

STUDENT: ERALD SCHIPPER (S0140872)

EMAIL: E.SCHIPPER@STUDENT.UTWENTE.NL

MENTOR AT UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ: DR. IR. D.F. DE LANGE

EMAIL: DIRK.DELANGE@UASLP.MX

MENTOR AT UNIVERSITY OF TWENTE: DR.IR. R.G.K.M. AARTS

EMAIL: R.G.K.M.AARTS@UTWENTE.NL

INTERNSHIP REPORT

INTEGRATION OF A VISION SYSTEM WITH A MOTOMAN

HP3 ROBOT SYSTEM AT THE UNIVERSIDAD AUTÓNOMA DE

SAN LUIS POTOSÍ

DATE: 04-03-2014

mailto:e.schipper@student.utwente.nl
mailto:DIRK.DELANGE@UASLP.MX
mailto:r.g.k.m.aarts@utwente.nl

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 2

MANAGEMENT SUMMARY
This is a summary of the internship of Erald Schipper performed at the Universidad Autónoma

de San Luis Potosí (UASLP). The main goal of the internship is to apply a developed vision

algorithm in a working application using a MOTOMAN HP3 six degree of freedom robot. A

vision algorithm has been developed in former research which determines the location of a

point or multiple points on a taken snapshot. The internship has been divided in three parts. In

the first part the robot is tested for its capabilities. Secondly, the way of connecting two

different systems on different computers is examined. The first is controlling the camera and

the vision algorithm in Matlab and acts as the slave system. The second system and computer

controls the robot using a library in C++ and this system acts as the master, which controls the

slave. Thirdly, the found connection and robot capabilities are combined in a test to run the

robot from point to point using an iterative learning process. This way the points on the paper

can be found with high accuracy and are used as waypoints for the robot. Also a calibration

method for the system has been developed.

The first parts results in the following conclusions. The robot can be moved from point to point

in three different control groups. A control group is a group of axis that can be controlled. The

control group defines the location of the Tool Control Point (TCP) and the rotation of the used

coordinate system. The first one is “base”, meaning the movements are done with respect to a

fixed base in the space. The second one is “robot”, meaning the origin of the system moves with

the robot. This is relevant in case the robot base is mounted on a moving platform. In this case

the robot is fixed to the world, which means that robot and base have the same fixed point in

space. The third one is “station” but this one is not used in the system used by the UASLP In this

case the origin of the system lies on a specified work station. The control group used is the one

called “base”. The robot can be moved using four coordinate systems. The first is joint

coordinates meaning that the joints of the robot can be moved separately. The second is

cartesian coordinates meaning that the end effector moves in X, Y and Z direction and can be

rotated around the TCP. Al systems but the joint system use cartesian coordinate systems but

are otherwise defined. Therefore this system is specifically called cartesian coordinates. The

third is user coordinates which puts the point (0,0,0) at a defined point in space and rotates the

axis of the around some user defined angle around the TCP. Tool coordinates is the last system

and this system moves the robot with respect to the TCP at the tip of the robot. The rotations

are again rotations of the axis of the coordinate system around the TCP. The TCP can be altered

using the software called High Speed Job Exchanger. The exact use of the different control

groups in combination with the coordinate systems has not become clear because only one

control group was tested with the cartesian en joint coordinate systems. There are three ways

of moving the robot: by increment in mm or rotation of the axis, with specified pulses for every

joint, or by specifying the coordinates of the final position in millimetres and rotation of the axis

in degrees. Joint movement moves the robot in a kinematical favourable way for the robot and

linear movement moves the robot with constant speed in a linear manner to the next point. The

robot can be controlled using the Motocom32 library. Its functions can be found in the file

MOTOCOM32_US.pdf [1].

The connection of the slave and the master is done by making use of sockets. The slave waits

until the master opens a socket. There are several functions developed in the master program. It

can open and close a connection which has to be established for every separate operation. The

master program can send a trigger to the slave to do something, can receive a trigger to do

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 3

something and the programs can send and receive data. The slave can open a connection using

the TCP/IP command in Matlab. This connection is used to send and receive the data and

triggers.

The obtained knowledge is tested by finding several drawn points on a piece of paper. The used

method is that of iterative learning. The robot runs an initial path with the TCP within a range of

8 mm of the drawn spot. At every point a snapshot is taken and the slave calculates the

deviation in millimetres from the spot to the TCP. This correction is then being sent to the

master which constructs a new path for the next run. This procedure can be repeated to iterate

to an improved path. At every run the error ε decreases. No further decrease of ε has been seen

after 3 iterations. The ε found is not larger than 16µm.

Before the test can be run, the system is calibrated. This calibration is done by moving the robot

to a start position in which a single point shows in the camera image. Next, the robot is moved

to a square matrix of positions around that point. The square matrix is 20x20 mm2 and consists

of 9 positions. That way the conversion between pixels and millimetres is done. The robot

moves a specified amount of times to the point, each time from another direction in a circle

around the point. This way the influence of robot kinematics is brought to a minimum and more

statistical values are available. Also the influence of distortion due to the lens can be seen in the

results. Deviation from the optical centre with 10mm results a maximum of 0.2mm. Because of

the iteration steps the found points move to the optical centre resulting in minimum errors due

to the distortion.

A manual for the software has been written and can be found in the full report. Also guidelines

about how to cope with errors and bugs can be found. In all circumstances should the user be

careful on how to use the software as sudden moves can damage the camera or the system.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 4

Table of contents
Management summary ... 2

1 Introduction .. 5

2 Robot knowledge .. 6

2.1 Used equipment and connection topology ... 6

2.2 Control groups .. 7

2.3 Means of control .. 8

2.4 Testing the robot ... 9

2.4.1 Acceleration and deceleration .. 9

2.4.2 Velocity and settling time .. 10

2.4.3 Continuous commands and steps .. 11

3 Matlab/C++ coupling .. 13

4 System calibration, testing and evaluation ... 15

4.1 Method .. 15

4.2 Calibration ... 16

4.3 Results... 18

5 Developed system .. 20

5.1 System start-up ... 20

5.2 Manual of vision system and master connection on slave computer 20

5.3 Manual of robot and slave control on master computer .. 22

5.4 Errors and bugs ... 24

6 Conclusion and recommendations ... 26

7 Used Literature ... 27

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 5

1 INTRODUCTION
Robots become more and more common in all kinds of industries. One of the processes in which

robots are involved is laser welding. Because laser welding is a very precise work where the

beam should not deviate from the seam more than 0.1mm because of the laser spot radius just

being 0.15mm, there is a need for very precise control. Most commercially available robots are

delivered with a controller attached which cannot be altered. This controller directly controls

the motors by means of encoders on the motor axes. Unfortunately this system can only be

given a path or waypoints and not be controlled any other way. This causes the need to alter the

path via some other signal. This other signal is often given by means of vision. By methods of

triangulation, the seam can be monitored. This knowledge can be used to alter the path. There

are two main ways of implementing an algorithm to solve this problem:

 Teach and play. This method teaches the robot a path. The robot runs the path and the

camera takes snapshots every now and then. From the snapshots, an error between

preplanned path and an actual desired path like a welding seam is calculated. After this,

the preplanned path is corrected with the new information and then executed by the

robot. This is useful for coping with clamping and construction tolerances that arise due

to earlier productions stages. The main algorithm is written as:

1. Extract seam coordinates from image

2. Compare coordinates of extraction with pre-planned path

3. Correct new path with found error

 Real-time correction during the run. This method gives feedback from the snapshots

during the run of the robot and calculates new waypoints of the path during the run. For

the sake of time and little present knowledge on the robot and image capturing system,

this will not be part of the internship.

The internship is roughly divided in three parts. In the first part, as much knowledge and

information about the robot is gathered, including running some tests on velocity and response

on C++ code. The information obtained and test results are given in chapter 2. In the second

part of the internship a coupling is designed to communicate information between a Matlab and

a C++ code running on two different computers. This is described in chapter 3. In the third part

of the internship the work is focused on an application in which the information from the vision

system is used to control or correct the robot movements, as described in chapter 4. Manuals of

the developed software can be found in chapter 5 and conclusions and recommendations can be

found in chapter 6.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 6

2 ROBOT KNOWLEDGE

2.1 USED EQUIPMENT AND CONNECTION TOPOLOGY
The used camera is the CMOS camera of Pixelink. The lens connected to the camera is the ZOOM

7000 NAVITAR TV ZOOM. Both parts are shown in Figure 1. The camera is used to capture an

image which is processed with a newly developed methodology at the Universidad Autónoma

de San Luis Potosí (UASLP).

Figure 1 ZOOM 7000 NAVITAR TV ZOOM LENS and PIXELINK CMOS CAMERA

This method minimizes the error between the image and a proposed image that is generated.

The error is minimized by maximizing the in-product of the normalized image and a proposed

image. The proposed image is an image which is created as “expected image”. In this case the

spot is represented as a Gaussian profile. The minimization is done in an iterative optimization

process. At every iteration step a new proposed image is generated. The shape and radius of the

Gaussian profile can be adjusted by the user. Several shapes can be searched by making use of

multiple Gaussian profiles resulting in one or multiple lines. In former research at the UASLP

the method is used to find a triangle on an inclined surface. For the application used in this

internship a simple application is used in which a single spot is to be found by the vision

algorithm. The same method is used to find multiple spots for the calibration. More on the

calibration and practical use of the vision algorithm can be found in chapter 4.

The robot used at the USALP is the MOTOMAN HP3 from YAKASAWA. The robot has six degrees

of freedom at the end effector. Its maximal payload is 3kg, and it has a repeatability of

±0.03mm. The robot has a teach panel, in which the robot can be given a job or can be

controlled manually. The equipment is shown in Figure 2. The used controller is the NXC100

Controller.

Figure 2 MOTOMAN HP3, teach panel and NXC100 controller

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 7

The connection topology of the system is shown in Figure 3.

Figure 3 Total system schematics and signal flow chart

The following flows of information are determined:

 -1- The teach panel has 3 settings. The first is teach, where a path can be determined by

just moving the robot and capturing points in space to which the robot should go at a

specified velocity. Secondly, a setting play is available in which the robot repeats the

path determined during teach. The third possibility is remote where the teach panel is

switched off and an external signal is used, see point 7.

 -2, 3 and 4- At this points the controller calculates the difference between reference and

position and controls the robot toward the just positions as specified in the path at point

1 or 7. At point 4 a position is available in different coordinate systems and encoder

pulses.

 -5- In the research done so far at the UASLP the camera captures an image and sends the

information towards a computer via FireWire.

 -6- The image processing is done in Matlab. The m.files should extract relevant position

or shape information from each image. This information is then send to another

computer and used for path generation via a C++ routine.

 -7- A program in C++ made in Microsoft Visual Studio receives the coordinates

corrections and creates a new path for the robot. The new path is send via Ethernet to

the controller. It then can be used as a next learning path for increasing accuracy.

2.2 CONTROL GROUPS
There are three different control groups in which the robot can operate. From now on the

coordinates will be given as (X, Y, Z, Rx, Ry, Rz) with X, Y and Z in mm and Rx, Ry and Rz are in

degrees. The rotations are rotations of the coordinate system.

 Base. The base control group puts (0,0,0) at some point on the base where the robot is

connected to the static world. At 0 pulses for every joint the robot is in the so called

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 8

work home position. The end effector is positioned in the point (945.0, 0.0, 445.0, 180.0,

-90.0, 0.0). When having more than 1 robot, this coordinate system remains fixed.

 Robot. The robot control group puts (0,0,0) at some point on the robot. In this case the

robot is not moving and no other robots are in one system. Therefore this system is the

same as the base coordinate system.

 Station. This puts the (0,0,0) at a moving workstation. This is not used is the system at

hand.

Only the base control group is used in the project.

2.3 MEANS OF CONTROL
There are two ways of controlling the robot. The first is by teaching a path, saving the path in a

job and run the path afterwards. This can be done by the teach panel or by means of

programming in C++. With the teach panel the robot can be moved by specifying the motion in

the following ways:

 Joint coordinates: The joints can be moved separately.

 Cartesian coordinates: The end effector moves in X,Y and Z direction and can be rotated

around the TPC.

 User coordinates: Putting (0,0,0) at a defined point in space while rotating the axis

around some user defined angle.

 Tool coordinates: putting (0,0,0) at the tool tip. This point is also called Tool Control

Point (TCP). Also the axis can be rotated over an defined angle. The tool coordinate can

be altered and the controller provides room for 24 different tools. The original axis of

the TPC are as shown in Figure 4. When altering the TCP, fist the rotation around the

axis are done, followed by translation in x, y and z direction. How to alter the TCP by the

teach panel is described in chapter 8.3 of the NX100 instructions [2]. A second way is to

download the tool file called TOOL.CND with the software called High Speed

JobExchanger. The TCP of 24 tools can be altered in the file using a notepad. This file

can be uploaded again using the High Speed JobExchanger.

Figure 4 TCP (0,0,0,0,0,0) with respect to the base coordinate system

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 9

The manual states the presence of another coordinate movement, namely cylindrical, but for

this robot it is not present. The exact use of the different control groups in combination with the

coordinate systems has not become clear because only the control group base was tested with

the cartesian en joint coordinate systems.

The C++ method requires the use of the MOTOCOM32.dll library. In addition, an example code1

is available from earlier work done with the robot. In the library there are two main ways for

moving the robot. One is by specifying cartesian coordinates with respect to its control group.

The robot is capable of going to an x, y and z coordinate with respect to the control group with

the end effector and do a rotation of the axis around the Tool Control Point (TCP). It can do this

with linear interpolation using the function BscMovl and joint interpolation using BscMovj from

the library. The linear interpolation is used when a specific path has to be traced in a straight

line between the points while the join interpolation makes a curve that depends on the

kinematics of the robot. Another way is to use BscImov which moves the robot by a specified

increment in x, y, z direction and rotations around the TCP using linear interpolation. This

movement can be done with respect to base and robot control group and the TCP. The other

main way of moving the robot is by specifying the amount of pulses for every joint. The pulses

can be converted to degrees by

 for the corresponding axis as shown in Figure 5.

The values are:

Figure 5 Axis nomenclature

Again the robot can be moved by BscPmovl and BscPmovj as with the method using Cartesian

coordinates.

2.4 TESTING THE ROBOT

2.4.1 ACCELERATION AND DECELERATION
There is limited information about the reference signal of the robot. In the job commands, the

acceleration can be set, with respect to some maximal acceleration. Using the MOTOCOM32

library, it is not possible to specify the acceleration. Therefore, some tests are performed to test

the default reference signal. The first test is the time it takes to cover a distance. The time

necessary for acceleration and deceleration is then calculated as

1
 Written by ING. GABRIEL FERNANDO GARCIA CEDILLO

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 10

(()

)

Where () is the mean of the captured time of 25 tests, is the set distance and is the set

velocity of 20mm/s. The values for are 1, 5, 10, 20, 30, 40 , 50, 75 and 100mm. The results

are shown in Figure 6. The results of the found and the standard deviation over the 9

tests are shown in Table 1.

Table 1 Results of acceleration tests

C

X 0.0983 0.0131

Y 0.0988 0.0129
Z 0.0994 0.0153

Figure 6 Test result (solid line) and

 (dashed line) with = 20mm/s on different distances

2.4.2 VELOCITY AND SETTLING TIME
The second test is run on different velocities over a distance of = 20mm. This test is in done

in order to check if acceleration and decelerations changes with velocity. The expectation of the

time is given by:

 ()

The results are shown in Figure 7. Because the errors are small, they are shown in Figure 8.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 11

Figure 7 Test result (solid line) and () (red dashed line) with = 20mm on different velocities

The errors show minimal deviations but do increase for v=100mm/s. A recommendation is to

further investigate the damping of the motion on higher velocities, as it seems that settling time

increases as can be seen in Figure 8.

Figure 8 Error between test and theory at = 20mm for different velocities.

2.4.3 CONTINUOUS COMMANDS AND STEPS
While programing in C++ the program reads line by line. This way, the robot can move from

point to point. But the code cannot be synchronized with the robot as is possible with a JOB.

Therefore programming the robot as:

BscMovl(nCid, "V", VELOCITY, "BASE", CONFIGURATION, TOOL, Position 1);

BscMovl(nCid, "V", VELOCITY, "BASE", CONFIGURATION, TOOL, Position 2);

will result in the robot performing the commands step by step. This results in starting up and
slowing down at each step. The result is that the more steps are taken, not only it takes longer
to reach the end position, also the set speed is not accomplished. This was tested over a

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 12

distance of 100mm with several steps and the results are shown in Figure 9. The tests are
repeated 16 times resulting in a standard deviation of around 0.5% of the time results.

Figure 9 Test over 100mm with multiple steps (1,2,3,4,5,10,20,30,40,50,75 and 100).

Another way is to let the robot wait until it reaches the desired position using the command:

EsperaRobot(nCid, Position 1);

This function reads the robot position and keeps the code in a while loop until the actual

position is in reach of the desired position within a specified interval. The used default value is

0.01mm or 1pulse. A disadvantage of this method is that the robot will accelerate and

decelerate for every position, resulting in an even more shocking motion. This function can be

used for instance when other commands need to be executed on the waypoints.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 13

3 MATLAB/C++ COUPLING
As shown in Figure 3, the image processing in matlab has to be coupled to the robot control in

C++. From now on the control of the robot is called the master and the image gathering and

processing is called the slave. There are four methods to accomplish the coupling:

A. Rewrite the image processing in C++ and couple master and slave via C++ routine.

B. Do the image processing in matlab, couple matlab to a C++ communication routine in

the slave computer and then send the information via the C++ routine.

C. Do the image processing in matlab and then send the difference of coordinates in mm to

the master computer in matlab and transfer the information in the master computer

from matlab to C++. This way a coupling of matlab and C++ has to be designed at the

master computer.

D. Do the image processing in matlab and send the difference of coordinates in mm

directly to C++ on the master computer.

As the image processing was already written in matlab, method A is not the most favourable,

although it is a way of communication with the least translation between different software. In

former research a coupling has been made between matlab on both slave and master computer.

Therefore the first approach will be method C or D and not B. Because C is less direct, option D

is the used method. This method makes use of the so called TCP/IP connection.

In the matlab code on the slave there are two methods. Firstly, the coupling can be made by

making use of so called MEX function. The MEX functions can be written in C++ code and used

in matlab. This way the connection is made via C++ and used directly in matlab as a function. A

more thorough description of the MEX functions can be found on the website of Matlab [3].

Because the MEX function cannot return a variable TCP/IP, a new connection has to be made

for every communication between master and slave. A second disadvantage is the dependency

of the version of matlab and compiler for the MEX function to work properly. These commands

open a connection to the master. It is most important to first open the master connection, else

no connection can be made. The code used to open the connection by the slave in Matlab is

given by:

t = tcpip('192.168.0.15',27015,'NetworkRole','Client');
set(t,'InputBufferSize',8);
set(t,'Timeout',30);
fopen(t);

For writing and reading the functions fread and fwrite are used. The connection is closed

and cleared using fclose(t) and clear t. For further help the Matlab help or the Matlab

website can be used.

In the master program the coupling is done by making us of so-called winsockets. The

winsockets can be seen as an actual socket were cables can be plugged in in order to transfer

data or any other kind of flow. These sockets open a connection with the slave and can be used

to send and receive data of bytes. The returning type is always char and must be transformed to

the preferred data type. More details on the winsockets can be found on the website of MSDN

Microsoft [4]. In the file RobotvE.cpp 4 functions are created for connecting the master with the

slave.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 14

The first is OpenConnectionToSlave(). This function returns an open socket wich can be used

to send or receive messages or data.

The second is CloseConnectionToSlave(SOCKET Slave). This function closes and clears

the socket used.

The third is SendData(SOCKET Slave, char *sendbuf). This function sends the char via

the socket to the slave were it can be used for further processing.

The fourth is ReceiveTrigger(SOCKET Slave). This function receives a char from the slave

and is seen by the master as a trigger. The function used is revc and this function is blocking

which means the code will not continue until the trigger is received. A double is returned being

1.

The last function is ReceiveData(SOCKET Slave). This is practically the same function as

the one for receiving a trigger with the difference that the buffer is longer to make sure all the

data is collected. In the code the received double is rounded to 3 decimals. This was done

because it seemed the robot could not process all doubles. As it turns out this was not the case,

but the rounding was left in place due to time limitations.

The full code is found in the attached code files. The used IP addresses found in Table 2.

Table 2 used IP-adresses

System IP4-adress
Master on DELL computer 192.168.0.15

Slave on SUN computer 192.168.0.2
Robot 192.168.0.1

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 15

4 SYSTEM CALIBRATION, TESTING AND EVALUATION
In order to put the gained knowledge of the system in practice and to show the usefulness of

former research done by the UASLP, a test application has been designed combining the found

information. The goal is to couple the image processing software to the robot in order to gain

information about the total system, e.g. its repeatability, accuracy and speed of processing. The

way to test the system is in this case to locate a few dots with the vision system, and let the TCP

of the robot move to the right position afterwards. The TCP is represented by a crossing of three

lasers as shown in Figure 10. This application can be used for e.g. drilling at the right location,

or welding at spots and several other applications. This test can also be expanded for the use of

for instance the determination of a seam for welding. The vision algorithm and calibration

algorithm are developed by the UASLP. The calibration values are directly used in the vision

algorithm and the output of the both is the error in mm in x and y between the TCP and the

found point.

Figure 10 Camera and displayed laser cross

4.1 METHOD
The positions of the spot are determined using the algorithm if iterative learning. On a blank

piece of paper, 5 points have been drawn, which have to be captured by the process. The master

will instruct the robot and slave to do the following:

1. Move to position near a point

2. Take snapshot

3. Calculate coordinates of the point with respect to the centre of the laser cross

4. Send the found error to the master

5. Move to next point and start with 1, unless all 5 points are captured

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 16

After the capturing of the data, the slave sends the data to the master where it is used to

construct a new path. This new path is then run again in order to decrease the error. By doing

the iterative steps, the errors due to robot kinematics, calibration and lens distortions are taken

out. The eventually found path can be run in a demo. The used configuration of dots and

teaching path for the first iteration are shown in Figure 11. The program on both slave and

master will be explained in the manual in chapter 5.

Figure 11 test path and point locations

4.2 CALIBRATION
The camera captures the image in pixels. In order to determine the deviation of the spot from

the TCP, a calibration is needed. In this case the following values are found by the software:

1. This is the factor between pixels in x direction in millimeters of movement in x

direction. Its units are pixel/mm.

2. This is the factor between pixels in y direction in millimetres of movement in y

direction. Its units are pixel/mm.

3. . This is the rotation of the camera coordinate system with respect to the TCP

coordinate system.

4. . This is the location of the cross in pixels in x direction.

5. . This is the location of the cross in pixels in x direction.

First a picture is made from one of the points. Then the robot moves a fixed distance in x and y

directions and takes an image from the two translated positions. The vision software calculates

the positions of the points on the captured image and the differences result in the calibration

values. Because of robot kinematics and robot repeatability and because more pictures give a

statistically more accurate result, the system takes several images, each time arriving from

different points around the set points. The algorithm of the calibration is as given in Figure 12.

For the calibration at least one layer k is needed. The robot moves to one of the green points

and takes a snapshot. Then, before taking the next image, the robot moves to a different location

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 17

on the circle, goes back to the same green point and takes the next snapshot. This way the data

is more reliable in statistics and the calibration includes possible errors due to different

kinematic positions of the robot. This process is repeated n times for every dot. The value of n

can be specified by the user. An increment of the angle is made of

 until a full circle is

reached. For further research on the camera e.g. distortion of the image further away from the

centre, more layers k can be specified by the user. First results of calibration on the edges show

the outer corner points to be pushed inwards due to lens distortions.

Figure 12 Calibration algorithm

For the laser, n snapshots are taken in the same position because in this case, only the centre

point of the crossing has to be determined. The used calibration in the project is done with k=1

and n=16. The found results are shown in Figure 13 and zoomed in in Figure 14. As can be seen

the points do not lie in the target position. In order to determine the target positions are

subtracted from the found points in order to get a clear view of the magnitude and

displacement of the found calibration points. These results are shown in Figure 15. From the

figure, two conclusions are drawn:

1. Every point has a variation in a certain direction due to the lens. The calibration is used

for research and shows that if the point lies further away from the optical centre point,

Figure 13 array of calibration positions total

Figure 14 array of calibration positions zoomed in

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 18

the cloud of points have a clear direction. In an area of 20mm by 20mm the deviation

lies within 0.2mm.

2. The picture is distorted. The distortion is small, but it is clearly seen in the figure. This

can be due to the fact that the paper is not really horizontal with respect to the robot,

the pixels in the camera are not perpendicular or the robot movements are not

perpendicular.

Figure 15 Found clouds of positions variations

The found calibration values are:

1. .

2. .

3.

4.

5.

4.3 RESULTS
The calibration values are used in the vision algorithm. As stated before the iterative learning

process is used which return a new learning path. For the test 4 iterative steps are used where

the fourth step does not give any more improvement. The four paths of the iterations are shown

in Figure 16 to Figure 19.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 19

Figure 16 Iteration 1

Figure 17 Iteration 2

Figure 18 Iteration 3

Figure 19 Iteration 4

As can be seen from the figures, almost no difference can be seen. The found error is calculated

as √ . The error for every point is shown in Figure 20. As can be seen, decreases the

error to a maximum of 16 µm.

Figure 20 Decreasing error with more iterations steps

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 20

5 DEVELOPED SYSTEM
The goal of the software is to have a master which controls the slave and the robot. The slave is

decided to be the computer controlling the camera via matlab. The master is the computer

controlling the robot. The connection is made via 1 GB network via a TCP/IP connection. In this

chapter the manuals of the software on both computers is presented.

5.1 SYSTEM START-UP
The following setup should be installed before using the system:

1. Mount the camera on the robot and connect the FireWire before starting up the

connected computer. For using the laser the wires should be connected as shown in

Figure 21.

Figure 21 LASER wire connection

2. Make sure the hardware key on the USB is plugged in the Dell computer for control

of the robot making use of the MOTOCOM32 library.

3. Start up the SUN computer connected to the camera and start up Matlab. The system

is tested using Matlab 11 so it is recommended to use that version. Make sure the

vision folder is the current directory in order to use its functions. The main file to be

opened for the using the system is called VISION_MAIN_ERALD.m.

4. Start up the Dell computer and open Microsoft Visual Studio. The version used in the

project in Microsoft Visual Studio 2008 so it is recommended to use that version. In

the folder ERALD on the desktop, open the folder master and inside open the project

ROBOT.sln.

5. For a clear and sharp image, the camera possibly needs to be adjusted manually. In

order to get a preview the Matlab command imaqtool can be used.

5.2 MANUAL OF VISION SYSTEM AND MASTER CONNECTION ON SLAVE COMPUTER
The vision system has a main file VISION_MAIN_ERALD.m, which by running gives a choice to be

operated manually or by the master via TCP/IP connection. On opening it gives a choice

between 1: manual use and 2: use as slave by master via TCP/IP connection. All important

variables are saved in the global structure config. The program has 5 options:

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 21

1) Calibration of camera

This option and function is not yet developed. It is put in for future applications where the

camera calibration is done separate from the system calibration that is described in the next

option. Therefore it can only be run in manual use calling the function

CALIBRACION_CAMERA.m.

2) Calibration of system

This option makes use of synchronized communication between the two computers and can

therefore only be run in use of slave by master. First the user specified amount of pictures are

taken on the right positions by using the function CALIBRATION.m. This method is explained in

chapter 4.2. After the procedure of taking pictures, the captured data is processed with the

vision algorithm using the function CALIBRATION_SYSTEM.m. The calibration values as

described in chapter 4.2 are saved in the global config.cam.k_u, config.cam.k_v, config.cam.alpha,

config.cam.u0 and config.cam.v0. The structure is saved in a file “calibratie.mat” for future use.

This is done so that when the calibration is done it does not have to be done again. This can only

be used when the hardware is not adjusted in any way. In order to get a clear image for the

calibration of the dots the following camera settings are used and set by the commands:

src.Brightness = 0;
src.Contrast = 22;
src.Exposure = -1;

For the localization of the laser cross, different settings are used. This is because the laser is

light and the dots are dark spots. The used settings are given by the commands:

src.Brightness = -50;
src.Contrast = 50;
src.Exposure = -8;

3) Single image processing

This option can only be used in manual use. This option provides the means to take a snapshot

and process the single image. The output is the position of the spot in pixels. The vector result

gives first the vertical coordinate and secondly the horizontal coordinate.

4) Teach new path

This option makes use of synchronized communication between the two computers and can

therefore only be run in use of slave by master. First it loads the config file containing the latest

calibration values. The slave waits until a message is received from the master to have sent the

robot to the right position. Then a command is given to give a snapshot. Then a command is

send to the master that it can move the robot to the next position. After that the snapshot are

processed using the PROCESS_IMAGE.m function. The result is directly in corrections to be

made to the path. This process is repeated in a loop for every point. After the last point, the

master computer sends a signal back confirming to be ready for receiving the correction and

the corrections are send to the master computer. The whole process for all points can be

repeated. In the test 4 iteration steps are done.

5) Stop

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 22

This option can be used by using slave mode and manual mode. The code is stopped. When

using the slave mode, make sure to press enter after pressing the stop button in the master.

The full code with comments can be found in the files VISION_MAIN_ERALD.m

CAPTURE_IMAGEN.m, PROCESS_IMAGE.m and TEACH.m. The files for the vision algorithm are

developed by UASLP and can be found in folders Optim and LaserProy.

5.3 MANUAL OF ROBOT AND SLAVE CONTROL ON MASTER COMPUTER
The Motoman manuals suggest programming the robot using the MOTOCOM32.dll library in

Microsoft Visual Studio 2008. Other options are not examined as the Motoman manual only

gave an explanation of the implementation in this software environment. The main developed

program has 7 header files. The most important is the MotoCom.h containing all possible

functions incorporated by the NXC100 controller. The robotvE.h is a further developed version

of the existing robotv5.h2. It has been extended with the network functions as explained in

chapter 3. The rest is automatically created by the Microsoft Visual Studio software. The actual

functions are found in robotvE.cpp. Every function has code to explain its functionality. There

are a total of 4 source files with the main code of the different buttons in ROBOTDlg.cpp. The

other 2 are automatically created again. The visual components are found in the resource files

and the main menu is shown in Figure 22.

Figure 22 Main menu

1) MAIN FUNCTIONS

There are a total of 6 main functions. The HOME button moves the robot to the position (945.0,

0.0, 445.0, 180.0, -90.0, 0.0). The HOME3 button moves the robot to the position (1000.0, 0.0,

300.0, 180.0, -90.0, 0.0). This is for the system with a mounted camera a favourable position for

2
 Written by ING. GABRIEL FERNANDO GARCIA CEDILLO

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 23

the robot to move freely with the camera and laser pointing in vertical direction. The choice for

using the definition of the TCP in the HOME position seems odd, but altering the position of the

TCP resulted in more arithmetic errors of the robot. More on this is found in chapter 2.3. The

third and fourth button are CONNECT and DISCONNECT which respectively connect the robot

and turn on the servo motors or disconnect the robot and the servo motors. Then there are the

buttons LASER ON and LASER OFF for turning on and off the laser cross. Make sure to first

connect the robot.

2) MANUAL PLAY

The manual play is designed to move the robot without any due to the desired position. This can

be done with MOVE TO POSITION. This option moves the robot to the given position with given

speed. If speed is left to be less than 20mm/s, it is set to 20mm/s by default. The robot moves

with linear movement to the position. For angular movement, take care because the speed is

not defined for this. Also take care because Rx, Ry and Rz are rotations of the coordinate system

and not of the robot. Large deviations from the current position will probably cause high speed

movements which can damage the camera.

The robot can also be moved by using MOVE BY INCREMENT. This option moves the robot or

coordinate system with the desired speed and increment.

The last option is to move the robot by using MOVE PULSES. In this option the position in

degrees for every joint can be specified. The program will calculate the degree to pulses and

move the joint to that specified pulse. For the last two options a minimal speed is set to

10mm/s and 5deg/s respectively.

CAUTION: Make sure to understand the robot and its reaction before putting in the numbers.

And begin with low speed and small distances.

3) MAIN PROGRAM

The MAIN PROGRAM has 3 functions. For every option a connection is made with the slave

sending the choice of the option to the slave. In the slave the choice is made automatically. First

a choice has to be made in the master, then in the slave the user has to press a key. This is

because the TCP/IP connection has to be opened in the master first. The first option is the

calibration. The amount of layers k, directions n and used distance dx can be specified by the

user and will be sent to the slave. Then the master sends the robot to a position, sends a signal

to the slave to take a snapshot and waits for the signal from the slave that the picture is taken

and the robot can move to the next location. This is repeated for every k and n and the robot is

send to HOME3.

The second option is TEACH AND PLAY. The amount of used iterations is specified in the

program code and is set to 4. The robot is send to the position by the master, and then a signal

is send to the slave to take and process an image. When the snapshot is taken, the master sends

the robot to the next position. When the slave is ready for the next step, a signal is send to the

master to send the robot to the next point. This is repeated for all points. At the end the master

sends the robot with the laser on to every point in order to show the found path. After the

demo, the robot is send to HOME3.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 24

The last option is STOP SLAVE. In this option the slave will be send a signal to stop the program.

In the slave a key has to be pressed to actually finish the running code.

5.4 ERRORS AND BUGS
Sometimes the codes in C++ and/or Matlab are stuck in a loop due to several reasons as:

1) An arithmetic error in the robot control. This error is cause by sending wrong

coordinates to the robot. This bug is taken out, but for manual use of the robot this can

still be an issue.

2) The connection of the slave is first opened. Therefore there is no connection possible

and between the systems and both programs keep on running.

To restart the system first the servos are shutdown with the emergency button on the teach

panel as shown in Figure 23.

Figure 23 emergency button on teach panel

Then the teach panel is set to teach instead of remote by the switch on the teach panel as shown

in Figure 24.

Figure 24 Mode switch on teach panel’

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 25

In the slave the Matlab session is shutdown using Ctrl-C. In the C++ session on the master the

session is shut down using the stop button in the menu of Microsoft Visual Studio. In order to

shut down the remote connection the menu shown in Figure 25 has to be shut down as well.

The figure shows the status monitor with and without any communications. For safety the

program is shutdown in errors.

Figure 25 No communication with robot (up) and with communication with robot (down)

There is a last bug in the program on running the calibration menu. At finishing the following

error is given as shown in Figure 26. There are no consequences to this error and the results

appear to be in order but it is recommended to find the source of the error and solve it if the

program is further used in research.

Figure 26 Error at finishing calibration method

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 26

6 CONCLUSION AND RECOMMENDATIONS
In the examination of the robot the following conclusions are drawn:

 The robot can be moved with linear movement and joint movement using MOVJ and

MOVL.

 The robot has different control groups, BASE, ROBOT and USER and TCP and the

movements can be defined from these coordinate systems.

 The robot can be moved in coordinates or in pulses using MOV or PMOV. The

coordinates are in mm and are the place of the TCP. The rotations are the rotations of

the axis in order of respectively x, y and z.

 While moving, the end coordinate cannot be altered. The command line is first executed

and only after completion the robot can be send to a next position. This behaviour

makes continuous processing for real-time corrections hard to realize. An

implementation can be done for low speeds with the implementation of multiple threats

in the main program.

 The given rotation movements are rotations of the coordinate systems defined in the

TCP. The TCP coordinates can be read by the robot in the file TOOL.CND with the

program called High Speed JobExchanger designed by MOTOMAN YAKASAWA.

 More on control of the robot can be found in the manuals of the robot and the used

library as given in the used literature list in chapter 7 [2] [5] [1].

In the combination of the robot and the vision system the following conclusions are drawn:

 The vision system is used in an iterative learning process to send the TCP of the robot

from point to point with an error ε of 16µm. This error is defined as the deviation of the

found point from the learning path.

 The calibration is used for research and shows that if the point lies further away from

the optical centre point, the cloud of points have a clear direction. In an area of 20mm

by 20mm the deviation lies within 0.2mm. Because of the iteration steps the optical

centre and the TCP lie close enough causing to be of no significant although its

magnitude could be examined. This distortion can be taken out in the vision software in

further research.

 The program designed for the teaching algorithm can be used for further research and

can be used as a basis to develop further applications in practical use of the developed

vision algorithm by the UASLP.

 The vision code and the master code used the x and y coordinates exactly the other way

around. Also the y coordinate has to be extracted instead of added. Care should be taken

by the user of the code about this.

Always should the user take care of how to use the software. Sending the robot manually could

result in fast movement and destruction of the attached camera or nearby hardware. Always

make sure that surrounding people are not within reach of the robot.

Internship Erald Schipper at the Universidad Autónoma de San Luis Potosí

 27

7 USED LITERATURE

[1] Y. E. CORPORATIONS, “MOTOCOM32 OPERATION MANUAL,” Japan, 2008 08-03.

[2] Y. E. CORPORATION, "NX100 INSTRUCTIONS," Japan, 2007.

[3] M. A. t. p. o. e. a. science, MathWorks, [Online]. Available:

http://www.mathworks.nl/products/matlab/. [Accessed 14 Februari 2014].

[4] Microsoft, “Microsoft Developer Network,” Microsoft , [Online]. Available:

http://msdn.microsoft.com/en-US/#fbid=XxAPw0zP4TS. [Accessed 14 Februari 2014].

[5] Y. E. CORPORATION, “NX100 OPERATOR’S MANUAL,” Japan, 2008 03-10.

