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ABSTRACT

This internship report discusses aspects of pilot modelling from a system
identification perspective. The assignment is within the research project
on the investigation of the safety of curved approaches at The University
of Tokyo. Modelling dynamics of human pilot control could provide
valuable insights on the pilot’s capacity and performance. The multi-
dimensional human-aircraft system is complex and consists of feedback
loops. It is therefore difficult to identify the entire human-in-the-loop
system. Attempts have been made to capture pitch dynamics in a
predictive mathematical model.

In order to acquire control data, three types of experiments have been
designed: 1) a theoretical setup to test identification techniques, 2) a
computer simulation augmenting pitch dynamics of a B747-400, and 3)
the setup in a full flight simulator. The procedure for the experiments is
similar and the pilot is asked to track the motion of the Flight Director
(FD), indicated on the Primary Flight Display (PFD). The artificial FD
signal is designed using system identification theory and its frequency
content is well within human bandwidth. The aircraft is trimmed to a
stable and level flight and all other control inputs (e.g. ailerons, rudders,
thrust) apart from the elevator have been left untouched. The data from
the third experiment performed by an experienced pilot in a Dornier
Do-228-200 full flight simulator has been used for analysis. All models
have been evaluated on model fit, complexity and calculation time.

It is shown that a linear parametric Auto Regressive with exogenous
input (ARX) model is sufficient to model the closed-loop dynamics. For
controller identification, the direct identification method is used. In this
case, a linear ARX model only captures course control action, but lacks
the capacity to predict corrective control. A non-linear ARX (NARX)
neural network provides significant better results in terms of model fit,
but requires a high number of parameters and is computational intensive.
Furthermore, one should be cautious with providing (elevator) feedback
channels to self-learning model sets (as the with the NARX) since it
can yield erroneous results. Consequently, an Adaptive Neuro-Fuzzy
Inference System (ANFIS) has been modelled relying on the FD input
signal and actual aircraft pitch. This approach combines fuzzy logic
with characteristics of neural networks and the control strategy can be
interpreted conveniently due to its linguistic rules. Although the ANFIS
doesn’t excel in model fit due to large occasional prediction outliers, it
does capture human corrective control with only 4 fuzzy rules.

It has been hypothesised that the level of experience can be evaluated
by observing the closed-loop and human control models. Further research
is needed to test the generality of the modelled human control dynamics.
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1
INTRODUCTION

As a part of my master’s programme ‘Mechanical Automation and
Mechatronics’ at the University of Twente, I participated in a research
internship at the Department of Aeronautics and Astronautics at the
University of Tokyo. This report describes my work during the course
of roughly four months in Japan.

First, in this chapter, the background of the current research project
and the outline of my contribution will be discussed. Next, some back-
ground information is discussed into more detail in Chapter 2 and
research methods and experiment results are examined in Chapter 3
and Chapter 4. Finally, conclusions are drawn in Chapter 5 and some
remarks concerning the experiments and analysis techniques are treated
in Chapter 6.

1.1 research project overview

This research internship is within a project on the safety of curved
approaches led by dr. Entzinger from the School of Engineering at The
University of Tokyo. The project is in collaboration with and funded by
The Japan Aerospace Exploration Agency (JAXA).

Recent advances in navigational technology introduced the possibility
to exploit more sophisticated approach procedures. The curved approach
is flown under the set of procedures called Required Navigation Perfor-
mance - Authorization Required (RNP-AR). It is a more complex flight
procedure, which allows the aircraft to approach the runway through a
curved path. Even though pilots usually rely on cockpit automation to
execute such an approach operation, the pilot should be able to take
over the control of the aircraft at any time. It is believed that curved
approaches are more difficult than straight approaches. It is therefore
interesting to investigate the effect of the curved approach procedures
on the pilot’s control.
Two main objectives for this research have been defined (from the

year reports for JAXA):

1. To understand differences in pilots’ mental models and cognitive
processes between curved and straight approaches

2. To find out how best to support the pilot (through training or
interfaces) in his supervision of automation and decision making.

Until date, this research resulted in reports and publications on the
pilot’s workload by measuring heart rate variability and eye blinks as
well as calculating the time-to-crash [13, 11, 34]. However, this subject
has not yet been approached such that a dynamical model of the human
pilot could be obtained. Such a model could provide more complete

1



2 introduction

analysis possibilities of the pilot control action and may give valuable
insights on the pilot’s performance and limitations.

Modelling the dynamics of human pilot behaviour has been an active
topic in literature and a short overview is given in Chapter 2. Tools
from disciplines such as ‘system identification’ and ‘artificial intelligence’
could be interesting to observe in this context, as addressed in [12].

1.2 internship assignment

During my internship I attempted to construct a predictive mathemat-
ical model of human pilot control action. Aircraft control is multidi-
mensional and can be very complicated to capture in a single model.
Therefore, simplifications have been made, resulting an analysis of pilot
pitch control only (see Chapter 2 for further explanation).
In this section, a brief overview of the internship assignment will be

given. The scope of my internship assignment has been shown graphically
in Figure 1. It shows the progress of the assignment over time and what
has been the main focus during different stages of the assignment. In
short, my contribution to the research project can be described as:

• Investigating closed-loop dynamics of the human-machine (pilot-
aircraft) interaction

• To determine a suitable model-set to capture human pilot pitch
control action.

The first part of the internship was devoted to preparation and explo-
ration of the field of subject. This involved reviewing available literature
in the field of system identification and human (pilot) modelling. In ad-
dition to the courses ‘System Identification and Parameter Estimation’
and ‘Time Series Analysis’ at the University of Twente, the literature
review functioned as fundamentals for outlining the experiments and
the theory behind modelling the system’s behaviour. These topics which
will be discussed throughout this report.

A great part of the time was spent on designing and conducting
experiments in order to retrieve pilot control data. Several analysis
techniques have been used to process the data. For that purpose, several
MATLAB scripts have written and are collected in the ‘Pilot Identifica-
tion Toolbox’ which, together with this report, is one of the deliverables
of the internship. The scripts in the toolbox can be executed for data
acquisition and the calculation of the human pilot (pitch) control model.
For further information about the toolbox and instructions for its usage,
see Appendix F.
The experiment data is used to construct models of human-in-the-

loop system and pilot control action. Linear and non-linear modelling
techniques have been evaluated and are discussed in Chapter 4.
Only the pitch dynamics have been considered in this work and this

report can be seen as a ‘case study’. Future experiments can be performed
in similar manner, even if the focus might not be on pitch dynamics.
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Figure 1: A graphical overview of the internship. It can roughly be divided into
three stages as indicated by the grey arrow. The analysis techniques
for the control models can be found below. Experiment design and
literature reviews have been performed throughout the internship.

The procedures have been outlined and possible pitfalls attempted to be
addressed in a general sense. Therefore, this work could be considered
as consulting report for the identification of the human pilot dynamics.





2
BACKGROUND INFORMATION

This chapter provides the reader some background information. Essen-
tial information about flight dynamics and aircraft control are given
in Section 2.1. Section 2.2 elaborates on prerequisite simplifications
and assumptions to narrow the scope of the assignment. In addition
to Appendix A, Section 2.3, some basic information on human pilot
modelling is treated.

2.1 basic flight dynamics

Plenty of information about aircraft dynamics can be found in literature.
Those works mainly cover the derivation of the equations of motion, its
linearisation, and fluid dynamic properties of the wing. For these topics,
the report refers to the available literature. Some aspects do need to be
discussed here, such as the basic concepts of controlling an aircraft.
During flight, the aircraft is a system in 3D space which can be

manipulated in three rotational axis. Rotation along the longitudinal
axis is called roll, along the lateral axis pitch and along the vertical axis
yaw. The axis meet in the aircraft’s centre of gravity. See Figure 2 for a
graphical explanation.

(a) Three rotational axis: pitch, roll and yaw

(b) The aircraft’s primary control surfaces

Figure 2: An aircraft’s primary controls. The pitch, roll and yaw can be influ-
enced by controlling the elevator, ailerons and rudder respectively.
Figure from [12].

To control an aircraft, generally control surfaces are used. These
can be categorized by primary control surfaces and secondary control
surfaces. The primary control surfaces are the control surfaces essential
to control the aircraft, such as elevators, ailerons and rudder. Without
these the aircraft will be uncontrollable. Secondary control surfaces

5



6 background information

include flaps and trim tabs and are used to tune the aircraft so that
it can be controlled more conveniently. Table 1 shows which primary
control surface affects which degree of freedom. Note that the control
of the aircraft is not decoupled as insinuated in Table 1 and all control
surfaces (indirectly) affect all degrees of freedom.

Axis Control surface
Longitudinal Roll Aileron

Lateral Pitch Elevator
Vertical Yaw Rudder

Table 1: Every control surface mainly influences one rotational degree of free-
dom. Note that this table is simplified: aircraft control is highly
coupled and all control surfaces indirectly affect other degrees of
freedom.

The aircraft can be modelled as a dynamical system with inputs and
outputs. In this report, primary control surfaces will be considered as
the control input, whereas the secondary control surfaces will be set
to remain constant and can be considered as ‘aircraft settings’. For
instance, landing gear and thrust settings influence flight dynamics but
do not relate to control surfaces. The outputs are the aircraft states
(e.g. the position, and velocity in 3D space) and proxies of these states,
indicated on cockpit instruments.

2.2 simplifications and assumptions

Aircraft control is a multidimensional control task. In order to illustrate
simplifications in the internship assignment, matrix C in Equation 1
is introduced. It maps an input vector [elevator, ailerons, rudder]T to
[pitch, roll, yaw]T output1. The input of the control surface does not
only influence the primary rotation axis and is coupled to all other
rotations. Consequently, if the aircraft is modelled as in Figure 3, the
non-diagonal terms of the control matrix will be non-zero which is
characteristic for a Multi-Input-Multi-Output (MIMO) system:

C =


c11 c12 . . . c13

c21 c22 . . . c23

c31 c12 . . . c33

 (1)

which describes a highly simplified aircraft control. The matrix elements
cij map the i-th input (which is a primary control surface) to the j-th
output (a rotational axis in 3D space). For instance, cij could be a
transfer function.
The choice has been made to investigate the pilot’s pitch dynamics

for the main reason that the longitudinal axis is the dominantly con-
trolled rotation during flight. An adjustment in the pitch angle will

1 This is a highly simplified way of representing aircraft control.
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over time result in a change in altitude and glide-slope, which are two
important factors during approach procedures. Also during a curved
manoeuvre (which involves rolling motion of the aircraft), pitch control
is of significant importance since the speed of the turn can be regulated.
Since the main research project is on curved approach procedures, one
could reason that modelling pilot pitch control is valid to start with.
For the experiments in this report it is assumed that pitch control

can be isolated as an element from matrix C in Equation 1. Only the
elevator to pitch element will be considered. Although this does not
directly imply decoupling of the control action, all other inputs than
elevator inputs that influence the pitch angle will be ignored. This
results in a Single-Input-Single-Output (SISO) system as depicted in
Figure 3 and only describes the dynamics of the corresponding matrix
element of C.
In practice, this can be done by disabling or ignoring all controls

other than the elevator input from the flight simulator (see Chapter 3).
This is clearly an artificial restraint, but ensures the recorded data only
contains human control action around the lateral axis.
It is furthermore assumed that during experiments, the aircraft dy-

namics will remain constant, in sense that initial conditions such as
secondary control surface settings and thrust level will be left untouched.
Additionally, for simulation purposes, flight conditions will be excellent
(i.e. no wind and no turbulence, clear weather), unless otherwise stated.

(a) The multi-dimensional human-in-the-loop system: the pilot con-
trols the aircraft through various feedback and feedforward channels
(MIMO).

(b) Highly simplified aircraft model. It only captures dynamics
from elevator input to aircraft pitch output (SISO)

Figure 3: Aircraft control is a multi-dimensional problem and the internship
is limited to pitch dynamics only.
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2.3 introduction to human pilot modelling

Modelling the control action of a human in man-machine interfacing
systems can be rather complex. Human control can be considered highly
non-linear and non-time-invariant as they can change control strategy
any time and during operation. “[...] Consequently, two pilots may
describe similar flight paths, but control the aircraft in very different
manners" [12], which indicates the complexity of human control. Efforts
have been made to capture parts of human control. Entzinger [12],
Yilmaz et al. [55] give an overview of conventional methods, including:

• (Quasi-)linear identification
– Cross-over model (also see [31])
– Precision model
– Quasi-linear model

• Optimal control and Kalman filter models
• Linear and non-linear parametric models
• Identification methods from artificial intelligence

– Neural models
– Fuzzy models
– Neuro-fuzzy models

• Other models
– Cognitive architectures (also see [35])
– ...

In this report, linear parametric models and identification methods from
artificial intelligence will be examined.



3
EXPERIMENT DES IGN

In the previous chapter some simplifications have been made, reducing
the assignment from observing the entire aircraft control to pitch control
only. See the block diagrams in Figure 3.

Essentially, a predictive mathematical model of the pilot’s behaviour
has to be obtained. From system identification theory it is know to be
possible to capture system characteristics under certain conditions. It
is always based on input- and observed output signals, but especially
the input signal has to satisfy certain requirements in order to build an
unbiased and consistent model. See Appendix A for a synopsis about
system identification theory. Constructing a model from the collected
data will be done in Chatper 4. This chapter covers the design of the
experiments to capture the data from pilot dynamics.
First of all, two concepts have to be clarified that affect the pilot

identification process.

3.1 open-loop vs. closed-loop

Open-loop system identification can be rather straightforward and
methods are extensively described in literature (for instance, the field’s
leading textbooks are [28] and [45]). However, as described in Appendix
A, closed-loop identification can be quite challenging, mainly due to the
correlation between the reference noise inputs and outputs. Clearly, as
depicted in Figure 4, the Pilot-Aircraft system can be described as a
closed-loop system (when pitch control is concerned). The data should
be captured and processed with care.

Figure 4: The closed-loop system where u(t) is the pilot’s pitch objective (ref-
erence input), e(t) the pilot’s elevator response, v(t) the disturbance
on the aircraft and y(t) the actual aircraft pitch

9



10 experiment design

3.2 methods and materials

On first sight, the combination of possible non-linearities and the closed-
loop configuration resemble a complex system to perform identification
on. Therefore individual effects could be evaluated by splitting the
problem up even more. Three experiments have been designed in order
to gradually increase the experiment complexity. This allows to verify
the effectiveness of analysis techniques. Guidelines from [28], [45] and [1]
are used to design the experiments. Appendix E provides an overview
of the specifications of the software and hardware used during the
experiments.

3.2.1 General experiment setup

In general, the following experiments have in common that only the pitch
control of the aircraft is concerned (see ‘Simplifications and Assumptions’
in Chapter 2). Consider the closed-loop control diagram in Figure 4.
The reference (target) input is the control objective of the pilot. It

can, for instance, be a constant or varying pitch over time. Within the
following experiments, this target information is displayed through the
FD on the PFD which contains the Attitude Indicator (AI). Originally,
the FD is an overlaid indicator on the AI that shows the required attitude
of the aircraft in order to maintain a certain trajectory. The proper
attitude is obtained by calculation. The FD usually consists of two
perpendicular lines (crosshair configuration) and the pilot adjusts the
aircraft’s pitch and roll in order to align with the FD. The FD is often
directly coupled to the Auto Pilot (AP), but can also be used as a
stand-alone guideline for the pilot’s control. This property makes it
very suitable to use the FD for displaying the reference signal. In the
experiments, however, the FD will not be used to guide the aircraft
through a selected path, but rather to force the pilot to realize a certain
pitch angle. Figure 5 shows a simplified version of the AI with FD. Note
that since pitch control is considered, only the horizontal bar of the FD
will be active. The pilot will be asked to follow this bar by pitching the
aircraft through the cockpit’s yoke. Note that it is assumed that the
yoke input is proportionate with the aircraft’s elevator deflection (as in
Boeing-type aircrafts). In this report, ‘pilot control output’ is therefore
also proportionate to ‘elevator input’.
The output of the system in Figure 4 is the actual pitch angle of

the aircraft, which is indicated on the AI and can be easily be logged.
The system is influenced by perturbations such as wind and turbulence,
indicated as system noise.
This approach is similar to Ertugrul [14], where a human operator

is asked to track a signal on the computer screen using a mouse. The
main difference with the experiments in this report is the complexity
of the plant. Whereas the plant from Ertugrul [14] is just a gain, the
plant in the closed-loop system in this case is a simulated aircraft.
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Figure 5: Graphical representation of the AI as used in the experiments de-
scribed below. The green bar represents the actual aircraft pitch and
will remain centred on the screen. The scale will slide underneath
it. The white boundary between the blue and brown areas is the
artificial horizon. The magenta FD indicates the desired attitude by
moving the crosshair over the AI-scale. As only pitch dynamics are
concerned, only the horizontal bar will move

3.2.2 Testing closed-loop identification techniques

Before moving on to human-in-the-loop simulations, the system iden-
tification methods have been investigated. In order to get a better
understanding of this field of subject, both open-loop and closed-loop
simulations have been performed without the presence of a human
controller. Instead, a PID controller replaces the human pilot. This ap-
proach allows to bypass the potentially complex (and unknown) human
control action. Figure 6 shows the block diagrams of the open- and
closed-loop situation.
The aircraft model is a second order mass-spring-damper system

with a crossover frequency that roughly approximates the crossover
frequency of a B747 aircraft. The PID controller is designed by fixed
equations so the response of the system can be simulated (and is known
a priori). The system has been designed to be comparable with the
‘actual’ human-in-the-loop system but is clearly a more abstracted
representation.

A second advantage is that simulation doesn’t have to be performed
in real-time as there is no human interaction. In Appendix B a more
detailed description of this experiment setup is given, including plant
and aircraft transfer functions, system noise levels and so forth. The
construction of the reference input signal is described in Section 3.4.

3.2.3 Computer simulation experiment

Next, a computer simulation experiment has been designed. The human
pilot has been introduced in the feedback loop (see the block diagram
in Figure 7). Note that the loop is closed by the human itself and an
open-loop system is non-existent in this setup. The two main features
of this experiment will be pointed out.
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(a) Open-loop

(b) Closed-loop

Figure 6: In order to test closed-loop identification techniques, the human
pilot has been replaced by a PID controller. Hence, open-loop and
closed-loop simulations can be performed

Figure 7: The experiment setup with the pilot in the loop. The pilot controls
the aircraft’s pitch with the yoke. The pitch is indicated on the AI.
The pilot is asked to track the FD reference signal.

1. The pilot controls the pitch of the aircraft by operating the elevator
with the yoke. As only pitch control is investigated, all other
control inputs (e.g. roll and yaw) are ignored. Visual feedback of
the aircraft’s pitch is provided via a computer screen displaying a
simplified version of the AI and FD1. A more detailed description
of the software and hardware involved in this experiment can be
found in Appendix E.

2. The aircraft flight dynamics are simulated in real-time. Any air-
craft model could be loaded in the computer and several alterna-
tives have been tested, such as the previously discussed second
order system and models obtained from literature [25]. Addi-
tionally, attempts have been made to capture The University of
Tokyo Suzuki-Tsuchiya lab B747-400 flight simulator pitch dy-

1 The setup ensures the pilot will be fed back pitch information. However, the pitch-rate
is ignored although the pilot cannot ignore this information due to the ‘scrolling’
representation on the AI
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namics through frequency identification techniques. The process
and results are described in Appendix C.
Ultimately, the model from literature has been used for simulation,
for the reason that the model is defined for a greater deal of
the frequency scope. It leads to a more ‘realistic’ feeling of an
aircraft’s pitch response, compared to other models. This choice
is furthermore elaborated in Appendix C.

The purpose of this experiment is the same as described before. The
pilot is asked to track motion of the FD by adjusting the pitch angle
of the aircraft. This experiment can be performed by solely simulating
the longitudinal motion of the aircraft without the need of distributing
computational power to the calculation of other dynamics or graphics.

3.2.4 Flight simulator experiment

Finally, an experiment is designed for the use of JAXA’s Dornier Do-
228-200 full flight simulator. The pilot is now in a fully simulated
environment so the full flight simulator experiment is closest to reality of
the three experiment designs. The approach is the same as the computer
simulation experiment: the pilot’s target pitch is displayed through the
FD and the pilot adjusts the aircraft pitch angle by controlling the yoke
(Figure 7).

The main difference with the computer experiment, however, is that
all aircraft dynamics will be calculated by the flight simulator (not
only pitch movement). So influences of aileron and rudder inputs will
no longer be ignored. Consequently, the pilot is given more feedback
channels, which were previously eliminated by only simulating the
aircraft’s pitch dynamics (see the simplifications in Chapter 2). The
feedback channels include visual feedback through the front window
and information from many other cockpit instruments. Even though
the pilot is asked to track the motion of the FD only, the pilot might
not ignore the other feedback channels.

Aircraft control is a coupled system so controlling one input will not
only influence the corresponding output, but will be noticeable at more
system outputs. As described before, it is a MIMO system which up till
now was simplified to a model that contains only elevator input to pitch
output dynamics (a SISO system). With the flight simulator experiment
it is formally no longer possible to reduce the human-aircraft interaction
to a SISO system, but for consistency, the analysis methods will be
left the same for all experiments. Still only the data from elevator to
aircraft pitch will be used for analysis. When reviewing the results, the
difference in experiment setup should be kept in mind.

3.3 preliminary tests

The goal of the experiments is to model the human pilot control dy-
namics. The structure of the experiments is described in the section
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above. However, there are still some parts of the experiment design that
further need exploration. Some preliminary tests have to be performed
for the preparation of the main experiments.

The methods used in the identification process depend on the system’s
behaviour. Some simple tests can provide information about various
system properties for which a short description will be given. These
tests have to be performed a priori and before every new experiment
setup. This section contains the outline for preliminary experiments and
similar tests have been carried out for the three experiment designs.

• Duration of the experiment
The identification experiments are designed to analyse the human-
machine interaction. It is interesting to know how fast the system
response typically is in order to determine the minimum duration
of the experiment which limits the analysis of the slowest responses
of the system. From preliminary experiments, the minimum du-
ration is determined to be in the order of 10 seconds, although
generally for system identification, it is beneficial to have longer
experiments in order to capture more data. Therefore, setting the
maximum experiment duration is important. As human subjects
are involved, there is a maximum experiment duration due to
endurance, focus and workload factors. The maximum duration
of the experiment is set to approximately 60 seconds2.

• Sample frequency
The outputs of the system are logged to a data file at a sample
frequency fs = 1

ts
[Hz] or ωs = 2π

ts
[rad/s], where ts is the sample

time. For the analysis of the data in later stages, there must be
enough sample points which can be achieved by making ts as
small as possible.
The upper limit of ts is set in order to still observe the highest
relevant frequency, well above the Nyquist frequency 3. Besides,
there is a lower limit for ts because of the fact that Prediction
Error-methods tend to emphasise high frequencies when ts is too
small, although this problem can be resolved by re-sampling or
low-pass filtering the obtained time-series a priori. More on this
in [1, 28] and Appendix A
Aarts [1] provides some rules of thumb for setting the appropriate
sample frequency for a first order system with bandwidth ωb. A
sample frequency such that 10ωb ≤ ωs ≤ 30ωb is recommended. For
practical reasons, the sample times are ts = 0.05s and ts = 0.04s
since this is the standard for the JAXA full flight simulator and
satisfies the above criteria.

• Noise level
McRuer [30] describes the human controller as a feedforward pro-
cess with the addition of an inherent human noise input in a

2 it could be slightly longer due to the full-length property of the PRBS, as will be
discussed below

3 Nyquist frequency ωN = ωs
2
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quasi-linear pilot model. From this starting point it is useful to
know the magnitude of the noise input, compared to the system’s
input. The amplitude of the FD pitch command for the identi-
fication experiment could be adjusted accordingly. By applying
a constant reference signal to the system, the noise level can be
determined by taking the square root of the variance of the fluc-
tuating pitch output: σv =

√
var(y(t)). Once an estimate of σv is

obtained, one could achieve a suitable signal-to-noise level µs/n:

σu =
√
var(u(t)) (2)

µs/n = σv
σu

(3)

A signal-to-noise ratio of at least 10 is recommended for system
identification experiments [1].
This is a method designed for open-loop systems. It should be
kept in mind that the system is inherently closed-loop, so this
test does not apply directly, but gives an indication of the noise
level (and reveals control action). Another drawback is that this
method will not work if the backlash of the flight simulator yoke
is significant. The amplitude of the human control noise could be
within the dead-zone of the yoke and will not be measurable.

• Linearity and Time invariance
Some analysis methods require the identified system to be Linear
and Time-Invariant (LTI). In short, this is due to the fact that some
identification techniques require convolutions. In order to perform
convolutions, the system has to be linear and time invariant.
Let H be a convolution, that maps input u to output y. This
means that y = H(u) with H = (h ∗ u)n = ∑∞

k=−∞ hkun−k and
h1, h2, ..., hn ∈ R are weights of the system’s impulse response.
Note that this is a time-domain version of the more familiar
transfer function. By z-transforming the input and the output
of the system, the (discrete) frequency response can be found
y(eiω)
u(eiω) = H(eiω) = H(z).
Convolutions systems are LTI which means that:

H(u+ v) = H(u) +H(v) additive (4)
H(αu) = αH homogeneous (5)

H(un−k) = H(u)n−k time-invariant (6)

The combination of homogeneity and additivity is called linearity.
Gondhalekar [16] elaborates on methods to discover and charac-
terize non-linear behaviour of a system. A straightforward method
to check this property is by applying the ‘staircase’ signal as a
reference input to the system and verifying if system’s behaviour
is (more or less) the same for every step. More on the background
of LTI systems can be found in [26] and about preliminary tests
in [1, 45, 28].
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• Influence of feedback-loops
From the assumption that the system is LTI, it is possible to
preliminarily estimate it’s impulse response: y = H(δ), where δ is
the Dirac-delta function. The Finite Impulse Response (FIR) can
be calculated quite efficiently [26]. If the FIR depends only on past
values of the input time series, the system is causal. However, it
can happen that the FIR is best calculated partly with inputs of
‘negative lags’, which indicates output feedback. These non-causal
FIR systems reveal the presence of one or more feedback loops,
which is the case for the data acquired from the identification
experiments.

3.4 input signal generation

Another important experiment design element is the composition of an
appropriate reference input signal and is provided to the pilot by the
FD as a pitch command. The input signal has to meet two requirements
in order to provide a good basis for the identification experiment.

First of all, the signal has to be of higher amplitude than the system
noise level to ensure the analysis is based on input response and not on
the effects of noise. In other words, the signal to noise ratio has to be
high. The most straightforward way to achieve a such, is to increase the
input signal’s amplitude. This, however can only be done till a certain
extend due to limitations of human control.

Preliminary tests showed that human control depends on many factors
and as the input signal defines the pilot’s task (i.e. it is the pitch
command indicated by the FD), the input also has influence on the
pilot’s workload (see Chapter 6). More on pilot’s workload is provided
by Entzinger et al. [13] and Nijenhuis [34]. When the amplitude of the
reference signal is too high, it is known that pilot’s tend to disengage
from the experiment (The pilot will indicate that “It is impossible to
track the FD - the pitch command is too extreme and not realistic").
This also depends on the character of the input signal (e.g. harmonic or
binary) and the time the pilot has to achieve the FD position (before it
changes to a new pitch command to track). In short, in order to capture
pitch control dynamics, the FD has to be ‘traceable’ for a human pilot.
The design variables for such signals are:

• Reference signal character
Two different types of signals have been generated: a maximum-
length PRBS and a periodic sum of harmonic signals (multi-sine).
• Reference signal amplitude
The range of the FD desired pitch for the human pilot to trace
• Reference signal bandwidth
The motion of the FD must be within the human control bandwidth

The resulting FD reference signals can be found in Figure 8 and specifi-
cations are noted in Table 2
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Figure 8: The FD input signals

3.4.1 PRBS

The PRBS is a periodic signal that can have two states (binary). The
sequence of the states is random within its period and its characteristics
resemble white random noise (psuedo-random). The maximum-length
PRBS has a period equal to M = 2n − 1 for a sequence with n samples.
The amplitude of the PRBS is +3 and -3 degrees around the aircraft’s
trimmed pitch angle and can be considered as a switching set-point
reference input. The bandwidth is controlled by adjusting the clock
period of the signal. The PRBS will be constant over b samples resulting
in a clock period of 1

b . The PRBS must be traceable by the pilot. For
stable operation, the normalized crossover frequency of human control
is π

2 [31]. In order to be well within the bandwidth of human control,
the PRBS is designed to have a bandwidth of 0.5 Hz.

3.4.2 Multi-sine

The multi-sine reference input is a sum of individual sines:

u(t) =
m∑
k=1

ak sin(ωkt+ φk) (7)

where m = 7. The amplitudes and phases ak, φk are chosen in order
to obtain a smallest overall amplitude using a method proposed by
Schroeder [42]. The frequency of the seven individual sine waves are
again bounded in order to stay within the human bandwidth and are
equally spaced in the frequency domain. Preliminary tests indicated
that human pilots find it easier to trace the smooth multi-sine FD input,
compared to the PRBS. Therefore, the range of the multi-sine can be
larger; the desired pitch varies between -10 and 10 degrees, around the
aircraft’s trimmed pitch angle.



18 experiment design

3.4.3 Other input signals

Two other FD signal types have been examined. The Dirac Delta impulse
function

δ(t) =
{

+∞, t = 0
0, t 6= 0

∫ ∞
−∞

δ(t)dt = 1 (8)

and the Heaviside step function

H(t) =
{

0, t < 0
1, t ≥ 0

H(t) =
∫ t

−∞
δ(t)dt (9)

Although these signals are convenient for their simplicity, they do not
provide a good basis for identification techniques, as described in the
next section.

3.4.4 Persistent Excitation

In order to estimate consistent parameters of (linear) Prediction Error
Method (PEM) models, the input signal must Persistent Exciting (PE)
[45]. A signal u(t) is PE of order n if the limit

R(τ) = lim
N→∞

1
N

N∑
t=1

u(t+ τ)u(t) (10)

exists and the following covariance matrix is positive definite

R(n) =


R(0) R(1) . . . R(n− 1)
R(−1) R(0) . . . R(n− 2)

...
... . . . ...

R(1− n) R(2− n) . . . R(0)

 (11)

which means that

zTRz > 0 ∀z 6= 0 ∈ R (12)

where τ is the number of lags (time shifts) of the signal. It can be shown
that the order of persistent excitation reveals the frequency content of
a signal and until what order the signal is uncorrelated with a delayed
version of itself [45]. For example, if u(t) is Gaussian distributed white
noise, the signal is PE of all orders since all realisation of such ‘random’
process are uncorrelated. A single step input will be PE of order 1 and
an impulse input is not PE for any order. In order to fit a model to
the input/output data during the identification process, a high order
of persistent excitation is desired. In fact, for models created by the
PEM-method, the order PE(n) limits the number of model parameters4.
The generated input signals have been analysed on the PE property and
the order n is listed in Table 2. It can be seen that both the PRBS and
the multi-sine signal are PE for high orders.

4 The number of parameters Nparam = 1
2 nP E
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PRBS Multi-sine
Duration 63.95 sec 63.95 sec
Range [-3,3] [-10,10]

Crest factor 1 2.4
PE(n) 573 264

Bandwidth ± 0.5 Hz ± 0.5 Hz

Table 2: Properties of the input signals

3.4.5 Signal properties

Furthermore, for later processing of the time series, it is required that the
reference input u(t), but also the output y(t) is a realization of a single
(stochastic) process. u(t) and y(t) should be Wide-Sense Stationary
(WSS) which means that the probability distribution of the input does
not change over time. This results the parameters as mean and variance
to be constant over time:

lim
t→∞

E u(t) = µu (13)

lim
t→∞

E (u(t) )2 − µ2
u = σ2

u (14)

The signal is called ergodic if these statistical properties can be obtained
by taking sufficiently long data samples of the process. Ergodicity of u(t)
and y(t) is one of the fundamental assumptions for linear system identi-
fication so it should be considered during the conducted experiments
and data acquisition.
A measure to indicate the ratio of the signal’s peak values to it’s

average value is called the Crest factor.

Cr = max |u(t)|
uRMS(t) (15)

uRMS =
√

1
n

(
u2

1 + u2
2 + . . .+ u2

n

)
(16)

For the identification of the closed-loop system it is convenient to have
input signals that have low Crest factors because they employ the
amplitude range more efficiently. Binary signals have that property.
However, from preliminary experiments, it is found that human pilots
find it harder and more unrealistic to track a binary signal. Table 2 lists
the Crest factors of the generated input signals.

3.4.6 Power Spectral Density

The frequency content of the signal can be verified by computing the PSD.
Both the PSD’s for the PRBS and the multi-sine have been calculated
and are depicted in Figure 9 and 10. Note that the red line is the
smoothed version of the ‘raw’ frequency domain data (the magnitude
of the Fourier transform) obtained windowing the data with Welch’s
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method [46]. Both signals primarily consist of low frequency content
and are well within the human bandwidth. The multi-sine has a more or
less flat power distribution in that range due to the peaks of each single
sine-wave contribution. The PRBS still contains some high frequencies,
because of its square-wave characteristics. In Table 2 the bandwidths of
the signals have been shown. The bandwidth is defined as the frequency
ωBW for which the PSD drops below the −3dB of its maximum value.
It can be understood as the frequency interval where the majority of
the signal’s power is located. Preferably for system identification, one
would like ωBW to be as high as possible, since all frequencies will be
present in the signal (white noise has this property because of its flat
PSD). As described above, the human controller will then not be able
to track the input, so the main frequency content should be within the
human bandwidth.
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Figure 9: The Power Spectral Density of the PRBS

Another important point to mention is the difference between the
signal’s property of Persistent Exciting and its Power Spectral Density.
Even though a signal could have a PSD that is non-zero for all frequencies,
it does not necessarily have to be PE of high order.

For example, consider the Dirac Delta (an impulse) and the Heaviside
function (a step signal). The spectral densities Φδ(ω) > 0 ∀ ω and
ΦH(ω) > 0 ∀ ω, although the latter decreases exponentially. The
covariance matrix R from Equation 3.4.4 shows that the Heaviside
function is PE of order n = 1. The limit of Equation 3.4.4 does not
exists which means the Dirac Delta function is not PE of any order,
even though both signals have spectral content over a large frequency
interval. These types of FD input signals have therefore not been used
for further experiments.
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Figure 10: The Power Spectral Density of the multi-sine

3.4.7 Dealing with multiple experiments

The human pilot has been subject to more than one experiment. From
literature, human control is know to be more or less linear against
unpredictable signals [14]. The input signals for estimation and validation
of the control model are identical. When asked, the pilots had not
noticed the signals being the same. However, to avoid the learning
curve of the pilot, for every experiment a new set of input signals is
generated. By renewing the input pitch command, the human pilot is
forced to respond as linearly as possible. The objective is to capture the
pilot’s pitch dynamics without the bias of the pilot getting used to the
experiment.

3.4.8 Remarks

The design of the reference signal is of significant importance for the
results of the system identification experiment. In general, designing
the input reference signal is a trade-off between system identification
requirements and the capacity of the pilot’s control. From system
identification theory, one would like a broadband signal with high signal
to noise ratio. Unfortunately, this is only possible till a certain extend
due to the limitations of human control (Figure 11).

3.5 disturbance input

As described earlier in Chapter 2, the experiments are conducted in
excellent flying conditions. There is no wind and no turbulence and
aircraft (longitudinal) dynamics will be unaffected by external factors.
Thrust levels, landing gear and secondary control surface settings will
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Figure 11: Illustration of the trade-off between human pilot limitations and
system identification requirements for the FD reference input

be considered as initial conditions and do not affect the dynamics during
the experiments. Furthermore, only pitch motion will be considered,
other degrees of freedom will be ignored. Consequently the disturbance
input can be assumed to be non-existent. The only ‘disturbance’ in the
system is the human inherent noise as described by [30] and obviously
cannot be eliminated.

3.6 human subjects

For the execution of the experiments, several ‘pilots’ have been asked
to participate. Appendix E provides an overview for each subject. The
subjects did not train a priori to the experiments, only a short briefing
was given to explain the pilot’s task. The pilots were not forced to
be highly motivated (e.g. though a competitive element or monetary
reward), although their performance was monitored and fed back after
every session.

3.7 overview

An overview of the three experiments can be found in Figure 12. It
shows the simulated aircraft models and controlling pilots for every
experiment.



3.7 overview 23

Figure 12: An overview of the three identification experiments





4
ANALYS IS OF RESULTS

This chapter elaborates on the results of the experiments from Chap-
ter 3. Due to the large amount of data acquired, only the (JAXA)
Flight Simulator Experiment will be analysed in this report. Identical
procedures could be carried out for the other data-sets but in order
to limit the number of analyses in this report, the focus will be only
on the experiment with the lowest level of abstraction. Unfortunately,
little is known a priori about the model’s structure, order and control
delay [33]. Therefore, several predictive models have been generated and
evaluated on the availability to capture characteristic dynamics from
the data, the Root Mean Square Error (RMSE) and the calculation time.
Figure 13 shows the typical data obtained from the flight simulator
experiment: the FD reference input which the pilot aims to track, the
pilot’s control input through the elevator and the actual pitch of the
aircraft as indicated on the AI.
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Figure 13: Typical data obtained from the flight simulator experiment. The
reference input u(t), control input e(t) and pitch output y(t) are
recorded

4.1 closed-loop behaviour

The pilot is asked to track the movement of the FD. The actual pitch
of the aircraft is provided to pilot through the AI on the PFD. This
implies a feedback loop as depicted in Figure 14. The behaviour of this
closed-loop system can be investigated.

25
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Figure 14: The closed-loop system

4.1.1 Model structure

As described in Chapter 1, a simple model that represents all significant
system dynamics is preferred. in the field of system identification, models
from the Auto Regressive, Moving Average (ARMA)-family are well-
know structures and widely used in literature. The closed-loop system
behaviour is modelled using the ARX model set. The main reasons for
this choice are the number and the linearity of parameters. Note that
although the parameters are linear, a ARX model can describe non-linear
functions. The ARX parameters can be calculated quite conveniently
through a least-squares algorithm (the PEM is a minimization problem),
see Appendix A.

4.1.2 Pre-processing

System identification is performed on each dataset. The data has been
removed of its means and is de-trended. The FD reference has mainly
low-frequency content so pre-filtering is not necessary. Hence, it is split
up into an identification and validation dataset.

4.1.3 Model selection

Human operators inherently have a reaction time delay. The time
between the visual feedback of the aircraft pitch relative to the position of
the FD and the corresponding control action is investigated in Appendix
D. A minimum delay of 0.28 seconds can be expected, which translates
to 7 samples of delay in the data.

The MATLAB ident-toolbox and GUI were used for model selection.
A brute-force search method has been applied to find suitable ARX
models with complexity in the range of 1-15 poles, 1-15 zeros and 5-15
sample delays. First, the model with the lowest Akaike Information
Criterion (AIC) value has been selected, which describes a trade-off
between model complexity (the number of parameters) and the goodness
of fit (see Appendix A).

The model can be over-parametrized. Therefore, the parameters of A
and B with a variance of the same order of magnitude as the parameter
itself have been removed. A high parameter variance indicates that the
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Figure 15: The ARX 2,1,15 closed-loop predictions versus the actual pitch y(t)

parameter might be redundant. Additionally, pole-zero cancellations
have been eliminated. This results in a simplified ARX 2,1,15 model
(Figure 15):

A(z)y(t) = B(z)u(t) + v(t) (17)
A(z) = 1− 1.938 z−1 + 0.9431 z−2 (18)
B(z) = 0.00425 z−15 (19)

4.1.4 Model validation

Once the model is constructed, it can be used to predict the output.
A ‘perfect’ model will exactly predict and overlay the measurement
data. In reality, the difference between the model prediction and the
actual data (called model residuals) are errors due to the order of the
model, nonlinear effects and the limited number of samples. Therefore,
the models need to be validated, which means it is tested if the models
describe all significant dynamics from the experiment data. This can be
done with the normalized autocorrelation test [28]. The autocorrelation
of the residuals are defined as:

Ree(i) = Re(i)
Re(0) =

1
N

N−i∑
t=1

e(t)e(t− i)

1
N

N−i∑
t=1

e(t)2
(20)

i = imax, ..., 3, 2, 1, 0,−1,−2,−3, ...,−imax (21)
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If the number of samples N is large, Ree(0) = 1. If Ree = 0∀i 6= 0, the
errors are said to be uncorrelated, meaning the model captures all the
dynamics in the data. In practice, it is tested if

|Ree(i)| ≤
δ√
N

∀i 6= 0 (22)

with δ defining the level of significance. If this inequality holds, one can
argue that the model residuals are from a Gaussian distributed white
noise process, and past and future errors are not correlated. The model
describes the ‘noise’ sufficiently well.

A similar procedure can be followed to analyse the normalized cross-
correlation:

Rue(i) =
1
N

N−i∑
t=1

u(t)e(t− i)[(
1
N

N−i∑
t=1

e(t)2

)(
1
N

N−i∑
t=1

u(t)2

)] 1
2

(23)

i = imax, ..., 3, 2, 1, 0,−1,−2,−3, ...,−imax (24)

and

|Rue(i)| ≤
δ√
N

∀i 6= 0 (25)

This tests if the input is uncorrelated with the errors meaning that the
model describes the output sufficiently well, i.e. the input is independent
of the model residuals.
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Figure 16: Correlation analysis for the closed-loop linear parametric model
ARX 2,1,15. The auto-correlation plot indicates that the noise
model can be improved. However, the cross-correlation stays within
the 1% confidence interval: the model predictions of the output are
acceptable.
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In Figure 16 the autocorrelation and the cross-correlation plots are
shown. For the model validation of the closed-loop model, a 1% con-
fidence interval is used (δ ≈ 12.7, calculated with the ident-toolbox).
The confidence interval is bounded by the horizontal dashed lines. As
can be seen, the correlation analysis plots stay within this confidence
region. The model prediction of the output is acceptable.

4.1.5 The effect of experience

For all sessions of the Flight Simulator Experiment, an ARX model can
be made through the method described above. It might be interesting to
see the difference between a novice and an expert pilot, from a control
perspective. For both types of pilots, the closed-loop dynamics are
evaluated by the model’s frequency response (Figure 17).
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Figure 17: The frequency response from the experienced pilot compared to
the novice pilot. The response is similar, but the experienced pilot
has a higher closed-loop bandwidth. The area of the Bode-plot is
due the parameter variances of the ARX model-set (2σ-bound)

.

One can see the low- and high-frequent characteristics are similar.
The main difference is that the closed-loop bandwidth of the expert
pilot is higher than the novice pilot. This phenomenon is supported
by literature and can be explained by the difference in experience (it
can be modelled for instance through the adaptive control ‘windsurfer
approach’, briefly discussed by [15]).
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4.2 human controller dynamics

One of the downsides of analysing the closed-loop behaviour is that the
aircraft dynamics is in the model-set. This means that not only the
human pilot control is captured, but also the specific aircraft the pilot
is controlling. There are several ways to circumvent this problem and
can be categorized under closed-loop identification techniques. Several
methods are described by [17, 20, 15], but the direct identification
method seems to be the most straightforward approach. As described
in Appendix A, it is the starting point for any closed-loop identification
task. The direct identification method simply ignores the feedback loop,
which makes it possible to use well-established open-loop identification
techniques. In this section, the a few approaches to model human
controller dynamics are examined.
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Figure 18: Pilot elevator control predicted by the ARX 9,6,10 model. The
model doesn’t capture corrective control and is more or less an
average of the pilot’s response.

4.2.1 Linear modelling

Similar to the modelling of the closed-loop, an ARX model structure is
tested. The experiment data has been treated in similar manner: the
data is de-trended and its means are removed. Furthermore, the data
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has been split into a identification and validation set. The least-squares
adjustment of ARX parameters are brought to a halt using the AIC.

In Figure 18, the target signal, human response and model prediction
have been depicted. As can be seen, the linear parametric model captures
the human response to excitations of the PRBS target signal, but not the
‘correcting’ oscillating behaviour just after a target step. Instead, the
linear model more or less mimics the average of the human response. The
model accuracy is not particularly good because of this characteristic:
the ARX 9,6,10 has an RMSE of 1.42. The model can be calculated in
0.72 seconds.
A sensitivity analysis on the ARX parameters has been performed.

The number of parameters could be reduced in order to obtain a model
with approximately the same accuracy and transient behaviour. The
ARX 3,1,10 model can be found in Figure 19.
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Figure 19: Pilot elevator control predicted by the simplified ARX 3,1,10 model.
It has approximately the same response as the ARX 9,6,10 but less
parameters

Model validation techniques reveal that the prediction residuals cannot
be considered white so the model doesn’t capture the human controller
dynamics completely (Figure is not shown as it doesn’t provide ad-
ditional information). The frequency content of the residuals can be
investigated through a PSD. However, all the periodograms rely on the
Fourier transform. Since the residuals are stochastic, and not periodic,
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these fft-based methods might estimate the PSD wrongly. A high-order
Auto Regressive, Moving Average, with exogenous input (ARMAX) model
can be fit to the residuals to test the dynamics that remain unmodelled
[5]. See its power spectrum in Figure 20.
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Figure 20: The PSD of the ARX model residuals, indicating that still low-
frequency control action has not been modelled.

4.2.2 Non-linear modelling

Due to the non-linearities and the inherent noise of the human controller,
it might be possible to obtain better results with a non-linear model set.
In this report, the Neural Network and Adaptive Neuro-Fuzzy Inference
System will be evaluated.

Neural Network

The Non-linear ARX (NARX) can predict non-linear time series. It is a
form of Neural Network which includes a feedback connection within
the network. The NARX model is inspired by the ARX model described
above.
The Neural Network (NN) is good in describing time series. It can

approximate any continuous non-linear function with arbitrary preci-
sion. This is called the universal approximation theorem [21]. However,
a neural network can be considered as a black box in the sense that
its structure will not provide any insights of the process that is being
approximated. Neural networks are made to see whether system iden-
tification techniques related to the field of artificial intelligence could
derive ‘better’ models from the data (in the sense of model fit and
complexity, calculation time and describing control characteristics of
the human pilot), compared to the ARX model set discussed previously.
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Figure 21: Neural Network NARX model structure

The NARX neural network consists of a hidden layer and an output
layer. Both layers have weights and biases, with a sigmoid transfer
function in the hidden layer and a linear transfer function in the output
layer. Entzinger [12] gives a general introduction to neural networks.
The network architecture is set as in Figure 21. The input of the network
is the FD signal u(t), the output is the elevator control e(t). The NARX
model set includes a feedback loop and will base its predictions of the
elevator control on:

e(n) = NN(y(t− 5), ..., y(t− 15), x(1), ..., x(t− 10)) (26)

The delays in the hidden layer is due to the expected human reaction
time delay (Appendix 4) and consists of 10 hidden neurons. The output
layer consists of only one neuron.
The experiment data is randomly divided into three sets:

• 70% training data
• 15% validation data (in order to prevent overfitting of the network)
• 15% independent checking data (in order to test the network’s

prediction performance on ‘new’ data)

In contrast to the linear ARX model, the data is not pre-processed
due to the fact that the neural network can approximate the data
regardless of biases such as trends and means. However, the data has
been normalized as it can speed up convergence of the neural parameter
values.

The weights and biases of the neurons are initially set to a random
value. They are adjusted iteratively by a non-linear least squares solver
called the Levenberg-Marquardt backpropagation algorithm - a rather
common curve-fitting algorithm in literature. It will try to minimize the
model prediction error by adjusting the neural parameters. Training
will be brought to a halt when the model doesn’t improve any more
(checked by the validation data). See Figure 22. for the training progress.
Like many other non-linear solvers, the algorithm might not find the
global minimum. An optimal and unique solution therefore will not be
found, as discussed in Chapter 6.
Figure 23. shows the human elevator response to the FD and the

neural network prediction. The NARX neural network has excellent
model fit (RMSE = 0.69) and can be calculated in 4.0 seconds. However,
the model does need 261 parameters to achieve this result. Besides, the
model allows elevator feedback which might result good predictions but
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Figure 22: Training, validation and testing progress for the Neural Network

with a poor prediction horizon (a naive predictor). More on this in the
next section and in Chapter 6.
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Figure 23: Pilot elevator control predictions by the NARX Neural Network.
The predictions are close to the actual aircraft pitch y(t).

ANFIS

The ANFIS model uses methods from both Neural Networks and Fuzzy
Logic. Similar to Neural Networks, ANFIS models have the capacity
to describe any non-linear function with arbitrary precision. It can
therefore describe a non-linear function better than any ARX model.
It is able to ‘train’ in a similar way to NNs but with a fewer number
of parameters. Fuzzy Logic is a form of logic that doesn’t solely rely
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on ‘true’ or ‘false’, but can have any ‘truth value’ in between those
extremes. Its power lies in the interpretability of the inference system.
For a brief introduction to ANFIS, see Appendix A.
A Sugeno-Takagi fuzzy system is used which is in the form of fuzzy

IF-THEN rules, described by [48]. Fuzzy logic relies on membership
functions, which are essential to describe the ‘partial truth’ of a fuzzy
system. Gaussian type, bell-shaped membership functions have been
used in this research. These MFs ensure a smooth, continuous and
differentiable fuzzy model.
The experiment data is split into a training and validation set and

the data hasn’t been pre-processed (unlike ARX models). The ANFIS
membership functions are shaped and shifted until they fit the training
data. This is a non-linear problem and can be solved with a gradient
descend algorithm. The Sugeno-Takagi fuzzy system itself is a linear
system, which parameters can be found using the least-squares method.
The trained ANFIS consequently has ‘linear’ and ‘non-linear’ parameters.
That is, the names indicate how the parameters are calculated. This
method is called the hybrid learning procedure.
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Figure 24: Pilot elevator control predictions by the ANFIS. Some large outliers
are not shown in the plot.

The number of Membership Functions (MF)s, along with the number
of model inputs define the complexity of the ANFIS. There are mn

fuzzy rules trained, with m the number of MFs and n the number of
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inputs. As for all models, typically, the more parameters are introduced,
the better the model fits the data. A model with a small number of
parameters is preferred, so initially the number of MFs is set to 2. The
output MF is constant.
From a system identification perspective, it makes sense that the

human operator is influenced by the FD reference input (Figure 14).
Furthermore, the pilot can evaluate the actual aircraft’s pitch to adjust
its control action, which makes the pitch data also a model input. One
can argue that there can also be an elevator feedback loop. This would
mean, that the (time delayed) elevator data is treated as a model input as
well as the model output. Physically, it means that the pilot ‘knows’ his
previous control input and adjusts his next input accordingly. Although
it is plausible in reality, it can lead to erroneous results when this is
tried to be modelled using the ANFIS model set1. See the discussion in
Chapter 6 on feedback channels. Therefore, in this report, the ANFIS
will only have pitch feedback in its search space.

The model inputs are subject to various time delays, such as human
response time and delay due to system inertia. For the calculation of
the elevator output at any sample n, the delayed versions of the input
and output data are used:

u(n− 1), u(n− 2), u(n− 3), ..., u(n− q) (27)
y(n− 1), y(n− 2), y(n− 3), ..., u(n− r) q, r << N ∈ R (28)

with u the FD input, y the actual aircraft’s pitch and N the total
number of samples.

A sequential search algorithm is used to find the optimal model inputs
with respect to the model’s RMSE and u(n− 9) and y(n− 4) have been
selected. The danger of a sequential search algorithm is that it might
converge to a local minimum. A brute force algorithm is a solution, but
takes significantly more computer power.
Similar to the discussion in Section 4.1, there is an indication that

experienced pilots have different control dynamics compared to novice
pilots. The sequential search algorithm provides the model inputs for
which the model output has the lowest RMSE and is given below:

e(n)expert = ANFIS (y(n− 3), u(n− 11)) (29)
e(n)novice = ANFIS (y(n− 3), u(n− 9)) (30)

Although a further comparison of the models can be performed, only
the model of the expert pilot is considered. The elevator output of the
ANFIS is shown in Figure 24. The high RMSE is due to large outliers in
the model prediction. They occur at the sudden change in FD command
due to the sharp, binary character of the PRBS. Although the RMSE
of the ANFIS is high, the model does capture some human control
dynamics in detail. Some essential control characteristics are predicted2.

1 The ANFIS can generate a ‘naive predictor’
2 Note that similar results as the NN can be achieved when the ANFIS includes
the elevator feedback in its search space (see Chapter 6). In order to avoid ‘naive
predictions’, this is not done.
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Figure 25: The control surface of the ANFIS. Note the non-linear relation
between the elevator output, the FD input and the aircraft pitch.

Furthermore, the output surface of the model is shown in Figure
25. and clearly shows non-linear relations between the inputs and the
output. Note that although locally linear surfaces are within the ANFIS
search space, it can be hard to achieve a such with Gaussian MFs. The
surface shown Figure 25 can be compared to surfaces calculated with
other MFs to evaluate the non-linearity. This is left for further research.
The fuzzy rules and ‘trained’ membership functions are depicted in
Figure 26. The ANFIS can be calculated in 0.55 seconds and has 4 rules
and 16 parameters.

Figure 26: Four fuzzy rules of the ANFIS with Gaussian bell shaped MFs on
the two inputs

4.2.3 Overview

Table 3 gives an overview for the RMSE, number of parameters and
calculation time of the selected models. Some remarks have been made
concerning the dynamic response of the system. Furthermore note that
the modelling techniques used in this chapter are generally used to
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ARX NN ANFIS

RMSE 1.74 0.66 8.74
Number of pa-
rameters

4 261 16

Calculation
time

0.72 4.0 0.55

Remarks Simple linear-in-
the-parameters
model

Note the elevator
feedback of the
NARX model-set

Interpretable
fuzzy rules. Outly-
ing predictions at
PRBS switch

Table 3: Overview of the pilot elevator control models

identify plant behaviour in literature. In this case, attempts have been
made to identify the controller and the same system identification
algorithms have been used for this purpose.



5
CONCLUS ION

This internship report describes the contribution to the research project
on the safety of curved approaches at The University of Tokyo, Depart-
ment of Aeronautics and Astronautics. This work focusses on:

• Investigating closed-loop dynamics of pilot-aircraft interaction

• Determining a suitable model-set to capture human pilot pitch
control dynamics.

Three experiments have been designed where the pilot is requested
to track the FD reference signal. The yoke control input and aircraft’s
pitch are recorded. Data from the JAXA full flight simulator experiment
is used for the analyses in this report.
From system identification theory it is known that the input signals

require certain characteristics in order to estimate consistent models.
Properties like the duration of the experiment, sample time, signal-to-
noise ratio and persistent excitation of the signal influence the quality
of the reference signal for identification purposes. However, due to
the limitations of the human operator, not all broadband signals are
suitable. The selection of the input signal is a trade-off between the
system identification requirements and the capacity of human control.
It is shown it is possible to design such signals within the human control
bandwidth. During the experiments, the PRBS is used as FD reference
input.

The human-aircraft system contains a visual pitch feedback loop. The
closed-loop dynamics can be modelled by a linear-in-the-parameters
ARX model and correlation analysis shows that the model predicts
system characteristics sufficiently well. In frequency domain, models
from experienced versus novice pilots indicate a difference in closed-loop
bandwidth. It is hypothesised that experienced pilots typically have
a higher bandwidth than novice pilots. Further research is needed to
validate this concept, but it is in agreement with characteristics of
human operators in literature.

In order to distil the human controller dynamics from the closed-loop
configuration, the direct system identification approach has been used.
The linear parametric ARX model captures the basic control dynamics
at the switch of the PRBS, but does not include corrective control.
The ‘intelligent’ non-linear model set, NARX Neural Network has

an excellent model fit but requires many parameters (computationally
expensive) and relies on elevator feedback.
A neuro-fuzzy solution has been introduced. The ANFIS model has

significantly less parameters than the neural network and relies on
delayed FD input signals and current aircraft pitch. Although the model
fit is less than the other controller models, it does capture the pilot’s

39
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corrective control. The ANFIS consists of (only) 4 linguistic rules and
interpretation is straightforward compared to neural weights and model
parameters.
Similar to the closed-loop analysis, there is an indication that the

level of piloting experience is distinguishable with respect to controller
dynamics.
In general, system identification techniques can be valuable analysis

tools for further research on modelling the human pilot control strategy.
Within the project on the safety of curved approaches, but also research
on other flight phases and procedures, transient and frequency response
could provide insights on pilot capacity and performance.
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DISCUSS ION AND RECOMMENDATION

This chapter discusses the experiment design, several aspects of human
pilot modelling and possible applications. Furthermore, recommenda-
tions for further research are given.

6.1 experiment design

This report only focusses on pilot pitch control. In Chapter 3 the
experiment setup is explained. The reference signal of the FD is a PRBS
and has been tuned to fit the needs for system identification while
remaining traceable by the pilot.
The input signal is not a realistic FD signal which - under normal

conditions - changes gradually. It is known that human operators can
change their control strategy according to the task and at any moment.
It is therefore possible that the models in this report represent the pilot
pitch control for this experiment setup specifically, and not in general.
In further research, one could choose not to override the FD, but to
use it as is during the experiment. The implementation of a curved
approach is then possible. The problem is that the FD would probably
not be PE so linear parametric models will not provide consistent results.
‘Intelligent’ modelling (ANFIS or NN) remains possible as they do not
require the PE property.

The input signals in the report are designed to have frequency content
within human bandwidth. Theoretically, this limits the validity of the
model up to that bandwidth and is true for the multi-sine signal. It is
lesser of a problem for the PRBS. Due to the square-wave properties,
the PRBS has more high-frequency content. Pool et al. [40] present
methods to obtain a wide-frequency-range pilot control model.
In Chapter 4, it is discussed that there is an indication that the

experience of the pilot can be observed in the closed-loop and controller
model. Novice pilots tend to show a lower closed-loop bandwidth than
the experienced pilot. It has not been tested if the bandwidth change is
statistically significant. It can be tested by obtaining the bandwidths of
multiple experiments and verify if the novice pilot in fact has a lower
bandwidth than the experienced pilot, by for instance an Analysis of
Variances (ANOVA).

6.2 pilot modelling

Some remarks have to be made concerning the modelling of pilot control
dynamics.

41
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6.2.1 Predictive versus causal modelling

In this report, linear parametric ARX and non-linear ‘intelligent’ ANFIS
and NN model-sets have been used to capture the pilot pitch control dy-
namics in a predictive mathematical model. It is tempting to think that
a model that predicts the future output sufficiently well (in this report
measured by the RMSE), also explains the underlying character of the
system. This, however, certainly does not have to be the case. Shmueli
[44]: This is due to “the fact that measurable data are not accurate
representations of their underlying constructs. The operationalization
of theories and constructs into statistical models and measurable data
creates a disparity between the ability to explain phenomena at the
conceptual level and the ability to generate predictions at the measur-
able level”. For instance, consider an model f̂(x) that should model
the observations Y of a process. The expected prediction error can be
defined as:

EPE = E(Y − f̂(x))2 (31)
= ... (32)
= Var(Y ) + Bias2 + Var(f̂(x)) (33)

The Bias term is due to an erroneous model set f̂(x), the third term
because of the use of sampled data to estimate f̂(x). The first variance
is the error even when f̂(x) would be perfectly specified. Shmueli [44]:
“In explanatory modelling the focus is on minimizing bias to obtain
the most accurate representation of the underlying theory. In contrast,
predictive modelling seeks to minimize the combination of bias and
estimation variance”.

The latter is done for all the models in this report. In fact, model-sets
from the ARMA-family are solely suitable for predictive purposes. Also
machine-learning type of models (including ANFIS and NNs) are usually
constructed to minimize the prediction error. It can therefore happen
that predictive mathematical models converge to a ‘wrong’ explanatory
model in order to obtain maximum empirical prediction precision.

6.2.2 Feedback channels

This is related to the issue of providing elevator feedback to self-learning
model-sets. As discussed in Chapter 4, one should be careful in deciding
which feedback channels to use for pilot control identification. The NARX
NN shows excellent predictions based on FD input and elevator feedback.
Similar, or even better results can be obtained with the ANFIS model
structure with elevator feedback (Figure 27). However, its performance
is only apparent. During the learning process of the ANFIS, the model
developed into a naive predictor ; a model that predicts only on its
previous sample. Consider the observations Y of a stochastic process.
The naive prediction for the next time step k is:

Yk+1 = Yk + ε (34)
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where ε is the prediction error of the model. When the sample time
is very short compared to the dynamics of the to be identified system
(which is the case in this report), the naive predictor will have an
excellent model fit (i.e. a low RMSE).
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Figure 27: The naive predictions of an ANFIS with elevator feedback

The ANFIS and NN were not restricted to generate such naive models1.
Due to the open, interpretable structure of the ANFIS, this problem was
recognized. Therefore, in Chapter 4, the ANFIS model has been made
with pitch feedback information only. The NN is more of a black box
since its neural weights and biases are not easily interpreted. It is not
certain the NN in Chapter 4 provides naive predictions, but it has been
shown that the pilot’s elevator control can be approximated with such
non-linear model-sets. Furthermore it should be kept in mind that these
‘intelligent’ models provide no mathematically unique solution. This
is in contrast with the linear parametric ARX model, under Persistent
Exciting conditions2.
One can argue such an elevator feedback loop does exist since any

reasonably trained pilot ‘knows’ what the effect of pushing and pulling
of the yoke is: it will cause respectively downwards and upwards pitch
change. This is known even without observing the actual aircraft’s pitch

1 The naive predictor is in the search space
2 This has to do with the concept of identifiability, see Söderström and Stoica [45]
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on e.g. the AI. It is not affected by visual reaction time delay and there-
fore introduces as the ‘fast loop’. As depicted in Figure 28, this implies
a feedforward path. In order to track the FD signal, the pilot should
behave as the inverse of the aircraft dynamics. This idea is supported by
research by Laurense et al. [27]. The quality of this feedforward inverse
model can be evaluated by the pilot’s tracking performance. Errors in
the feedforward path (so mistakes in the controller dynamics) can be
corrected using the slower visual feedback loop with the pilot looking
at the actual pitch on the AI.

Figure 28: Elevator feedback implies the pilot behaves as the the ‘inverse of
the aircraft’. The block diagrams are similar.

Further research also has to clarify the effect of feedback of the pitch
rate dPitch

dt . The indication of the aircraft’s pitch and pitch rate are
inextricably linked on the PFD and the pilot is likely to base its control
strategy on this information too.

For pilot control analysis, it might be useful to identify feedback loops
from the explanatory perspective and developing predictive models from
that starting point. Causality can be tested with series of statistical
methods[44]. This would result into a more solid theoretical framework of
pilot (pitch) control and could improve the performance of the predictive
models.

6.2.3 Multidimensionality of aircraft control

Expanding the human pilot control model can be rather challenging.
Some ideas for the further development of a pilot control model have
been presented.

This report is on pilot pitch control. Perhaps one would like to inves-
tigate the roll or yaw control in the future. Composing the models in a
control matrix, like proposed in Chapter 2 could result in a more com-
plete model of the human controller. It is interesting for further research,
however, it is questionable if this control matrix would mimic true pilot
control as humans tend to change the control strategy according to task
and several other factors.

Additionally, during regular manual operation, the pilot uses various
cockpit instruments and many visual and motion feedback channels. The
pilot will be scanning these instruments in a fixed or changing pattern
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over time [43]. For all these instrumental, visual and motion cues, one
could identify models that map these inputs to the output states of the
aircraft. Hence these models could be linked into a ‘switching’-model
which changes system inputs, outputs and dynamics over time according
to the scanning pattern. For identification, particularly switched para-
metric models like SARX and SS-ARX, are used in literature [18, 51].
Another way to link the pilot’s dynamic response from different instru-
ment feedback is by making a fixed parametric model structure, but
switching the parameter values according to the scanning pattern. This
is shown in [6] using fuzzy parameter switching.

6.3 remarks on observations

During the experiments, there were some comments on the pilot’s pitch
control that haven’t been discussed in detail. The human pilot shows
high-frequent, push-pull control action in the FD tracking task. There
might be several reasons for this strategy:

1. The yoke or elevator might have a dead-zone because of mechanical
backlash. Consequently, parts of the pilot control action is not
transferred to actual motion of the aircraft. The pilot will try to
correct for this error. This reason seems less likely because the
control dynamics remain similar even if flights are performed in
simulators with hardly any backlash of the yoke (such as JAXA’s
Dornier Do 228-200 full flight simulator). Also, the dead-zone
could be taken into the model-set explicitly, as described by Wang
et al. [53].

2. It might be easier to control the aircraft while there is pitch motion.
The pilot will constantly adjust the aircraft’s pitch rate so it can
anticipate on FD changes quicker. This ‘moving cursor strategy’
has already been recognized during a reaction time experiment of
Mr. Uemura from the Department for Aeronatics and Astronautics
at The University of Tokyo.

3. The pilot might be ‘impatient’ due to the high inertia of the
aircraft. The response of a big commercial aircraft (like the simu-
lated B747-400) typically is rather slow. The high-frequent elevator
action averages out to low-frequent aircraft pitch motion (in a
similar manner to Pulse-Width-Modulation in digital systems).

4. A more complex reason could be that the pilot performs on-line
system identification to build a suitable ‘internal’ control model.
Providing more high-frequencies could result in a better under-
standing of the aircraft’s dynamics. The model is contentiously
adjusted to past experiences. Methods to model the pilot as an
adaptive controller has been proposed by [39].

5. Another reason could be that it is more convenient to control the
aircraft past the integrator 1

τis
in frequency domain. In Appendix
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C, the Bode plot of the B747-400 is shown. Controlling the aircraft
with a frequency higher than approximately 1Hz could be easier
as errors of higher than that frequency will not get magnified by
the integrator. The pilot tries to avoid the low-frequency zone.

6.4 application

This report covers system identification techniques after the data has
been acquired. However, when the models are updated on-line and
recurrently re-estimated, the proposed methods have the potential to
provide the pilot predictions of its own control in advance. During
operation, the models predict future control dynamics and could present
instructions or warning messages based on the pilot’s control. It can
accelerate learning for novice pilots [33].
It is already possible to evaluate the pilot’s control after the experi-

ment flight by using the pilot identification methods in this report. The
flight data from for instance the Suzuki-Tsuchiya laboratory B747-400
simulator can be logged. Previous work at the Department of Aeronau-
tics and Astronautics resulted in tools to conveniently process the raw
flight data to PSD diagrams and Bode plots. With some minor adjust-
ments, the code in the Pilot Identification Toolbox for MATLAB can
be an extension of the evaluation tools for pilot control.



ASYSTEM IDENTIF ICATION AND PARAMETER
ESTIMATION - BACKGROUND

a.1 system identification theory

System identification focusses on deriving a mathematical model of a
dynamic system based on (experimental) observed input and output data
[29, 1]. The identified model characteristics, accuracy and complexity
can be defined by the user and model assessment depends on the
application of the identification task. In this report only the outlines of
will be reviewed because the field of subject is quite large. If the reader
wants a greater level of detail, there are is a large collection of in-depth
literature available, which is referred to in this review.

Figure 29: An open-loop system with an input u(t), output y(t) and distur-
bance v(t)

Consider the open-loop system in Figure 29. The system is subject to
an input signal u which can be recorded in time. The output signal y can
also be observed. However, the output can contain noise (disturbances
or measurement errors), denoted by v which means that the observed
output is not directly caused by the input, but also by the addition of
irrelevant information. System identification tools are used to estimate
underlying system dynamics from only the recorded input and output
recordings.
The core of estimating models originates from statistical theory. In

general the identification problem can be described by the following
features [29]:

• A (mathematical) model obtained from observed data. The data is
usually influenced by system or measurement noise so estimation
is not straightforward.
• The choice of a certain model structure
• The choice of a model complexity
• Estimation of the model with one part of the data set,
• Validation of the model with the other part of the data set,
• Performance measurement (e.g. by the model fit).

47
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The identified model should resemble ‘reality’ as close as possible, with
a certain accuracy defined the user. It should ‘explain’ the underlying
mechanism that maps the input to the output. In short, “the model
should show good agreement with the estimation data", and “the model
should not be too complex" [29]. In Figure 30 the system identification
process is explained by means of a flow chart.

Basic system identification generally considers Linear Time Invariant
(LTI) systems, with sufficiently exciting1 [1], sufficiently rich2, wide-sense
stationary3 [26] input signals. It assumes that the observed output data
are realizations of a stochastic process fed by the input. A remark has to
be made concerning continuity. Since the data for system identification
is captured during experiments, the data is usually measured at a
fixed interval. This implies handling discrete data points in stead of
continuous functions. Data collected at a high enough sample rate can of
course be said to be ‘continuous’. Another remark that has to be made
is that (open-loop) system identification only works when the input and
disturbance signals are statistically uncorrelated (see Figure 29). That is
why the disturbance generally is taken to be realizations of a white noise
process. Ljung describes the core of the system identification theory as
well as the application in his book [28], which can be considered as one
of the field’s leading text books.

a.1.1 Non-parametric models

Non-parametric models are estimated by correlation analysis of the
input signals. This process is described by Aarts [1], Kwakernaak and
Meinsma [26] and Ljung [28]. Although their notations are different,
the method is similar:

• The auto-covariance of the input ru(τ) and the cross-covariance
ryu(τ) are calculated by using more or less standard statistical
techniques.
• These covariances can be Fourier transformed from which the
spectral densities φu(ω), φyu(ω) can be obtained.
• The frequency response system equation can be obtained by

ĜN (eiω) =
φNyu(ω)
φNu (ω) (35)

This method is called the Emperical Transfer Function Estimate (ETFE).
For this method to work properly in practice, usually smoothing is
applied to the spectral densities, called windowing, because they often
have “erroneous and irregularly fluctuating appearance” [26]. There

1 The signal to noise ratio should be high enough in order to have accurate and
consistent estimations.

2 Sufficiently rich in this case means that the signal contains “all” frequencies. This
can be evaluated for instance by a power spectral density plot.

3 Wide sense stationary signals are signals that have the same stochastic properties in
different time frame windows. That is, a constant mean and a constant variance over
time.
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Figure 30: The system identification process [28].

are several was to do this, but a common windowing function is the
Hamming window.
An alternative way to perform non-parametric system identification

is the SPectral Analysis method (SPA). The method handles spectral
densities a bit differently:

φNy (ω) = |ĜN (eiω)|2φNu (ω) + φNv (ω) (36)

with φNv (ω) calculated with the coherence spectrum κN . This is a
measure from 0 to 1 of how much of the output is “explained" by the
input and noise. This can be calculated so using SPA is solving for
ĜN (eiω).

Non-parametric models can estimate the system’s frequency response
by using signal spectra. Model complexity can only be controlled by the
amount of smoothing in the frequency domain. These models typically
serve as guidelines for parametric models [1].

a.1.2 Parametric models

Differently from the previous discussed non-parametric models, para-
metric models are designed to capture input and output relations in a
certain, pre-defined structure.
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Prediction Error identification Method

The idea behind the Prediction Error identification Method (PEM), is
that a estimated system model performs well enough if it can predict
it’s own output based on a known input correctly (i.e. within a certain
precision). It assumes that the sampled data can be captured in a finite
order system4:

y(t) = G(z)u(t) +H(z)e(t) (37)

where e(t) is white noise. Hence, the model structure can, for instance,
be written as a fraction of polynomials:

G(z, θ) = B(z−1, θ)
A(z−1, θ) (38)

H(z, θ) = 1
A(z−1, θ) (39)

A(z−1) = 1 + a1z
−1 + ...+ anz

−n (40)
B(z−1) = b1 + b2z

−1 + ...+ bnz
−(n−1) (41)

θ = [a1, a2, ..., an, b1, b2, ..., bn]T (42)

This is the ARX structure. Here, parameter estimation θ takes an impor-
tant role in the system identification process. The parameters are found
by minimizing the prediction error of the model, or by fitting the model
in the least-squares sense. Which structure and what complexity is used
depends on the application. Indicators such as residuals, and (root mean
square) model fits help judging if the model fit is sufficiently accurate.
On the other hand, information criteria like the Final Prediction Error
(FPE) of Akaike indicate if an appropriate complexity is achieved.

There are many structures within PEM that model all kinds of system
properties (different model set for G(z, θ) and H(z, θ)). A few of them
are listed below [1].

• ARX - Auto-regressive models with exogenous inputs
• ARMAX - Auto-regressive, moving average models with exogenous
inputs
• OE - Output Error models
• FIR - Finite Impulse response models
• BJ - Box-Jenkins model structure

Sub-space identification

A discrete LTI system can be written in state-space format:

x(n+ 1) = Ax(n) +Bu(n) (43)
y(n) = Cx(n) +Du(n) (44)

4 Literature uses different notations to indicate the transfer function G. Another
way is using the backward shift operator G(q), which probably is more correct,
mathematically [28, 26]
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The transfer function is then given by

G(z) = D + C(zI −A)−1B (45)

The system to be identified is subjected to an impulse input. From
the response, the Hankel matrix is calculated which contains enough
information to calculate the matrices A,B,C,D by a technique called
singular value composition (SVD) [50]. The system is parametrized in
four, finite length matrices. The advantage of using sub-space identifi-
cation is that it is particularly well suited for MIMO problems [36].

a.2 recent developments in system identification

Previously described system identification techniques are considered
well-known and can be used to solve a wide variety of identification
problems [54]. In the next section, current research in identification
theory and practice will be examined.

a.2.1 Closed-loop identification

Although closed-loop identification has been a topic of interest for a
while [28], it still remains to be an active research field. Consider Figure
31. Techniques as described in the Systems Identification Theory section
only work when the input u(t) is uncorrelated with v(t). The feedback
loop is needed for the controller to base its control action on. However,
adding a feedback loop will immediately destroy the property of the
signals being uncorrelated [26, 19].

Figure 31: An closed-loop system containing a controller and a plant, with an
input, output and disturbance (u(t), y(t), v(t), respectively).

Classical solutions for this problem are: [19, 17, 28]

• Direct identification - “Ignore the feedback and identify the open-
loop system using measurements of the input and the output"
[15].
• Indirect identification - “Identify some closed-loop transfer func-

tion and determine the open-loop parameters using the knowledge
of the (linear) controller" [15].
• Joint input/output identification - “Regard the input and output
jointly as the output from a system driven by some extra input
or set-point signal and noise. Use some method to determine the
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open-loop parameters from an estimate of this augmented system"
[15]

The relatively simple direct approach remains popular. In recent
literature it appears “that prediction error identification methods [PEM],
applied in a direct fashion will provide correct estimates in a number of
feedback cases. Furthermore, the accuracy is not necessarily worse in
the presence of feedback" [17]. Also, recent methods “can be viewed as
special parametrizations of the general prediction error method" [15]. To
put it even stronger: “The optimal statistical properties, the simplicity,
and the general applicability of the direct method implies that this should
be seen as the first choice of methods for closed-loop identification. When
this method fails no other method will succeed" [15]. Usually, this will
result in a high order model, which can be simplified in a later step.

An overview of closed-loop identification methods have been published
by Hof and Schrama [20], Gustavsson et al. [17], Hof [19], Forssell [15].
The articles describe newer approaches including the Instrumental
Value, Tailor-made, Coprime factorisation and Dual Youla method.
Additionally, Baselli and Bolzern [4] wrote a survey article in biomedical
context because “Closed-loop identification is a frequently encountered
problem in the biomedical field".

a.2.2 Recursive identification

Another active topic in the system identification area is recursive system
identification. Usually, the identification is performed with the entire
data set in order to obtain a model. However, when new data becomes
available, it is not efficient and probably computational expensive to re-
run the identification process, especially when the new data is provided
every sampling time step. Recursive system identification focusses on
on-line calculation of the model. Chen [7] reviews this recursive method
for linear and non-linear parametric models.

a.2.3 Soft-computing as identification tool

Fuzzy logic and artificial neural networks (ANN) can be used as a
system identification tool. Both are inspired by biological processes.

Fuzzy logic

Fuzzy logic can be explained by context related ‘if...then...’ rules and can
model partial truth through linguistic expressions [12]. “We can see that
fuzzy implications as well as fuzzy sets are very suitable to describe the
process of human thinking" [47]. Extracting fuzzy rules from a system is
currently an active topic in research and can be rather complex. There
are several studies about fuzzy rule extraction, and a framework has
not been established yet [47] although Mitra and Hayashi [32] proposes
one. Fuzzy rule extraction literature is, among many others, written by
[52, 22, 2, 8, 38, 48, 37]. They discuss different extraction methods and
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applications, but roughly all of the methods can be applied to human
operator control identification. The difference between the extraction
methods is mainly a trade-off between accuracy and complexity of the
method.

Artificial Neural Networks

Entzinger [12] describes artificial neural networks as: “(Artificial) Neural
networks (NNs) are mathematical constructs for mapping input/output
data based on an analogy with the (human) brain. Like the human brain,
the NNs consist of several elementary information processing units called
‘neurons’, which are interconnected by weight functions, the equivalent
of synapses in the brain. Typically the neuron output is triggered if the
sum of (weighted) synaptical inputs reaches a certain value, generally
called ‘bias’. The weights and bias values are the main parameters of
the neural network model. The proper values for the weights and biases
can be trained from sample input/output data".

Figure 32: Artificial Neural Network M in an identification setup [23]

Neural networks have the ability to identify linear and non-linear
dynamics. This can be done in various ways, where the so-called forward
modelling method is the most intuitive one. Here, the ANN is trained
parallel with the system. The prediction error the ANN makes will be
used to adjust the model [23]. See Figure 32. Another way to describe
dynamical LTI and LTV systems is by using a Hopfield Neural Model,
which is a form of parametric identification [9] that can model system
memory. This identification method is less straight-forward than the
previously described method. A drawback of using ANN’s in identifica-
tion tasks is that it does not explain the underlying mechanism, it just
fits input to output data.

Neuro-fuzzy models

The two soft-computing models can also be combined to form a neural-
fuzzy architecture. “Neuro-fuzzy modelling is a flexible framework in
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which different paradigms can be combined, providing, on the one hand,
a transparent interface with the designer and, on the other hand, a tool
for accurate non-linear modelling and control. The rule-based character
of neuro-fuzzy models allows for the analysis and interpretation of the
result" [3].

Typical neuro-fuzzy models are POPFNN (Pseudo Outer-Product-
Based Fuzzy Neural Networks) and ANFIS (Adaptive-Network-Based
Fuzzy Inference System). They use input-output pairs to model sys-
tem dynamics, like any identification paradigm. In fact, “[ANFIS] can
replace almost any neural networks in control systems to serve the
same purposes" [24], but with (for humans) more understandable fuzzy
rules. With these systems, one can make a trade-off: interpretability
and accuracy of the model.



BVALIDATION OF IDENTIF ICATION METHODS

Before analysing to human-in-the-loop situation, the system identi-
fication methods have been investigated. Open-loop and closed-loop
simulations have been performed without the presence of a human
controller. Instead, a PID controller replaces the human pilot. This
approach allows to bypass the potentially complex human control ac-
tion. Figure 33 shows the block diagrams of the open- and closed-loop
situation.

b.1 goal

The goal of this intermediate experiment is to find out if the PID
controller dynamics can be obtained using input and output data.

(a) Open-loop

(b) Closed-loop

Figure 33: In order to test closed-loop identification techniques, the human
pilot has been replaced by a PID controller. Hence, open-loop and
closed-loop simulations can be performed

b.2 methods and materials

A discrete PID controller replaces the human pilot. The controller is
configured with the pidtool MATLAB PID tuning toolbox to have a
certain transient response. In the closed-loop, the system should have a

55
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rise time of 1 second for 1 degree of pitch change. The controller settings
are calculated as:

C = kp + ki
Ts
z − 1 + kd

z − 1
Ts

(46)

kp = 1.79, ki = 2.44, kd = 0.171, Ts = 0.05s (47)

The aircraft model is a simple second-order mass-spring-damper system
with a cross-over frequency which matches the B747-400 (ωc ≈ 0.5Hz,
m = 260 ·103 kg B747-400 maximum landing weight, d = 1 ·106 in order
to have slightly damped poles, and k = 4m N/m, for wn = 2rad/s).

P (s) = k

ms2 + ds+ k
→ (48)

P (z) = 0.00469z + 0.004399
z2 − 1.816z + 0.8251 (49)

(50)

The PRBS input signal is the same as in Chapter 3 and switches the
FD between -3 and 3 degrees pitch. The noise input d(t) simulates the
human inherent control noise and is Gaussian white noise with σ2

d = 1
degrees pitch (which is rather high compared to the signal-to-noise ratio
as suggested in Chapter 3).

b.3 analysis of results and conclusion

The PID controller and aircraft model can be loaded to Simulink and
the output can be simulated in real-time. The input and output data
are saved for the identification of the PID controller.

b.3.1 Pre-processing

Before any identification method, it is required to split the experiment
data into a identification and validation data-set. Hence, these will be
de-trended and removed of its means. As the PRBS is within the human
bandwidth, it already has the emphasis on low-frequency content. Low-
pass pre-filtering the data, with for instance a Butterworth filter, is not
necessary.

b.3.2 Model structure

Linear parametric model-sets will be used for the system identification
process. In this report, the common ARX will be used, as well as the OE
model-set (see Appendix A). This is because the simulation involves the
addition of Gaussian white noise. OE models are particularity well in
fitting systems perturbed by white noise as can be seen by the following
equations. The ARX model:

A(z)y(t) = B(z)u(t) + v(t) (51)

y(t) = B(z)
A(z)u(t) + 1

A(z)v(t) (52)
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and the OE model:

y(t) = B(z)
F (z)u(t) + v(t) (53)
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Figure 34: The frequency response of the open-loop PID controller versus
OE210 model predictions. Within the frequency range of the PRBS
input signal, the model estimates the PID controller accurately.

b.3.3 Open-loop

For the open-loop experiment, a OE210 fits has an excellent model
fit (over 90%) and from the residual tests it can be deducted that the
model residuals are uncorrelated (see Chapter 3 for the procedure of
these tests). The frequency response of the actual PID controller is
compared to the OE210 model predictions in Figure 34. Especially
in the low-frequency range the model performs well. There is some
discrepancy at in the high-frequency range. That can be explained by
the fact that the input signal mainly doesn’t contain such high-frequent
excitations. Identification will therefore be difficult in that frequency
scope.

b.3.4 Closed-loop

As discussed in Chapter 3 and Appendix A, closed-loop identification
can be challenging due to correlated input, noise and output channels.
First of all, the closed-loop (system input to system output) can be

modelled sufficiently well with an ARX331 model. The model has a 92%
fit and model residuals are uncorrelated with the input and with itself.
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Figure 35: Closed-loop frequency response versus the ARX331 predictions

The frequency response can be observed in Figure 35 and the impulse
response in Figure 36. Again, within the frequency range of the PRBS
input signal, the model estimates the closed-loop rather well.
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Figure 36: Closed-loop impulse response of the simulated system versus the
ARX331 prediction

The direct closed-loop identification approach is used to find the
controller dynamics. In Figure 37, the OE210 reveals a similar frequency
response to the actual simulated PID controller, however with a certain
bias over the whole frequency range. The model fit of the OE210
is less than the open-loop situation and the model residuals are not
uncorrelated with the input. Still, the predictions do mimic the PID
controller’s response.
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Figure 37: The frequency response of the closed-loop PID controller versus
OE210 model predictions. Within the frequency range of the PRBS
input signal, the model estimates the PID controller, with a bias.

It can be concluded that the PID controller can be identified in the
closed-loop, but the solution do not yield unbiased models over the
whole frequency scope. The closed-loop residuals are still correlated
with the input, and therefore are not as consistent as in an open-loop
situation.

b.4 discussion

Although the PID controller was estimated in the closed-loop, it doesn’t
guarantee that this approach will work for other systems. Especially
if the controller and plant dynamics are increasingly complex, system
identification often requires a tailored approach [28]. Other closed-loop
methods as discussed in Appendix A could provide more accurate results.
However, only the direct identification approach has been evaluated.





CINVESTIGATING FLIGHT S IMULATOR
LONGITUDINAL DYNAMICS

For simulation purposes, a model of aircraft dynamics is essential. For
this report, especially aircraft motion in the pitch direction is useful
to investigate. In Chapter 3, three experiments have been outlined.
For the computer simulation experiment, longitudinal dynamics of the
aircraft are used in the closed-loop system. Within the experiment setup,
it is relatively easy to load various models. On the other hand, the
University of Tokyo has a fixed-base B747-400 flight simulator. It turns
out to be complicated to port the experiment to the flight simulator
computer1. Therefore, it chosen to capture the simulator’s longitudinal
dynamics and transfer these to the computer with experiment setup
(using MATLAB and Simulink ).

c.1 goal

For the investigation of the B747-400 simulated pitch dynamics, an
identification experiment is designed. It uses elevator input and pitch
output data to construct a parametric model. The objective of the
experiment is to obtain a model that is usable for aircraft simulation.

 

 

-3 degree glide slope
Identification input glide slope

A
lti

du
de

(ft
)

Longitudal Distance (ft) ×104
0 1 2 3 4 5

0

500

1000

1500

2000

2500

Figure 38: The glide slope of the B747 during the identification experiment

1 Apparently, it was hard to manipulate the FD on the Attitude Indicator of the
simulator. The simulator from the University of Tokyo runs two separate simulation
engines, from which only one can be fully customized. Probably, it would be possible
to port the experiment setup, but that would involve a substantial amount of coding.
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c.2 methods and materials

The experiment is based on techniques from frequency system identi-
fication. An input signal would override the elevator input normally
controlled by the pilot through the yoke. Note that the aircraft is now
identified in an open-loop system which makes it possible to use well-
established open-loop identification techniques. Optimally, the input
signal would be a sort of random signal, but it was more convenient to
use a sine-wave signal2. Several experiments have been conducted, each
with a sine-wave with different amplitude and frequency (see Table 4).

Frequency [Hz] Elevator input am-
plitude [degrees]

0.0316 0.02
0.0599 0.02
0.1136 0.1
0.2154 0.1
0.4084 0.1

Table 4: Frequency and amplitude of the sine-wave for frequency identification
of the B747-400 longitudinal dynamics

The B747-400 flight simulator is set to approach settings: flaps 30
degrees, speed 180 knots, but with landing gear up. The glide-slope is
set to -3 degrees, as can be seen in Figure 38.
Hence, the pitch response of the aircraft is recorded and compared

with the elevator input resulting in a amplitude and phase difference
for each tested frequency. These data points can be shown in a Bode
plot as in Figure 39. Using the Sanathanan and Koerner [41]-algorithm
from the MATLAB freq-id toolbox [10], a transfer function has been
generated to fit the data points in frequency domain. The continuous
transfer function is shown as the green line in Figure 39.

c.3 analysis of results and conclusion

The transfer function has the form of a second-order system, illustrating
the aircraft as a mass-spring-damper system:

P (s) = 0.102
s2 + 0.1201s+ 0.001295 (54)

When this frequency response is observed thoroughly, one can find
a low-frequent pole beyond the lowest measurement frequency. This
pole could be placed even more to the low-frequent resulting in a pure
integrator (i,e. 1

s in Laplace-domain). The aircraft can now be modelled
as a mass-damper system with low-frequent integrating action and the

2 In order to override the elevator input, some changes needed to be made to the Flight
Simulator code. A sine-wave was implemented easier than a random signal
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Figure 39: A second-order mass-spring-damper model and its mass-damper
simplification. The measurement data is shown as red dots

transfer function fits the measurements approximately as well as the
second-order model.

P (s) ≈ 1
s

0.102
s+ 0.1201 (55)

The obtained continuous transfer function is suitable for aircraft simu-
lation and can be implemented in the computer simulation experiment
from Chapter 3.

c.4 discussion

Although the obtained transfer function is continuous and defined for the
entire frequency band, it is based on only a few measurements. Only the
mid-frequency range is actually based on the B747-400 flight simulator
dynamics, the low- and high-frequency scope are ‘extrapolated’. The
real flight simulator dynamics might show significant discrepancies in
those regions. This is noticed by the human pilot during simulations
and preliminary tests of this model.

Extending the measurements with more low-frequent and high-frequent
input sine-waves does not work due to the long simulation time, insuf-
ficient integration accuracy of the flight simulator for high-frequency
inputs and excitation of low-frequent aircraft modes such as the fugoid.



64 investigating flight simulator longitudinal dynamics

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

 

 

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−180

−90

0

90

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (rad/s)

B747 Simplified

B747 Sanathanan

B747 literature

Figure 40: Comparison of the aircraft models

The model is compared to the B747-400 longitudinal dynamics from
[25] in Figure 40. As can be seen, the identified model only captures a
part of the characteristics. The shift over the frequency axis is possibly
due to different initial conditions of the aircraft (the flight simulator is
set to approach settings, whereas the [25]’s model is based on cruising
speed).

A reason that the identified B747-400 model is hard to control is that
the low-frequent integrating character of the aircraft will increase the
control error rapidly. The pilot can avoid this by controlling at a higher
frequency, passing the integrating action. This phenomenon is discussed
in Chapter 6.

For the computer simulation experiment, the model of the flight simu-
lator longitudinal dynamics is not used due to the issues described above.
Instead, the model from [25] is loaded to the simulation. It might be pos-
sible to derive the pitch dynamics directly from the aircraft’s equations
of motion. However, this report does not cover further investigation of
the flight simulator dynamics.



DINVESTIGATING REACTION TIME DELAY

Feedback channels are provided to the human pilot to base his control
action upon. Experiments as described in Chapter 3 rely on visual
feedback of the FD on the attitude indicator. It is known that human
subjects have a reaction time delay, i.e. the time difference between
the provided input signal and corresponding control action. Through a
sequence of experiments, the lag due to reaction time of the different
human subjects is investigated.

d.1 goal

The objective of the experiment is to gain insight in the delay of the
pilot’s response. This could provide valuable information for modelling
human pilot pitch control in Chapter 4.

d.2 methods and materials

In order to find the minimum reaction time delay, a simple experiment
is designed using a keyboard and a computer with MATLAB installed.
A black window is shown to computer screen. Each subject is asked
to press any button on the keyboard, as quickly as possible when the
window turns from black to white. This is done 10 times with a random
interval (any value between 1 and 5 seconds) between the black and
white window. The reaction time delay is recorded and saved to a file.
Every subject performs this experiment three times, so 30 data points
per pilot are obtained.

d.3 analysis of results and conclusion

After processing the data, the reaction time delays of the subjects
seemed to be log-normally distributed. This could be verified by plotting
a histogram with n-bins1 and looking at the ‘convex hull’ of the figure.
Its shape did not resemble a probability density function of a normal
distribution, but rather a log-normal distribution, which is supported
by literature [49].
Figure 41 shows the results for 5 tested subjects: 2 student non-

pilot subjects (STI, STL), 2 non-pilot researchers (REA, REB) and 1
retired B747 captain (CPT). Note that the x-axis is the logarithm of
the reaction time delay. When the data is combined by assuming all
data is from a ’single average pilot’, plotting the log-normal distribution

1 The value of n is found iteratively, until the shape of the probability density function
can be distinguished
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Figure 41: Log-normal distributed reaction time delays for 5 tested subjects.
The expected time delay can be found as the peak of the combined
data: 0.28 seconds

results in the light grey area. The average reaction time delay to expect
in the data therefore is e−1.29 = 0.28 seconds.

d.4 discussion

This experiment will give an indication of the minimum reaction time
delay because this setup enables the pilot to give direct feedback when
the window turns white. The window is the pilot’s centre of attention. In
aircraft control, the switching of FD commands possibly is not directly
recognized by the pilot because there are many other indicators to focus
on and thus will increase the reaction time. Other experiments could
be made to investigate this ’scanning’ phenomenon, but for the scope
of this report, an indication of the minimum reaction time delay is
sufficient.
Furthermore, a remark has to be made concerning the combination

of the data to obtain the average lag. It might not be statistically
correct to create a ’single average pilot’ in this manner. Some pilots
might systematically have a lower or higher delay and might need to
be treated differently when the pilot pitch control models are created.
In Chapter 4, however, the reaction time delay obtained from this
experiment is only used as a guideline and the order of magnitude of
what can be expected to be the delay in the data.



EEXPERIMENT SOFT/HARDWARE SETUP

The experiments from Chapter 2 are described using the block diagram
in Figure 42 and Table 5.

Figure 42: The experiment setup

Testing identifica-
tion techniques

Computer simula-
tion

Flight simulator

FD signal PRBS PRBS PRBS
Pilot PID controller 1 retired airline

B747 captain, 3
trained non-pilot
subjects

1 retired airline
B747 captain, 1
trained non-pilot
subject

Yoke Logitech Joystick
Extreme 3D Pro

The University
of Tokyo, Suzuki-
Tsuchiya lab sim
yoke

Flight simulator’s
yoke

Aircraft
model

Second order sys-
tem (Appendix B)

B747-400 longi-
tudinal dynamics
[25], Appendix C

JAXA’s Dornier
Do-228-200 full
flight simulator

Others Intel Core 2 Duo CPU, 2.80 GHz,
4 GB RAM, Windows 7 64-bit.
MATLAB R2013a, Simulink AI

Flight simulator
processors and in-
struments

Table 5: Software and hardware specifications for the experiments conducted
during the internship
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FPILOT IDENTIF ICATION TOOLBOX

For the experiments and analyses in this report, several MATLAB
and Simulink scripts have been written. The source codes have been
combined into one toolbox: the Pilot Identification Toolbox/. The
essential files will be highlighted in this Appendix.

f.1 acquiring experiment data

Within the folder Experiments/, the tools to acquire experiment data
are presented.

Source file Description
Target Input
Generation/

Folder containing tools to generate the
PRBS and multi-sine FD inputs.

inputGenerator.m Script to generate tab-separated
([time,pitch]) input files for the ex-
periments. Outputs a PRBS and a
multi-sine file.

signalCheck.m Script to analyse a signal’s PSD (Peri-
odogram, Welch), RMS, Crest value, PE-
order and computes a bandwidth approxi-
mation

PID/ Folder containing tools to collect and pro-
cess simulation data for the PID experi-
ment.

PID_OL_getdata.m MATLAB script to run the open-loop
PID experiment simulation.

PID_CL_getdata.m MATLAB script to run the closed-loop
PID experiment simulation.

PID_OL_id.m MATLAB script to prepare the open-loop
PID experiment simulation data for pro-
cessing in ident.

PID_CL_id.m MATLAB script to prepare the closed-
loop PID experiment simulation data for
processing in ident.

Aircraft.m Simulated second order aircraft model.
PID_CL_sim.slx,
PID_CL_sim_noFD.slx,
PID_OL_sim.slx,
PID_OL_sim_noFD.slx

Simulink models for simulation with and
without FD output.
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PID/IdentSessions/ Folder containing saved ident sessions for
processing the PID experiment data

JAXA/FDoverride/ Folder containing scripts to generate text
files that override the JAXA FD indicator
on the simulator’s AI.

readFD.m, writeFD.m MATLAB scripts to read and write the
text files that override the FD

HIL/Joystick,
HIL/Yoke

Folder containing tools to set up a com-
puter simulation as described in this report.
This can be done with a computer and a
joystick, or a computer and a flight simu-
lator yoke, respectively.

/Joystick/
systemxFD_getdata.m

Script that performs real-time simulation.
Calls systemxFD_sim.slx, an input signal
and aircraft model.

/Yoke/
FSimxFD_getdata.m

Script that performs real-time simulation.
Calls FSimxFD_sim.slx, an input signal
and aircraft model.

/Joystick/
systemxFD_id.m

Script that prepares the data acquired
by the _getdata for later processing with
tools from the Pilot modelling folder.

/Yoke/ FSimxFD_id.m Script that prepares the data acquired
by the _getdata for later processing with
tools from the Pilot modelling folder.

HIL/../Instruments/ Folder containing the graphics for the AI
and FD in Simulink . Note that the path
of these graphics might need manual ad-
justment in the .slx files.

Table 6: Explanation of the tools in the Experiment folder

f.2 pilot modelling

Source file Description
JAXA/ This report only covers the analysis of the

full flight simulator data (obtained with
the JAXA simulator). The tools in this
folder can, however, also be used for the
analysis of other experiments.

/ExperimentSet1,
/ExperimentSet2

Folder containing the raw flight simulator
data. Ordered in sub-folders



F.3 others 71

readJAXA.m Reads the raw data and outputs an array
of the data channels that need to be pro-
cessed. The array is filled with [pitch 1,
elevator 1, FD 1, pitch 2, elevator 2, FD 2],
where 1 is the identification dataset and 2
is the validation dataset.

plotJAXA.m Plots the pitch, elevator deflection and FD
signal with respect to time in a single fig-
ure.

ARX_CL.m MATLAB script to analyse the closed-
loop behaviour through linear paramet-
ric models. Needs manual processing with
ident by importing the iddata variables
in the GUI. The results are saved as
CL_models.mat.

ARX_JAXA.m MATLAB script to analyse the controller
dynamics through a linear parametric ARX
model. It automatically estimates a suit-
able model order or a manual ident con-
troller can be loaded to the script. Outputs
training and validation results, system’s
response, prediction accuracy and calcula-
tion time.

NN_JAXA.m MATLAB script to analyse the controller
dynamics with a NN. Uses the Neural Net-
work Toolbox. Network properties can be
adjusted by changing parameters in the
script. Outputs training, validation and
testing results, system’s response, predic-
tion accuracy and calculation time.

ANFIS_JAXA.m MATLAB script to analyse the controller
dynamics with ANFIS. Uses the Fuzzy
Logic Toolbox. Inference system properties
can be adjusted by changing parameters
in the script. Outputs training and valida-
tion results, system’s response, prediction
accuracy and calculation time.

Table 7: Explanation of the tools in the Pilot Modelling folder

f.3 others

Source file Description
ARMASA/ Toolbox for spectral density estimation.

The toolbox is used for residual analysis
as shown in Chapter 4.
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Interactive
Aircrafts/

Tools to simulate different aircraft dynam-
ics in real-time. Can be used to illustrate
the change of aircraft ‘feel’ interactively by
changing the aircraft model.

Reaction Time/ Tools for determining the minimum ex-
pected reaction time delay. See Appendix
D.

UTSim
Identification/

Tools for determining the longitudinal dy-
namics of the University of Tokyo flight
simulator through frequency identification
techniques. See Appendix C.

Table 8: Other tools in the Pilot Identification Toolbox
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