exploit
its independence of free-stream values. Blending ofthes andk — w model values
for a, 3, okfl ando ! is (in this notation) given by the following equation

B ( Z ) = Fia+ (1— F)b. (2.35)
The blending function is defined by
Py = tanh (arg}) (2.36)

where

1/2
k 5000 2kw } . (2.37)

o = [max (ﬁ*wy’ y2w ) "z max (Vk - Vw,0.0)

Thek —w SST model places an additional vorticity-dependent linotethe shear-
stress

1/2
2k 5001/> . (2.38)

F, = tanh (arg? args = max
2 ( gz)a 92 (5*Wy7 y2w
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Table 2.3: Values of constants used in lingar w models.

Type of Model o* B* o B
Wilcox (1988)[40] 11 i o5 (B 5 o z
i 0t o 9 1st(= 5 i+ 5% 3
Wilcox (1994)[41] = RTg s 1s+(%3)4 5 110+1;iw77 3
Menter (1994)[22] 1 0.09 B< 8223 ) B< 8'822 >
(BSL)! :
o osiw 0.553 0.075
?Aszq_t)gr (1994)[22] min (1, 3 E) 0.09 B( oo ) B ooss
Type of Model oK Ow S
Wilcox (1988)[40] 2 2 0
Wilcox (1994)[41] 2 2 0
0
Menter L ! B < 1.71 >
0.5 0.5 =LVEk-Vw
1994)[22]BSL)! 2
(1994)[22185L) B<1.o> B( 0.856>
0
Menter (1994)[22]SST)? : : B< e >

Note that this model also uses a slightly different value of

For low-Reynolds number versions of the- w model and Menter's — w BSL
and SST models, the following boundary conditions are assifor a direct integration
to the wall

Fork: ky=0,  fluz(k)y=0 |, (2.39)
Forw: w =0, fluz(w)y = —vVw . (2.40)

where the subscript denotes the valuat the wall.
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3 BEM Method

For the Blade Element Momentum theory (BEM) there is a coatin used of the

momentum theory, which was developed by Glauert (for ptep®l and Betz (for

windmills), and the blade element theory. The momentumrthesefers to a control

volume analysis for the conservation of momentum while tlz@ld element theory
refers to a force analysis of a blade section as function@irtboming flow and the

blade geometry. In the BEM theory the forces of the blade etfgrmethod are related
to the change in momentum of the momentum theory. This makasssible to do

calculations about the performance characteristics parlansection of the rotor.

3.1 Momentum Theory

Since a wind turbine extract energy from the flow, the enefgh@flow is decreasing
and the real velocity of the flow around the blades is lowen the free-stream velocity.
In the momentum theory the velocities are corrected by threduction of induction
factors. The axial momentum theory enables to derive aioeldtetween the axial
force and the axial induction factor while the tangentiahnemtum theory results in a
relation between the in plane forces and the angular includctor.

3.1.1 Axial Momentum Theory

The axial momentum theory applies the conservation laws b atream tube. The
rotor of the wind turbine is considered as a uniform actudisc that introduces a
pressure discontinuity. The reason that an actuator diserisidered as a rotor with a
infinite number of blades is that a uniform flow is assumed cWig not possible with
a finite number of blades.The situation can be sketched asmied in Figure 3.1.
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Actuator disc A R Stream tube boundary

U, =Us=Up Vit

d="w

Figure 3.1: Stream tube with indicated the velocities [30]

The axial momentum theory is valid for the following assuioips:
« Steady, incompressible and 1D flow

¢ Uniform homogeneous and non turbulent flow

L]

No frictional drag

L]

No heat transfer
¢ The rotor disc can be considered as a rotor with an infinitaber of blades

Applying the conservation laws to the stream tube sketché&dgure 3.1 results in the
following equations from respectively the conservatiomadss, momentum and en-
ergy.

m = pU1A1 = pUdAd = pU4A4 (31)
T = i(Us—Uy) (32)

1
Py = TUg= §m(U12 - UZ) (33)

Wherern is the mass flux [kg/s]p the density in[kg/m?], P,,, the power extracted
by the actuator disc [W]I" the thrust force in axial direction in [NJ4;, A4, A, the
sectional surface area’s of the stream tubeérirf] as displayed in Figure 3.1 arid,
Uy, U, the velocities indicated in Figure 3.1 in [m/s]. Combinirguation 3.2 and 3.3
leads to a relation for the velocity, at the disc:

P, LWz -u) 1
Uj=-2 =21 "2 _ (U +U 3.4
S /AT B ALl (34)

Defining the axial induction factor as the fractional deseeaf the wind velocity at the
rotor plane with respect to the free stream wind velocity:

Us —Ug
= — 3.5
0= (35)
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WhereU,, is the free stream velocity which is equal to the veloéityin Figure 3.1.
Rewriting this will result in an expression for the veloc#tthe rotor plane as a func-
tion of the induction factor.

Ug = Uoo(l - CL) (36)
Substituting equation 3.6 into equation 3.4 leads to anesgion for the downstream
velocity Uy.

Uy = Uso(1 = 2a) 3.7)
SincelU; andU, can both be described by a functionldf, anda the axial thrust can
be expressed as a function of these variables, by usingiequ&a?

T = m(Us — Uy) = pU22a(1 — a)A, (3.8)

with A,. the surface area of the rotor plane. In order to express tlaktarust force as
a function of the radius the rotor surface can be divided amoular rings as is shown
in Figure 3.2, wherel ', represents the thrust aid, the free stream velocity. The
axial thrust force for each ring can than be determined by:

dT(r) = pUZ2 4a(1 — a)mrdr (3.9)

Where the surface area of the annular ring is determined,by: 27rdr.

Figure 3.2: Division in annular rings [30]

3.1.2 Tangential Momentum Theory

The tangential momentum theory enables to find a relatiowdsst the torque of the
rotor and an angular induction factor. The concept for theoty is shown in Figure
3.3 where position 2 is just upstream of the disc, positiams8 jlownstream of the disc
and d indicates the position of the disc itself.

Applying the conservation law for angular momentum to amitésimal ring of the
rotor disc as sketched in Figure 3.3 leads to the followingession:

dQ(r) = mr(wir — war) (3.10)
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dF,

“+ inplane

24d3

Figure 3.3: Tangential momentum concept for in plane fof8ék

WheredQ is defined as the torque in the rotor plame,the mass flow through the
rotor planew;r andw,r respectively the rotational velocity of the upstream arel th
downstream flow and as the radius of the annular ring. Since is assumed that the
upstream flow is uniform and not rotating; can be set to zero. Defining, as the
wake rotation cause by the torque and using equation 3.1 .&nd 8ombination with
equation 3.10 leads to the next equation:

dQ(r) = pUs2(1 — a)r3wymdr (3.11)

Where for the surface area an infinitesimal ring of the cros8meis taken and where
wy4 the wake rotation is defined in [rad/s]. In a similar way asasel for the axial

momentum theory can be proved that the wake rotation at tbhe dsc can be written
as a function of the rotational velocity and the angular stgun factor [30]:

Wq = %w4 =ad'Q (3.12)

Substituting this in equation 3.11 leads to the followingatipn for the torque:

dQ(r) = pUsodd' (1 — a)r*Qmdr (3.13)

3.1.3 Blade Element Theory

The blade element theory evaluate the aerodynamic forceadmnsection of the blade
as a function of the geometric properties and the inflow angiaen the inflow an-
gle is calculated the aerodynamic forces can be obtained é@responding data of
the airfoil section. The Blade Element Momentum theory isdabon the following
assumptions:

¢ The flow is steady, incompressible and 2D

¢ The flow is uniform, homogeneous and non turbulent
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e There is no aerodynamic interaction between the elemeatad flow in radial
direction)

» The forces of the blades are only determined by lift and dreayacteristics
» Free-stream flow is perpendicular to the plane of rotatsonn yaw)
e The blades are assumed to be rigid

For each section along the radius the angles and velociebe defined as shown
in Figure 3.4. The geometric angle is defined as the pitcheaingteased by the local

Plane of rotation

-QR

Figure 3.4: Definition of the different angles

twist angle of the section. The difference between thiseiagld the relative inflow
angle can be defined as the local angle of incidence:

a=¢—(0+5) (3.14)

whereq is the sectional angle of incidence [de@§the geometric twist angle [deg] and
[ the pitch angle of the blade [deg].

When considering the aerodynamic forces with the blade efetheory and the
aid of Figure 3.4, the next equations can be derived:

dT(r) = B%prel (C cos(@) 4+ Cysin(e)) cdr (3.15)
dO(r) = B% U2, (Cysin(@) — Cy cos(6)) erdr (3.16)

wheredT is the contribution to the thrust in [N] per sectidn, d@ the contribution
to the torque in [Nm],B the number of bladeg; the relative inflow angle [degl/;.;
the relative velocity in [m/s]p density in [kg/m?], C; the lift coefficient [-], C; the
drag coefficient [-],c the chord of the local section in [m] andthe radial position
of the section in [m]. The relative velocity in the above eipres depends on the
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induced axial and rotational velocity. With the aid of Figu8.4 and the use of the
induced velocities the relative velocity and the relativibaw angle can be defined by
the following equations:

Ut = /(U (1-)® + (Qr (1 + @) (3.17)
¢ = arctan (m) (3.18)

where the relative velocity,..; is defined in [m/s]/,, represent the free stream wind
velocity in [m/s], a the axial induction factor [-]¢ the relative inflow angle in [deg],
a’ the angular induction factor [-] the rotational velocity in [rad/s] andthe radial
position at the blade in [m]. Since above equations are dép#ron the radius the
relative velocity and inflow angle differs for every sectiodsing equation 3.18 and
the definition of the speed ratio makes it possible to deniveguation for the relation
between the two induction factors:

1—-a
tan(¢) = Natd)
a = 1—tan(¢)\. (1+d’) (3.19)

where),. is defined as the speed ratio [-]:

Ay = (3.20)

Qr
Uso
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3.2 BEM Model

Coupling the momentum theory with the blade element thedliyr@sult in the BEM
model. This is accomplished by coupling the relations ferttitust and the torque from
both methods. So equating and rewriting equations 3.9, 3.153 and 3.16 results in
the following expressions:

UZ24a(l —a)nr = Bc%Ufel(C’l cos(¢) + Cysin(¢)) (3.21)

4a/ (1 — a)Upomr?Q = Bc%Ufel (Cysin(¢) — Cycos(9)) (3.22)

The definitions for the relative velocity, introduced in atjon 3.17 and 3.18, can be
combined to:

Uso (1 —a)

Urer = sin(¢)

(3.23)

Substituting this in equation 3.21 and 3.22 and rewrite ¢gjgations will lead to an
expression for the axial and angular induction factors:

8armrsin(¢p)? = Bc(l—a)(C)cos(¢) + Cysin(¢))

a _ Be(Cycos(¢) + Cysin(¢))
(1—a) 8mr sin(¢)? (3.24)

Where in the equation for the angular induction factor, equaB.19 is substituted for
the axial induction facto in order to obtain an equation faf independent ofi:

8a/mr?Qsin(¢)? = BcUy (1 —a) (C)sin(@) — Cycos(¢))
a _ BcUy (Cysin(¢) — Cycos(9))
(1—a) 8rr2Qsin(¢)?
a _ Be(Cysin(¢) — Cycos(9))
1—(1—tan(p)A, (1 +a)) 81\, sin(¢)?
a’ Be (Crsin(¢p) — Cgcos(¢))
1+a) 477 sin(2¢) (3.25)

For a given wind velocity, blade geometry and operating @i, the problem can
be described by equation 3.18, 3.14, 3.24 and 3.25, whichegeated below. When
the aerodynamic data of the used profiles is available thgsatiens can be solved in
an iterative way. After doing a first guess for the inductiaotbrs, these equations can
be solved and will result in a 'new’ value for the inductioredficients. This process
can be repeated until the difference in the induction facteaches an acceptable limit.
Repeating this for every sectiair along the radius leads to a solution for the whole
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blade.

1-a
d) = arctan <)\T(1—|—a/))

a = ¢—(0+P)
a _ Be(Gi(a) cos(é) + Ca(a) sin(¢))
(I—a) 87 sin(¢)?
a _ Be (Ch(a) sin(¢) — Cy(a) cos(¢))
(1+a) 47y sin(2¢)

For the above set of equations the influence of the wind viglacid the operating con-
ditions is captured in the speed ratip which can be calculated using equation 3.20.
When these equations are solved other properties like thsttitorque, induced ve-
locity and the local lift coefficient can be determined. Ttés be done with either the
equations derived from the momentum theory or the equatmn the blade element
theory. To calculate the torque and the thrust per sedtidhe following equations are
used:

dT(r) pUZ 4a(r) (1 — a(r)) nrdr (3.26)
dQ(r) = 4d'(r) (1 —a(r)) pUsemrQdr (3.27)

By summing all the sectional values for the thrust and thguerthe total thrust and
torque per blade can be obtained.

R

B dT(r)
T o= % (3.28)
R
Q0 - Zd%@ (3.29)

To

In order to check this model the calculations for the thrust the torque can be re-
peated with the equations derived from the blade elemeritadet

dTpg(r) = B%prel (Ci(r) cos(o(r)) + Ca(r)sin(e(r))) cdr  (3.30)
AQs(r) = BypUZ (Ci(r)sin(@(r) — Culr) cos(6(r)) erdr (3.31)

The performance of a wind turbine is often expressed in tefp®wer. To eliminate
the direct influence of the wind speed, the dimensionles&pouefficient is computed,
which is the ratio between the extracted power and the povatliahle in the flow. The
power coefficient can be defined as:

PO'LU
3PULA

Chow = (3.32)

whereP is the power extracted by the wind turbine in [W] definedras- T2, A the
surface area of the rotation plane of the bladesnirfJand U, the free stream wind
velocity in [m/s]. To see what the contribution of each sattir is to the total power
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coefficient the sectional power coefficient can be compuyed b
Q4a' (r) (1 — a(r)) pUsenr3Qdr
1pU3 2mrdr
= \4d(r) (1 —a(r)) (3.33)

Crow(r) =

where equation 3.9 is substituted for the torqie;dr is substituted for, since this is

the surface area of the annular rings and the velocity ratieplaced by\?. Equation

3.33 suggests that a higher speed ratio and a low axial ilgufztctor should result
in a higher power coefficient. But since the speed ratio ardrifiuction factors are
related to each other is it difficult to see directly how thevpocoefficient will behave
by varying this parameters. But as is known from the theorBeiz, the maximum
power is produced for an axial induction factor of 0.333.
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4 | 2D-CFD

In this project 2 dimensional and 3 dimensional CFD simalaiare performed. The
results of the 2D simulations are used in combination withBrade Element Momen-
tum model for a 2D model for the prediction of the performaofeind turbine blades.

Since the S809 profile is the only geometry which is used feiblades in this project,
the simulations that will be discussed are limited to thifodisection only.

4.1 The Grid

In CFD simulations the grid forms an important factor in ahitag reliable results. In
order to have more control over the grid, a structured gribuisd. The advantages
of a structured grid are that the size and the shape can beottedtbetter than for
unstructured grids. For example in the area close to thesuird very fine grid is
desired, while in the area further away from the surface eseo@rid will satisfy. Also
the junction between these two area’s need to be designefultarsince adjacent
cells can't vary to much for a good solution. Apart from theesalso the shape can
be controlled better with structured grids. For reliablsutes the corners of all the
cells need to approach the 90 degrees as close as possildse dbnditions need to
be observed more severe in area’s where the flow propertiestig gradients, then
in area’s where the changes are small as in the far field fanpka Since the S809
airfoil section has a sharp trailing edge the grid is basetherso called C-topology.
In order to predict the flow in the boundary layer a very finelggirequired around the

Figure 4.1: 2D grid of the S809 airfoil section
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surfaces. For an estimation of the size of these cells thersevReynolds number is
calculated:

~ L _m

~ Re pvL

whereh represents the dimensionless height of the cells at thauff], 1 the dy-
namic viscosity of the medium [Pa.g]the density inkg/m?] , v the velocity in [m/s]
and L a characteristic length in [m], which is in this case the chof the airfoil (1
m). From this equation follows that the size of the cells atshrface need to be in the
order of10~°. Since in the area where the flow separates from the surfaceadiner
grid is desired there is also a clustering introduced arahadrailing edge as can be
seen in Figure 4.1. The size of the cells around the trailuhgeestarts at0—* and
grows exponentially. The grid that is used for the simutadioontains 94.680 cells and
is displayed in Figure 4.1.

4.2 Results 2D-CFD

The aim of the 2D-CFD simulations is to obtain aerodynamia @bout the used air-
foil sections for the BEM model. For the grid described absteady simulations are
performed for different angles of incidence. The anglesoidence that are evaluated
are the angles between -8 and 20 degrees. This captures tie ddmain of interest

for applications in wind energy. The simulations are dontlwio turbulence models,
thek — w and thek — w — SST model. The differences between these methods are
discussed in section 4.2.2. After running the simulatiamnsfl the different angles the
results can be collected and the graphs in Figure 4.2 candwendin Figure 4.2 can

be seen that flow separation starts to occur around an 12etegngle of incidence. In

= 15 0.15
oy + Cdtotal +
“C_-’ 1 Z * Cdpressure p
(&) +
= € 0.1 x Cdfri(:lion ¥
Q@ 05 QL +
[e] o o
@) E +¥
[3) ] *
L Q I
% (0} 55 O J:*
g o 0.05 S
> ik © e
T -05 a -
R
o 'ﬂwwwﬁﬁﬁﬁiﬁ*ﬁ
< 1 ‘ ‘ ‘ 0 xxxxxxx><><><><><><xxxﬁ**ﬁ%%ﬁxxxxxxxxxxxxxxXxxxxxxxx
0 10 20 -5 0 5 10 15 20
Angle of Incidence [deg] Angle of Incidence [deg]
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Figure 4.2: Aerodynamic properties of the S809 airfoil Eegtobtained by the 2D-
CFD simulations

Figure 4.2 the contributions of the pressure and frictiarcds on the drag coefficient
are shown. This are the values obtained by the integratioespiectively the pressure
and the friction coefficient which are described by:

P - T,
C,=——"= and C;=-—— (4.2)
TanU% T



wherer,, is the wall shear stress itV[/m?]. There can be noticed that the contribution
to the drag by the friction terms is more or less constant addpendent of the angle
of incidence, while the contribution of the pressure termséase substantially by
increasing the angle of incidence. For the lower anglestathithe friction part has
a dominant contribution to the total drag while for angleggar than 5 degrees the
pressure part takes the main share. Figure 4.3 on page 28 shewesults of the CFD
simulations.

In Figure 4.3a the pressure is displayed in terms of the presefficient. In Fig-
ure 4.3b there is zoomed in on the leading edge of the profdbda the changes in the
C), and the stagnation point which can be recognised by the ddrkpot. Figure 4.3c
till 4.3e presents the transition from fully attached flowflmv separation. The last
figure, Figure 4.3f shows the velocity close to the surfaoehis figure the boundary
layer with the no slip condition at the wall can be noticed.
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(a) Pressure coefficient for an angle of attéigkPressure coefficient at the nose of the pro-
of 10 degrees file for an angle of attack of 10 degrees
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Figure 4.3: Visualisation of the flow around the 2D airfoil
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4.2.1 Convergence of the solution

In order to be able to judge about the reliability of the resfifst a convergence check
is performed. The HMB solver provides a few ways to check toisvergence. One
way is to look at the values of thg;, C; andC,,, and look what the changes are. If
at a certain point the changes are nearly zero it can be atettithat the values are
converged. In Figure 4.4 the values@f, C,; andC,, are plotted as function of the
number of iterations. Keep in mind that a converged solutiondirectly means that
the solution is the correct answer to the problem since tladitgwof the grid plays an
important role in the accuracy and reliability of the sadati In Figure 4.4 and 4.5
the convergence of th€;, C,; and C,, values are shown for an angle of incidence
of 5 degrees and a Reynolds number of 2.000.000. This cceweegbehaviour is
representative for all the 2D simulations that are carrigddarring this project.

The plots in Figure 4.4 show the convergence of the pressurestas a function of
the number of iterations. It can be seen that the values atéesed in the beginning
but start to converge after about 1500 iterations. In Figude the moment coefficient
around the leading edge is shown instead of the moment deeffaround the quarter
chord. In the results this is converted to a quarter chorfficant. The same check is
performed for the friction terms of the coefficients and iewh in Figure 4.5.
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Figure 4.4: The convergence of the pressure terms of thfdeefs
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A second way to check the convergence is to look at the resittuthis case the
residual is checked with the L2 norm which is defined as:

N M
Zl El(RESi,j)2
L2 RES =\| == 4.2
- M« N (4.2)
wherei is the index of the grid pointlV the total number of points in the grid; the
index of the element in RES and the total number elements in RES. The value of
the L2 norm is the residual averaged over the different egltsvariables and is often
plotted on a logarithmic scale. In the HMB solver the L2 nosrekpressed as the
logarithm of the ratio between the initial residual and therent residual.

L2_RES
log, (‘) (4.3)

LQ_RESinitial

In the figure below this logarithmic L2 norm is plotted versbis number of iteration
steps for the simulation with a 5 degrees angle of incideAdso the residual of the
turbulence model for this case is displayed in the figurevaelo
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Figure 4.6: Logarithm of the residual of the Navier-Stokgsations

32



4.2.2 Turbulence modelling

Since CFD simulations are very sensible for differencehiénsimulation parameters
and the choice of the turbulence model, these simulatioascarried out with two
different turbulence models. The— w and thek — w — SST model. The former
model is a 2 transport equation model developed by Wilcox9@81[40] that solves
equations for the kinetic energyand the turbulence frequency Thek — w — SST
model is an extension of the— w model and includes an extra term which accounts
for the transport effect of turbulent shear stress. Thew — SST uses a blending
function between thé — w model which is applied in the area close to the wall and the
standard: — ¢ model which is used further away from the wall. The advantzgee
k —w — SST model is that it predicts the point of separations a bit latause this
model is less sensitive for the inlet turbulence.

To get an impression of the influence of the different turbaéemodels th€’; and
C,4 values of both models are compared in Figure 4.7. There caseée that the
behaviour is similar for both models except for the area wiseparation occurs. The
k —w — SST model tends to predict the flow separation a bit later.
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Figure 4.7: The influence of the different turbulence modelshe lift and drag coef-
ficient
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5 | 3D-CFD

For the 3 dimensional simulation there is a grid build for freex XX blade. This
blade is discussed in detail in section 5.1. For this 3D satiohs only thék—w—SST
model is applied.

5.1 Annex XX blade

The blade that is analysed in this project is the NREL Annexade. The Annex
XX is a full scale wind turbine with a diameter of 10 m for whiaHot of experiments
are performed. The experiment was conducted in the 24.8RBBIASA-Ames wind
tunnel, and included mainly pressure measurements. liptbjsct the results of these
measurements are compared with the results of the diff@rediction methods. The
Annex XX blade is a blade that is designed with the S809 praifilly. The shape
of the blade is characterised by the chord and twist digicbuvhich are shown in
Figure 5.1:

205 0.8
B 15} 0.6
g 10/ g
p S04
2 S
g ° S
ol 0.2
_5 L L L ) 0 L L L ‘
2 3 4 5 2 3 4 5
Radius [m] Radius [m]
(a) Twist distribution (b) Chord distribution
Figure 5.1: Geometric properties of the Annex XX blade
5.2 The Grid

The topology of the 3D grid is displayed in Figure 5.2. As carsben in this Figure
only one half of the flow domain is modelled in the grid. Thisit;me because the wind
turbine has 2 identical blades and the symmetry can be useditice the size of the
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grid. The grid contains 2.495.272 cells which are a lot senalt the surface, where the
flow behaviour in the boundary layer need to be computed.

(b) Slice of the topology
(a) Top view of the topology

Figure 5.2: Topology of the 3D grid

Also at the trailing edge the size of the cells are smallecesithe changes are
expected to be stronger in this area. The cells at the suafagdt¢he trailing edge have
a dimensionless size @0 ~° and grow exponentially. In Figure 5.3 and 5.4 the grid at
the blade surface is shown even as a slice of the grid aroenldlde.

Figure 5.3: The cells of the grid at the surface of the blade
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Figure 5.4: A slice of the grid zoomed in on the airfoil sentio

5.3 3D-CFD Results

The grid described above contains about 2.500.000 cellssamskd for the visualisa-
tion of the flow around the blade. In Figure 5.5 the strearsliaemund the blade are
shown. The streamlines around the tip and the root of theetdadhonstrate the effect
of a finite 3D wing. There can be seen that the flow in the midisedf the blade is

Figure 5.5: The streamlines at the upper surface obtain@Dtsimulations

not influenced by 3D effects of the root and the tip of the blaflbe vortices at the
root and the tip causes the streamlines at the upper suddmnt towards this outer
parts of the blade. As can be seen in Figure 5.5 this effeatrbes stronger when
approaching the tip or root. For the comparison of the 3D Céfults with the BEM
results and the experimental data, the results of a formgegtrare used. Since this
was a more advanced model that includes more details aboexdonple the influence
of the tower. This grid contains about 18.000.000 cellssiagtof the 2.500.000 of the
grid described above.
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6 BEM Results and Compar-
Ison with 3D CFD

This chapter provides the results of the BEM model which isutuced in chapter 3
and a comparison of this model to the 3D CFD results and exgetal data. The
blade that is used for this comparison is the NREL Annex XXIblavhich is described
in section 5.1.

6.1 Results BEM

Before starting with the comparison between the BEM metlioel 3D CFD and the
experimental results, first the results of the BEM model aseussed. In the BEM
method the sectional data is obtained by CFD simulationk thié &4 — w turbulence

model. These models are build with Matlab as explained inptieeeding chapters.
The conditions that are applied to the BEM model are:

e Wind velocityU,, of 7 m/s

 Rotational spee€ of 72 rpm

* Number of blade$ is 2

* Pitch angles is 3 deg (at the tip)

* Whole blade has the S809 profile

« Aerodynamic data is produced by 2D CFD simulation

« Densityp is equal to 1.20 kg/fh

* Blade radius of 5 m

« Twist and chord distribution is as shown in Figure 5.1 oftieec 5.1.

As mentioned before, the system of equations (shown on payen@eds to be solved
in an iterative way. The convergence of the axial inductiaetdra during this itera-
tions is shown in Figure 6.2 for the first section at the rodtisTigure is representative
for the convergence of the other sections and the angulaciiwh factor as well. The
solution of the induction factors is shown in Figure 6.1 veéhtre red line indicates the
Betz limit which is the theoretical upper limit for maximunoyger.
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Figure 6.1: The induction factors compared to the Betz limit
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Figure 6.2: The convergence of induction factora atr=1.25m

In Figure 6.3 the geometric twist angle is compared with iffer@nt inflow angles.
From this figure the effect of induction can be seen by compatie undisturbed
inflow angle with the induced inflow angle. For this condigsathe inflow angle will
be more or less reduced |y which is aroundl1 percent. The fact that the line of
the geometric angle is more or less parallel to the induc@dwnangle results in a
nearly constant angle of incidence. This explains direitté/purpose of twist, since
the twist enables the blade to operate at the optimal angfeinfence at every section.

In Figure 6.4 can be seen that the sectional lift coefficignis more or less constant
along the radius, and is a result of the nearly constant asfglecidence. Since only
the component of the force in the plane of rotation can coutei to the torque and
the energy production, it is interesting to see what theriatbetween the thrust and
torque. This is visualised in Figure 6.4 by adding the congmis of theC; and theC'y
in thrust and torque direction.

40



— Anglle relative wind, no ind. fact
Induced angle of relative wind
357 — Geometric angle (pitch + twist)
— Local angle of incidence

0 Il Il Il Il
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1R [-]

Figure 6.3: The geometric angles compared with the diffedefinition of the inflow
angles
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Figure 6.4: The sectiondl; and the components in thrust and torque direction

The actual torque and thrust is calculated with equatio 8l 3.29 and is shown
in Figure 6.5. In order to get an idea what the forces on theédotaie, also the local lift
distribution is calculated. There can be seen that the fiort@rque direction is nearly
constant while the thrust and the lift are increasing. Thisdviour can be explained by
the fact that the direction of these forces is dependenteofatative inflow angle which
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Figure 6.5: The forces and torque along the radius

varies along the radius (see Figure 6.3). So the effectsarkdsing chord, decreasing
angle of incidence but increasing velocity will in this cassult in a constant force in
torque direction. The fact that the thrust is almost the sasie lift is caused by the
case that the relative inflow angles are very small.

To evaluate the performance of a wind turbine the generate@ipis an important
indicator, which is represented by the power coefficienbiiticed in section 3.2 on
page 22. In Figure 6.6 can be seen that the middle part of Huelias the highest
power coefficient for the applied operation conditions. sThigh power coefficient
does not directly mean that the middle section deliversthisdiggest contribution to
the total power of the wind turbine. The power coefficientwghdn Figure 6.6 can be
treated as a mark for the efficiency. The fact that the cureeedeses to the tip means
not directly that the power decreases but that the ratio detwroduced power and
available power gets lower by approaching the tip. This issed by the fact that the
outer circles have a bigger surface area and thus contai@wind power. The overall
power coefficient is displayed in Table 6.1 even as the totaist, torque and power
which are obtained by integrating the distributions showRigure 6.5. For the overall
power coefficient the surface area of the whole disc is takedetermine the wind
power, so this includes also the part around the hub.

Torque 726 Nm
Thrust 1133N

Power 5474 W
Power Coefficient| 0.338

Table 6.1: BEM results fob/, = 7 m/s and2 = 72 rpm
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6.2 Comparison

The results of the different methods presented before amgpawed in this section.
Besides a global comparison of the performance paramekershrust and torque,
there is also a more detailed comparison made with sectdatal The methods that
are discussed are:

« BEM, 2D-CFD simulations with thé — w turbulence model

e 3D CFD simulations with & — w — SST turbulence model and a grid of
18.000.000 cells

e Experimental results obtained from the Annex XX experimienthe NASA-
Ames wind tunnel

First the performance in terms of thrust and torque is catedl and compared. The
thrust and torque of the experimental results are obtaigadtbgrating the results of
the pressure measurement. For the 3D-CFD these valuestarenaed in a similar
way by extracting the sections and integrate the pressotmédrthe surface. The pro-
cedure for the 2D-CFD BEM methods is described in section Bo2 the simulations
that are used in this 2D model the influence of the frictioe&! are removed from the
data in order to make a fair comparison with the integratédegaof the experimental
(pressure) data. In Figure 6.7 there can be seen that thet #d the torque are over
estimated by the 2D-CFD method. The suspicion is raisedtlimis caused by the
fact that for the 2D BEM method the 3D flow effects are not talkkén account.
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Figure 6.7: The thrust per blade with the tower shadow model
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Figure 6.8: The torque with including the tower shadow effec

6.3 Comparison by pressure integration

To get a better idea of what is going on and to investigate ifferences in the above
results in more detail, the analyse is extended with a coisgranf the pressure distri-
butions for different sections along the radius. The pressicompared for the same
sections as where the measurements of the experimentkarg temely 30, 46, 63,
80 and 95 percent of the radius.

In Figure 6.9 there can be seen that for the section in thelmufctthe blade the
pressure coefficients of the different methods match walkhé area around the root
and the tip, arises an over estimation by the 2D methods.i3ksuse by the fact that
losses by 3D effect are not captured in this methods.

To see what the influence of the pressure differences is omthae and thrust of
the wind turbine thes€’, plots are integrated. Since for the experimental data tisere
only a limited amount of measurement points available, itaspossible to get a full
description of the”, curve. To make a fair comparison with the other resultsthe
curves of the CFD methods are integrated in the same way. riié&ns that for the

n

Figure 6.9: Integration of the pressure coefficient

CFD methods only the values at the points of the measureraentaken into account,
which are pointed out in Figure 6.9. By numerical integnatishown in Figure 6.9, the
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normal, axial and moment coefficient can be calculated:

Cn = % —Cy(i)ny (i)ds(i) 6.1)
Ca = % —C,(i)ng(i)ds(i) 6.2)
Cu = 5 D290 (~Cplina(i)ds(i)) + (i) (~Cplihna(i)ds(i)) (6.3)

whereds is the length of an infinitesimal part of the contour [r@},(7) is the average
of the pressure coefficient defined at the end point&pfy is the normal coefficient
defined positive pointed upward; 4 is the axial coefficient positive in backward di-
rection and’, is the moment coefficient defined positive for clockwise tiota The
normal vectors in this equations is defined as:

. _dy(i)
(i) = { it } = l a0y ] (6.4)

2y (7) ds (i)

The results of this integration will be discussed in the resdtion together with a
sensitivity analysis of these values.

46



O Experiment
3D CFD

— BEM

0.2 0.4 0.6 0.8 1
x/c [-]
(a) C), slice at 30%
W O Experiment
3D CFD
—BEM

0 0.2 0.4 0.6 0.8 1
xic [-]
(b) C,, slice at 46%
O Experiment
3D CFD
— BEM

xic [-]
(c) C), slice at 63%

47



O Experiment
3D CFD

— BEM

x/c [-]
(a) C) slice at 80%

O Experiment
3D CFD
— BEM

0.2 0.4 0.6 0.8 1
xlc [-]
(b) C,, slice at 95%

Figure 6.9: Comparison of the sectiordg) curves
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6.3.1 Sensitivity Analysis

For the experimental results there is only data availakieegpoints where the pressure
tabs were located. In the comparison above the CFD datadeetlized to make a fair
comparison. This is done by extracting the values of the C&i dt the same points as
were the pressure tabs were located. Subsequently theset$aare integrated in the
same way as shown in Figure 6.9. To see what the effect issofifproach a sensitivity
analysis is conducted. Imagine for example that the lonatiothe pressure tabs is
given within a certain tolerance. What is then the effect tlelinaccuracies in the
data? This effect is investigated by comparing the diffeeein the pressure obtained
by the CFD simulations in the case the value of the x-cootdimaries within a given
tolerance.  For example take the point 0.3. If the tolerasd@@01 the maximum
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0 © Experimental
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(a) The normal coefficient’y at the sections at 30%, 46%, 63%, 80% and
95%

and minimum value of the pressure of the CFD results in thgadetween 2.999 and
3.001 are compared. When this is repeated for all the poirnttseoéxperimental data,
every point has a maximum and a minimum value for the pres3orénd for example

the upper bound of the lift, all the minimum values of the upparface and all the
maximum values for the lower surface are used for the integraDoing this the other

way around will result in a lower bound. Applying this contépall the coefficients

enables to show a range for the deviation as an effect ofti@sand inaccuracies in
the x-coordinate. The results for a tolerance of 1 mm ardaijspl in Figure 6.9. There
can be seen that the normal coefficient is the least sensifive axial coefficient is a
bit more sensitive and the moment coefficient shows the winlesnds which means
that it is the most sensitive one. From Figure 6.9 it can belcoled that the applied
method is very sensitive for inaccuracies. To see what tleetes on the torque and
thrust coefficient this procedure is repeated and shownabelo Figure 6.9 can be
seen that the results of the pressure integration of the mbooefficient differs a lot

between the different methods. The cause of this variaidreated in more detail in
Appendix A.
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7 Conclusion

In this report different prediction models for wind turbiaerodynamics are presented
and discussed. The main purpose of this report was to coragardiminary 2D BEM
based method with 3D CFD simulations.

The results in chapter 6 show that the BEM method, which isajribe simplest
and fastest methods, is able to make a good estimation obtakthrust and torque
of a wind turbine operating at, or close to, the design caoniit For the test case the
deviation is approximately 10 percent of the experimergiles. Also the CFD result
show good agreement with the experimental values. Thetfatthe CFD results under
estimate the thrust and torque can probably be decreasedliggrthe cells of the grid
around the blade finer. But as a result this would increasedtualation time and costs
of the simulations. The reason that the BEM method over ptettie thrust and torque
can be attributed to the fact that the BEM doesn’t accountifoand root losses. To
increase the accuracy of the BEM method it is therefore wisextend this method
with a tower shadow model and a tip loss- or a wake model. Taealisation of the
CFD results show that the flow around the middle part of thddola mainly 2D, which
clarifies why the results of the BEM method agrees so well @ithmeasurements.

The comparison of the pressure integration shows that tiedifeerences between
the methods arise at the root and the tip where the 3D effectabe stronger. From the
sensitivity analysis in section 6.3.1. can be concludetitii@results of the integration
are highly dependent on the accuracy of the available déiis. Shows how important
accurate data is for a fair comparison.

The main advantage of the BEM method is that it requires meshdomputational
power than a CFD simulation while the results are still gdédwever the applicability
of the BEM method is limited to wind turbines operating at,ctwse to, the design
conditions while the CFD methods can predict the flow in a muiter range. When
operating close to the design conditions, the BEM methodsgaygood approximation
of the angles of incidence the blade experiences, but a gokantage of the CFD
is that it is more easy to visualise the flow around the bladBsis provides good
insight in the flow behaviour around the blade which can bg vatluable in the design
process.
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A: Pressure integration moment coefficient

In this section the variation in the integrated moment coieffit of section 6.2 is in-
vestigated in more detail. The purpose of this section idddfg the reason of the
differences that appear in the pressure integration of tiaemt coefficient in section
6.2. Starting with the comparison of the experimental valokthe pressure coeffi-
cient with the 2D CFD values obtained in combination with B&#&M method. The”,
values of the first slice (at 30 % of the radius) are shown infég.1.

_3,
e o Experimental
-2.5r° o 2D CFD with BEM

0 0.2 0.4 0.6 0.8 1
R[]

Figure 7.1:C,, values forg = 30%

The integrated moment coefficients for this slice calcddtesection 6.2 are:

Cn\gEM =-0.4926
CMeyp =-0.02747
Deviation =-0.02179

From Figure 7.1 can be noticed that the main differences itwated at the upper
surface. For this reason the upper surface is investigatatbre detail in Figure 7.2,
where the filled area represents the difference betweemih@rtessure coefficients.
The contribution of this difference to the moment coeffitisn

Deviation Crg, @ -0.023331
Total deviation  :-0.02179

These values show that it is reasonable to assume that tmediffarence in the
moment coefficient is caused by the upper surface. To checkeliability of this
value a very rough estimation can be made with the help ofrEBig2. Assume that
the part up to 0.5 is more or less balanced around the qudrbed point and that the
contribution of the part between 0.5 and 1 can be estimated by

dCp s dxxr = —0.1%0.5 % (0.75 — 0.25) = —0.025 (7.1)
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Figure 7.2:C,, difference upper surface

with C), an estimation for the difference of the pressure coefficiénthe surface and
r an estimation for the average length to the quarter chotds &xplanation shows
why the moment coefficient can vary so much. The differencdisaéC),, values of the
other slices can be clarified in a similar way.

From this analysis can be concluded that a little variatiothé pressure coefficient
can cause a big difference in the moment coefficient whichns¢laat the moment
coefficient is very sensitive to little inaccuracies in tesults.
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