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Van Hiele levels applied to solving 
combinatorial reasoning problems 

Abstract  
Building on prior research, we redefine the Van Hiele levels to be applied to combinatorial counting 

problems. Combinatorial counting is a difficult subject for both teacher and student and the current 

curriculum does not seem to help students develop a relational network of knowledge. After defining 

the levels for combinatorics, we collect data to examine the accuracy of the definition, to examine 

whether these levels occur in the solution process when students are solving combinatorial counting 

problems, and to study the effects of the variation of these levels on the solution strategies students 

use. Analysis of the data showed students have difficulties transitioning from a lower level to a 

higher level. Qualitative analysis of students’ solutions to combinatorial problems revealed the 

preference of the use of formulas for some students, while at the same time other students showed 

more insight by their systematic approach of the problems. 

Introduction 
Recommendations to incorporate combinatorics in the school mathematics curriculum date back to 

the early 1970’s (English, 2005). Combinatorial analysis is an appropriate topic in the mathematics 

curriculum, because it has problems suitable for all grades, it can be used to train students in the 

concepts of enumeration, making conjectures, generalization and systematic thinking and many 

applications in different fields can be presented in teaching combinatorial analysis (Kapur, 1970). 

Combinatorial problems can help children construct meaningful representations, reason 

mathematically, and abstract and generalize mathematical concepts (Sriraman & English, 2004). 

Making conjectures, generalizations and systematic thinking are considered to be of more 

importance in education that prepares children for the future than training them to apply rote 

learned formulas (Drijvers, 2015). So we might expect that teaching combinatorics has a solid place 

in the curriculum, founded on well thought-out didactical principles.  

In spite of the previous, combinatorics is considered as one of the more difficult topics to learn and 

teach. Most pedagogic methods used in Dutch mathematics schoolbooks introduce combinatorial 

subjects separately. For each subject pupils learn procedures and formulas. After a formula for a 

subject is learned - usually permutations first -, the next subject is taught. To solve combinatorial 

problems, pupils rely completely on formulas and calculator buttons, but do they understand what 

they are doing? Apparently not; during tests and exams many students are not able to distinguish 

between permutations and combinations. Many students seem to have difficulties to detect 

common structures and cannot identify models of underlying problem types. These abilities of 

making connections among counting problems are an important factor in solving combinatorial 

counting problems (Lockwood, 2011).  

A main aspect in the process of solving combinatorial counting problems is that students need to 

recognize certain properties of the contexts of the problems. They must see whether the samples 

have to be ordered or not and whether elements in the sample are allowed to be repeated or not. 
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These combinatorial characteristics play an important role in the mathematical thinking process for 

solving combinatorial counting problems. To be able to assess the role of those combinatorial 

characteristics in the process of combinatorial problem solving we like to build a theoretical 

framework for the process of combinatorial problem solving. As far as we know such framework 

does not exist yet.  

According to Van Hiele (1986), in the process of learning mathematics, students go through specific 

levels of thinking. These levels are sequential; students have to pass them to achieve a formal level of 

mathematics. Initially Van Hiele distinguished five levels of thought in learning geometry (Van Hiele, 

1986). Later these levels were generalized to other fields of mathematics (Alberts & Kaenders, 2005). 

In the process of problem solving we see a shift of attention via some levels that have close 

similarities with Van Hiele levels (Mason, 2004). In literature we did not find any description of the 

levels applied to combinatorics. In this study we will show a way to define the Van Hiele levels in the 

field of combinatorial problem solving and we will indicate the place of the combinatorial 

characteristics in these levels. Second, we will try to get more insight in how students go through 

these levels to come to a solution strategy for combinatorial problems.  

Research question 
Is it possible to define Van Hiele levels so they apply to combinatorial counting problems, do 

students go through the defined Van Hiele levels when solving combinatorial counting problems and 

what role do these levels play in reaching a solution to combinatorial counting problems? 

Theoretical perspectives 

Combinatorics and sensible mathematics 
Previous research in the field of combinatorial problem solving mainly focused on the mathematical 

subject and the problems that occur. This research identified many aspects of problems that 

students encounter when they are solving combinatorial counting problems.  

In combinatorics most problems do not have readily available solution methods, and create much 

uncertainty for students on how to approach them and what method to employ, because students 

do not have confidence in their own thinking to unravel the context (Batanero, Navarro-Pelayo, & 

Godino, 1997; Coenen, Verhoef, & Tall, 2014; Eizenberg & Zaslavsky, 2009). This problem is observed 

in all types of students with different ages (Lockwood, 2011). Even university students have troubles 

with identifying problem types and applying the right solution strategies and processes (Godino, 

Batanero, & Roa, 2005; Le Calvez, Giroire, & Tisseau, 2008). According to English (2005) “a common 

finding in many of the studies on combinatorics is that students have difficulty identifying related 

problem structures. As a consequence, students’ ability to transfer their learning to new 

combinatorial situations is limited.” Recent results on combinatorial reasoning (Coenen et al., 2014) 

showed that students are not able to solve the thirteen counting problems of Batanero et al. (1997) 

by classifying them and to relate an appropriate solution strategy for each classification.  

In our perspective most research focussed on the flawed procedural understanding of the subject by 

students, whereas the conceptual understanding stays underexposed. To bring students to ‘sensible 

mathematics’ it’s important to let them develop their knowledge from concepts building on 
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perceptions and experiences, via visualisations based on descriptions to the procedural use of 

symbols and formulas. 

In order to come to deeper insight, students must derive their own models and strategies in the 

context in which the problem occurs (Gravemeijer, 1999). When students mathematize contexts, the 

underlying model, and thus the appropriate strategy, will emerge by perceiving those aspects of the 

situation that are mathematically important. To give students a better understanding it’s better to let 

them discover ‘models of’ the situation first. After the emerging of the model of the situation, this 

model can transfer into a ‘model for’ the solution strategy (Gravemeijer, 1999). 

An example of emergent modeling can be found in the research of Batanero et al. (1997), exercise 6. 

In this exercise, students are given the question how many different ways there are for a 

grandmother to place four children in two different bedrooms, both with enough room for four 

children. The addition “the grandmother can place all the four children in one room, or she can have 

Alice, Bert and Carol on the first floor and Diana in the upstairs room” reveals a clue to the solution 

strategy. It implies to distribute the children and this implicit model suggests considering all 

decompositions of the number 4. For example, when you place two children on the ground floor and 

two children upstairs, then there are 6 possibilities to distribute the 4 children - which is a 

combinatorial problem in itself to solve. If students systematically elaborate all the possible 

decompositions they can find the correct answer by adding 1 + 4 + 6 + 4 + 1 = 16. Batanero 

observed some students solving the problem correctly this way. However, Batanero suggests that the 

problem should have been solved by a multiplication based on a selection model. Indeed, if we shift 

our attention to the fact that for each child one room out of two needs to be selected, then the 

problem is solved quickly: 2 ∙ 2 ∙ 2 ∙ 2 = 16 possibilities in total. However, the first strategy is based 

on the model of the situation and can be deduced from the context. The second strategy is just a 

model for the mathematical solution procedure and can only be applied after a major shift of 

attention.  

Emergent modeling helps students to develop a relational network of knowledge. They are not just 

provided with separate mathematical instruments to solve separate problems but they see more 

mathematical relationships (including differences) among diverse situations. Two advantages in 

relational mathematics over instrumental mathematics are that it’s easier to remember and it’s more 

adaptable to new tasks (Skemp, 1976). Mathematical thinking develops in the child as perceptions 

are recognized and described using language and as actions become coherent operations to achieve 

a specific mathematical purpose (Tall, 2012). So in order to solve combinatorial problems students 

must be able to interpret contexts, see appropriate structures and models, and generalize these 

structures to more formal solution procedures. Solving combinatorial problems must be more than 

applying rote learned tricks (Timmer & Verhoef, 2014). When students solve combinatorial counting 

problems, their solution strategies should be based on mathematical thinking. 

Mathematical thinking levels 
The long-term development of mathematical thinking is consequently more subtle than the addition 

of new experiences to a fixed knowledge structure. It is a continual reconstruction of mental 

connections that evolve to build increasingly sophisticated knowledge structures over time (Tall, 

2015). Every mathematical subject, like geometry, arithmetic, algebra etc. has its own development 

over time. In geometry, van Hiele has traced cognitive development through increasingly 
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sophisticated succession of levels (Tall, 2004). A nice summary of the Van Hiele levels is given by 

Zsombori and András (2013), who adapted the levels to teaching probability and based their 

description on the work of Usiskin (1982). (In most original studies, the levels are numbered from 0 

to 4, we choose to number from 1 to 5). 

• Level 1: Intuitive, also called the level of visualization or the level of global recognition. At 

this level geometric objects are recognized based on their appearance and are connected 

with the use of common language. For example a square is not recognized as a rectangle, 

etc. 

• Level 2: Analysis (and description). At this level objects are recognized due to their 

properties, but properties are not organized hierarchically. Usually the relations between 

different objects and categories are not emphasized. 

• Level 3: Abstraction (and informal deduction). At this level properties are organized into 

a hierarchy, relations between different objects, properties and categories are 

recognized. The argumentation on this level often depends on perception, there exists 

some kind of reasoning based on motivated steps, but in general complex and formal 

proofs are not yet constructed. 

• Level 4: Deduction (formal deduction). At this level the formal (complete and correct) 

proofs are used and constructed. 

• Level 5: Rigor. This is the level where mathematicians work, where the objects are 

constructed by axiomatic systems (and are independent of their realizations). This last 

level is only reached at university level.  

In the process of problem solving we see a shift of attention via some levels that have close 

similarities with Van Hiele levels (Mason, 2004). These levels are: - being aware of the whole 

situation, - focus on details and awareness of relations or similarities, - focus on properties as 

attributes that objects might satisfy and - focus on reasoning solely on the basis of properties 

(Mason, 2004). Typically all levels are sequential and if students want to develop mathematical 

understanding, they have to go through all the levels. So when students really understand 

mathematical subjects, they have built their knowledge through different levels of notions.  

Tall (2013) distinguishes three worlds of mathematics. The first is the conceptual-embodied world 

which is based on perceptions of and reflections on properties of objects. The second world is the 

operational-symbolic world that grows out of the embodied world through – physical - action of the 

learner into mathematical procedures. The third world is the axiomatic-formal world based on formal 

definitions and proof. Tall (2012) terms the first four Van Hiele levels in the following four successive 

levels: recognition of basic concepts, description of observed properties, definition of concepts and 

deduction in the form of proof. In the process of emergent modeling Gravemeijer (1999) 

distinguishes four levels of activity that - we think - have close relations to the four Van Hiele levels 

as described by Tall (2012). These four levels of activity are:  

• Activity in the task setting involves interpretations and solutions that depend on 

understanding how to act in the problem setting (often out-of-school settings).  

• Referential activity involves models of that refer to activity in the setting described in 

instructional activities.  

• General activity involves models for that facilitate a focus on interpretations and 

solutions independent of situation-specific imagery.  
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• The activity of formal mathematical reasoning is no longer dependent on the support of 

models for to achieve mathematical activity. 

All previously mentioned level classifications basically revere to the same processes of learning to 

think mathematically and thus to solve mathematical problems. We choose to use the Van Hiele 

levels to describe the process of mathematical problem solving. 

Mathematical thinking attention 
In mathematical thinking, attention shifts between holistic encompassing, discerning distinctions 

(stress and ignoring foregrounding and backgrounding), recognizing relationships amongst discerned 

features, perceiving properties that objects or elements may possess, and deducing formal 

definitions and axioms (Mason, 2004). 

A main aspect in thinking mathematically is the power to generalize. It’s important to become aware 

of structural relations in order to generalize (Mason, Burton, & Stacey, 2010). It is important to look 

at several instances to discover the similarities. By stressing these similarities and ignoring 

differences one may come to generalizations. Given the nature of counting problems, being able to 

determine similarities among problems, problem types, situations and techniques is a vital aspect of 

being a successful counter. (Lockwood, 2011). People naturally seek similarities and recognize 

repetition and patterns (Mason, 2004). Recognition of patterns is an essential facility for 

mathematics, including patterns in shape and numbers (Tall, 2008). It is important that during the 

solution process, the attention is focused on those aspects which are important for the mathematical 

approach to a problem. It seems important for students to focus on the right details.  

Batanero et al. (1997) gives a nice overview of pedagogical perspectives on combinatorial reasoning 

and problem solving based on the work of Dubois (1984). Dubois identified selection, distribution 

and partition models, each leading to specific solution strategies. The difficulty levels of 

combinatorial problems highly depend on these implicit models: - selection, - distribution, -

 partitioning, and on the nature of elements that are combined, such as letters, numbers, people and 

objects (Batanero et al., 1997). The implicit models in the exercise do have a big influence on 

students’ ability to solve the question. But we believe that it is not just the implicit model that causes 

the problems. The way in which students look at the context and their focus on certain aspects may 

complicate or simplify the solution based on implicit models. Students can have difficulties with the 

interpretation of the situation outlined in the question and some (mis)guiding examples can lead 

them to complicated solution strategies. For exactly this reason this research places the exercises 

only in a selection context and the formulation of the question is kept as simple and clear as possible. 

In the process of solving no discussion must arise about the interpretation of the question. The 

students must not be distracted by ambiguities in the formulation but must be able to focus their 

attention on the combinatorial characteristics repetition and ordering.  

Method 

Participants 
In this study we observed three groups of secondary school students. In the first group, a 4th year 

VWO group, were 5 boys and 9 girls aged 15/16 with a basic knowledge on tree diagrams and 

counting North-East lattice paths. The second group, a 3 VWO group, consisted of 7 boys and 8 girls 
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aged 14/15 with no prior education in counting problems, tree diagrams or probability. In the third 

group, another 3 VWO group, there were 7 boys and 14 girls aged 14/15; these students had learned 

how to draw a tree diagram and how to calculate basic probabilities.  

Research instruments 

Lesson study 

The study is conducted in the form of a lesson study. Lesson study has its origin in Japanese 

mathematics education. The lesson study approach involves the design of the research lesson as part 

of an extended sequence of lessons to teach a particular topic, the implementation of the research 

lesson, followed by evaluation and analysis, then refining of the lesson. Observation of the research 

lesson by colleagues and other interested persons is an essential part of this approach. Having 

several pairs of eyes looking at the classroom activity gives a more comprehensive view of different 

aspects (Verhoef & Tall, 2011). The focus is on observing the students, not the teacher. Based on 

findings the next lesson is redesigned. 

Group work 

In the process of mathematical problem solving cooperation is an important factor. The presence of 

others is a stimulating factor in the impulse to express and clarify own thinking as well as to connect 

it to the thinking of others (Mason et al., 2010). So, in order to be able to observe the mathematical 

thoughts of the students, we will stimulate them to express their thoughts. This is achieved by 

making them work together in groups of three or four. By observing their expressions we can 

determine their Van Hiele level of thinking, the Van Hiele levels at which they interact and in what 

way students go through different Van Hiele levels to reach a solution. To be able to assess the 

awareness of the important aspects we ask the students to categorize the given problems.  

For the reliability, each group was audio or video taped and had an observer. The observer made 

field notes. Students had to write down their solutions and answers. Video tapes or audio recordings 

were used to transcribe student remarks. If a remark - while transcribing the video or audio - was 

unclear, the field notes and students work were consulted to determine the final transcript.  

Van Hiele applied to combinatorial problems 

In this study we investigate how levels of thinking describe secondary school student’s thinking 

processes on combinatorial problem solving. We will define and use the Van Hiele levels to 

distinguish certain levels in the solution process in combinatorial problem solving. We will try to get 

an insight in how Van Hiele levels appear in the process of emergent modeling, in the transition from 

relational knowledge building to instrumental use of strategies, from the conceptual-embodied 

world to the operational-symbolic world.  

We think that the first two Van Hiele levels are easily applicable to combinatorics. At the first level, 

the intuitive level of visualization, students (try to) understand the question, (try to) find some 

examples of samples that are in play to get a ‘feel’ of the possible outcomes. In the second level, that 

of analysis and description, students see relevant aspects in the context that are important for the 

problem: students see combinatorial characteristics such as repetition and ordering and are aware of 

the implicit model. The third level, of definition of concepts, can be seen as creating a structure that 

reveals the sequence of choice, the way of arranging etc. that makes sure that all possibilities are 

accounted for in the solution. This can be done by drawing tree diagrams, drawing a grid to count 
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North-East lattice paths or systematically enumerating possibilities. The fourth level is, of course, the 

level of formal calculation which is deduced from the concepts at level three. We don’t need the fifth 

level, as we are going to investigate the applicability of the Van Hiele levels at combinatorial problem 

solving at secondary school.  

We described the Van Hiele levels with appropriate characterizations of combinatorial reasoning as 

shown in table 1. 

Table 1 Van Hiele levels in combinatorics 

Level description 

1 Visual level; students use concrete drawings or random enumerations to find some samples. 

They are trying to get "the whole picture” to understand what sort of samples are to be 

produced. 

2 Descriptive level; students are trying to find combinatorial characteristics in the problems, 

using terms like repetition, order, not to be used again, double, etc. 

3 Informal deduction; students use the combinatorial characteristics to investigate the structure 

of the given problem using schematic drawings, tree diagrams, or systematically writing down 

all possibilities. 

4 Formal theoretical; using formulas and procedures to calculate the number of possibilities, 

based on recognition, experience or insight. 

 

For example, imagine that students are working on the problem ‘ice cream top 3’ (see appendix A) 

and trying to figure out how many different top 3’s one could make out of 6 flavours. At the first level 

students may call some triples of flavours like banana-strawberry-chocolate, vanilla-banana-cerise, 

banana-chocolate-banana, and so on. At the second level, they may evaluate some of these triples as 

incorrect, because they notice from the context that flavours are not to be repeated, so banana-

chocolate-banana is not a possible top 3, or they may wonder whether strawberry-banana-chocolate 

is different from banana-chocolate-strawberry or not. At the third level students could use a 

systematic enumeration like the odometer strategy (English, 1991), or use tree-diagrams to 

represent all possibilities. At the fourth level they may deduce from the enumeration or the tree 

diagram the formal calculation 6 × 5 × 4 as the solution to the problem.  

Procedure 

Context 

The study consisted of three observed classroom lessons, all in pre-university secondary education. 

The data was collected during March and April 2014. The first two lessons took 50 minutes each and 

the last lesson 45 minutes.  

Interventions 

During the first lesson nine different problems were used, all in a context of selection with the basic 

combinatorial operations: arrangements with and without repetition and combinations without 
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repetition (see Appendix A). Students were asked to solve the problems and, after solving, to seek 

similarities among the problems. During the discussion after the lesson the observers stated they 

noticed that the problems were categorized based only on the type of formal calculations. Students 

didn’t mention the basic combinatorial characteristics repetition and order. By reducing the amount 

of contexts in which the problems occurred, the expectation was that students would distinguish the 

combinatorial characteristics. So during the second lesson the amount of contexts was reduced to 

two: choosing ice cream flavours and choosing books (see Appendix B). The assignment of solving 

and categorizing the problems remained the same for the second lesson. Students could focus their 

mathematical thinking attention on the combinatorial characteristics repetition and order.  

During the second lesson students did eventually recognize the combinatorial characteristics. This 

recognition was based on formal calculations. So in these cases the characteristics were not the basis 

for the solution strategy, but the solution strategy was the basis of the recognition of the 

characteristics. For efficient problem solving one should first see properties and base a solution 

strategy on these properties. So to see if students are able to see the right properties to base their 

strategies on, we decided to change the order of solving and categorization.  

Data processing and analysis  

Taking all transcripts from every lesson, all remarks made by students were assessed. First all three 

researchers individually assessed the remarks. After that the researchers discussed their assessments 

until total agreement about every remark was reached. Remarks that could not be related to 

mathematics were ignored and every single mathematical remark has been discussed to categorize 

its Van Hiele level and to determine the correctness of the remark. In total 541 remarks were 

categorized.  

All data were entered and processed as a table in Excel. Every categorized remark was provided with 

columns for codes for the lesson number, the problem number and the group number. Also columns 

were added for the changes of levels and the changes in correctness. For every two consecutive 

remarks on the same problem, made by a single group of students, the change in quality and change 

of level were calculated.  

An example of the categorization of student’s remarks and quality changes is given in table 2. The 

students are solving the bookstore question: There is a top ten thrillers, all books are in a certain 

bookstore, with plenty copies available. The owner of the store records the sales from the top ten 

most popular books for the first four customers. How many different lists with the choices of 

customer 1 up to 4 are possible? 

The correct argument would be that, when a customer buys a book, all ten books can be selected. 

This means that the owner could have 10 × 10 × 10 × 10 different lists. 
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Table 2 coding of students remarks at levels and quality 

 Level correctness 

1=right/0=wrong 

now that one,… the books…, bookstore first   

J: 10x9x8x7? 4 0 

L: reads exercise out loud and draws ten books in a row 1 1 

S: If you choose this one, there are only nine left 2 0 

J: so 10x9x8x7 4 0 

S: would it be right?   

 

The first remark (by J) shows an example of an incorrect remark on level 4 followed by a good action 

at level 1. This represents a level change of -3 and a quality change of +1. The next remark (by S) is 

wrong on level 2. So now we see a level change of +1 and quality change of -1. The next formal 

calculation is a remark on level 4. The calculation, even though correct looking at S’ remark, is not 

appropriate for the given problem, so it’s labelled wrong and therefore represents a transition of +2 

with quality change of 0. For all student remarks and actions on the same problem both the level 

change and the quality change were determined this way.  

Quantitative Results 

Correctness of the level definition 
Indications for the accuracy of our definition of the Van Hiele levels follow from the fact that at lower 

levels (relatively) more correct comments are made than at higher levels (see figure 1). The reverse is 

also true: at higher levels (relatively) more incorrect comments are made. So if a student makes a 

comment at a lower level, the greater the probability that the comment is correct. The table in figure 

1 gives the absolute number of categorized correct and incorrect remarks per level, with all three 

lessons combined. The diagram in figure 1 shows the percentage of correct and false statements per 

level. So for example: the students made 60 statements in the visual level, level 1, of which 46 were 

right, and 14 were wrong. Resulting in 76,7% right and 23,3% wrong statements.  
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Figure 1 Ratio of correct and false remarks per level 

 

These results indicate that the defined Van Hiele levels (level 1 to level 4) show a hierarchy of 

cognitive levels rising in difficulty. This shows the Van Hiele levels are applicable to combinatorial 

problems.  

Correct and incorrect remarks within levels per lesson 
In the graphs in figure 2 to figure 4 we see the absolute number - split in right and wrong - of 

students remarks during the separate lessons at the y-axis, and the Van Hiele levels at the x-axis. 

The graph in figure 2 shows that students in lesson 1 mainly reasoned in level 3 and 4, while the 

students of lesson 2 mainly reasoned in level 2 and 3. It is not possible to attribute this difference 

solely to the interventions between the lessons. The students who attended lesson 1 were a year 

ahead compared to the students of lesson 2 and 3, and had a basic knowledge of tree diagrams, 

lattice paths and formal calculations. The students of the third lesson had learned tree diagrams and 

the permutational multiplication, but according to the observations they did not use the tree 

diagrams as a part of the solution strategy.  

Figure 2 Number of right and wrong remarks at each level in lesson 1 
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Figure 3 Number of right and wrong remarks at each level in lesson 2 

 

Figure 4 Number of right and wrong remarks at each level in lesson 3 

 

During lesson 2 (figure 3) the students had the highest number of remarks in level 2, 3 and 4, 

whereas the students participating in lesson 3 (figure 4) had the highest number of remarks in level 

4, remotely followed by level 2. This might mean that the students who were first asked to just solve 

the problems explore more. Or perhaps this result can be attributed to the fact that the students in 

lesson 3 already had basic knowledge on tree diagrams, therefor assuming they know what to do, 

and immediately resorting to formal calculations, without exploring the problem. When looking at 

the number of incorrect remarks, the students in lesson 3 demonstrate not to be aware of the subtle 

differences between the given problems, and are just using the same -formal- method of solving for 

different problems. 

Number of level changes 
Figure 5 shows that during the interaction students mainly respond at the same level as the 

comment that was made immediately before. 40 to 50 % of the comments is at the same level as the 

previous one. The larger the (absolute) level change, the less frequent it occurs. The dotted line in 

figure 5 represents the expected change of level if remarks were made at a random level, 

independent of previous remark levels. Indeed, if the occurrence of levels was uniformly distributed, 

the ratio of the number of the possible level differences (-3 up to +3) between two consecutive 

remarks would be 1, 2, 3, 4, 3, 2 and 1 out of 16.The results show that more than statistically 
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expected, remarks have been made on the same level as the preceding remark. Remarks that differ 

in level from the previous one occur less frequent than in a uniform distribution.  

Figure 5 Relative number of change in Van Hiele levels in consecutive remarks 

 

One explanation could be that the comments of students match with what is said, because they 

listen to each other. They react to what was said and it is natural that a reaction is at the same Van 

Hiele level.  

Another explanation may be that students lack the ability to use different levels, so they are not able 

to make these level changes. The observations, however, show that comments made by students are 
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The irregularities in the graph (figure 5) for lesson 3 within the level changes -1 and +2, may not be 

significant because of the small amount of data. Table 3 shows the absolute and relative numbers 

regarding the transitions and the separate lessons. 
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Both figure 5 and table 3 show that the different tasks, as described in the section procedure, given 

during the three lessons do not have any significant influence on the number and distribution of the 

level changes.  

Quality change vs. level change  
Figure 6 shows the average of the changes in quality of all interactions from all three lessons.   

Figure 6 improvement of remarks related to change of level 

 

The average quality change was calculated per level change. These average quality changes, with a 

minimum of -1 and a maximum of +1, are shown on the vertical axis, the level changes are on the 

horizontal axis (see figure 6). Looking at the data of all three classes it appears to be that the 

transition to a higher level frequently has a worsening as result, while the transition to a lower level 

generally indicates an improvement of the correctness of the following remark. 

Locating mistakes 
In total there were 420 consecutive remarks, meaning two following remarks about the same 

problem by the same group. These consecutive remarks are distributed over the possible level 

changes as shown in table 4. 

Table 4 Number of consecutive remarks per level change 

from 
level 

to level 
1 

 
2 

  
3 

  
4 

1 17 18 11 15 

2 11 46 20 34 

3 11 14 53 34 

4 15 28 27 66 

 

Looking at consecutive remarks which have a quality change of -1, meaning in the interaction and 

solution process the group makes a mistake after a correct previous remark, we see that relatively 

many mistakes are located in the transition from level 1 to 3. There were 11 of such changes of 

which 6 were wrong, resulting in a ratio of 0.55. All ratios are listed in table 5. 
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Table 5 Ratio of number of quality change -1 and total number of occurrence of level change 

from 
level 

to level 
1 

 
2 

  
3 

  
4 

1 0,24 0,22 0,55 0,40 

2 0,09 0,15 0,15 0,35 

3 0,00 0,21 0,21 0,12 

4 0,20 0,14 0,04 0,15 

 

The ratio of 0.55 when transitioning from level 1 to level 3 is the highest in the table. This might 

indicate that students make relatively more mistakes when they skip level 2, so when they fail to 

identify the properties of combinatorial counting problems in the process of solving them.  

Qualitative results 

Procedures and formula 
During lesson 1, one group started with the problem of t-shirts: going on a holiday, you want to take 

three of your ten shirts. How many options are there to take three? In this group one student had 

had private tuition and had been taught to calculate numbers of combinations with the calculator 

function ‘nCr’. Immediately this student, C, took his calculator - working at level 4 - and found the 

right answer 120. Student A mentioned that the problem could be solved by using a tree diagram, 

which would be an action at level 3. Student A was convinced of the correctness of 10x9x8, which 

she deduced from the tree diagram, and challenged student C to explain how it is possible that the 

formula for combinations gives the answer of 120 possibilities and 10x9x8 = 720 possibilities. Student 

C couldn’t explain why both answers are not the same. Student C mentioned that this problem 

maybe had to be solved by counting lattice paths. Student A drew an x-y grid (see 

figure 7), tried to calculate the numbers without writing them down, but she made a mistake 

calculating and didn’t find the correct answer of 120 possibilities. Now student A is convinced of her 

solution of 720 possibilities.  

Figure 7 An x-y grid about choosing 3 out of 10  Figure 8 Students’ solution to choosing 3 out of 10 

   

After the students had solved the other problems, they returned to the t-shirt problem. They 

acknowledged that taking the three t-shirts white, blue and red is similar to taking blue, white and 

red, but they could not translate this notion to an appropriate solution strategy. Student C 
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mentioned that probably there are double sets of shirts. According to student A all the problems can 

be solved with a tree diagram. Immediately after this remark, student C drew an x-y grid and 

mentioned, without any explanation, that you only have the choice between yes or no. The final 

answer of the group is in  figure 8. Not being able to agree on a solution, they decided to write 

down both answers.  

Construction of a systematic method 
During lesson 2, in a particular group, one student E had the lead. First he tried to solve the problem: 

Ice-cream top three. On top of the page he writes down: ice-cream top three. Student E starts to 

investigate the problem. He involves repeating the selection of six different ice-cream flavours 

(numbered 1, 2, 3, 4, 5 and 6). Student E starts with writing down a 1 (see figure 9).  

Figure 9 students' solution to ice-cream in cup 

 

Underneath 1 the student C writes down 5 and 4, because for scoop 2 and 3, there are 5 x 4 = 20 

possibilities left. Next, student C writes down 2. Again he thinks that there are 20 possibilities left for 

scoop 2 and 3. He repeats this for 3.Then student E hesitates. He crosses out some notes (the second 

and third small columns.) He thinks that if 2 is on top, there are only 4 x 3 = 12 possibilities left. He 

continues with 3 on top (3x2= 6 possibilities), 4 on top (2x1= 2 possibilities), etc. Again student E 

hesitates. The reason for this hesitation is not clear, but he doesn’t trust the solutions. Student E 

decides to systematically write down all the possibilities (see figure 9.) In the columns with 1, student 

E makes one mistake, namely 144, but he realizes his mistake immediately. Student E continues till 

he has formed all the combinations in a structured way. Student E tries to explain the structure to 

the other students. The other students challenge him why for example 132 is not in the columns. 

Student C tries to explain the structure in the number of possibilities: 4,3,2,1 - 3,2,1 - 2,1 - 1. 
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Suddenly, student E realises that the structure and combinations belong to the solution of ice-cream 

cup and not to the ice-cream top three. He crosses the top of the page and replaces this with ice-

cream in cup. It is unclear how he concluded this. 

In this example we see that student E first uses a mostly formal approach. After choosing the first 

flavour on top, he calculates the number of possibilities for that one flavour with a multiplication. 

This multiplication is based on a recognition of ‘one less left’ and can be characterized as an action 

on the 4th Van Hiele level. He repeats this for flavour 2 and 3. In fact, up here, the calculation could 

be proceeded in a correct way but he changes his mind. He decreases both factors in the next 

multiplications – for flavour 2 - with 1. Student E didn’t express his thoughts about this, but probably 

again a sort of ‘one less each time’-idea made him do it this way. The decrease is built on a wrong 

interpretation of the situation that, after flavour 1 is put in the first place, this flavour is not to be 

chosen in any other top 3. So, however the combinatorial characteristics order and repetition seem 

to be considered by the student, which is an action on level 2, the calculation on the forth level is 

wrong. Student E doubts himself, and after systematically writing down all possibilities (level 3) 

based on the combinatorial characteristics (level 2) the student reaches insight in what he was doing. 

His insight is that deep that he can interpret his formal calculation as wrong for the problem and 

even better, he was able to match the solution to another – but the right! - question. 

Conclusion 
In this study we introduced a way to categorize students’ remarks while solving combinatorial 

counting problems. Our first goal was to find a way to identify different levels of thinking in relation 

to combinatorics. We showed that the Van Hiele levels can be defined to apply to combinatorics and 

that these levels can be used to classify remarks of students while they are working in groups on 

combinatorial counting problems.  

The analysis of the data shows that students do not go to higher or lower thinking levels as often as 

one might expect. They do not reach the highest -formal level- by using the lower levels as a 

justifying level. Neither did we find any indication that students use the different levels to build their 

solution on the combinatorial characteristics of the two contexts (ice-cream and books), nor that 

they use different levels to verify their reasoning. We did however see that students make more 

mistakes when transitioning to a higher level and make fewer mistakes when they go to a lower 

level. Skipping a level causes even more mistakes.  

Interaction might be an obstructing factor for students to use different levels of thinking while 

working together. Talking about a solution does not stimulate students to make a step to a higher 

level, but seems to block them to make this step because they often react at the same level as the 

level at which their fellow students are speaking. In this study, it seems that working in groups does 

not guarantee that students discover models and use emergent models to come to a solution on a 

formal level. 

Also we tried to investigate the capability of students to recognize combinatorial characteristics in a 

set of problems. Earlier studies, e.g. by Batanero et al. (1997), indicated that students have 

difficulties in doing so. By decreasing the number of implicit models, and by decreasing the number 

of different contexts, we tried to help students to focus on the appropriate combinatorial 

characteristics to determine similarities and differences among counting problems. During all three 
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lessons students were able to see the difference between a problem with and without repetition but 

the ordering property was not explicitly named even though some groups did use this property to 

find the correct solution.  

The qualitative results show that a student who has learned the formal approach, in this case the use 

of the calculator button nCr as a trick for combinations, relies completely on his calculator, while not 

being able to explain how the result is derived. The student who says that you can solve every 

problem by using a tree diagram is right for the counting problems in secondary education, but does 

not see that there are many the same samples in the tree. This shows us that applying a trick, 

formula or a procedure thoughtlessly might give the correct answer, but that the student is not able 

to identify the underlying structure or even to assess whether the chosen solution method is 

applicable. 

The second qualitative result shows a student who truly investigates what he is doing. After finding a 

solution he questions his own result, and tries to confirm it using a different method. Even though he 

never learned the odometer strategy, after some trying, he applies it flawlessly. He shows us that a 

gifted student (he was top of his class) can find his own appropriate solution strategy, with only a 

very small amount of guidance from the teacher. 

Discussion 
Although the interventions between the three lessons didn’t show significant differences and the 

three different groups of students are not quite comparable, we think that the results of the data-

analysis indicate that Van Hiele levels can be defined for combinatorial problem solving. We hoped to 

see differences in the use Van Hiele levels as a result of the interventions. However, practical reasons 

prevented us from observing in comparable student groups. We decided to leave the idea of 

comparing three different groups because of the previously two mentioned reasons. In order to be 

able to assess the correctness of the definition of the Van Hiele levels in the field of combinatorial 

problem solving we looked at the data with all three lessons combined. In future studies it is 

advisable to use comparable groups. 

In retrospect the bookstore problem appeared to be more difficult than we initially thought. Most 

questions to the teacher were about this problem. However most groups finally found the correct 

answer, we think the context of this problem is more complex than that of the other problems. 

Although it is a selection context, the subject that selects - the customer - is not the subject who 

counts - the store owner. Moreover there are four different selectors. These aspects may have been 

confusing for the students.  

In mathematical reasoning students don’t automatically go through the van Hiele levels and the 

sequence of the levels does not guarantee a correct solution process. Teachers should be aware of 

the fact that students easily make mistakes when they go to a higher level in their solution process. 

Guidance by the teacher seems important. Yet we think that education focused on relational 

understanding is of much more value than instrumental instruction. Students are more capable of 

verifying their strategies and justifying their reasoning when education is built on their informal 

approach (Eizenberg & Zaslavsky, 2009). We believe that the Van Hiele levels can play an important 

role in this sort of education. Exploration at lower levels can help students to develop a relational 

network of knowledge and come to sensible mathematics. There seems to be an important role for 
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the teacher; students need guidance to reach a higher level. We think future research should 

investigate how education in combinatorics could be matched with the Van Hiele levels and what 

type of guidance is most effective.  

In all studies on mathematics where students had to solve problems, we found the problems to be 

posed by the teacher or researcher. The attributes and properties of the contexts and models were 

constructed by the teachers and researchers. The main job for the students is to calculate the right 

number of different possibilities. In this study we followed this habit. But perhaps it might be more 

valuable to let students discover which aspects in problems are important when solving 

combinatorial problems. So perhaps we must not ask them how many different ice-creams we can 

make when we are allowed to choose three different flavours out of six. We have to make them 

discover what is important to know when we want to solve the problem of the ice cream shop 

owner: how many different ice creams can I sell. Natural questions arise: how many boules can I 

choose, can I have a flavour twice, do I want a specific order of the boules in my coupe and so on. 

From the answers to these questions a student should conclude they induce different problems with 

their own solution strategies. So far we mainly focused on the similarities among counting problems. 

Similarities were seen as an important factor in recognizing implicit models. But also differences 

might be helpful in discovering the scope of implicit models and solution strategies. 

An idea for future research follows from the second qualitative result. The student hesitates several 

times, to continue solving the problem successfully. Interviewing students while solving the problem 

can give insight into their reasoning, which might help to understand the way students think. 

Understanding their thinking process helps to develop an adequate teaching strategy for 

combinatorics. 

So, even though this study did not directly reveal which way of teaching combinatorics is best, this 

must not be an argument to keep the current way of teaching combinatorics unchanged. Goldin 

(2010) repeats DeBellis & Rosenstein (2004) in citing Gardiner (1991, p 49-50) in cautioning: “If 

instead discrete mathematics is introduced in the schools as a set of facts to be memorized and 

strategies to be applied routinely . . . [its qualities] as an arena for problem solving, reasoning, and 

experimentation are of course destroyed.”  
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Appendix A  

Used problems in lesson 1 
Anneke, Brenda, Charlotte, Dirk, Emma, Frits, Gijs and Harm are playing cards and keeping score. 

After finishing the game, they determine who was in first, second and third place. How many 

possibilities are there to create this ranking? (category: order and without repetition) 

Four Teams (ABCD) are playing a competition, afterwards the ranking is announced, for example 

ABCD or CDBA. Two teams cannot be equal. How many different results are possible? (category: 

order and without repetition) 

Karel ended up with four letters laying Scrabble: L,I,J,K. How many different rows can he form using 

these four letters? (The rows do not have to form actual words) (category: order and without 

repetition) 

You are given a multiple choice test, consisting of 15 questions. Each question has four possible 

answers, of which one will be correct. How many different ways are there of completing the test 

when giving random answers? (category: order and with repetition) 

You are buying an ice-cream cone with three scoops. The store offers 10 flavours. How many cones 

can you make if you are allowed a flavour more than once? (category: order and with repetition) 

You throw three dice, one red, one white, one green. How many different possibilities are there? 

(throwing 1 with red and 2 with green gives a different result compared to throwing 1 with green and 

2 with red.) (category: order and with repetition) 

Going on holiday you want to take three books, from a list of ten. How many options are there to 

take three books? (category: no-order and without repetition) 

Anne, Bert, Chantal, Dik and Evert offer to organise the next party at school. However, only three 

pupils are needed to organise the party. How many different groups of three can you form starting 

out with these five pupils? (category: no-order and without repetition) 

Going on holiday, you want to take three of your ten shirts, how many options are there to take 

three? (category: no-order and without repetition) 

  



 

 
22 

Appendix B 

Used problems in lesson 2&3 
Ice-cream top three 

You are buying three scoops of ice-cream, you can choose from 6 flavours. You have to rank your top 

three favourite flavours. How many different top three lists are possible? (category: order and 

without repetition) 

Ice-cream cup 

You are buying three scoops of ice-cream in a cup, you can choose from 6 flavours. How many 

different cups can you make, if you are allowed to choose a flavour only once? (category: no-order 

and without repetition) 

Ice-cream cone 

You are buying an ice-cream cone with three scoops of ice-cream, you can choose from 6 flavours. 

How many different cones can make, if you can choose a flavour as many times as you like? 

(category: order and with repetition) 

Books top four 

Your teachers asks you to write down your top four favourite books from the list of ten you had to 

read. How many different lists can the teacher get from his pupils? (category: order and without 

repetition) 

Books on holiday 

During the holiday you want to take four books from the list of ten, you have to read for school. How 

many different possibilities are there to bring four books on holiday? (category: no-order and 

without repetition) 

Bookstore 

There is a top ten thrillers, all books are in a certain bookstore, with plenty copies available. The 

owner of the store records the sales from the top ten for the first four customers. How many 

different lists with customer 1 up to 4 are possible? (category: order and with repetition) 


