
master thesis

DESIGN OF A GMSK RECEIVER
PROTOTYPE ON A
HETEROGENEOUS REAL-TIME
MULTIPROCESSOR PLATFORM

Daniël van der Veer

Faculty of Electrical Engineering, Mathematics and Computer
Science
Computer Architecture for Embedded Systems

exam committee :
Prof. dr. ir. M.J.G. Bekooij
Dr. ir. A.B.J. Kokkeler
Ir. J. Scholten
G. Kuiper, M.Sc.

15 January 2016

A B S T R A C T

As computers become faster and smaller, there is an increasing de-
mand for low power computing devices. These devices are used in
a broad spectrum of applications; this includes heart rate monitors,
home automation and environmental monitoring like air quality mea-
surements. In many cases these devices need to operate for months
or years on a small battery. This requires a new generation of ultra
low power communication chips.

Bluetooth has an update of the standard, Bluetooth Low Energy
Long Range (BLR), which increases the range for the low energy mode
of Bluetooth. Bluetooth Low Energy and the long range successor are
designed specifically for these ultra low power applications.

An embedded system which does wireless communication process-
ing must combine high processing speed with low power consump-
tion. The multiprocessor system-on-chip (MPSoC) is increasingly used
in low power embedded systems. By integrating multiple processors
into one system, high computation power can be achieved while keep-
ing power consumption low.

In the CAES research group at the University of Twente research is
done on the design of heterogeneous multiprocessor embedded plat-
forms for real-time stream processing applications. One prominent
example of these systems is called Starburst.

This thesis describes an implementation of a BLR receiver on the
Starburst platform. The receiver performs non-coherent differential
detection. The different tasks of the receiver are implemented as sep-
arate accelerators, connected to the communication ring. An equal-
izer, convolutional decoder and repetition decoder were added to
the receiver and the bit error rate (BER) performance of different re-
ceiver configurations was measured. The receiver configuration with
the best BER performance is the equalizer with matched filter, which
performs 2.5dB less 1 than the theoretical DQPSK BER curve.

A receiver architecture was designed and implemented where a dif-
ferent filter can be used for frame detection than for decoding. This
increases the frame detection rate when the receiver is used with the
matched filter and makes the receiver more resilient to frequency off-
set.

The throughput of the receiver on the Starburst platform was ana-
lyzed. The receiver was initially implemented as software tasks run-
ning on the Microblaze processors, but was running 6 to 34 times
too slow. An implementation of hardware accelerators connected to

1 2.5dB difference between Eb/N0 values at 10−3 BER

iii

the communication ring is fast enough and each task required less
hardware than a Microblaze processor.

The fully functional receiver is able to communicate wireless with
a transmitter to play an audio stream. It was used as a demonstrator
at the University Booth at the Design, Automation and Test in Europe
(DATE) 2015 conference[15].

Further research is required on the low BER performance of the
repetition decoder. It would also be interesting to investigate increas-
ing the coding gain of the convolutional decoder. Both repetition and
convolutional coding are part of the BLR standard, and the gain of the
codes is intended to increase the range. However, the gain of both de-
coders is lower than expected in the current receiver implementation.
It would be interesting to investigate to cause of this and research
possible improvements.

Another possible way to improve the sensitivity of the receiver is to
do coherent detection. There is potentially a significant improvement
in sensitivity with coherent detection. It is however not clear how
difficult it is to do the phase synchronization required for coherent
detection, and how much the increase in hardware costs is.

iv

C O N T E N T S

1 introduction 1

1.1 Context . 1

1.2 Problem Description . 2

1.2.1 Contributions . 2

1.3 Related Work . 3

1.3.1 Receivers . 3

1.3.2 Receiver Improvements 3

1.3.3 Multiprocessor System-on-Chip 4

1.3.4 Summary . 6

1.4 Outline . 6

2 gmsk receivers 7

2.1 Modulation . 7

2.1.1 Frequency Shift Keying 7

2.1.2 Phase Shift Keying 9

2.1.3 Minimum Shift Keying 11

2.2 GNU Radio . 14

3 baseline implementation 19

3.1 Starburst . 20

3.1.1 Overview . 20

3.1.2 Ring Communication 21

3.2 Software Implementation 27

3.2.1 Performance . 28

3.3 Accelerators . 30

3.3.1 RF Front end . 30

3.3.2 FIR Filter . 30

3.3.3 Quadrature Demodulator 30

3.3.4 Frame Detector 33

3.3.5 Analog-to-Digital Converter 38

3.4 Hardware costs . 39

3.5 BER Measurements . 39

3.5.1 Measurement setup 39

3.5.2 Results . 41

3.5.3 Frame Detection 42

3.6 Summary . 43

4 receiver improvements 45

4.1 Convolutional Coding 45

4.1.1 Detection . 47

4.1.2 Viterbi Algorithm 48

4.1.3 Bit Error Probability 50

v

vi contents

4.2 Equalization . 50

4.3 Implementation . 50

4.4 BER Measurements . 51

4.4.1 Convolutional Decoding 52

4.4.2 Equalizer . 54

4.4.3 Equalizer with convolutional decoding 56

4.4.4 Summary . 57

5 mode switching architecture 59

5.1 Operation . 61

5.2 Implementation . 62

5.2.1 Ring connection 64

5.2.2 Frequency Offset 65

5.3 Evaluation . 65

5.4 Summary . 70

6 repetition coding 71

6.1 Theory . 71

6.2 Implementation . 73

6.3 Summary . 74

7 conclusion 77

7.1 Conclusion . 77

7.1.1 Platform . 77

7.1.2 Receiver . 78

7.2 Future Work . 80

bibliography 83

L I S T O F F I G U R E S

Figure 2.1 Detection of FSK signal transmitted over WGN

channel . 8

Figure 2.2 Bit Error Rate for coherent and non-coherent
FSK detection . 9

Figure 2.3 Phase changes for QPSK and OQPSK in IQ con-
stellation . 10

Figure 2.4 Phase changes for MSK in IQ constellation . . . 11

Figure 2.5 Comparison of spectral width for MSK and GMSK

modulation . 12

Figure 2.6 Gaussian Pulse Shape for BT = 0.3 (left) and
BT = 0.5 (right) 13

Figure 2.7 GNU Radio flow graph of transmitter and re-
ceiver . 15

Figure 2.8 Simple framer frame layout with length in bits . 16

Figure 3.1 Xilinx ML-605 board with GMSK receiver and
USRP transmitter 19

Figure 3.2 Overview of Starburst ring 20

Figure 3.3 Example of ring slotting arbitration 22

Figure 3.4 Point-to-point streaming on communication Ring 23

Figure 3.5 Example of accelerator streaming on ring of
Starburst . 26

Figure 3.6 Example of accelerator streaming on ring of
Starburst with long travel time 26

Figure 3.7 Performance measurement for software imple-
mentation of receiver. 29

Figure 3.8 Overview of accelerators in baseline receiver
architecture . 30

Figure 3.9 Functional diagram of demodulator accelerator 32

Figure 3.10 Demodulator accelerator implementation . . . 32

Figure 3.11 Packet detector accelerator implementation . . 33

Figure 3.12 Preamble detection by correlation 36

Figure 3.13 Hamming distance output of preamble detector 36

Figure 3.14 BER Measurement setup 40

Figure 3.15 BER Measurement without filter, with low-pass
filter and with matched filter 41

Figure 3.16 Eyediagram of received signal filtered with low-
pass filter and matched filter 42

Figure 3.17 Measurement of frame detection without filter,
with low-pass filter and with matched filter . . 42

Figure 4.1 Shift register for [7, 5] convolutional code. . . . 45

vii

viii List of Figures

Figure 4.2 Diagram of transmitter and receiver with con-
volutional encoding 46

Figure 4.3 Encoder trellis graph of rate 1/2, K = 3 code.
The encoder output is written above the edges 46

Figure 4.4 Decoder trellis graph of rate 1/2, K = 3 code
for received sequence 00010000. 47

Figure 4.5 Decoder trellis graph of rate 1/2, K = 3 code
for received sequence 00010000 with Viterbi al-
gorithm. 48

Figure 4.6 Overview of accelerators in receiver architec-
ture, with optional convolutional decoder and
equalizer . 51

Figure 4.7 BER Measurement with convolutional decod-
ing without filter 52

Figure 4.8 BER Measurement with convolutional decod-
ing with low-pass filter 53

Figure 4.9 BER Measurement with convolutional decod-
ing with matched filter 53

Figure 4.10 BER Measurement with maximum-likelihood se-
quence estimation (MLSE) equalizer without fil-
ter, with low-pass filter and with matched filter 54

Figure 4.11 BER Measurement with convolutional decod-
ing and low-pass filter, with and without MLSE

equalizer . 55

Figure 4.12 BER Measurement with convolutional decod-
ing and matched filter, with and without MLSE

equalizer . 56

Figure 5.1 Passband of matched filter and low-pass filter
with a normalized cutoff frequency of 0.2 . . . 60

Figure 5.2 Mode switching receiver architecture 60

Figure 5.3 Accelerator with 2 input/output (I/O), connec-
tion to ring . 64

Figure 5.4 Overview of mode switching receiver with equal-
izer and convolutional decoding 66

Figure 5.5 Starburst ring with accelerators of mode switch-
ing receiver (see Table 5.2 for legend) 66

Figure 5.6 Two possible ring orderings to improve accel-
erator throughput of mode switching receiver
(see Table 5.2 for legend) 69

Figure 6.1 Schematic of Gaussian minimum shift keying
(GMSK) transmitter and receiver with repetition
coding . 72

Figure 6.2 BER Measurement of GMSK receiver with repe-
tition decoder for repetition lengths from 1 to
4 . 73

List of Figures ix

Figure 6.3 BER Simulation of GMSK receiver with repeti-
tion decoder for repetition lengths from 1 to
16 . 74

L I S T O F TA B L E S

Table 3.1 Hardware costs of Demodulator accelerator . . 33

Table 3.2 Hardware costs of Packet Detector accelerator 37

Table 3.3 Hardware costs of accelerators 39

Table 5.1 Hardware costs of modified Packet Detector and
Switch accelerator 64

Table 5.2 Abbreviations used in Figure 5.5 67

x

A C R O N Y M S

ADC analog-to-digital converter

AMBA Advanced Microcontroller Bus Architecture

AWGN additive white Gaussian noise

BER bit error rate

BLE Bluetooth Low Energy

BLR Bluetooth Low Energy Long Range

BPSK binary phase shift keying

CAES Computer Architecture for Embedded Systems

DAC digital-to-analog converter

DPSK differential phase shift keying

DQPSK differential quaternary phase shift keying

DSP48 Xilinx digital signal processing (DSP) processing slice[32]

DSP digital signal processing

FCFS first-come-first-served

FIFO first-in-first-out buffer

FIR finite impulse response

FPGA field-programmable gate array

FSK frequency shift keying

GMSK Gaussian minimum shift keying

GSM global system for mobile communications

IC integrated circuit

I/O input/output

IoT Internet of things

ISI intersymbol interference

MF matched filter

MLSE maximum-likelihood sequence estimation

xi

xii acronyms

MPSoC multiprocessor system-on-chip

MSK minimum shift keying

NI network interface

NoC network-on-chip

OQPSK offset quaternary phase shift keying

PAM pulse-amplitude modulation

PLL phased locked loop

PSK phase shift keying

PWM pulse-width modulation

QPSK quaternary phase shift keying

RF radio frequency

SDF synchronous data flow

SDR software-defined radio

SIMD single instruction, multiple data

SNR signal-to-noise ratio

SODA Signal-Processing on Demand Architecture [17]

VA Viterbi algorithm

VHDL VHSIC (very high speed integrated circuit) hardware
description language

WGN white Gaussian noise

1
I N T R O D U C T I O N

1.1 context

Computers are being used in more situations in life. Increasingly de-
vices not normally associated with computers are made ‘smart’ by
adding small computer and wireless communication to them. This so
called Internet of things (IoT) requires a new generation of ultra low
power communication chips.

Bluetooth is a wireless communication protocol originally conceived
as a way to wirelessly connect computer peripherals. Today, people
own more and more devices with integrated electronics that commu-
nicate wirelessly with each other. Many of these devices are battery-
powered. The introduction of Bluetooth Low Energy (BLE) in 2010

focuses more on these low powered devices, by reducing the power
and cost of receivers. To increase the range of BLE, there is now being
worked on a new version called BLR.

In the past, communication chips were operating for the most part
in the analog domain. While in the recent decades more and more
processing has moved to the digital domain, only recently have pro-
cessors become fast and small enough to be able to implement parts
of the baseband in software. The appeal of software-defined radio
(SDR) is clear; running the processing in software requires less pro-
gramming effort and increases flexibility of the transmitter/receiver.

Wireless communication chips require computation that is low cost,
low power, high throughput and real-time. Low cost means a chip
that uses few hardware resources. High throughput and real-time
require a platform that not only has enough computing power but
for which also suitable throughput analysis techniques exist to derive
the minimum throughput. For real-time computing an analysis of the
executing times of the tasks in the application is required.

The multiprocessor system-on-chip (MPSoC) is increasingly used in
low power embedded systems. By integrating multiple processors
into one system, high computation power can be achieved while keep-
ing power consumption low. If these MPSoCs are designed properly,
guarantees can be given for the minimum throughput. One challenge
in systems with many processing elements is the inter-core commu-
nication, which requires a network-on-chip (NoC).

1

2 introduction

Starburst is a MPSoC platform developed at the Computer Archi-
tecture for Embedded Systems (CAES) research group on the Univer-
sity of Twente. The platform is aimed for real-time streaming applica-
tions. It is designed to be flexible, where the platform is not designed
for one specific application, but rather can support applications not
known at design time. Furthermore, the platform should be transpar-
ent to the programmer, requiring minimal platform-specific imple-
mentation. Starburst features a low-cost interconnect in the form of
a unidirectional communication ring. Both processors and hardware
accelerators are connected to the ring.

1.2 problem description

While a number of improvements have been developed for the Star-
burst, very few applications are implemented on it. There has been a
PAL decoder, which was partially developed in software and partially
in hardware. PAL is however a relatively old standard, most countries
have phased out terrestrial PAL television broadcasts.

The Bluetooth standard is becoming increasingly relevant with the
rise of applications requiring low-powered communication: from wire-
less headsets to fitness watches. The new Bluetooth Low Energy Long
Range (BLR) standard specifies the transmitter, but not the receiver.
This thesis discusses the implementation of a Bluetooth Low Energy
Long Range-like GMSK receiver with an evaluation of the bit error rate
performance.

The research addresses two main questions:

• How can a low-cost and flexible GMSK, BLR-like, receiver be re-
alized by extending the Starburst platform?

• What are suitable reception improvement techniques for such a
receiver?

1.2.1 Contributions

The main contributions described in this thesis are

• The implementation and evaluation of a real-time GMSK receiver
on the Starburst platform using stream processing hardware ac-
celerators.

• The implementation of improvements of a BLR-like receiver that
increases sensitivity.

– An important improvement in the receiver architecture is
the case of separate filters for frame detection and decod-
ing which results in a receiver with multiple modes.

1.3 related work 3

1.3 related work

In this section we present published work related to our research.
Specifically, we look at different GMSK receiver implementations, pos-
sible improvements that increase the sensitivity of the receiver and
are compatible with the BLR standard. We also look at possible hard-
ware platforms that are suitable for a GMSK receiver.

1.3.1 Receivers

In [22] a GMSK receiver is described for use by the European Space
Agency (ESA) for communication with probes in deep space. Due to
additional requirements related to navigation, a coherent receiver is
chosen. This improves sensitivity of the receiver, but requires carrier
synchronization that increases the implementation cost.

A non-coherent differential demodulator with decision feedback is
described in [34]. A differential demodulator has low implementation
cost. In the paper, a GMSK signal with BT = 0.25 is used which causes
controlled intersymbol interference (ISI) in the signal. The decision
feedback logic in the receiver increases sensitivity with the additional
ISI. In the Bluetooth standard GMSK with BT = 0.5 is used, which has
significantly less ISI. Decision feedback will have a reduced benefit in
that case.

So called 2-bit differential detection increases sensitivity by detect-
ing symbols over 2 symbol times. This technique is discussed in [23].
By doing differential detection over two symbol times instead of one,
the sensitivity is increased and the receiver is less vulnerable to ISI.
This does however require a change in the transmitter by adding a
differential encoder. In standards like Bluetooth it is not possible to
change the transmitter because this is specified by the standard.

1.3.2 Receiver Improvements

Equalizers improve the receiver sensitivity be reducing ISI in the sig-
nal. In [4] an adaptive equalizer is added to a GSM (GMSK with BT =

0.3) receiver with convolutional coding. This leads to a 2dB sensitiv-
ity increase when the hard decision equalizer is used. This is for a
receiver with an interleaver.

An equalizer with soft output achieves better BER performance than
with hard output. A hard output equalizer only outputs the resulting
bit, while a soft equalizer outputs additional bits indicating the like-
lihood of the estimate. In [10] an equalizer with a soft output Viterbi
algorithm is described. This results in an advantage of more than 3dB
for GMSK with BT = 0.25. With a Bluetooth GMSK signal the BT value
is higher (0.5) and the sensitivity increase is therefore expected to be
lower.

4 introduction

Channel coding can improve sensitivity of the receiver at the cost
of a reduced data rate. There are two types of channel coding: con-
volutional and block coding. The difference between the two is that
in block codes the encoded sequence is only dependent on the cur-
rent input, while with convolutional coding the previous input is also
used.

Due to its efficient implementation, convolutional decoding is very
often performed with the Viterbi algorithm. However, with larger
(>10) constraint lengths the complexity of Viterbi decoding becomes
prohibitive [20]. Sequential decoders are then often used, which per-
form better under good signal-to-noise ratio (SNR) range, but become
prohibitively slow at low SNR [8].

Repetition coding is a block code that has limited error correcting
ability, but is very easy to decode. In [2] repetition decoding is an-
alyzed for frequency shift keying (FSK) and differential phase shift
keying (DPSK). This paper however only discusses majority voting,
which only uses the hard decisions of a demodulator. A better BER

performance is expected if soft information from the demodulator is
used.

Whether a block code or convolutional code is better depends on
the application. Sometimes getting a high coding gain requires a con-
volutional decoder with high constraint length, resulting in a high
hardware cost. In this case concatenating a convolutional code with a
block code may reach the same coding gain with a lower implemen-
tation cost. This is why BLR uses two concatenated codes. The outer
code is a rate 1/2 convolutional code and the inner code is a rate 1/4
repetition code.

1.3.3 Multiprocessor System-on-Chip

The choice of hardware platform is mainly determined by the applica-
tion that will run on it. In our case the GMSK receiver will be running
as multiple tasks, but it is expected that not all (parts of the) tasks run
at the desired speed on processors. It is therefore desirable to be able
to move certain parts of the receiver to task-specific accelerators.

CoMPSoC, an architecture for real-time streaming applications, is
introduced in [11]. This platform maps tasks to virtualized instances
of processors. This approach ensures tasks do not interfere with each
other in terms of resource usage. This allows guarantees for perfor-
mance to be given independent of other tasks on the system. The
platform does not support integration of hardware accelerators. The
hardware cost of the Æthereal interconnect is high.

In [28] a platform is described with 167 homogeneous processors
connected through a mesh interconnect. The processors have both
local and long distance links to communicate, where the connections
are circuit-switched. There are processing units to speed up FFT, Viterbi

1.3 related work 5

decoding and video motion estimation. All processors have an inde-
pendent local oscillator, so that unused cores can be disabled indi-
vidually. The platform is not flexible however: while the previous
platform could be implemented on an field-programmable gate ar-
ray (FPGA), this is a integrated circuit (IC) design. It is therefore also
not possible to implement custom accelerators.

Signal-Processing on Demand Architecture [17] (SODA) is an archi-
tecture for wireless baseband processing. It features an ARM control
processor and 4 DSP cores. The cores have a local memory and there
is a global shared memory. The DSP processors support single instruc-
tion, multiple data (SIMD) instructions which result in high perfor-
mance for algorithms with high data-level parallelism. In the SDR do-
main there is however more task-level parallelism than data-level par-
allelism [6], limiting the usefulness of SIMD. Furthermore, although
the DSP processors have hardware acceleration for certain algorithms
(e. g. FFT and Viterbi), there is no support for custom hardware accel-
erators.

While heterogeneous MPSoCs designed for specific applications can
generally reach higher performance, this reduces flexibility of the
platform. RAMPSoC [9] is a heterogeneous MPSoC platform that in-
crease the flexibility and programmability by doing application-specific
partial reconfiguration of the platform. The workflow for RAMPSoC
goes like this; an application is written in C code and profiled to de-
termine the process performance and inter-process communication.
Based on this the tasks are mapped to processors and another profile
is done to determine the bottlenecks in the application. This profile
determines the parts of the application that are best mapped to hard-
ware accelerators. The hardware/software platform is than config-
ured to the FPGA. This approach can potentially improve performance
of applications because the processors and NoC are instantiated specif-
ically for the application. While the use case (an image processing
application) mentioned in the paper runs on a real-time operating
system, no real-time analysis of the inter-processor communication is
mentioned.

The Starburst platform has a number of features. The NoC has a
high throughput and low hardware cost while still having real-time
properties and analyzability. A GMSK receiver is potentially a very
suitable application for the Starburst platform. The author in [6] ana-
lyzes different MPSoC platforms for their real-time properties and the
cost, scalability and performance of their NoCs. The Starburst plat-
form comes out having very favorable properties. The GMSK receiver
is not the first receiver implemented on the Starburst platform. A
PAL decoder has been developed. This started as a software imple-
mentation [5] using 16 Microblaze cores. In [12] support for hard-
ware accelerators on the ring is added and a part of the receiver was
implemented with a hardware accelerator. Wevers [30] implemented

6 introduction

accelerator sharing functionality and had a PAL audio decoder as a
case study. The audio decoder was done with hardware accelerators,
where the accelerators were reused when possible.

1.3.4 Summary

A number of receivers is not suitable for the Bluetooth application.
The 2-bit differential detection requires modification of the transmit-
ter. The differential demodulator with decision feedback is more suit-
able for GMSK signals with lower BT values. With a BT = 0.5 signal the
extra hardware cost may not be worth it. Coherent detection, while
achieving high sensitivity, requires complex phase synchronization.
Our non-coherent receiver is more suitable for a Bluetooth applica-
tion, due to the low hardware costs.

For convolutional decoding a sequential decoder is not suitable for
real-time applications. The worst case execution time for a sequential
decoder, which occurs at low SNR, is not better than a MLSE convolu-
tional decoder. Indeed, a linear decoder has much worse performance
at low SNR than a MLSE decoder [8]. A Viterbi decoder therefore ap-
pears to be a much better choice.

From the MPSoCs listed above, Starburst is the only real-time sys-
tem that supports application-specific accelerators. RAMPSoC does
support custom accelerators and the software tasks run on a real-time
OS, but it is unclear whether real-time throughput guarantees can be
provided for the interconnect.

1.4 outline

This thesis is organized in the following way. The next chapter has
background information on GMSK receivers and GMSK modulation.
Chapter 3 starts with background information on the Starburst plat-
form and then discusses a baseline implementation of a GMSK receiver.
Chapter 4 discusses improvements for the receiver in the form of a
Viterbi decoder accelerator which is used for both convolutional de-
coding and equalization. Chapter 5 introduces a mode switching re-
ceiver architecture to resolve limitations of frame detection when the
receiver is used with a so called matched filter. Chapter 6 discusses
repetition coding as channel coding improvement for the receiver. Fi-
nally, in Chapter 7 we present the conclusions and future work.

2
G M S K R E C E I V E R S

This chapter discusses the background information related to the
GMSK receiver. The first section starts with a discussion of the theory
of the GMSK modulation technique and the related minimum shift
keying (MSK) and QPSK signaling. Section 2.2 introduces the test en-
vironment for the GMSK transmitter and receiver. This runs on GNU
Radio, which is an open source SDR software package.

2.1 modulation

GMSK applies a Gaussian pulse shaping filter to a MSK signal to re-
duce the bandwidth of the transmitted signal at the expense of more
difficult detection. Due to its very efficient bandwidth and power us-
age, GMSK is a widely used modulation technique, with applications
in global system for mobile communications (GSM), Bluetooth and
(deep) space communication [22].

This section will look at the theory behind GMSK to determine the
theoretical bit error probability of the modulation. To do this we will
mainly focus on minimum shift keying (MSK), of which GMSK is a
special case. MSK itself is a special case of frequency shift keying (FSK),
but can also be viewed as offset quaternary phase shift keying (OQPSK)
with a sine pulse wave applied. First we will discuss FSK and OQPSK

separately, then MSK is discussed in relation to both FSK and OQPSK.

2.1.1 Frequency Shift Keying

In frequency shift keying (FSK) the information is modulated in the
frequency of the signal. In this section we will limit the discussion
to binary FSK, where the symbols only have two possibilities: an ∈
{−1, 1}. Each symbol is mapped to a frequency. The modulated signal
for one symbol an can be written as:

sn(t) =


√
2E
T cos(2πf0t) an = −1√
2E
T cos(2πf1t) an = 1

(2.1)

7

8 gmsk receivers

Source
Pulse
Shape

FSK
Mod

FSK
Demod

Sink

+

Transmitter

WGN

Receiver
Channel

Figure 2.1: Detection of FSK signal transmitted over WGN channel

This can also be written as:

sn(t) =

√
2E

T
cos(2πfct+φn(t)) (2.2)

φn(t) = 2πan∆ft (2.3)

Where fc is the carrier frequency and ∆f = (f1 − f0)/2 is the fre-
quency separation from fc.

We can generalize the phase signal for transmitting multiple sig-
nals. φ(t) for nT 6 t < (n+ 1)T then becomes:

φ(t) = 2π∆fT

n∑
k=−∞akq(t− kT) (2.4)

Where q(t) =
∫t
−∞ g(τ)dτ and g(t) is the transmission pulse. The

pulse shape signal g(t) can be used to shape the spectrum of the
transmitted signal to reduce spectral width or reduce ISI. In conven-
tional FSK the pulse shape is a rectangular pulse:

g(t) =

 1
2T 0 6 t 6 T

0 otherwise
(2.5)

2.1.1.1 Bit Error Probability

The FSK modulated signal is transmitted over a channel with added
white gaussian noise. Figure 2.1 shows a schematic of a FSK transmit-
ter and receiver. Due to delay between the transmitter and receiver, a
phase offset φ0 is also present.

First we will assume the phase offset φ0 to be zero. This is true if
the receiver synchronizes with the received signal through for exam-
ple a phased locked loop (PLL). This type of detection is called coher-
ent detection. [20] gives the probability of an error in a transmitted
bit for orthogonal FSK:

Pb = Q

(√
Eb

N0

)
(2.6)

The synchronization of the receiver clock with the transmitter can
be difficult and costly in terms of implementation cost. It may be ad-
vantaguous to leave the phase offset non-zero. In [20] the optimal non-
coherent detection is given as a filterbank of matched filters which are

2.1 modulation 9

Eb/N0 [dB]
-4 -2 0 2 4 6 8 10 12 14 16

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
Bit Error Rate - Theory

Coherent FSK Theory
Non-coherent FSK Theory

Figure 2.2: Bit Error Rate for coherent and non-coherent FSK detection

integrated over the symbol time. The matched filters are the possible
transmitted signals for a 0 or 1 transmitted. The filterbank output
with the highest output has the greatest correlation and is therefore
the most probable transmitted symbol. The bit error probability is
given as:

Pb =
1

2
e
−

Eb
2N0 (2.7)

Figure 2.2 shows a comparison for the error probabilities of both co-
herent and non-coherent detection. The difference for higher Eb/N0
values is less than 0.8dB.

2.1.2 Phase Shift Keying

In phase shift keying (PSK) the information is modulated in the phase
of the signal. If the signal has a carrier frequency fc and the symbol
has a alphabet of M symbols, the mth symbol can be given as:

sm(t) =

√
Eg

2
cos
(
2π

M
(m− 1)

)
φ1(t)

+

√
Eg

2
sin
(
2π

M
(m− 1)

)
φ2(t)

(2.8)

φ1(t) =

√
2

Eg
h(t) cos 2πfct (2.9)

φ2(t) = −

√
2

Eg
h(t) sin 2πfct (2.10)

10 gmsk receivers

1101

00 10

(a) QPSK

1101

00 10

(b) OQPSK

Figure 2.3: Phase changes for QPSK and OQPSK in IQ constellation

This can be rewritten in quadrature components:

sm(t) = <
{(
sm,I(t) + jsm,Q(t)

)
ej(2πfct+φ0)

}
(2.11)

sm,I(t) = h(t) cos
(
2π

M
(m− 1)

)
(2.12)

sm,Q(t) = h(t) sin
(
2π

M
(m− 1)

)
(2.13)

In Figure 2.3a the mapping of the phases in a IQ constellation are
shown for Gray-coding. In quaternary phase shift keying (QPSK) the
signal can have a 180◦ phase change between symbols. In this transi-
tion the signal passes through the origin, as can be seen in Figure 2.3a.
offset quaternary phase shift keying (OQPSK) prevents this by offset-
ting the Q signal by a half symbol time. This results in only 0◦ and
±90◦ phase changes. Figure 2.3b shows the phase mapping for OQPSK.
Note that the phase change lines do not pass through the origin any-
more.

2.1.2.1 Bit Error Probability

The bit error probability for coherent detection of binary phase shift
keying (BPSK) and QPSK is given in [20, p192]:

Pb = Q

(√
2Eb
N0

)
(2.14)

A downside of PSK is that, because the information is in the abso-
lute phase of the signal, any phase offset of the receiver clock with
the transmitter is bad for the detection. DPSK encodes the symbols
as phase changes instead of absolute phases. In differential QPSK this
means a symbol of two bits is mapped to a ±180◦ or ±90◦ phase
change relative to the current phase. This leads to lower complexity
implementations of the detector, but at the cost of higher error prob-
abilities.

2.1 modulation 11

I

Q

Figure 2.4: Phase changes for MSK in IQ constellation

The bit error probability for differential quaternary phase shift key-
ing (DQPSK) is [20, p225]:

Pb = Q1(a,b) −
1

2
I0(ab)e

−a2+b2

2 (2.15)

a =

√√√√2Eb
N0

(
1−

√
1

2

)
(2.16)

b =

√√√√2Eb
N0

(
1+

√
1

2

)
(2.17)

Where Q1(a,b) is the Marcum Q-function and I0(x) is the modified
Bessel function of order zero.

2.1.3 Minimum Shift Keying

In FSK the signal is orthogonal if the frequency seperation is ∆f = l/4T ,
where l is some positive integer. The minimum frequency seperation
where the signal is still ortogonal is for l = 1 and this is called MSK.

Every symbol time the phase of the signal changes ±90◦. The con-
stellation of MSK can be seen in Figure 2.4, where every symbol time
the signal is in one of the four dot positions ((0 ± j) or (±1 + 0j)).
From Figure 2.3b and Figure 2.4 it can be seen that the constellations
of OQPSK and MSK are very similar and indeed MSK can be seen as a
special case of OQPSK. Where in conventional OQPSK the pulse shape
h(t) is a rectangular shape, in MSK this is a sine wave. Furthermore,
the mapping to symbols is a little different; in OQPSK the bits are
mapped to absolute phases, while MSK the bits are mapped to phase
changes.

The bit error probabilities for coherent and non-coherent detection
of FSK are given in Equation 2.6 and Equation 2.7 respectively. Since
MSK is a form of FSK these probabilities are still valid for MSK.

Since MSK is also a form of OQPSK the bit error probability for co-
herent PSK in Equation 2.14 is also valid. However, this assumes the

12 gmsk receivers

Relative frequency
0 0.05 0.1 0.15 0.2 0.25 0.3

M
ag

ni
tu

de
 [d

B
]

-120

-110

-100

-90

-80

-70

-60

-50

-40

MSK
GMSK (BT = 0.5)
GMSK (BT = 0.3)

Figure 2.5: Comparison of spectral width for MSK and GMSK modulation

transmitted bits are mapped to absolute phases, while a MSK signal
corresponds to phase changes. If a precoder is used before the MSK

modulation this equation is valid. If no precoder is used, the bit error
probability for differential QPSK can be used as given in Equation 2.15.
This equation is valid for both coherent and non-coherent detection.

To summarize, for MSK two detection methods are possible: ‘stan-
dard’ FSK detection, or DQPSK detection. Since DQPSK has better error
probabilities we can state that the lower bound for bit error probabil-
ities of coherent and non-coherent MSK detection are that of DQPSK

detection.

2.1.3.1 Gaussian Minimum Shift Keying

GMSK is a variant of MSK where a Gaussian pulse shaping filter is
applied to the signal before modulation. This pulse shaping reduces
the spectral width of the modulated signal at the expense of harder
detection. Figure 2.5 shows a comparison of the spectral width of
MSK and GMSK for different BT values of the Gaussian filter. The BT
value of the Gaussian pulse specifies the width of the pulse. A smaller
BT value results in a tighter spectral width, but also in more signal
leakage in neighboring symbols. Typical values for BT are 0.5 (used
in Bluetooth) and 0.3 (used in GSM).

In GMSK the pulse shape function g(t) from Equation 2.4 is a Gaus-
sian pulse given by [1]:

g(t) =
1

2T

(
Q

(
γ

[
t−

T

2

])
−Q

(
γ

[
t+

T

2

]))
(2.18)

where γ def
= 2πB√

ln(2)
, B is bandwidth of Gaussian filter and

Q(x)
def
=

1√
2π

∫∞
x

e−
u2

2 du (2.19)

2.1 modulation 13

Symbol time
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

A
m

pl
itu

de

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
BT = 0.3

Symbol time
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

A
m

pl
itu

de

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
BT = 0.5

Figure 2.6: Gaussian Pulse Shape for BT = 0.3 (left) and BT = 0.5 (right)

The downside of GMSK is more difficult detection. The Gaussian
pulse shape causes symbol energy to leak outside to adjacent symbols.
The signal is non-zero outside of the symbol time 0 6 t < T . This
ISI makes detection harder and in general results in higher bit error
probabilities. The ISI can be tweaked by changing the BT value of
the pulse shape. Figure 2.6 shows the Gaussian pulse shape for two
typical BT values. Here it can be seen that there is more ISI with
BT = 0.3. Unless otherwise specified the receiver in this thesis will
follow the Bluetooth BT value of 0.5.

2.1.3.2 Matched Filter

A filter can be applied to the received signal to reduce the noise in the
signal. A matched filter is an optimal detection filter in the sense that
it maximizes signal-to-noise ratio [20, p181]. If the filter is applied af-
ter demodulation, the matched filter (MF) is a Gaussian pulse shape.
We get better results if the noise is filtered out before the demodula-
tion. Obviously this requires a different filter that matches the signal
before demodulation.

GMSK modulation can be approximated as a sum of linear pulse-
amplitude modulation (PAM) signals [14]. In [1] GMSK is approxi-
mated with the PAM pulse h0(t):

h0(t) = C(t− 3T)C(t− 2T)C(t− T) 0 6 t 6 4T (2.20)

C(t) =

sin(π2 (1− q(t))) 0 6 t 6 3T

C(−t) − 3T 6 t 6 0
(2.21)

The modulated signal s(t) then becomes:

s(t) =
√
2Eb

N−1∑
n=0

α0,n h0(t−nT) (2.22)

α0,n = exp

(
j
π

2

n∑
k=0

ak

)
= α0,n−1 e

jπ2an (2.23)

14 gmsk receivers

Where we have a sequence of length N with bits an ∈ {−1, 1}.
This approximation can be used to create an approximated version

of the GMSK signal in the transmitter, but it can also be used in de-
tection. The pulse shape h0(t) can be used as a matched filter to
maximize the SNR before demodulation.

2.2 gnu radio

In this section we look at a test environment for radio frequency (RF)
transmitters and receivers: GNU Radio.

GNU Radio is an open-source software-defined radio program for
Linux and OS X. It enables people to create RF transmitters and re-
ceivers by connecting processing functions in what is called in GNU
Radio terminology a flow graph.

Multiple manufacturers have RF transmitter and receiver devices
that are compatible with GNU Radio. In our setup the USRP N210

by Ettus Research is used, with a SBX RF daughterboard. This can
transmit or receive on frequencies between 400 and 4400 MHz.

The research was started with a working GMSK transmitter and re-
ceiver in GNU Radio. This flow graph reads a wav audio file, modu-
lates this to GMSK, and on the receiver side it demodulates and plays
the audio over the speakers.

Figure 2.7 shows the transmitter and receiver flowgraph. The com-
ponents will be discussed point for point. The diagram with GNU
Radio flow graph is annotated with numbers, which correspond with
the points below.

Transmitter

1. The audio file is read with a speed of 44.1k samples per second.
While the original wav file contains floating point values, they
are converted to bytes.

2. Samples are wrapped in frames, with 128 bytes payload, 64 bit
preamble, 1 byte sequence number and 1 tail byte.

3. Bits are converted to {−1, 1} symbols, and eight times oversam-
pled.

4. The symbols are passed through a Gaussian pulse shaping filter
and frequency modulated (MSK).

5. Optionally, white Gaussian noise can be added to the channel.
This is done to test reception at different SNR values.

6. The signal is send to a USRP device, which sends the RF signal
to an antenna.

Receiver

2.2 gnu radio 15

1 2

3 4

5

6

1

2

3
4

5

Figure 2.7: GNU Radio flow graph of transmitter and receiver

16 gmsk receivers

preamble
seq
nr

payload
tail
byte

64 8 1024 8

Figure 2.8: Simple framer frame layout with length in bits

1. The RF signal is received with another USRP device.

2. The signal is non-coherently demodulated with a quadrature
demodulator.

3. The filter averages the signal over the eight subsamples.

4. The packets are detected and the payload is extracted.

5. The data is converted to floating point values and send to the
audio output.

We now briefly discuss the most important blocks in the flow graph.
A more detailed description of the functions is given in Chapter 3.

simple framer The samples of the transmitter are wrapped in
frames 1 by the GNU Radio block Simple Framer. The receiver equiv-
alent of this block is the Simple Correlator. The purpose of the frames
is mainly symbol synchronization for the receiver.

The frame consists of four parts, which are in order (see Figure 2.8):
preamble, sequence number, payload and tail byte. The preamble
is a specific sequence of 64 bits. It is a maximum length sequence,
which results in a maximum correlation at the receiver side [3]. The
sequence number is a byte long and incremented every frame. The
payload length is configurable, but in our setup set to 128 bytes. The
tail byte is the sequence 01010101 added as padding to the frame.
Both the sequence number and tail byte are ignored in the Simple
Correlator.

simple correlator Although the main function of the Simple
Correlator is to detect frames and extract the payload, it also performs
a number of other tasks. The output is bias corrected, synchronized
and decimated.

The expected input are floats with soft decision values. Any bias in
the signal, for example due to frequency offset of the RF front end, is
corrected. The values are then sliced and correlated with the pream-
ble. The optimal sampling moment is determined when a frame is
detected. Although not documented in the user interface of GNU Ra-
dio (only in the code), it expects a 8 times oversampled signal. The
output of the Simple Correlator is the payload of the frames, packed in
bytes.

1 Throughout this thesis the terms frame and packet are used interchangeably.

2.2 gnu radio 17

The Simple Correlator is discussed in more detail in Section 3.3.4.

quadrature demodulator The receiver in GNU Radio is non-
coherent. The quadrature demodulator is a relatively simple non-
coherent differential demodulator. It calculates the phase difference
between sequential samples. This GNU Radio block is capable of de-
modulating FSK, MSK and GMSK.

3
B A S E L I N E I M P L E M E N TAT I O N

This chapter discusses the implementation of a baseline GMSK receiver
on the Starburst platform. It starts with a detailed discussion of the
Starburst platform. A software implementation based on the GNU
radio flow graph from the previous chapter is described and the run-
time performance is analyzed. From the performance of the software
implementation it was determined to implement the receiver in hard-
ware. An accelerator based approach of the same receiver is described
with details of the accelerator functions. Finally the BER performance
of the receiver implementation is measured and results are presented.

Figure 3.1 shows the hardware setup of the GMSK receiver. On the
left is a Xilinx ML-605 development board running the Starburst plat-
form with the receiver. On the right is a USRP transmitter which is
used with GNU Radio to transmit a GMSK signal.

Figure 3.1: Xilinx ML-605 board with GMSK receiver and USRP transmitter

19

20 baseline implementation

Microblaze Accelerator Accelerator Microblaze Microblaze

Arbitration Tree

SDRAM DVIUART

Nebula Ring

Figure 3.2: Overview of Starburst ring

3.1 starburst

Increasingly MPSoCs are used in embedded systems as a way to achieve
high performance with low energy costs. However, with the usage of
many cores, the communication between cores and other computa-
tional elements becomes more important than ever. This is a research
topic that is very much active, where different solutions are being
proposed. The Starburst platform tries to achieve a number of goals;
namely, a communication ring with low hardware costs, even with
many cores; real-time guaranteed performance, guaranteed through-
put and bounded latencies.

3.1.1 Overview

The processors and accelerators on Starburst communicate through
an unidirectional ring. The platform is implemented in VHDL for Xil-
inx Virtex 6 FPGAs, with Microblaze processors. Microblaze is a Xil-
inx processor architecture specialized for implementation on Xilinx
FPGAs [31].

Figure 3.2 shows an overview of the Starburst architecture. A num-
ber of Microblaze cores and accelerators are shown. The communica-
tion network of Starburst consists of two parts: an arbitration tree and
a unidirectional ring. The arbitration tree connects the cores to the
shared RAM, DVI and UART. It assigns access to the resources on a
first-come-first-served basis. Communication between cores through
the SDRAM is not advised because it is significantly slower than the
ring and there is no hardware cache coherency between cores. The
tree will in general not be used in the scope of this thesis.

The communication ring connects cores and accelerators to each
other. The ring is write only and all access is address-based. Nodes
can all act as both master and slave and nodes can access all other
nodes.

3.1 starburst 21

3.1.2 Ring Communication

The ring has two communication modes: core-to-core communication
and point-to-point streaming. First core-to-core communication is dis-
cussed, then point-to-point streaming. The Microblaze cores have a
local scratchpad memory. This memory is writable (but not readable)
by all nodes on the ring. Communication from core to core is done
by writing to the local memory of the destination core. This mode
of communication does not have hardware flow control: to ensure
write requests do not block on the ring, slaves must always accept
the requests. The memory controller is dual port to ensure write ac-
tions from both the processor and the ring are always accepted. The
configuration of accelerators and network interfaces also falls under
core-to-core communication. Configuration values can only be writ-
ten to, not read from.

3.1.2.1 Ring slotting

The arbitration policy on the ring is called ring slotting. Each network
interface in the ring has a slot, which contains an id, a destination
address and a payload. A slot is owned if the id of the slot matches the
id of the network interface it currently occupies. Every clock cycle the
content of the slot is moved to the next network interface in the ring.
A network interface can inject data on the ring with the following two
rules: [6]

1. A network interface can always inject data on the ring in its own
slot.

2. If a slot is empty and the slot’s owner is not reached before the
destination of the data, a network interface can transmit data in
that slot.

From these two rules bounds can be derived for the throughput
on the ring. For a ring with N nodes, a network interface will have
it’s own slot every N clock cycles. From the first rule follows that the
minimum guaranteed throughput for a node on the ring is 1/Nwords
per clock cycle. With the second rule we can derive an upper bound
for the throughput. If D is the number of hops between the sender
and the destination, then in addition to it’s own slot there are N−D

slots the sender can use to transmit if the slots are empty. This makes
the total maximum throughput Bmax = Bmin +

N−D
N = N−D+1

N .
To summarize:

Bmin 6 B 6 Bmax (3.1)

Bmin =
1

N
(3.2)

Bmax =
N−D+ 1

N
(3.3)

22 baseline implementation

Acc 0

Slot ID

Dst Addr

Data

0 1 2

0

data

Acc 1 Acc 2

Acc 0

Slot ID

Dst Addr

Data

Acc 1 Acc 2

0 12

0

data

0

0

data

1 2

Acc 0

Slot ID

Dst Addr

Data

Acc 1 Acc 2

Acc 0

Slot ID

Dst Addr

Data

Acc 1 Acc 2

1 2

t = 0

t = 1

t = 2

t = 3

0

data

0

0

data

Figure 3.3: Example of ring slotting arbitration

3.1 starburst 23

NI

Microblaze MicroblazeAccelerator Accelerator

Ring

Credits

Data

NI NI NI

Figure 3.4: Point-to-point streaming on communication Ring

Where B is the throughput of a transmission in words per clock cycle,
D is the number of hops to the destination and N is the total number
of nodes on the ring.

An example of the ring slotting arbitration with a transmitting ac-
celerator is in Figure 3.3. Acc1 transmits data to Acc0. There are three
accelerators connected to the ring, making the ring cycle three clock
cycles long. Four clock cycles are shown in the figure. At t = 0 Acc1

can transmit data due to rule 1. At t = 1 it transmits following rule
2, where the slot is empty and the data word can be delivered before
Acc1 may need the slot. Acc2 cannot transmit in slot 2 because Acc2
is reached before Acc0. We see the total throughput in this example
is B = 2/3, which is equal to the maximum throughput from Equa-
tion 3.3. This is achievable because slot 0 is not occupied at Acc2.

3.1.2.2 Flow control

Figure 3.4 shows a diagram with accelerator communication. It shows
a typical flow where data from a Microblaze is send to an accelerator,
to another accelerator and finally arrives at a second Microblaze. Un-
like in core-to-core communication, there is flow control in point-to-
point streaming. This is credit-based, where the credits are sent over
a separate ring that runs in the opposite direction of the data ring.
In the figure, the data words are sent over the ring with the solid
line, while the credits are sent over the dashed line in the opposite
direction.

Slaves always accept words sent to them, to ensure the words do
not block the ring. To still achieve flow control, the throttling is done
by limiting the transmission of words. When a node sends a sample
to another node, a credit is spent. The slave sends a credit back to the
master when it receives the data and it has space for another sample.
This ensures the slave can always store data that the master sends.
Because flow control is done on a per sample basis, this allow buffers
to stay small in both the accelerators and the network interface.

The buffer in a network interface only has to be as large as the ini-
tial number of credits in the sending network interface. 1 To simplify

1 The number of initial credits is the number of credits a network interface (NI) has at
startup. This is needed because the NI will not be able send data without credits (in
point-to-point streaming mode).

24 baseline implementation

matters the number of initial credits is equal for all network interfaces.
The number would ideally be as small as possible to reduce the buffer
sizes, but choosing too small may affect throughput of streaming over
longer distances.

To determine the effect of the credit flow control we will derive an
expression for the worst case throughput. The initial number of to-
kens of an NI is denoted as C. We are only interested in the through-
put limitation due the credit flow control mechanism, so here we will
assume that the master can produce and the slave can consume the
samples every clock cycle. In [12] the throughput is analyzed and an
expression for the minimum, guaranteed throughput due to the flow
control is given:

Bmin,credit =
C

2N+ 2D− 1
(3.4)

The above expression is derived from a synchronous data flow (SDF)
model, but we can also understand this intuitively through a worst
case scenario. The master needs to wait N− 1 cycles for its own slot
to arrive to able to send and then the sample takes D cycles to arrive
at the slave. The slave needs one clock cycle to receive the sample and
has to wait N cycles to send a credit response back and the response
takes D cycles to arrive at the master. The total round-trip time is
2N+ 2D− 1. We get the throughput by dividing the number of tokens
by the round-trip time. Note that this is the worst case scenario, so
we know the actual throughput 2 will not be lower.

We can now update the throughput bound of Equation 3.1 by re-
defining Equation 3.2:

Bmin = min
(
1

N
,Bmin,credit

)
= min

(
1

N
,

C

2N+ 2D− 1

)
(3.5)

From the equation we can also calculate the minimum value for
C for which the throughput is not limited by the number of initial
credits. The minimum value for C/(2N+ 2D− 1) is for D = N− 1,
the maximum distance to travel of the ring. The expression then is

1

N
6

C

2N+ 2D− 1
=

C

4N− 3
(3.6)

=⇒ C > 4 (3.7)

So when the number of initial credits is at least four, the guaranteed
throughput is not limited by the credit responses.

3.1.2.3 Ring shells

The network interface that handles the communication between ring
and accelerator/Microblaze is called ring shell. The ring shell has small

2 Again, we assume the master and slave can produce and consume respectively every
clock cycle. If that is not the case the throughput may be lower.

3.1 starburst 25

FIFOs to buffer the samples from and to the ring. Before the stream-
ing of data starts the network interfaces need to be configured. The
ring shells need to know the forward address and credit return ad-
dresses. The forward address is the address where to the data from
the accelerator needs to be send on the ring. When a ring shell is con-
nected to a Microblaze this is not needed since the Microblaze can
set this address herself. The credit return address is the source of the
data the ring shell receives. It needs the address to be able to send the
credits back to the sender. The forward and credit return address im-
poses a limit on the streaming. A ring shell can only accept data from
one master, since it only has one credit return address. In a similar
argument can a accelerator only stream to one destination because
the ring shell only has one forward address configured. The latter ar-
gument does not hold for Microblazes because they set the forward
address themselves.

3.1.2.4 Accelerator sharing

Recent work by Gerben Wevers [30] and Oscar Starink [25] looked
into accelerator sharing. The idea is that a user may want to use
certain accelerators multiple times. This can be done by replicating
the accelerator multiple times in the system, but hardware usage can
be saved if accelerators are multiplexed. In this approach a gateway
is added at the start and end of a chain of accelerators. The gate-
way configures the forward and return addresses of the accelerators
and passes a fixed number of samples through the accelerator chain.
When all samples have passed through the accelerators, the gateway
saves the state of the accelerators and reconfigures the ring shells for a
different chain. This way accelerators can be time-shared by multiple
streams.

Limitation of current implementation is the large cost of gateways.
The hardware savings is limited due to the large cost of a gateway.
Also the accelerators need to be modified to support state-saving. The
small hardware savings and the additional time needed to modify the
accelerators to support state-saving resulted in not using the acceler-
ator sharing feature in this thesis.

3.1.2.5 Throughput: Examples

In the previous section the ring slotting arbitration was mentioned, in
this section the implications for the throughput are discussed with
two examples.

Figure 3.5 shows five accelerators in a basic receiver configuration
streaming data. The source accelerator produces data that is sent to
the filter, demodulator, detection and sink accelerators in that order.

If we use the arbitration rules to determine the throughput of the
example in Figure 3.5, we get the following. In the calculation of the

26 baseline implementation

MB Source Filter Demod SinkDetection

Figure 3.5: Example of accelerator streaming on ring of Starburst

MB FilterDemodSource SinkDetection

Figure 3.6: Example of accelerator streaming on ring of Starburst with long
travel time

throughput we do not take flow control in to account; it is assumed
that all accelerators can accept and process data at full speed and that
the number of credits of a ring shell is sufficient that samples can be
send when data is available for transmission. 3

The throughput of a stream will be Bmax from Equation 3.3, unless
the stream needs to share the link with other streams. In Figure 3.5
the links are not shared and so the throughput can be calculated with
Equation 3.3:

B = Bmax =
N−D+ 1

N
=
6− 1+ 1

6
= 1 (3.8)

In the second example in Figure 3.6 we show a worst case streaming
situation where one accelerator streams to it’s previous neighbor and
so the data needs to travel the complete ring. We will start with the
blue flow: filter can always use his own slot and can use demod’s slot
if this is empty. So the minimum throughput is 1/6, with a maximum
of 2/6. Next the red flow: The source NI can always use his own slot,
and the slots of filter, detector, sink and MB if empty. Filter’s slot may
be occupied (the packets from filter contain data to demod), but detec-
tion, sink and MB can always be claimed. This makes the throughput
between 4/6 and 5/6. The green flow can use his own slot and the
empty slots of detection, sink, MB and source. This makes a through-
put bound between 1/6 and 5/6. Unfortunately this bound cannot be
made tighter, because all empty slots can be used by source before
demod. The purple flow has the highest possible throughput of all
because of the short distance. The maximum throughput is 6/6 be-

3 This is a reasonable assumption: Most accelerators are designed to work at either
clock speed or at the maximum expected data speed and ring shells generally have
enough credits to cover the round trip time of a credit.

3.2 software implementation 27

cause it can use all slots (if empty). Only filter’s slot can be occupied
in that part of the ring, making the minimum throughput 5/6.

4

6
6 Bred 6

5

6
(3.9)

1

6
6 Bgreen 6

5

6
(3.10)

1

6
6 Bblue 6

2

6
(3.11)

5

6
6 Bpurple 6

6

6
(3.12)

In the previous throughput calculations we did not take flow con-
trol into account, but in these examples this is not realistic for the
stream as a whole. The accelerators are dependent on each other be-
cause an accelerator needs the data from the previous one to calcu-
late it’s output. It is therefore not possible that one accelerator has
a throughput that is twice as high as it’s predecessor. Now that we
calculated the throughput figures for the stream we can revisit the
throughput with flow control. The throughput of the complete stream
from source to sink cannot be faster than the slowest part. That makes
that the throughput is limited to the blue flow: a throughput of 1/6
is guaranteed, with a maximum of 2/6.

summary Starburst has a unidirectional ring which supports two
communication modes. Core to core communication without flow
control and point-to-point streaming with flow control. In core-to-
core communication processors write directly in each other’s local
memory. Accelerator and ring shell configuration also work like this.
Because there is no flow control slaves must always accept words
from the ring. In point-to-point streaming a chain of nodes (proces-
sors and/or accelerators) is specified. Every node sends values to the
next node in the chain. This chain is fixed at runtime: during stream-
ing nodes can only send data to one destination and receive data from
one source.

The throughput of a stream on the ring is guaranteed to be at least
1/N, if this is not limited by flow control and the number of initial
tokens is at least four. The maximum throughput is dependent on the
distance D traveled over the ring: B 6 (N−D+ 1)/N.

3.2 software implementation

The receiver can be implemented as hardware accelerators or as soft-
ware running on the Microblaze cores of Starburst. A software imple-
mentation has more flexibility, because the changing functionality is
easier. It is however not clear whether the performance of the Microb-
laze processors is sufficient to run a real-time GMSK receiver. A basic
implementation of the receiver was made in software and the perfor-

28 baseline implementation

mance was measured. The goal is to find out if the Microblaze can run
the receiver completely in software and if not, where the performance
bottlenecks are. If needed, these bottlenecks could be implemented as
hardware accelerators.

Flow graphs in GNU Radio are implemented as a python wrapper
script, where the signal processing parts are implemented in C code.
To run the receiver on the Microblaze the C code could be reused and
modified for the Starburst platform.

The Microblaze processors are not fast with a clock speed of 100MHz
and so to improve performance the different components of the re-
ceiver all run on different processors. This requires the processors to
pass their data to the next processor. This can be done with cFIFOs,
which implement a C-HEAP [18] FIFO buffer on top of the core-to-core
communication of the ring network [21].

A process works with a local buffer of the data containing a small
(≈ 1024) number of samples. When the task has processed the buffer,
it sends the result to the next process and starts processing the next
buffer at the input. This continues until all buffers are processed.

The receiver implementation starts out reading the baseband signal
from file. While the final receiver implementation receives the GMSK

signal through the RF front end, for the performance measurement
the baseband signal is read from a file. This file is generated in GNU
Radio by running the transmitter and writing the GMSK signal to a
file. The receiver would then read from this file. The source function
that implements this first reads the complete file to memory to speed
up subsequent reads. This is done so the source is not a bottleneck
of the performance measurement. The sink function at the end of the
receiver writes the demodulated data to file. This file can then be
compared with the reference implementation in GNU Radio.

3.2.1 Performance

The performance of the software implementation was measured by
running profiling software along with the receiver processes. This
adds some overhead to the running time of the application, but this
is good enough for an order of magnitude measurement of both the
performance and where the bottlenecks in the application are.

The application consists of five processes. A source process which
reads the baseband signal from a file and sends to the next process.
The demodulation, filter and frame detection process are the main
receiver processes, each passes the result to the next process. The last
process is the sink process, which normally writes the result to a file.
For the performance measurement this was disabled, because writing
to the file system is very slow and this is not used in the final appli-
cation (where the audio samples are sent to a speaker). The source
preloads the file into memory so that this is also not a bottleneck.

3.2 software implementation 29

Demodulation Filter Frame Detection Requirement
0

5

10

15

20

25

30

35

40

Execution Time on Microblaze cores

Process

N
or

m
al

iz
ed

 T
im

e

Figure 3.7: Performance measurement for software implementation of re-
ceiver.

The results for the three main processes are shown in Figure 3.7.
This shows the run time of the processes normalized to the required
run time (for real-time audio playback at 44.1kHz). A run time of 1.0
would mean the process is just as fast as required, so any number of
1.0 or below is good enough. In the graph is visible that the demod-
ulation is 33.8 times too slow, the filter operation 7.5 and the frame
detector 6.3 times too slow.

The slowest process is the demodulation. This is mainly caused by
the arctangent operation. Efforts were made to improve the arctan-
gent calculation by replacing it with a different, lookup table based
implementation, but this did not noticeably improve performance. It
is also clear from the graph that even if the demodulation can be im-
proved, the other processes are still an order of magnitude too slow.
Not only the demodulation but all three processes will need to be
implemented as hardware accelerators.

30 baseline implementation

RF
Frontend

Filter Demod
Frame

Detector
DAC

Figure 3.8: Overview of accelerators in baseline receiver architecture

3.3 accelerators

From the previous section followed that a software implementation of
the receiver is not possible. Therefore the receiver components were
implemented as hardware accelerators. In Figure 3.8 an overview is
shown of the accelerators. Notice that compared to the software im-
plementation, the source and sink are replaced by a RF front end ca-
pable of receiving RF signals and a digital-to-analog converter (DAC)
speaker output which can play audio through a connected speaker
set. Additionally, a pre-demodulation filter is added. This accelerator
supports configurable coefficients so that multiple filters can be tested
to determine which results in the best reception.

This section will discuss the details of the accelerators. In Section 3.5.2
the sensitivity results will be presented.

3.3.1 RF Front end

The RF front end used is a Bitshark FMC-1RX [7] board by Epiq Solu-
tions. The board has a 14-bit analog-to-digital converter (ADC), with
a tuning frequency from 300MHz to 4GHz. The ADC chip is a Linear
Technology LTC2267-14, which has a SNR of 73.1dB [27]. An acceler-
ator, bitshark_ctrl, was already available to do the heavy lifting with
regards to interfacing with the board. Configuration of the Bitshark
is done through this accelerator. It also does some signal processing
including I/Q channel balancing and correction of a DC gap.

3.3.2 FIR Filter

A finite impulse response (FIR) filter accelerator developed by Gerben
Wevers [30] was used to filter the incoming signal. The filter accelera-
tor has support for a 32-taps filter where the filter coefficients can be
configured.

3.3.3 Quadrature Demodulator

The demodulation implementation is based on the GNU Radio quadra-
ture demodulator block. This is a differential demodulator, which is
shown in Figure 3.9.

3.3 accelerators 31

An incoming sample is multiplied by the conjugated previous sam-
ple. The result is a vector where the phase is the phase difference
between the two consecutive samples.

v(n) = x(n) x∗(n− 1) = Aejφ(n) Ae−jφ(n−1) = A2ej[φ(n)−φ(n−1)]

(3.13)

The arctangent outputs the angle of the complex vector v(n):

w(n) = arctan
Im{v(n)}

Re{v(n)}
= φ(n) −φ(n− 1) (3.14)

The result is a demodulation of the GMSK signal. From Section 2.1
we know the phase rotation is ±π/2 radians per symbol. Because of
M = 8 times oversampling the phase rotation per sample is ±π/16.
In the implementation the signal is also passed through an averaging
filter. By averaging over the last 8 samples of the demodulated signal
the phase noise due to white Gaussian noise (WGN) on the channel is
reduced. The result is also multiplied by M, so that after decimation
(in the packet detector) the phase rotation is ±π/2 radians per sample.
The netto effect is that the filter calculates the running sum of the last
M samples, where M is the oversampling factor:

y(n) =M

n∑
k=n−M+1

w(k)

M
=

n∑
k=n−M+1

w(k) (3.15)

noise If we assume WGN added to the input, we get a more compli-
cated expression for the demodulation. Assuming the noise is uncor-
related, we rewrite η(n) = η1 = N1eθ1 and η∗(n− 1) = η2 = N2e

θ2

v̄(n) = [x(n) + η(n)] [x∗(n− 1) + η∗(n− 1)] (3.16)

= [x(n) + η1] [x
∗(n− 1) + η2] (3.17)

= v(n) + x(n)η2 + x
∗(n− 1)η1 + η1η2 (3.18)

= v(n) +AN2e
j(φ(n)+θ2) +AN1e

j(−φ(n−1)+θ1)

+N1N2e
j(θ1+θ2)

(3.19)

It is clear from Equation 3.19 that an expression for the output of the
arctan is not straightforward anymore. Further analysis of noise at
the output of the demodulator is beyond the scope of this thesis; we
refer to [19] for the analysis of the phase angle between two vectors
with Gaussian noise.

implementation To reduce the implementation time, standard
Xilinx IP blocks were used when possible. These blocks implement
basic signal processing functions. For example, the arctangent oper-
ation is implemented with a Xilinx CORDIC block. Most new Xilinx
IPs support the AMBA axi4-stream protocol [16], which makes con-
necting different blocks very easy. In Figure 3.10 the blocks of the

32 baseline implementation

Z−1 ()*

atan2 Filter
x(n)

x(n− 1) x∗(n− 1)

v(n) w(n) y(n)

Figure 3.9: Functional diagram of demodulator accelerator

buffer conjugate

multiplier
FIR

buffer bufferatan2

input

output

config

switch

Figure 3.10: Demodulator accelerator implementation

VHDL implementation are shown. The lines between blocks are data
connections using axi4-stream (compatible) interfaces. The in- and
output connections are not strict axi4-stream, but are compatible
with it. The figure is largely the same as the functional diagram in Fig-
ure 3.9, so only the differences are discussed. The input and output
both have (small) buffers. The output buffer is not strictly necessary if
samples can be put on the ring fast enough. The input buffers are im-
plemented so that the conjugate and multiplier inputs do not have to
be ready at the same time. This increases the throughput somewhat.
The buffers do not need to be large; the minimum possible size for
the Xilinx FIFO IP of 16 entries is used.

The switch block in Figure 3.10 is some small logic that selects
either the atan2 or fir output. This is dependent on a configuration
setting that can be sent to the accelerator. This setting allows the ac-
celerator to circumvent the FIR filter. The default is to use the FIR
filter.

The input for the demodulator is complex fixed point numbers. The
imaginary and real part are both 16-bit fixed point numbers with 1

integer bits and 15 bits fractional. The imaginary part is in the 16 least
significant bits, real in 16 most significant bits. This is inverted from
the convention in Xilinx IPs and therefore the order of imaginary and
real parts is inverted. The output of the demodulator is 16-bit fixed
point number (2-bit integer, 14-bit fractional).

The hardware costs for the demodulator accelerator are shown in
Table 3.1. The accelerator originally was designed to handle a sample
every clock cycle. However, the sampling frequency for the applica-
tion is much lower. It was therefore decided to lower the maximum
sampling frequency of the FIR filter to save hardware costs. The max-
imum sample frequency is now 10MHz, which is still well above the
sampling frequency of the stream of 3.125MHz.

3.3 accelerators 33

component sl regs luts dsp48s

Input buffer 66 35 0

Conjugate 67 30 0

Multiplication 325 126 3

Atan2 2217 2164 0

Filter (@ 100 MHz) 353 155 5

Filter (@ 10 MHz) 177 104 1

Output buffer 50 35 0

total
a

2969 2558 4

Table 3.1: Hardware costs of Demodulator accelerator

a Using FIR filter @ 10 MHz. 1 Slice reg and 29 LUTs used in top level entity.

Comparator Correlator
Synchro-
nization

Decimation

Average
Updater

Frequency correction
Preamble
detection Sampling

Data width
converter

Presentation

Switch

config

Figure 3.11: Packet detector accelerator implementation

The table lists the cost for the FIR filter at both speeds (100MHz
and 10MHz), where the total cost of the accelerator is listed for the
10MHz filter only. Note that this is the speed at which the block can
accept new samples, not the clock speed: this is still 100MHz like the
rest of the system. In the 100MHz FIR filter the taps are calculated
by multiple Xilinx DSP processing slices[32] (DSP48s) in parallel. In the
10MHz FIR filter one DSP48 is reused to calculate the taps, resulting
in lower hardware costs but slower throughput.

3.3.4 Frame Detector

The frame detector accelerator is an implementation of the GNU Ra-
dio Simple Correlator block from Section 2.2. The main purpose of
the frame detector is to search the signal for the start of a frame and
output the payload part of the frames. There are other functions it
also performs. It corrects for any bias in the signal due to frequency
deviation of the tuning frequency from the carrier frequency. It also
determines the best sampling moment and decimates the signal to
remove any oversampling in the signal.

The different components of the packet detector accelerator are
shown in Figure 3.11. It consists of three functions: first frequency
offset correction and slicing, then preamble detection and finally sam-

34 baseline implementation

pling and decimation. The average updater calculates a running aver-
age of the signal. This is used in the comparator which slices the signal
at the average; a signal larger than the average is a one, smaller or
equal to the average is a zero. The correlator correlates the signal with
the preamble by calculating the Hamming distance. Synchronization
determines from this information when the payload starts and deter-
mines the best sampling moment. The decimator removes the oversam-
pling. The accelerator can output the packet payload in different for-
mats, depending on configuration. The data width converter can pack
the bits in 8-bit words, or the data width converter can be circumvented
and the bitstream is sent to the output.

frequency offset The packet detector corrects the effect of fre-
quency offset on the demodulated signal. We will first discuss the
demodulated signal with frequency offset and than look at a method
to measure it.

The GMSK modulated signal s(t) is received with carrier frequency
fc. We will not take any WGN on the channel into account.

s(t) =

√
2Eb
T
ej2πfct+jφ(t) (3.20)

Where φ(t) is the phase signal from Equation 2.4. The signal is down-
converted to baseband with tuning frequency ft = fc − fo, where fo
is the error in the tuning frequency. We will assume the frequency
offset to be constant in time.

r(t) = s(t)e−j2π(fc−fo)t (3.21)

=

√
2Eb
T
ej2πfot+jφ(t) (3.22)

(3.23)

If the demodulated signal without frequency offset is y(n), we will
now calculate the demodulated signal y ′(n) with frequency offset:

y ′(n) =
M

π

(
arg

[
s

(
nT

M

)]
− arg

[
s

(
(n− 1)T

M

)])
(3.24)

=
M

π
[2πfonT/M+φ(n) − (2πfo(n− 1)T/M−φ(n− 1))]

(3.25)

=
M

π
(2πfoT/M+φ(n) −φ(n− 1)) (3.26)

= y(n) + 2foT = y(n) +C (3.27)

=⇒ C
def
= 2Tfo = 2M

fo

fsamp
(3.28)

Where we define C as the bias in the demodulated signal due to
frequency offset. fsamp is the sample frequency, which is M times
higher than the symbol frequency 1/T .

3.3 accelerators 35

In Equation 3.28 we see that a frequency offset results in a bias in
the signal. This directly effects bit errors: if there is a positive bias in
the signal there is a larger chance that a transmitted zero is detected
as a one. This can be fixed by subtracting a bias estimate from the
signal, with the estimate based on the average signal. Let’s say the av-
erage is calculated over the last P samples. If there are as many zeros
as ones transmitted, this should result in an average signal approxi-
mately equal to the offset bias.

yavg(n) =

P−1∑
i=0

y ′(n− i)

P
=

P−1∑
i=0

y(n− i)

P
+C (3.29)

The frame header has an equal number of ones and zeros. The bias
estimation can therefore best be done by calculating the average over
the frame header samples. Obviously this can only be done after the
frame header is detected.

The bias correction is implemented by calculating the running av-
erage of the last P = M`S samples, which is the length of the frame
header (where `S is number of symbols in header, and M the over-
sampling factor). This bias estimation is subtracted from the demod-
ulated signal before it is sliced to bits and fed into the correlator. When
a frame is detected, the average updater is stopped for the duration of
the payload. This means the average updater will still output the last
average, but not update it with the new samples. The effect of this
is that the payload part of the packet is corrected with the average
calculated over the preamble. This results in the best bias correction
because the preamble is known and has an equal number of zeros
and ones. After the payload is processed and the packet detector is
in the detection mode again the average updater resumes the average
calculation.

This approach has two main advantages:

• The average is updated in detection mode, which mean that
if the frequency offset changes in time, the bias correction is
updated accordingly.

• The average is fixed during the payload part of the packet. This
means the bias estimation does not suffer if the number of ones
and zeros in the payload part of the packet is not equal.

preamble detection The preamble detection is done by com-
paring the incoming signal with the known preamble sequence. This
is done by first slicing the incoming phase signal to bits: ȳ(n) =

sgn(y(n)). The incoming signal is compared bit by bit with the pream-
ble and the Hamming distance of the two sequences is calculated.

D(n) =

`S−1∑
i=0

ȳ(Mi+n)⊕ S(i) (3.30)

36 baseline implementation

1 011 0 0 0 0 0 1 1 1 1 1

+

1 0 1 1
1 1

Figure 3.12: Preamble detection by correlation

Sample number
8600 8650 8700 8750 8800 8850 8900

H
am

m
in

g
D

is
ta

nc
e

0

5

10

15

20

25

30

35

40

Correlator output
Threshold

Figure 3.13: Hamming distance output of preamble detector

This is shown graphically in Figure 3.12, where the correlation is
shown for four times oversampling and a preamble of 4 bits. The
entries of the shift register are XOR-ed with the corresponding en-
tries of the preamble. The results of the XORs are summed to get the
Hamming distance at the output. A frame detection occurs when the
Hamming distance D(n) is lower than a threshold a. In GNU Radio
this threshold is set to 3.

synchronization The synchronization part of the packet detec-
tor determines the optimal sampling moment and decimates the sig-
nal to remove the oversampling. At the point of frame detection the
preamble detector outputs a number of consecutive low Hamming dis-
tance values. An example of this is shown in Figure 3.13. When the
preamble is not aligned, the distance is around 32 (half the bits match
the preamble). When the preamble is aligned, the distance drops to 0.
Due to the oversampling the Hamming distance is low for a number
of consecutive samples. The optimal sampling moment is determined
as the middle of the values that drop below the threshold.

3.3 accelerators 37

component sl regs luts lutrams

Avg updater 112 236 128

Comparator 34 20 0

Correlator 33 411 128

Synchronization 33 44 0

Data width converter 544 831 0

Decimator 41 7 0

total
a

802 1573 256

Table 3.2: Hardware costs of Packet Detector accelerator

a 5 Slice regs and 24 LUTs used in top level entity.

output presentation The input to the frame detector accelera-
tor is 16-bit fixed point numbers (2-bit integer, 14-bit fractional). This
format is chosen to correspond with the output of the demodulator.
In the original GNU Radio implementation of the frame detector the
bitstream of the payload is presented at the output packed in 8-bit
integers. This is also practical for our receiver setup since the DAC ex-
pects 8-bit integers for audio samples. This is implemented by a data
width converter component that takes single bit input and outputs 8-bit
words. There are however other configurations of the receiver which
are not compatible with this output format. For these situations the ac-
celerator can be configured to also output as a bitstream or to output
soft information. The bitstream output option is achieved by simply
not using the data width converter. The soft output is the demodulated
signal, which is converted to a single bit in the comparator. To get the
soft information at the output, the accelerators are modified to pass
the soft information along with the original bits. The soft information
is output latency matched with the original bit output.

hardware costs Table 3.2 shows the hardware cost of the com-
ponents and the total accelerator. Data width converter is the largest
component both in terms of LUTs and slice registers though it is not
clear why. This is most probably caused by an inefficient implemen-
tation in terms of memory access.

During implementation little effort was made to minimize the de-
sign in terms of hardware costs. It is therefore very likely that the
hardware usage can be reduced by spending some time on the opti-
mization of the accelerator implementations.

38 baseline implementation

3.3.5 Analog-to-Digital Converter

Initially the platform could play audio, but using a rather convoluted
approach. The audio samples were send over the network to a Linux
PC which would play the audio. This method introduced consider-
able overhead, and more importantly made throughput analysis dif-
ficult as a result of the unpredictable behavior of the network stack.
A way to directly output audio through some kind of hardware inter-
face was very desirable.

The ADC accelerator needs to play 8-bit samples at a sampling fre-
quency of 44.1kHz. The accelerator generates a pulse-width modu-
lation (PWM) signal at one of the output pins of the ML-605 board.
Because the ML-605 board can only drive the pins with very low
currents (< 10mA [33]), the output can only be connected to high
impedance audio devices like a PC speaker set. The PWM clock is set
as close as possible to 44.1kHz, at 100MHz/2268 ≈ 44091.7Hz. This
results in a PWM resolution of blog2(2268)c = 11 bits.

Unfortunately, the audio signal could not be send with a sample fre-
quency of exactly 44.1kHz, due to limitation in the sample frequency
of both the RF transmitter and RF receiver. The closest possible sam-
ple frequency is 3.125MHz, which after packet overhead results in
an audio sample frequency of 3.125 · 106/8/(1024+ 64+ 16) · 128 ≈
45209Hz. This is slightly higher than the sampling frequency of the
ADC. This results in the buffer of the accelerator slowly fulling up
over time. To prevent this the accelerator has a ‘drop mode’. When
this is active the accelerator will always accept new data, but will
drop samples if the buffer is full. As long as the incoming and outgo-
ing frequencies are close, this is not noticeable in the audio signal.

To better match the transmitted signal to the sampling frequency
of the ADC it is possible to insert ‘null’ samples at the transmitter
between packets. These will be ignored by the packet detector, but will
slow the speed of the transmitted payload to match the ADC signal. if
X is the number of samples to insert, we want:

ftransmitter = freceiver (3.31)
fRF

M ·Hpacket
=
fclock

2268
(3.32)

3.125 · 106
8 · (1024+ 64+ 16+X)/128 =

100 · 106
2268

(3.33)

=⇒ X = 30 (3.34)

fRF is the sample frequency of the RF signal. This needs to be sup-
ported by both the USRP device and the Bitshark. To get the data
frequency of the payload we need to divide by the oversample fac-
tor M, and the overhead of the packets Hpacket. The packet overhead
is the number of bits in the total packet (1024 bits in payload, 64 in

3.4 hardware costs 39

component sl regs luts lutrams dsp48s

Bitshark 4240 2831 1130 42

Filter 1071 3037 0 33

Mixer 1256 1243 38 0

Demodulator 2969 2558 135 4

Packet detector 802 1573 256 0

DAC 157 137 0 0

Microblaze a
2016 2840 208 5

Microblaze w/ peripher-
als b

3045 4449 463 5

Network Interface 321 333 16 0

Table 3.3: Hardware costs of accelerators

a Microblaze core only
b Microblaze including peripherals, as generally instantiated on Starburst

preamble, 16 bits for head and tail bytes, X bits as padding between
frames) divided by the number of bytes in the payload (128 bytes).

So if 30 ‘null’ samples were inserted per frame, the number of sam-
ples at the receiver would be equal to the sample frequency of the
ADC and the accelerator would not need to drop samples.

3.4 hardware costs

The hardware costs of the accelerators is summarized in Table 3.3.
This has the hardware costs as shown before and the cost of the other
accelerators. In the last rows it also shows the costs of Microblaze soft
cores and network interfaces to the ring for reference. The first entry
for the Microblaze only counts the core alone, while the second entry
also counts the peripherals normally added as part of the Microblaze,
like the local memory and timer.

3.5 ber measurements

3.5.1 Measurement setup

To determine the receiver’s performance, BER measurements were
done. For this a setup was used that is depicted in Figure 3.14. The
GNU Radio transmitter flow graph was used to generate the GMSK

signal. The data source is modified from the flow graph in Figure 2.7:
instead of an audio file, a periodic signal is generated with the saw-

40 baseline implementation

Signal
source

Framer
GMSK
mod

WGN

RF cable

demodDeframer
Error

detection

+

Receiver (Starburst)

Transmitter (GNU Radio)

Filter

Figure 3.14: BER Measurement setup

tooth signal generator. The signal x(n) is defined by this expression:

x(n) = ((n+ 96) mod 64) + 64 (3.35)

Where x(n) is a signed 8-bit integer and the signals for n = 0, 1, 2, ..., 127
are in one frame. The signal is chosen such that there is an equal
number of zeros and ones transmitted in one frame and such that ev-
ery frame has the same content. That every frame has the same pay-
load makes error detection easier at lower SNR values, where there is
chance of frame drop.

At the receiver side the DAC is not used, but instead a process runs
on a Microblaze core that receives the samples from the packet detector
and determines bit errors. The process will output the number of bits
processed and the number of bit errors detected.

The BER measurements are done with an additive white Gaussian
noise (AWGN) channel. This noise is added in the GNU Radio script
just before transmission with the USRP. The USRP and Bitshark are
connected through a coaxial cable instead of antennas to minimize
any additional noise. Figure 3.14 has an overview of the BER measure-
ment setup.

The sampling frequency of the USRP and Bitshark is 3.125 MHz.
The carrier frequency is set to 434 MHz.

The bit error rate is measured without a filter, and with either a
low-pass filter or the matched filter. The low-pass filter is generated
with the Matlab fir1 command, which generates a Hamming window
based filter. The normalized cut-off frequency is set to 0.2. This fre-
quency is experimentally determined to achieve the best reception.
The matched filter is defined in Equation 2.20.

The measurement results are compared with the theoretical BER

performance of DQPSK, which is equivalent to (non)coherent detec-
tion of MSK. There are a number of effects that result in worse than
optimal BER performance for the receiver. ISI introduced by the Gaus-
sian pulse shape filter is not removed in the baseline receiver and will
increase bit errors. Furthermore, there are any number of sources that
introduce noise in the signal. This includes noise and errors from:

3.5 ber measurements 41

Eb/N0 [dB]
6 8 10 12 14 16 18 20 22 24

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
Bit Error Rate - Measurement

No Filter
Low-pass Filter
Matched Filter
Noncoherent MSK Theory

Figure 3.15: BER Measurement without filter, with low-pass filter and with
matched filter

• USRP DAC

• USRP RF upconversion

• RF cable

• Bitshark ADC

• Bitshark processing (downconversion, low-pass filtering, gain)

• Processing in accelerators in fixed point representation

3.5.2 Results

Figure 3.15 shows BER measurements on the hardware setup without
a filter, with a low-pass filter and with the matched filter. For refer-
ence the theoretical BER line for DQPSK is shown, which is the theo-
retical limit for the BER performance. The first thing to notice is that
performance is quite a bit worse than theory. The receiver without fil-
ter at 10−3 BER is 14dB inferior to theory. The receiver with low-pass
filter performs significantly better and is 8.6dB worse than theory.
This large distance between theory and measurement is caused by
the differential detection, which is significantly worse than optimal
coherent detection [34].

Also interesting is that the performance with the matched filter,
which should be the optimal detection filter, is actually worse than
the low-pass and impulse filter. This is caused by extra ISI in the sig-
nal introduced by the matched filter. This can be seen in Figure 3.16,

42 baseline implementation

Figure 3.16: Eyediagram of received signal filtered with low-pass filter and
matched filter

SNR [dB]
-10 -8 -6 -4 -2 0 2 4 6 8

P
er

ce
n

ta
g

e
o

f
fr

am
es

 d
et

ec
te

d

0

10

20

30

40

50

60

70

80

90

100
Detected frames - Measurement

No Filter
Low-pass Filter
Matched Filter

Figure 3.17: Measurement of frame detection without filter, with low-pass
filter and with matched filter

where a simulation is shown for the received signal. It is clear from
the eyediagrams that the eye is more closed with the matched filter.
While not visible in the Figure 3.16, the matched filter does remove
more noise than the low-pass filter.

3.5.3 Frame Detection

In the previous BER measurements the payload content of each frame
is indentical. This is chosen specifically so that a dropped packet
(i. e. an undetected frame) does not result in bit errors. This means
the bit error rate can be measured independent of the packet detec-
tion rate.

The packet detection rate is however an interesting value to mea-
sure. This is especially the case when additional channel decoding
techniques are added which are located after the packet detector. In
these cases the BER improves, but the packet detection does not. If
one is not careful, the receiver will have good BER values at low SNR,
but drops many packets.

The packet detection rate was measured, where the results are in
Figure 3.17. The measurement was done by turning on the Bitshark

3.6 summary 43

ADC for a fixed amount of time (45 seconds). The expected number
of packets is the sampling frequency divided by the frame length in
samples (frame length in bits `frame times the oversampling factor M)
multiplied by the capture time:

Npackets =
fsamp

M`frame
· tcapture =

3.125 · 106
8 · (64+ 8+ 1024+ 8) · 45 ≈ 15922

(3.36)

The detected number of frames is measured for different SNR val-
ues, where the SNR is set in the same way as in the BER measurements
before. The result is shown in Figure 3.17, where the relative packet
detection is shown in the vertical axis and the SNR in the horizontal
axis. The low-pass filter has best frame detection. At 99% frame de-
tection the low-pass filter is 4.4 dB better than the matched filter and
no filter.

There is an analog between this result and the BER measurement in
Figure 3.15. Indeed, the number of bit errors directly influences the
packet detection. If the number of bit errors in the preamble is higher
than the threshold, the frame is not detected.

A way to increase the frame detection rate is to increase the thresh-
old. Currently the threshold is at three, which is quite low. With a
threshold the chance that a sequence of 64 bits is wrongfully detected
as a frame is 2.4 · 10−15. Increasing the threshold to 10 will lead to
better packet detection rate, but the chance that a frame is detected in
error will increase. However with a erroneous detection rate of 10−10,
this is still really low.

Increasing the packet detection threshold will lead to a better packet
detection rate, but the chance that a frame is wrongfully detection will
also increase.

3.6 summary

In this chapter the basic implementation of a GMSK receiver is pre-
sented. The Microblaze processors on the Starburst platform do not
have enough performance to run a real-time software implementa-
tion, therefore the receiver was implemented with hardware acceler-
ators. The BER was measured with different pre-demodulation filters.
The BER performance was not very good, that is why in the next chap-
ter improvements for the receiver are discussed. From the different
filters, the low-pass filter has the best BER results, where it is 8.6 dB
worse than theory. The frame detection rate is found to be dependent
on the choice of filter, where the low-pass filter is 4.4 dB better 4 than
the other filters. In Chapter 5 a different architecture will be presented
that enables a different filter to be used for frame detection than for
the frame payload.

4 at 99% frame detection

4
R E C E I V E R I M P R O V E M E N T S

This chapter looks at two improvements to the receiver. Convolutional
decoding and equalization are both techniques that can be applied to
improve reception. In this chapter the theory and the implementa-
tion in the receiver will be discussed. The chapter concludes with
BER measurements of a receiver with convolutional decoding, with
an equalizer and with both convolutional decoding and equalization.

4.1 convolutional coding

Channel coding can be applied to a transmitter to improve detection
at the cost of lower channel utilization. Channel codes can be divided
in two categories: block codes and convolutional codes. In block cod-
ing a block of k bits is mapped to n bits, called the codeword, where
n < k.

Reed-Solomon codes, the most important block code family, are
more resistant to burst errors than convolutional codes. A major draw-
back of Reed-Solomon codes is the difficulty to do soft decision de-
coding, which is much easier for convolutional codes with the Viterbi
decoder. [13]

Contrary to block codes, convolutional codes have memory. The
codeword is not only dependent on the k input bits, but also on the
state of the encoder. Convolutional codes are generated with shift
registers. The code rate is Rc = k/n, where k is the number of input
bits and n the number of output bits for each step. Constraint length
K is the number of memory slots of the shift register.

+

+

x2x1 x3

u1

u2

Figure 4.1: Shift register for [7, 5] convolutional code.

45

46 receiver improvements

Source
Convolutional

Encoder
Modulation

Convolutional
Decoder

DemodulationSink

Channel

Transmitter

Receiver

m U(m)

Zm′

Figure 4.2: Diagram of transmitter and receiver with convolutional encoding

00

10

01

11

t0 t1 t2 t3
00

11

10

01

10

01

11

00

10

01

11 11

Figure 4.3: Encoder trellis graph of rate 1/2, K = 3 code. The encoder output
is written above the edges

Figure 4.1 shows the generation of a rate 1/2 code with K = 3

constraint length. Bits are shifted in the register at the left side. Two
results are generated: u1 = x1⊕ x2⊕ x3 and u2 = x1⊕ x3. The output
is the interleaving u1 and u2. The generator coefficients are defined
as g1 = [111] and g2 = [101] which is often written in octal notation
as [7, 5].

maximum likelihood The optimal detection method for convo-
lutional coding is maximum-likelihood sequence estimation (MLSE).
Say we have an input sequence m that is encoded to a code sequence
U(m). Figure 4.2 shows a diagram of a simple transmitter and receiver
where the sequence is modulated, send over a channel to the receiver
and demodulated.

If a sequence Z is received, the maximum likely sequence m′ is es-
timated from all possible transmitted sequences U(n). More formally
this can be written as:

m ′ = argmax
n

P(Z|U(n)) over all n (4.1)

Here m ′ is the recovered sequence that is equal to the sequence with
the maximum probability P(Z|U(n)) over all the possible sequences n.

The output of the convolutional code is dependent on both the
current input and the last K − 1 inputs. This can be modeled in a

4.1 convolutional coding 47

00

10

01

11

t0 t1 t2 t3
0

2

2

0

1

1

2

0

1

1

1 0
t4

1

1

0

2

1

1

1

0

2 2

Figure 4.4: Decoder trellis graph of rate 1/2, K = 3 code for received se-
quence 00010000.

finite state diagram. Trellis graphs show the states and output of a
convolutional code in a convenient manner. Figure 4.3 depicts the
encoder trellis graph for the [7, 5] code from Figure 4.1. The states,
or current content of the shift registers, are depicted in the vertical
direction. The current input are the edges, which also transition to a
new state. By convention, a 0 input is shown as a solid line and a 1
input is a dashed line. The encoder starts in state 00 at t0 at the top
left corner. With a input of 1 the content of the shift register is 100
and the output is (1, 1) as shown above the solid line. The 0 on the
right is shifted out and the 1 is shifted in, making the new state 10.

4.1.1 Detection

We will now look at an example with decoding of a convolutional
coded sequence. For this we assume the input sequence m = 0000.
If the encoder trellis of Figure 4.3 is followed, the encoded sequence
can be found to be U(m) = 00 00 00 00.

Due to noise in the channel, the detector receives the sequence
00010000. The decoder trellis graph is created by noting the distance
between the received code word and the possible outputs of the en-
coder in the edges of the decoder trellis. Figure 4.4 shows the decoder
trellis. The decoder starts in state 00. The Hamming distance between
the received word (00) and the two possible outputs of the encoder (00
and 11) are written above the corresponding graphs. This is repeated
for all the edges. The maximum likely sequence transmitted is the
path through the trellis with the minimum distance as noted above
the edges of the decoder trellis. From Figure 4.4 it follows that for a
received sequence 00010000, the most likely transmitted sequence is
00000000 and the uncoded sequence is m′ = 0000.

soft input detection The example above is for MLSE detection
with hard decisions. This means the input to the detector can only
be either a one or a zero. It is possible to have input with extra in-
formation to indicate the confidence level: soft decision. For a soft

48 receiver improvements

00

10

01

11

t0 t1 t2 t3
0

2

2

0
0

1

1

1 0
t4

1

01

1

0

Figure 4.5: Decoder trellis graph of rate 1/2, K = 3 code for received se-
quence 00010000 with Viterbi algorithm.

decision detector with 8 level quantized input the samples have val-
ues −4,−3,−2,−1, 1, 2, 3, 4, where a −4 is a zero with maximum con-
fidence and 1 a one with minimum confidence. Soft, infinitely quan-
tized decoding has a improvement of 2.2dB over hard decision. Soft
decision with 8 level quantization has a improvement of 2.0dB, so do-
ing more than 8 level quantization can only gain an additional 0.2dB
[24]. The gain does come at the price of a more complex detector, but
this complexity is minimal when using the Viterbi algorithm. The dif-
ferent paths can still be compared with a distance metric, but the met-
ric changes from a Hamming distance to a Euclidean distance. The
memory requirements for the soft decoder also increase as it needs to
work with 3-bit input compared to 1-bit values for hard decision.

4.1.2 Viterbi Algorithm

As was visible in previous discussion about the decoding of the se-
quence 00010000, even with a short sequence the number of paths
involved is quite large. Specifically, for a sequence of nL bits the num-
ber of states is 2L. Clearly this is not feasable for a detector of long
sequences. The Viterbi algorithm presented in 1967 by Viterbi [29]
greately reduces the number of states needed in a MLSE decoder. The
Viterbi algorithm rests on the property of the trellis graphs that the
next state and output tuple is only dependent on the current state
and input. Any history of previous states or inputs does not matter.
This means that during detection when there are two edges merging
on a state, one of the paths can be removed. Namely the path with the
highest distance, since that path cannot possibly result in a lower dis-
tance than the other path. Figure 4.5 shows the decoder trellis from
Figure 4.4 again, but with the redundant edges pruned. The Viterbi
algorithm ensures that there are only ever as many paths as there are
states, since every time two paths converge on a state, only one path
survives. This results in a detector which only needs to keep track of
K paths, instead of 2L paths.

4.1 convolutional coding 49

traceback depth In Figure 4.5 it can be seen that for the tran-
sition t1 → t2 there are still two options under consideration and so
the first bit is not yet recovered. As the sequence moves on, the paths
that diverged early will be pruned and the paths will share a common
start. The question is however after how many samples this happens.
In other words, how many transitions should the Viterbi decoder save
for each path before the oldest bit can be recovered? The Viterbi de-
coder could determine if the first bit is recoverable after every sample,
but this is computationally intensive. Therefore the decoder will out-
put after a fixed amount of transitions, which is called the traceback
depth. The size of the traceback depth should be minimal to save
memory, but maximum to prevent detection errors. [24] states that a
traceback depth of 4 or 5 times the constraint length results in a near
optimum performance.

free distance The minimum free distance is a property of a code
and is a measure of the error correcting ability of the code. As long
as the number of errors in a sequence is half of the minimum free
distance or less, the MLSE detector will not choose the wrong path in
the trellis. As seen in the previous example, the distance of a path is
a measure of how likely that particular sequence is transmitted. For
a particular sequence, if we know the minimum distance of all paths
excluding the transmitted sequence, we know how many errors there
can be in the received sequence before the detector will choose the
wrong path. For example, if the minimum free distance for a code is
five and there are two errors in a sequence, we know the decoder will
still follow the correct trellis path and no errors will appear on the
output.

Since convolutional codes are linear, it doesn’t matter which input
sequence we take. We will choose the all-zero code word, since that
is easy to work with. Figure 4.3 shows the encoder trellis of the [7, 5]
code. We want to know the distance from the all-zero code word
for each edge. This is similar to the decoder trellis of Figure 4.4, but
now for a sequence of all-zeros. Above each transition the distance
to the zero word is written. For the correct path to be rejected, a
path needs to divergence from the 00 state and merge back to the 00
state. It turns out that the path with that properties and the minimum
distance has a distance of 5. This distance is called the minimum free
distance or simply free distance of a convolutional code. To maximize
the code correcting ability of convolutional codes, a code with a high
free distance should be chosen. The [7, 5] code used in this section
has the optimal free distance for constraint length 3. Increasing the
constraint length also increases the free distance, but comes at the
cost of more states and thus more memory needed for a detector.

50 receiver improvements

4.1.3 Bit Error Probability

The goal of convolutional codes is to have better error detection than
uncoded signaling, so obviously we expect a lower error probability
than modulation techniques without channel coding. Below the bit
error probability for coherent BPSK is repeated, along with a lower
bound for coherent BPSK detection with soft decision convolutional
decoding. [24, p416]

Pb,uncoded = Q

(√
2Eb
N0

)
(4.2)

Pb,conv > Q

(√
Rcdfree

2Eb
N0

)
(4.3)

Where Rc is the code rate and dfree is the minimum free distance
of the code used. This can also be expressed in coding gain, which
is the amount of decibels you need to lower the Eb/N0 to get the
same bit error rate for coded signaling as for uncoded signaling.
From Equation 4.2 and Equation 4.3 it follows that the coding gain is
10 log10(Rcdfree) dB, or less.

coding gain 6 10 log10(Rcdfree) (4.4)

4.2 equalization

intersymbol interference (ISI) in a received signal is generally caused
by either distortions in the channel or by the transmitter modulation.
ISI due to modulation in transmitter, called controlled ISI, is a result of
pulse shaping to limit bandwidth. It is for example present in GMSK,
where the Gaussian pulse shaping filter reduces the spectral width
of the transmitted signal but also causes signal energy of symbols to
leak in the adjacent symbol times.

In our receiver the channel is assumed to only be subject to white
Gaussian noise and we therefore do not need an equalizer for channel
distortions. However because GMSK is used, controlled ISI is present
and an equalizer can help correct this. Because equalization, just like
convolutional decoding, is done with maximum-likelihood sequence
estimation (MLSE), the Viterbi algorithm can be used.

The Viterbi decoder is configured with the expected channel re-
sponse for each transmitted sequence. When the equalizer is used for
controlled ISI, this channel response is fixed and known before hand.
The equalizer only needs to be configured at startup.

4.3 implementation

Both convolutional decoding and equalization can be performed with
the Viterbi algorithm, and so could be implemented in the same ac-

4.4 ber measurements 51

RF
Frontend

Filter Demod
Frame

Detector
DAC

Conv
Decoder

Equalizer

Figure 4.6: Overview of accelerators in receiver architecture, with optional
convolutional decoder and equalizer

celerator. Harm te Heneppe [26] implemented a soft input Viterbi
decoder accelerator for the Starburst platform. The accelerator can de-
code convolutional codes or perform channel equalization. Traceback
depth and constraint length can be configured at synthesis time. The
code rate (where rate 1 means equalization) and trellis coefficients
can be configured at run time.

When using a receiver architecture with both an MLSE equalizer
and a convolutional decoder, the equalizer can only give hard output
decisions to the convolutional decoder. As noted earlier, a Viterbi de-
coder with hard input values results in a 2dB worse performance than
with soft input. It is therefore desirable to have a soft input for the
convolutional decoder, but for that we need an equalizer with soft
output. In [10] a modification to the Viterbi algorithm is discussed
which results in soft output Viterbi decoder. Unfortunately, this was
not implemented due to time constraints.

The receiver architecture with equalizer and convolutional decoder
now looks like Figure 4.6. Note that the convolutional decoder and
equalizer are implemented with the same Viterbi accelerator. Whether
the Viterbi accelerator operates as equalizer or convolutional decoder
depends on the runtime configuration. The dashed box around the
equalizer and convolutional decoder indicate that the inclusion of the
accelerator in the receiver is optional. This means that there are four
different receiver configurations: the original receiver without equal-
izer or convolutional decoder, a receiver with only convolutional de-
coder, a receiver with only equalizer and a receiver with both equal-
izer and convolutional decoder.

The BER performance of the first option (the baseline receiver) was
discussed in the previous chapter. The performance of the other three
receiver configurations is presented in the next section.

4.4 ber measurements

The Viterbi decoder accelerator was integrated in the receiver and
measurements were performed with the accelerator operating as ei-
ther convolutional decoder or equalizer. BER measurements were also
performed with two Viterbi accelerators, where the first operates as
equalizer and the second as convolutional decoder.

52 receiver improvements

Eb/N0 [dB]
6 8 10 12 14 16 18 20 22 24

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Measurement
Convolutional Decoding without Filter

No Decoding
Hard Decoding
Soft Decoding
MSK Theory

Figure 4.7: BER Measurement with convolutional decoding without filter

The setup for BER measurements is generally the same as in Sec-
tion 3.5.2. When using the convolutional decoder, a convolutional en-
coder is added in the transmitter.

4.4.1 Convolutional Decoding

The BER was measured with a convolutional code [7, 5], which is a
rate 1/2 code with constraint length 3. Following Equation 4.4, this
has an asymptotic coding gain of 4dB with soft decoding.

Figure 4.7, Figure 4.8 and Figure 4.9 show the measurement results
with convolutional decoding for no filter, a low-pass filter and the
matched filter respectively. In all figures the theoretical BER line for
DQPSK is shown. This is without the 4dB expected coding gain.

The measured coding gain is less than the expected 4dB. The gain
without filter and with low-pass filter are about the same, 2.5dB
asymptotic with soft decision decoding. This is 1.5dB worse than the
theory and there can be multiple effects causing this.

First is that errors are likely to occur in pairs. The demodulator
looks at the phase difference between two consecutive samples. If
there is a large error in a sample, this will affect two adjacent sam-
ples. This means every time there is a (large) error in the input signal
this results in two errors in the convolutional decoder. The expression
for the theoretical coding gain assumes uncorrelated errors in the de-
coder and these are not uncorrelated. One modification that can re-
duce this problem is to interleave the encoded bitstream at the trans-
mitter. In the receiver, the bitstream will need to be de-interleaved

4.4 ber measurements 53

Eb/N0 [dB]
6 8 10 12 14 16 18 20 22 24

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Measurement
Convolutional Decoding with Low-pass Filter

No Decoding
Hard Decoding
Soft Decoding
MSK Theory

Figure 4.8: BER Measurement with convolutional decoding with low-pass fil-
ter

Eb/N0 [dB]
6 8 10 12 14 16 18 20 22 24

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Measurement
Convolutional Decoding with Matched Filter

No Decoding
Hard Decoding
Soft Decoding
MSK Theory

Figure 4.9: BER Measurement with convolutional decoding with matched fil-
ter

54 receiver improvements

Eb/N0 [dB]
6 8 10 12 14 16 18 20 22 24

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
Bit Error Rate - Measurement

No Filter with Equalizer
Low Pass Filter with Equalizer
Matched filter with Equalizer
Matched Filter without Equalizer
Noncoherent MSK Theory

Figure 4.10: BER Measurement with MLSE equalizer without filter, with low-
pass filter and with matched filter

before entering the convolutional decoder. This causes error pairs to
not be next to each other anymore. Simulations of the receiver indi-
cate that this improves the asymptotic coding gain up to 1dB with
soft decoding.

The second possible effect is the output demodulator noise. The
Viterbi algorithm (VA) works best with Gaussian noise added to the
signal. The differential demodulator does not have Gaussian noise at
the output, due the combination of multiplier and arctangent. The
measured results are therefore worse than the theoretical limits.

When looking at the receiver with matched filter, adding the con-
volutional decoder results in a larger coding gain with this receiver
configuration than the coding gain with the low-pass filter or without
filter. The coding gain is even more than the theoretical asymptotic
gain of 4dB. This is however mostly due to the additional ISI in the
signal added by the receiver matched filter. The VA partially removes
the additional ISI and this results in the large coding gain.

However, not all the ISI is removed from the signal. If you look at
the higher Eb/N0 region, the soft decoding curve is less steep than
the theoretical line. The low-pass filter curve does follow the theory
line. This results in the fact that for higher Eb/N0 values (> 16dB) the
low-pass filter has better bit error rates than the matched filter.

4.4.2 Equalizer

The MLSE equalizer goal is to revert ISI caused by the transmitter pulse
shape. In Figure 4.10 it can be seen that the addition of an equalizer

4.4 ber measurements 55

Eb/N0 [dB]
6 8 10 12 14 16 18 20

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Measurement
Equalizer and Convolutional Decoding with Low-pass Filter

Equalizer only
Hard Decoding only
Soft Decoding only
Equalizer & Hard Decoding
MSK Theory

Figure 4.11: BER Measurement with convolutional decoding and low-pass
filter, with and without MLSE equalizer

in the receiver improves BER. The improvement is largest with the
matched filter. This has two reasons: firstly the equalizer coefficients
are tuned to a receiver matched filter, secondly the ISI is worst with
the matched filter.

The low-pass filter adds very little ISI to the signal, but also doesn’t
remove all noise. The matched filter however removes more noise
from the signal, at the cost of more ISI. When we look at Figure 3.15

it is clear that without the VA the more noise removal of the matched
filter does not weigh against the additional ISI. This is except for very
low values of Eb/N0, where the matched filter is slightly better than
the low-pass filter. This is however not a range that the receiver nor-
mally will be operating in since the bit errors are already very high.

When the Viterbi accelerator is added however, either as convolu-
tional decoder or equalizer, this removes the additional ISI from the
matched filter. In these situations the extra noise removal from the
matched filter is greater than the ISI. Since the equalizer is tuned to
the specific matched filter response, it removes more ISI than the con-
volutional decoder. If we compare the BER curve of the matched filter
with equalizer with the curve of convolutional decoding, we see that
the results with equalizer are about 2dB better than with convolu-
tional decoding.

56 receiver improvements

Eb/N0 [dB]
6 8 10 12 14 16 18 20

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Measurement
Equalizer and Convolutional Decoding with Matched Filter

Equalizer only
Hard Decoding only
Soft Decoding only
Equalizer & Hard Decoding
MSK Theory

Figure 4.12: BER Measurement with convolutional decoding and matched
filter, with and without MLSE equalizer

4.4.3 Equalizer with convolutional decoding

Figure 4.11 and Figure 4.12 show BER measurements with both equal-
izer and convolutional decoding. In this setup, the demodulator out-
put is first passed in the equalizer. The output of the equalizer is then
passed in the convolutional decoder. The equalizer can only output
hard decisions (bits) and therefore the input of the convolutional de-
coder are only hard bits.

The plot shows a number of old measurements for reference. The
‘hard decoding only’ and ‘soft decoding only’ are the same measure-
ments as Figure 4.8 and Figure 4.9, with the convolutional decoder
only and respectively hard or soft input. The ‘equalizer only’ line
shows a measurement with only the equalizer which was shown ear-
lier in Figure 4.10. The new measurement is the fourth line.

With the low-pass filter measurement in Figure 4.11 the equalizer
can revert very little ISI and therefore the result is almost the same as
with hard convolutional decoding without equalizer. It is clear that
in this case it is better to use the convolutional decoder only, in soft
decision mode.

With the matched filter the ISI is more severe and the equalizer does
lead to an improvement compared to hard convolutional decoding
only. The improvement relative to soft decoding is very little however,
in high Eb/N0 range it results in about 0.5 dB improvement. When
we compare the equalizer and convolutional decoder combination
with the equalizer only, we see that the convolutional decoding has a
negative coding gain (a coding loss) of about 2.2dB.

4.4 ber measurements 57

A problem with the Viterbi decoder is that errors occur in bursts.
An error in the VA state results in multiple wrong output values. The
convolutional decoder, which receives these error values, is not good
in correcting burst errors and will likely output errors itself. A solu-
tion mentioned in [10] is to interleave the convolutional encoded bits
at the transmitter and deinterleave them at the transmitter between
the equalizer and convolutional decoder. In this case, if the equalizer
causes multiple consecutive errors, these are spread out by the dein-
terleaver. The convolutional decoder is more likely to still recover the
original sequence in this case.

4.4.4 Summary

In this section the results of bit error rate measurements of the im-
plemented Viterbi decoder accelerator were presented. The receiver
with convolutional decoding has a lower coding gain without a fil-
ter and with the low-pass filter than expected. The expected gain is
4dB, while 2.5dB is measured. The matched filter has higher gain
because of ISI reduction. The equalizer has similar results where the
gain with low-pass filter and without filter is limited, while the ISI re-
duction for the receiver with the matched filter results in higher gains.
The receiver with matched filter is the best performing receiver con-
figuration, being 2dB better than matched filter with convolutional
decoding.

The combination of equalizer and convolutional decoder has poor
results. The receiver with low-pass filter performs worse than with
soft convolutional decoding alone. The receiver with matched filter
only performs marginally better than with soft decoding only. With
an improvement of less than 0.5dB the hardware cost of an additional
Viterbi accelerator is not really worth it.

5
M O D E S W I T C H I N G A R C H I T E C T U R E

In Section 4.4.1 we saw that the receiver combination of matched filter
with equalizer results in the best bit error rate (BER) performance.
However the equalizer is behind the packet detector, and therefore the
frame detection does not benefit from the improved bit error rate with
equalizer. The frame detection rates measured in Section 3.5.3 are
therefore still valid with equalizer, which means that using a matched
filter will lead to 4.4dB worse frame detection than a low-pass filter.

So while the matched filter (with equalizer) is the best choice for
the BER, it is not the best choice for the frame detection. Additionally,
the passband of the matched filter is small, which is a problem when
the RF front end has a (large) offset from the carrier frequency.

Frame detection could be improved if the equalizer is placed be-
fore the frame detector. This is however not possible in our receiver
because the synchronization happens in the frame detector. Also, the
signal is not decimated before the frame detector; with eight times
oversampling this results in 28 more states for the equalizer. 1

If we cannot use the matched filter with equalizer for frame detec-
tion, then the low-pass filter is the best choice for frame detection. The
low-pass filter also performs well with frequency offset: it has a wider
passband than the matched filter (see Figure 5.1). Unlike the matched
filter, the passband of the low-pass filter can also be changed, to ac-
commodate larger frequency offsets if this is necessary. This would
be at the cost of less noise removal, but might be desirable if a RF
front end is used with a large expected frequency offset.

In short we would like to process the data in two different ways,
depending on if it is the packet payload or not. For frame detection
we want to do low-pass filtering, while for the payload part we want
to switch to matched filtering.

In this chapter we will look at a receiver architecture that combines
the good frame detection rates of the low-pass filter with the better
BER results of a matched filter with equalizer. This is done by using
a different filter for the payload part of a frame than for the frame
detection. This receiver architecture is shown in Figure 5.2.

1 There are other ways to implement this, for example by having 8 equalizers par-
allel. Either way, doing equalization before decimation requires significantly more
resources.

59

60 mode switching architecture

Relative frequency
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ag

ni
tu

de
 [d

B
]

-140

-120

-100

-80

-60

-40

-20

0

20

Matched filter
Low-pass filter

Figure 5.1: Passband of matched filter and low-pass filter with a normalized
cutoff frequency of 0.2

Matched
Filter

Demod
Packet

Detection
Low-pass

Filter

Demod DecimationSwitch

Switch decision

Frequency offset

Synchronization

Decoding

Mixer

Figure 5.2: Mode switching receiver architecture

5.1 operation 61

5.1 operation

This section will go into the details of the mode switching architecture
of Figure 5.2.

The switch starts in detection mode, where samples will first be
forwarded to the upper branch for packet detection. The task of the
packet detector is two-fold: determining the starting point of a frame
payload and estimating the frequency offset. The packet detector shown
in Figure 5.2 is a modified version of the packet detector in the origi-
nal receiver. The functions are largely the same, but the output is dif-
ferent. Where the original packet detector outputs the frame payload
itself, the modified packet detector needs to send configuration val-
ues to the switch so that the payload is sent to the decoding branch.

The packet detector also estimates the frequency offset and needs
to configure the mixer so that the samples in the decoding branch are
properly frequency corrected. In detection mode there are no samples
sent to the decoding branch and so it doesn’t make sense for the
packet detector to send an update of the frequency estimation every
sample. Instead it only sends a frequency estimate right before the
switch toggles to the decoding branch.

One of the main difficulties in the mode switching architecture is
the pipelining in the detection branch and the problems this presents
for the synchronization between packet detector and switch. The syn-
chronization and possible solutions are discussed in the next section,
first we talk about pipelining.

Without pipelining, the switch sends a sample to the synchroniza-
tion branch and waits for a response from the packet detector. If the
response is positive (a frame start) the switch will now start out-
putting to the decoding branch. The critical factor in this is whether
the throughput requirements are achievable in this manner. Because
the switch waits for a response from the packet detector before sending
the next sample, the critical path is the cycle switch – packet detec-
tor – switch. The throughput requirement is a sampling frequency of
3.125MHz, or in terms of clock cycles: 100MHz/3.125MHz = 1 sam-
ple per 32 clock cycles. Initial estimations indicate that the round-trip
time of a packet from the switch to the packet detector and back to the
switch is an order of magnitude larger than 32 clock cycles. It is there-
fore clear some kind of pipelining is needed to achieve the required
throughput requirements. The accelerators already support pipelin-
ing, so the switch could just send multiple samples before waiting for
a response. Some kind of buffering is needed however to store values
of which no response is received yet.

62 mode switching architecture

5.2 implementation

The implementation of the mode switching architecture has a number
of challenges. The synchronization between the packet detector and
switch is very important. For this two approaches were proposed.

design 1 In the first design the packet detector sends a response for
every sample it receives. Due to the pipelining the switch doesn’t wait
for a response from the packet detector before sending more sampling
to the synchronization path. The samples for which no response have
been received are buffered in the switch. When the switch receives
a response for a sample, the action is determined by the value of
the response. If it is a negative response the corresponding sample
is deleted from the buffer. If it is a positive response (i. e. a frame
starts), the buffer read pointer is set to the corresponding sample and
the switch starts outputting to the decoding branch, starting with this
sample.

The length of a packet is known to the packet detector, so this is sent
along with the response. This way the switch knows after how many
samples it should switch back to the detection branch. The packet
length parameter could also be hard coded in the switch, but it was
decided to leave information about the packet specifics out of the
switch to make it more flexible, so it could be used in other use cases.

The main downside of the first design is that for every received
sample a response is sent, while at a minimum 512 samples (the
length of the preamble) are sent to the packet detector before a pos-
itive response is sent. This is not a very efficient usage of the ring
bandwidth. This in combination with the fact that the packet detector
responses have to travel a large part of the ring, this could also limit
throughput (refer to Section 3.1.2.5 for an example of how long travel
distances on the ring affect throughput).

design 2 The second design tries to improve the throughput by
reducing the network traffic from packet detector to the switch. The
packet detector does not send a response for every sample, but only
when a frame starts. The detector does this by sending the number
of the sample to the switch, along with the frame length. The switch
starts outputting samples to the decoding branch from that sample
number onward until the frame length is reached. There are two main
challenges in this design. The first and most obvious is synchronizing
the internal sample counters in packet detector and switch. The second
problem is buffering and throttling the samples sent to packet detector.

At start-up the synchronization is trivial: both counters are initiated
at zero and the switch starts outputting to the detection path first. The
first sample to be processed by the switch and packet detector are the
same sample and both counted as sample 0. It is at the moment when

5.2 implementation 63

a frame is detected and the switch toggles state that the problem with
counter synchronization starts. First, the switch outputs the payload
(N number of samples) to the decoding branch, but not to detection
branch. This mismatch in numbering can be fixed by the packet detec-
tor increasing the sample counter by N samples after frame detection.
Second, due to pipelining, there is a number of samples that is sent to
the packet detector that belong to payload. In other words, at the mo-
ment that a frame is detected, there already are a number of samples
belonging to the payload in the detection pipeline. These samples
are counted by packet detector, but not by switch. To solve this, switch
needs to estimate the number of samples in the pipeline and adjust
the sample counter with that amount.

The second problem of design 2 is sample buffering and has to
do with buffer space in the switch. The moment that packet detector
detects a frame, the switch probably has sent the first samples of the
payload to the synchronization branch. This is because the pipeline
depth in the synchronization branch is quite deep (in the order of
100 samples). The switch therefore needs to buffer the samples to be
able to send the payload to the decoding branch. The buffer space
in switch is limited and old values need to be overwritten when new
samples arrive at the input. However, because the packet detector does
not send negative responses, the switch never knows if it is safe to
overwrite an old value. If the buffer space is chosen too small, the
first sample of the payload will already have been overwritten when
switch receives the frame start response. This results in switch sending
corrupted data to the synchronization branch.

The chance of data corruption is unacceptable. The way to solve
this is to send negative responses to switch and this returns us to
design 1. In theory design 2 could still be correct if you can guaran-
tee that the pipeline depth can never be larger than the buffer space.
This is difficult to do however, and will most likely result in an over-
dimension of the buffer. Another problem with this is that if the ac-
celerators in the detection branch change, the buffer size needs to be
reevaluated. This approach collides with the idea of the Starburst’s
easy configuration of accelerator chains and reusable accelerators.

All these arguments result in the observation that the problem with
the data integrity in the buffer in the second design is not worth the
reduction of network bandwidth. Therefore the first design is imple-
mented.

hardware costs Table 5.1 shows the hardware cost of the com-
ponents and total accelerator. The switch accelerator has no subcom-
ponents and so only the total cost is shown. The packet detector accel-
erator is a modified version of the original packet detector from Sec-
tion 3.3.4. The synchronization block is modified and the data width
converter and decimator are not needed anymore.

64 mode switching architecture

component sl regs luts lutrams brams

switch 119 503 176 1

Avg updater 112 216 128

Comparator 34 23 0

Correlator 16 388 110

Synchronization 17 20 0

packet detector
a

209 681 238 0

Table 5.1: Hardware costs of modified Packet Detector and Switch accelerator

a 30 Slice regs and 34 LUTs used in top level entity.

Ringshell

Accelerator

(a)

Ringshell Ringshell

Accelerator

(b)

Figure 5.3: Accelerator with 2 I/O, connection to ring

5.2.1 Ring connection

Both the switch and the modified packet detector accelerators in Fig-
ure 5.2 have two outputs and switch also has two inputs. As discussed
in Section 3.1, the ring shells only have support for one output or in-
put. This necessitates some modifications in either the ring shell or the
connection between accelerator and ring shell.

Figure 5.3 shows two possible implementations. In the first the ring
shell is modified to support two in- and outputs from the accelerator.
In the second the accelerator is connected to two ring shells.

In the first design the ring shell needs to share the flow control
credits between the two output streams. This means that if the buffer
on the first receiving accelerator is full, it also blocks the streaming
to the second receiving accelerator. Unless addressed, this could po-
tentially lead to deadlock situations. The second issue is throughput.
The throughput of the two output streams is shared because the two
outputs share one connection to the ring. Not only the guaranteed
throughput of 1 samples per N clock cycles is affected, but it is not
trivial to determine which output can use the other slots. A single
ring shell with two accelerator outputs is possible, but it requires
some significant modifications to the ring shell. Special care needs to

5.3 evaluation 65

be taken to prevent deadlock and starvation of one of the output
streams.

The second approach in Figure 5.3b uses two ring shells. This has
an extra connection to the ring, but requires no modification to the
ring shell. Indeed, as far as the ring shells are concerned there is no
difference with it being two separate accelerators. It should be clear
that connecting the accelerator to two ring shells is superior and this
one is therefore used in the implementation.

5.2.2 Frequency Offset

The frame detector has one other function besides determining the
start of frames. It also corrects for any frequency offset. In the base-
line setup of the receiver the frequency offset was determined from
a bias in the signal and the correction happened by subtracting the
bias directly from the samples. In the mode switching setup this is
no longer possible, since the payload data does not pass through the
frame detector anymore. The frequency offset also needs to be cor-
rected before the application of the matched filter. This means a bias
correction after demodulation is no longer possible. The solution is to
add a mixer in the payload path before the filter operation. The mixer
multiplies the signal with a complex harmonic such that the signal is
shifted in frequency. An implementation of the mixer needs to sup-
port a configurable frequency and the packet detector needs to send
this frequency to the accelerator. The accelerator is implemented with
a Xilinx CORDIC IP operating in rotation mode, which needs a nor-
malized frequency as input: i. e. fo/fsamp. The normalized frequency
offset can be calculated from Equation 3.28, which is repeated here
and rewritten to give the frequency offset from the bias:

C = 2M
fo

fsamp
(5.1)

=⇒ fo,norm
def
=

fo

fsamp
=

C

2M
(5.2)

Where the mixer performs the operation

y(n) = x(n)ej2πnfo ,norm (5.3)

At the start of a frame the frame detector sends the frequency offset to
the mixer and then sends a response to the switch. The ring network
ensures that the configuration value to the mixer arrives before the
switch sends it first samples over the payload branch.

5.3 evaluation

We will now look at the throughput performance of the receiver, in
an almost complete configuration in the mode switching architecture,

66 mode switching architecture

Matched
Filter

Demod
Packet

Detection
Low-pass

Filter

Demod
Deci-

mationSwitch

Switch decision

Frequency offset

Synchronization

Decoding

Mixer

RF Front
end

Equalizer
Conv

Decoder
DAC

Figure 5.4: Overview of mode switching receiver with equalizer and convo-
lutional decoding

li
n
u
x

m
b
0

m
b
1

m
b
1f

b
s

sw
0

sw
1

m
b
2

m
b
2f

m
ix

fi
r0

fi
r1

d
em

0
d
em

1

m
b
3

m
b
3
f

fd
et

0
fd

et
1

m
b
4

m
b
4f

re
p

v
it

0
v
it

1
m

b
5

m
b
5f

d
ac

m
b
6

m
b
7

Figure 5.5: Starburst ring with accelerators of mode switching receiver (see
Table 5.2 for legend)

5.3 evaluation 67

Name Description

linux Linux Microblaze

mb Microblaze

mb#f Microblaze FSL interface

bs Bitshark accelerator

sw Switch accelerator (2 interfaces)

mix Mixer accelerator

fir Filter accelerator

dem Demodulation accelerator

fdet Frame detection accelerator (2 interfaces)

rep Repetition decoder

vit Viterbi decoder

dac digital-to-analog converter (DAC) accelerator

Table 5.2: Abbreviations used in Figure 5.5

with equalizer and convolutional decoding. An overview of the ac-
celerators in the receiver is shown in Figure 5.4. To determine the
throughput of samples on the ring the total number of network inter-
faces is needed. The instantiation of a mode switching receiver with
all the necessary accelerators contains:

• 1 Linux Microblaze core

• 8 standard Microblaze cores (5 of which have a FSL buffer)

• 12 accelerators: Bitshark, Switch, Mixer, 2 Filters, 2 Demodula-
tors, Frame detector, 2 Viterbi decoders, Repetition decoder and
DAC

The FSL buffer is a first-in-first-out buffer (FIFO) buffer connected to
a Microblaze processor that allows it to receive samples from an ac-
celerator. In this context, the only important thing about it is that the
FSL buffer requires an extra network interface (NI) on the ring. The
switch and packet detector accelerator both have two NIs. This makes
the total number of NIs on the ring: N = 1+ 8+ 5+ 12+ 2 = 28 NIs.

The ring with all NIs is shown in Figure 5.5, with a legend of the
abbreviations used in Table 5.2. The connections that are part of the
synchronization branch are shown with a dash-dotted line. In the
figure the data flows between nodes on the ring are indicated with
arrows. These match the edges between the accelerators in Figure 5.4,
with the exception of the configuration of the mixer. This is omitted
because it is a configuration value and it is only sent once per frame
and therefore does not affect throughput.

68 mode switching architecture

The throughput of the receiver is limited by the data flow between
two accelerators that needs to travel the most hops on the ring. The
longest distance traveled on the ring by any stream is from the packet
detector to the switch. This is a number of D = 16 hops. The NIs
are configured with C = 4 initial credits. With these numbers and
equations 3.1, 3.3 and 3.5 we can calculate the minimum throughput
of the receiver:

min
(
1

N
,

C

2N+ 2D− 1

)
6 B 6

N−D+ 1

N
(5.4)

min
(
1

27
,
4

67

)
=
1

27
6 B 6

13

27
(5.5)

Due to the choice of 4 initial credits, the minimum throughput is not
limited by the sending of credits.

In Section 3.3 we specified the Bitshark sampling frequency as 3.125
MHz. When divided by the clock speed of the system, this translates
to 1 sample per 32 clock cycles. From Equation 5.5 follows that the
required throughput is guaranteed to be achieved. There can be an
additional 5 NIs added to the ring before the required throughput is
not guaranteed anymore. In that case a throughput of 1/32 may still
be achieved, but this is dependent on which accelerators are active.

improvements With the current requirement and receiver con-
figuration it is not necessary, but in the future the throughput of
the stream may need to be improved. This can be for example be-
cause more than five accelerators were added or because the through-
put requirement increases. There are still a number of ways that the
throughput on the ring can be improved. The easiest to implement
are to remove unused accelerators or reorder the accelerators to re-
duce the longest path. Right now, the critical path is the stream from
packet detector to switch. This is due to the large number of hops the
data needs to travel. By reordering the NIs on the ring, the distance
between these accelerators can be decreased, resulting in a higher
guaranteed throughput.

In Figure 5.6 left the throughput of the accelerators is improved
compared to that in Figure 5.5 by removing unused accelerators. The
throughput is however still limited by the longer distance data needs
to travel between accelerators. The two modes (synchronization and
decoding) also transmit over the same part of the ring. This does not
necessarily limit the actual throughput, since the two modes gener-
ally do not transmit at the same time. It is however harder to give
real-time guarantees of the throughput in this configuration. This is
because the ring bandwidth is shared and the throughput is now de-
pendent on the timing of the accelerators. In the right part of the fig-
ure a second possible layout is shown, where the network interfaces
of the accelerators that communicate with each other are put directly
adjacent. It is now possible to give higher guaranteed throughput

5.3 evaluation 69

li
n
u
x

m
b
0

b
s

sw
0

sw
1

m
ix

fi
r0

fi
r1

d
em

0
d
em

1

m
b
1

m
b
1f

fd
et

0

fd
et

1

re
p

v
it

0
v
it

1
m

b
2

m
b
2f

d
ac

m
b
3

li
n
u
x

m
b
0

b
s

sw
0

sw
1

m
ix

fi
r0

fi
r1

d
em

0

d
em

1
m

b
1

m
b
1f

fd
et

0
fd

et
1

re
p

v
it

0

v
it

1
m

b
2

m
b
2f

d
ac

m
b
3

Figure 5.6: Two possible ring orderings to improve accelerator throughput
of mode switching receiver (see Table 5.2 for legend)

70 mode switching architecture

estimates because the ring connections are not shared. The slowest
connection is two hops, with no bandwidth sharing and a total of 21

NIs. The guaranteed throughput is therefore 20 samples per 21 clock
cycles, or 3 Gbit/s.

In the future work section in [6] a number of possible future im-
provements of the ring itself are discussed. Among the suggestions is
that by assigning more slots to certain accelerators, throughput can
be increased in certain cases. The specific assignment of slots will be
application specific however, so this would require some kind of run-
time configuration of the slots. Another option that is more promis-
ing is ‘slot masking’, where some NIs are not allowed to use certain
slots. In certain situations an NI may use a disproportionate number
of slots, leaving few available slots for the next NI. In these situations
‘slot masking’ can increase throughput for next NI by not allowing the
previous NIs to take certain slots.

5.4 summary

In this chapter a receiver architecture was presented that improves
the frame detection rate when used with a matched filter. This leads
to a 4.4dB improvement of frame detection and also improves the
resilience to frequency offset in the signal.

The mode switching architecture has two branches in the receiver.
The first is used for frame detection, where a more frequency offset
resistant low-pass filter is used. The second branch is used for the
payload part of a frame and performs frequency correction through
a mixer and has the matched filter, which has better BER performance
in combination with an equalizer.

The throughput of the receiver with all accelerators until now was
analyzed. With a minimum throughput of 1 sample per 27 clock cy-
cles, the throughput was determined to be sufficient for the current
requirements. A number of improvements were also suggested which
could improve the throughput if that is desirable in the future.

6
R E P E T I T I O N C O D I N G

Repetition coding is a linear block coding scheme and the last recep-
tion improvement added to the receiver. While convolutional coding
has a higher asymptotic coding gain than repetition coding, it also has
worse BER performance in lower SNR region. That is why in Bluetooth
Low Energy Long Range a rate 1/2 convolutional code is combined
with a rate 1/4 repetition code.

In the first section some theory behind repetition coding will be
discussed. Then follows the implementation of a repetition decoder
accelerator. BER measurements for different repetition lengths were
performed and are also discussed. The chapter finishes with a sum-
mary.

6.1 theory

Repetition coding is a linear block coding scheme that repeats every
input bit R times at the output. R is called the repetition length. The
expression for coding gain in Equation 4.4 is also valid for linear
block codes. If we fill this in for repetition coding, we get a coding
gain of 10log10(Rcdmin) = 10log10(

1/R · R) = 0 dB. Repetition coding
does not result in a coding gain, because the minimum distance is the
same as the code rate. This doesn’t mean repetition coding is useless.
Because the energy per symbol is increased by repeating it, the SNR

per symbol increases. For R times repetition coding the SNR gain is
10log10(R) dB. It is clear that there is a direct trade-off between data
rate and reception. By doubling the repetition length the data rate is
halved, but the sensitivity should increase by 3dB.

The increase in SNR could also be achieved by raising the transmit-
ter power. This has however a number of downsides. The Bluetooth
standard limits the transmitter power (e. g. to reduce interference for
other users). Also, the power amplifiers in the transmitter may not be
able to handle a larger power level. By transmitting at a lower data
rate a higher SNR per bit is achieved with little modification to the
transmitter.

When we compare repetition coding and convolutional coding, con-
volutional coding in general is the superior choice because this has a
larger coding gain. The downside of convolutional coding is however

71

72 repetition coding

Source
Repetition
Coding

GMSK
Mod

Channel

GMSK
Demod

Repetition
DecodingSink

Transmitter

Receiver

Figure 6.1: Schematic of GMSK transmitter and receiver with repetition cod-
ing

the reduced performance in the low SNR range. This is visible in Fig-
ure 4.7 and Figure 4.8, where for lower Eb/N0 values the bit error
rate of soft and hard decoding is worse than without convolutional
coding. Also, the coding gain in convolutional codes only increases
slightly with decreasing code rates. So a smaller code rate will only
help with SNR gain, not coding gain. That is why in Bluetooth Low
Energy Long Range a rate 1/2 convolutional code is combined with
a rate 1/4 repetition code. The repetition coding is the inner coding
scheme here, because of the better performance at low SNR. Also, the
convolutional decoder causes bursty errors, which would reduce the
gain of the repetition coding if the convolutional decoding is done
first.

repetition pattern In [20] repetition coding is defined such
that bits are mapped to either the all-one codeword or the all-zero
codeword. In this thesis a more general definition of repetition coding
is used, where an input bit one is mapped to a pattern G and an
input of zero is mapped to the bit inverse of G. This pattern can be
the all-one codeword, like the more narrow definition of repetition
coding in [20]. The pattern length R is the inverse of the code rate
Rc = 1/R, and because the zero input bit maps to the bit inverse of
the pattern, the Hamming distance between the codewords is also
R. In the Bluetooth Low Energy Long Range proposal the repetition
pattern is [1100], which should reduce the power of the peaks in the
spectrum of the resulting modulated signal. The repetition length in
the standard is four, which has a 6 dB theoretical SNR gain.

The difference between repetition coding with the all-one code-
word as pattern and increasing the oversampling factor (from Fig-
ure 2.7) is that the transmission pulse shape is adjusted to the over-
sampling factor. Repetition coding does not change the pulse shape,
which generally reduces ISI.

detection Figure 6.1 shows a schematic view of a GMSK transmit-
ter and receiver with repetition coding applied. The encoder maps
bits to codewords with the repetition pattern. The decoder deter-
mines the original bit from the received codeword (containing R sam-

6.2 implementation 73

SNR [dB]
-4 -3 -2 -1 0 1 2 3 4 5 6

B
E

R

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Measurement
Repetition Coding with Low-pass Filter

No Rep Coding
2x Rep Coding
4x Rep Coding
MSK Theory

Figure 6.2: BER Measurement of GMSK receiver with repetition decoder for
repetition lengths from 1 to 4

ples). This is done by taking the average of the samples, adjusted for
the pattern.

z(m) =

R−1∑
i=0

Gi y(mR+ i)

R
(6.1)

Where Gi ∈ {−1, 1} is the ith element of the repetition pattern, and
y(n) is the demodulated signal. z(m) is the mth output of the repe-
tition decoder, which is a soft decision signal, that can be sliced to
bits (with rule z(m) > 0). The soft decision information can also be
used for a convolutional decoder if the information stream is also
convolutional coded.

6.2 implementation

The repetition decoder is implemented as an accelerator. The acceler-
ator can be configured with a repetition length and repetition pattern,
with a maximum repetition length that is chosen at design time. The
averaging is implemented as a FIR filter with configurable coefficients,
since that is what Equation 6.1 effectively is. The hardware costs of
the accelerator are: 325 slice registers, 303 LUTs, 102 LUTRAMs and
1 DSP48 slice.

ber measurement A measurement of the bit error rate (BER) was
done with the repetition decoder for multiple values of the repetition
length. The results of this are shown in Figure 6.2. A low-pass filter
is applied before demodulation and the repetition pattern used in
the measurements is the ‘standard’ all-one codeword. With repetition

74 repetition coding

Eb/N0 [dB]
0 5 10 15 20 25

B
E

R

10 -4

10 -3

10 -2

10 -1

10 0

Bit Error Rate - Simulation
Repetition Coding with Low-pass Filter

Rep 1
Rep 2
Rep 4
Rep 8
Rep 16
MSK Theory

Figure 6.3: BER Simulation of GMSK receiver with repetition decoder for rep-
etition lengths from 1 to 16

length 2 the improvement should be 3dB and 2.8 dB at a BER of 10−3

is measured. Reducing the code rate to 1/4 should have another 3dB
gain, however the BER measurements show no gain at all. There can
be a number of reasons that four times repetition coding has worse
performance than expected. However, simulations of the receiver in
Matlab show the same results, indicating that this is not a measure-
ment error or an error in the hardware setup.

A plot of these simulations is shown in Figure 6.3. This has Eb/N0
on the horizontal axis, contrary to Figure 6.2 which has SNR. The simu-
lation is done with a pre-demodulation low-pass filter and repetition
rates from 1 to 16. The difference between one and two times repeti-
tion coding and four and higher is quite clear, because the graph of
Figure 6.3 has the Eb/N0 on the horizontal axis. Two times repetition
coding has almost no coding gain, just as expected. Only for higher
Eb/N0 values is it slightly better due to reduced ISI. With repetition
length 4 and higher we expect about the same results as with length
2: a coding gain of about zero dB. The BER curve for length four is
however 3.2dB1 worse than expected. With repetition lengths larger
than four the coding gain (relative to no repetition coding) is about
the same and only decreases a little. For lengths eight and sixteen the
gain is −3.6 dB1 and −4.1 dB1 respectively.

6.3 summary

In this chapter repetition coding was introduced as a way to increase
the sensitivity of the receiver, with less coding gain than convolu-

1 Difference with no repetition coding at BER 10−3

6.3 summary 75

tional coding but with simpler detection. The repetition decoder is
implemented as an accelerator and can be configured at runtime with
a repetition rate and pattern. Measurements of the implementation
and of a simulation reveal however that the repetition decoder does
not have the SNR gains predicted by the theory. For repetition lengths
of four and larger, the decoder has a gain that is 3dB worse than ex-
pected. A proper analysis of the effects that cause the reduced gain
was not done due to time constraints.

7
C O N C L U S I O N

This thesis discussed the implementation and evaluation of a GMSK

receiver on the Starburst platform. The tasks of the receiver were im-
plemented as hardware accelerators. In this chapter we present our
conclusions and look at possible future work.

7.1 conclusion

The GMSK receiver was implemented with non-coherent differential
detection. Different receiver configurations were tested, where the
combination equalizer and matched filter result in the best sensitiv-
ity 1. The channel decoders which are part of Bluetooth Low Energy
Long Range (BLR) were also implemented and the bit error rate (BER)
performance measured. This has a lower performance than expected.
The convolutional decoder with matched filter is 2dB worse than the
equalizer. The performance of the repetition decoder is also not good,
where the Eb/N0 point at BER 10−3 for rate 1/4 is 3dB inferior to rate
1 and 1/2.

The receiver BER performance with equalizer is quite good, but that
of the BLR receiver is not. If the receiver is to be used for the BLR stan-
dard further research is required to improve the sensitivity of both
the convolutional decoder and repetition decoder. It may be neces-
sary to implement a coherent receiver. While this requires possibly
complex phase synchronization, the potential sensitivity gain is high.

7.1.1 Platform

Initially, the GMSK receiver was implemented as software tasks on Mi-
croblaze cores. The performance was not good enough however; the
run time of the tasks was between 6 and 34 times too slow. This re-
sulted in the decision to implement all tasks as hardware accelerators.
The hardware costs of each accelerator is less than a Microblaze core,
making the accelerator implementation smaller and much faster than
software.

1 Lowest Eb/N0 at BER of 10−3

77

78 conclusion

Each task is implemented as a different accelerator. This approach
makes it easy to use the receiver in different configurations by only
enabling certain accelerators. While the main tasks of the receiver
are implemented as hardware accelerators, certain tasks can still run
on the Microblaze cores as long as the required throughput in that
part of the receiver is not high and the task requires few actions per
sample. For example, quantizing the samples for the Viterbi decoder
is done as a software task.

A guaranteed throughput and a maximum ‘best effort’ throughput
can be calculated for the data transfers on the communication ring.
The limiting factor for the throughput of the receiver is a connection
from the packet detector to the switch. The calculated throughput for
this connection is between 1 and 13 samples per 27 clock cycles. From
this we can conclude that the required throughput for audio stream-
ing of 1 sample per 32 clock cycles is guaranteed to be achieved.

The platform template was modified to allow accelerators to have
multiple connections to the ring. Originally accelerators had only one
input and output to the ring. For the mode switching architecture two
accelerators required multiple in- and outputs. The switch accelerator
needs two inputs and two outputs, while the packet detector acceler-
ator requires one input and two outputs. A solution was proposed
where two ring shells are connected to the accelerator.

This can be expanded to N NIs, where the accelerator can receive
data from up to N sources and send to N destinations. The proposed
solution requires very little modification to the platform and no mod-
ification of the ring shells itself. A limitation is that this solution does
not scale up well to many I/O interfaces. Each NI needs a separate
connection to the ring, which can potentially decrease throughput for
other accelerators. In the current implementation with only two in-
terfaces this is not an issue, but it is not suitable if many ports are
needed.

7.1.2 Receiver

In Chapter 3 the baseline receiver is presented, which is a non-coherent
differential detector with frame detection and a pre-demodulation fil-
ter. The filter is either a matched filter, which maximizes the signal-
to-noise ratio, or a low-pass filter, which remove less noise but also
suffers less from ISI. In the subsequent chapters a number of improve-
ments for the receiver are implemented and their performance mea-
sured.

The mode switching architecture improves the frame detection rate
when a matched filter is used for decoding. The mode switching archi-
tecture splits frame detection and decoding, so that a different filter
can be used for frame detection than for decoding. With this receiver

7.1 conclusion 79

architecture the frame detection improves by 4.4dB 2 and also is more
resilient to frequency offset.

The BLR standard adds a rate 1/2 convolutional code and a rate
1/4 repetition code to the GMSK modulation. The accelerators that are
implemented for these codes are the Viterbi decoder and repetition
decoder respectively.

The BER performance of the Viterbi decoder was measured for both
the low-pass filter and matched filter. The difference between these
two in performance is not that large. The matched filter has better
bit error rate for Eb/N0 below 16 dB. For higher Eb/N0 values the
low-pass filter performs better.

The repetition decoder was implemented as an accelerator, just like
the Viterbi decoder. The BER performance was however about 3dB
worse than expected for repetition lengths of four or higher.

The Viterbi accelerator also can be used as MLSE equalizer. The
equalizer performs best with the matched filter by reducing the ISI

introduced by the filter. The BER performance with matched filter and
equalizer is 2dB better than with convolutional decoding.

The combination of equalizer and convolutional decoding concate-
nated is not better than convolutional decoder alone. When operating
with matched filter the BER performance is only slightly better than
convolutional decoding only. With low-pass filter the combination is
worse than convolutional decoding only.

From the BER measurements of the different receiver configurations,
we can conclude that the receiver with matched filter and equalizer
has the best BER curve, which is 2.5 dB worse than the theoretical
DQPSK BER curve.

If we limit ourselves to a BLR compliant receiver, which has repeti-
tion and convolutional coding, the performance is not as good. Repeti-
tion decoding has an issue which causes a 3dB loss for rates of 1/4 and
smaller. The convolutional decoder performs about 2dB worse than
the equalizer in terms of Eb/N0. The combination of equalizer and
convolutional decoder does not appear to lead to significant gains.
The performance improvement is less than 0.5dB, which may not be
worth the hardware costs. The concatenation of repetition and convo-
lutional coding has not been measured with the hardware setup, and
it is not clear how this will turn out. There are two effects at play,
where repetition coding has negative coding gain, but there is also
less ISI in the signal.

2 4.4dB improvement at 99% detection rate, when the matched filter is used for decod-
ing and low-pass filter for detection

80 conclusion

7.2 future work

The BER performance of the receiver with convolutional and repeti-
tion coding was not as good as the theory. It will be interesting to
look at the cause of this and investigate possible changes to improve
the bit error rate. For example interleaving can be applied, although
this is not compatible with the BLR standard. A receiver improvement
that is compatible with the standard is using coherent detection. The
theoretical BER curves indicate a significant possible improvement by
using coherent detection. The potential improvement with the convo-
lutional decoder receiver is 8.5 dB. It is however not clear how difficult
phase synchronization is, and how much the increase in hardware
costs is.

There are a number of research areas that can be investigated to an-
alyze the performance of the Starburst platform with different appli-
cations. By increasing the throughput or size of the current receiver,
the performance of the communication ring can be investigated in
more demanding situations.

By maximizing the throughput of the receiver bottlenecks in the
communication ring can be investigated. Possible optimizations can
be researched and implemented to determine ways to improve the
performance. Some of these possible optimizations are mentioned in
Deken’s thesis [6]. These include ‘slot masking’, where the slots of un-
used nodes are assigned to other nodes. This can increase the guar-
anteed throughput of a connection while having minimal effect for
others. Another possibility is reordering NIs, or reordering slots.

By increasing the application size, the ring performance with a
larger number of accelerators can be investigated. We already know
that just increasing the number of accelerators does not decrease the
throughput if the streaming is linear (e. g. accelerators stream like A
→ B→ C→ D). However, we saw in the mode switching architecture
that control loops are a potential problem for the throughput of the
application, namely with a large ring. This could probably be solved
by moving the NI closer to the receiving NI. 3 Will this solution work
with other feedback loops as well? And how does the application
perform if it has multiple control structures and feedback loops?

Another possible research could look at a scenario where a wire-
less receiver processes either multiple channels or multiple proto-
cols (e. g. a receiver for both Bluetooth and WiFi). A single RF front
end generates baseband data that are processed by multiple receiver
chains. This results in many accelerators, which are not all in the same
stream. Multiple real-time applications sharing the ring bandwidth

3 A potential problem with this solution is that the ports of the accelerator are phys-
ically located further apart on the FPGA, possibly making timing closure more diffi-
cult.

7.2 future work 81

could be a problem if high throughput is required. This research
could investigate throughput bottlenecks and possible solutions. Is it
possible, desirable and/or necessary to use multiple, separate rings?
Because the multiple channels may require partly the same process-
ing, accelerators could be shared between the channels. If this is done
in different parts of the receiver and the data needs to travel larger
distances on the ring, an interesting question is how this will affect
throughput.

While wireless communications is a mature research field, new and
exciting things are still being discovered. And with this future work
section we can say there is much more to discover.

B I B L I O G R A P H Y

[1] N. Al-Dhahir and G. Saulnier. A high-performance reduced-
complexity gmsk demodulator. In Signals, Systems and Computers,
1996. Conference Record of the Thirtieth Asilomar Conference on, vol-
ume 1, pages 612–616 vol.1, Nov 1996. doi: 10.1109/ACSSC.1996.
601118.

[2] A.A. Ali and I. Al-Kadi. On the use of repetition coding with
binary digital modulations on mobile channels. In Vehicular Tech-
nology Conference, 1987. 37th IEEE, volume 37, pages 59–65, June
1987. doi: 10.1109/VTC.1987.1623524.

[3] Martin Cohn and A. Lempel. On fast m-sequence transforms
(corresp.). Information Theory, IEEE Transactions on, 23(1):135–137,
Jan 1977. ISSN 0018-9448. doi: 10.1109/TIT.1977.1055666.

[4] R. D’Avella, L. Moreno, and E. Turco. Adaptive equalization
and viterbi decoding for digital mobile radio systems. In
Global Telecommunications Conference and Exhibition ’Communica-
tions Technology for the 1990s and Beyond’ (GLOBECOM), 1989.
IEEE, pages 90–94 vol.1, Nov 1989. doi: 10.1109/GLOCOM.1989.
63946.

[5] Berend Dekens. Mapping of a dab radio decoder to homoge-
neous multi-core soc : a case study to evaluate a nlp based map-
ping flow, March 2011. URL http://essay.utwente.nl/60148/.

[6] Berend H.J. Dekens. Low-Cost Heterogeneous Embedded Multi-
processor Architecture for Real-Time Stream Processing Applications.
PhD thesis, University of Twente, Oct 2015.

[7] Bitshark FMC-1RX Rev C User’s Manual. Epiq Solutions, v2.0 edi-
tion, 2011.

[8] J. Feldman, I. Abou-Faycal, and M. Frigo. A fast maximum-
likelihood decoder for convolutional codes. In Vehicular Technol-
ogy Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th,
volume 1, pages 371–375 vol.1, 2002. doi: 10.1109/VETECF.2002.
1040367.

[9] D. Göhringer and J. Becker. High performance reconfigurable
multi-processor-based computing on fpgas. In Parallel Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on, pages 1–4, April 2010. doi:
10.1109/IPDPSW.2010.5470800.

83

http://essay.utwente.nl/60148/

84 bibliography

[10] J. Hagenauer and P. Hoeher. A viterbi algorithm with soft-
decision outputs and its applications. In Global Telecommunica-
tions Conference and Exhibition ’Communications Technology for the
1990s and Beyond’ (GLOBECOM), 1989. IEEE, pages 1680–1686

vol.3, Nov 1989. doi: 10.1109/GLOCOM.1989.64230.

[11] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos
Huisken. Compsoc: A template for composable and predictable
multi-processor system on chips. ACM Trans. Des. Autom. Elec-
tron. Syst., 14(1):2:1–2:24, jan 2009. ISSN 1084-4309. doi: 10.1145/
1455229.1455231. URL http://doi.acm.org/10.1145/1455229.

1455231.

[12] Gerald Hoekstra. Hardware accelerator integration in a connec-
tionless network-on-chip. Master’s thesis, University of Twente,
June 2013.

[13] R. Johannesson and K. Zigangirov. Fundamentals of Convolutional
Coding. Wiley-IEEE Press, 1999. doi: 10.1109/9780470544693.

[14] G.K. Kaleh. Simple coherent receivers for partial response con-
tinuous phase modulation. Selected Areas in Communications,
IEEE Journal on, 7(9):1427–1436, Dec 1989. ISSN 0733-8716. doi:
10.1109/49.44586.

[15] G. Kuiper, B.H.J. Dekens, S.J. Geuns, P.S. Wilmanns, J.P.H.M.
Hausmans, and M.J.G. Bekooij. Compiler for real-time multi-
processor systems with shared accelerators. DATE Conference,
March 2015.

[16] ARM Limited. Amba 4 axi4-stream protocol version 1.0 specifi-
cation, 2010.

[17] Yuan Lin, Hyunseok Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. Soda: A high-performance dsp
architecture for software-defined radio. Micro, IEEE, 27(1):114–
123, Jan 2007. ISSN 0272-1732. doi: 10.1109/MM.2007.22.

[18] André Nieuwland, Jeffrey Kang, OmPrakash Gangwal, Ra-
manathan Sethuraman, Natalino Busá, Kees Goossens, Rafael
Peset Llopis, and Paul Lippens. C-heap: A heterogeneous multi-
processor architecture template and scalable and flexible proto-
col for the design of embedded signal processing systems. De-
sign Automation for Embedded Systems, 7(3):233–270, 2002. ISSN
0929-5585. doi: 10.1023/A:1019782306621. URL http://dx.doi.

org/10.1023/A%3A1019782306621.

[19] R.F. Pawula, S.O. Rice, and J. Roberts. Distribution of the phase
angle between two vectors perturbed by gaussian noise. Commu-
nications, IEEE Transactions on, 30(8):1828–1841, Aug 1982. ISSN
0090-6778. doi: 10.1109/TCOM.1982.1095662.

http://doi.acm.org/10.1145/1455229.1455231
http://doi.acm.org/10.1145/1455229.1455231
http://dx.doi.org/10.1023/A%3A1019782306621
http://dx.doi.org/10.1023/A%3A1019782306621

bibliography 85

[20] John G Proakis. Digital Communications. McGraw-Hill, New York,
fifth edition, 2008.

[21] Jochem H. Rutgers. Programming Models for Many-Core Architec-
tures – A Co-design Approach. PhD thesis, University of Twente,
PO Box 217, 7500 AE Enschede, The Netherlands, may 2014.

[22] Gunther Sessler, Ricard Abello, Nick James, Roberto Madde, and
Enrico Vassallo. Gmsk demodulator implementation for esa
deep-space missions. Proceedings of the IEEE, 95(11):2132–2141,
2007.

[23] Marvin K. Simon and Charles C. Wang. Differential detection
of gaussian msk in a mobile radio environment. Vehicular Tech-
nology, IEEE Transactions on, 33(4):307–320, Nov 1984. ISSN 0018-
9545. doi: 10.1109/T-VT.1984.24023.

[24] Bernard Sklar. Digital communications, volume 2. Prentice Hall
NJ, 2001.

[25] Oscar Starink. State-save overhead reduction techniques for
shared accelerators in an mpsoc with a ring noc. Master’s thesis,
University of Twente, Oct 2015.

[26] Harm te Hennepe. Master’s thesis, University of Twente, 2016.
Unpublished.

[27] Linear Technologies. Ltc2267-14 datasheet, 2011. URL http://

www.linear.com/product/LTC2267-14.

[28] D. Truong, W. Cheng, T. Mohsenin, Zhiyi Yu, T. Jacobson,
G. Landge, M. Meeuwsen, C. Watnik, P. Mejia, Anh Tran, J. Webb,
E. Work, Zhibin Xiao, and B. Baas. A 167-processor 65 nm com-
putational platform with per-processor dynamic supply voltage
and dynamic clock frequency scaling. In VLSI Circuits, 2008 IEEE
Symposium on, pages 22–23, June 2008. doi: 10.1109/VLSIC.2008.
4585936.

[29] Andrew J Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. Information Theory,
IEEE Transactions on, 13(2):260–269, 1967.

[30] Gerben G.A. Wevers. Hardware accelerator sharing within an
mpsoc with a connectionless noc. Master’s thesis, University
of Twente, September 2014. URL http://essay.utwente.nl/

66088/.

[31] MicroBlaze Processor Reference Guide. Xilinx, ug081 (v9.0) edition,
2008.

[32] Virtex-6 FPGA DSP48E1 Slice User Guide. Xilinx, ug369 (v1.3)
edition, 2011.

http://www.linear.com/product/LTC2267-14
http://www.linear.com/product/LTC2267-14
http://essay.utwente.nl/66088/
http://essay.utwente.nl/66088/

86 bibliography

[33] Virtex-6 FPGA Data Sheet: DC and Switching Charactistics. Xilinx,
ds152 (v3.6) edition, 2014.

[34] A. Yongacoglu, D. Makrakis, and Kamilo Feher. Differential de-
tection of gmsk using decision feedback. Communications, IEEE
Transactions on, 36(6):641–649, Jun 1988. ISSN 0090-6778. doi:
10.1109/26.2784.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Problem Description
	1.2.1 Contributions

	1.3 Related Work
	1.3.1 Receivers
	1.3.2 Receiver Improvements
	1.3.3 Multiprocessor System-on-Chip
	1.3.4 Summary

	1.4 Outline

	2 GMSK Receivers
	2.1 Modulation
	2.1.1 Frequency Shift Keying
	2.1.2 Phase Shift Keying
	2.1.3 Minimum Shift Keying

	2.2 GNU Radio

	3 Baseline Implementation
	3.1 Starburst
	3.1.1 Overview
	3.1.2 Ring Communication

	3.2 Software Implementation
	3.2.1 Performance

	3.3 Accelerators
	3.3.1 RF Front end
	3.3.2 FIR Filter
	3.3.3 Quadrature Demodulator
	3.3.4 Frame Detector
	3.3.5 Analog-to-Digital Converter

	3.4 Hardware costs
	3.5 BER Measurements
	3.5.1 Measurement setup
	3.5.2 Results
	3.5.3 Frame Detection

	3.6 Summary

	4 Receiver improvements
	4.1 Convolutional Coding
	4.1.1 Detection
	4.1.2 Viterbi Algorithm
	4.1.3 Bit Error Probability

	4.2 Equalization
	4.3 Implementation
	4.4 BER Measurements
	4.4.1 Convolutional Decoding
	4.4.2 Equalizer
	4.4.3 Equalizer with convolutional decoding
	4.4.4 Summary

	5 Mode Switching Architecture
	5.1 Operation
	5.2 Implementation
	5.2.1 Ring connection
	5.2.2 Frequency Offset

	5.3 Evaluation
	5.4 Summary

	6 Repetition Coding
	6.1 Theory
	6.2 Implementation
	6.3 Summary

	7 Conclusion
	7.1 Conclusion
	7.1.1 Platform
	7.1.2 Receiver

	7.2 Future Work

	Bibliography

